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Numerical approximation of
incremental infinitesimal gradient plasticity

Patrizio Neff, Antje Sydow, and Christian Wieners

ABsTRACT. We investigate a representative model of continuum infinitesimal gradient plasticity.
The formulation is an extension of classical rate-independent infinitesimal plasticity based on the
additive decomposition of the symmetric strain-tensor into elastic and plastic parts. It is assumed
that dislocation processes contribute to the storage of energy in the material whereby the curl of
the plastic distortion appears in the thermodynamic potential and leads to an additional nonlocal
backstress tensor. The formulation is cast into a numerical framework by a saddle point approxi-
mation of the corresponding minimization problem in each incremental loading step. This allows to
reformulate the (nonlocal) dissipation inequality into a point-wise flow rule and yields to a solution
scheme which is a direct extension of the standard approach in classical plasticity. Our numerical
results show the regularizing effects of the additional physically motivated terms.

1. Introduction

This article addresses the numerical analysis of a geometrically linear isotropic gradient plasticity
model. There is an abundant literature on gradient plasticity formulations, in most cases letting
the yield-stress Ky depend also on some higher derivative of a scalar measure of accumulated plastic
distortion [27, 7, 10]. Experimentally, the dependence of the yield stress on plastic gradients is well-
documented (see, e. g., [9]), and several experimental facts testify to the length scale dependence
of materials. E.g., the Hall-Pftch scaling' relates the grain size in polycrystals to the yield stress

Verainsize’

Similarly, the Taylor scaling relates the yield stress Ky to the dislocation density qualitatively by
Ko = K{ + k™| curl(F,)|, where F,, is the incompatible intermediate configuration appearing in
the multiplicative decomposition [33] and curl F, is a measure for the defect density.?

in the form Ky = Kg +

It is also known that the thinner the grains, the stiffer the material gets. As a rule one may therefore
say: the smaller the sample is the stiffer it gets (while unbounded stiffness must be excluded from
atomistic calculations).

From a numerical point of view the incorporation of plastic gradients may also serve the purpose
of removing the mesh-sensitivity, ubiquitous in the softening case, or, more difficult to observe

1991 Mathematics Subject Classification. 65N55, 65F10.

Key words and phrases. Plasticity, dislocation density, kinematic hardening, gradient plasticity.

IThere is also a reverse Hall-Petch scaling for very small grains in the nano-range.

?Note that we use the transpose of Gurtin’s definition of the curl-operator for second order tensors, i.e., curl acts
row-wise such that curl D¢ = 0. Formulas given in [11] do not obtain for this definition.
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numerically, already in classical Prandtl-Reuss plasticity (shear bands and slip lines with ill-defined
band width, as e.g. in the case of a plate with a hole under uniform tension [32]).

The incorporation of a plastic length scale, which is a natural by-product of gradient plasticity,
has the potential to remove the mesh sensitivity. The presence of the internal length scale should
cause the localization zones to have finite width. It makes possible the analysis of failure problems
in which strain localization into shear bands occurs. However, the actual plastic length scale of a
material is difficult to establish experimentally and theoretically, and it remains basically an open
question how to determine the additionally appearing material constants. Moreover, it is also not
entirely clear, how the shear band width depends on the characteristic length.

Models, similar in spirit to our formulation, may be found in [22, 18]. While gradient plasticity
seems to be of high current interest [12, 14, 13, 37, 38] we have not been able to locate many
rigorous mathematical studies of the time continuous higher gradient plasticity problem, apart for
Reddy et. al. [35], treating a geometrically linear model of Gurtin [13] which is substantially
different from our proposal.®> A rigorous mathematical study of a rate-independent problem with
full gradient regularization, although coming from ferroelasticity is presented in [26, 24].

Gurtin includes curl(F,) in the free energy and takes free variations with respect to F'p,, leading to
a model with additional balance equations for microforces, similar, e.g., to a Cosserat or Toupin-
Mindlin type model. We refer to [30, 32| for a model including plasticity and Cosserat effects.
In modification of Gurtin’s approach, in [28, 31| the plastic distortion F', and thence curl(F)) is
treated as an inner variable included only in the thermodynamic potential, leading to a system of
evolution equations for F', of degenerate parabolic type.

In Mielke-Miiller [25] the time-incremental finite-strain problem is investigated. It is shown that
once the update potential for one time step is established and known to be properly coercive and
polyconvex as a function of F in the multiplicative decomposition of the deformation gradient,
then, adding a regularizing term depending only on curl(F)) is indeed enough to show existence
of minimizers for the new deformation and the new plastic variable.

Adding a curl(Fp)-related term to the time-incremental problem has also been suggested in [34]
for the description of subgrain dislocation structures. It seems therefore necessary to investigate
the general structure of these class of gradient plasticity models. Our interest here resides mainly
with respect to the regularizing power of these models. Focussing therefore on localization limiters
we investigate a well-posed plasticity model which includes the dislocation energy density and local
linear Prager kinematic hardening. In the large scale (classical) limit of vanishing plastic lengthscale
our model turns into Prandtl-Reuss plasticity with linear kinematic hardening.

As far as classical rate-independent perfect elasto-plasticity is concerned we remark that global
existence for the displacement has been shown only in a very weak, measure-valued sense, while
the stresses could be shown to remain in Ly(€, Sym(d)). For these results we refer for example
to |3, 6, 39]. If hardening or viscosity is added, then global classical solution are found, see,
e.g., [1, 5, 4]. A complete theory for the classical rate-independent case remains elusive, see also

3In Reddys analytical treatment of the corresponding infinitesimal model strong assumptions on the presence of the
full plastic strain rate gradient (instead of the curl) are introduced in the dependence of the yield stress on the
plastic gradients (isotropic hardening) in order to show existence and uniqueness. His model features a priori purely
symmetric plastic strains. Such a model is called "irrotational", it does not allow for plastic spin. Local kinematic
hardening is not considered.

Tt is noteworthy that the update problem in [25] is a two-field minimization problem for he deformation and plastic
distortion (p, F') in the spirit of a micromorphic model [29] with a very special coupling between the different fields
¢ and F'p. Polyconvexity in F'. alone is not sufficient to obtain existence by Ball’s method since F'. is not a gradient,
but the term curl(F,) provides additional compactness in the spirit of Murat/Tartars method.
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the remarks in [6]. It is therefore hoped, that including plastic gradients in the formulation will
regularize the problem and lead to a well-posed model. This is what is shown in [31].

In the small strain gradient plasticity model proposed in [31] the plastic distortion p is in general not
symmetric. Imposing certain form-invariance conditions (invariance of the referential, intermediate
and spatial configuration under superposed rotations) on the thermodynamic potential shows that
the local kinematical backstress in the linearized regime can only depend on sym(p), while the
nonlocal backstress depends on the (in general non-symmetric) expression curl(curl(p)).

However, assuming that plastic spin (i.e. skeW(Fp_le)) generates infinite dissipation (no spin
assumption, see |23, 15]) leads, after linearization, to a symmetric plastic distortion rate (p €
Sym(3)) thereby considering only the symmetric part of the relative (elastic) stress &« = o — Dp —
curl(curl(p)). Taking symmetric initial values for the plastic distortion p it is thus possible to
consider a gradient plasticity model in which only symmetric plastic strains occur. This is what
we do here; we may rename therefore €, = sym p.

Our contribution is organized as follows. In the first Section, we introduce the model step by step,
where we discuss in particular the relation of flow rule and dissipation inequality for the nonlocal
model. Then, in Section 3, we consider the incremental model and we derive a mixed approximation
in space. It is shown that this problem corresponds to a constraint minimization problem, and we
derive the characterizing KKT-system. For this KKT-system an iterative numerical scheme is
developed in Section 4 by linearizing the flow rule in every step, where each iteration step itself is
a nonlinear problem (solved by a nonsmooth Newton method). Finally, in Section 5 we present a
numerical study which shows that the proposed scheme is a robust and efficient solution method.
Moreover, the results indicate clearly the regularization properties of the nonlocal method.

2. A representative model for infinitesimal nonlocal plasticity

We develop a model for nonlocal plasticity in three stages: beginning with infinitesimal perfect
plasticity (which is not well-posed in the primal setting), the model is first regularized by including
local kinematic hardening, and finally it is extended by a nonlocal term which depends on the curl
of the plastic distortion.

2.1. Data. Let Q C R? be the reference configuration, and let I'p UT'y = 9 be a decomposition
of the boundary. The outer unit normal vector on the boundary is denoted by n(x). Let [0,7] be
a fixed time interval. We prescribe a displacement vector

up: I'p X [O,T] S R?

for the essential boundary conditions on I'p and a load functional
Lty du) = / b(t) - dudx +/ tn(t) - duda
Q I'n

depending on body force densities and traction force densities
b: Qx[0,T] — R3, ty: Ty x [0,7] — R? .
In all cases below we assume that the data are sufficiently smooth.

Let Sym(d) = {7 € R%?: 77 = 7} be the set of symmetric matrices. The elastic material properties
(in the infinitesimal model) are given through the isotropic elasticity tensor C: Sym(d) — Sym(d)
defined by C : € = 2ue + Atrace(e)1l, depending on the Lamé constants A\, > 0. On Sym(d),
the elasticity tensor is symmetric and positive definite. For a displacement vector u, the linearized
strain tensor is denoted by e(u) = sym(Du).
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We restrict ourselves to von Mises plasticity ¢(o) = |dev(e)| — Ky depending on the yield stress
Ko > 0, where dev(c) = o — L trace(o)1 is the deviatoric part of the stress. In the following we
take d = 3.

2.2. Perfect plasticity revisited. We start with the classical Prandtl-Reuss model:
find displacements
w: Qx [0,T] — R? |
symmetric stresses
o:Qx[0,T] — Sym(d) ,
symmetric plastic strains
gp: @ x[0,T] — Sym(d) ,
and a plastic multiplier
v:2x[0,T] — R,
satisfying the essential boundary conditions
u(x,t) = up(x,t), (z,t) eT'p x[0,T],
the linear elastic constitutive relation
o(z,t) =C: (s(u)(m,t) - sp(m,t)>, (z,1) € Q% [0,T],
the equilibrium equations
—dive(xz,t) = b(x,t), (x,t) € 2 x (0,77, (1a)
o(x,t)n(x) = ty(x,t), (z,t) e Iy x 0,77, (1b)
the local flow rule
dev(o(x,t))
|dev(o(x,t))|
and the complementary conditions
'y(m,t)(| dev(o(x,t))| — Ko) =0, ~v(x,t)>0, |dev(o(x,t))|<Kp. (3)

The flow rule and complementary condition can be reformulated in form of a dissipation inequality,
and the equilibrium equation can be stated in integrated form. To this end we define the spaces
S = Ls(Q,Sym(d)), E = {n € S: dev(n) =0}, K = {7 € S: |dev(7)| < Kj a.e. in Q}, and
V = Hl(Q,R3), Vo= {U eVv: ’U’FD = 0}, V(UD) = {U eVv: U‘FD = ’U,D}.

LemMMA 1. If o(t) € K, we have (the integrated dissipation inequality)

/Kg]65p|da:Z/Kg|ép(t)|dcc+/0'(t)  (0e, — &,(1)) dx, e, E. (4)
Q Q Q

ép(x,t) = (1) (z,t) € Q% [0,T], 2)

ProOF. The flow rule (2) gives v(t) = |€p(¢)| and thus

dev(o(t)) : o(t)
| dev(e(t))]

ie., 0= Ky |p(t)| — o(t) : €,(t). Together with

ép(t) : o(t) =~ = [&p(t)] [dev(a(8))] = Ko [€,(1)] ,

Ky |6ep| > |dev(oa(t))| |dep| > dev(o(t)) : dep, = a(t) : dgp
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and integrating in {2 this gives the result. O
The equilibrium equation (1) give in integrated form
/Qa(t) ce(du) dx = ((t, du) , u e Vy
and adding the dissipation inequality (4) we obtain

/Qa(t);s(au) dac—l—/QKo|5sp\dw

2E(t,éu)+/QK0|ép(t)]dm+/Qo-(t) : (0ep — €p(t)) da.

Inserting the constitutive relation o (t) = C: (e(u(t)) — €,(t)) and testing with du — u(t) yields
/ (e(u(t)) —ep(t)) : C: e(du — 0(t)) de +/ Ky |0e,| dx
Q Q

> U(t, 6u — u(t)) + /QKO\e‘,,(t)da: + /Q (e(u(t)) —ep(t)) : C: (dep — (1)) dexr .

Defining the symmetric bilinear form

app ((u, €p), (0u, dep)) = /Q (e(u) — &) : C: (e(du) — dep) da

(corresponding to perfect plasticity) and the convex, one-homogeneous integrated dissipation func-
tional

i) = [ Kolgylda,
allows to rewrite the equations of quasi-static infinitesimal plasticity as variational inequality:
app ((u(t), €p(t)), (du, dep) — ((t), €,(t))) + j(dep) — j(Ep(t)) = £(t, du — (1)) .

2.3. Local kinematic hardening. Since app(-,-) is not coercive on Vi x E, we next study a
regularized problem defining

axn ((u, €p), (du, dep)) = /Q (e(u) — &) : C: (e(du) — de,) dx + /Q gp:D:de,dx

with a local kinematic hardening modulus D = pHyid (where Hy > 0 is non-dimensional scaling
factor).

For c=2/Hp > 0 we have g, : C: e, =2ue, : e, =cep:D: ey This gives

(e—€p):C:(e—€p)+ep:D:g,>

1
1+2C€:C:E—|—§€p:ﬂ):€p

and therefore (by Korn’s inequality)

ain ((u, €p), (u,€5)) = C1 [l(e(w), ) 17,0) = C2 (w, &) [V um (5)
with [|v[lv = ||v||g1 o rs) and |[e|| g = |l€]|L,(o,r3x3). Now, standard theory applies [16, Th. 7.3]:
THEOREM 2. A unique solution (u,e,) € HY(0,T;V x E) with u(t) € V(up) and

axn ((w(t), ep(1)), (Ju, 0ep) — (1(t),€y(t))) + j(0ep) — j(€p(t)) = £(t, u — (1)) (6)
ezists for all (du,de,) € Vo x E and a.a. t € [0,T]



6 P. NEFF, A. SYDOW, AND C. WIENERS

Testing with dJu = 4(t) in (6) and inserting the constitutive equation for the stress yields the
dissipation inequality for plasticity with hardening in the form

/QKOME:p\da:Z/QKglép(t)|dcc+/Q(a(t)—]]):sp(t)) : (9e, — &,(t)) da . (7)

Within the hardening model, 3 = D : g, is the local symmetric back-stress, and @ = o0 — 3 =
o —D: g, is the automatically symmetric relative (elastic) stress (cf. [36, Chap. 3.3.1]).

LEMMA 3. If (7) holds for all e, € E, we have a(t) € K a. e. in Q. In addition, it holds €,(t) = 0
a. e. in the elastic zone Qe (t) = {x € Q: |deva(t)| < Ko a.e. in some neighborhood of x}, and
we have Ko, ep(t) = |ep(t)|dev(a(t)) a.e. in Q.

Proor. Testing (7) with sde, for s > 0 gives

s/ Ky |0e,| dx > / K |ép(t)|d1:+s/ a(t) : depdx — / alt) : €,(t) dx
Q Q Q Q

and thus

S

/Kgyaepmwz 1/ K0|ép(t)\dm+/ a(t):éepdw—l/a(t):s'p(t)dw.
Q S JQ Q Q

Passing to the limit s — oo yields
/ dev(a(t) : de, da — / alt) : be, dw < / Ko|oe,| dz (8)
Q Q Q

for all g, € E. For all open subsets Q) C Q we can insert a test function de, which is defined by
dep(x) = dev(a(x,t)) for x € Q and de,(x) = 0 else. This results in

/~ | dev(a(t))]? da < [ Ko|dev(a(t))|dx .
Q Q

Since Q C Q is arbitrary, this gives \dey(oc(t))\2 < Ko|dev(e(t))] a.e. in Q, i.e., dev(a(t)) € K.
Now, testing (7) with de, = s€,(t) on Q C Q gives for s > 0

(5—1)/§2K0|é(t)|d:v2 (s—l)/~a(t):ép(t) d,

Q

and thus (by inserting s =1+ %) equality

/ Ky |(t)|dx = / a(t) : ép(t) de = / dev(a(t)) : €p(t) d.

Q Q Q

Then, |dev(a(t))| < Ky yields Ky |é(t)] = a(t) : €y(t) a.e. in Q. In case of |a(x,t)] < Ky
this implies ép(x,t) = 0, otherwise we have equality in the Cauchy-Schwarz inequality. Thus,
s dev(a(z,t)) = €,(x,t) are linearly dependent with s = [€,(x, )|/ K. O

Reformulating this lemma shows that the solution (u,€,) of (6) satisfies the pointwise flow rule

g, = dev (a)

—’ym, v =€, oc=C:(e(u) —gp), a=0c-D:¢gp, (9)
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and the complementary conditions
v (| dev(ax)| — Ko) =0, v >0, |dev(ar)| < Ky (10)
a.e. in © x [0, 7] which can also be reformulated as a subdifferential inclusion [31, p. 17].

REMARK 4. The equivalence of (point-wise) flow rules and (integrated) dissipation inequalities is
well studied in the general framework of conver analysis |16, Chap. 4], [2]. Eztensions of this con-
cept are considered within the energetic plasticity approach by Mielke [19]. In general, corresponding
equivalence relations hold for local models only [31].

2.4. Nonlocal dislocation based plasticity with symmetric plastic strains. Next, we ex-
tend axn(+,-) by a further term involving nonlocal dislocation density effects to read

ant ((u, &p), (0u,0ep)) = axn((u,&p), (du, dep)) +/chrl(sp) 1 E: curl(dep) de

with E = puL?id. Here, L. > 0 is the internal plastic length scale with units of length. The
curl-related term represents the energy stored in the material due to deformation incompatibility.
In particular, diffuse phase boundaries are energetically favored by larger values of L. while sharp
phase boundaries are favored by smaller values of L.

We define the space
Ey = {e, € Ly(Q,R): curl(ey) € Lo(Q, RYY), trace(e,) = 0, skew(e,) = 0}
(where the curl-operator is applied row-wise on €,). Equipped with the norm
lepll,, = llepll?, @ raa) + I curlepl7, g raay (11)

this is a closed subspace of H(curl,2)3. From (5) we conclude that apy(-,-) is elliptic in Vg x Ey,
so that again [16, Th. 7.3| applies:

THEOREM 5. A unique solution (u,ep) € HY(0,T;V x En) with u(t) € V(up) and
ani ((u(t), ep(t)), (Ju, dep) — ((t), €p(t))) + j(0ep) — j(€p(t)) = €(t, 0u — u(t)) (12)
for all (du,de,) € Vo x Ey and a. a. t € [0,T] exists.

Testing with du = 4(t) in (12) and inserting the stress & = C : (e(u) —€,) yields the corresponding
integrated dissipation inequality for the nonlocal plasticity model in the form

/ Ko |dey|dx > / Ko |€p(t)| dz +/ (o(t) =D :ep(t)) : (dep — &p(t)) da
Q Q Q

- /ﬂ curl(ep(t)) : E : curl(de, — €,(t)) do . (13)

Without additional regularity, we cannot derive a point-wise flow rule in this case (in general,
the stress is not bounded in Lo). Formally, if curl(E : curl(ey(t))) exists and if one includes
homogeneous boundary conditions in E, integration by parts yields the dissipation inequality in
strong form

/K0|5sp]da: > /K0|s'p(t)\da:
Q Q

+ / (o(t) = D €y(t) — cwrl(E : curl(e, (1)) : (3, — &,(1)) de.
Q

This corresponds to flow rule (9) and complementarity condition (10), where the relative stress has
the form o — D : €, — curl(E : curl(e,)). In fact—since g, is symmetric—only its symmetric part
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enters the model. Thus, for simplicity of notation, be denote by a in the following the symmetrized
relative stress. This means that with the preceding provisions, a smooth solution (u,e,) of (12)
satisfies the pointwise flow rule

dev (a
€p =7 |d(:f((a))\ , v =€, a=0—-D:eg, —sym(curl(E : curl(ey))), (14)
and the complementary conditions
v (| dev(sym )| — Ko) =0, v >0, |dev(syma)| < K (15)

a.e. in 2 x [0,7]. In Theorem 8 this is addressed in more detail, where a saddle point formulation
is introduced in order to provide an elegant framework which avoid extra boundary conditions and
which recovers (numerically) a point-wise flow rule.

REMARK 6. This construction of a nonlocal model is only one prototype for a large class of disloca-
tion models which can be handled in the same framework. Observe that our model can be obtained
as a special non-spin case of a model in [31]. Since our main focus is the clear presentation of a
numerical solution method, we do not discuss other models; see |31, 35, 8| for other proposals in
this respect.

3. Incremental nonlocal plasticity

Replacing the time derivative by backward difference quotients and introducing suitable finite ele-
ment spaces for displacements and plastic strains directly yields the discrete analog to the nonlocal
problem (12). This incremental problem is fully implicit, and the solution of the incremental
problem can be characterized by a minimization problem.

Unfortunately, this approach is not compatible with standard (local) plasticity, since it requires
discrete plastic strains in H(curl). Thus, in a second step we discuss a saddle point formulation
(introducing an additional variable for the approximation of curley), which results in a constraint
minimization problem.

3.1. A primal approach. Let V" C V be a finite element discretization of the displacements,
and let 0 =ty < t1 < -+ < ty = T be a decomposition of the time interval [0,7]. We set
Au}y = up(ty) — up(ty-1), V*(up) = {v": vy(x) = up(x) for all nodal points on T'p} and
VI =V"0). Let E", C E, be a finite element discretization for the plastic strains.

For fixed t, and given (w1 el ') € V' x E" we define
Cn(6ul) = U(tn, 6ul), 5" (5ul, 5eh) = 6,(0u") — am (W71 elmh), (su”, 5eb))
Now we obtain by [16, Th. 6.6] for the backward Euler discretization of (12):

THEOREM 7. A unique minimizer (Auhvn,Asg’n) € Vi(AuR) x EM of

n

Jh (A, Aeh) = %anl((Auh, Ach), (Auh, Aeh)) + j(Aeh) — 5 (Auk, Ach) (16)
exists. Moreover, the minimizer is characterized by the discrete variational inequality
an (W + Aulm el 4 Al (su”, 5el) — (AuMT, Ael™))

+ j(0e)) — j(Aep™) > £, (5u” — Au™), (Gul,de)) € Vi x Bl (17)
Thus, the incremental problem is well-defined, and we set

(u"™ ep™) = (u" 1 e + (At A ™) (18)
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3.2. A mixed formulation. There is no need to impose or discuss explicit boundary conditions
on g, since coercivity is automatically satisfied. This results in natural boundary conditions for
the variational solution. In the dual formulation this corresponds to essential boundary conditions:
for given e, € H(curl, Q) we can define g, € Ho(curl,Q)* = {g € H(curl,Q): g x n = 0} by

/ gp: E~!: 6g,dx = / gp : curl(dg,) dz, g, € Ho(curl, 0)3,
Q Q

which defines g, = E : curl(e;) in terms of distributions.

Thus, in order to obtain a discrete flow rule for the nonlocal model, we consider a mixed formulation
in E" x G ¢ E x Hy(curl,Q)%: we introduce a finite element function glg € G" approximating

E : curl(e?) in a variational (weak) sense: the pair (g, eh) € G" x E" is assumed to be coupled by

/ gg (E7L: (592’ de = / EZ : curl(égg) dex , g, € G". (19)
Q Q

The extended bilinear form is obtained from ay(-,-) by replacing I : curl(e,) with g,), i.e.,

amx((ua spva)? (611" 5€pa 5gp)) = akh((u75p)v ((S’U,, 5€p)) + /Qgp E7: 5gp dx .

The bilinear form ap(+,-) is positive definite in the discrete, extended space Vg x E" x G and
thus in the closed subspace X"(0), where

X"up) ={(u", e}, gh) € V'(up) x E" x G": (gh,€]') satisfies (19)}.

For the incremental problem we now fix the values (uh’"’l,sg’n_l,g;f’n_l) € X"(ult) of the
previous time step. Introducing

o (sul, el 0gl) = £, (5u") — amx (W el gh ), (sul, del, 5gl)) (20)

we obtain:

THEOREM 8. A unique minimizer (Au™", Aeh™ Agh™) ¢ X"(Au®) of

n 1
Tii (Aut, Aey Agy) = Cam((Au”, Aey, Agy), (Au', Ay, Agy))
+ j(Aep) — (A", Aey, Agy)

. h h — hn—1 _hn—1 h h .
exists. Moreover, (u™, ;" gp™) = (w1 ey 7 gy ) + (Aul" Aey™, Agy™) ds character-
1zed by the linear variational saddle point problem

/ o Ce(oul) de = 0,(6u”), Sul e V], (21a)
Q
/ g;”" ‘E7L: 5g2 dx = / sg’" : curl(égZ) dx 592 e Gh (21b)
Q Q
and the variational inequality

/K0|6s;;|dm2/K0|Asl’;’"
Q Q

with oM™ = e(uhm) — sg’” and " = gh" — D : 53’” — sym(curl(gﬁ’n)).

dx —1—/ ol (551’; - Asg’h) de | 551}; € E", (21¢)
Q
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PROOF. The proof uses standard techniques of convex analysis and is included for convenience
of the reader. Since J%2(-) is uniformly convex, a unique minimizer (Aum" Ael™ Agl™) in the
discrete space X"(Au’) exists. Now we show (21c). Therefore, we define

h, 1
T (0eh, 6gh) = iamx((Auh’”,éez,(SgZ), (Au"" sel, 5gl)) (0ep,6gp) € E" x G
For any s € (0, 1), the inequality
TR (AU, Aeh™ Agp™) < S (AU, Aep™ + s(0e)y — Aep™), Agp™ + s(0g)y — Agp™))

can be rewritten as

Tl (Aep™, Agp™) + j(Aep™) < T (Aep™ + s(0ep — Aeh™), Agh™ + s(3g) — Agp™))
+ j(AsII}’” + s(ész - Ae‘]}}’”)) — s, 552’ - AEZ’") .

Using the convexity of j(-), i.e., j(Aeg’n + 5(552 - Asg’n)) =j((1—s) AEZ’” + 8562)) < (1-
$)J(Aep™) + 5.j(0el), gives

er’g(Asg’", Ag;”") < J:;g (Aezm + 3(652 — Aezm), AgZ’” + s(AgZ’" — (59;}))
+ s(j(6e]) — j(Aep™)) — si(0,0el — Ael™)
and thus

0 < samx((AuM", Ael™ Agh™), (0,0el — Ael", 5gl — Agh™))
+ 5” amx ((0, 8¢, — Aep”, 5g) — Agp™), (0, 6ep — Aep”, 69y — Agy™))
+ s(j(0el) — j(Ael™)) — s (0,5eh — Aehmy.

Dividing by s and then taking the limit s — 0 yields

0 < ame((Aul, Al Agh™), 0,5k — Al gl — Agh™))
+7(5e)) — j(Aep™) — £l (0, 6el — Aeh™)

j(AEZ’") < — /Q Aohm (5&‘; — Aeg’h) dx + /Q Aeg’" : D ((5&‘; — Aeg’h) dx
+ /Q Agp™ BTV (5gh — Agh™) da + j(e)))
—/Qah’”_l : (551}; — Asg’h) dx —I—/QsZ’”_l D (552 - As;’h) dx
+/Qg}’;’"_1 (B (592 - Ag;f’h) dx .

The linear constraint (19)

h hny . mw—1. hn _ h h,ny . h,n
/Q(5gp —Ag,") E7 i gptde = /Q(dsp —Aey") :curl(gy,™) dz



INCREMENTAL INFINITESIMAL GRADIENT PLASTICITY 11

gives

jAep™) < - /

Q
+/ curl(gﬁ’") : (56?2 - AEZ’”) dx +j(5r-:2) ,
Q

ohmn . (552 - Asg’h) dx —{—/ EZ’” D (55;; - AEZ’h) dx
Q

which shows the dissipation inequality (21c).
Next, we derive (21a). Since the corresponding reduced functional

T (Aut) = TR (At Al Agh), Aul e V(Aul)
is quadratic with respect to Aw”, the minimizer Au™" of Ji™(-) is a critical point of Ji"(-) and
characterized by DJp™(Aub™)[(5ul] =0, i.e.,

amx (A", Ael™, Agh™), (5u”,0,0)) — (52 (su",0,0) =0,  su"e V] .

This yields for the stress increment Ag™" = C: (e(Au™") — Aeﬁ’")
/QAO'h’” ce(0ul) dx = 1 (5u”,0,0), sult e VI,
and inserting (20) gives (21a). In the same way, we obtain (21b) by minimizing
Jg’”(ég;}) = Jhn(Auhm, AEZ’”, 592), 592 eGh
at given (Au™" Aeh™). O

In the fully discrete scheme, all integrals are replaced by a quadrature formula

/v-wdm:ngv(ﬁ)"w(&), v,weVy,
Q o

Ep
where Ej; C ) are the integration points and wg the corresponding quadrature weights. Then,
the space Ej, is identified with its values at the integration points, i.e., Ej, = {g,: B — sl(d) N
Sym(d)}. Tn the same way, the discrete return parameter y»" is approximated in T', = {7/: &}, —
R} at integration points only. This allows for a point-wise evaluation of the flow rule. We obtain
(analogous to Lemma 3) independently for every integration point:

LEMMA 9. The discrete dissipation inequality

Koldel| > Kol Ael™| + o™ : (del — Aep™) | delt € sl(d) N Sym(d) (22)
15 equivalent to the flow rule
dev (ah’")
AEh’n — ~Ahn ’ hn _ AEh’n 23
7= e ()] gl |Ae,™| (23)
and the complementary conditions
’yh’”(\ dev(ah’”)\ — Ko) =0, 'yh’" >0, ]dev(ah’")] < Kp. (24)

Together, the discrete solution can be obtained by the solution of the finite element problem
(21a), (21b) and—independently for every integration point & € E,—by the flow rule (23) and the
complementary conditions (24).
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4. Algorithmic nonlocal plasticity

In the mixed form we can apply a projection method, where flow rule and complementary conditions
are evaluated by the standard closest point projection |36, Chap. 3.3.2] depending on the actual
trial stress, and the result is inserted into the variational problem (21a), (21b). This yields a
nonlinear system for (uh’”,glff’n) which is solved with a generalized Newton method by inserting
the consistent tangent modulus in both equations, linearizing the stress response in (21a) and the
strain response in (21b). Note that this results in a fully coupled nonlinear formulation, since a
derivative of the projection with respect to both, e(u”) and g;’, has to be provided (which makes
the realization of such a method quite involved).

Thus we decided for a modified algorithmic approach. We extend the linearized projection method
introduced in [41] to our mixed formulation of nonlocal plasticity: for a given iterate, the flow
rule is linearized, so that in every step a linear variational system with linear constraints at the
integration points is solved. This subproblem is—due to the constraints—mnonlinear itself, but the
corresponding projections on linear half spaces are easy to compute (in comparison with the fully
nonlinear constraints).

In order to simplify the notation, we skip in the following the mesh parameter h.

4.1. The linearized projection method. For fixed values (u" ', en! gi1) € X (ulyh) of the
preceding time step we consider the incremental problem for the computation of the approximation
in step n at time ¢,. The linearized projection method iterates on the extended space Y" =

X (uf)) x I', where the linearized parameter is an independent variable.

Inserting the flow function ¢(a) = |dev(a)| — Ko the incremental problem defined by (21a), (21b),
(23), (24) is reformulated as follows: find (u", e}, gy,7") € Y™ with

/Q (e(u™) —ep) : C: e(6u) de = L, (6u), dueVy, (25a)
/Qgg E7L: 6g,dx = /Qeg : curl(dg,,) dz, 6g, € G, (25b)
€, — e;}’l =+"D¢(a™), a" =C:(e(u") —e,) —D: e, —sym(curl(g,)) (25¢)
Y'o(a™) =0, Y >0, o(a™) <0. (25d)

This nonlinear problem (25) is solved iteratively: for an iterate (u™*~1, sg’kfl,gg’kfl, k1) e Y
of the previous step we define the corresponding relative elastic stress

ol = (s(u"’kil) — sg’kfl) - D: sg’kfl — sym(curl(gg’kfl))

and the linearized flow rule

¢n,k(a) — ¢(an,k—1) + qu(an,k—l)(a _ an,k—l) ] (26)
The next iterate (u™", En’k, gn’k, ™) € Y™ is determined as the solution of the linearized system
P p Y
/Q (e(u™) — ¥ : C : e(u) d = £y(du), du e Vo, (27a)
/ g;’k E7L: dg, dx = / sg’k : curl(ég,) dz, ig, € G, (27b)
Q Q
Eg,k . 6271 — ,yn,kD¢(an,kfl) + ,_yn,k:le2¢(an,k71) . (an,k . an,kfl) ’ (270)
VP pup(@) =0, =0, dup(a™) <0 (27d)
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with @™ = C : (e(u™F) —el™) =D : e — sym(curl(gh™)), where the derivatives of the flow rule
are

Dole) = fiovta s P = T~ T @l ©FO
For the solution of the system (27) we introduce the elastic trial stress
On(u,gp) =C: (e(u) — egfl) -D: 5271 — sym(curl(g,)) .
LEMMA 10. The equations (27¢) and (27d) have a unique solution
Y= Gan(6™), (282)
ept = Ryp(0™), (28b)

depending only on the trial stress @™F = an(u”’k,gﬁ’k), where the return parameter and the plastic
strain response are defined by

ma‘X{Ov ¢n,k (0)}
(2 + Ho)p

Ro1(0) = e '+ ! " dev(a™t )
’ P (2+ Ho)py™* =1 + [dev(aF1)]

G (0)

D*¢(a"* 1) 0+ Gk (0) Do) .

PROOF. We have (C+ D) : (sZ’k —ep ) = 0™k — ™k and (27c) can be rewritten in the form
((C + ]D))—l . (gﬂyk _ anJﬂ) — ,Yn,kD(b(an,k—l) + ’yn’k_lDng(an’k_l) : (an,k . an,k—l) )
This gives (using D?¢(a™ 1) : a™F~1 = 0)

(id =+ Ho)upy™ = D2g(a™ 1)) : @™ = ™% — (2 + Ho)uy™ De(a ).

Inserting (27d) yields (2 + Ho)puy™* = max{0, ¢, x(8™*)} and

n,k—1 dev(an,kfl)‘
en,k _ i ‘ D2 n,k—1 . 0n,k 291 H n,kD n,k—1
ot T 1 [ dov (o h=0)] P(a™ ) + (24 Ho)uy™ " Dp(a™" ")

(this can be verified by direct computation, see [41] for details). O

Inserting (28b) in (27a), (27b) results in a variational nonlinear problem:
find (u™*, gp™) such that

Foe(u™, gpF)[6u, 6g,] = lo(du),  (du,dg,) € Vo x G,
with
Fn,k(uagp)[6u7 5gp] = /Q (E(U) - Rn,k<0n(u7 gp))) :C: E(5U) dx

+/ Ry, 1(0n(u, g,)) : curl(dg,) de — / g, E~L: g, dx .
Q Q
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4.2. The consistent tangent operator. The plastic strain response R, i (-) is only nonlinear
with respect to the term max{0, ¢, 1(0)} and therefore a Lipschitz function. Thus, a generalized
multi-valued derivative exists (see [17] for the definition and for properties of generalized deriva-
tives). A consistent linearization of the plastic strain response is obtained by the specific choice
R 0 _ 1 ,Yn,k:—l |dev(an,k—1)|
nk(0) = (fy”vk_l + | dev(amk—1)|

(2+ Ho)u
+520(Gy 4(6)) Do(e"* 1) @ Dp(a* 1)) € DR, 1(6)

(see [41] for details on the subdifferential calculus for the computation of consistent tangent oper-
ators). Thus, a consistent linearization of F), ;, is given by the symmetric bilinear form

an,k(ua gp)[(Aua Agp)? ((5”7 59;7)]

= / e(Au) : (C— 4,u2Rn7k(0)) :e(du) dx +/ 2ucurl(Ag,) : Ry x(0) : e(du) dz
Q Q

D2¢(a"’k_1)

+/ 2pe(Au) : Ry, 1 (0)) : curl(ég,) de
Q

—/ (Agp ‘EL 6g, + curl(Ag,) : R, 1 (0) : curl(égp)>dcc
Q

with @ = 6,,(u,g,). This results in the following algorithm:

S0) Start for tg = 0 with u® = 0 and 52 =0. Set n=1.

S1) Choose (u”’o,sg’o,gg’o,'y”’o) eY"™. Set k=1.
S2) Set (u”’kﬁo,gg’k’o) = (u”’o,gg’o). Set m = 1.
S3) Evaluate the residual 7, g, = £y (u™Fm1) — Fn,k(umk’m_l,g;f’k’m*l).
If |75 % m| is small enough, go to S5).
S4) Assemble the linearization ay, jm, = amk(u”’k’m_l,gg’k’m_l).
Compute the Newton update (Au™*™ Agi®™) by solving
o [(AU™F AghF ™) (5w, 6g,)] = T km[0u, 6g,) (bu,dg,) € Vo x G,

choose a suitable damping parameter p, . € (0,1] and set
(un,k,m7gz,k,m) — (un,k,m—l’g;,k,m—l) + pn,k,m(Aun’k’ma Agg,k,m) )
Set m :=m + 1 and go to S3).

k nk _ nkm _nk , n,k ko , n,k
S5) Set u™" = un,k,m./ gp - gp s sp - Rn,k(u’rLk7gp ): ’Ynk - GTL k(unkugp )

)

Compute a™ = C: (e(u™) — ep*) =D : €% — sym(curl(gi™)).

S6) If ||€g’k — el —y"*D¢(a™F)|| and max{0, ¢(a™*)} are small enough,

k. g, = sg’k, n:=n+ 1 and go to S1).

S7) k:=k+ 1 and go to S2).

In our application, the damping is realized by a simple line search: choose p, . € {1,1/2,1/4,...}
maximal such that [|r, kml < ||[7nkm-1]. For sufficient small At,, we have py k. ,», = 1 in most
cases.

set u" = u"
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5. Numerical experiments

In this section we discuss numerical test calculations for the evaluation of the regularizing properties
of the nonlocal model. The computations are realized in the parallel finite element code M++ [40].
Note that all our discretizations and all nonlinear and linear solution methods are provided in a
general fashion and do not specifically depend on the studied representative model; they easily
transfer to other nonlocal models without substantial changes.

5.1. An example configuration. For the numerical test we consider a traction problem where
the load functional

E(t,éu):t/ ty-ouda,  ty=(0,0,1)T
NN

depends linearly on the loading parameter t (see Fig. 1 for some configuration details).

Material parameters

Poisson ratio v = 0.29

Young modulus E = 206900.00 [N/mm?]
p = 80193.8 [N/mm?]

A = 110743.82 [N/mm?]

yield stress Ko = 450.00 [N/mm?]

Figure 1: Initial configuration Q C (0,4) x (0,1) x (0, 7).
On the bottom I'p = (0,4) x (0,1) x {0} the body is fixed
(homogeneous Dirichlet boundary conditions up = 0 on
I'p), a traction force is applied on the top surface I'y =

(0,4) x (0,1) x {7}.

5.2. Reparametrization. Since this model is rate independent, the parameter ¢ has no direct link
to the physical time. Here we are interested in the regularization properties of the local hardening
parameters Hy and the nonlocal plastic length scale L., so that we will evaluate the model close to
the limit load of the model of perfect plasticity. For small hardening the model is quite sensitive
with respect to the case where the loading parameter ¢ is close to the limit load. This can be easily
avoided by the following reparametrization.

We consider a loading cycle with 2N loading steps using uniform steps s, = nAs, n = 1,.... N
with a fixed increment As = S/N and s, =S — (n— N)As, n=N+1,...,2N. In our tests we use
S =0.6 and N = 60. For every parameter s, we compute t,, such that the external work satisfies

tn,u") = sy . (30)

Therefore, in every step of the nonlinear iteration we now solve the following problem: find
nk .k
(u™",gp™", ti n) such that

Fn,k(un’kag;’k)[éua 6gp] = g(tn,ka 5“’) ) (5,“/7 5gp) € Vo x G

n,k) nkm—1 ,nkm—1
)

subject to the linear constraint £(,, ., u = s,,. Thus, for the iterate (u gp tknm—1)

in S3) we compute the modified residual

Tnkm = E(tn,k,mflv 5“) - ka(un,k,mfl, gZ’hmil) )
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and in S4) the following saddle point problem is solved: find (Au™*™, Ag;’k’m, Atk n.m) such that

an,k,m[(Au"’k’m, AgZ’k’m), (6u,0g,)] + L(Atkpnm,0u) = Tnrmlou,dg,], (31a)
08t Au™F™) = s — Uty g1, wP™T) (31Db)
for all (6u,dg,) € Vo x G and 6t € R.

5.3. Solution of the linearized system. The linear system (31) has the form

(o) (7)=(0)

with K € RVv*Ne ¢ ¢ RVr where Nj, = dim X", This bordered linear system is resolved by the
following algorithm:

solve Ke =1, (32a)
set t = (¢I'r —q)/(c'0), (32b)
solve Ko =r —tl. (32¢)

For the solution of the two linear subproblems (32a) and (32c¢) we use a parallel Krylov method [42]
accelerated with a multilevel ILU preconditioner with pivoting and dropping strategy by Mayer

[20, 21]. Note that the matrix K = < ;T

C' are symmetric positive definite), so that simple cg-iterations with standard preconditioners do
not apply.

B . - . . .
_C ) is symmetric, invertible but indefinite (A and

5.4. Convergence properties. The result for a sample computation is illustrated in Fig. 3, and
in Fig. 2 we illustrate the convergence with respect to the mesh size.

150

100

50

-0

-100

-150 | | | |
-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 wus(z)

Figure 2: Mesh-convergence of the load-displacement curve for level 1,2,3 with 400, 3200, 25600 cells
(6904, 46 420 and 338 500 degrees of freedom) for L. = 0.01 and Hy = 0.001. Here, the load is proportional
to t, and the displacement w = (uy,us,u3) is given at the point z = (0,0,7)7.
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Figure 3: Distribution of the plastic strain on the boundary and on an isosurface for the nonlocal model
(L. =0.01 and Hy = 0.001).

Due to the reparametrization and the sufficiently small choice of the increment parameter As we

always observe local quadratic convergence of the nonlinear scheme; a typical convergence history
is illustrated in Tab. 1.

5.5. Evaluation of the parameter dependence. Finally, we consider the dependence of the
results on the non-dimensional hardening parameter Hy and the plastic length scale L. in Fig. 4.
Here, we observe clearly, that both—kinematic hardening and gradient plasticity—have a regulariz-
ing effect and can be used (for small parameters) to substitute the not well-posed model of perfect
plasticity. Moreover, we observe stable convergence and approximation properties for all tested

17
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Blm| lragmll | max{o(e™ ™ 0} | ep* — ept — y"*Dg(amh)|
0] 0| 0.00000000 0.94854414 0.0000042244
1|1 |11.53189802

112 | 0.11205330

1] 3| 0.00324081

114 | 0.00000032 0.12747705 0.0000035837
2|1 1| 001711659

21 2] 0.00003864

213 € 0.00001832 €

31 1] 0.00000292

3| 2 € € €

Table 1: Nonlinear convergence of the linearized projection method in loading step n = 32 on level 2 with
3200 cells. The iteration is started with the extrapolated solution from the previous loading step. Thus,
the initial residual vanishes in the equilibrium equation. Here, we need 3 steps in the linearized projection
method, where projection onto the linear half space requires 4,3, and 2 generalized Newton steps. The
iteration is stopped for ¢ < 1072, Note that the algebraic error in this nonlinear test is far smaller than the
approximation error of the finite element scheme.

parameters, so that the new model is now ready to use in the context of experimental data fitting
or for the extension to geometrically nonlinear models. Both will be topics for further research.

t T T T
150 —
100 —
50 L 7 -
0 | i -
-50— L.=0,Hy=0 —e— _]
L.=0, Hy=0.03 —e—
_________ L. =0.01, Hy = 0.0001 —e—
100 [essssst® L. =0.01, Hy = 0.01 —e— —
L. =0.1, Hy = 0.0001
150 I I I
0 0.05 0.1 0.15 usz(z)

Figure 4: Load-displacement curves for the models perfect plasticity (L. = 0 and Hy = 0), kinematic
hardening (local plasticity with L. = 0), and the nonlocal model with three different parameters (Hy, L.).
Here, we use 3200 cells on level 2, and again the displacement is given for the point z = (0,0,7)7.

Comparing with the results in Fig. 2 and Fig. 4 we observe in addition, that for coarse meshes
the regularization effects caused by the FEM-discretization dominates over the regularization due
to the material model; this indicates that the evaluation of regularization effects indeed require
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powerful numerical methods, otherwise it is not possible to separate clearly between discretization
effects and material properties.

REMARK 11. Our model does not feature plastic spin; this would required to consider non-symmetric
plastic distortions p as well. The difficulty which one encounters for this extension is tied to the
fact that coercivity is not obtained in known Hilbert spaces such as H(curl) since only the symmetric
part of the plastic distortion is an Lo(QQ)-function a priori, so that a suitable analytical framework
has to be developed.
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