UNIVERSITÄT KARLSRUHE

The Automatic Computation of Second-Order Slope
 Tuples for Some Nonsmooth Functions

Marco Schnurr

Preprint Nr. 07/09

Institut für Wissenschaftliches Rechnen und Mathematische Modellbildung

76128 Karlsruhe

Anschrift des Verfassers:

Dr. Marco Schnurr
Institut für Angewandte und Numerische Mathematik
Universität Karlsruhe
D-76128 Karlsruhe

The Automatic Computation of Second-Order Slope Tuples for Some Nonsmooth Functions*

Marco Schnurr
Institute for Applied and Numerical Mathematics, University of Karlsruhe, D-76128
Karlsruhe, e-mail: marco.schnurr@math.uni-karlsruhe.de

Keywords: slope tuple, interval analysis, automatic slope computation, range enclosure
MSC 2000: 65G20, 65G99

Abstract

In this paper, we show how the automatic computation of second-order slope tuples can be performed. The algorithm allows for nonsmooth functions, such as $\varphi(x)=|u(x)|$ and $\varphi(x)=\max \{u(x), v(x)\}$, to occur in the function expression of the underlying function. Furthermore, we allow the function expression to contain functions given by two or more branches. By using interval arithmetic, second-order slope tuples provide verified enclosures of the range of the underlying function. We give some examples comparing range enclosures given by a second-order slope tuple with enclosures from previous papers.

1 Introduction

Automatic differentiation [13] is a tool for evaluating functions and derivatives simultaneously without using an explicit formula for the derivative. Combining this technique with interval analysis [1], enclosures of the function range and the derivative range on an interval $[x]$ may be computed simultaneously.

By using an arithmetic analogous to automatic differentiation, the automatic computation of first-order slope tuples is possible. For this purpose, the operations $+,-, \cdot, /$ and the evaluation of elementary functions need to be defined for first-order slope tuples. This approach goes back to Krawczyk and Neumaier [10] and was extended by Rump [16] and Ratz [14]. First-order slope tuples provide enclosures of the function range that may be sharper than enclosures obtained by the well-known mean value form. Moreover, slope tuples can be used in existence tests $[4,5,11,17,19]$ or for verified global optimization [7, 8, 14, 15, 21].
In this paper, we extend this technique by defining a second-order slope tuple and by describing how the automatic computation of such tuples can be carried out. Shen and Wolfe [24] introduced an arithmetic for the automatic computation of second-order slope enclosures, and Kolev [9] improved this by providing optimal enclosures for convex and

[^0]concave elementary functions. However, both papers require the underlying function f : $D \subseteq \mathbb{R} \rightarrow \mathbb{R}$ to be twice continuously differentiable. In this paper, we present similar results that allow for nonsmooth functions $\varphi: D \subseteq \mathbb{R} \rightarrow \mathbb{R}$ occuring in the function expression of f, such as $\varphi(x)=|u(x)|$ and $\varphi(x)=\max \{u(x), v(x)\}$. Furthermore, the function expression of f may contain functions given by two or more branches. Moreover, intermediate results are enclosed by intervals. Hence, these algorithms can be used for verified computations on a floating-point computer.

The paper is organized as follows. Section 2 recalls slope functions and slope enclosures. In section 3, we define second-order slope tuples for univariate functions and explain how the automatic computation can be performed. In Section 4, we compare range enclosures obtained by second-order slope tuples with range enclosures given by other methods. Section 5 extends the technique from section 3 to multivariate functions. Furthermore, we explain an alternative approach called componentwise computation of slope tuples and give examples for both methods.

The numerical results were computed using Pascal-XSC programs on a floating-point computer under the operating system Suse Linux 9.3. The source code of the programs is freely available [18]. A current Pascal-XSC compiler is provided by the working group "Scientific Computing / Software Engineering" of the University of Wuppertal [25].

Throughout this paper, we let $[x]=[\underline{x}, \bar{x}]=\left\{x=\left(x_{i}\right) \in \mathbb{R}^{n}, \underline{x_{i}} \leq x_{i} \leq \overline{x_{i}}\right\}$ with $\underline{x}, \bar{x} \in \mathbb{R}^{n}$ denote an interval vector. The set of all interval vectors $[x] \subset \mathbb{R}^{n}$ is denoted by $\mathbb{R} \mathbb{R}^{n}$. For two interval vectors $[x],[y] \in \mathbb{R}^{n}$, the interval hull $[x] \cup[y]$ is the smallest interval vector in \mathbb{R}^{n} containing $[x]$ and $[y]$, i.e.

$$
([x] \underline{\cup}[y])_{i}:=\left[\min \left\{\underline{x_{i}}, \underline{y_{i}}\right\}, \max \left\{\overline{x_{i}}, \overline{y_{i}}\right\}\right] .
$$

Furthermore, by

$$
\operatorname{mid}[x]:=\frac{\bar{x}+\underline{x}}{2}
$$

we define the midpoint of $[x]$. Analogously, $\mathbb{I} \mathbb{R}^{n \times n}$ denotes the set of interval matrices $[A]=\left([a]_{i j}\right)=\left\{A \in \mathbb{R}^{n \times n}, \underline{a_{i j}} \leq A_{i j} \leq \overline{a_{i j}}\right\}$.
In the following sections, we assume that a function f is given by a function expression consisting of a finite number of operations $+,-, \cdot, /$, and elementary functions (cf. [1]). Furthermore, we suppose that an interval arithmetic evaluation $f([x])$ on a given interval $[x]$ exists.

2 Slope Tuples

In this section, we consider functions $f: D \subseteq \mathbb{R} \rightarrow \mathbb{R}$.

Definition 2.1 (cf. [3]) Let $f \in C^{n}(D)$. Furthermore, let $p(x)=\sum_{i=0}^{n} a_{i} x^{i}$ be the Hermitian interpolation polynomial for f with respect to the nodes $x_{0}, \ldots, x_{n} \in D$. Here, exactly $k+1$ elements of x_{0}, \ldots, x_{n} are equal to x_{i}, if $f\left(x_{i}\right), \ldots, f^{(k)}\left(x_{i}\right)$ are given for some node x_{i}. The leading coefficient a_{n} of p is called the slope of $n-t h$ order of f with respect to x_{0}, \ldots, x_{n}. Notation:

$$
\delta_{n} f\left(x_{0}, \ldots, x_{n}\right):=a_{n}
$$

In the following theorem, we give some basic properties of slopes. The statements d) and e) in Theorem 2.2 are easy consequences of the Hermite-Genocchi Theorem (see [3]).

Theorem 2.2 Let $f \in C^{n}(D)$ and let $\delta_{n} f\left(x_{0}, \ldots, x_{n}\right)$ be the slope of n-th order of f with respect to x_{0}, \ldots, x_{n}. Then, the following statements hold:
a) $\delta_{n} f\left(x_{0}, \ldots, x_{n}\right)$ is symmetric with respect to its arguments x_{i}.
b) For $x_{i} \neq x_{j}$ we have the recursion formula

$$
\delta_{n} f\left(x_{0}, \ldots, x_{n}\right)=\frac{\delta_{n-1} f\left(x_{0}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)-\delta_{n-1} f\left(x_{0}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n}\right)}{x_{j}-x_{i}}
$$

c) Setting $\omega_{k}(x):=\prod_{j=0}^{k-1}\left(x-x_{j}\right)$, we have

$$
\begin{equation*}
f(x)=\sum_{i=0}^{n-1} \delta_{i} f\left(x_{0}, \ldots, x_{i}\right) \cdot \omega_{i}(x)+\delta_{n} f\left(x_{0}, \ldots, x_{n-1}, x\right) \cdot \omega_{n}(x), \quad n \geq 1 \tag{1}
\end{equation*}
$$

d) The function $g: D \subseteq \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ defined by

$$
g\left(x_{0}, \ldots, x_{n}\right):=\delta_{n} f\left(x_{0}, \ldots, x_{n}\right)
$$

is continuous.
e) For the nodes $x_{0} \leq x_{1} \leq \ldots \leq x_{n}$ there exists a $\xi \in\left[x_{0}, x_{n}\right]$ such that

$$
\delta_{n} f\left(x_{0}, \ldots, x_{n}\right)=\frac{f^{(n)}(\xi)}{n!}
$$

Definition 2.3 Let f be continuous and $x_{0} \in D$ be fixed. A function $\delta f: D \rightarrow \mathbb{R}$ satisfying

$$
\begin{equation*}
f(x)=f\left(x_{0}\right)+\delta f\left(x ; x_{0}\right) \cdot\left(x-x_{0}\right), \quad x \in D \tag{2}
\end{equation*}
$$

is called a first-order slope function of f with respect to x_{0}.
An interval $\delta f\left([x] ; x_{0}\right) \in \mathbb{R}$ that encloses the range of $\delta f\left(x ; x_{0}\right)$ on the interval $[x] \subseteq D$, i.e.

$$
\delta f\left([x] ; x_{0}\right) \supseteq\left\{\delta f\left(x ; x_{0}\right) \mid x \in[x]\right\}
$$

is called a (first-order) slope enclosure of f on $[x]$ with respect to x_{0}.
In $x=x_{0},(2)$ is fulfilled for an arbitrary $\delta f\left(x_{0} ; x_{0}\right) \in \mathbb{R}$. If f is differentiable in x_{0}, then we always set $\delta f\left(x_{0} ; x_{0}\right):=f^{\prime}\left(x_{0}\right)$. Often, the midpoint mid $[x]$ of the interval $[x]$ is used for x_{0}.

Remark 2.4 a) Let $\delta f\left([x] ; x_{0}\right)=[\underline{\delta f}, \overline{\delta f}]$ be a first-order slope enclosure of f on $[x]$. Then, by (2), we have

$$
\begin{equation*}
f(x) \in f\left(x_{0}\right)+\delta f\left([x] ; x_{0}\right) \cdot\left([x]-x_{0}\right) \tag{3}
\end{equation*}
$$

for all $x \in[x]$.
b) Let f be differentiable on $[x]$ and $x_{0} \in[x]$. Then, we have

$$
\left\{\delta f\left(x ; x_{0}\right) \mid x \in[x], x \neq x_{0}\right\} \subseteq\left\{f^{\prime}(x) \mid x \in[x]\right\}
$$

Therefore, (3) may provide sharper enclosures of the range of f on $[x]$ than the well-known mean value form.

For some continuous functions f and some $x_{0} \in[x] \subseteq D$, a slope enclosure $\delta f\left([x] ; x_{0}\right) \in \mathbb{R} \mathbb{R}$ does not exist, e.g.

$$
f(x)= \begin{cases}\sqrt{x} & \text { for } x \geq 0 \\ 0 & \text { for } x<0\end{cases}
$$

with $x_{0}=0,[x]=[-1,1]$. If f is continuous on $[x]$ and differentiable in $x_{0} \in[x]$, then a slope enclosure $\delta f\left([x] ; x_{0}\right) \in \mathbb{R}$ exists. For a sufficient, more general existence criterion, we define the limiting slope interval [12].

Definition 2.5 Let f be continuous on $[x]$ and $x_{0} \in[x]$. Suppose that both

$$
\liminf _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

and

$$
\limsup _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

exist. Then, the limiting slope interval $\delta f_{\lim }\left(\left[x_{0}\right]\right) \in \mathbb{R}$ is

$$
\delta f_{\lim }\left(\left[x_{0}\right]\right):=\left[\liminf _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}, \limsup _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}\right]
$$

Remark 2.6 If f is Lipschitz continuous in some neighbourhood of x_{0}, then the limiting slope interval $\delta f_{\lim }\left(\left[x_{0}\right]\right)$ exists.

Example 2.7 For $f(x)=|x|, x_{0}=0$ we have $\delta f_{\text {lim }}\left(\left[x_{0}\right]\right)=[-1,1]$.

Lemma 2.8 Let f be continuous on $[x]$ and $x_{0} \in[x]$. If $\delta f_{\lim }\left(\left[x_{0}\right]\right) \in \mathbb{I} \mathbb{R}$ exists, then

$$
\delta f\left([x] ; x_{0}\right)=\left[\inf _{\substack{x \in[x] \\ x \neq x_{0}}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}, \sup _{\substack{x \in[x] \\ x \neq x_{0}}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}\right]
$$

is a slope enclosure of f on $[x]$ with respect to x_{0}.

Proof: $g:[x] \backslash\left\{x_{0}\right\} \rightarrow \mathbb{R}, g(x):=\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$, is bounded.

Remark 2.9 Let f be Lipschitz continuous in some neighbourhood of x_{0}. Then, Muñoz und Kearfott [12] show the inclusion

$$
\begin{equation*}
\delta f_{\lim }\left(\left[x_{0}\right]\right) \subseteq \partial f\left(x_{0}\right) \tag{4}
\end{equation*}
$$

where $\partial f\left(x_{0}\right)$ is the generalized gradient (see [2]). Furthermore, they give an example where

$$
\delta f_{\lim }\left(\left[x_{0}\right]\right) \subset \partial f\left(x_{0}\right)
$$

holds and also a sufficient condition for equality in (4).

Definition 2.10 Let f be continuous, $[x] \subseteq D$ and $x_{0} \in[x]$. Assume that $f^{\prime}\left(x_{0}\right)$ exists. A function $\delta_{2} f: D \rightarrow \mathbb{R}$ satisfying

$$
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \cdot\left(x-x_{0}\right)+\delta_{2} f\left(x ; x_{0}, x_{0}\right) \cdot\left(x-x_{0}\right)^{2}, \quad x \in D,
$$

is called a second-order slope function of f with respect to x_{0}. An interval $\delta_{2} f\left([x] ; x_{0}, x_{0}\right) \in$ $\mathbb{R} \mathbb{R}$ with

$$
\begin{equation*}
f(x) \in f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \cdot\left(x-x_{0}\right)+\delta_{2} f\left([x] ; x_{0}, x_{0}\right) \cdot\left(x-x_{0}\right)^{2}, x \in[x], \tag{5}
\end{equation*}
$$

is called a second-order slope enclosure of f on $[x]$ with respect to x_{0}.
As an abbreviation we set $\delta_{2} f\left(x ; x_{0}\right):=\delta_{2} f\left(x ; x_{0}, x_{0}\right)$ and $\delta_{2} f\left([x] ; x_{0}\right):=\delta_{2} f\left([x] ; x_{0}, x_{0}\right)$. Furthermore, if f is twice differentiable in x_{0}, then we always set $\delta_{2} f\left(x ; x_{0}\right):=\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)$.

Remark 2.11 Assume that (5) holds. Then, we have the enclosure

$$
f(x) \in f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \cdot\left([x]-x_{0}\right)+\delta_{2} f\left([x] ; x_{0}\right) \cdot\left([x]-x_{0}\right)^{2}
$$

for all $x \in[x]$.

3 The automatic computation of second-order slope tuples for univariate functions

In this section, we consider univariate functions $u, v, w, z: D \subseteq \mathbb{R} \rightarrow \mathbb{R}$.
First, we recall the definition of a first-order slope tuple [14, 16]. Afterwards, we give a definition of second-order slope tuples that also permits nonsmooth functions.

Definition 3.1 Let u be continuous, $[x] \subseteq D$ and $x_{0} \in[x]$. A triple $\mathcal{U}=\left(U_{x}, U_{x_{0}}, \delta U\right)$ with $U_{x}, U_{x_{0}}, \delta U \in \mathbb{R}$ satisfying

$$
\begin{aligned}
u(x) & \in U_{x}, \\
u\left(x_{0}\right) & \in U_{x_{0}}, \\
u(x)-u\left(x_{0}\right) & \in \delta U \cdot\left(x-x_{0}\right),
\end{aligned}
$$

for all $x \in[x]$ is called a first-order slope tuple for u on $[x]$ with respect to x_{0}.
Definition 3.2 Let u be continuous, $[x] \subseteq D$ and $x_{0} \in[x]$. A second-order slope tuple for u on $[x]$ with respect to x_{0} is a 5 -tuple $\mathcal{U}=\left(U_{x}, U_{x_{0}}, \delta U_{x_{0}}, \delta U, \delta_{2} U\right)$ with $U_{x}, U_{x_{0}}, \delta U_{x_{0}}, \delta U, \delta_{2} U$ $\in \mathbb{R}, U_{x_{0}} \subseteq U_{x}$, satisfying

$$
\begin{align*}
u(x) & \in U_{x}, \tag{6}\\
u\left(x_{0}\right) & \in U_{x_{0}}, \tag{7}\\
\delta u_{\lim }\left(\left[x_{0}\right]\right) & \subseteq \delta U_{x_{0}}, \tag{8}\\
u(x)-u\left(x_{0}\right) & \in \delta U \cdot\left(x-x_{0}\right), \tag{9}\\
u(x)-u\left(x_{0}\right) & \in \delta U_{x_{0}} \cdot\left(x-x_{0}\right)+\delta_{2} U \cdot\left(x-x_{0}\right)^{2}, \tag{10}
\end{align*}
$$

for all $x \in[x]$.

Remark 3.3 (10) does not imply that $\delta_{2} U$ is a second-order slope enclosure in the sense of (5) because $\delta U_{x_{0}}$ is a superset of $\delta u_{\lim }\left(\left[x_{0}\right]\right)$. However, Remark 3.12 will explain why the term slope tuple is justified.

Remark 3.4 By (6)-(10) we get the enclosures

$$
\begin{aligned}
& u(x) \in U_{x} \\
& u(x) \in U_{x_{0}}+\delta U \cdot\left([x]-x_{0}\right) \\
& u(x) \in U_{x_{0}}+\delta U_{x_{0}} \cdot\left([x]-x_{0}\right)+\delta_{2} U \cdot\left([x]-x_{0}\right)^{2}
\end{aligned}
$$

for the range of u on $[x]$, where

$$
\left([x]-x_{0}\right)^{2}=\left[\min _{x \in[x]}\left(x-x_{0}\right)^{2}, \max _{x \in[x]}\left(x-x_{0}\right)^{2}\right]
$$

Remark 3.5 If $x=x_{0}$, then (9) and (10) are fulfilled for arbitrary $\delta U, \delta U_{x_{0}}$ and $\delta_{2} U$. So in checking these relations, we can restrict ourselves to $x \neq x_{0}$.

Lemma 3.6 $\mathcal{K}=(k, k, 0,0,0)$ is a second-order slope tuple for the constant function $u(x) \equiv k \in \mathbb{R}$ and $\mathcal{X}=\left([x], x_{0}, 1,1,0\right)$ is a second-order slope tuple for the identity function $u(x)=x$ (both on $[x]$ with respect to $\left.x_{0} \in[x]\right)$.

Definition 3.7 Let \mathcal{U} and \mathcal{V} be second-order slope tuples for the continuous functions u and v, respectively, on $[x] \subseteq D$ with respect to $x_{0} \in[x]$.
a) For the addition or subtraction of \mathcal{U} and \mathcal{V} we define the 5-tuple $\mathcal{W}:=\mathcal{U} \pm \mathcal{V}$ by

$$
\begin{array}{ll}
W_{x} & :=U_{x} \pm V_{x} \\
W_{x_{0}} & :=U_{x_{0}} \pm V_{x_{0}} \\
\delta W_{x_{0}} & :=\delta U_{x_{0}} \pm \delta V_{x_{0}} \\
\delta W & :=\delta U \pm \delta V \\
\delta_{2} W & :=\delta_{2} U \pm \delta_{2} V
\end{array}
$$

b) The multiplication $\mathcal{W}:=\mathcal{U} \cdot \mathcal{V}$ is defined by

$$
\begin{array}{ll}
W_{x} & :=U_{x} \cdot V_{x} \\
W_{x_{0}} & :=U_{x_{0}} \cdot V_{x_{0}} \\
\delta W_{x_{0}} & :=\delta U_{x_{0}} \cdot V_{x_{0}}+U_{x_{0}} \cdot \delta V_{x_{0}} \\
\delta W & :=\delta U \cdot V_{x_{0}}+U_{x} \cdot \delta V \\
\delta_{2} W & :=\delta_{2} U \cdot V_{x_{0}}+U_{x} \cdot \delta_{2} V+\delta U \cdot \delta V_{x_{0}}
\end{array}
$$

c) If $0 \notin V_{x}$, then the division $\mathcal{W}:=\mathcal{U} / \mathcal{V}$ is defined by

$$
\begin{array}{ll}
W_{x} & :=U_{x} / V_{x} \\
W_{x_{0}} & :=U_{x_{0}} / V_{x_{0}} \\
\delta W_{x_{0}} & :=\left(\delta U_{x_{0}}-W_{x_{0}} \cdot \delta V_{x_{0}}\right) / V_{x_{0}} \\
\delta W & :=\left(\delta U-W_{x_{0}} \cdot \delta V\right) / V_{x} \\
\delta_{2} W & :=\left(\delta_{2} U-W_{x_{0}} \cdot \delta_{2} V-\delta W \cdot \delta V\right) / V_{x_{0}}
\end{array}
$$

d) If φ is twice continuously differentiable, we define $\mathcal{W}:=\varphi(\mathcal{U})$ by

$$
\begin{array}{ll}
W_{x} & :=\varphi\left(U_{x}\right) \\
W_{x_{0}} & :=\varphi\left(U_{x_{0}}\right) \\
\delta W_{x_{0}} & :=\delta \varphi\left(U_{x_{0}} ; U_{x_{0}}\right) \cdot \delta U_{x_{0}} \\
\delta W & :=\delta \varphi\left(U_{x} ; U_{x_{0}}\right) \cdot \delta U \\
\delta_{2} W & :=\delta \varphi\left(U_{x} ; U_{x_{0}}\right) \cdot \delta_{2} U+\delta_{2} \varphi\left(U_{x} ; U_{x_{0}}\right) \cdot \delta U_{x_{0}} \cdot \delta U .
\end{array}
$$

Here, we require $\varphi\left(U_{x}\right) \in \mathbb{R} \mathbb{R}$ and $\varphi\left(U_{x_{0}}\right) \in \mathbb{R}$ to enclose the range of φ on U_{x} and $U_{x_{0}}$, respectively, and $\delta \varphi\left(U_{x_{0}} ; U_{x_{0}}\right) \in \mathbb{R}$ to enclose

$$
\begin{equation*}
\left\{\delta \varphi\left(\widetilde{u_{x_{0}}} ; u_{x_{0}}\right) \mid \widetilde{u_{x_{0}}} \in U_{x_{0}}, u_{x_{0}} \in U_{x_{0}}\right\} \tag{11}
\end{equation*}
$$

$\delta \varphi\left(U_{x} ; U_{x_{0}}\right) \in \mathbb{R} \mathbb{R}$ to enclose

$$
\begin{equation*}
\left\{\delta \varphi\left(u_{x} ; u_{x_{0}}\right) \mid u_{x} \in U_{x}, u_{x_{0}} \in U_{x_{0}}\right\} \tag{12}
\end{equation*}
$$

and $\delta_{2} \varphi\left(U_{x} ; U_{x_{0}}\right) \in \mathbb{R}$ to enclose

$$
\begin{equation*}
\left\{\delta_{2} \varphi\left(u_{x} ; u_{x_{0}}\right) \mid u_{x} \in U_{x}, u_{x_{0}} \in U_{x_{0}}\right\} \tag{13}
\end{equation*}
$$

Theorem 3.8 The 5-tuples $\mathcal{W}=\left(W_{x}, W_{x_{0}}, \delta W_{x_{0}}, \delta W, \delta_{2} W\right)$ in Definition 3.7 are secondorder slope tuples for the functions $w=u \circ v, \circ \in\{+,-, \cdot, /\}$ and $w(x)=\varphi(u(x))$ on $[x]$ with respect to x_{0}, i.e. they satisfy (6)-(10).

Proof: The proof of (6), (7), and (9) for \mathcal{W} are analogous to those in [14, 16]. So, we only need to prove (8) and (10). We will show this for $\mathcal{W}:=\mathcal{U} \cdot \mathcal{V}$ and $\mathcal{W}:=\varphi(\mathcal{U})$. The proofs for addition, subtraction, and division are similar. Details can be found in [22].
For $w(x)=u(x) \cdot v(x)$ and $x \in[x]$ we have

$$
\begin{aligned}
w(x)-w\left(x_{0}\right) & =u(x) v(x)-u(x) v\left(x_{0}\right)+u(x) v\left(x_{0}\right)-u\left(x_{0}\right) v\left(x_{0}\right) \\
& =\left(u(x) \cdot \delta v\left(x ; x_{0}\right)+\delta u\left(x ; x_{0}\right) \cdot v\left(x_{0}\right)\right) \cdot\left(x-x_{0}\right)
\end{aligned}
$$

and thus obtain

$$
\begin{aligned}
\delta w_{\lim }\left(\left[x_{0}\right]\right) & \subseteq u\left(x_{0}\right) \cdot \delta v_{\lim }\left(\left[x_{0}\right]\right)+\delta u_{\lim }\left(\left[x_{0}\right]\right) \cdot v\left(x_{0}\right) \\
& \subseteq U_{x_{0}} \cdot \delta V_{x_{0}}+\delta U_{x_{0}} \cdot V_{x_{0}}
\end{aligned}
$$

which is (8) for $\mathcal{W}=\mathcal{U} \cdot \mathcal{V}$.
Furthermore, by using interval analysis and the slope tuple properties of \mathcal{U} and \mathcal{V} we have

$$
\begin{aligned}
w(x)-w\left(x_{0}\right)= & u(x)\left(v(x)-v\left(x_{0}\right)\right)+v\left(x_{0}\right)\left(u(x)-u\left(x_{0}\right)\right) \\
\in & u(x)\left(\delta V_{x_{0}} \cdot\left(x-x_{0}\right)+\delta_{2} V \cdot\left(x-x_{0}\right)^{2}\right) \\
& +v\left(x_{0}\right)\left(\delta U_{x_{0}} \cdot\left(x-x_{0}\right)+\delta_{2} U \cdot\left(x-x_{0}\right)^{2}\right) \\
= & \left(u(x) \cdot \delta V_{x_{0}}+v\left(x_{0}\right) \cdot \delta U_{x_{0}}\right) \cdot\left(x-x_{0}\right) \\
& +\left(u(x) \cdot \delta_{2} V+v\left(x_{0}\right) \cdot \delta_{2} U\right) \cdot\left(x-x_{0}\right)^{2} \\
\subseteq & \left(\left(u\left(x_{0}\right)+\delta U \cdot\left(x-x_{0}\right)\right) \cdot \delta V_{x_{0}}+v\left(x_{0}\right) \cdot \delta U_{x_{0}}\right) \cdot\left(x-x_{0}\right) \\
& +\left(u(x) \cdot \delta_{2} V+v\left(x_{0}\right) \cdot \delta_{2} U\right) \cdot\left(x-x_{0}\right)^{2} \\
\subseteq & \delta W_{x_{0}} \cdot\left(x-x_{0}\right)+\delta_{2} W \cdot\left(x-x_{0}\right)^{2},
\end{aligned}
$$

which proves (10).
Next, we consider $w(x)=\varphi(u(x))$ and $x \in[x]$. By

$$
w(x)-w\left(x_{0}\right)=\delta \varphi\left(u(x) ; u\left(x_{0}\right)\right) \cdot\left(u(x)-u\left(x_{0}\right)\right)
$$

we get

$$
\delta w_{\lim }\left(\left[x_{0}\right]\right) \subseteq \varphi^{\prime}\left(u\left(x_{0}\right)\right) \cdot \delta U_{x_{0}} \subseteq \delta \varphi\left(U_{x_{0}} ; U_{x_{0}}\right) \cdot \delta U_{x_{0}}
$$

which is (8) for $\mathcal{W}=\varphi(\mathcal{U})$. Because of

$$
\begin{aligned}
\varphi(u(x))= & \varphi\left(u\left(x_{0}\right)\right)+\varphi^{\prime}\left(u\left(x_{0}\right)\right) \cdot\left(u(x)-u\left(x_{0}\right)\right) \\
& +\delta_{2} \varphi\left(u(x) ; u\left(x_{0}\right)\right) \cdot\left(u(x)-u\left(x_{0}\right)\right)^{2}
\end{aligned}
$$

we obtain

$$
\delta \varphi\left(u(x) ; u\left(x_{0}\right)\right)=\varphi^{\prime}\left(u\left(x_{0}\right)\right)+\delta_{2} \varphi\left(u(x) ; u\left(x_{0}\right)\right) \cdot\left(u(x)-u\left(x_{0}\right)\right) .
$$

Hence, we have

$$
\begin{aligned}
w(x)-w\left(x_{0}\right)= & \delta \varphi\left(u(x) ; u\left(x_{0}\right)\right) \cdot\left(u(x)-u\left(x_{0}\right)\right) \\
\in & \delta \varphi\left(u(x) ; u\left(x_{0}\right)\right) \cdot\left(\delta U_{x_{0}} \cdot\left(x-x_{0}\right)+\delta_{2} U \cdot\left(x-x_{0}\right)^{2}\right) \\
= & \varphi^{\prime}\left(u\left(x_{0}\right)\right) \cdot \delta U_{x_{0}} \cdot\left(x-x_{0}\right) \\
& +\delta_{2} \varphi\left(u(x) ; u\left(x_{0}\right)\right) \cdot \delta U_{x_{0}} \cdot\left(u(x)-u\left(x_{0}\right)\right) \cdot\left(x-x_{0}\right) \\
& +\delta \varphi\left(u(x) ; u\left(x_{0}\right)\right) \cdot \delta_{2} U \cdot\left(x-x_{0}\right)^{2} \\
\subseteq & \delta \varphi\left(U_{x_{0}} ; U_{x_{0}}\right) \cdot \delta U_{x_{0}} \cdot\left(x-x_{0}\right) \\
& +\left(\delta_{2} \varphi\left(U_{x} ; U_{x_{0}}\right) \cdot \delta U_{x_{0}} \cdot \delta U+\delta \varphi\left(U_{x} ; U_{x_{0}}\right) \cdot \delta_{2} U\right) \cdot\left(x-x_{0}\right)^{2} \\
\subseteq & \delta W_{x_{0}} \cdot\left(x-x_{0}\right)+\delta_{2} W \cdot\left(x-x_{0}\right)^{2},
\end{aligned}
$$

which is (10).

Remark 3.9 It is possible to define δW and $\delta_{2} W$ differently in Definition 3.7 b$)$-d), such that they still satisfy (6)-(10). For example, an alternative definition of δW for the multiplication $\mathcal{W}=\mathcal{U} \cdot \mathcal{V}$ would be $\delta W:=\delta U \cdot V_{x}+U_{x_{0}} \cdot \delta V$. Furthermore, the intersection of this alternative δW with the δW from Definition 3.7 b) may be used (cf. [16]).

Next, we compute enclosures $\delta \varphi\left(U_{x_{0}} ; U_{x_{0}}\right), \delta \varphi\left(U_{x} ; U_{x_{0}}\right), \delta_{2} \varphi\left(U_{x} ; U_{x_{0}}\right) \in \mathbb{I} \mathbb{R}$ of (11)-(13), where φ is twice continuously differentiable. Note that such enclosures exist because the sets (11)-(13) are bounded as a consequence of the assumptions on φ and \mathcal{U}.

By the Mean Value Theorem and Taylor's Theorem we have the enclosures

$$
\begin{align*}
\delta \varphi\left(U_{x_{0}} ; U_{x_{0}}\right) & =\varphi^{\prime}\left(U_{x_{0}}\right), \tag{14}\\
\delta \varphi\left(U_{x} ; U_{x_{0}}\right) & =\varphi^{\prime}\left(U_{x}\right), \tag{15}
\end{align*}
$$

and

$$
\begin{equation*}
\delta_{2} \varphi\left(U_{x} ; U_{x_{0}}\right)=\frac{1}{2} \varphi^{\prime \prime}\left(U_{x}\right) \tag{16}
\end{equation*}
$$

of (11)-(13). However, for some functions, such as $\varphi(x)=x^{2}$ and $\varphi(x)=\sqrt{x}$, sharper enclosures for (12) and (13) can be found. By explicit computation of $\delta \varphi\left(u_{x} ; u_{x_{0}}\right)$ and $\delta_{2} \varphi\left(u_{x} ; u_{x_{0}}\right)$ we get the following two lemmas.

Lemma 3.10 Let \mathcal{U} be a second-order slope tuple for u on $[x]$ with respect to $x_{0} \in[x]$, and let $\varphi: \mathbb{R} \rightarrow \mathbb{R}, \varphi(x)=x^{2}$. Then, we have the enclosures

$$
\begin{gathered}
\delta \varphi\left(u_{x} ; u_{x_{0}}\right) \in U_{x}+U_{x_{0}} \\
\delta_{2} \varphi\left(u_{x} ; u_{x_{0}}\right) \in[1,1]
\end{gathered}
$$

for all $u_{x} \in U_{x}$ and all $u_{x_{0}} \in U_{x_{0}}$.
Lemma 3.11 Let \mathcal{U} be a second-order slope tuple for u on $[x]$ with respect to $x_{0} \in[x]$ such that $\inf \left(U_{x}\right) \geq 0$ and $\inf \left(U_{x_{0}}\right)>0$. Furthermore, let $\varphi: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}, \varphi(x)=\sqrt{x}$. Then, for all $u_{x} \in U_{x}$ and all $u_{x_{0}} \in U_{x_{0}}$ we have

$$
\begin{gathered}
\delta \varphi\left(u_{x} ; u_{x_{0}}\right) \in \frac{1}{\sqrt{U_{x}}+\sqrt{U_{x_{0}}}}, \\
\delta_{2} \varphi\left(u_{x} ; u_{x_{0}}\right) \in-\frac{1}{2 \sqrt{U_{x_{0}}}\left(\sqrt{U_{x}}+\sqrt{U_{x_{0}}}\right)^{2}} .
\end{gathered}
$$

Furthermore, by exploiting convexity or concavity of φ and φ^{\prime} we can get sharper enclosures for (12) and (13) than by (15) and (16). The formulas and the proofs can be found in [9] and [16]. Moreover, exploiting a unique point of inflection of φ or φ^{\prime} may also give sharper enclosures for (12) or (13) than (15) or (16). This applies to functions such as $\varphi(x)=\sinh x, \varphi(x)=\cosh x$, etc. We omit the details of these formulas and refer to [20].

Remark 3.12 Let f be twice continuously differentiable and $\mathcal{F}=\left(F_{x}, F_{x_{0}}, \delta F_{x_{0}}, \delta F, \delta_{2} F\right)$ be a second-order slope tuple for f on $[x]$ obtained by using Lemma 3.6 and Definition 3.7. Then, we get

$$
f(x)-f\left(x_{0}\right) \in f^{\prime}\left(x_{0}\right) \cdot\left(x-x_{0}\right)+\delta_{2} F \cdot\left(x-x_{0}\right)^{2}, \quad x \in[x],
$$

analogously to the proof of Theorem 3.8. This is stronger than (10). Hence, by (5), $\delta_{2} F$ is a second-order slope enclosure of f on $[x]$ with respect to x_{0}. This justifies the term second-order slope tuple in Definition 3.2.

Nonsmooth elementary functions

Let \mathcal{U} and \mathcal{V} be second-order slope tuples for u and v on $[x] \subseteq D$ with respect to $x_{0} \in[x]$. We compute a second-order slope tuple \mathcal{W} for $w(x)=|u(x)|, w(x)=\max \{u(x), v(x)\}$ and $w(x)=\min \{u(x), v(x)\}$, so that the automatic computation of second-order slope tuples can be extended to some nonsmooth functions.

1. $w(x)=\varphi(u(x))=|u(x)|$:

We define the evaluation of $\varphi(x)=|x|$ on an interval $[x] \in \mathbb{R}$ by

$$
|[x]|=\operatorname{abs}([x]):=\{|x| \mid x \in[x]\}=\left[\min _{x \in[x]}|x|, \max _{x \in[x]}|x|\right] .
$$

Furthermore, we compute $\mathcal{W}=\varphi(\mathcal{U})=\operatorname{abs}(\mathcal{U})$ by

$$
\begin{aligned}
& W_{x}=\operatorname{abs}\left(U_{x}\right), \\
& W_{x_{0}}=\operatorname{abs}\left(U_{x_{0}}\right), \\
& \delta W_{x_{0}}=\delta \varphi\left(U_{x_{0}} ; U_{x_{0}}\right) \cdot \delta U_{x_{0}}, \\
& \delta W=\delta \varphi\left(U_{x} ; U_{x_{0}}\right) \cdot \delta U, \\
& \delta_{2} W=[r],
\end{aligned}
$$

where

$$
\delta \varphi\left(U_{x_{0}} ; U_{x_{0}}\right)= \begin{cases}{[-1,-1]} & \text { if } \overline{u_{x}} \leq 0 \\ {[1,1]} & \text { if } \underline{u_{x}} \geq 0 \\ {[-1,-1]} & \text { if } 0 \in U_{x} \wedge \overline{u_{x_{0}}}<0 \\ {[1,1]} & \text { if } 0 \in U_{x} \wedge \underline{u_{x_{0}}}>0 \\ {[-1,1]} & \text { otherwise }\end{cases}
$$

$$
\delta \varphi\left(U_{x} ; U_{x_{0}}\right)= \begin{cases}{[-1,-1]} & \text { if } \overline{u_{x}} \leq 0 \\ {[1,1]} & \text { if } \underline{u_{x}} \geq 0 \\ {\left[\frac{\left|\underline{u_{x}}\right|-\left|\underline{u_{x_{0}}}\right|}{\underline{u_{x}}-\underline{u_{x_{0}}}}, \frac{\left|\overline{\left.\right|_{x}}\right|-\left|\overline{u_{x_{0}}}\right|}{\overline{u_{x}}-\bar{u}_{x_{0}}}\right]} & \text { if } 0 \in U_{x} \wedge \underline{u_{x}} \neq \underline{u_{x_{0}}} \wedge \overline{u_{x}} \neq \overline{u_{x_{0}}} \\ {\left[-1, \frac{\left|\overline{u_{x}}\right|-\left|\overline{u_{x_{0}}}\right|}{\overline{u_{x}}-\overline{u_{x_{0}}}}\right]} & \text { if } 0 \in U_{x} \wedge \underline{u_{x}}=\underline{u_{x_{0}}} \wedge \overline{u_{x}} \neq \overline{u_{x_{0}}} \\ {\left[\frac{\left|\underline{u_{x}}\right|-\left|\underline{u_{x_{0}}}\right|}{\underline{u_{x}}-\underline{u_{x_{0}}}}, 1\right]} & \text { if } 0 \in U_{x} \wedge \underline{u_{x}} \neq \underline{u_{x_{0}}} \wedge \overline{u_{x}}=\overline{u_{x_{0}}} \\ {[-1,1]} & \text { otherwise, }\end{cases}
$$

and
$[r]= \begin{cases}-1 \cdot \delta_{2} U & \text { if } \overline{u_{x}} \leq 0 \\ \delta_{2} U & \text { if } \underline{u_{x}} \geq 0 \\ \delta \varphi\left(U_{x} ; U_{x_{0}}\right) \cdot \delta_{2} U+\left[0,-\frac{1}{2 \cdot \overline{u_{x_{0}}}}\right] \cdot \delta U_{x_{0}} \cdot \delta U & \text { if } 0 \in U_{x} \wedge \overline{u_{x_{0}}}<0 \wedge-\overline{u_{x_{0}}} \in U_{x} \\ \delta \varphi\left(U_{x} ; U_{x_{0}}\right) \cdot \delta_{2} U+\left[0, \frac{2 \cdot \overline{u_{x}}}{\left(\overline{\left.u_{x}-\overline{u_{x_{0}}}\right)^{2}}\right] \cdot \delta U_{x_{0}} \cdot \delta U}\right. & \text { if } 0 \in U_{x} \wedge \overline{u_{x_{0}}}<0 \wedge-\overline{u_{x_{0}}} \notin U_{x} \\ \delta \varphi\left(U_{x} ; U_{x_{0}}\right) \cdot \delta_{2} U+\left[0, \frac{1}{2 \cdot \underline{u_{x_{0}}}}\right] \cdot \delta U_{x_{0}} \cdot \delta U & \text { if } 0 \in U_{x} \wedge \underline{u_{x_{0}}}>0 \wedge-\underline{u_{x_{0}}} \in U_{x} \\ \delta \varphi\left(U_{x} ; U_{x_{0}}\right) \cdot \delta_{2} U+\left[0,-\frac{2 \cdot \underline{u_{x}}}{\left(\underline{u_{x}}-\underline{u_{x_{0}}}\right)^{2}}\right] \cdot \delta U_{x_{0}} \cdot \delta U & \text { if } 0 \in U_{x} \wedge \underline{u_{x_{0}}}>0 \wedge-\underline{u_{x_{0}}} \notin U_{x} \\ {[-1,1] \cdot \delta_{2} U} & \text { otherwise. }\end{cases}$
2. $w(x)=\max \{u(x), v(x)\}$:

We define the evaluation of the max-function for two intervals $[a]$ and $[b]$ by

$$
\max \{[a],[b]\}:=[\max \{\underline{a}, \underline{b}\}, \max \{\bar{a}, \bar{b}\}]
$$

Furthermore, we compute $\mathcal{W}=\max \{\mathcal{U}, \mathcal{V}\}$ by

$$
\begin{aligned}
W_{x} & =\max \left\{U_{x}, V_{x}\right\}, \\
W_{x_{0}} & =\max \left\{U_{x_{0}}, V_{x_{0}}\right\}, \\
\delta W_{x_{0}} & = \begin{cases}\delta U_{x_{0}} & \text { if } \frac{u_{x}}{} \geq \overline{v_{x}} \\
\delta V_{x_{0}} & \text { if } \underline{v_{x}} \geq \overline{u_{x}} \\
\delta U_{x_{0}} \underline{\cup} \delta V_{x_{0}} & \text { otherwise }\end{cases} \\
\delta W & = \begin{cases}\delta U & \text { if } \frac{u_{x}}{} \geq \overline{v_{x}} \\
\delta V & \text { if } \underline{v_{x}} \geq \overline{u_{x}} \\
\delta U \underline{\cup} \delta V & \text { otherwise }\end{cases} \\
\delta_{2} W & = \begin{cases}\delta_{2} U & \text { if } \underline{u_{x}} \geq \overline{v_{x}} \\
\delta_{2} V & \text { if } \frac{v_{x}}{v_{x}} \\
\delta_{2} U \underline{\cup} \delta_{2} V & \text { otherwise }\end{cases}
\end{aligned}
$$

We compute \mathcal{W} for $w(x)=\min \{u(x), v(x)\}$ analogously to $w(x)=\max \{u(x), v(x)\}$.

Theorem 3.13 Let \mathcal{U} and \mathcal{V} be second-order slope tuples for u and v, respectively, on $[x] \subseteq D$ with respect to $x_{0} \in[x]$. Then, the tuples $\mathcal{W}=\varphi(\mathcal{U})=\operatorname{abs}(\mathcal{U})$ and $\mathcal{W}=\max \{\mathcal{U}, \mathcal{V}\}$ defined above are second-order slope tuples for the functions $w(x)=$ $\varphi(u(x))=|u(x)|$ and $w(x)=\max \{u(x), v(x)\}$, respectively.

Proof: The proof of (6), (7), and (9) for \mathcal{W} can be found in [14]. Therefore, we only need to check (8) and (10).

1. $w(x)=\varphi(u(x))=|u(x)|:$

We prove (8). For each $x \in[x]$ with $u(x)=u\left(x_{0}\right)$ we have

$$
w(x)-w\left(x_{0}\right)=[a] \cdot\left(u(x)-u\left(x_{0}\right)\right)
$$

with an arbitrary $[a] \in \mathbb{R}$. If $u(x) \neq u\left(x_{0}\right)$, then

$$
\frac{w(x)-w\left(x_{0}\right)}{x-x_{0}}=\frac{|u(x)|-\left|u\left(x_{0}\right)\right|}{u(x)-u\left(x_{0}\right)} \cdot \frac{u(x)-u\left(x_{0}\right)}{x-x_{0}}
$$

holds. By considering the various cases in the definition of $\delta W_{x_{0}}$ we obtain $\delta w_{\lim }\left(\left[x_{0}\right]\right) \subseteq$ $\delta W_{x_{0}}$.

Next, we prove (10).
Case 1: $\overline{u_{x}} \leq 0$.
We have

$$
\begin{aligned}
w(x)-w\left(x_{0}\right) & =-1 \cdot\left(u(x)-u\left(x_{0}\right)\right) \\
& \in-1 \cdot \delta U_{x_{0}} \cdot\left(x-x_{0}\right)-1 \cdot \delta_{2} U \cdot\left(x-x_{0}\right)^{2}
\end{aligned}
$$

Case 2: $\underline{u_{x}} \geq 0$. This case is analogous to the previous case.
Case 3: $0 \in U_{x} \wedge \overline{u_{x_{0}}}<0 \wedge-\overline{u_{x_{0}}} \in U_{x}$.

For all $x \in[x]$ with $u(x) \geq 0$ we get

$$
\begin{aligned}
w(x)-w\left(x_{0}\right) \in & \frac{|u(x)|-\left|u\left(x_{0}\right)\right|}{u(x)-u\left(x_{0}\right)} \cdot\left(\delta U_{x_{0}} \cdot\left(x-x_{0}\right)+\delta_{2} U \cdot\left(x-x_{0}\right)^{2}\right) \\
= & \left(-1+\frac{2 u(x)}{u(x)-u\left(x_{0}\right)}\right) \cdot \delta U_{x_{0}} \cdot\left(x-x_{0}\right) \\
& +\frac{|u(x)|-\left|u\left(x_{0}\right)\right|}{u(x)-u\left(x_{0}\right)} \cdot \delta_{2} U \cdot\left(x-x_{0}\right)^{2} \\
= & -\delta U_{x_{0}} \cdot\left(x-x_{0}\right)+\left(\frac{|u(x)|-\left|u\left(x_{0}\right)\right|}{u(x)-u\left(x_{0}\right)} \cdot \delta_{2} U\right. \\
& \left.+\frac{2 u(x)}{\left(u(x)-u\left(x_{0}\right)\right)^{2}} \cdot \frac{u(x)-u\left(x_{0}\right)}{x-x_{0}} \cdot \delta U_{x_{0}}\right) \cdot\left(x-x_{0}\right)^{2} .
\end{aligned}
$$

Because of $u(x) \geq 0$ we have

$$
\begin{equation*}
0 \leq \frac{2 u(x)}{\left(u(x)-u\left(x_{0}\right)\right)^{2}} \leq \frac{2 u(x)}{\left(u(x)-\overline{u_{x_{0}}}\right)^{2}} . \tag{17}
\end{equation*}
$$

By computing the maximum of the right expression in (17) and by using $u(x) \geq 0$ and $-\overline{u_{x_{0}}} \in U_{x}$, we obtain

$$
\frac{2 u(x)}{\left(u(x)-\overline{u_{x_{0}}}\right)^{2}} \leq \frac{2\left(-\overline{u_{x_{0}}}\right)}{\left(-\overline{u_{x_{0}}}-\overline{u_{x_{0}}}\right)^{2}} .
$$

Thus, we have

$$
\begin{equation*}
\frac{2 u(x)}{\left(u(x)-u\left(x_{0}\right)\right)^{2}} \in\left[0,-\frac{1}{2 \overline{u_{x_{0}}}}\right] . \tag{18}
\end{equation*}
$$

Therefore, for all $x \in[x]$ with $u(x) \geq 0$ we have shown that

$$
\begin{align*}
w(x)-w\left(x_{0}\right) \in & -\delta U_{x_{0}} \cdot\left(x-x_{0}\right)+\left(\delta \varphi\left(U_{x} ; U_{x_{0}}\right) \cdot \delta_{2} U\right. \\
& \left.+\left[0,-\frac{1}{2 \overline{u_{x_{0}}}}\right] \cdot \delta U_{x_{0}} \cdot \delta U\right) \cdot\left(x-x_{0}\right)^{2} \tag{19}
\end{align*}
$$

holds. For all $x \in[x]$ with $u(x)<0$ we get

$$
\begin{aligned}
w(x)-w\left(x_{0}\right) & =\left(u(x)-u\left(x_{0}\right)\right) \\
& \in-\delta U_{x_{0}} \cdot\left(x-x_{0}\right)-\delta_{2} U \cdot\left(x-x_{0}\right)^{2} .
\end{aligned}
$$

Because of $-1 \in \delta \varphi\left(U_{x} ; U_{x_{0}}\right)$ and $0 \in\left[0,-\frac{1}{2 \overline{u_{x_{0}}}}\right]$ we have

$$
\begin{aligned}
& -1 \cdot \delta_{2} U \cdot\left(x-x_{0}\right)^{2} \\
\subseteq & \left(\delta \varphi\left(U_{x} ; U_{x_{0}}\right) \cdot \delta_{2} U+\left[0,-\frac{1}{2 \overline{u_{x_{0}}}}\right] \cdot \delta U_{x_{0}} \cdot \delta U\right) \cdot\left(x-x_{0}\right)^{2} .
\end{aligned}
$$

Hence, (19) also holds for all $x \in[x]$ with $u(x)<0$. Thus, we have

$$
w(x)-w\left(x_{0}\right) \subseteq \delta W_{x_{0}} \cdot\left(x-x_{0}\right)+\delta_{2} W \cdot\left(x-x_{0}\right)^{2}
$$

for all $x \in[x]$.

Case 4: $0 \in U_{x} \wedge \overline{u_{x_{0}}}<0 \wedge-\overline{u_{x_{0}}} \notin U_{x}$.
The proof is analogous to case 3 . Instead of (18), we get

$$
\frac{2 \cdot u(x)}{\left(u(x)-u\left(x_{0}\right)\right)^{2}} \in\left[0, \frac{2 \cdot \overline{u_{x}}}{\left(\overline{u_{x}}-\overline{u_{x_{0}}}\right)^{2}}\right]
$$

Case 5: $0 \in U_{x} \wedge \underline{u_{x_{0}}}>0 \wedge-\underline{u_{x_{0}}} \in U_{x}$. This case is analogous to case 3 .
Case 6: $0 \in U_{x} \wedge \underline{u_{x_{0}}}>0 \wedge-\underline{u_{x_{0}}} \notin U_{x}$. This case is analogous to case 4 .
Case 7: We have

$$
\begin{aligned}
|u(x)|-\left|u\left(x_{0}\right)\right| & \in[-1,1] \cdot\left(u(x)-u\left(x_{0}\right)\right) \\
& \subseteq[-1,1] \cdot \delta U_{x_{0}} \cdot\left(x-x_{0}\right)+[-1,1] \cdot \delta_{2} U \cdot\left(x-x_{0}\right)^{2}
\end{aligned}
$$

which completes the proof.
2. $w(x)=\max \{u(x), v(x)\}:$

Case 1: $\underline{u_{x}} \geq \overline{v_{x}}$.
We have $\max \{u(x), v(x)\}=u(x)$ and $\max \left\{u\left(x_{0}\right), v\left(x_{0}\right)\right\}=u\left(x_{0}\right)$. Therefore, the proof of (8) and (10) is obvious.

Case 2: $\underline{v_{x}} \geq \overline{u_{x}}$. This case can be proven analogously to case 1.
Case 3: In the remaining case we have

$$
\delta w_{\lim }\left(\left[x_{0}\right]\right) \subseteq \delta U_{x_{0}} \underline{\cup} \delta V_{x_{0}} .
$$

Therefore, we get (8). Next, we prove (10).
If $\max \{u(x), v(x)\}=u(x)$ and $\max \left\{u\left(x_{0}\right), v\left(x_{0}\right)\right\}=v\left(x_{0}\right)$, then we have

$$
v(x)-v\left(x_{0}\right) \leq u(x)-v\left(x_{0}\right) \leq u(x)-u\left(x_{0}\right)
$$

and therefore,

$$
\begin{equation*}
w(x)-w\left(x_{0}\right) \in\left(\delta U_{x_{0}} \underline{\cup} \delta V_{x_{0}}\right) \cdot\left(x-x_{0}\right)+\left(\delta_{2} U \underline{\cup} \delta_{2} V\right) \cdot\left(x-x_{0}\right)^{2} \tag{20}
\end{equation*}
$$

holds. Clearly, (20) also holds, if $\max \{u(x), v(x)\}=u(x)$ and $\max \left\{u\left(x_{0}\right), v\left(x_{0}\right)\right\}=$ $u\left(x_{0}\right)$. Analogously, (20) is fulfilled, if u and v are interchanged. Therefore, we get (10).

Continuous functions given by two or more branches

In order to automatically compute second-order slope tuples for continuous functions given by two or more branches, we first define the function ite : $\mathbb{R}^{3} \longrightarrow \mathbb{R}$ ("if-then-else").

Definition 3.14 ite $: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ is the function

$$
\text { ite }(z, u, v) \quad:= \begin{cases}u & \text { if } z<0 \tag{21}\\ v & \text { otherwise. }\end{cases}
$$

Let $u, v, z: D \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ be continuous, $[x] \subseteq D$ and define $w: D \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ by

$$
\begin{equation*}
w(x)=\operatorname{ite}(z(x), u(x), v(x)) . \tag{22}
\end{equation*}
$$

w is now a function given by two branches u and v, with the function z determining which branch is chosen. For details see [23].

Definition 3.15 We define the evaluation of the ite-function for intervals $[z]=[\underline{z}, \bar{z}]$, $[u]=[\underline{u}, \bar{u}]$ and $[v]=[\underline{v}, \bar{v}]$ by

$$
\operatorname{ite}([z],[u],[v]):= \begin{cases}{[u]} & \text { if } \bar{z}<0 \tag{23}\\ {[v]} & \text { if } \underline{z} \geq 0 \\ {[u] \underline{\cup}[v]} & \text { otherwise } .\end{cases}
$$

Theorem 3.16 Let \mathcal{U}, \mathcal{V} and \mathcal{Z} be second-order slope tuples for the continuous functions u, v and z on some interval $[x] \subseteq D$ with respect to $x_{0} \in[x]$. Furthermore, let $w(x)=$ ite $(z(x), u(x), v(x))$ be continuous on $[x]$. We define the 5 -tuple $\mathcal{W}=\operatorname{ite}(\mathcal{Z}, \mathcal{U}, \mathcal{V})$ by

$$
\begin{aligned}
& W_{x}=\text { ite }\left(Z_{x}, U_{x}, V_{x}\right), \\
& W_{x_{0}}=\operatorname{ite}\left(Z_{x_{0}}, U_{x_{0}}, V_{x_{0}}\right), \\
& \delta W_{x_{0}}= \begin{cases}\delta U_{x_{0}} & \text { if } \overline{z_{x}}<0 \\
\delta V_{x_{0}} & \text { if } \underline{z_{x}} \geq 0 \\
\delta U_{x_{0}} \underline{\cup}\left(\delta V_{x_{0}}+\left(\delta U_{x_{0}}-\delta V_{x_{0}}\right) \cdot[0,1]\right) & \text { if } 0 \in Z_{x} \wedge \overline{z_{x_{0}}}<0 \\
\delta V_{x_{0}} \underline{\cup}\left(\delta U_{x_{0}}+\left(\delta V_{x_{0}}-\delta U_{x_{0}}\right) \cdot[0,1]\right) & \text { if } 0 \in Z_{x} \wedge \underline{z_{x_{0}}} \geq 0 \\
\left(\delta U_{x_{0}} \underline{\cup}\left(\delta V_{x_{0}}+\left(\delta U_{x_{0}}-\delta V_{x_{0}}\right) \cdot[0,1]\right)\right) & \\
\underline{\cup}\left(\delta V_{x_{0}} \underline{\cup}\left(\delta U_{x_{0}}+\left(\delta V_{x_{0}}-\delta U_{x_{0}}\right) \cdot[0,1]\right)\right) & \text { otherwise, }\end{cases} \\
& \delta W= \begin{cases}\delta U & \text { if } \overline{z_{x}}<0 \\
\delta V & \text { if } \underline{z_{x}} \geq 0 \\
\delta U \underline{\cup}(\delta V+(\delta U-\delta V) \cdot[0,1]) & \text { if } 0 \in Z_{x} \wedge \overline{z_{x_{0}}}<0 \\
\delta V \underline{\cup}(\delta U+(\delta V-\delta U) \cdot[0,1]) & \text { if } 0 \in Z_{x} \wedge \underline{z_{x_{0}}} \geq 0 \\
(\delta U \underline{\cup}(\delta V+(\delta U-\delta V) \cdot[0,1])) & \\
\underline{\cup}(\delta V \underline{\cup}(\delta U+(\delta V-\delta U) \cdot[0,1])) & \text { otherwise, }\end{cases} \\
& \delta_{2} W= \begin{cases}\delta U & \text { if } \overline{z_{x}}<0 \\
\delta V & \text { if } \underline{z_{x}} \geq 0 \\
\delta_{2} U \underline{\cup}\left(\delta_{2} V+\left(\delta_{2} U-\delta_{2} V\right) \cdot[0,1]\right) & \text { if } 0 \in Z_{x} \wedge \overline{z_{x_{0}}}<0 \\
\delta_{2} V \underline{\cup}\left(\delta_{2} U+\left(\delta_{2} V-\delta_{2} U\right) \cdot[0,1]\right) & \text { if } 0 \in Z_{x} \wedge \underline{z_{x_{0}}} \geq 0 \\
\left(\delta_{2} U \underline{\cup}\left(\delta_{2} V+\left(\delta_{2} U-\delta_{2} V\right) \cdot[0,1]\right)\right) & \\
\underline{\cup}\left(\delta_{2} V \underline{\cup}\left(\delta_{2} U+\left(\delta_{2} V-\delta_{2} U\right) \cdot[0,1]\right)\right) & \text { otherwise. }\end{cases}
\end{aligned}
$$

Then, $\mathcal{W}=\operatorname{ite}(\mathcal{Z}, \mathcal{U}, \mathcal{V})$ is a second-order slope tuple for w on $[x]$ with respect to x_{0}.

Proof: See [22] and [23].

Remark 3.17 In some papers, the formula

$$
\delta W= \begin{cases}\delta U & \text { if } \bar{z}<0 \\ \delta V & \text { if } \underline{z} \geq 0 \\ \delta U \cup \delta V & \text { otherwise }\end{cases}
$$

is used for computation of a first-order slope tuple for $w(x)=\operatorname{ite}(z(x), u(x), v(x))$ on $[x]$. However, this formula is not correct because it does not provide a slope enclosure of w on $[x]$ for all possible choices of z, u, v. For details see [22] and [23].

4 Numerical results

We use the technique from the previous section to automatically compute a second-order slope tuple

$$
\mathcal{F}=\left(F_{x}, F_{x_{0}}, \delta F_{x_{0}}, \delta F, \delta_{2} F\right)
$$

for f on $[x]$ with respect to $x_{0} \in[x]$. In this way, we obtain the range enclosures

$$
\begin{equation*}
S_{1}:=F_{x_{0}}+\delta F \cdot\left([x]-x_{0}\right) \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{2}:=F_{x_{0}}+\delta F_{x_{0}} \cdot\left([x]-x_{0}\right)+\delta_{2} F \cdot\left([x]-x_{0}\right)^{2} \tag{25}
\end{equation*}
$$

of f on $[x]$ (see Remark 3.4). S_{1} was already considered in [14]. If f is twice continuously differentiable, we can also compare these results with the centered forms

$$
\begin{equation*}
D_{1}:=f\left(x_{0}\right)+f^{\prime}([x]) \cdot\left([x]-x_{0}\right) \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{2}:=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \cdot\left([x]-x_{0}\right)+\frac{1}{2} f^{\prime \prime}([x]) \cdot\left([x]-x_{0}\right)^{2} \tag{27}
\end{equation*}
$$

Here, $f^{\prime}([x])$ and $f^{\prime \prime}([x])$ are enclosures of the range of f^{\prime} and $f^{\prime \prime}$ on $[x]$. They are computed via automatic differentiation.

Remark 4.1 By using machine interval arithmetic on a floating-point computer for the operations from section 3 , the slope tuple properties (6)-(10) are preserved. Hence, by applying machine interval arithmetic, we obtain verified range enclosures.

We consider the following examples:

1. $f(x)=(x+\sin x) \cdot \exp \left(-x^{2}\right)$
2. $f(x)=x^{4}-10 x^{3}+35 x^{2}-50 x+24$
3. $\quad f(x)=(\ln (x+1.25)-0.84 x)^{2}$
4. $\quad f(x)=\frac{2}{100} x^{2}-\frac{3}{100} \exp \left(-(20(x-0.875))^{2}\right)$
5. $\quad f(x)=\exp \left(x^{2}\right)$
6. $\quad f(x)=x^{4}-12 x^{3}+47 x^{2}-60 x-20 \exp (-x)$
7. $\quad f(x)=x^{6}-15 x^{4}+27 x^{2}+250$
8. $\quad f(x)=(\arctan (|x-1|))^{2} /\left(x^{6}-2 x^{4}+20\right)$
9. $f(x)=\max \{\exp (-x), \sin (|x-1|)\}$
10. $f(x)=$ ite $\left(x-1, x^{4}-1+\sin (x-1),\left|x^{2}-\frac{5}{2} x+\frac{3}{2}\right|\right)$
11. $f(x)=\left|(x-1)\left(x^{2}+x+5\right)\right| \cdot \exp \left((x-2)^{2}\right)$
12. $f(x)=\max \left\{x^{5}-x^{2}+x, \exp (x) \cdot(x-1)+1\right\}$
13. $f(x)=\operatorname{ite}(x-1,(x-1) \cdot \arctan x \cdot \exp (x+\sin x)$,

$$
\left.\left|\left(x^{2}-\frac{5}{2} x+\frac{3}{2}\right) \cdot \sin x\right|\right)
$$

In each case, we consider $[x]=[0.75,1.75]$ and set $x_{0}:=\operatorname{mid}[x]$. Examples $1-7$ have also been considered in [14].

We obtained the following results:

No.	D_{1}	D_{2}	S_{1}	S_{2}
1	$[-2.262,3.184]$	$[-0.910,2.889]$	$[-0.939,1.861]$	$[-0.247,1.476]$
2	$[-44.75,42.95]$	$[-5.215,7.598]$	$[-22.84,21.04]$	$[-1.778,3.536]$
3	$[-0.376,0.412]$	$[-0.042,0.190]$	$[-0.199,0.235]$	$[-0.041,0.151]$
4	$[-10.51,10.57]$	$[-1835,3.062]$	$[-0.133,0.195]$	$[-0.345,0.115]$
5	$[-32.65,42.19]$	$[-1.193,48.82]$	$[-11.84,21.39]$	$[-1.193,21.39]$
6	$[-85.86,29.28]$	$[-40.03,-11.73]$	$[-61.07,4.492]$	$[-35.76,-16.47]$
7	$[119.5,399.3]$	$[182.7,304.4]$	$[185.9,332.9]$	$[210.4,275.1]$
8	-	-	$[-0.333,0.339]$	$[-0.386,0.233]$
9	-	-	$[-0.214,0.787]$	$[-0.284,1.271]$
10	-	-	$[-7.375,7.500]$	$[-5.945,7.516]$
11	-	-	$[-19.85,26.70]$	$[-8.953,34.22]$
12	-	-	$[-10.13,15.61]$	$[-2.615,15.11]$
13	-	-	$[-15.00,15.12]$	$[-12.64,13.27]$

For the examples 1-7, S_{1} and S_{2} provide sharper enclosures than D_{1} and D_{2}, respectively. Furthermore, S_{2} is a subset of S_{1} for the examples 1-7 except for example 4.

For nonsmooth functions φ, it is possible that a very large interval $\delta_{2} W$ is computed for $\mathcal{W}=\varphi(\mathcal{U})$. Hence, S_{2} is not always contained in S_{1} in our examples. However, except for example 9 , one or both bounds of S_{2} provide sharper bounds for the range of f than S_{1}.

5 The automatic computation of second-order slope tuples for multivariate functions

In this section, let $f: D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$. We define slope enclosures and the limiting slope interval analogously to section 2.

Definition 5.1 Let f be continuous and $x_{0} \in D$ be fixed. A function $\delta f: D \rightarrow \mathbb{R}^{1 \times n}$ satisfying

$$
f(x)=f\left(x_{0}\right)+\delta f\left(x ; x_{0}\right) \cdot\left(x-x_{0}\right), \quad x \in D
$$

is called a first-order slope function of f with respect to x_{0}.
An interval matrix $\delta f\left([x] ; x_{0}\right) \in \mathbb{R}^{1 \times n}$ with

$$
\delta f\left([x] ; x_{0}\right) \supseteq\left\{\delta f\left(x ; x_{0}\right) \mid x \in[x]\right\}
$$

is called a (first-order) slope enclosure of f on $[x]$ with respect to x_{0}.

A slope function of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is not unique, and there are various ways for computing one, see for example $[6,7]$.

Definition 5.2 Let f be continuous on $[x] \in \mathbb{R}^{n},[x] \subseteq D$. Furthermore, let $x_{0} \in[x]$ and $f_{i}(t):=f\left(\left(x_{0}\right)_{1}, \ldots,\left(x_{0}\right)_{i-1}, t,\left(x_{0}\right)_{i+1}, \ldots,\left(x_{0}\right)_{n}\right)$. If

$$
\liminf _{t \rightarrow\left(x_{0}\right)_{i}} \frac{f_{i}(t)-f_{i}\left(\left(x_{0}\right)_{i}\right)}{t-\left(x_{0}\right)_{i}}
$$

and

$$
\limsup _{t \rightarrow\left(x_{0}\right)_{i}} \frac{f_{i}(t)-f_{i}\left(\left(x_{0}\right)_{i}\right)}{t-\left(x_{0}\right)_{i}}
$$

exist for all $i \in\{1, \ldots, n\}$, then we define the limiting slope interval $\delta f_{\lim }\left(\left[x_{0}\right]\right) \in \mathbb{R}^{n}$ by

$$
\left(\delta f_{\lim }\left(\left[x_{0}\right]\right)\right)_{i}:=\left[\liminf _{t \rightarrow\left(x_{0}\right)_{i}} \frac{f_{i}(t)-f_{i}\left(\left(x_{0}\right)_{i}\right)}{t-\left(x_{0}\right)_{i}}, \limsup _{t \rightarrow\left(x_{0}\right)_{i}} \frac{f_{i}(t)-f_{i}\left(\left(x_{0}\right)_{i}\right)}{t-\left(x_{0}\right)_{i}}\right] .
$$

Definition 5.3 Let f be continuous, $[x] \subseteq D, x_{0} \in[x]$, and assume that $f^{\prime}\left(x_{0}\right)$ exists. A function $\delta_{2} f: D \rightarrow \mathbb{R}^{n \times n}$ satisfying

$$
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \cdot\left(x-x_{0}\right)+\left(x-x_{0}\right)^{T} \cdot \delta_{2} f\left(x ; x_{0}, x_{0}\right) \cdot\left(x-x_{0}\right), x \in D
$$

is called a second-order slope function of f with respect to x_{0}.
An interval matrix $\delta_{2} f\left([x] ; x_{0}, x_{0}\right) \in \mathbb{R}^{n \times n}$ with

$$
f(x) \in f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \cdot\left(x-x_{0}\right)+\left(x-x_{0}\right)^{T} \cdot \delta_{2} f\left([x] ; x_{0}, x_{0}\right) \cdot\left(x-x_{0}\right), \quad x \in[x],
$$

is called a second-order slope enclosure of f on $[x]$ with respect to x_{0}.

Definition 5.4 Let $u: D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuous, $[x] \in \mathbb{R}^{n}$ with $[x] \subseteq D$, and $x_{0} \in[x]$. A second-order slope tuple for u on $[x]$ with respect to x_{0} is a 5 -tuple $\mathcal{U}=$ $\left(U_{x}, U_{x_{0}}, \delta U_{x_{0}}, \delta U, \delta_{2} U\right)$ with $U_{x}, U_{x_{0}} \in \mathbb{R}, \delta U_{x_{0}}, \delta U \in \mathbb{R}^{n}, \delta_{2} U \in \mathbb{R} \mathbb{R}^{n \times n}, U_{x_{0}} \subseteq U_{x}$, satisfying

$$
\begin{align*}
u(x) & \in U_{x} \tag{28}\\
u\left(x_{0}\right) & \in U_{x_{0}}, \tag{29}\\
\delta u_{\lim }\left(\left[x_{0}\right]\right) & \subseteq \delta U_{x_{0}}, \tag{30}\\
u(x)-u\left(x_{0}\right) & \in \delta U^{T} \cdot\left(x-x_{0}\right), \tag{31}\\
u(x)-u\left(x_{0}\right) & \in \delta U_{x_{0}}^{T} \cdot\left(x-x_{0}\right)+\left(x-x_{0}\right)^{T} \cdot \delta_{2} U \cdot\left(x-x_{0}\right) \tag{32}
\end{align*}
$$

for all $x \in[x]$.

Lemma 5.5 Let $[x] \in \mathbb{R}^{n}, x_{0} \in[x], i \in\{1, \ldots, n\}$, and let $e^{i} \in \mathbb{R}^{n}$ be the i-th unit vector.
a) $\mathcal{K}=(k, k, 0,0,0)$ is a second-order slope tuple for the constant function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$, $u(x) \equiv k \in \mathbb{R}$, on $[x]$ with respect to x_{0}. Here, the first and the second 0 symbolize the zero vector, and the last 0 stands for the zero matrix.
b) $\mathcal{X}=\left([x]_{i},\left(x_{0}\right)_{i}, e^{i}, e^{i}, 0\right)$ is a second-order slope tuple for $u: \mathbb{R}^{n} \rightarrow \mathbb{R}, u(x)=x_{i}$, on $[x]$ with respect to x_{0}. Here, 0 stands for the zero matrix.

For the automatic computation of second-order slope tuples, the definitions and theorems are completely analogous to section 3 . We only have to take into account that $\delta U_{x_{0}}, \delta U, \delta V_{x_{0}}, \delta V \in \mathbb{R}^{n}$ and $\delta_{2} U, \delta_{2} V \in \mathbb{R}^{n \times n}$. Therefore, we get $\delta U_{x_{0}} \cdot \delta U^{T}$ instead of $\delta U_{x_{0}} \cdot \delta U$ and $\left(x-x_{0}\right)^{T} \cdot \delta_{2} U \cdot\left(x-x_{0}\right)$ instead of $\delta_{2} U \cdot\left(x-x_{0}\right)^{2}$. For details, see [22].

The componentwise computation of second-order slope tuples

The automatic computation of slope tuples for multivariate functions can be reduced to the one-dimensional case by the componentwise computation of slope tuples. For first-order slope tuples, Ratz [14] uses this technique for verified global optimization. Hence, we also consider the componentwise computation of second-order slope tuples in this paper.

Definition 5.6 Let $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuous on $[x]$ and let $i \in\{1, \ldots, n\}$ be fixed. We define the family of functions

$$
\mathcal{G}_{i}:=\left\{\begin{array}{l}
g:[x]_{i} \subseteq \mathbb{R} \rightarrow \mathbb{R}, \quad g(t):=u\left(x_{1}, \ldots, x_{i-1}, t, x_{i+1}, \ldots, x_{n}\right) \tag{33}\\
\text { with } x_{j} \in[x]_{j} \text { fixed for } j \in\{1, \ldots, n\}, j \neq i
\end{array}\right\}
$$

Each $g \in \mathcal{G}_{i}$ is a continuous function of one variable t. Hence, for each $g \in \mathcal{G}_{i}$ the automatic computation of a second-order slope tuple on $[x]_{i}$ with respect to a fixed $\left(x_{0}\right)_{i} \in[x]_{i}$, $\left(x_{0}\right)_{i} \in \mathbb{R}$, is defined as in section 3 .

For the componentwise computation we have to modify the definition of a second-order slope tuple as follows:

Definition 5.7 Let $u: D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuous and $[x] \in \mathbb{R}^{n},[x] \subseteq D$. Furthermore, let $i \in\{1, \ldots, n\}$ and $\left(x_{0}\right)_{i} \in[x]_{i} \subseteq \mathbb{R}$ be fixed. A second-order slope tuple for u on $[x]$ with respect to the i-th component is a 5-tuple $\mathcal{U}=\left(U_{x}, U_{x_{0}}, \delta U_{x_{0}}, \delta U, \delta_{2} U\right)$ with $U_{x}, U_{x_{0}}, \delta U_{x_{0}}, \delta U, \delta_{2} U \in \mathbb{R}, U_{x_{0}} \subseteq U_{x}$, satisfying

$$
\begin{aligned}
g\left(x_{i}\right) & \in U_{x} \\
g\left(\left(x_{0}\right)_{i}\right) & \in U_{x_{0}}, \\
\delta g_{\lim }\left(\left[x_{0}\right]_{i}\right) & \subseteq \delta U_{x_{0}} \\
g\left(x_{i}\right)-g\left(\left(x_{0}\right)_{i}\right) & \in \delta U \cdot\left(x_{i}-\left(x_{0}\right)_{i}\right) \\
g\left(x_{i}\right)-g\left(\left(x_{0}\right)_{i}\right) & \in \delta U_{x_{0}} \cdot\left(x_{i}-\left(x_{0}\right)_{i}\right)+\delta_{2} U \cdot\left(x_{i}-\left(x_{0}\right)_{i}\right)^{2}
\end{aligned}
$$

for all $x_{i} \in[x]_{i}$ and all $g \in \mathcal{G}_{i}$, where \mathcal{G}_{i} is defined by (33).
Remark 5.8 Let \mathcal{U} be a second-order slope tuple for u on $[x]$ with respect to the i-th component. Then, for all $x \in[x]$ we have

$$
\begin{equation*}
u(x) \in U_{x_{0}}+\delta U \cdot\left([x]_{i}-\left(x_{0}\right)_{i}\right) \tag{34}
\end{equation*}
$$

$$
\begin{equation*}
u(x) \in U_{x_{0}}+\delta U_{x_{0}} \cdot\left([x]_{i}-\left(x_{0}\right)_{i}\right)+\delta_{2} U \cdot\left([x]_{i}-\left(x_{0}\right)_{i}\right)^{2} \tag{35}
\end{equation*}
$$

Hence, we have reduced the automatic computation of second-order slope tuples to the one-dimensional case from section 3. Therefore, the same formulas can be used except for Lemma 3.6. We need to modify Lemma 3.6 as follows:

Lemma 5.9 Let $[x] \in \mathbb{R}^{n}, x_{0} \in[x]$, and $i \in\{1, \ldots, n\}$.
a) For each $i \in\{1, \ldots, n\}$, the tuple $\mathcal{K}=(k, k, 0,0,0)$ is a second-order slope tuple for the constant function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}, u(x) \equiv k \in \mathbb{R}$, on $[x]$ with respect to the i-th component.
b) For $u: \mathbb{R}^{n} \rightarrow \mathbb{R}, u(x)=x_{k}$, a second-order slope tuple on $[x]$ with respect to the i-th component is given by

$$
\mathcal{X}= \begin{cases}\left([x]_{k},[x]_{k}, 0,0,0\right), & \text { if } k \neq i \\ \left([x]_{i},\left(x_{0}\right)_{i}, 1,1,0\right), & \text { if } k=i\end{cases}
$$

Remark 5.10 Using a technique similar to [6, 7], we obtain range enclosures that are sharper than (34) and (35). For a fixed $x_{0} \in[x] \subseteq D$ we have

$$
\begin{align*}
f\left(x_{1}, \ldots, x_{n}\right)-f\left(\left(x_{0}\right)_{1}, \ldots,\right. & \left.\left(x_{0}\right)_{n}\right) \\
= & f\left(x_{1}, \ldots, x_{n}\right)-f\left(\left(x_{0}\right)_{1}, x_{2, \ldots}, x_{n}\right) \\
& +f\left(\left(x_{0}\right)_{1}, x_{2}, \ldots, x_{n}\right)-f\left(\left(x_{0}\right)_{1},\left(x_{0}\right)_{2}, x_{3}, \ldots, x_{n}\right) \\
& +f\left(\left(x_{0}\right)_{1},\left(x_{0}\right)_{2}, x_{3}, \ldots, x_{n}\right)-+\cdots \tag{36}\\
& +f\left(\left(x_{0}\right)_{1}, \ldots,\left(x_{0}\right)_{n-1}, x_{n}\right)-f\left(\left(x_{0}\right)_{1}, \ldots,\left(x_{0}\right)_{n}\right)
\end{align*}
$$

for all $x \in[x]$. For each $i \in\{1, \ldots, n\}$, we now compute a second-order slope tuple

$$
\mathcal{F}_{i}:=\left(F_{x ; i}, F_{x_{0} ; i}, \delta F_{x_{0} ; i}, \delta F_{i}, \delta_{2} F_{i}\right)
$$

for the function

$$
\begin{gathered}
f_{i}:\left(\left(x_{0}\right)_{1}, \ldots,\left(x_{0}\right)_{i-1},[x]_{i},[x]_{i+1}, \ldots,[x]_{n}\right) \rightarrow \mathbb{R} \\
f_{i}(x):=u\left(\left(x_{0}\right)_{1}, \ldots,\left(x_{0}\right)_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right) \\
\quad \text { for } x \in\left(\left(x_{0}\right)_{1}, \ldots,\left(x_{0}\right)_{i-1},[x]_{i},[x]_{i+1}, \ldots,[x]_{n}\right)
\end{gathered}
$$

on $\left(\left(x_{0}\right)_{1}, \ldots,\left(x_{0}\right)_{i-1},[x]_{i},[x]_{i+1}, \ldots,[x]_{n}\right)$ with respect to the i-th component.
Then, by (36) we have

$$
\begin{align*}
& f(x) \in F_{x ; 1} \tag{37}\\
& f(x) \in F_{x_{0} ; n}+\sum_{j=1}^{n} \delta F_{j} \cdot\left([x]_{j}-\left(x_{0}\right)_{j}\right)=: S_{c ; 1} \tag{38}\\
& f(x) \in F_{x_{0} ; n}+\sum_{j=1}^{n} \delta F_{x_{0} ; j} \cdot\left([x]_{j}-\left(x_{0}\right)_{j}\right)+\sum_{j=1}^{n} \delta_{2} F_{j} \cdot\left([x]_{j}-\left(x_{0}\right)_{j}\right)^{2}=: S_{c ; 2} \tag{39}
\end{align*}
$$

for all $x \in[x]$.

Examples

We consider the following examples $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Most of them have been considered in [14]:

1. $f(x)=\left(\left(\frac{5}{\pi} x_{4}-\frac{5.1}{4 \pi^{2}} x_{4}^{2}+x_{2}-6\right)^{2}+10\left(1-\frac{1}{8 \pi}\right) \cos x_{4}+10\right) \cdot x_{3}^{2}$

$$
-x_{1}^{5}+x_{2} \frac{\sinh \left(x_{5}\right)}{x_{6}^{2}+1} x_{6}-\exp \left(x_{3}\right) \cdot x_{5}
$$

2. $f(x)=4 x_{1}^{2}-2.1 x_{1}^{4}+\frac{1}{3} x_{1}^{6}+x_{1} x_{2}-4 x_{2}^{2}+4 x_{2}^{4}$
3. $f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(x_{1}-1\right)^{2}$
4. $f(x)=12 x_{1}^{2}-6.3 x_{1}^{4}+x_{1}^{6}+6 x_{2}\left(x_{2}-x_{1}\right)$
5. $f(x)=\sin x_{1}+\sin \left(\frac{10}{3} x_{1}\right)+\ln x_{1}-0.84 x_{1}+1000 x_{1} x_{2}^{2} \exp \left(-x_{3}^{2}\right)$
6. $\quad f(x)=\left(x_{1}+\sin x_{1}\right) \exp \left(-x_{1}^{2}\right)+\ln \left(x_{3}\right) \frac{x_{2}^{2}}{x_{1}}$

In each example, we take

$$
[x]=\left([x]_{1}, \ldots,[x]_{n}\right)=([4,4.25], \ldots,[4,4.25])
$$

and $x_{0}=\operatorname{mid}[x]$.
Using the technique from section 5, we compute a second-order slope tuple

$$
\mathcal{F}=\left(F_{x}, F_{x_{0}}, \delta F_{x_{0}}, \delta F, \delta_{2} F\right)
$$

for f on $[x]$. Then, by (28)-(32) we have

$$
f(x) \in F_{x_{0}}+\delta F^{T} \cdot\left([x]-x_{0}\right)=: S_{m ; 1}
$$

and

$$
f(x) \in F_{x_{0}}+\delta F_{x_{0}}^{T} \cdot\left([x]-x_{0}\right)+\left([x]-x_{0}\right)^{T} \cdot \delta_{2} F \cdot\left([x]-x_{0}\right)=: S_{m ; 2}
$$

with $F_{x_{0}} \in \mathbb{R}, \delta F_{x_{0}}, \delta F \in \mathbb{R}^{n}$ and $\delta_{2} F \in \mathbb{R}^{n \times n}$.
We compare the range enclosures $S_{m ; 1}$ and $S_{m ; 2}$ with $S_{c ; 1}$ and $S_{c ; 2}$ obtained via Remark 5.10.

We obtained the following results:

No.	$S_{m ; 1}$	$S_{m ; 2}$	$S_{c ; 1}$	$S_{c ; 2}$
1	$[-1497.1,-973.01]$	$[-1494.0,-976.12]$	$[-1497.9,-972.20]$	$[-1495.2,-986.94]$
2	$[1809.5,2609.1]$	$[1816.2,2602.5]$	$[1809.5,2609.1]$	$[1843.0,2602.5]$
3	$[13467,19786]$	$[13467,19786]$	$[13467,19786]$	$[13619,19786]$
4	$[2538.7,4074.7]$	$[2558.4,4055.0]$	$[2538.7 \mathrm{E}, 4074.7]$	$[2619.5,4055.0]$
5	$[-2.1275,-1.7755]$	$[-2.0521,-1.8508]$	$[-2.1275,-1.7755]$	$[-2.0499,-1.9322]$
6	$[5.1531,6.5377]$	$[5.1529,6.5379]$	$[5.1532,6.5376]$	$[5.1647,6.5357]$

Except for the first example, we have $S_{c ; 1} \subseteq S_{m ; 1}$ and $S_{c ; 2} \subseteq S_{m ; 2}$. Furthermore, for each of the examples $S_{c ; 2} \subseteq S_{c ; 1}$ holds.

6 Conclusion

In this paper, we have shown how the automatic computation of second-order slope tuples can be performed. Here, the function expression of the underlying function may contain nonsmooth functions such as $\varphi(x)=|u(x)|$ and $\varphi(x)=\max \{u(x), v(x)\}$. Furthermore, we allow for functions given by two or more branches. Some examples illustrated that second-order slope tuples may provide sharper enclosures of the function range than firstorder slope enclosures. Machine interval arithmetic yields verified range enclosures on a floating-point computer. Hence, the automatic computation of second-order slope tuples can also be applied to verified global optimization [22].

References

[1] G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic Press, New York, 1983.
[2] F. H. Clarke. Optimization and Nonsmooth Analysis. John Wiley \& Sons, New York, 1983.
[3] P. Deuflhard and A. Hohmann. Numerical Analysis. de Gruyter, Berlin, 1995.
[4] A. Frommer, B. Lang, and M. Schnurr. A comparison of the Moore and Miranda existence tests. Computing, 72:349-354, 2004.
[5] A. Goldsztejn. Comparison of the Hansen-Sengupta and the Frommer-Lang-Schnurr existence tests. Computing, 79:53-60, 2007.
[6] E. R. Hansen. Interval forms of Newton's method. Computing, 20:153-163, 1978.
[7] E. R. Hansen and G. W. Walster. Global Optimization Using Interval Analysis: Second Edition, Revised and Expanded. Marcel Dekker, New York, 2004.
[8] R. B. Kearfott. Rigorous Global Search: Continuous Problems. Kluwer Academic Publishers, Dordrecht, 1996.
[9] L. Kolev. Use of interval slopes for the irrational part of factorable functions. Reliab. Comput., 3:83-93, 1997.
[10] R. Krawczyk and A. Neumaier. Interval slopes for rational functions and associated centered forms. SIAM J. Numer. Anal., 22:604-616, 1985.
[11] R. E. Moore. A test for existence of solutions to nonlinear systems. SIAM J. Numer. Anal., 14(4):611-615, 1977.
[12] H. Muñoz and R. B. Kearfott. Slope intervals, generalized gradients, semigradients, slant derivatives, and csets. Reliab. Comput., 10(3):163-193, 2004.
[13] L. B. Rall. Automatic Differentiation: Techniques and Applications, Lecture Notes in Computer Science, Vol. 120. Springer, Berlin, 1981.
[14] D. Ratz. Automatic Slope Computation and its Application in Nonsmooth Global Optimization. Shaker Verlag, Aachen, 1998.
[15] D. Ratz. A nonsmooth global optimization technique using slopes - the onedimensional case. J. Global Optim., 14:365-393, 1999.
[16] S. M. Rump. Expansion and estimation of the range of nonlinear functions. Math. Comp., 65(216):1503-1512, 1996.
[17] U. Schäfer and M. Schnurr. A comparison of simple tests for accuracy of approximate solutions to nonlinear systems with uncertain data. J. Ind. Manag. Optim., 2(4):425434, 2006.
[18] M. Schnurr. Webpage for software download. http://iamlasun8.mathematik.uni-karlsruhe.de/~ae26/software/.
[19] M. Schnurr. On the proofs of some statements concerning the theorems of Kantorovich, Moore, and Miranda. Reliab. Comput., 11:77-85, 2005.
[20] M. Schnurr. Computing Slope Enclosures by Exploiting a Unique Point of Inflection. Preprint Nr. 07/08, Institut für Wissenschaftliches Rechnen und Mathematische Modellbildung, Universität Karlsruhe, Germany, 2007.
[21] M. Schnurr. A Second-Order Pruning Step for Verified Global Optimization. Preprint Nr. 07/10, Institut für Wissenschaftliches Rechnen und Mathematische Modellbildung, Universität Karlsruhe, Germany, 2007.
[22] M. Schnurr. Steigungen höherer Ordnung zur verifizierten globalen Optimierung. PhD thesis, Universität Karlsruhe, 2007. http://digbib.ubka.uni-karlsruhe.de/volltexte/1000007229.
[23] M. Schnurr and D. Ratz. Slope enclosures for functions given by two or more branches. Submitted for Publication.
[24] Z. Shen and M. A. Wolfe. On interval enclosures using slope arithmetic. Appl. Math. Comput., 39:89-105, 1990.
[25] XSC Website. Website on programming languages for scientific computing with validation.
http://www.xsc.de [December 2007].

IWRMM-Preprints seit 2006

Nr. 06/01 Willy Dörfler, Vincent Heuveline: Convergence of an adaptive $h p$ finite element strategy in one dimension
Nr. 06/02 Vincent Heuveline, Hoang Nam-Dung: On two Numerical Approaches for the Boundary Control Stabilization of Semi-linear Parabolic Systems: A Comparison
Nr. 06/03 Andreas Rieder, Armin Lechleiter: Newton Regularizations for Impedance Tomography: A Numerical Study
Nr. 06/04 Götz Alefeld, Xiaojun Chen: A Regularized Projection Method for Complementarity Problems with Non-Lipschitzian Functions
Nr. 06/05 Ulrich Kulisch: Letters to the IEEE Computer Arithmetic Standards Revision Group
Nr. 06/06 Frank Strauss, Vincent Heuveline, Ben Schweizer: Existence and approximation results for shape optimization problems in rotordynamics
Nr. 06/07 Kai Sandfort, Joachim Ohser: Labeling of n-dimensional images with choosable adjacency of the pixels
Nr. 06/08 Jan Mayer: Symmetric Permutations for I-matrices to Delay and Avoid Small Pivots During Factorization
Nr. 06/09 Andreas Rieder, Arne Schneck: Optimality of the fully discrete filtered Backprojection Algorithm for Tomographic Inversion
Nr. 06/10 Patrizio Neff, Krzysztof Chelminski, Wolfgang Müller, Christian Wieners: A numerical solution method for an infinitesimal elasto-plastic Cosserat model
Nr. 06/11 Christian Wieners: Nonlinear solution methods for infinitesimal perfect plasticity
Nr. 07/01 Armin Lechleiter, Andreas Rieder: A Convergenze Analysis of the Newton-Type Regularization CG-Reginn with Application to Impedance Tomography
Nr. 07/02 Jan Lellmann, Jonathan Balzer, Andreas Rieder, Jürgen Beyerer: Shape from Specular Reflection Optical Flow
Nr. 07/03 Vincent Heuveline, Jan-Philipp Weiß: A Parallel Implementation of a Lattice Boltzmann Method on the Clearspeed Advance Accelerator Board
Nr. 07/04 Martin Sauter, Christian Wieners: Robust estimates for the approximation of the dynamic consolidation problem
Nr. 07/05 Jan Mayer: A Numerical Evaluation of Preprocessing and ILU-type Preconditioners for the Solution of Unsymmetric Sparse Linear Systems Using Iterative Methods
Nr. 07/06 Vincent Heuveline, Frank Strauss: Shape optimization towards stability in constrained hydrodynamic systems
Nr. 07/07 Götz Alefeld, Günter Mayer: New criteria for the feasibility of the Cholesky method with interval data
Nr. 07/08 Marco Schnurr: Computing Slope Enclosures by Exploiting a Unique Point of Inflection
Nr. 07/09 Marco Schnurr: The Automatic Computation of Second-Order Slope Tuples for Some Nonsmooth Functions

Eine aktuelle Liste aller IWRMM-Preprints finden Sie auf:
www.mathematik.uni-karlsruhe.de/iwrmm/seite/preprints

[^0]: *This paper contains some results from the author's dissertation [22].

