

The Automatic Computation of Second-Order Slope
Tuples for Some Nonsmooth Functions

Marco Schnurr

Preprint Nr. 07/09

UNIVERSITÄT KARLSRUHE

Institut für Wissenschaftliches Rechnen
und Mathematische Modellbildung

z

W R
M M

76128 Karlsruhe

Anschrift des Verfassers:

Dr. Marco Schnurr
Institut für Angewandte und Numerische Mathematik
Universität Karlsruhe
D-76128 Karlsruhe

The Automatic Computation of Second-Order Slope Tuples

for Some Nonsmooth Functions∗

Marco Schnurr

Institute for Applied and Numerical Mathematics, University of Karlsruhe, D-76128
Karlsruhe, e-mail: marco.schnurr@math.uni-karlsruhe.de

Keywords: slope tuple, interval analysis, automatic slope computation, range enclosure

MSC 2000: 65G20, 65G99

Abstract

In this paper, we show how the automatic computation of second-order slope

tuples can be performed. The algorithm allows for nonsmooth functions, such as

ϕ (x) = |u (x)| and ϕ (x) = max {u (x) , v (x)}, to occur in the function expression of

the underlying function. Furthermore, we allow the function expression to contain

functions given by two or more branches. By using interval arithmetic, second-order

slope tuples provide veri�ed enclosures of the range of the underlying function. We

give some examples comparing range enclosures given by a second-order slope tuple

with enclosures from previous papers.

1 Introduction

Automatic di�erentiation [13] is a tool for evaluating functions and derivatives simulta-
neously without using an explicit formula for the derivative. Combining this technique
with interval analysis [1], enclosures of the function range and the derivative range on an
interval [x] may be computed simultaneously.

By using an arithmetic analogous to automatic di�erentiation, the automatic computation
of �rst-order slope tuples is possible. For this purpose, the operations +,−, ·, / and the
evaluation of elementary functions need to be de�ned for �rst-order slope tuples. This
approach goes back to Krawczyk and Neumaier [10] and was extended by Rump [16] and
Ratz [14]. First-order slope tuples provide enclosures of the function range that may be
sharper than enclosures obtained by the well-known mean value form. Moreover, slope
tuples can be used in existence tests [4, 5, 11, 17, 19] or for veri�ed global optimization
[7, 8, 14, 15, 21].

In this paper, we extend this technique by de�ning a second-order slope tuple and by
describing how the automatic computation of such tuples can be carried out. Shen and
Wolfe [24] introduced an arithmetic for the automatic computation of second-order slope
enclosures, and Kolev [9] improved this by providing optimal enclosures for convex and

∗This paper contains some results from the author's dissertation [22].

1

concave elementary functions. However, both papers require the underlying function f :
D ⊆ R → R to be twice continuously di�erentiable. In this paper, we present similar
results that allow for nonsmooth functions ϕ : D ⊆ R → R occuring in the function
expression of f , such as ϕ (x) = |u (x)| and ϕ (x) = max {u (x) , v (x)}. Furthermore, the
function expression of f may contain functions given by two or more branches. Moreover,
intermediate results are enclosed by intervals. Hence, these algorithms can be used for
veri�ed computations on a �oating-point computer.

The paper is organized as follows. Section 2 recalls slope functions and slope enclosures.
In section 3, we de�ne second-order slope tuples for univariate functions and explain how
the automatic computation can be performed. In Section 4, we compare range enclosures
obtained by second-order slope tuples with range enclosures given by other methods. Sec-
tion 5 extends the technique from section 3 to multivariate functions. Furthermore, we
explain an alternative approach called componentwise computation of slope tuples and give
examples for both methods.

The numerical results were computed using Pascal-XSC programs on a �oating-point com-
puter under the operating system Suse Linux 9.3. The source code of the programs is freely
available [18]. A current Pascal-XSC compiler is provided by the working group �Scienti�c
Computing / Software Engineering� of the University of Wuppertal [25].

Throughout this paper, we let [x] = [x, x] =
{
x = (xi) ∈ Rn, xi ≤ xi ≤ xi

}
with x, x ∈ Rn

denote an interval vector. The set of all interval vectors [x] ⊂ Rn is denoted by IRn. For
two interval vectors [x] , [y] ∈ IRn, the interval hull [x]∪ [y] is the smallest interval vector
in IRn containing [x] and [y], i.e.

([x]∪ [y])i :=
[
min

{
xi, yi

}
, max {xi, yi}

]
.

Furthermore, by

mid [x] :=
x + x

2

we de�ne the midpoint of [x]. Analogously, IRn×n denotes the set of interval matrices

[A] =
(
[a]ij

)
=

{
A ∈ Rn×n, aij ≤ Aij ≤ aij

}
.

In the following sections, we assume that a function f is given by a function expression
consisting of a �nite number of operations +,−, ·, /, and elementary functions (cf. [1]).
Furthermore, we suppose that an interval arithmetic evaluation f ([x]) on a given interval
[x] exists.

2 Slope Tuples

In this section, we consider functions f : D ⊆ R → R.

De�nition 2.1 (cf. [3]) Let f ∈ Cn (D). Furthermore, let p (x) =
n∑

i=0

aix
i be the Hermi-

tian interpolation polynomial for f with respect to the nodes x0, . . . , xn ∈ D. Here, exactly
k + 1 elements of x0, . . . , xn are equal to xi, if f (xi) , . . . , f (k)(xi) are given for some node
xi. The leading coe�cient an of p is called the slope of n−th order of f with respect to

x0, . . . , xn. Notation:
δnf (x0, . . . , xn) := an.

2

In the following theorem, we give some basic properties of slopes. The statements d) and
e) in Theorem 2.2 are easy consequences of the Hermite-Genocchi Theorem (see [3]).

Theorem 2.2 Let f ∈ Cn (D) and let δnf (x0, . . . , xn) be the slope of n−th order of f
with respect to x0, . . . , xn. Then, the following statements hold:

a) δnf (x0, . . . , xn) is symmetric with respect to its arguments xi.

b) For xi 6= xj we have the recursion formula

δnf (x0, ..., xn) =
δn−1f (x0, ..., xi−1, xi+1, ..., xn)− δn−1f (x0, ..., xj−1, xj+1, ..., xn)

xj − xi
.

c) Setting ωk (x) :=
k−1∏
j=0

(x− xj), we have

f (x) =
n−1∑
i=0

δif (x0, . . . , xi) · ωi (x) + δnf (x0, . . . , xn−1, x) · ωn (x) , n ≥ 1. (1)

d) The function g : D ⊆ Rn+1 → R de�ned by

g (x0, . . . , xn) := δnf (x0, . . . , xn)

is continuous.

e) For the nodes x0 ≤ x1 ≤ . . . ≤ xn there exists a ξ ∈ [x0, xn] such that

δnf (x0, . . . , xn) =
f (n)(ξ)

n!
.

De�nition 2.3 Let f be continuous and x0 ∈ D be �xed. A function δf : D → R
satisfying

f (x) = f (x0) + δf(x;x0) · (x− x0) , x ∈ D, (2)

is called a �rst-order slope function of f with respect to x0.

An interval δf([x] ; x0) ∈ IR that encloses the range of δf(x;x0) on the interval [x] ⊆ D,
i.e.

δf([x] ; x0) ⊇ {δf(x;x0) |x ∈ [x]} ,

is called a (�rst-order) slope enclosure of f on [x] with respect to x0.

In x = x0, (2) is ful�lled for an arbitrary δf(x0;x0) ∈ R. If f is di�erentiable in x0, then
we always set δf(x0;x0) := f

′
(x0). Often, the midpoint mid [x] of the interval [x] is used

for x0.

Remark 2.4 a) Let δf([x] ; x0) =
[
δf, δf

]
be a �rst-order slope enclosure of f on [x].

Then, by (2), we have

f (x) ∈ f (x0) + δf([x] ; x0) · ([x]− x0) (3)

for all x ∈ [x].

b) Let f be di�erentiable on [x] and x0 ∈ [x]. Then, we have

{δf(x;x0) |x ∈ [x] , x 6= x0 } ⊆
{

f
′
(x) |x ∈ [x]

}
.

Therefore, (3) may provide sharper enclosures of the range of f on [x] than the well-known
mean value form.

3

For some continuous functions f and some x0 ∈ [x] ⊆ D, a slope enclosure δf([x] ; x0) ∈ IR
does not exist, e.g.

f (x) =
{ √

x for x ≥ 0,
0 for x < 0,

with x0 = 0, [x] = [−1, 1]. If f is continuous on [x] and di�erentiable in x0 ∈ [x], then a
slope enclosure δf([x] ; x0) ∈ IR exists. For a su�cient, more general existence criterion,
we de�ne the limiting slope interval [12].

De�nition 2.5 Let f be continuous on [x] and x0 ∈ [x]. Suppose that both

lim inf
x→x0

f (x)− f (x0)
x− x0

and

lim sup
x→x0

f (x)− f (x0)
x− x0

exist. Then, the limiting slope interval δflim ([x0]) ∈ IR is

δflim ([x0]) :=
[
lim inf
x→x0

f (x)− f (x0)
x− x0

, lim sup
x→x0

f (x)− f (x0)
x− x0

]
.

Remark 2.6 If f is Lipschitz continuous in some neighbourhood of x0, then the limiting
slope interval δflim ([x0]) exists.

Example 2.7 For f (x) = |x|, x0 = 0 we have δflim ([x0]) = [−1, 1].

Lemma 2.8 Let f be continuous on [x] and x0 ∈ [x]. If δflim ([x0]) ∈ IR exists, then

δf([x] ; x0) =

 inf
x∈[x]
x6=x0

f (x)− f (x0)
x− x0

, sup
x∈[x]
x6=x0

f (x)− f (x0)
x− x0


is a slope enclosure of f on [x] with respect to x0.

Proof: g : [x] \ {x0} → R, g (x) :=
f (x)− f (x0)

x− x0
, is bounded. �

Remark 2.9 Let f be Lipschitz continuous in some neighbourhood of x0. Then, Muñoz
und Kearfott [12] show the inclusion

δflim ([x0]) ⊆ ∂f (x0) , (4)

where ∂f (x0) is the generalized gradient (see [2]). Furthermore, they give an example
where

δflim ([x0]) ⊂ ∂f (x0)

holds and also a su�cient condition for equality in (4).

4

De�nition 2.10 Let f be continuous, [x] ⊆ D and x0 ∈ [x]. Assume that f
′
(x0) exists.

A function δ2f : D → R satisfying

f (x) = f (x0) + f
′
(x0) · (x− x0) + δ2f(x;x0, x0) · (x− x0)

2 , x ∈ D,

is called a second-order slope function of f with respect to x0. An interval δ2f([x] ; x0, x0) ∈
IR with

f (x) ∈ f (x0) + f
′
(x0) · (x− x0) + δ2f([x] ; x0, x0) · (x− x0)

2 , x ∈ [x] , (5)

is called a second-order slope enclosure of f on [x] with respect to x0.

As an abbreviation we set δ2f(x;x0) := δ2f(x;x0, x0) and δ2f([x] ; x0) := δ2f([x] ; x0, x0).
Furthermore, if f is twice di�erentiable in x0, then we always set δ2f(x;x0) := 1

2 f
′′
(x0).

Remark 2.11 Assume that (5) holds. Then, we have the enclosure

f (x) ∈ f (x0) + f
′
(x0) · ([x]− x0) + δ2f([x] ; x0) · ([x]− x0)

2

for all x ∈ [x].

3 The automatic computation of second-order slope tuples

for univariate functions

In this section, we consider univariate functions u, v, w, z : D ⊆ R → R.

First, we recall the de�nition of a �rst-order slope tuple [14, 16]. Afterwards, we give a
de�nition of second-order slope tuples that also permits nonsmooth functions.

De�nition 3.1 Let u be continuous, [x] ⊆ D and x0 ∈ [x]. A triple U = (Ux, Ux0 , δU)
with Ux, Ux0 , δU ∈ IR satisfying

u (x) ∈ Ux,
u (x0) ∈ Ux0 ,

u (x)− u (x0) ∈ δU · (x− x0) ,

for all x ∈ [x] is called a �rst-order slope tuple for u on [x] with respect to x0.

De�nition 3.2 Let u be continuous, [x] ⊆ D and x0 ∈ [x]. A second-order slope tuple for u
on [x] with respect to x0 is a 5-tuple U = (Ux, Ux0 , δUx0 , δU, δ2U) with Ux, Ux0 , δUx0 , δU, δ2U
∈ IR, Ux0 ⊆ Ux, satisfying

u (x) ∈ Ux, (6)

u (x0) ∈ Ux0 , (7)

δu lim ([x0]) ⊆ δUx0 , (8)

u (x)− u (x0) ∈ δU · (x− x0) , (9)

u (x)− u (x0) ∈ δUx0 · (x− x0) + δ2U · (x− x0)
2 , (10)

for all x ∈ [x].

5

Remark 3.3 (10) does not imply that δ2U is a second-order slope enclosure in the sense
of (5) because δUx0 is a superset of δu lim ([x0]). However, Remark 3.12 will explain why
the term slope tuple is justi�ed.

Remark 3.4 By (6)-(10) we get the enclosures

u (x) ∈ Ux ,

u (x) ∈ Ux0 + δU · ([x]− x0) ,

u (x) ∈ Ux0 + δUx0 · ([x]− x0) + δ2U · ([x]− x0)
2 ,

for the range of u on [x], where

([x]− x0)
2 =

[
min
x∈[x]

(x− x0)
2 , max

x∈[x]
(x− x0)

2

]
.

Remark 3.5 If x = x0, then (9) and (10) are ful�lled for arbitrary δU , δUx0 and δ2U . So
in checking these relations, we can restrict ourselves to x 6= x0.

Lemma 3.6 K = (k, k, 0, 0, 0) is a second-order slope tuple for the constant function
u (x) ≡ k ∈ R and X = ([x] , x0, 1, 1, 0) is a second-order slope tuple for the identity
function u (x) = x (both on [x] with respect to x0 ∈ [x]).

De�nition 3.7 Let U and V be second-order slope tuples for the continuous functions u
and v, respectively, on [x] ⊆ D with respect to x0 ∈ [x].

a) For the addition or subtraction of U and V we de�ne the 5-tuple W := U ± V by

Wx := Ux ± Vx,
Wx0 := Ux0 ± Vx0 ,
δWx0 := δUx0 ± δVx0 ,
δW := δU ± δV,
δ2W := δ2U ± δ2V.

b) The multiplication W := U · V is de�ned by

Wx := Ux · Vx,
Wx0 := Ux0 · Vx0 ,
δWx0 := δUx0 · Vx0 + Ux0 · δVx0 ,
δW := δU · Vx0 + Ux · δV,
δ2W := δ2U · Vx0 + Ux · δ2V + δU · δVx0 .

c) If 0 /∈ Vx, then the division W := U/V is de�ned by

Wx := Ux/ Vx,
Wx0 := Ux0/ Vx0 ,
δWx0 := (δUx0 −Wx0 · δVx0) / Vx0 ,
δW := (δU −Wx0 · δV) / Vx,
δ2W := (δ2U −Wx0 · δ2V − δW · δV) / Vx0 .

6

d) If ϕ is twice continuously di�erentiable, we de�ne W := ϕ (U) by

Wx := ϕ (Ux) ,
Wx0 := ϕ (Ux0) ,
δWx0 := δϕ (Ux0 ;Ux0) · δUx0 ,
δW := δϕ (Ux;Ux0) · δU,
δ2W := δϕ (Ux;Ux0) · δ2U + δ2ϕ (Ux;Ux0) · δUx0 · δU.

Here, we require ϕ (Ux) ∈ IR and ϕ (Ux0) ∈ IR to enclose the range of ϕ on Ux and Ux0 ,
respectively, and δϕ (Ux0 ;Ux0) ∈ IR to enclose

{δϕ (ũx0 ;ux0) | ũx0 ∈ Ux0 , ux0 ∈ Ux0 } , (11)

δϕ (Ux;Ux0) ∈ IR to enclose

{δϕ (ux;ux0) |ux ∈ Ux, ux0 ∈ Ux0 } , (12)

and δ2ϕ (Ux;Ux0) ∈ IR to enclose

{δ2ϕ (ux;ux0) |ux ∈ Ux, ux0 ∈ Ux0 } . (13)

Theorem 3.8 The 5-tuples W = (Wx,Wx0 , δWx0 , δW, δ2W) in De�nition 3.7 are second-
order slope tuples for the functions w = u ◦ v, ◦ ∈ {+,−, ·, /} and w (x) = ϕ (u (x)) on [x]
with respect to x0, i.e. they satisfy (6)-(10).

Proof: The proof of (6), (7), and (9) forW are analogous to those in [14, 16]. So, we only
need to prove (8) and (10). We will show this for W := U · V and W := ϕ (U). The proofs
for addition, subtraction, and division are similar. Details can be found in [22].

For w (x) = u (x) · v (x) and x ∈ [x] we have

w (x)− w (x0) = u (x) v (x)− u (x) v (x0) + u (x) v (x0)− u (x0) v (x0)

=
(
u (x) · δv(x;x0) + δu(x;x0) · v (x0)

)
· (x− x0)

and thus obtain

δw lim ([x0]) ⊆ u (x0) · δv lim ([x0]) + δu lim ([x0]) · v (x0)
⊆ Ux0 · δVx0 + δUx0 · Vx0 ,

which is (8) for W = U · V.
Furthermore, by using interval analysis and the slope tuple properties of U and V we have

w (x)− w (x0) = u (x)
(
v (x)− v (x0)

)
+ v (x0)

(
u (x)− u (x0)

)
∈ u (x)

(
δVx0 · (x− x0) + δ2V · (x− x0)

2
)

+ v (x0)
(
δUx0 · (x− x0) + δ2U · (x− x0)

2
)

=
(
u (x) · δVx0 + v (x0) · δUx0

)
· (x− x0)

+
(
u (x) · δ2V + v (x0) · δ2U

)
· (x− x0)

2

⊆
((

u (x0) + δU · (x− x0)
)
· δVx0 + v (x0) · δUx0

)
· (x− x0)

+
(
u (x) · δ2V + v (x0) · δ2U

)
· (x− x0)

2

⊆ δWx0 · (x− x0) + δ2W · (x− x0)
2 ,

7

which proves (10).

Next, we consider w (x) = ϕ (u (x)) and x ∈ [x]. By

w (x)− w (x0) = δϕ
(
u (x) ;u (x0)

)
·
(
u (x)− u (x0)

)
we get

δw lim ([x0]) ⊆ ϕ
′
(u (x0)) · δUx0 ⊆ δϕ (Ux0 ;Ux0) · δUx0 ,

which is (8) for W = ϕ (U). Because of

ϕ (u (x)) = ϕ (u (x0)) + ϕ
′
(u (x0)) ·

(
u (x)− u (x0)

)
+ δ2ϕ

(
u (x) ;u (x0)

)
·
(
u (x)− u (x0)

)2

we obtain

δϕ
(
u (x) ;u (x0)

)
= ϕ

′
(u (x0)) + δ2ϕ

(
u (x) ;u (x0)

)
·
(
u (x)− u (x0)

)
.

Hence, we have

w (x)− w (x0) = δϕ
(
u (x) ;u (x0)

)
·
(
u (x)− u (x0)

)
∈ δϕ

(
u (x) ;u (x0)

)
·
(
δUx0 · (x− x0) + δ2U · (x− x0)

2
)

= ϕ
′
(u (x0)) · δUx0 · (x− x0)

+δ2ϕ
(
u (x) ;u (x0)

)
· δUx0 ·

(
u (x)− u (x0)

)
· (x− x0)

+ δϕ
(
u (x) ;u (x0)

)
· δ2U · (x− x0)

2

⊆ δϕ
(
Ux0 ;Ux0

)
· δUx0 · (x− x0)

+
(
δ2ϕ

(
Ux;Ux0

)
· δUx0 · δU + δϕ

(
Ux;Ux0

)
· δ2U

)
· (x− x0)

2

⊆ δWx0 · (x− x0) + δ2W · (x− x0)
2 ,

which is (10). �

Remark 3.9 It is possible to de�ne δW and δ2W di�erently in De�nition 3.7 b)-d), such
that they still satisfy (6)-(10). For example, an alternative de�nition of δW for the multi-
plication W = U · V would be δW := δU · Vx + Ux0 · δV . Furthermore, the intersection of
this alternative δW with the δW from De�nition 3.7 b) may be used (cf. [16]).

Next, we compute enclosures δϕ (Ux0 ;Ux0), δϕ (Ux;Ux0), δ2ϕ (Ux;Ux0) ∈ IR of (11)-(13),
where ϕ is twice continuously di�erentiable. Note that such enclosures exist because the
sets (11)-(13) are bounded as a consequence of the assumptions on ϕ and U .

By the Mean Value Theorem and Taylor's Theorem we have the enclosures

δϕ (Ux0 ;Ux0) = ϕ
′
(Ux0) , (14)

δϕ (Ux;Ux0) = ϕ
′
(Ux) , (15)

and

δ2ϕ (Ux;Ux0) =
1
2

ϕ
′′
(Ux) (16)

of (11)-(13). However, for some functions, such as ϕ (x) = x2 and ϕ (x) =
√

x, sharper
enclosures for (12) and (13) can be found. By explicit computation of δϕ (ux;ux0) and
δ2ϕ (ux;ux0) we get the following two lemmas.

8

Lemma 3.10 Let U be a second-order slope tuple for u on [x] with respect to x0 ∈ [x],
and let ϕ : R → R, ϕ (x) = x2. Then, we have the enclosures

δϕ (ux;ux0) ∈ Ux + Ux0 ,

δ2ϕ (ux;ux0) ∈ [1, 1]

for all ux ∈ Ux and all ux0 ∈ Ux0 .

Lemma 3.11 Let U be a second-order slope tuple for u on [x] with respect to x0 ∈ [x]
such that inf (Ux) ≥ 0 and inf (Ux0) > 0. Furthermore, let ϕ : R≥0 → R, ϕ (x) =

√
x.

Then, for all ux ∈ Ux and all ux0 ∈ Ux0 we have

δϕ (ux;ux0) ∈
1

√
Ux +

√
Ux0

,

δ2ϕ (ux;ux0) ∈ − 1

2
√

Ux0

(√
Ux +

√
Ux0

)2 .

Furthermore, by exploiting convexity or concavity of ϕ and ϕ
′
we can get sharper enclosures

for (12) and (13) than by (15) and (16). The formulas and the proofs can be found in
[9] and [16]. Moreover, exploiting a unique point of in�ection of ϕ or ϕ

′
may also give

sharper enclosures for (12) or (13) than (15) or (16). This applies to functions such as
ϕ (x) = sinhx, ϕ (x) = coshx, etc. We omit the details of these formulas and refer to [20].

Remark 3.12 Let f be twice continuously di�erentiable and F = (Fx, Fx0 , δFx0 , δF, δ2F)
be a second-order slope tuple for f on [x] obtained by using Lemma 3.6 and De�nition 3.7.
Then, we get

f (x)− f (x0) ∈ f
′
(x0) · (x− x0) + δ2F · (x− x0)

2 , x ∈ [x] ,

analogously to the proof of Theorem 3.8. This is stronger than (10). Hence, by (5), δ2F
is a second-order slope enclosure of f on [x] with respect to x0. This justi�es the term
second-order slope tuple in De�nition 3.2.

Nonsmooth elementary functions

Let U and V be second-order slope tuples for u and v on [x] ⊆ D with respect to x0 ∈ [x].
We compute a second-order slope tuple W for w (x) = |u (x)|, w (x) = max {u (x) , v (x)}
and w (x) = min {u (x) , v (x)}, so that the automatic computation of second-order slope
tuples can be extended to some nonsmooth functions.

1. w (x) = ϕ (u (x)) = |u (x)|:
We de�ne the evaluation of ϕ (x) = |x| on an interval [x] ∈ IR by

|[x]| = abs ([x]) := {|x| |x ∈ [x]} =
[
min
x∈[x]

|x| ,max
x∈[x]

|x|
]

.

Furthermore, we compute W = ϕ (U) = abs (U) by

Wx = abs (Ux) ,
Wx0 = abs (Ux0) ,
δWx0 = δϕ (Ux0 ;Ux0) · δUx0 ,
δW = δϕ (Ux;Ux0) · δU,
δ2W = [r] ,

9

where

δϕ (Ux0 ;Ux0) =



[−1,−1] if ux ≤ 0

[1, 1] if ux ≥ 0

[−1,−1] if 0 ∈ Ux ∧ ux0 < 0

[1, 1] if 0 ∈ Ux ∧ ux0 > 0

[−1, 1] otherwise,

δϕ (Ux;Ux0) =



[−1,−1] if ux ≤ 0

[1, 1] if ux ≥ 0[
|ux|−

˛̨̨
ux0

˛̨̨
ux−ux0

,
|ux|−|ux0 |

ux−ux0

]
if 0 ∈ Ux ∧ ux 6= ux0 ∧ ux 6= ux0

[
−1,

|ux|−|ux0 |
ux−ux0

]
if 0 ∈ Ux ∧ ux = ux0 ∧ ux 6= ux0[

|ux|−
˛̨̨
ux0

˛̨̨
ux−ux0

, 1

]
if 0 ∈ Ux ∧ ux 6= ux0 ∧ ux = ux0

[−1, 1] otherwise,

and

[r] =



−1 · δ2U if ux ≤ 0

δ2U if ux ≥ 0

δϕ (Ux;Ux0) · δ2U +
[
0, − 1

2·ux0

]
· δUx0 · δU if 0 ∈ Ux ∧ ux0 < 0 ∧ −ux0 ∈ Ux

δϕ (Ux;Ux0) · δ2U +
[
0, 2·ux

(ux−ux0)
2

]
· δUx0 · δU if 0 ∈ Ux ∧ ux0 < 0 ∧ −ux0 /∈ Ux

δϕ (Ux;Ux0) · δ2U +
[
0, 1

2·ux0

]
· δUx0 · δU if 0 ∈ Ux ∧ ux0 > 0 ∧ −ux0 ∈ Ux

δϕ (Ux;Ux0) · δ2U +

[
0,− 2·ux“

ux−ux0

”2

]
· δUx0 · δU if 0 ∈ Ux ∧ ux0 > 0 ∧ −ux0 /∈ Ux

[−1, 1] · δ2U otherwise.

2. w (x) = max {u (x) , v (x)}:

We de�ne the evaluation of the max-function for two intervals [a] and [b] by

max {[a] , [b]} :=
[
max {a, b} ,max

{
a, b

}]
.

10

Furthermore, we compute W = max {U ,V} by

Wx = max {Ux, Vx} ,

Wx0 = max {Ux0 , Vx0} ,

δWx0 =


δUx0 if ux ≥ vx

δVx0 if vx ≥ ux

δUx0 ∪ δVx0 otherwise,

δW =


δU if ux ≥ vx

δV if vx ≥ ux

δU ∪ δV otherwise,

δ2W =


δ2U if ux ≥ vx

δ2V if vx ≥ ux

δ2U ∪ δ2V otherwise.

We compute W for w (x) = min {u (x) , v (x)} analogously to w (x) = max {u (x) , v (x)}.

Theorem 3.13 Let U and V be second-order slope tuples for u and v, respectively,
on [x] ⊆ D with respect to x0 ∈ [x]. Then, the tuples W = ϕ (U) = abs (U) and
W = max {U ,V} de�ned above are second-order slope tuples for the functions w (x) =
ϕ (u (x)) = |u (x)| and w (x) = max {u (x) , v (x)}, respectively.

Proof: The proof of (6), (7), and (9) for W can be found in [14]. Therefore, we only need
to check (8) and (10).

1. w (x) = ϕ (u (x)) = |u (x)|:

We prove (8). For each x ∈ [x] with u (x) = u (x0) we have

w (x)− w (x0) = [a] ·
(
u (x)− u (x0)

)
with an arbitrary [a] ∈ IR. If u (x) 6= u (x0), then

w (x)− w (x0)
x− x0

=
|u (x)| − |u (x0)|
u (x)− u (x0)

· u (x)− u (x0)
x− x0

holds. By considering the various cases in the de�nition of δWx0 we obtain δw lim ([x0]) ⊆
δWx0 .

Next, we prove (10).

Case 1: ux ≤ 0.

We have

w (x)− w (x0) = −1 ·
(
u (x)− u (x0)

)
∈ −1 · δUx0 · (x− x0)− 1 · δ2U · (x− x0)

2 .

Case 2: ux ≥ 0. This case is analogous to the previous case.

Case 3: 0 ∈ Ux ∧ ux0 < 0 ∧ −ux0 ∈ Ux.

11

For all x ∈ [x] with u (x) ≥ 0 we get

w (x)− w (x0) ∈ |u (x)| − |u (x0)|
u (x)− u (x0)

·
(
δUx0 · (x− x0) + δ2U · (x− x0)

2
)

=
(
− 1 +

2 u (x)
u (x)− u (x0)

)
· δUx0 · (x− x0)

+
|u (x)| − |u (x0)|
u (x)− u (x0)

· δ2U · (x− x0)
2

= −δUx0 · (x− x0) +
(
|u (x)| − |u (x0)|
u (x)− u (x0)

· δ2U

+
2 u (x)(

u (x)− u (x0)
)2 ·

u (x)− u (x0)
x− x0

· δUx0

)
· (x− x0)

2 .

Because of u (x) ≥ 0 we have

0 ≤ 2 u (x)(
u (x)− u (x0)

)2 ≤ 2 u (x)(
u (x)− ux0

)2 . (17)

By computing the maximum of the right expression in (17) and by using u (x) ≥ 0 and
−ux0 ∈ Ux, we obtain

2 u (x)(
u (x)− ux0

)2 ≤ 2 (−ux0)(
− ux0 − ux0

)2 .

Thus, we have
2 u (x)(

u (x)− u (x0)
)2 ∈

[
0, − 1

2 ux0

]
. (18)

Therefore, for all x ∈ [x] with u (x) ≥ 0 we have shown that

w (x)− w (x0) ∈ −δUx0 · (x− x0) +
(
δϕ (Ux;Ux0) · δ2U

+
[
0, − 1

2 ux0

]
· δUx0 · δU

)
· (x− x0)

2
(19)

holds. For all x ∈ [x] with u (x) < 0 we get

w (x)− w (x0) =
(
u (x)− u (x0)

)
∈ −δUx0 · (x− x0)− δ2U · (x− x0)

2 .

Because of −1 ∈ δϕ (Ux;Ux0) and 0 ∈
[
0, − 1

2 ux0

]
we have

−1 · δ2U · (x− x0)
2

⊆
(
δϕ (Ux;Ux0) · δ2U +

[
0, − 1

2 ux0

]
· δUx0 · δU

)
· (x− x0)

2 .

Hence, (19) also holds for all x ∈ [x] with u (x) < 0. Thus, we have

w (x)− w (x0) ⊆ δWx0 · (x− x0) + δ2W · (x− x0)
2

for all x ∈ [x].

12

Case 4: 0 ∈ Ux ∧ ux0 < 0 ∧ −ux0 /∈ Ux.

The proof is analogous to case 3. Instead of (18), we get

2 · u (x)(
u (x)− u (x0)

)2 ∈

[
0,

2 · ux(
ux − ux0

)2

]
.

Case 5: 0 ∈ Ux ∧ ux0 > 0 ∧ −ux0 ∈ Ux. This case is analogous to case 3.

Case 6: 0 ∈ Ux ∧ ux0 > 0 ∧ −ux0 /∈ Ux. This case is analogous to case 4.

Case 7: We have

|u (x)| − |u (x0)| ∈ [−1, 1] ·
(
u (x)− u (x0)

)
⊆ [−1, 1] · δUx0 · (x− x0) + [−1, 1] · δ2U · (x− x0)

2 ,

which completes the proof.

2. w (x) = max {u (x) , v (x)}:

Case 1: ux ≥ vx.

We have max {u (x) , v (x)} = u (x) and max {u (x0) , v (x0)} = u (x0). Therefore, the proof
of (8) and (10) is obvious.

Case 2: vx ≥ ux. This case can be proven analogously to case 1.

Case 3: In the remaining case we have

δw lim ([x0]) ⊆ δUx0 ∪ δVx0 .

Therefore, we get (8). Next, we prove (10).

If max {u (x) , v (x)} = u (x) and max {u (x0) , v (x0)} = v (x0), then we have

v (x)− v (x0) ≤ u (x)− v (x0) ≤ u (x)− u (x0) ,

and therefore,

w (x)− w (x0) ∈ (δUx0 ∪ δVx0) · (x− x0) + (δ2U ∪ δ2V) · (x− x0)
2 (20)

holds. Clearly, (20) also holds, if max {u (x) , v (x)} = u (x) and max {u (x0) , v (x0)} =
u (x0). Analogously, (20) is ful�lled, if u and v are interchanged. Therefore, we get (10).

�

Continuous functions given by two or more branches

In order to automatically compute second-order slope tuples for continuous functions given
by two or more branches, we �rst de�ne the function ite : R3 −→ R (�if-then-else�).

De�nition 3.14 ite : R3 −→ R is the function

ite (z, u, v) :=
{

u if z < 0
v otherwise.

(21)

13

Let u, v, z : D ⊆ R −→ R be continuous, [x] ⊆ D and de�ne w : D ⊆ R −→ R by

w (x) = ite
(
z (x) , u (x) , v (x)

)
. (22)

w is now a function given by two branches u and v, with the function z determining which
branch is chosen. For details see [23].

De�nition 3.15 We de�ne the evaluation of the ite-function for intervals [z] = [z, z],
[u] = [u, u] and [v] = [v, v] by

ite
(
[z] , [u] , [v]

)
:=


[u] if z < 0

[v] if z ≥ 0

[u] ∪ [v] otherwise.

(23)

Theorem 3.16 Let U , V and Z be second-order slope tuples for the continuous functions
u, v and z on some interval [x] ⊆ D with respect to x0 ∈ [x]. Furthermore, let w (x) =
ite

(
z (x) , u (x) , v (x)

)
be continuous on [x]. We de�ne the 5-tuple W = ite (Z,U ,V) by

Wx = ite (Zx, Ux, Vx) ,

Wx0 = ite (Zx0 , Ux0 , Vx0) ,

δWx0 =



δUx0 if zx < 0

δVx0 if zx ≥ 0

δUx0 ∪
(
δVx0 + (δUx0 − δVx0) · [0, 1]

)
if 0 ∈ Zx ∧ zx0 < 0

δVx0 ∪
(
δUx0 + (δVx0 − δUx0) · [0, 1]

)
if 0 ∈ Zx ∧ zx0 ≥ 0(

δUx0 ∪
(
δVx0 + (δUx0 − δVx0) · [0, 1]

))
∪

(
δVx0 ∪

(
δUx0 + (δVx0 − δUx0) · [0, 1]

))
otherwise,

δW =



δU if zx < 0

δV if zx ≥ 0

δU ∪
(
δV + (δU − δV) · [0, 1]

)
if 0 ∈ Zx ∧ zx0 < 0

δV ∪
(
δU + (δV − δU) · [0, 1]

)
if 0 ∈ Zx ∧ zx0 ≥ 0(

δU ∪
(
δV + (δU − δV) · [0, 1]

))
∪

(
δV ∪

(
δU + (δV − δU) · [0, 1]

))
otherwise,

δ2W =



δU if zx < 0

δV if zx ≥ 0

δ2U ∪
(
δ2V + (δ2U − δ2V) · [0, 1]

)
if 0 ∈ Zx ∧ zx0 < 0

δ2V ∪
(
δ2U + (δ2V − δ2U) · [0, 1]

)
if 0 ∈ Zx ∧ zx0 ≥ 0(

δ2U ∪
(
δ2V + (δ2U − δ2V) · [0, 1]

))
∪

(
δ2V ∪

(
δ2U + (δ2V − δ2U) · [0, 1]

))
otherwise.

Then, W = ite(Z,U ,V) is a second-order slope tuple for w on [x] with respect to x0.

14

Proof: See [22] and [23]. �

Remark 3.17 In some papers, the formula

δW =


δU if z < 0

δV if z ≥ 0

δU ∪ δV otherwise

is used for computation of a �rst-order slope tuple for w (x) = ite
(
z (x) , u (x) , v (x)

)
on

[x]. However, this formula is not correct because it does not provide a slope enclosure of
w on [x] for all possible choices of z, u, v. For details see [22] and [23].

4 Numerical results

We use the technique from the previous section to automatically compute a second-order
slope tuple

F = (Fx, Fx0 , δFx0 , δF, δ2F)

for f on [x] with respect to x0 ∈ [x]. In this way, we obtain the range enclosures

S1 := Fx0 + δF · ([x]− x0) (24)

and
S2 := Fx0 + δFx0 · ([x]− x0) + δ2F · ([x]− x0)

2 (25)

of f on [x] (see Remark 3.4). S1 was already considered in [14]. If f is twice continuously
di�erentiable, we can also compare these results with the centered forms

D1 := f (x0) + f
′
([x]) · ([x]− x0) (26)

and

D2 := f (x0) + f
′
(x0) · ([x]− x0) +

1
2

f
′′
([x]) · ([x]− x0)

2 . (27)

Here, f
′
([x]) and f

′′
([x]) are enclosures of the range of f

′
and f

′′
on [x]. They are

computed via automatic di�erentiation.

Remark 4.1 By using machine interval arithmetic on a �oating-point computer for the
operations from section 3, the slope tuple properties (6)-(10) are preserved. Hence, by
applying machine interval arithmetic, we obtain veri�ed range enclosures.

We consider the following examples:

1. f (x) = (x + sinx) · exp
(
−x2

)
2. f (x) = x4 − 10x3 + 35x2 − 50x + 24

3. f (x) =
(
ln (x + 1.25)− 0.84x

)2

4. f (x) =
2

100
x2 − 3

100
exp

(
−

(
20 (x− 0.875)

)2
)

5. f (x) = exp
(
x2

)
6. f (x) = x4 − 12x3 + 47x2 − 60x− 20 exp (−x)
7. f (x) = x6 − 15x4 + 27x2 + 250

15

8. f (x) =
(
arctan (|x− 1|)

)2
/

(
x6 − 2x4 + 20

)
9. f (x) = max

{
exp (−x) , sin

(
|x− 1|

)}
10. f (x) = ite

(
x− 1, x4 − 1 + sin (x− 1) ,

∣∣x2 − 5
2
x +

3
2

∣∣)
11. f (x) =

∣∣(x− 1)
(
x2 + x + 5

)∣∣ · exp
(
(x− 2)2

)
12. f (x) = max

{
x5 − x2 + x, exp (x) · (x− 1) + 1

}
13. f (x) = ite

(
x− 1, (x− 1) · arctanx · exp

(
x + sinx

)
,∣∣ (

x2 − 5
2
x +

3
2
)
· sinx

∣∣)
In each case, we consider [x] = [0.75, 1.75] and set x0 := mid [x]. Examples 1-7 have also
been considered in [14].

We obtained the following results:

No. D1 D2 S1 S2

1 [-2.262, 3.184] [-0.910, 2.889] [-0.939, 1.861] [-0.247, 1.476]

2 [-44.75, 42.95] [-5.215, 7.598] [-22.84, 21.04] [-1.778, 3.536]

3 [-0.376, 0.412] [-0.042, 0.190] [-0.199, 0.235] [-0.041, 0.151]

4 [-10.51, 10.57] [-1835, 3.062] [-0.133, 0.195] [-0.345, 0.115]

5 [-32.65, 42.19] [-1.193, 48.82] [-11.84, 21.39] [-1.193, 21.39]

6 [-85.86, 29.28] [-40.03, -11.73] [-61.07, 4.492] [-35.76, -16.47]

7 [119.5, 399.3] [182.7, 304.4] [185.9, 332.9] [210.4, 275.1]

8 - - [-0.333, 0.339] [-0.386, 0.233]

9 - - [-0.214, 0.787] [-0.284, 1.271]

10 - - [-7.375, 7.500] [-5.945, 7.516]

11 - - [-19.85, 26.70] [-8.953, 34.22]

12 - - [-10.13, 15.61] [-2.615, 15.11]

13 - - [-15.00, 15.12] [-12.64, 13.27]

For the examples 1-7, S1 and S2 provide sharper enclosures than D1 and D2, respectively.
Furthermore, S2 is a subset of S1 for the examples 1-7 except for example 4.

For nonsmooth functions ϕ, it is possible that a very large interval δ2W is computed for
W = ϕ (U). Hence, S2 is not always contained in S1 in our examples. However, except for
example 9, one or both bounds of S2 provide sharper bounds for the range of f than S1.

5 The automatic computation of second-order slope tuples

for multivariate functions

In this section, let f : D ⊆ Rn → R. We de�ne slope enclosures and the limiting slope
interval analogously to section 2.

De�nition 5.1 Let f be continuous and x0 ∈ D be �xed. A function δf : D → R1×n

satisfying

f (x) = f (x0) + δf(x;x0) · (x− x0) , x ∈ D,

16

is called a �rst-order slope function of f with respect to x0.

An interval matrix δf([x] ; x0) ∈ IR1×n with

δf([x] ; x0) ⊇ {δf(x;x0) |x ∈ [x]}

is called a (�rst-order) slope enclosure of f on [x] with respect to x0.

A slope function of f : Rn → R is not unique, and there are various ways for computing
one, see for example [6, 7].

De�nition 5.2 Let f be continuous on [x] ∈ IRn, [x] ⊆ D. Furthermore, let x0 ∈ [x] and
fi (t) := f

(
(x0)1 , . . . , (x0)i−1 , t, (x0)i+1 , . . . , (x0)n

)
. If

lim inf
t→(x0)i

fi (t)− fi

(
(x0)i

)
t− (x0)i

and

lim sup
t→(x0)i

fi (t)− fi

(
(x0)i

)
t− (x0)i

exist for all i ∈ {1, . . . , n}, then we de�ne the limiting slope interval δflim ([x0]) ∈ IRn by

(
δflim ([x0])

)
i

:=

[
lim inf
t→(x0)i

fi (t)− fi

(
(x0)i

)
t− (x0)i

, lim sup
t→(x0)i

fi (t)− fi

(
(x0)i

)
t− (x0)i

]
.

De�nition 5.3 Let f be continuous, [x] ⊆ D, x0 ∈ [x], and assume that f
′
(x0) exists. A

function δ2f : D → Rn×n satisfying

f (x) = f (x0) + f
′
(x0) · (x− x0) + (x− x0)

T · δ2f(x;x0, x0) · (x− x0) , x ∈ D,

is called a second-order slope function of f with respect to x0.

An interval matrix δ2f([x] ; x0, x0) ∈ IRn×n with

f (x) ∈ f (x0) + f
′
(x0) · (x− x0) + (x− x0)

T · δ2f([x] ; x0, x0) · (x− x0) , x ∈ [x] ,

is called a second-order slope enclosure of f on [x] with respect to x0.

De�nition 5.4 Let u : D ⊆ Rn → R be continuous, [x] ∈ IRn with [x] ⊆ D, and
x0 ∈ [x]. A second-order slope tuple for u on [x] with respect to x0 is a 5-tuple U =
(Ux, Ux0 , δUx0 , δU, δ2U) with Ux, Ux0 ∈ IR, δUx0 , δU ∈ IRn, δ2U ∈ IRn×n, Ux0 ⊆ Ux,
satisfying

u (x) ∈ Ux, (28)

u (x0) ∈ Ux0 , (29)

δu lim ([x0]) ⊆ δUx0 , (30)

u (x)− u (x0) ∈ δUT · (x− x0) , (31)

u (x)− u (x0) ∈ δUT
x0
· (x− x0) + (x− x0)

T · δ2U · (x− x0) (32)

for all x ∈ [x].

17

Lemma 5.5 Let [x] ∈ IRn, x0 ∈ [x], i ∈ {1, . . . , n}, and let ei ∈ Rn be the i-th unit
vector.

a) K = (k, k, 0, 0, 0) is a second-order slope tuple for the constant function u : Rn → R,
u (x) ≡ k ∈ R, on [x] with respect to x0. Here, the �rst and the second 0 symbolize the
zero vector, and the last 0 stands for the zero matrix.

b) X =
(
[x]i , (x0)i , e

i, ei, 0
)
is a second-order slope tuple for u : Rn → R, u (x) = xi, on

[x] with respect to x0. Here, 0 stands for the zero matrix.

For the automatic computation of second-order slope tuples, the de�nitions and theo-
rems are completely analogous to section 3. We only have to take into account that
δUx0 , δU, δVx0 , δV ∈ IRn and δ2U, δ2V ∈ IRn×n. Therefore, we get δUx0 · δUT instead of
δUx0 · δU and (x− x0)

T · δ2U · (x− x0) instead of δ2U · (x− x0)
2. For details, see [22].

The componentwise computation of second-order slope tuples

The automatic computation of slope tuples for multivariate functions can be reduced to
the one-dimensional case by the componentwise computation of slope tuples. For �rst-order
slope tuples, Ratz [14] uses this technique for veri�ed global optimization. Hence, we also
consider the componentwise computation of second-order slope tuples in this paper.

De�nition 5.6 Let u : Rn → R be continuous on [x] and let i ∈ {1, . . . , n} be �xed. We
de�ne the family of functions

Gi :=

 g : [x]i ⊆ R → R, g (t) := u (x1, . . . , xi−1, t, xi+1, . . . , xn)

with xj ∈ [x]j �xed for j ∈ {1, . . . , n} , j 6= i.

 (33)

Each g ∈ Gi is a continuous function of one variable t. Hence, for each g ∈ Gi the automatic
computation of a second-order slope tuple on [x]i with respect to a �xed (x0)i ∈ [x]i ,
(x0)i ∈ R, is de�ned as in section 3.

For the componentwise computation we have to modify the de�nition of a second-order
slope tuple as follows:

De�nition 5.7 Let u : D ⊆ Rn → R be continuous and [x] ∈ IRn, [x] ⊆ D. Further-
more, let i ∈ {1, . . . , n} and (x0)i ∈ [x]i ⊆ R be �xed. A second-order slope tuple for u
on [x] with respect to the i-th component is a 5-tuple U = (Ux, Ux0 , δUx0 , δU, δ2U) with
Ux, Ux0 , δUx0 , δU, δ2U ∈ IR, Ux0 ⊆ Ux, satisfying

g (xi) ∈ Ux,
g
(
(x0)i

)
∈ Ux0 ,

δg lim

(
[x0]i

)
⊆ δUx0 ,

g (xi)− g
(
(x0)i

)
∈ δU ·

(
xi − (x0)i

)
,

g (xi)− g
(
(x0)i

)
∈ δUx0 ·

(
xi − (x0)i

)
+ δ2U ·

(
xi − (x0)i

)2

for all xi ∈ [x]i and all g ∈ Gi, where Gi is de�ned by (33).

Remark 5.8 Let U be a second-order slope tuple for u on [x] with respect to the i-th
component. Then, for all x ∈ [x] we have

u (x) ∈ Ux0 + δU ·
(

[x]i − (x0)i

)
, (34)

18

u (x) ∈ Ux0 + δUx0 ·
(

[x]i − (x0)i

)
+ δ2U ·

(
[x]i − (x0)i

)2
. (35)

Hence, we have reduced the automatic computation of second-order slope tuples to the
one-dimensional case from section 3. Therefore, the same formulas can be used except for
Lemma 3.6. We need to modify Lemma 3.6 as follows:

Lemma 5.9 Let [x] ∈ IRn, x0 ∈ [x], and i ∈ {1, . . . , n}.

a) For each i ∈ {1, . . . , n}, the tuple K = (k, k, 0, 0, 0) is a second-order slope tuple for the
constant function u : Rn → R, u (x) ≡ k ∈ R, on [x] with respect to the i-th component.

b) For u : Rn → R, u (x) = xk, a second-order slope tuple on [x] with respect to the i-th
component is given by

X =
{ (

[x]k , [x]k , 0, 0, 0
)
, if k 6= i,(

[x]i , (x0)i , 1, 1, 0
)
, if k = i.

Remark 5.10 Using a technique similar to [6, 7], we obtain range enclosures that are
sharper than (34) and (35). For a �xed x0 ∈ [x] ⊆ D we have

f
(
x1, . . . , xn

)
− f

(
(x0)1 , . . . , (x0)n

)
= f

(
x1, . . . , xn

)
− f

(
(x0)1 , x2, . . . , xn

)
+ f

(
(x0)1 , x2, . . . , xn

)
− f

(
(x0)1 , (x0)2 , x3, . . . , xn

)
+ f

(
(x0)1 , (x0)2 , x3, . . . , xn

)
−+ · · ·

+ f
(
(x0)1 , . . . , (x0)n−1 , xn

)
− f

(
(x0)1 , . . . , (x0)n

)
.

(36)

for all x ∈ [x]. For each i ∈ {1, . . . , n}, we now compute a second-order slope tuple

Fi := (Fx;i, Fx0;i, δFx0;i, δFi, δ2Fi)

for the function

fi :
(
(x0)1 , . . . , (x0)i−1 , [x]i , [x]i+1 , . . . , [x]n

)
→ R,

fi (x) := u
(
(x0)1 , . . . , (x0)i−1 , xi, xi+1, . . . , xn

)
for x ∈

(
(x0)1 , . . . , (x0)i−1 , [x]i , [x]i+1 , . . . , [x]n

)
,

on
(
(x0)1 , . . . , (x0)i−1 , [x]i , [x]i+1 , . . . , [x]n

)
with respect to the i-th component.

Then, by (36) we have

f (x) ∈ Fx;1, (37)

f (x) ∈ Fx0;n +
n∑

j=1

δFj ·
(

[x]j − (x0)j

)
=: Sc;1, (38)

f (x) ∈ Fx0;n +
n∑

j=1

δFx0;j ·
(

[x]j − (x0)j

)
+

n∑
j=1

δ2Fj ·
(

[x]j − (x0)j

)2
=: Sc;2 (39)

for all x ∈ [x].

19

Examples

We consider the following examples f : Rn → R. Most of them have been considered in
[14]:

1. f (x) =
((5

π
x4 −

5.1
4π2

x2
4 + x2 − 6

)2 + 10
(
1− 1

8π

)
cos x4 + 10

)
· x2

3

− x5
1 + x2

sinh (x5)
x2

6 + 1
x6 − exp (x3) · x5

2. f (x) = 4x2
1 − 2.1x4

1 +
1
3
x6

1 + x1x2 − 4x2
2 + 4x4

2

3. f (x) = 100
(
x2 − x2

1

)2 + (x1 − 1)2

4. f (x) = 12x2
1 − 6.3x4

1 + x6
1 + 6x2 (x2 − x1)

5. f (x) = sin x1 + sin
(10

3
x1

)
+ lnx1 − 0.84x1 + 1000x1x

2
2 exp

(
−x2

3

)
6. f (x) = (x1 + sinx1) exp

(
−x2

1

)
+ ln (x3)

x2
2

x1

In each example, we take

[x] =
(
[x]1 , . . . , [x]n

)
=

(
[4, 4.25] , . . . , [4, 4.25]

)
and x0 = mid [x].

Using the technique from section 5, we compute a second-order slope tuple

F = (Fx, Fx0 , δFx0 , δF, δ2F)

for f on [x]. Then, by (28)-(32) we have

f (x) ∈ Fx0 + δF T · ([x]− x0) =: Sm;1

and

f (x) ∈ Fx0 + δF T
x0
· ([x]− x0) + ([x]− x0)

T · δ2F · ([x]− x0) =: Sm;2

with Fx0 ∈ IR, δFx0 , δF ∈ IRn and δ2F ∈ IRn×n.

We compare the range enclosures Sm;1 and Sm;2 with Sc;1 and Sc;2 obtained via Remark
5.10.

We obtained the following results:

No. Sm;1 Sm;2 Sc;1 Sc;2

1 [-1497.1, -973.01] [-1494.0, -976.12] [-1497.9, -972.20] [-1495.2, -986.94]

2 [1809.5, 2609.1] [1816.2, 2602.5] [1809.5, 2609.1] [1843.0, 2602.5]

3 [13 467, 19 786] [13 467, 19 786] [13 467, 19 786] [13 619, 19 786]

4 [2538.7, 4074.7] [2558.4, 4055.0] [2538.7E, 4074.7] [2619.5, 4055.0]

5 [-2.1275, -1.7755] [-2.0521, -1.8508] [-2.1275, -1.7755] [-2.0499, -1.9322]

6 [5.1531, 6.5377] [5.1529, 6.5379] [5.1532, 6.5376] [5.1647, 6.5357]

Except for the �rst example, we have Sc;1 ⊆ Sm;1 and Sc;2 ⊆ Sm;2. Furthermore, for each
of the examples Sc;2 ⊆ Sc;1 holds.

20

6 Conclusion

In this paper, we have shown how the automatic computation of second-order slope tuples
can be performed. Here, the function expression of the underlying function may contain
nonsmooth functions such as ϕ (x) = |u (x)| and ϕ (x) = max {u (x) , v (x)}. Furthermore,
we allow for functions given by two or more branches. Some examples illustrated that
second-order slope tuples may provide sharper enclosures of the function range than �rst-
order slope enclosures. Machine interval arithmetic yields veri�ed range enclosures on a
�oating-point computer. Hence, the automatic computation of second-order slope tuples
can also be applied to veri�ed global optimization [22].

References

[1] G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic Press,
New York, 1983.

[2] F. H. Clarke. Optimization and Nonsmooth Analysis. John Wiley & Sons, New York,
1983.

[3] P. Deu�hard and A. Hohmann. Numerical Analysis. de Gruyter, Berlin, 1995.

[4] A. Frommer, B. Lang, and M. Schnurr. A comparison of the Moore and Miranda
existence tests. Computing, 72:349�354, 2004.

[5] A. Goldsztejn. Comparison of the Hansen-Sengupta and the Frommer-Lang-Schnurr
existence tests. Computing, 79:53�60, 2007.

[6] E. R. Hansen. Interval forms of Newton's method. Computing, 20:153�163, 1978.

[7] E. R. Hansen and G. W. Walster. Global Optimization Using Interval Analysis: Second

Edition, Revised and Expanded. Marcel Dekker, New York, 2004.

[8] R. B. Kearfott. Rigorous Global Search: Continuous Problems. Kluwer Academic
Publishers, Dordrecht, 1996.

[9] L. Kolev. Use of interval slopes for the irrational part of factorable functions. Reliab.
Comput., 3:83�93, 1997.

[10] R. Krawczyk and A. Neumaier. Interval slopes for rational functions and associated
centered forms. SIAM J. Numer. Anal., 22:604�616, 1985.

[11] R. E. Moore. A test for existence of solutions to nonlinear systems. SIAM J. Numer.

Anal., 14(4):611�615, 1977.

[12] H. Muñoz and R. B. Kearfott. Slope intervals, generalized gradients, semigradients,
slant derivatives, and csets. Reliab. Comput., 10(3):163�193, 2004.

[13] L. B. Rall. Automatic Di�erentiation: Techniques and Applications, Lecture Notes in

Computer Science, Vol. 120. Springer, Berlin, 1981.

[14] D. Ratz. Automatic Slope Computation and its Application in Nonsmooth Global

Optimization. Shaker Verlag, Aachen, 1998.

21

[15] D. Ratz. A nonsmooth global optimization technique using slopes � the one-
dimensional case. J. Global Optim., 14:365�393, 1999.

[16] S. M. Rump. Expansion and estimation of the range of nonlinear functions. Math.

Comp., 65(216):1503�1512, 1996.

[17] U. Schäfer and M. Schnurr. A comparison of simple tests for accuracy of approximate
solutions to nonlinear systems with uncertain data. J. Ind. Manag. Optim., 2(4):425�
434, 2006.

[18] M. Schnurr. Webpage for software download.
http://iamlasun8.mathematik.uni-karlsruhe.de/~ae26/software/.

[19] M. Schnurr. On the proofs of some statements concerning the theorems of Kantorovich,
Moore, and Miranda. Reliab. Comput., 11:77�85, 2005.

[20] M. Schnurr. Computing Slope Enclosures by Exploiting a Unique Point of In�ection.
Preprint Nr. 07/08, Institut für Wissenschaftliches Rechnen und Mathematische Mo-
dellbildung, Universität Karlsruhe, Germany, 2007.

[21] M. Schnurr. A Second-Order Pruning Step for Veri�ed Global Optimization. Preprint
Nr. 07/10, Institut für Wissenschaftliches Rechnen und Mathematische Modellbildung,
Universität Karlsruhe, Germany, 2007.

[22] M. Schnurr. Steigungen höherer Ordnung zur veri�zierten globalen Optimierung. PhD
thesis, Universität Karlsruhe, 2007.
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000007229.

[23] M. Schnurr and D. Ratz. Slope enclosures for functions given by two or more branches.
Submitted for Publication.

[24] Z. Shen and M. A. Wolfe. On interval enclosures using slope arithmetic. Appl. Math.

Comput., 39:89�105, 1990.

[25] XSC Website. Website on programming languages for scienti�c computing with vali-
dation.
http://www.xsc.de [December 2007].

22

IWRMM-Preprints seit 2006

Nr. 06/01 Willy Dörfler, Vincent Heuveline: Convergence of an adaptive hp finite element stra-
tegy in one dimension

Nr. 06/02 Vincent Heuveline, Hoang Nam-Dung: On two Numerical Approaches for the Boun-
dary Control Stabilization of Semi-linear Parabolic Systems: A Comparison

Nr. 06/03 Andreas Rieder, Armin Lechleiter: Newton Regularizations for Impedance Tomogra-
phy: A Numerical Study

Nr. 06/04 Götz Alefeld, Xiaojun Chen: A Regularized Projection Method for Complementarity
Problems with Non-Lipschitzian Functions

Nr. 06/05 Ulrich Kulisch: Letters to the IEEE Computer Arithmetic Standards Revision Group
Nr. 06/06 Frank Strauss, Vincent Heuveline, Ben Schweizer: Existence and approximation re-

sults for shape optimization problems in rotordynamics
Nr. 06/07 Kai Sandfort, Joachim Ohser: Labeling of n-dimensional images with choosable ad-

jacency of the pixels
Nr. 06/08 Jan Mayer: Symmetric Permutations for I-matrices to Delay and Avoid Small Pivots

During Factorization
Nr. 06/09 Andreas Rieder, Arne Schneck: Optimality of the fully discrete filtered Backprojec-

tion Algorithm for Tomographic Inversion
Nr. 06/10 Patrizio Neff, Krzysztof Chelminski, Wolfgang Müller, Christian Wieners: A nume-

rical solution method for an infinitesimal elasto-plastic Cosserat model
Nr. 06/11 Christian Wieners: Nonlinear solution methods for infinitesimal perfect plasticity
Nr. 07/01 Armin Lechleiter, Andreas Rieder: A Convergenze Analysis of the Newton-Type Re-

gularization CG-Reginn with Application to Impedance Tomography
Nr. 07/02 Jan Lellmann, Jonathan Balzer, Andreas Rieder, Jürgen Beyerer: Shape from Specu-

lar Reflection Optical Flow
Nr. 07/03 Vincent Heuveline, Jan-Philipp Weiß: A Parallel Implementation of a Lattice Boltz-

mann Method on the Clearspeed Advance Accelerator Board
Nr. 07/04 Martin Sauter, Christian Wieners: Robust estimates for the approximation of the dy-

namic consolidation problem
Nr. 07/05 Jan Mayer: A Numerical Evaluation of Preprocessing and ILU-type Preconditioners

for the Solution of Unsymmetric Sparse Linear Systems Using Iterative Methods
Nr. 07/06 Vincent Heuveline, Frank Strauss: Shape optimization towards stability in constrai-

ned hydrodynamic systems
Nr. 07/07 Götz Alefeld, Günter Mayer: New criteria for the feasibility of the Cholesky method

with interval data
Nr. 07/08 Marco Schnurr: Computing Slope Enclosures by Exploiting a Unique Point of Inflec-

tion
Nr. 07/09 Marco Schnurr: The Automatic Computation of Second-Order Slope Tuples for So-

me Nonsmooth Functions

Eine aktuelle Liste aller IWRMM-Preprints finden Sie auf:

www.mathematik.uni-karlsruhe.de/iwrmm/seite/preprints

	Deckblatt 07-09
	Anschrift 07-08
	iwrmm-preprint 07-09, pdf
	Preprintliste

