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Abstract

We consider pruning steps used in a branch-and-bound algorithm for veri�ed global
optimization. A �rst-order pruning step was given by Ratz using automatic compu-
tation of a �rst-order slope tuple [21, 22]. In this paper, we introduce a second-order
pruning step which is based on automatic computation of a second-order slope tu-
ple. We add this second-order pruning step to the algorithm of Ratz. Furthermore,
we compare the new algorithm with the algorithm of Ratz by considering some test
problems for veri�ed global optimization on a �oating-point computer.
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1 Introduction

Let f : D ⊆ Rn → R be continuous and [x] ⊆ D. Our aim is to �nd guaranteed two-sided
bounds for the global minimum

f∗ := min
x∈[x]

f (x)

and for all global minimizers x∗ ∈ [x]. We require that the bounds satisfy a speci�ed
accuracy. For details, see section 5.

Common methods to address this problem are branch-and-bound algorithms using interval
analysis. These algorithms are due to Hansen [8, 9], Ichida/Fujii [11] and Skelboe [34]. The
approach is as follows. The interval [x] is partitioned, and subintervals are discarded, once
it is proven that they do not contain a global minimizer. The remaining subintervals are
partitioned again until we have achieved the required accuracy. Interval analysis guarantees
that no global minimizer is lost in the algorithm, even though the computation is performed
on a �oating-point computer.

Acceleration tools are crucial to obtaining acceptable computation times. If f is contin-
uously di�erentiable, then a �monotonicity-test� discards intervals that do not contain a

∗This paper contains some results from the author's dissertation [30].
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zero of f ′. Other tools, such as the �concavity test� or the interval newton method, use
evaluations of f ′′. Furthermore, enclosures of the range of f ′ or f ′′ may provide better en-
closures of the range of f than an interval arithmetic evaluation of f (see [1]). The �mean
value form� is such an approach. Enclosures of f ′ and f ′′ can be obtained by automatic
di�erentiation [20]. Introductions to global optimization methods using interval analysis
can be found in [10] and [12].

Slope enclosures [15] can be used to compute enclosures of the range of f that are sharper
than range enclosures provided by the mean value form. However, slope enclosures do
not detect the monotonicity of a function. Therefore, other box-discarding techniques are
required. Ratz [21, 23] introduces a pruning step that uses slope enclosures for eliminating
subintervals of the current interval that do not contain a global minimizer. This method
may also be used for nonsmooth functions. Ratz obtains a slope enclosure as an element of a
slope tuple which may be computed by a technique analogous to automatic di�erentiation.

In this paper, we extend the method of Ratz [21, 23] by introducing a second-order prun-
ing step. Furthermore, we include this second-order pruning step in a branch-and-bound
algorithm for veri�ed global optimization. We compare this approach with the algorithm
of Ratz by considering some test problems. For the implementation we assume that f is
locally Lipschitz continuous on [x], that f is given by a function expression (cf. [1]), and
that the interval arithmetic evaluation of f on [x] exists. Then, by expanding techniques
due to Shen/Wolfe [33] and Kolev [14], a second-order slope tuple can be computed [28, 30].
The source code of our program is freely available [26].

The paper is organized as follows. In sections 2 and 3, we introduce slope enclosures and
explain the automatic computation of �rst-order and second-order slope tuples. Section 4
describes the componentwise computation of slope tuples which is used in our algorithm,
and section 5 provides an introduction to global optimization using interval analysis. In
section 6, we introduce a second-order pruning step for univariate functions. We apply this
pruning step to global optimization of multivariate functions and state our algorithm in
section 7. Finally, in section 8, we consider some examples and compare the new algorithm
with the algorithm of Ratz.

Throughout this paper, [x] = [x, x] =
{
x ∈ Rn

∣∣ xi ≤ xi ≤ xi

}
with x, x ∈ Rn denotes an

interval vector, and IRn the set of all interval vectors [x] ⊆ Rn. The midpoint of [x] is
denoted by mid [x] := 1

2 (x + x). Furthermore, for an interval [x] ∈ IR, we de�ne the
diameter diam [x] ∈ R by diam [x] := x− x, and the relative diameter diamrel [x] ∈ R by

diamrel [x] : =


diam [x]

min {|x| , x ∈ [x]}
, if 0 /∈ [x] ,

diam [x] , otherwise.

2 Slope functions and slope enclosures

Slope enclosures provide enclosures of the function range which may be sharper than those
obtained by using derivatives (see [15]). Furthermore, slope enclosures can be used for
computational existence tests such as the Moore test [17] and tests based on Miranda's
theorem [5, 25]. In this section, we give the de�nitions needed in the sequel.
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De�nition 2.1 Let f : D ⊆ R → R be continuous and x0 ∈ D be �xed. A function
δf : D → R satisfying

f (x) = f (x0) + δf(x;x0) · (x− x0) , x ∈ D, (1)

is called a (�rst-order) slope function of f with respect to x0.

An interval δf([x] ; x0) ∈ IR containing the range of δf(x;x0) on [x] ⊆ D, i.e. a δf([x] ; x0) ∈
IR with

δf([x] ; x0) ⊇ {δf(x;x0) |x ∈ [x]} ,

is called a (�rst-order) slope enclosure of f on [x] with respect to x0.

If x = x0, then (1) holds for arbitrary δf(x0;x0) ∈ R. If f is di�erentiable in x0, then we
set δf(x0;x0) := f

′
(x0).

Let δf([x] ; x0) be a �rst-order slope enclosure of f on [x]. Then,

f (x) ∈ f (x0) + δf([x] ; x0) · ([x]− x0) (2)

holds for all x ∈ [x]. Obviously, (2) may provide sharper enclosures of the range of f on
[x] than the mean value form [16].

For the continuous function f : R → R,

f (x) =
{ √

x for x ≥ 0,
0 for x < 0,

and x0 = 0, [x] = [−1, 1], a �rst-order slope enclosure δf([x] ; 0) ∈ IR of f on [x] with
respect to x0 does not exist. In order to give a su�cient existence statement we de�ne the
limiting slope interval (see [19]).

De�nition 2.2 Let f : D ⊆ R → R be continuous on [x] ⊆ D, and let x0 ∈ [x]. If

lim inf
x→x0

f (x)− f (x0)
x− x0

∈ R and lim sup
x→x0

f (x)− f (x0)
x− x0

∈ R,

then the limiting slope interval δflim ([x0]) ∈ IR is

δflim ([x0]) :=
[
lim inf
x→x0

f (x)− f (x0)
x− x0

, lim sup
x→x0

f (x)− f (x0)
x− x0

]
.

Obviously, the limiting slope interval δflim ([x0]) exists, if f is Lipschitz continuous in some
neighbourhood of x0. If f is di�erentiable in x0, we have

δflim ([x0]) =
[
f

′
(x0) , f

′
(x0)

]
.

Lemma 2.3 Let f : D ⊆ R → R be continuous on [x] ⊆ D and let x0 ∈ [x]. We assume
that δflim ([x0]) ∈ IR exists. Then,

δf([x] ; x0) =

 inf
x∈[x]
x6=x0

f (x)− f (x0)
x− x0

, sup
x∈[x]
x6=x0

f (x)− f (x0)
x− x0


is a �rst-order slope enclosure of f on [x] with respect to x0.
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Proof: see [19]. �

Remark 2.4 Let f : D ⊆ R → R be Lipschitz continuous in some neighbourhood of
x0 ∈ D. Muñoz and Kearfott [19] show the inclusion

δflim ([x0]) ⊆ ∂f (x0) , (3)

where ∂f (x0) is the generalized gradient [4]. Furthermore, they give a su�cient condition
for equality in (3).

De�nition 2.5 Let f : D ⊆ R → R be continuous, [x] ⊆ D, and x0 ∈ [x]. Furthermore,
we assume that δflim ([x0]) exists. An interval δ2f([x] ; x0) ∈ IR statisfying

f (x) ∈ f (x0) + δflim ([x0]) · (x− x0) + δ2f([x] ; x0) · (x− x0)
2 , x ∈ [x] , (4)

is called a second-order slope enclosure of f on [x] with respect to x0.

3 Automatic computation of slope tuples

In the following sections, we assume that each function is given by a function expression
in the sense of [1], i.e. the function expression consists of a �nite number of operations
+,−, ·, / and a �nite number of elementary functions. Furthermore, we assume that an
interval arithmetic evaluation on the interval [x] exists.

De�nition 3.1 [21, 23] Let u : D ⊆ R → R be continuous, [x] ⊆ D, and x0 ∈ [x]. A triple
U = (Ux, Ux0 , δU) with Ux, Ux0 , δU ∈ IR satisfying

u (x) ∈ Ux,
u (x0) ∈ Ux0 ,

u (x)− u (x0) ∈ δU · (x− x0) ,

for all x ∈ [x] is called a �rst-order slope tuple of u on [x] with respect to x0.

De�nition 3.2 Let u : D ⊆ R → R be continuous, [x] ⊆ D, and x0 ∈ [x]. A second-order

slope tuple of u on [x] with respect to x0 is a 5-tuple U = (Ux, Ux0 , δUx0 , δU, δ2U) with
Ux, Ux0 , δUx0 , δU, δ2U ∈ IR, Ux0 ⊆ Ux, satisfying

u (x) ∈ Ux, (5)

u (x0) ∈ Ux0 , (6)

δu lim ([x0]) ⊆ δUx0 , (7)

u (x)− u (x0) ∈ δU · (x− x0) , (8)

u (x)− u (x0) ∈ δUx0 · (x− x0) + δ2U · (x− x0)
2 (9)

for all x ∈ [x].

Automatic di�erentiation [20] is a technique to compute function and derivative values
simultaneously without requiring an explicit formula for the derivative. By combining this
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technique with interval analysis, we obtain enclosures of the function and the derivative
range on some interval [x].

By using an arithmetic for slope tuples analogous to automatic di�erentiation, �rst-order
slope tuples can be computed without requiring an explicit formula of a slope function (see
[15]). For approaches using nonsmooth elementary functions, such as ϕ (x) = abs (u (x)),
ϕ (x) = min (u (x) , v (x)), and functions given by two or more branches, see [12, 21, 24,
27, 31]. Furthermore, the enclosures may be sharpened by exploiting a unique point of
in�ection [29].

An arithmetic for the automatic computation of second-order slope tuples is given in [28,
30]. This extends results contained in [14, 33]. In [28, 30], the expression of the considered
function may also contain nonsmooth elementary functions, such as ϕ (x) = abs (u (x)),
ϕ (x) = min (u (x) , v (x)), and functions given by two or more branches. A second-order
slope tuple, more precisely relation (9), may provide a sharper enclosure of the function
range than a �rst-order slope tuple. For details see [28, 30].

4 The componentwise computation of slope tuples

For u : D ⊆ Rn → R it is possible to perform the automatic computation of �rst-order
and second-order slope tuples. For details see [21] and [28, 30], respectively. However,
as explained by Ratz [21], a pruning step using such slope tuples would be very costly
and not e�ective. Therefore, for multivariate functions, we use an approach called the
�componentwise computation of slope tuples� [21]. The idea is to reduce the problem to
the one-dimensional case. We brie�y summarize this technique. It will be combined with
a �rst-order and a second-order pruning step for univariate functions (see sections 5 and
6).

De�nition 4.1 Let u : D ⊆ Rn → R be continuous on [x] ⊆ D and i ∈ {1, . . . , n} be
�xed. We de�ne the family Gi of functions by

Gi :=

 g : [x]i ⊆ R → R, g (t) := u (x1, . . . , xi−1, t, xi+1, . . . , xn)

where xj ∈ [x]j is �xed for j ∈ {1, . . . , n} , j 6= i.

 (10)

Each g ∈ Gi is a function of one variable. Thus, as described in section 3, for each g ∈ Gi

the automatic computation of a slope tuple on the interval [x]i with respect to (x0)i ∈ [x]i ,
(x0)i ∈ R, can be performed.

Similar to De�nition 3.2, we introduce a second-order slope tuple for the componentwise
computation.

De�nition 4.2 Let u : D ⊆ Rn → R be continuous on [x] ∈ IRn, [x] ⊆ D. Furthermore,
let i ∈ {1, . . . , n} and (x0)i ∈ R, (x0)i ∈ [x]i be �xed. A second-order slope tuple of

u on [x] with respect to the component i is a 5-tuple U = (Ux, Ux0 , δUx0 , δU, δ2U), with
Ux, Ux0 , δUx0 , δU, δ2U ∈ IR, Ux0 ⊆ Ux, such that

g (xi) ∈ Ux,
g
(
(x0)i

)
∈ Ux0 ,

δg lim

(
[x0]i

)
⊆ δUx0 ,

g (xi)− g
(
(x0)i

)
∈ δU ·

(
xi − (x0)i

)
,

g (xi)− g
(
(x0)i

)
∈ δUx0 ·

(
xi − (x0)i

)
+ δ2U ·

(
xi − (x0)i

)2
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holds for all xi ∈ [x]i and all g ∈ Gi. Here, Gi is de�ned as in (10).

The automatic computation of a second-order slope tuple U of u on [x] with respect to the
component i is analogous to the one-dimensional technique from section 3 (see [28, 30]).

Suppose U is a second-order slope tuple of u on [x] with respect to the component i. Then,
for all x ∈ [x] we have

u (x) ∈ Ux, (11)

u (x) ∈ Ux0 + δU ·
(

[x]i − (x0)i

)
(12)

and

u (x) ∈ Ux0 + δUx0 ·
(

[x]i − (x0)i

)
+ δ2U ·

(
[x]i − (x0)i

)2
. (13)

Therefore, (11)-(13) are enclosures of the range of u on [x] ∈ IRn.

Remark 4.3 We use a technique similar to the slope computation by Hansen [7, 10] in
order to sharpen the enclosures (11)-(13). Let u : D ⊆ Rn → R be continuous and
x0 ∈ [x] ⊆ D be �xed. We have

u
(
x1, . . . , xn

)
− u

(
(x0)1 , . . . , (x0)n

)
= u

(
x1, . . . , xn

)
− u

(
(x0)1 , x2, . . . , xn

)
+ u

(
(x0)1 , x2, . . . , xn

)
−u

(
(x0)1 , (x0)2 , x3, . . . , xn

)
+ u

(
(x0)1 , (x0)2 , x3, . . . , xn

)
−+ · · ·+ u

(
(x0)1 , . . . , (x0)n−1 , xn

)
− u

(
(x0)1 , . . . , (x0)n

)
.

For each i ∈ {1, . . . , n}, we consider the function

ui :
(

(x0)1 , . . . , (x0)i−1 , [x]i , [x]i+1 , . . . , [x]n
)
→ R

with
ui (x) := u

(
(x0)1 , . . . , (x0)i−1 , xi, xi+1, . . . , xn

)
for x ∈

(
(x0)1 , . . . , (x0)i−1 , [x]i , [x]i+1 , . . . , [x]n

)
.

We now compute a second-order slope tuple Ui := (Ux;i, Ux0;i, δUx0;i, δUi, δ2Ui) of ui on(
(x0)1 , . . . , (x0)i−1 , [x]i , [x]i+1 , . . . , [x]n

)
with respect to the component i. Then, we have

the enclosures

u (x) ∈ Ux;1, (14)

u (x) ∈ Ux0;n +
n∑

j=1

δUj ·
(

[x]j − (x0)j

)
, (15)

u (x) ∈ Ux0;n +
n∑

j=1

δUx0;j ·
(

[x]j − (x0)j

)
+

n∑
j=1

δ2Uj ·
(

[x]j − (x0)j

)2
(16)

for all x ∈ [x].
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5 Global optimization using interval analysis

Let f : D ⊆ Rn → R be continuous and [x] ⊆ D. Our aim is to �nd guaranteed two-sided
bounds for the global minimum

f∗ := min
x∈[x]

f (x)

and for all global minimizers x∗ ∈ [x] so that the accuracy condition (17) is satis�ed. This
condition has also been used in [21]. Branch-and-bound algorithms using interval analysis
are suitable for solving this problem. We continue by describing the general idea.

For the branch-and-bound algorithm we use a list L for intermediate and a list Q for
�nal results. The elements of L and Q are pairs

(
[y] , fy

)
consisting of an interval vector

[y] =
(
[y]1 , . . . , [y]n

)
∈ IRn and a real number fy such that

fy ≤ min
y∈[y]

f (y) .

Furthermore, we need a real number f̃ that is an upper bound of f∗ in each step of the
algorithm. We initialize the algorithm with an enclosure f[x] of the range of f on [x]
which may be obtained by an interval arithmetic evaluation of f (see [1]). Furthermore,
we generate the pair

(
[x] , inf f[x]

)
as the �rst element of L. Q is initialized as an empty

list. Moreover, we initialize f̃ by f̃ := sup f[x].

In the �rst step of the algorithm, we remove the �rst pair
(
[x] , inf f[x]

)
from L and subdivide

[x]. For each subinterval [y] ⊆ [x] we compute an enclosure f[y] of the range of f on [y] and
generate the pair

(
[y] , inf f[y]

)
. If f̃ < inf f[y], then [y] does not contain a global minimizer,

and the pair
(
[y] , inf f[y]

)
is discarded (�range check�). Furthermore, if f̃ > sup f[y], then

f̃ is replaced by sup f[y]. If

max
j=1,...,n

diamrel [y]j ≤ ε or diamrelf[y] ≤ ε, (17)

then the pair
(
[y] , inf f[y]

)
is stored in Q, otherwise in L. In the next step, we remove

the next pair contained in L and proceed as before. The algorithm stops as soon as L is
empty. Let

(
[q]i , inf f[q]i

)
, i = 1, . . . , n, be the pairs in Q after the algorithm has stopped.

Then, all global minimizers of f are contained in the union of the [q]i. Furthermore, we

have f∗ ∈
[

min
i

{
inf f[q]i

}
, f̃

]
. Machine interval arithmetic on a �oating-point computer

guarantees these enclosures. For details of the algorithm see [10, 12].

It is crucial to apply some acceleration tools for the branch-and-bound algorithm above.
There are some e�ective tools using derivatives such as the monotonicity test, the concavity
test, and the interval newton step. Ratz [21, 23] introduces a �rst-order pruning step as
an acceleration tool that also applies to nonsmooth functions: Checking a subinterval
[y] ⊆ [x], he gets the enclosure

f (x) ∈
[
fx0, fx0

]
+

[
δf, δf

]
· (xi − (x0)i) for all x ∈ [y] , (18)

where x0 ∈ [y] is �xed,
[
fx0, fx0

]
∈ IR, and

[
δf, δf

]
∈ IR. (18) is obtained by the

componentwise computation of a �rst-order slope tuple with respect to the component
i. Hence, the graph of f on [y] is bounded by hyperplanes that only depend on xi.
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By intersecting these hyperplanes with the level f̃ , we obtain a subset of [y] which does
not contain a global minimizer of f . Computing these intersections is a one-dimensional
problem, because the right hand side of (18) only depends on xi.

We note that similar pruning steps can be carried out using enclosures of the derivative if
f is continuously di�erentiable [35, 37, 38]. Then, the enclosure (18) does not depend on
x0, so that an �optimal� x0 can be computed (cf. [2]). Compared to that, for Ratz' pruning
step we are able to use (�rst-order) slope tuples. This may provide sharper enclosures of
the range of f and applies to some nonsmooth functions as well.

In the next section, we introduce a second-order pruning step which may be combined with
the componentwise computation of a second-order slope tuple.

6 A second-order pruning step

As explained above, by using the componentwise computation of slope tuples, the pruning
step becomes a one-dimensional problem. Hence, we only consider univariate functions
f : D ⊆ R → R in this section.

Let f be continuous on [x] ⊆ D, and let c ∈ [y] =
[
y, y

]
⊆ [x] be �xed. We assume that

we have given an enclosure

f (x)− f (c) ∈
[
δfc, δfc

]
· (x− c) +

[
δ2f, δ2f

]
· (x− c)2 for all x ∈ [y] , (19)

which may be obtained via automatic computation of a second-order slope tuple. Further-
more, let

[
fc, fc

]
be an interval containing f (c). Then, the range of f on [y] is enclosed

by the parabolas

f (x) ≥ fc + δfc · (x− c) + δ2f · (x− c)2 =: g1(x) for y ≤ x ≤ c , (20)

f (x) ≤ fc + δfc · (x− c) + δ2f · (x− c)2 =: g2(x) for y ≤ x ≤ c , (21)

f (x) ≥ fc + δfc · (x− c) + δ2f · (x− c)2 =: g3(x) for c ≤ x ≤ y , (22)

f (x) ≤ fc + δfc · (x− c) + δ2f · (x− c)2 =: g4(x) for c ≤ x ≤ y , (23)

(see Figure 1), as opposed to [21, 23], where the graph of f is enclosed by straight lines.

f(x)

fc

c

fc

y
_

y x

3

_

g
4

f

g

1

g
2

g

Figure 1: Enclosing the range of f by (20)-(23)
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Let
f̃ ≥ f∗ = min

x∈[x]
f (x) (24)

be an upper bound for the global minimum of f on [x].

For the two quadratic equations

f̃ = fc + δfc · (x− c) + δ2f · (x− c)2 (25)

and
f̃ = fc + δfc · (x− c) + δ2f · (x− c)2 (26)

we de�ne the discriminants

Dp :=
(

δfc

2 δ2f

)2

−

(
fc− f̃

)
δ2f

=
(

δfc
2 − 4 δ2f

(
fc− f̃

) )
/

(
4 δ2f

2
)

(27)

and

Dq :=
(

δfc

2 δ2f

)2

−

(
fc− f̃

)
δ2f

=
(

δfc2 − 4 δ2f
(
fc− f̃

) )
/

(
4 δ2f

2
)
. (28)

Now, we can state the second-order pruning step. First, we de�ne Assumption A needed
for the following theorems.

Assumption A: Let f : D ⊆ R → R be continuous on [x], c ∈ [y] =
[
y, y

]
⊆ [x] and f (c) ∈[

fc, fc
]
. Furthermore, assume that the intervals

[
δfc, δfc

]
∈ IR and

[
δ2f, δ2f

]
∈ IR

satisfy (19), and assume that f̃ ∈ R satis�es (24).

Theorem 6.1 Suppose that Assumption A holds. Furthermore, assume that δ2f < 0. Set

p :=


min

{
c, c− δfc

2 δ2f
−

√
Dp, c− δfc

δ2f

}
, if Dp > 0,

min
{

c, c− δfc

δ2f

}
, otherwise,

 (29)

q :=


max

{
c, c−

δfc

2 δ2f
+

√
Dq, c−

δfc

δ2f

}
, if Dq > 0,

max
{

c, c−
δfc

δ2f

}
, otherwise,

 (30)

and

Z :=
{
∅, if p = q = c,
(p, q) ∩ [y] , otherwise.

Then, we have
f (x) > f∗, x ∈ Z.

Proof: If Dp > 0, then the quadratic equation (25) has the solutions

p1 := c− δfc

2 δ2f
−

√
Dp (31)
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and

p2 := c− δfc

2 δ2f
+

√
Dp. (32)

Therefore, by δ2f < 0 we get

f (x) > f̃ ≥ f∗ for all x ∈ (p1, p2) ∩
[
y, c

]
. (33)

In order to prove {
f (x) > f∗ for all x ∈ (p, c) , if p < c and q ≤ c,

f (x) > f∗ for all x ∈ (p, c] , if p < c and q > c,
(34)

we distinguish four cases:

(i) Suppose Dp > 0, p2 > c and f̃ ≤ fc .

Then, we have √
Dp ≥

∣∣∣∣ δfc

2 δ2f

∣∣∣∣ .

By (31) we get

min
{

p1, c− δfc

δ2f

}
= p1 ≤ c.

Therefore, using (33) we obtain

f (x) > f∗ for all x ∈ (p, p2) ∩
[
y, c

]
with p from (29). This implies (34).

(ii) Suppose Dp > 0, p2 > c and f̃ > fc .

Then, we have √
Dp <

∣∣∣∣ δfc

2 δ2f

∣∣∣∣ ,

and by (32) we have δfc > 0. Therefore,

p = min
{

c, c− δfc

2 δ2f
−

√
Dp, c− δfc

δ2f

}
= c < p1

holds. By (33) we obtain

f (x) > f∗ for all x ∈ (p, p2) ∩
[
y, c

]
= ∅.

(iii) Suppose Dp > 0 and p2 ≤ c .

Then, by (32) we have δfc < 0. Because of δ2f < 0 we get

f (c) + δfc · (x− c) + δ2f · (x− c)2 > f (c)

for all

x ∈
(

c− δfc

δ2f
, c

)
∩

[
y, c

]
. (35)

10



Hence, by (19),
f (x) > f (c) ≥ f∗

holds for all x from (35). Using

c− δfc

δ2f
< p2 ≤ c,

we obtain
f (x) > f∗ for all x ∈ (p, c) ∩

[
y, c

]
(36)

from (33).

Because of δfc < 0 we also have δfc < 0. Therefore, if q > c holds for q from (30), then
we have √

Dq >
δfc

2 δ2f
. (37)

Because (37) implies fc > f̃ , we get

f (x) > f∗ for all x ∈ (p, c] ∩
[
y, c

]
, if q > c. (38)

From (36) and (38) we get (34).

(iv) Suppose Dp ≤ 0.

If

min
{

c, c− δfc

δ2f

}
= c

holds, then there is nothing to show. If

min
{

c, c− δfc

δ2f

}
= c− δfc

δ2f
< c,

then we have δfc < 0. Analogously to (iii) we get (36) and (38) which gives (34).

Analogously to (i)-(iv), we proceed for the quadratic equation (26). Combining the results,
we get

f (x) > f∗, x ∈ (p, q) ∩ [y] ,

if p < c or q > c. �

Corollary 6.2 If the assumptions of Theorem 6.1 hold, then each x∗ ∈ [y] that is a global
minimizer of f on [x] is contained in

(−∞, p] ∩
[
y, c

]
or in

[ c, y ] ∩ [q,∞) .

If p < y and q > y, then [y] cannot contain a global minimizer of f on [x].

11
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Figure 2: Illustration of Theorem 6.1
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Figure 3: Theorem 6.1 in the case of Dp > 0, p = c− δfc

δ2f
, Dq < 0

Figure 2 illustrates Theorem 6.1 in the case of

Dp > 0, p = c− δfc

2 δ2f
−

√
Dp, Dq > 0, q = c−

δfc

2 δ2f
+

√
Dq.

In the diagram we have

s := c− δfc

δ2f
> p.
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Figure 3 illustrates Theorem 6.1 in the case of

Dp > 0, p = c− δfc

δ2f
, Dq < 0.

In both �gures we have f (x) > f∗ for all x ∈ (p, q). The other cases can be illustrated
analogously.

Theorem 6.3 Suppose that Assumption A holds. Furthermore, assume that δ2f = 0. Set

p :=


c +

(
f̃ − fc

)
/ δfc , if δfc > 0 and f̃ < fc ,

−∞ , if δfc < 0 ,

−∞ , if δfc = 0 and f̃ < fc ,

c , if δfc ≥ 0 and f̃ ≥ fc ,

 (39)

q :=


c +

(
f̃ − fc

)
/ δfc , if δfc < 0 and f̃ < fc ,

+∞ , if δfc > 0 ,

+∞ , if δfc = 0 and f̃ < fc ,

c , if δfc ≤ 0 and f̃ ≥ fc ,

 (40)

and

Z :=
{
∅, if p = q = c,
(p, q) ∩ [y] , otherwise.

Then, we have
f (x) > f∗, x ∈ Z. (41)

Proof: Because of δ2f = 0,

f (x) ≥ f (c) + δfc · (x− c) ≥ fc + δfc · (x− c) (42)

holds for all x ∈
[
y, c

]
. We consider the four cases in (39):

(i) If δfc > 0 and f̃ < fc, then by (42) we have

f (x) ≥ fc + δfc · (x− c) > f̃ ≥ f∗

for all x ∈
(
c +

(
f̃ − fc

)
/ δfc , c

]
.

(ii) If δfc < 0, then by (42) we obtain

f (x) > f (c) ≥ f∗

for all x ∈
[
y, c

)
. If, additionally, q > c holds, then by δfc ≤ δfc < 0 and (40) we have

fc > f̃ . Thus, we get
f (x) > f∗ for all x ∈

[
y, c

]
.

(iii) If δfc = 0 and f̃ < fc, then by (42) we have

f (x) ≥ fc > f̃ ≥ f∗

13



for all x ∈
[
y, c

]
.

(iv) If δfc ≥ 0 and f̃ ≥ fc, then we have p = c.

Analogously, we proceed for the cases for q. Combining (i)-(iv) and all cases for q we
obtain

f (x) > f̃ ≥ f∗, x ∈ (p, q) ∩ [y] , if p < c or q > c.

This proves (41). �

Remark 6.4 Corollary 6.2 also holds, if the assumptions of Theorem 6.3 instead of The-
orem 6.1 are satis�ed.

fc

y
p

~
f

_

fc

_ c

f(x)

y x

f

Figure 4: Illustration of Theorem 6.3

Figure 4 illustrates Theorem 6.3 in the case of

0 < δfc ≤ δfc and f̃ < fc .

The search for global minimizers x∗ ∈
[
y, y

]
of f on [x] can be restricted to the interval[

y, p
]
.

Theorem 6.5 Suppose that Assumption A holds. Furthermore, assume that δ2f > 0. Set

p1 :=


c− δfc

2 δ2f
−

√
Dp , if Dp ≥ 0 ,

y − 1 , if Dp < 0 ,

p2 :=


c− δfc

2 δ2f
+

√
Dp , if Dp ≥ 0 ,

y − 1 , if Dp < 0 ,

14



q1 :=


c−

δfc

2 δ2f
−

√
Dq , if Dq ≥ 0 ,

y + 1 , if Dq < 0 ,

q2 :=


c−

δfc

2 δ2f
+

√
Dq , if Dq ≥ 0 ,

y + 1 , if Dq < 0 ,

and
Ẑ :=

(
[p1, p2] ∩

[
y, c

] )
∪

(
[q1, q2] ∩ [ c, y]

)
.

Then, we have
f (x) > f∗, x ∈ [y] \ Ẑ.

Proof: Let x ≤ c. Then, we have

fc + δfc · (x− c) + δ2f · (x− c)2 > f̃

⇔
(
x− c + δfc/

(
2 δ2f

) )2
>

(
δfc

2 δ2f

)2

+

(
f̃ − fc

)
δ2f

= Dp .

If Dp < 0, then by (20) we get

f (x) > f̃ for all x ∈
[
y, c

]
=

[
y, c

]
\ ∅ =

[
y, c

]
\

(
[p1, p2] ∩

[
y, c

])
.

If Dp ≥ 0, then we have

fc + δfc · (x− c) + δ2f · (x− c)2 > f̃, x ∈
[
y, c

]
⇔ x /∈ [p1, p2] and x ∈

[
y, c

]
⇔ x ∈

[
y, c

]
\

(
[p1, p2] ∩

[
y, c

])
.

Therefore, we have

f (x) > f̃ for all x ∈
[
y, c

]
\

(
[p1, p2] ∩

[
y, c

])
(43)

both for Dp < 0 and Dp ≥ 0.

By considering x ∈ [ c, y ] we get

f (x) > f̃ for all x ∈ [ c, y ] \ ([q1, q2] ∩ [ c, y ]) (44)

analogously. Combining (43) and (44) we obtain

f (x) > f∗, x ∈ [y] \ Ẑ,

with
Ẑ =

(
[p1, p2] ∩

[
y, c

] )
∪

(
[q1, q2] ∩ [ c, y ]

)
.

�
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Corollary 6.6 If the assumptions of Theorem 6.5 hold, then each x∗ ∈ [y] that is a global
minimizer of f on [x] is contained in(

[p1, p2] ∩
[
y, c

])
or in ([q1, q2] ∩ [ c, y ]) .

If
[p1,p2] ∩

[
y, c

]
= ∅ (45)

and
[q1, q2] ∩ [ c, y ] = ∅, (46)

then [y] cannot contain a global minimizer of f on [x]. (45) and (46) hold, if Dp < 0 and
Dq < 0.

2

~

1 cp

f

p

fc
fc

f(x)

f

y y_
_ x

Figure 5: Illustration of Theorem 6.5

Figure 5 illustrates Theorem 6.5 for

Dp ≥ 0 and Dq < 0.

In this case, the search for global minimizers x∗ ∈
[
y, y

]
of f on [x] can be restricted to

[p1, p2].

Figure 6 illustrates Theorem 6.5 for

Dp ≥ 0, Dq ≥ 0 and p2 > c, q1 < c.

In this case, the search for global minimizers x∗ ∈
[
y, y

]
of f on [x] can be restricted to

[p1, q2].

The other cases can be illustrated analogously.

Furthermore, by using (19) and the parabolas (20)-(23) we may update f̃ and compute a
lower bound fy for the range of f on [y]. This is done by the following two theorems.
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Figure 6: Illustration of Theorem 6.5

Theorem 6.7 Suppose that Assumption A holds. Moreover, we de�ne

al := fc + δfc ·
(
y − c

)
+ δ2f ·

(
y − c

)2
,

ar := fc + δfc · (y − c) + δ2f · (y − c)2 ,

pl :=

 fc− 1
4

(
δfc

)2
/ δ2f, if δ2f > 0 and c− 1

2 δfc / δ2f ∈
[
y, c

]
,

+∞, otherwise,

and

pr :=

 fc− 1
4

(
δfc

)2
/ δ2f, if δ2f > 0 and c− 1

2 δfc / δ2f ∈ [ c, y ] ,

+∞, otherwise.

If δ2f ≤ 0, then we have
f∗ ≤ min

{
al, ar, fc, f̃

}
.

If δ2f > 0, then we have

f∗ ≤


min

{
pl, al, fc, f̃

}
, if δfc > 0,

min
{

pr, ar, fc, f̃
}

, if δfc < 0,

min
{

fc, f̃
}

, if 0 ∈
[
δfc, δfc

]
.

Proof: Because f∗ ≤ f (x) holds for all x ∈ [y], the claim follows by minimizing the right
hand side of (21) and (23). �
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Remark 6.8 Obviously, the upper bound of f∗ in Theorem 6.7 is less than f̃ or equal to
f̃ . Therefore, in a global optimization algorithm we can update f̃ by using Theorem 6.7.

Theorem 6.9 Let f be continuous on [x] ⊆ D, c ∈ [y] =
[
y, y

]
⊆ [x] and f (c) ∈

[
fc, fc

]
.

Furthermore, assume that
[
δfc, δfc

]
and

[
δ2f, δ2f

]
are intervals satisfying (19).

Moreover, we de�ne

bl := fc + δfc ·
(
y − c

)
+ δ2f ·

(
y − c

)2
,

br := fc + δfc · (y − c) + δ2f · (y − c)2 ,

ml :=

 fc− 1
4

(
δfc

)2
/ δ2f, if δ2f > 0 and c− 1

2 δfc / δ2f ∈
[
y, c

]
,

+∞, otherwise,

and

mr :=

 fc− 1
4

(
δfc

)2
/ δ2f, if δ2f > 0 and c− 1

2 δfc / δ2f ∈ [ c, y ] ,

+∞, otherwise.

Then, for all x ∈ [y] we have

f (x) ≥


min {bl, br} , if δ2f ≤ 0,

min {ml,mr, bl, br} , if δ2f > 0.

Proof: The claim follows by minimizing the right hand side of (20) and (22). �

7 Algorithm

In this section, we state a branch-and-bound algorithm for global optimization of f : D ⊆
Rn → R on [x] ⊆ D. Let ε > 0 be the parameter used for the accuracy condition (17). We
initialize L, Q, and f̃ as described in section 5.

The lists are ordered in the following way: A pair
(
[y] , fy

)
is inserted into the list before

all pairs
(
[z] , fz

)
with fy < fz and after all pairs

(
[z] , fz

)
with fy ≥ fz. Therefore, if

fy > f̃ holds for one pair
(
[y] , fy

)
of the list, then all subsequent pairs can be discarded.

While L is not empty, do the following steps:

1. Remove the �rst element
(
[y] , fy

)
of L and set m := 1.

2. Compute t = (t1, . . . , tn) with ti ∈ {1, . . . , n} and ti 6= tj for i 6= j such that
diam [y]tk ≥ diam [y]tk+1

holds for k = 1, . . . , n − 1 (i.e. sorting by the diameter of
the components [y]i).

3. For k = 1 to n do steps 4 to 6.
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4. Set c = mid [y]tk . Compute a second-order slope tuple

Fk =
(
f[y],

[
fc, fc

]
,
[
δfc, δfc

]
,
[
δf, δf

]
,
[
δ2f, δ2f

])
of f on [y] by componentwise computation with respect to component tk. Use (11)-
(13) to get an enclosure

[
fy, fy

]
of the range of f on [y] and use Theorem 6.9 for

possibly increasing fy. Update f̃ using Theorem 6.7. If fy ≥ f̃ , then go to step 8,
because [y] cannot contain a global minimizer.

5. Carry out a �rst-order pruning step for [y]tk (see [21, 23]). This gives the (possibly
empty) intervals

[
u(1)

]
tk
⊆

[
y, c

]
and

[
u(2)

]
tk
⊆ [ c, y ] with x∗tk ∈

[
u(1)

]
tk
∪

[
u(2)

]
tk

for all global minimizers x∗ ∈ [y].

6. Use Theorems 6.1-6.5 for a second-order pruning step for [y]tk . Intersect the resulting
intervals with the intervals

[
u(1)

]
tk
and

[
u(2)

]
tk
from step 5:

a) If all intersections are empty, then set m := m− 1 and go to step 8.
b) If there is exactly one intersection interval

[
z(1)

]
, then set [y]tk :=

[
z(1)

]
.

c) If there are two intersection intervals
[
z(1)

]
and

[
z(2)

]
, then set

[
y(m)

]
:= [y], set

the tk-th component
[
y(m)

]
tk

:=
[
z(2)

]
and set m := m+1. Finally, set [y]tk :=

[
z(1)

]
.

7. Set
[
y(m)

]
:= [y].

8. In Step 6 at most one new interval vector
[
y(i)

]
is generated. Thus, in step 3-7 a total

of m interval vectors
[
y(i)

]
is generated, where 0 ≤ m ≤ n + 1. By the properties

of the pruning steps of �rst and second order, each global minimizer x∗ ∈ [y] is
contained in a

[
y(i)

]
, i = 1, . . . ,m. For all

[
y(i)

]
, i = 1, . . . ,m, do steps 9-11.

9. Set c = mid
[
y(i)

]
and compute an enclosure

[
fy(i), fy(i)

]
of the range of f on

[
y(i)

]
by intersecting (14)-(16). Generate the pair

( [
y(i)

]
, fy(i)

)
.

10. Use the enclosure
[
fc, fc

]
of f (c) obtained in step 9 for possibly updating f̃ .

11. If f̃ < fy(i), then discard the pair
( [

y(i)
]
, fy(i)

)
. If

max
j=1,...,n

diamrel

[
y(i)

]
j
≤ ε

or if diamrel

[
fy(i), fy(i)

]
≤ ε, then insert

( [
y(i)

]
, fy(i)

)
into Q, otherwise into L.

12. Delete all pairs
(
[y] , fy

)
with fy > f̃ from L, because they do not contain a global

minimizer of f .

After the termination of the algorithm, we have f∗ ∈
[
fy, f̃

]
for the �rst element

(
[y] , fy

)
of Q. Furthermore, each global minimizer x∗ of f on [x] satis�es

x∗ ∈
⋃

([y],fy)∈Q
[y] .

For each
(
[y] , fy

)
∈ Q we have max

j=1,...,n
diamrel [y]j ≤ ε or diamrel

[
fy, f̃

]
≤ ε. Note that

the algorithm terminates on a �oating-point computer, if the parameter ε > 0 is greater
than the machine accuracy.
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Ratz
Ex. STC 1 max LL time [sec.]
f1 2108 27 0.18
f2 925 19 0.06
f3 14057 177 2.33
f4 4990 156 0.96
f5 135851 1557 57.39
f6 1748 49 0.34
f7 12437 105 2.54
f8 830 9 0.18
f9 5985 56 2.31
f10 433181 1047 509.59
f11 314 10 0.03
f12 5764 66 1.24
f13 367455 11437 525.93
f14 11808 271 1.39
f15 4116 75 0.32
f16 88398 1072 27.10
f17 306 6 0.04
f18 2948 81 0.29
f19 5935 20 0.35
f20 25337 137 8.35
f21 436 15 0.06
f22 8761 240 1.69
f23 238268 6559 184.00
f24 2524 71 0.29
f25 24595 537 3.65

New Algorithm (Sect. 7)
Ex. STC 2 max LL time [sec.]
f1 1000 18 0.15
f2 876 28 0.11
f3 20870 350 6.04
f4 12615 160 4.12
f5 84183 797 32.65
f6 1276 50 0.40
f7 7588 99 2.37
f8 1044 16 0.36
f9 2342 29 1.07
f10 19226 87 16.11
f11 252 8 0.05
f12 5284 56 1.82
f13 348989 11083 520.86
f14 1204 15 0.20
f15 1778 37 0.31
f16 36081 556 11.45
f17 202 4 0.05
f18 2304 58 0.43
f19 6610 21 0.70
f20 3997 134 1.57
f21 348 12 0.08
f22 5450 212 1.57
f23 115487 3766 72.37
f24 1894 60 0.45
f25 17481 445 4.67

Table 1: Comparison of the new algorithm with the algorithm of Ratz

8 Examples

We compare the algorithm from section 7 with Ratz' program [21, 23]. For this purpose,
we consider 25 test functions. The test functions are listed in the appendix together with
the search interval [x] and the parameter ε. Most of them can be found in [3], [18], [21],
[32] and [36].

The following tables compare the algorithm of Ratz [21, 23] with the new algorithm with
respect to the number of slope tuple computations of �rst (STC 1) and second order (STC
2), the maximal length of the list L (max LL), and the computation time in seconds.
In [21, 23], the algorithm of Ratz was implemented in Pascal-XSC [6, 13], so we also
implemented the new algorithm in this programming language. The computations were
carried out on a PC with 2 Athlon MP 1800+ processors, 1 GB main memory and the
operating system Suse Linux 9.3. The source code is freely available [26]. A current
Pascal-XSC compiler is provided by the working group �Scienti�c Computing / Software
Engineering� of the University of Wuppertal [39].

Table 1 shows that in most of the examples the new algorithm requires fewer slope tuple
computations, and the maximal length of the working list L is less than in the algorithm
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of Ratz. Because the computation of a second-order slope tuple is more costly than the
computation of a �rst-order slope tuple, neither algorithm is generally better with respect
to computation time. In some of the examples the new algorithm is faster, whereas in
some of the examples it is slower than the algorithm of Ratz.

For some test functions, e.g. f3, f4, and f10, the computation times di�er substantially.
This can be explained as follows: Let f[y] be an enclosure of the range of f on some interval
[y] ∈ IRn. If 0 ∈ f[y], then we have

diamrelf[y] = diamf[y],

i.e. the relative diameter of f[y] is equal to its absolute diameter. Hence, depending on the
current interval [y], many subdivisions of [y] may be needed until the accuracy condition
(17) is satis�ed. In fact, for the test problems f3, f4, and f10 the global minimum is
f∗ = 0, so that this problem arises.

The extent to which this e�ect results in higher computation times depends strongly on the
search interval [x]. Function f3, i.e. the generalized function of Rosenbrock of dimension
5, illustrates this dependency. The results can be found in Table 2.

We observe that a slight variation of [x] signi�cantly changes the number of slope tuples
that need to be computed and the computation time. In each case the unique global
minimizer is x∗ = (1, . . . , 1)T with f∗ = 0.

Finally, we consider the examples f1-f25 once again. We reduce the e�ect described above
by increasing the function value by 1, i.e. we set f̃ (x) := f (x) + 1. The results are listed
in Table 3. We note that for some functions, e.g. f̃3, f̃4, f̃8-f̃10, and f̃14, having f∗ = 0
as the global minimum, the number of computed slope tuples and the computation time
decreased signi�cantly. For other functions the results are almost unchanged compared to
f .

A similar e�ect can occur if x∗ = (0, . . . , 0) is the global minimizer: Suppose that during
the course of the algorithm we obtain an interval [y] with [y]i = [ai, bi], i = 1, . . . , n, for
some small ai ≤ 0, bi > 0. Suppose furthermore that in the next step of the algorithm we
obtain two subintervals

[
y(1)

]
and

[
y(2)

]
such that 0 ∈

[
y(1)

]
1
and 0 /∈

[
y(2)

]
1
. Then,

[
y(2)

]
does not contain the global minimizer x∗ = (0, . . . , 0). However, it may not be possible to
discard

[
y(2)

]
because it is likely to be very close to x∗. Furthermore, the relative diameter

of
[
y(2)

]
1
may be very large so that the �rst relation in (17) can only be satis�ed for very

small subintervals [z] ⊆
[
y(2)

]
. This e�ect can be observed for f̃19.

In summary, in most of the examples, the new algorithm requires fewer slope tuple compu-
tations, and the maximal length of the working list L is less than in the algorithm of Ratz.
Neither algorithm is generally better with respect to computation time. Nevertheless, for
some of the examples the new algorithm is signi�cantly faster than the algorithm of Ratz.

9 Conclusion

In this paper, we have introduced a second-order pruning step for veri�ed global optimiza-
tion on a �oating-point computer. Using automatic computation of a second-order slope
tuple, we added this second-order pruning step to an algorithm by Ratz. Furthermore, we
compared our new algorithm with the algorithm of Ratz by considering some test problems.
In most of the test problems, the new algorithm requires fewer slope tuple computations
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1. [x] ∈ IR5, [x]i = [−5.12, 5.12] , i = 1, . . . , 5,

2. [x] ∈ IR5, [x]i = [−6, 6] , i = 1, . . . , 5,

3. [x] ∈ IR5, [x]i = [−2, 5, 2, 5] , i = 1, . . . , 5,

4. [x] ∈ IR5, [x]i = [−3, 4] , i = 1, . . . , 5,

5. [x] ∈ IR5, [x]i = [−1, 2] , i = 1, . . . , 5,

6. [x] =
(
[−2, 2] , [−1.5, 2.5] , [−3, 3] , [0, 3] , [−1, 1.5]

)T
,

7. [x] =
(
[−3, 6] , [−6, 2] , [−4, 3] , [−5, 3] , [−2, 6]

)T
,

8. [x] =
(
[−3, 6] , [−6, 2] , [−4, 3] , [−5, 1] , [−2, 6]

)T
,

9. [x] =
(
[−1.5, 3.2] , [0.12, 1.5] , [−2.1, 2.7] , [−2, 2] , [−1, 5.12]

)T
,

10. [x] =
(
[−1.5, 3.2] , [0.12, 1.5] , [−2.1, 2.7] , [−2, 2] , [−1.5, 5.12]

)T
.

Ratz
No. STC 1 max LL time [sec.]
1 14057 177 2.33
2 15045 144 2.48
3 20603 258 3.70
4 24459 290 4.36
5 21376 412 3.90
6 23761 285 3.99
7 13116 152 1.86
8 22974 351 4.10
9 31433 509 5.89
10 253419 6869 183.80

New Algorithm (Sect. 7)
No. STC 2 max LL time [sec.]
1 20870 350 6.05
2 12110 160 3.09
3 16420 206 4.47
4 35879 576 11.52
5 17889 250 4.80
6 24244 196 6.40
7 11025 177 2.58
8 7296 128 1.74
9 74315 1561 29.75
10 21954 247 5.89

Table 2: The Rosenbrock function of dimension 5 for di�erent search intervals [x] and
ε = 10−10.
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Ratz
No. STC 1 max LL time [sec.]
�f1 2004 27 0.17
�f2 642 19 0.04
�f3 11190 107 1.74
�f4 6549 156 1.26
�f5 135905 1557 59.27
�f6 1748 49 0.34
�f7 12437 105 2.54
�f8 429 9 0.08
�f9 1480 21 0.43
�f10 16932 89 9.67
�f11 224 10 0.02
�f12 4030 66 0.80
�f13 367447 11437 534.96
�f14 1256 19 0.10
�f15 3890 75 0.31
�f16 88598 1072 28.14
�f17 306 6 0.04
�f18 2948 81 0.30
�f19 5930 20 0.37
�f20 25337 137 8.33
�f21 436 15 0.06
�f22 8781 240 1.72
�f23 238616 6559 188.290
�f24 2548 71 0.30
�f25 24733 537 3.76

New Algorithm (Sect. 7)
No. STC 2 max LL time [sec.]
�f1 938 18 0.15
�f2 668 28 0.08
�f3 11296 137 2.77
�f4 4047 160 1.20
�f5 84199 797 32.97
�f6 1276 50 0.41
�f7 7588 99 2.39
�f8 381 8 0,11
�f9 1087 21 0.42
�f10 11060 87 8.15
�f11 166 8 0.03
�f12 5192 56 1.73
�f13 348967 11083 514.43
�f14 838 15 0.13
�f15 1670 37 0.29
�f16 36309 560 11.67
�f17 202 4 0.05
�f18 2304 58 0.44
�f19 55379 2060 28.12
�f20 3997 134 1.59
�f21 348 12 0.08
�f22 5450 212 1.59
�f23 115592 3766 72.45
�f24 1906 60 0.46
�f25 17535 445 4.76

Table 3: Comparison of the two algorithms f̃ (x) := f (x) + 1
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than the algorithm of Ratz. Neither algorithm is generally better with respect to com-
putation time, because the computation of a second-order slope tuple is more costly than
the computation of a �rst-order slope tuple. The source code of the programs is freely
available [26].
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Appendix

We consider the following 25 test problems:

1. Function of Branin : f : R2 → R, [x] = ([−5, 10] , [0, 15])T , ε = 10−12,

f (x) =
(

5
π

x1 −
5.1
4π2

x2
1 + x2 − 6

)2

+ 10
(

1− 1
8π

)
cos x1 + 10.

2. Function of Rosenbrock: f : R2 → R, [x] = [−10, 50]2, ε = 10−12,

f (x) = 100
(
x2 − x2

1

)2 + (x1 − 1)2 .

3. Generalized function of Rosenbrock of dimension 5: f : R5 → R, [x] = [−5.12, 5.12]5,
ε = 10−10,

f (x) =
4∑

i=1

(
100

(
xi+1 − x2

i

)2 + (xi − 1)2
)

.

4. Function G7 of Griewank: f : R7 → R, [x] = [−50, 60]7, ε = 10−3,

f (x) =
7∑

i=1

x2
i

4000
−

7∏
i=1

cos
(

xi√
i

)
+ 1.

5. Function L3 of Levy: f : R2 → R, [x] = [−10, 50]2, ε = 10−12,

f (x) =
5∑

i=1

i cos
(
(i− 1) x1 + i

)
·

5∑
j=1

j cos
(
(j + 1) x2 + j

)
.

6. Function L5 of Levy: f : R2 → R, [x] = [−10, 50]2, ε = 10−12,

f (x) =
5∑

i=1

i cos
(
(i− 1) x1 + i

)
·

5∑
j=1

j cos
(
(j + 1) x2 + j

)
+(x1 + 1.42513)2 + (x2 + 0.80032)2 .
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7. A variant of function L5 of Levy: f : R3 → R, [x] = [−10, 50]3, ε = 10−12,

f (x) =
5∑

i=1

i cos
(
(i− 1) x1 + i

)
·

5∑
j=1

j cos
(
(j + 1) x2 + j

)
+(x1 + 1.42513)2 + (x2 + 0.80032)2 + (x3 − 1)2 .

8. Function L8 of Levy: f : R3 → R, [x] = [−10, 50]3, ε = 10−12,

f (x) =
n−1∑
i=1

(yi − 1)2
(
1 + 10 sin2 (πyi+1)

)
+ sin2 (πy1) + (yn − 1)2

with n = 3 and yi = 1 + (xi − 1) /4, i = 1, . . . , n.

 (47)

9. Function L10 of Levy: f : R5 → R, [x] = [−10, 50]5, ε = 10−12 and (47) with n = 5.

10. Function L12 of Levy: f : R10 → R, [x] = [−10, 50]10, ε = 10−8 and (47) with
n = 10.

11. Function L13 of Levy: f : R2 → R, [x] = [−10, 50]2, ε = 10−12,

f (x) =
n−1∑
i=1

(xi − 1)2
(
1 + sin2 (3πxi+1)

)
+(xn − 1)2

(
1 + sin2 (2πxn)

)
+ sin2 (3πx1)

 (48)

with n = 2.

12. Function L18 of Levy: f : R7 → R, [x] = [−10, 50]7, ε = 10−8 and (48) with n = 7.

13. Function of Goldstein and Price: f : R2 → R, [x] = [−10, 50]2, ε = 10−12,

f (x) =
(
1 + (x1 + x2 + 1)2

(
19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

))
·
(
30 + (2x1 − 3x2)

2 (
18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

))
.

14. Function SC32 of Schwefel: f : R3 → R, [x] = [−1.89, 1.89]3, ε = 10−12,

f (x) =
3∑

i=2

((
x1 − x2

i

)2 + (xi − 1)2
)

.

15. Function R4 of Ratz: f : R2 → R, [x] = [−3, 3]2, ε = 10−12,

f (x) = sin
(
x2

1 + 2x2
2

)
· exp

(
−x2

1 − x2
2

)
.

16. A variant of Shubert's test function from [21, Sect. 5.7.1]:
f : R2 → R, [x] = [−10, 50]2, ε = 10−12,

f (x) =
5∑

i=1

i sin
(
(i + 1) x1 + i

)
cos x2.
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17. Example 6.18 from [21]: f : R2 → R, [x] = [−10, 50]2, ε = 10−12,

f (x) = |y1 − 1|
(
1 + 10 |sin (πy2)|

)
+ |sin (πy1)|+ |y2 − 1|

with yi = 1 + (xi − 1) /4, i = 1, 2.

18. Example 6.19 from [21]: f : R2 → R, [x] = ([−100, 100] , [0.02, 100])T , ε = 10−12,

f (x) = 10 |x1 − 1|
∣∣ sin

(
1
x2

) ∣∣ + (x2 + 2) · |x1 − 1 + 2x2| .

19. Example 6.20 from [21]: f : R4 → R, [x] = [−4, 4]4, ε = 10−12,

f (x) = |x1 + 10x2|+ 5 |x3 − x4|+ |x2 − 2x3|+ 10 |x1 − x4| .

20. Example 6.22 from [21]: f : R9 → R, [x] = [−10, 50]9, ε = 10−12,

f (x) =
8∑

i=1

|xi − 1|
(
1 + |sin (3πxi+1)|

)
+ |x9 − 1|

(
1 + |sin (2πx9)|

)
+ |sin (3πx1)|+ 1.

21. Example 6.26 from [21]: f : R2 → R, [x] = [0, 10]2, ε = 10−12,

f (x) = min
{
|cos (2x1)|+ |cos (2x2)| − 3 sin

(πx1

10
)
− 2 sin

(πx2

10
)
,

50 |x1 − 1|+ 50 |x2 − 1| − 5
}

.

22. Function of Henriksen, Madsen, Dim2: f : R2 → R, [x] = [−10, 10]2, ε = 10−6,

f (x) = −
2∑

i=1

5∑
j=1

j sin
(
(j + 1) xi + j

)
.

23. Function of Henriksen, Madsen, Dim3: f : R3 → R, [x] = [−10, 10]3, ε = 10−6,

f (x) = −
3∑

i=1

5∑
j=1

j sin
(
(j + 1) xi + j

)
.

24. Function from the SIAM 10x10-Digit-Challenge (see [3, p. 77]):
f : R2 → R, [x] = [−1, 1]2, ε = 10−12,

f (x) = exp (sin (50x1)) + sin (60 expx2) + sin (70 sin x1)
+ sin (sin (80x2))− sin (10 (x1 + x2)) +

(
x2

1 + x2
2

)
/4.

25. A variant of example 24 (see [3, p. 99]): f : R3 → R, [x] = [−1, 1]3, ε = 10−12,

f (x) = exp (sin (50x1)) + sin (60 expx2) sin (60x3) + sin (70 sin x1) cos (10x3)
+ sin (sin (80x2))− sin (10 (x1 + x3)) +

(
x2

1 + x2
2 + x2

3

)
/4.
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