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Abstract

In this paper, we show how the automatic computation of second-order slope
tuples can be performed. The algorithm allows for nonsmooth functions, such as
v (x) = |u(x)| and ¢ (z) = max {u(z),v (x)}, to occur in the function expression of
the underlying function. Furthermore, we allow the function expression to contain
functions given by two or more branches. By using interval arithmetic, second-order
slope tuples provide verified enclosures of the range of the underlying function. We
give some examples comparing range enclosures given by a second-order slope tuple
with enclosures from previous papers.

1 Introduction

Automatic differentiation [13] is a tool for evaluating functions and derivatives simulta-
neously without using an explicit formula for the derivative. Combining this technique
with interval analysis [1], enclosures of the function range and the derivative range on an
interval [x] may be computed simultaneously.

By using an arithmetic analogous to automatic differentiation, the automatic computation
of first-order slope tuples is possible. For this purpose, the operations +, —, -, / and the
evaluation of elementary functions need to be defined for first-order slope tuples. This
approach goes back to Krawczyk and Neumaier [10] and was extended by Rump [16] and
Ratz [14]. First-order slope tuples provide enclosures of the function range that may be
sharper than enclosures obtained by the well-known mean value form. Moreover, slope
tuples can be used in existence tests [4, 5, 11, 17, 19] or for verified global optimization
[7, 8, 14, 15, 21].

In this paper, we extend this technique by defining a second-order slope tuple and by
describing how the automatic computation of such tuples can be carried out. Shen and
Wolfe [24] introduced an arithmetic for the automatic computation of second-order slope
enclosures, and Kolev [9] improved this by providing optimal enclosures for convex and

*This paper contains some results from the author’s dissertation [22].



concave elementary functions. However, both papers require the underlying function f :
D C R — R to be twice continuously differentiable. In this paper, we present similar
results that allow for nonsmooth functions ¢ : D C R — R occuring in the function
expression of f, such as ¢ (z) = |u(x)| and ¢ (z) = max {u (z),v (z)}. Furthermore, the
function expression of f may contain functions given by two or more branches. Moreover,
intermediate results are enclosed by intervals. Hence, these algorithms can be used for
verified computations on a floating-point computer.

The paper is organized as follows. Section 2 recalls slope functions and slope enclosures.
In section 3, we define second-order slope tuples for univariate functions and explain how
the automatic computation can be performed. In Section 4, we compare range enclosures
obtained by second-order slope tuples with range enclosures given by other methods. Sec-
tion 5 extends the technique from section 3 to multivariate functions. Furthermore, we
explain an alternative approach called componentwise computation of slope tuples and give
examples for both methods.

The numerical results were computed using Pascal-XSC programs on a floating-point com-
puter under the operating system Suse Linux 9.3. The source code of the programs is freely
available [18]. A current Pascal-XSC compiler is provided by the working group "Scientific
Computing / Software Engineering” of the University of Wuppertal [25].

Throughout this paper, we let [z] = [2,7] = {# = (2;) € R", 2; < x; < T;} withz,7 € R"
denote an interval vector. The set of all interval vectors [z] C R™ is denoted by IR". For
two interval vectors [z], [y] € IR", the interval hull [x] U [y] is the smallest interval vector
in IR™ containing [z] and [y], i.e.

([£] U [y)); := [min {zi, yi } , max {73, 73}] -

Furthermore, by
Ttz

2
we define the midpoint of [z]. Analogously, IR™™" denotes the set of interval matrices
(4] = (laly) = {4 e R, 0y < Ay <ag}.

In the following sections, we assume that a function f is given by a function expression
consisting of a finite number of operations +, —, -, /, and elementary functions (cf. [1]).
Furthermore, we suppose that an interval arithmetic evaluation f ([z]) on a given interval
[z] exists.

mid [z] :=

2 Slope Tuples

In this section, we consider functions f: D C R — R.

Definition 2.1 (cf. [3]) Let f € C™ (D). Furthermore, let p (z) = Zaixi be the Hermi-

i=0
tian interpolation polynomial for f with respect to the nodes zg, ..., z, € D. Here, exactly
k + 1 elements of xg,...,z, are equal to z;, if f (z;),..., fk) (z;) are given for some node

x;. The leading coefficient a, of p is called the slope of n—th order of f with respect to
xo,...,Ty. Notation:

onf (x(]a-'-v-rn) = Qn.



In the following theorem, we give some basic properties of slopes. The statements d) and
e) in Theorem 2.2 are easy consequences of the Hermite-Genocchi Theorem (see [3]).

Theorem 2.2 Let f € C" (D) and let o, f (zo,...,x,) be the slope of n—th order of f
with respect to zg,...,z,. Then, the following statements hold:
a) onf (xo,...,2n) is symmetric with respect to its arguments x;.

b) For z; # x; we have the recursion formula

5n71f (l’o, ceey Lj—1,5 Tj41, ,a:n) — 5n71f (33‘0, ...,l‘jfl,$]’+1, ,a:n)

(5nf ($0,...,$n) = Tj —
k—1
¢) Setting wy (x) := H (x — x;), we have
7=0
n—1
Fx) = 6if (o, ..., mi) wi (x) + 6uf (T0,- - Tp-1,7) ~wn (), n>=1. (1)
i=0

d) The function g : D C R""! — R defined by
g(xo, ... xn) =0 f (20,...,2p)
1s continuous.
e) For the nodes 9 < z; < ... <z, there exists a £ € [zg, z,] such that

"

n!

(Snf (wo,...,xn) =

Definition 2.3 Let f be continuous and zp € D be fixed. A function of : D — R
satisfying

f(z) = f(z0) +6f (x;20) - (x —20), =z €D, (2)
is called a first-order slope function of f with respect to xg.

An interval df ([x];zo) € IR that encloses the range of of (x;x¢) on the interval [z] C D,
lLe.

of ([z];20) 2 {0f (z;20) |2 € [2]},

is called a (first-order) slope enclosure of f on [x] with respect to xg.

In z = x, (2) is fulfilled for an arbitrary Jf (zo; z9) € R. If f is differentiable in z, then
we always set 0f (zo; o) := f (o). Often, the midpoint mid [x] of the interval [z] is used
for xg.

Remark 2.4 a) Let 6f([z];20) = [df,0f] be a first-order slope enclosure of f on [z].
Then, by (2), we have

f(x) € f (o) + 0f ([x] ;o) - ([x] — o) (3)
for all z € [z].
b) Let f be differentiable on [z] and g € [z]. Then, we have

{f(@;20) |2 € o], 2 # 20} € {f'(@) |o € a] .

Therefore, (3) may provide sharper enclosures of the range of f on [z] than the well-known
mean value form.



For some continuous functions f and some xy € [z] C D, a slope enclosure 0f ([z];zo) € IR
does not exist, e.g.

0 for x < 0,

f(x):{ Vo for x>0,

with g = 0, [x] = [—1,1]. If f is continuous on [z| and differentiable in xg € [z], then a
slope enclosure 0f ([x];z) € IR exists. For a sufficient, more general existence criterion,
we define the limiting slope interval [12].

Definition 2.5 Let f be continuous on [z] and xg € [z]. Suppose that both

i inf f(x) = f (20)
T—T0 T — To
and
s L) = 7 (z0)
T—T0 X — 1:0

exist. Then, the limiting slope interval ofym, ([zo]) € IR is

Oftim ([zo]) := |lim inf J (@) = f(‘TO), limsupM

T—x0 r — T T—xQ r — o

Remark 2.6 If f is Lipschitz continuous in some neighbourhood of zg, then the limiting
slope interval Jfjim ([zo]) exists.

Example 2.7 For f (x) = |z|, o = 0 we have Jfim ([zo]) = [-1,1].
Lemma 2.8 Let f be continuous on [z] and xg € [z]. If ¢fiim ([zo]) € IR exists, then

[ (x) = f (20) [ (x) = f (20)

Of ([x] ;20) = | inf , sup
z€[z] T — X z€lx] T — X
zFzQ TH#x(Q

is a slope enclosure of f on [z] with respect to zg.

f(x) = f (o)

Proof: g: [2]\ {zo} = R, g(2) == T — T

, is bounded. ]

Remark 2.9 Let f be Lipschitz continuous in some neighbourhood of xy. Then, Munoz
und Kearfott [12] show the inclusion

Sfiim ([z0]) S Of (o), (4)

where Of (z¢) is the generalized gradient (see [2|). Furthermore, they give an example
where

fiim ([zo]) C Of (wo)

holds and also a sufficient condition for equality in (4).



Definition 2.10 Let f be continuous, [z] C D and xg € [z]. Assume that f'(zq) exists.
A function o f : D — R satisfying

f(x) = f(xo) + f (w0) - (x — w0) + daf (2320, 20) - (x — w0)*, x € D,

is called a second-order slope function of f with respect to xo. An interval da f ([z] ; zo, x0) €
IR with

f(x) € f(xo) + f(20) - (x — 20) + 2/ ([z] ; w0, m0) - (x — 0)*, =z € [a], (5)

is called a second-order slope enclosure of f on [x] with respect to xo.

As an abbreviation we set 02 f(z;x0) := d2f (x; 20, xo) and o f ([z];z0) := dof ([x]; 20, x0).
Furthermore, if f is twice differentiable in zo, then we always set 8 f(z;z0) 1= 3 £ (x0).

Remark 2.11 Assume that (5) holds. Then, we have the enclosure

f(x) € f(x0)+ f (o) - ([2] = wo) + 62 (2] :0) - (] — o)’

for all z € [z].

3 The automatic computation of second-order slope tuples
for univariate functions

In this section, we consider univariate functions u,v,w,z: D CR — R.

First, we recall the definition of a first-order slope tuple [14, 16]. Afterwards, we give a
definition of second-order slope tuples that also permits nonsmooth functions.

Definition 3.1 Let u be continuous, [z] € D and ¢ € [z]. A triple U = (Uy, Uy, 0U)
with Uy, Uy, 0U € IR satisfying

u(z) € U,
u(zg) € Uy,
—u(xg) € OU-(x—xp),

for all « € [z] is called a first-order slope tuple for u on [x] with respect to x.

Definition 3.2 Let u be continuous, [x] C D and zg € [z]. A second-order slope tuple for u
on [z] with respect to xq is a b-tupleUd = (Uy, Uy, 0Uy,, U, 02U ) with Uy, Uy, 60Uy, , 0U, 62U
€ IR, Uy, C Uy, satisfying

u(z) € Uy, (6)

u(zg) € Uy, (7)

Sutim ([zo]) € Uy, (8)
u(x) —u(zg) € 0U-(x—xg), (9)
u(x) —u(zg) € 0Uy - (x—x0)+ 02U - (xz — 3!:0)2 , (10)

for all = € [z].



Remark 3.3 (10) does not imply that doU is a second-order slope enclosure in the sense
of (5) because dUy, is a superset of duyy, ([zo]). However, Remark 3.12 will explain why
the term slope tuple is justified.

Remark 3.4 By (6)-(10) we get the enclosures

€ Ux,
€ Uz + 06U - ([z] — 20),
w(z) € Upy 40Uy, - ([x] — 20) + 62U - ([2] — 0)?,

for the range of v on [z], where

([#] — 20)* = |min (2 — x0)?, max (z — x)?
z€[x] z€[x]

Remark 3.5 If x = zo, then (9) and (10) are fulfilled for arbitrary 6U, 6U,, and d2U. So
in checking these relations, we can restrict ourselves to x # xg.

Lemma 3.6 £ = (k,k,0,0,0) is a second-order slope tuple for the constant function
u(r) = k € Rand X = ([z],%0,1,1,0) is a second-order slope tuple for the identity
function u (z) = x (both on [z] with respect to xo € [z]).

Definition 3.7 Let U and V be second-order slope tuples for the continuous functions
and v, respectively, on [x] C D with respect to zy € [z].

a) For the addition or subtraction of & and V we define the 5-tuple W :=U £+ V by

We = U, £V,
on = Uxo + Vaco;
Wy = 06Uy £ 0V,
SW = U4V,
0W = U £ 5V

b) The multiplication W :=U -V is defined by

W = U- Vx’

W:EO - U:Eo : V{L'oa

Wy = 0Usy - Vay + Usg - Vg,

SW = 8U -V + Uy -3V,

6W = (52U‘on +Ux‘(5gv+(5U'(5Vx0.

c) If 0 ¢ V,, then the division W :=U/V is defined by

Wa
Wao
oWz,
ow
0o W

Uz/ Ve,

UZQ/V:E()’

(5Umo - Wwo ' 5V9€0) / Vwov

(0U — Wy, - 0V) [ Vy,

(02U — Wy - 65V — W - 6V) | Vi,
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d) If ¢ is twice continuously differentiable, we define W := ¢ (i) by

WZE = SO(UI)v

Wa, = QO(UJCO)’

Way = 00 (Ugy; Ugy) - 0Ug,,

W = 0p(Ug;Uyy) - 60U,

oW = 09 (Uyg;Usy) - 02U + 62 (Uy; Uy, ) - Uy, - 6U.

Here, we require ¢ (U,) € IR and ¢ (U,,) € IR to enclose the range of ¢ on U, and U,,,
respectively, and d¢ (Uzy; Uz, ) € IR to enclose

{09 (tag; uay) | Uay € Usg, tiag € Usy } (11)
0 (Uy; Uy,) € IR to enclose
{06 (u; uag) | s € Us, tag € Uzo } (12)
and 02 (Uy; Uy, ) € IR to enclose
{020 (Uz; Uzy) |Uug € Uy, gy € Ugy }. (13)

Theorem 3.8 The 5-tuples W = (W,, Wy, dWy,, 6W, 02W) in Definition 3.7 are second-
order slope tuples for the functions w =uowv, o € {+,—,-,/} and w (z) = ¢ (u(z)) on [x]
with respect to zo, i.e. they satisfy (6)-(10).

Proof: The proof of (6), (7), and (9) for W are analogous to those in [14, 16]. So, we only
need to prove (8) and (10). We will show this for W :=U -V and W := ¢ (U). The proofs
for addition, subtraction, and division are similar. Details can be found in [22].

For w (z) = u(x) - v (z) and = € [x] we have
w(x) —w(ry) = ul@)v(z) —u(@)v(zo) +u(x)v(xo) —u(wo)v(zo)
= (w(@) - (a3 20) + dulwi o) - v (20) ) - (2 — o)
and thus obtain

Swim ([zo]) u (z0) - 6vim ([2o]) + dutim ([xo]) - v (w0)

Uzy - Vo + 60Uz - Vi,
which is (8) for W=U - V.

Furthermore, by using interval analysis and the slope tuple properties of & and V we have

w(z) —w(xg) = u(x) (v () —v (:UO)) + v (xo) (u () —u (:Uo))
€ u(x) (6Vx0 (z—x0) + 02V - (x — 1’0)2)

+ v @0) (s - (2= 20) + 02U - (2 — 70)° )
= (wl@) 0Vzy + 0 (20) - 80, ) - (2 — 0)

+<u (z) - 62V + v (o) - 52U> (2 — )

C <<u (xo) + 60U - (x — xo)) 0V + v (20) - 5Uxo>‘ (x — z0)
—I—(u (z) - 02V + v (z0) - 52U) (2 — )
C Wy - (x — 20) + 62W - (z — 20)°,



which proves (10).
Next, we consider w (z) = ¢ (u(x)) and z € [z]. By

w(z) —w(zo) = dp(u(x);u(wo)) - (u(@)—ulwo))

we get
dwiim ([zo]) € ¢ (u(20)) - 0Uzy C o9 (U:co; Uzo) < 0Uqy,

which is (8) for W = ¢ (U). Because of

/

p(u(@) = ¢(u(z0)) +¢ (ulx0)) - (u(z) —ulw))
+ 02 (u () u (o) ) - (u(z) —u (o))’

we obtain

So(u(z);u(zo)) = ¢ (u(z0))+dap(u(x);ulwo)) - (u(x) —u(xo)).
Hence, we have
20) ) - (u(x) —u(zo))
x0) ) . <6UxO (z—x0) + 02U - (z — :1:0)2)
= ¢ (u(@0)) - 0Us, - (x — 20)
—|—(52cp(u (2);u (xo)) < O0Uy, - (u () —u (:J:o)) (x — x9)
+6p(u(z);u(z0)) - 62U - (x — z0)?

w(z) —w(zg) = dp(u

C 60(Usy; Usy) - 0Us - (x — o)
+ (52¢(Ux; Usy) - 6Usy - U + 6 (Us Uy - 52U) (z — z0)?
C Wy - (& — x0) + 6aW - (z — 20)?,
which is (10). O

Remark 3.9 Tt is possible to define §W and doW differently in Definition 3.7 b)-d), such
that they still satisfy (6)-(10). For example, an alternative definition of §W for the multi-
plication W =U -V would be 6W := 06U -V, + Uy, - V. Furthermore, the intersection of
this alternative 0W with the 6W from Definition 3.7 b) may be used (cf. [16]).

Next, we compute enclosures ¢ (Uyy; Uy ), 09 (Uy; Usy), d2¢0 (Ur; Uyy) € IR of (11)-(13),
where ¢ is twice continuously differentiable. Note that such enclosures exist because the
sets (11)-(13) are bounded as a consequence of the assumptions on ¢ and U.

By the Mean Value Theorem and Taylor’s Theorem we have the enclosures

!

dep (UI(); U$0) = (Ua:o) ) (14)
dep (U:c§ Uxo) = QOI(UQC) ’ (15)

and
dop (Ua:§ Uzo) = % (PN(U:E) (16)

of (11)-(13). However, for some functions, such as ¢ (z) = 22 and ¢ (z) = /z, sharper
enclosures for (12) and (13) can be found. By explicit computation of d¢ (us;us,) and
02 (ug; ug, ) we get the following two lemmas.



Lemma 3.10 Let U be a second-order slope tuple for u on [z] with respect to z¢ € [z],
and let ¢ : R — R, ¢ (x) = 22. Then, we have the enclosures

0p (Ug;Uugy) € Up + Usy,
datp (U:r§u:ro) € [171]

for all u, € U, and all uy, € Uy,.

Lemma 3.11 Let U be a second-order slope tuple for v on [z] with respect to z¢ € [x]
such that inf (U;) > 0 and inf (Ug,) > 0. Furthermore, let ¢ : R>g — R, ¢ (z) = /.
Then, for all u, € U, and all u,, € Uy, we have

1
0p (Ug; Ugy) E ————,
90< 0) T, + /;Uxo
1

5280 (ux; u:(:g) € —

2/ Uz (VUz +/Usy) "

Furthermore, by exploiting convexity or concavity of ¢ and cp/ we can get sharper enclosures
for (12) and (13) than by (15) and (16). The formulas and the proofs can be found in
[9] and [16]. Moreover, exploiting a unique point of inflection of ¢ or ¢ may also give
sharper enclosures for (12) or (13) than (15) or (16). This applies to functions such as
¢ () =sinhz, ¢ () = coshz, etc. We omit the details of these formulas and refer to [20].

Remark 3.12 Let f be twice continuously differentiable and F = (Fy, Fy,,0Fy,, 0F, d2F)
be a second-order slope tuple for f on [z] obtained by using Lemma 3.6 and Definition 3.7.
Then, we get

fx) = f(zo) € f (x0) (x—x0) + 0F - (x—x0)?, x€[a],

analogously to the proof of Theorem 3.8. This is stronger than (10). Hence, by (5), doF
is a second-order slope enclosure of f on [z] with respect to zp. This justifies the term
second-order slope tuple in Definition 3.2.

Nonsmooth elementary functions

Let U and V be second-order slope tuples for v and v on [z] C D with respect to zy € [z].
We compute a second-order slope tuple W for w (z) = |u ()|, w (x) = max {u (z),v (x)}
and w (x) = min{u (z),v ()}, so that the automatic computation of second-order slope
tuples can be extended to some nonsmooth functions.

Low(z) = ¢ (u(@) = |u@):
We define the evaluation of ¢ () = |z| on an interval [z] € IR by

o]l = abs e]) = (lol | € fa]} = | i o] maxa
z€[x] €[]

Furthermore, we compute W = ¢ (U) = abs (U) by

Wy = abs(Uy),

Wy = abs(Uyg),

5on = 530 (Uxo; Uxo) ’ 5Umov

W = ¢ (Up; Uy,) - 0U,

52W = [7“] s

Ne]



where

[1,1] if ug >0
00 (Upy; Ugy) =1 [—1,—1] if0€ Uy A Uy, <0
[1,1] if0€ Uy A ug >0
[—1,1]  otherwise,
[—1,-1] if w; <0
[1,1] if uy >0
|Z|_uu(f1;|_|fo‘)] if 0 € Uy N g # Ugy Ny 7 Uz,
P9 WUailino) = N 1 -l
-1, u_uOO] if 0 € Uy A g = Ugy AUz 7 Uz,
m,ll if0 € Up Aty # gy ATy = Ty
L [—1,1] otherwise,
and
( —1-6U ifuy, <0
0U if uy >0
50 (Uy: Usy) - 82U + |0, —ﬁ] Uy, - U if0€ Uy Ay < 0N —Tgg € Uy
8¢ (Uy; Uyy) - 62U + |0, 2“12] OUpy - 0U i 0 € Up ANy < OA —TUgy & Uy
"] = | (@)
3o (Uyg; Uy,) - 02U + |0, Mlzo} < O0Uy, - OU if 0 e Uz Nugg > 0N —ug, € Uy

80 (Uyi Uy) - 02U + |0, = 222 | Uy 6U i 0 € Uy Atigy > O A —tgy ¢ Uy

[—1,1] - 52U otherwise.

2. w(z) =max{u(z),v(x)}:

We define the evaluation of the max-function for two intervals [a] and [b] by

max {[a],[b]} = [max{a,b}, max{a,b}].

10



Furthermore, we compute W = max {U,V} by

W, = max{U, Vi },
Wy = max{Uszy, Vaol,
0Uy, if uy > v,
Wy = Vo if vy > Uy
0Uy, UV, otherwise,
oU if uy > v,
ow = %4 if v, > Ty

SU UGSV  otherwise,

ooU if Uy > Uy
W = ooV if Vg > Uy
0oU U 63V otherwise.

We compute W for w (z) = min{u (z),v (z)} analogously to w (z) = max {u (z),v ()}

Theorem 3.13 Let U and V be second-order slope tuples for u and v, respectively,
on [z] € D with respect to zy € [z]. Then, the tuples W = ¢ (U) = abs(U) and
W = max {U,V} defined above are second-order slope tuples for the functions w (z) =
¢ (u(x)) =|u(x)| and w (x) = max {u (z),v (z)}, respectively.

Proof: The proof of (6), (7), and (9) for W can be found in [14]. Therefore, we only need
to check (8) and (10).
Low(z) = ¢ (u(@) = |u(@):
We prove (8). For each z € [z] with u (z) = u (z¢) we have
w(z) —w (o) = [a] - (u(x) —u(wo))
with an arbitrary [a] € IR. If u (x) # u (x0), then

w(x) —w(wo) _ fulx)]—|u(@o)| u(x)—wu(wo)

x — I u(xz) —u(xp) x — T

holds. By considering the various cases in the definition of §W,, we obtain dw iy, ([xo]) C
Wy, -

Next, we prove (10).
Case 1: uy <0.
We have

w(z) —w(zg) = —1- (u(z) —u(z0))
€ —1-6Uy, - (x —x0) —1- 82U - (x — x0)?.

Case 2: u, > 0. This case is analogous to the previous case.

Case 3: 0 €Uy N Ugpy <0 N =Ty, € U,.

11



For all z € [z] with u (x) > 0 we get

|u ()] = [u (zo)]
w(x) —w(xg) € (@) u(xoo) . <6Uch (x— o) + 02U - (z — x0)2)
(2@ N s e
N ( 1+u(m)—u(azo)) OUag - ( 0)
|u ()] = [u (zo)]
+ u(z) —u(xo)

- o (SR
+ 2u(z) .U(J«")—u(%o)

Uy, |- (2 — x0)?.
(u(:v)—u(xo))2 T — o )( 0)

. 52U . (l’ — LUQ)Q

- 02U

Because of u (x) > 0 we have

2u(x) 2u (x)
0 < < : 17
(u(@) —ul20))” ~ (u(@) =) o

By computing the maximum of the right expression in (17) and by using u (z) > 0 and
—Uy, € Uy, we obtain

2u() 2 ()

(u(@) =)~ (=g — i)
Thus, we have
2u (x) 1
(u(x)—u(xo))2 © [07 2“900] (18)

Therefore, for all z € [x] with u (z) > 0 we have shown that

w(x) —w(zy) € —8Us, - (z — o)+ (5¢ (Us; Uy, ) - 62U

' [O’ _21}  6U, -w) (@ — 20)? (19)

Uz

holds. For all z € [z] with u (z) < 0 we get

w(x) —w (xg)

(u(z) —u(z0))
—6Uy, - (x — x0) — 02U - (z — x0)%.
Because of —1 € 0p (Ug; Uy,) and 0 € [0, -

S

271170} we have
—1- 52U . (Hf — .%'0)2

C (690 (Ux; U{L’o) 02U + [07 -

1 2
2u] - O6U, -(5U) (x — ).

0

Hence, (19) also holds for all x € [z] with u () < 0. Thus, we have

w () —w(2z0) € Wy - (z — 20) 4+ 02W - (z — 20)?
for all z € [z].
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Case 4: 0 € Uy N TUgzy <0 N —Tg, ¢ Us.

The proof is analogous to case 3. Instead of (18), we get

2-u(@) 5 € [O, 2'%2].
(u (z) —u(zo) ) (ux — uxo)
Case 5: 0 € Uy, A Ugy > 0A —Ug, € U,. This case is analogous to case 3.

Case 6: 0 € Uz Nug, > 0N —ug, ¢ Uy. This case is analogous to case 4.
Case 7: We have

(@) = lu(@o)| € [=1,1]- (u(@) —u () )
C [~1,1] - 6Us, - (= @0) + [-1,1] - 6T - (z — w0)?,

which completes the proof.

2. w(z) = max {u(z),v (z)}:

Case 1: Uz > 7.

We have max {u (z),v (z)} = u (z) and max {u (z9),v (z0)} = u (o). Therefore, the proof
of (8) and (10) is obvious.

Case 2: vy > . This case can be proven analogously to case 1.

Case 3: In the remaining case we have
dwiim ([o]) C Uz, U 6Vy,.
Therefore, we get (8). Next, we prove (10).
If max {u (z),v (z)} = u(x) and max {u (zg),v (x0)} = v (zp), then we have
v(z) —v(wo) < w(@)—v(zo) < wu(x)—wulo),
and therefore,
w (x) —w (20) € (OUsg UdVay) - (2 = m0) + (52U UdV) - (w — w0)” (20)

holds. Clearly, (20) also holds, if max {u (x),v (z)} = w(z) and max {u (zg),v (z9)} =
u (xp). Analogously, (20) is fulfilled, if w and v are interchanged. Therefore, we get (10).

0

Continuous functions given by two or more branches

In order to automatically compute second-order slope tuples for continuous functions given
by two or more branches, we first define the function ite : R — R (”if-then-else”).

Definition 3.14 ite : R?® — R is the function

u ifz2<0

21
v otherwise. (21)

o) = {

13



Let u,v,z : D CR — R be continuous, [z] C D and define w: D C R — R by

w(z) = ite(z (z),u(z),v(z)). (22)

w is now a function given by two branches u and v, with the function z determining which
branch is chosen. For details see [23].

Definition 3.15 We define the evaluation of the ite-function for intervals [z] = [z,Z],
[u] = [u, @] and [v] = [v, 7] by
[u] ifz<0
ite([2],[u],[v]) = [v] ifz>0 (23)

[u] U [v] otherwise.

Theorem 3.16 Let U, V and Z be second-order slope tuples for the continuous functions
u, v and z on some interval [x] C D with respect to z¢ € [z|. Furthermore, let w (z) =
ite(z (z),u (z),v (x)) be continuous on [z]. We define the 5-tuple W = ite (Z,U, V) by

W, = ite(Zs,Us, V),
Weo = ite(Zug, Uy Vao) 5
6Uv, ifz; <0
(5on if 2 >0
Uzy U (6Viy + (6Ugy — 6Va,) - [0,1]) if 0 € Zy NZgg <0
Wy = Vo U (6Uzg + (0Viy — 6Us,) - [0,1]) if 0 € Zy Azgy >0

(5% U (Vg + (60U — 0Vio) - [0,1] ))
U (6Vw0 U (6Ugy + (6Viy — 6Uy,) - [0,1] )) otherwise,

(U if 7z <0
oV if 2 >0
SU U (0V + (6U — 6V) - [0,1]) if 0 € Zy NZag <0
oW = q sV U(6U+ (8V —6U)-[0,1]) if 0€ Zo A2y >0

(5UQ (6V + (5U — V) - [0,1] ))
U (6V U (8U + (8V — 6U) - [0,1] )) otherwise,

oU if zz <0

oV if 2 >0

52U U (82V + (82U — 62V) - [0,1]) if 0 € Zy NZgg <0
oW = 62V U (02U + (62V — 62U) - [0,1]) if0€ Zy Azgy >0

(52UQ (52V + (52U — 52‘/) . [0, 1] ))
U (521@ (62U + (82 — 6oU) - [0,1] )) otherwise.

Then, W = ite(Z,U, V) is a second-order slope tuple for w on [z] with respect to zo.

14



Proof: See [22]| and [23]. O

Remark 3.17 In some papers, the formula
oU ifz<0
oW =< 6V ifz>0
oU U OV  otherwise
is used for computation of a first-order slope tuple for w (z) = ite(z (), u (z),v (z)) on

[x]. However, this formula is not correct because it does not provide a slope enclosure of
w on [z] for all possible choices of z,u,v. For details see [22] and [23].

4 Numerical results

We use the technique from the previous section to automatically compute a second-order
slope tuple
F = (Fy, Fyy, 0Fy,,0F, 02F)

for f on [z] with respect to xo € [z]. In this way, we obtain the range enclosures
S1:=Fyy +0F - ([x] — ) (24)

and
Sy = Fyy + 6Fy, - ([z] — x0) 4 02F - ([z] — x0)? (25)

of f on [z] (see Remark 3.4). S was already considered in [14]. If f is twice continuously
differentiable, we can also compare these results with the centered forms

Dy := f (z0) + f ([2]) - ([«] = x0) (26)

and
Dy i= f (w0) + £ (o) - (] = 20) + 5 £ ([a]) - ([e] — 20)*. (1)
Here, f'([z]) and f"([z]) are enclosures of the range of f  and f" on [z]. They are

computed via automatic differentiation.

Remark 4.1 By using machine interval arithmetic on a floating-point computer for the
operations from section 3, the slope tuple properties (6)-(10) are preserved. Hence, by
applying machine interval arithmetic, we obtain verified range enclosures.

We counsider the following examples:

1. f(x)=(z+sinx)-exp (—2?)

2. f(zx)=a" - 1023 + 352% — 50z + 24

3. f(z)= (In(z+1.25) - 0.84z)"

4. f(x)= T?O@Q — % exp (—(20 (x — 0.875) )2>
5. f(x) =exp(2?)

6. f(x)=a"—122% 4+ 472° — 602 — 20 exp (—2)
7. f(x)=2a%— 152" + 272% 4 250

15



8. f(z)= (arctan (Jz —1]) )2/ (.7;6 — 2zt + 20)
9. f(x):max{exp(—x),sin(|a:—1|)}

10. f($):ite<:n—1, zt —1+sin(z—1), |x2—2$—|—2‘>
1. f(z)=|(=z-1) (w2+3:—|—5)’-exp((33—2)2>
12.  f(z) =max{2® —2®+ 2, exp(z)- (x—1)+1}

13.  f(x) = ite(:r —1, (z—1)-arctanz - exp (z + sinz),

x2—§x—i—§ -sinx
2 2

In each case, we consider [x] = [0.75,1.75] and set = := mid [z]. Examples 1-7 have also
been considered in [14].

We obtained the following results:

[ No. | D, \ Dy | S \ Sy \
1 [[-2.262,3.184] ] [-0.910, 2.889 | [ [-0.939, 1.861 | | [-0.247, 1.476 |
2 | [-44.75,42.95] | [-5.215, 7.598 | || [-22.84, 21.04 | | [-1.778, 3.536 |
3 [[-0.376,0.412] | [-0.042,0.190 | || [-0.199, 0.235 | | [-0.041, 0.151 |
4 []-10.51,10.57 | | |-1835,3.062] || [-0.133,0.195] | [-0.345, 0.115 |
5 | [-32.65,42.19 ] | [-1.193,48.82 ] | [-11.84,21.39 | | [-1.193, 21.39 |
6 | [-85.86,29.28 ]| [-40.03, -11.73 | || [ -61.07, 4.492 | | [ -35.76, -16.47 |
7 [ [119.5,399.3] | [182.7,304.4| || [185.9,332.9] | [210.4, 275.1 ]
8 - - [-0.333, 0.339 | | [-0.386, 0.233 |
9 - - [-0.214, 0.787 | | [-0.284, 1.271 |
10 - - [-7.375, 7.500 | | [-5.945, 7.516 |
11 - - [-19.85,26.70 | | [-8.953, 34.22 |
12 - - [-10.13,15.61 | | [-2.615, 15.11 |
13 - - [-15.00, 15.12 | | [-12.64, 13.27 |

For the examples 1-7, S and S provide sharper enclosures than Dy and Do, respectively.
Furthermore, Ss is a subset of Sy for the examples 1-7 except for example 4.

For nonsmooth functions ¢, it is possible that a very large interval d2W is computed for
W = ¢ (U). Hence, Sy is not always contained in S; in our examples. However, except for
example 9, one or both bounds of Sy provide sharper bounds for the range of f than Sj.

5 The automatic computation of second-order slope tuples
for multivariate functions

In this section, let f : D C R" — R. We define slope enclosures and the limiting slope
interval analogously to section 2.

Definition 5.1 Let f be continuous and o € D be fixed. A function §f : D — RX"
satisfying
x €D,

f(x) = f (o) + 0f (w5 20) - (2 — o) ,
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is called a first-order slope function of f with respect to xg.

An interval matrix §f ([z];20) € IR'™ with

of ([x];20) 2 {0f (w; 0) | € [2]}

is called a (first-order) slope enclosure of f on [x] with respect to x.

A slope function of f : R™ — R is not unique, and there are various ways for computing
one, see for example [6, 7].

Definition 5.2 Let f be continuous on [z] € IR", [z] C D. Furthermore, let z¢ € [z] and

fi @) := F((@o)ys- s (@0);_1 5t (0) 415+ (20),, ). IF
fi(t) = fi( (20);)

lim inf

t—(z0), t — (x0);
and

. fi () = fi( (x0);)

im sup

t—(z0); t— (1'0)1

exist for all ¢ € {1,...,n}, then we define the limiting slope interval éfiim ([xo]) € IR™ by

(3 (0] ), 5= lhmmf fill) = fil@o) o i) = fi(@0),)

i t—(zo); = (20); t— (o), t — (20);

Definition 5.3 Let f be continuous, [#] C D, xg € [z], and assume that f (zg) exists. A
function do f : D — R™™ satisfying

f@) = f(xo)+ f (z0) - (& — w0) + (x — x0)” - daf (w; 0, 20) - (x — wg), x € D,

is called a second-order slope function of f with respect to xg.

An interval matrix da f([x] ; xo, o) € IR™" with

fx) € flxo)+ f (z0) (& —z0) + (x —x0)" - Saf([2]; 20, 20) - (x — x0), € [a],

is called a second-order slope enclosure of f on [x] with respect to xy.

Definition 5.4 Let v : D C R™ — R be continuous, [z] € IR" with [z] C D, and
xo € [x]. A second-order slope tuple for u on [x] with respect to xo is a 5-tuple U =
(Ug, Uygy, 80Uz, , 0U, 02U) with U, Uy, € IR, 0U,,,0U € IR", 6U € IR™", U,, C Uy,
satisfying

u(x) € U,, (28)

u(xg) € Upy, (29)

utim ([zo]) € Uy, (30)
u(x) —u(zg) € 0UT - (x— ), (31)
u(@) —u(rg) € OUL - (x—xo)+ (x—m0)" - 82U - (x — x0) (32)

for all z € [z].
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Lemma 5.5 Let [z] € IR™, 2o € [z], i € {1,...,n}, and let ¢! € R" be the i-th unit
vector.

a) K = (k,k,0,0,0) is a second-order slope tuple for the constant function u : R” — R,
u(x) =k € R, on [z] with respect to zg. Here, the first and the second 0 symbolize the
zero vector, and the last 0 stands for the zero matrix.

b) X = ([x]l , (z0), ,ei,ei,O) is a second-order slope tuple for u : R” — R, u(x) = x;, on
[z] with respect to xo. Here, 0 stands for the zero matrix.

For the automatic computation of second-order slope tuples, the definitions and theo-
rems are completely analogous to section 3. We only have to take into account that
8Usy, 6U, 6V, 6V € TR™ and 62U, 65V € TR™ ™. Therefore, we get 0U,, - 6U” instead of
6Uy,- 6U and (z — 20)" - 02U - (& — o) instead of dyU - (& — x0)?. For details, see [22].

The componentwise computation of second-order slope tuples

The automatic computation of slope tuples for multivariate functions can be reduced to
the one-dimensional case by the componentwise computation of slope tuples. For first-order
slope tuples, Ratz [14] uses this technique for verified global optimization. Hence, we also
consider the componentwise computation of second-order slope tuples in this paper.

Definition 5.6 Let u : R” — R be continuous on [z] and let i € {1,...,n} be fixed. We
define the family of functions

g:lz], CR—=R, g(t)=u(x1,...,2i-1,t,Tit1,...,Zn)
Gi = (33)
with z; € [z]; fixed for j € {1,...,n}, j #i.

Each g € G; is a continuous function of one variable t. Hence, for each g € G; the automatic
computation of a second-order slope tuple on [z], with respect to a fixed (z¢); € [z]
(20); € R, is defined as in section 3.

7

For the componentwise computation we have to modify the definition of a second-order
slope tuple as follows:

Definition 5.7 Let v : D C R™ — R be continuous and [z] € IR", [x] C D. Further-
more, let ¢ € {1,...,n} and (2¢), € [z]; € R be fixed. A second-order slope tuple for u
on [x] with respect to the i-th component is a 5-tuple U = (U, Uyy, 0Uy,,0U, 62U) with
Uz, Uz, 0Uy,, 60U, 02U € IR, Uy, C Uy, satistying

g(xz) € U,
g((x())z) € U:vm
0g1im [wo];) S 0V,
g (%) - g( (960)1) € oU- (372 - (xﬂ)i)a
)

€ U, - (xz - (ZL‘())Z) + 62U - (:L‘Z - (:Eo)i)Q
for all z; € [z]; and all g € G;, where G; is defined by (33).

Remark 5.8 Let U be a second-order slope tuple for u on [z] with respect to the i-th
component. Then, for all z € [z] we have

u(x) € Uy, + 90U - ([:U]Z — (560)2-), (34)

18



w(e) € Uny+ 80U, ([e]; = (o), ) + 620 ([e; = (w0, ) (35)

Hence, we have reduced the automatic computation of second-order slope tuples to the
one-dimensional case from section 3. Therefore, the same formulas can be used except for
Lemma 3.6. We need to modify Lemma 3.6 as follows:

Lemma 5.9 Let [z] € IR", z¢ € [z], and i € {1,...,n}.

a) For each i € {1,...,n}, the tuple K = (k, %,0,0,0) is a second-order slope tuple for the
constant function u : R™ — R, u () = k € R, on [z] with respect to the i-th component.

b) For u : R — R, u(z) = zy, a second-order slope tuple on [z] with respect to the i-th
component is given by

_ (2], ,[%],,0,0,0), if k # 1,
* - { E[x]k xokz,l,l,o)), if k=i,

Remark 5.10 Using a technique similar to [6, 7], we obtain range enclosures that are
sharper than (34) and (35). For a fixed x¢ € [x] C D we have

f(xl,...,mn) —f((a:o)l,...,(ajo)n)
= f(xl,...,:cn) —f((%o)l,xg,...,xn)

+f((x0)1,:c2,...7a:n) —f((:co)l7(x0)2,$3,...,xn)

(36)
+f(($0)17($0)2»333,---,13n) -+
+ (@)1, (@0) g ) = f((x0)y, -+, (0), )
for all € [z]. For each i € {1,...,n}, we now compute a second-order slope tuple
E = (Fx;ia Fxo;i; 5Fxo;i7 5172; 62Fz)
for the function
fi: ( (930)1 sy (JUO)Z-_1 ) [x]l ) [xh‘_H s [ff}n) — R,
fi (@) == u((@0)ys---, (@0);_1  Tis Tit1s---,Tn)
for x € ((xo)l,...,(:Uo)i_l,[:c]i,[x]iﬂ,...,[x]n),
on ((xg)l yoe (@0)iq s (2] [ s [:v]n) with respect to the i-th component.
Then, by (36) we have
f(x) € Fx;la (37)
[ (@) € Fugn+ Y 0F;- ([a]; = (@0);) = Se, (38)
j=1
n n 2
f@) € Frn+ Y 0y - ([o]; = (0); ) + 3 62F5 - ([al; = (@0), ) = Sez (39)
j=1 Jj=1

for all = € [z].
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Examples

We consider the following examples f : R — R. Most of them have been considered in

[14]:

x6 —exp (z3) - x5

5 5.1
Lo f@= (G- 5o
— xi’ + Z2 bl;lgl_i(_xf)
2. f(x) =4z — 212 + Za8 + 2129 — 422 + 425
f(x) =100 (zg — 23)” + (21 — 1)
f(z) =122% — 6.327 + 28 + 629 (22 — 21)
(z)

—xi + 0 — 6)2 + 10(1 — %) cos x4 + 10) CL‘%

10
5. f(x) =sinzy + sin (Eajl) 4+ Inxzy — 0.8421 + 1000$1$% exp (—x%)

2

6. f(z)=(x1+sinzi)exp (—:1:%) + In (z3) 2

In each example, we take

and z¢ = mid [z].

z1

.., [4,4.25])

Using the technique from section 5, we compute a second-order slope tuple

F = (Fy, Fyy, 0Fy,,0F, 02F)

for f on [z]. Then, by (28)-(32) we have

and

with Fy, € IR, §Fy,,0F € IR™ and 6, F € TR™",

We compare the range enclosures 5,1 and Sy,.2 with S..1 and S¢2 obtained via Remark

5.10.

f(x) € Fup+0F" - ([a] = 20) =:

Sm;l

f(x) € Fuy+0FL - ([2] = mo) + ([2] — 20)" - 62F - ([z] — 20) =t Sp2

We obtained the following results:

]

Sm;l

|

Sm;?

H

Sc;l

|

Sc;?

|

[-1497.1, -973.01 |

[-1494.0, -976.12 |

[-1497.9, -972.20 |

[-1495.2, -986.94 |

[1809.5, 2609.1 |

| 1816.2, 2602.5 |

[1809.5, 2609.1 |

[1843.0, 26025 |

[ 13467, 19786 |

[ 13467, 19786 |

[ 13467, 19786 |

[ 13619, 19786 |

[ 2538.7, 4074.7 |

[ 2558.4, 4055.0 |

[ 2538.7E, 4074.7 |

[ 2619.5, 4055.0 |

[-2.1275, -1.7755 |

[-2.0521, -1.8508 |

[-2.1275, -1.7755 |

[-2.0499, -1.9322 |

GBO‘I»-&OJ[\')!—‘OZ

[5.1531, 6.5377 |

[5.1529, 6.5379 |

[5.1532, 6.5376 |

[5.1647, 6.5357 |

Except for the first example, we have S..1 C S0 and Seo C Syp0. Furthermore, for each

of the examples S¢.2 C S¢;1 holds.
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6

Conclusion

In this paper, we have shown how the automatic computation of second-order slope tuples
can be performed. Here, the function expression of the underlying function may contain
nonsmooth functions such as ¢ (z) = |u (z)| and ¢ (x) = max {u (z),v (x)}. Furthermore,
we allow for functions given by two or more branches. Some examples illustrated that
second-order slope tuples may provide sharper enclosures of the function range than first-
order slope enclosures. Machine interval arithmetic yields verified range enclosures on a
floating-point computer. Hence, the automatic computation of second-order slope tuples
can also be applied to verified global optimization [22].
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