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Abstract. For the nonlinear complementarity problem we derive norm

bounds for the error of an approximate solution, generalizing the known

results for the linear case. Furthermore, we present a linear system with in-

terval data, whose solution set contains the error of an approximate solution.

We perform extensive numerical tests and compare the different approaches.
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1 Introduction

Let the mapping f : Rn → Rn be given. The nonlinear complementarity

problem, denoted by NCP (f), is to find a vector x∗ such that

x∗ ≥ 0, f(x∗) ≥ 0, (x∗)T f(x∗) = 0, (1)
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tion. Special thanks go to Prof. Dr. Alefeld in Institut für Angewandte und Numerische

Mathematik, for enlightening discussion and for providing a nice working condition.
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Institute of Technology KIT), 76128 Karlsruhe, Germany. Email: goetz.alefeld@math.uni-

karlsruhe.de.
3Institute of Computational Mathematics and Scientific/Engineering Computing, Chi-

nese Academy of Sciences, Beijing 100080, China, or Department of Mathematics, Nanjing

University, Nanjing 210093, P.R.China. Email: zywang@nju.edu.cn.
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where the inequalities are defined componentwise. NCP (f) models many

real problems in economics, engineering etc.. For its source problems see

[13, 15], for example.

Let NCP (f) be given by the mapping

f(x) = Mx + Φ(x),

where M ∈ Rn×n is a given matrix, and

Φ(x) = (Φi(xi)).

We call such an NCP (f) an almost linear complementarity problem, and

denote it by ALCP (Φ, M). When Φ(x) = q ∈ Rn is constant, ALCP (Φ, M)

reduces to a so-called linear complementarity problem, which we denote by

LCP (q, M). ALCP (Φ, M) has wide applications, especially in engineering,

for example in the obstacle Bratu problem [24], which models the nonlinear

diffusion phenomena taking place in combustion and semiconductor.

Error estimation plays an important role both in numerical solution and

in theoretical analysis for NCP (f). Error estimation has been extensively

studied up to now, see [7, 9, 14, 16, 17, 22] and the monograph [13]. In the

papers [1, 3] a verification test for the existence of a solution of LCP (q, M)

and NCP (f), respectively, was given. If the test is successful, error bounds

are delivered automatically. The idea is as follows. Given some interval

vector [x] and an x̂ ∈ [x], an enclosure of all slopes formed with x̂ and all

x ∈ [x] is computed. Using this slope enclosure it is checked (computation-

ally) whether the so-called Krawczyk-operator maps the interval vector into

itself. If this is the case then by the Brouwer fixed point theorem the existence

of a solution of the complementarity problem is guaranteed, and we have a

componentwise error bound. It turns out that this procedure is surprisingly

successful if x̂ is a good approximation. For LCP (q, M) and ALCP (Φ, M)

2



a verification procedure was given in [4] and [5], using the special structure

of these problems.

In the present article we propose two different approaches for getting error

bounds. In the first case we can deliver norm bounds for the error by using

properties of the generalized Jacobian in the sense of Clarke. A modified

approach leads to a linear system with an interval matrix, whose solution set

contains the error vector.

The paper is organized as follows: we include some frequently used nota-

tions and results in Section 2. In Section 3 two different approaches of error

estimation are proposed for NCP (f), special cases of ALCP (Φ, M) and

LCP (q, M) are studied in Section 4. Extensive numerical experiments are

performed in Section 5 to support the theoretical analysis. We end up the

paper with some concluding remarks in Section 6.

2 Preliminaries and Notations

Denote by Rn
+ the nonnegative orthant of Rn, and denote by Rn

++ the interior

of Rn
+. Denote by “≤” the natural (or componentwise) partial ordering in

Rn, and let (xi) = x < y = (yi) stand for xi < yi, i = 1, . . . , n. For any

x, y ∈ Rn we denote by max{x, y} and min{x, y} the componentwise maxi-

mum and minimum of the two vectors, respectively.

We denote by In the n × n identity matrix, denote the i-th row vector of

In by eT
i , and denote e = (1, . . . , 1)T . We define I := {1, . . . , n}. For any

τ ⊆ I, we denote by τ̄ the complement of τ , |τ | denotes the cardinality of

τ . For any A ∈ Rn×n and for any τ, κ ⊆ I with τ, κ 6= ∅, we denote by Aτκ

the submatrix of A with its rows and columns indexed by the elements of τ
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and κ, respectively. For the diagonal matrix D, we also write Dττ as Dτ for

convenience. For x ∈ Rn and τ ∈ I, we denote by xτ the subvector of x with

its components indexed by the elements of τ .

Let A = (aij) ∈ Rn×n. A is called a P-matrix if for any nonzero x ∈ Rn

max
i

xi(Ax)i > 0.

We denote the set of all n× n P-matrices by Pn. A is called an H-matrix

if the so-called comparison matrix < A >= (< aij >)n×n has a nonnegative

inverse, where

< aij >:=

{
|aii| i = j,

−|aij| i 6= j.

We denote the set of all n × n H-matrices by Hn, and denote the set of all

n× n H-matrices with positive diagonal elements by H+
n . A is called a Z-

matrix if each off-diagonal element of A is non-positive. We denote the set of

all n× n Z-matrices by Zn. A is called an M-matrix if A is a Z-matrix and

has a nonnegative inverse. The set of all n× n M-matrices is denoted byMn.

The following theorem holds.

Theorem 2.1. For P-matrices, H-matrices and M-matrices we have the fol-

lowing properties:

1. A is nonsingular if A ∈ Pn;

2. Pn ⊃ H+
n ⊃Mn;

3. A ∈ Pn if and only if each of its principal minors is positive;

4. A ∈ Hn if and only if there is a vector x > 0 such that for the compar-

ison matrix < A > we have < A > x > 0;

5. A ∈ Zn is an M-matrix if there is a B ∈Mn such that B ≤ A;

6. In −D + DA ∈ Pn if A ∈ Pn and D = diag(di) with di ∈ [0, 1].

The proof of statements 1.-5. can be found in [23], for example. Statement

6. can be proved by using 1. - 5..
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We recall some notations from interval analysis, see also [2] or [19], for ex-

ample. Let [a] = [a, a] with −∞ < a ≤ a < ∞ be a compact interval in

R. Then we denote by IR the set of all real compact intervals in R. Let

A = (aij), A = (aij) ∈ Rm×n with aij ≤ aij for any indices i and j. An inter-

val matrix, denoted by [A] = [A, A], is defined as a matrix with each element

[Aij] = [aij, aij] ∈ IR. An interval matrix [A] is the set of the matrices which

are element-wise bounded by A from below and bounded by A from above.

Denote by IRm×n the set of all m× n real interval matrices. For the case of

n = 1, the interval matrix is also called as an m-dimensional interval vector,

we denote by IRm the set of all m-dimensional interval vectors.

Let h : Rn → Rn be locally Lipschitzian, i.e., for any x ∈ Rn there is a

neighborhood N (x) and a constant L such that:

‖h(u)− h(v)‖ ≤ L‖u− v‖ ∀u, v ∈ N (x).

From Rademacher’s theorem [12] it follows that if h is locally Lipschitzian,

then h is differentiable almost everywhere. The generalized Jacobian of h in

the sense of Clarke, denoted by ∂h(x), is defined as the set of matrices

∂h(x) := co{H = lim
k→∞

h′(xk) : xk → x with h differentiable at each xk},

where co denotes the convex hull.

Theorem 2.2. For the generalized Jacobian ∂h(·) we have:

1. ∂h(x) is nonempty, convex and compact;

2. (mean-value theorem)

h(x)− h(y) ∈ ∂h(co{x, y})(x− y),

where

∂h(co{x, y}) :=
⋃

z∈co{x,y}

∂h(z).

5



For the proof see [10].

For completeness we recall that a mapping h : Rn → Rn is called isotone if

from x ≤ y it follows that h(x) ≤ h(y). The matrix norm used in the paper

is always assumed to be subordinate to given vector norm.

3 Error Estimation for NCP (f )

Let x∗ be a solution of NCP (f), let x̂ ∈ Rn be a given fixed vector, which

could be the result of an iterative method for approximating x∗, for example.

We are interested in the problem of estimating the error

e(x̂) = x̂− x∗. (2)

Subsequently we always assume that f : Rn → Rn is continuously differen-

tiable at any point of interest.

Let ∆ = diag(δi) be an arbitrary but fixed diagonal matrix with δi > 0,

i = 1, . . . , n. Clearly x∗ solves NCP (f) if and only if x∗ is a solution of the

equation

h∆(x) := min{x, ∆f(x)} = 0. (3)

Remark 3.1. Usually, the case ∆ = In (identity matrix) is only considered

in the literature (see [21]). The choice of a ∆ different from In can have a

striking effect concerning the quality of computed error bounds. See Example

5.1, e.g., and the second to the last column in Table 1 and Table 2. A

theoretical discussion of the dependency of the error bounds on the choice of

∆ is nontrivial problem, which must be left for future research.

It is noted that h∆(·) is locally Lipschitzian, so from Rademacher’s theorem

it follows that h∆(·) is differentiable almost everywhere. We study the gen-
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eralized Jacobian ∂h∆(x) of h∆(·) in the sense of Clarke [10].

Definition 3.2. Let x̂ ∈ Rn be fixed. We define three index subsets of I:

α = α∆(x̂) := {i : x̂i < δifi(x̂)},
β = β∆(x̂) := {i : x̂i = δifi(x̂)},
γ = γ∆(x̂) := {i : x̂i > δifi(x̂)}.

It is clear that α∆(x̂) ∪ β∆(x̂) ∪ γ∆(x̂) = I.

Proposition 3.3. Define the set of matrices

Π∆(x̂) := {In −D + D∆f ′(x̂) : D = diag(di), di


= 0 i ∈ α∆(x̂)

∈ [0, 1] i ∈ β∆(x̂)

= 1 i ∈ γ∆(x̂)

}.

Then we have:

1. Π∆(x̂) is compact and convex;

2. Π∆(x̂) ⊂ Pn if (f ′(x̂))ᾱᾱ ∈ P|ᾱ|;
3. ∂h∆(x̂) ⊆ Π∆(x̂).

Remark 3.4. Let W ∈ Rn×n be a matrix contained in Π∆(x̂). Denote by

wT
i and (f ′(x̂))T

i the i-th row vector of W and f ′(x̂), respectively. Then it

holds

wi =


ei i ∈ α∆(x̂),

(1− di)ei + diδi(f
′(x̂))i i ∈ β∆(x̂),

δi(f
′(x̂))i i ∈ γ∆(x̂).

Remark 3.5. The proof of Proposition 3.3 is a special case of (2.5) in [8], as

was pointed out by X. Chen (personal communication) and a to us anony-

mous referee.

The next proposition shows that the error e(x̂) = x̂− x∗ can be represented

as the solution of a linear system of equations.
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Proposition 3.6. Suppose that for a solution x∗ of NCP (f) formulated by

(3) and a fixed x̂ ∈ Rn, a set D is known with co{x∗, x̂} ⊆ D ⊆ Rn. Then

there are ξ ∈ D and D = diag(di) with di ∈ [0, 1] such that

(In −D + D∆f ′(ξ))(x̂− x∗) = h∆(x̂). (4)

Proof. From Theorem 2.2 and Proposition 3.3, and from h∆(x∗) = 0 it follows

h∆(x̂) = h∆(x̂)− h∆(x∗) ∈ ∂h∆(co{x̂, x∗})(x̂− x∗)

∈
⋃

y∈D
Π∆(y)(x̂− x∗),

which, together with the expression for Π∆(·) yields (4).

Remark 3.7. If f ′(x) ∈ Pn holds for any x ∈ D, then from Proposition 3.3

we know that (In−D+D∆f ′(ξ)) ∈ Pn, and so it is nonsingular by Theorem

2.1. This guarantees the unique solvability of the system (4).

System (4) has the unknown data ξ ∈ D and D = diag(di) in its coefficient

matrix. We establish an interval matrix [J ]D,∆ such that

e(x̂) = x̂− x∗ ∈ {x ∈ Rn : Jx = h∆(x̂), J ∈ [J ]D,∆}

for a fixed x̂ ∈ D and a solution x∗ of NCP (f) contained also in D.

Theorem 3.8. Suppose that for a solution x∗ of NCP (f) and a fixed x̂ ∈ Rn,

co{x∗, x̂} ⊆ D ⊆ Rn for some given set D. Suppose

−∞ < f ′D
ij

≤ inf {(f ′(u))ij : u ∈ D}

+∞ > f ′
D
ij ≥ sup{(f ′(u))ij : u ∈ D}

 i, j = 1, 2, · · · , n. (5)

Define the matrices

f ′
D

:= (f ′
D
ij
) and f ′

D
:= (f ′

D
ij).

Then the error e(x̂) = x̂− x∗ is included in the solution set

Σ([J ]D,∆, h∆(x̂)) := {x ∈ Rn : Jx = h∆(x̂), J ∈ [J ]D,∆},
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where the interval matrix [J ]D,∆ is defined by

([J ]D,∆)ij =

 [δi min{0, f ′D
ij
}, δi max{0, f ′Dij}] j 6= i,

[min{1, δif
′D
ii
}, max{1, δif ′

D
ii}] j = i.

(6)

Proof. Observe that the elements of the matrix In −D + D∆f ′(ξ) from (4)

are

(In −D + D∆f ′(ξ))ij =

{
diδi(f

′(ξ))ij j 6= i,

1− di + diδi(f
′(ξ))ii j = i.

Since di ∈ [0, 1] and (f ′(ξ))ij ∈ [f ′D
ij
, f ′

D
ij], we have:

diδi(f
′(ξ))ij ∈ [0, 1][δif

′D
ij
, δif ′

D
ij] j 6= i,

1− di + diδi(f
′(ξ))ii ∈ [min{1, δif

′D
ii
}, max{1, δif ′

D
ii}] j = i,

and noting that

[0, 1][δif
′D
ij
, δif ′

D
ij] = [δi min{0, f ′D

ij
}, δi max{0, f ′Dij}], (7)

we conclude that for any ξ ∈ D

In −D + D∆f ′(ξ) ∈ [J ]D,∆,

from which, together with Proposition 3.6 the assertion follows.

Remark 3.9. The assumption (5) will be replaced by a different one at the

end of the section. For LCP (q, M) we have for any D ⊆ Rn

f ′
D

= f ′
D

= M.

Remark 3.10. In general we can not guarantee that [J ]D,∆ contains no

singular matrices, even if [f ′D, f ′
D
] ⊂ Pn. Consider, for example, the matrix

M =


5 3 2

5 5 3

2 1 1

 ∈ Pn.
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For any D ⊆ R3, we have f ′D = f ′
D

= M . With ∆ = I3, we find for (6)

[J ]D,∆ =


[1, 5] [0, 3] [0, 2]

[0, 5] [1, 5] [0, 3]

[0, 2] [0, 1] [1, 1]

 .

The matrix 
1 1 1

1 1 1

1 1 1


is contained in [J ]D,∆ and is singular.

The diagonal matrix ∆ = diag(δi), δi > 0, i = 1, . . . , n, was chosen arbitrar-

ily but fixed in (3), and therefore also in Theorem 3.8. We now discuss how

to choose ∆ to insure that [J ]D,∆ contains no singular matrices.

Theorem 3.11. Let f ′D = (f ′D
ij
) and f ′

D
= (f ′

D
ij) be defined by (5), and

suppose [f ′D, f ′
D
] ⊂ H+

n . Then [J ]D,∆ ⊂ H+
n if ∆ = diag(δi) with

0 < δi ≤ δ∗i :=
1

f ′
D
ii

, i = 1, . . . , n. (8)

Proof. Let J ∈ [J ]D,∆. From (6), (7) and (8) it follows

(J)ij ∈

 ([J ]D,∆)ij = [0, 1][δif
′D
ij
, δif ′

D
ij] if i 6= j,

([J ]D,∆)ii = [δif
′D
ii
, 1] if i = j.

Therefore we have

|(J)ij| ≤ δi max{|f ′D
ij
|, |f ′Dij|},

|(J)ii| ≥ δif
′D
ii
,

and so < J > ≥ ∆ < R >, where ∆ = diag(δi), R = (rij) with rii = f ′D
ii

and for j 6= i

rij =

 f ′
D
ij if |f ′Dij| > |f ′D

ij
|,

f ′D
ij

if |f ′Dij| ≤ |f ′
D
ij
|.
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It is clear that R ∈ [f ′D, f ′
D
], and from the assumption [f ′D, f ′

D
] ⊂ H+

n we

know that R ∈ H+
n , and so ∆ < R >∈ Mn. Together with the fact that

< J > ≥ ∆ < R > we obtain from 5. of Theorem 2.1 that < J > ∈ Mn,

hence J ∈ H+
n .

Remark 3.12. [J ]D,∆ may contain singular matrices if the condition (8) is

not fulfilled. Consider, for example, LCP (q, M) with the matrix (see [9])

M =

(
2 −1

−1 2

)
∈ H+

n .

For any D ⊆ R2 we obtain f ′D = f ′
D

= M . With the choice δi = 1 > δ∗i = 1
2

for i = 1, 2, we find

[J ]D,∆ =

(
[1, 2] [−1, 0]

[−1, 0] [1, 2]

)
for the matrix [J ]D,∆ defined by (6). The singular matrix(

1 −1

−1 1

)
is contained in [J ]D,∆.

Remark 3.13. If [f ′D, f ′
D
] is contained in Pn but not contained in H+

n ,

[J ]D,∆ might contain singular matrices even if the condition (8) is fulfilled.

To demonstrate this we consider the matrix from Remark 3.10 with the choice

∆ = diag(1
5
, 1

7
, 1), for which (8) is fulfilled with δi = δ∗i . We find for (6)

[J ]D,∆ =


1 [0, 1] [0, 0.4]

[0, 1] 1 [0, 0.6]

[0, 2] [0, 1] 1

 .

The matrix 
1 0 0.4

1 1 0.6

2 1 1


is contained in [J ]D,∆ and is singular.
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Let us go back to the system (4):

(In −D + D∆f ′(ξ))(x̂− x∗) = h∆(x̂).

Since In −D + D∆f ′(ξ) is dependent on the unknown point ξ ∈ D and the

unknown diagonal matrix D, we consider the mapping JD,∆ : [0, 1]n × D →
Rn×n with

JD,∆(d, u) = In −D + D∆f ′(u) (9)

where D = diag(di) and d = (di) ∈ [0, 1]n, u ∈ D.

Lemma 3.14. Let f ′(u) ∈ Pn for any u ∈ D. Then JD,∆(d, u) ∈ Pn, and

JD,∆(d, u)−1 is continuous w.r.t. (d, u).

Proof. Because f ′(u) ∈ Pn, it follows from Theorem 2.1 that JD,∆(d, u) ∈ Pn.

Because f is continuously differentiable, JD,∆(d, u) is continuous w.r.t. (d, u),

from which together with 2.3.3 of [20] the conclusion follows.

Theorem 3.15. Let co{x∗, x̂} ⊆ D ⊆ Rn for some fixed x̂ ∈ D and let

x∗ ∈ D be a solution of NCP (f). Let f ′(u) ∈ Pn for any u ∈ D and assume

that (5) holds. Let Ω = [0, 1]n×D. Then we have for any ∆ = diag(δi) with

δi > 0, i = 1, . . . , n, the error bounds

‖h∆(x̂)‖
max

(d,u)∈Ω
‖JD,∆(d, u)‖

≤ ‖x̂− x∗‖ ≤ max
(d,u)∈Ω

‖(JD,∆(d, u))−1‖ · ‖h∆(x̂)‖. (10)

Proof. The error bound is the direct result of (4) and Lemma 3.14.

Remark 3.16. The error bound (2.3) in [9] for the linear complementarity

problem is the special case of (10) with the choice ∆ = In.

Remark 3.17. In general, the error bounds (10) are not easy to compute.

However, as we will see in the next section, the difficulty of the computation

is greatly reduced for ALCP (Φ, M) and LCP (q, M).
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So far we have established two approaches of error estimation for NCP (f):

1. Componentwise error estimation via the solution set Σ([J ]D,∆, h∆(x̂)) for

the interval matrix [J ]D,∆ and the vector h∆(x̂) (see Theorem 3.8),

and

2. Computing bounds of ‖x̂− x∗‖ (see Theorem 3.15).

For both of them we have to suppose (5). In the special case that D = Rn,

Theorem 3.8 and Theorem 3.11 simplify to the following two theorems, re-

spectively.

Theorem 3.18. Let x∗ be a solution of NCP (f), and x̂ ∈ Rn be fixed.

Suppose that f ′ is bounded in Rn, that is

−∞ < f ′R
n

ij
≤ inf {(f ′(u))ij : u ∈ Rn}

+∞ > f ′
Rn

ij ≥ sup{(f ′(u))ij : u ∈ Rn}

 i, j = 1, . . . , n. (11)

Define the matrices

f ′
Rn

:= (f ′
Rn

ij
) and f ′

Rn

:= (f ′
Rn

ij ).

Then the error e(x̂) = x̂− x∗ is included in the solution set

Σ([J ]Rn,∆, h∆(x̂)) := {x ∈ Rn : Jx = h∆(x̂), J ∈ [J ]Rn,∆}

where the interval matrix [J ]Rn,∆ is defined by

([J ]Rn,∆)ij =

 [δi min{0, f ′R
n

ij
}, δi max{0, f ′R

n

ij }] j 6= i,

[min{1, δif
′Rn

ij
}, max{1, δif ′

Rn

ij }] j = i.

Theorem 3.19. Let f ′R
n

:= (f ′R
n

ij
) and f ′

Rn

:= (f ′
Rn

ij ) be given by (11), and

suppose [f ′R
n

, f ′
Rn

] ⊂ H+
n . Then [J ]Rn,∆ ⊂ H+

n if ∆ = diag(δi) with

0 < δi ≤ δ∗i :=
1

f ′
Rn

ii

, i = 1, . . . , n.
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In the case that D = Rn, Theorem 3.15 simplifies to the following result.

Theorem 3.20. Let f ′R
n

:= (f ′R
n

ij
) and f ′

Rn

:= (f ′
Rn

ij ) be given by (11), and

let x∗ be a solution of NCP (f) and let x̂ ∈ Rn be given. Define the mapping

J∆(d, U) := In −D + D∆U

where D = diag(di) with d = (di) ∈ [0, 1]n, and U ∈ [f ′R
n

, f ′
Rn

]. Suppose

[f ′R
n

, f ′
Rn

] ⊂ Pn. Denote Ω := [0, 1]n × [f ′R
n

, f ′
Rn

]. Then we have for any

∆ = diag(δi), δi > 0, i = 1, . . . , n,

‖h∆(x̂)‖
max

(d,U)∈Ω
‖J∆(d, U)‖

≤ ‖x̂− x∗‖ ≤ max
(d,U)∈Ω

‖(J∆(d, U))−1‖ · ‖h∆(x̂)‖.

4 The Special Case ALCP (Φ, M)

In the preceding section we gave a pointwise inclusion of the error (2) by The-

orems 3.8 and 3.18, respectively. After that we gave lower and upper norm

bounds of the error by Theorems 3.15 and 3.20, respectively. In this section

we specialize the results to ALCP (Φ, M) and LCP (q, M), respectively. We

first construct a convex set D ⊆ Rn containing a solution x∗. From D the

approximation x̂ is also chosen. The condition co{x∗, x̂} ⊆ D was required

in Theorem 3.8.

Theorem 4.1. Let Φ = (Φi(xi)) be isotone and continuously differentiable.

Let M ∈ H+
n , and denote by Λ and −B the diagonal and off-diagonal parts

of M , respectively. Then ALCP (Φ, M) has a unique solution x∗, which is

included in the interval vector D := [x̂− r, x̂ + r], where x̂ is a certain fixed

vector and

r := |x̂|+ < M >−1 max{0,−Mx̂− Φ(x̂)− < M > |x̂|}. (12)
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Proof. Let [x̂] = [x̂− r, x̂ + r] and assume that for any x ∈ [x̂]

0 ≤ φ1i ≤
dΦi(xi)

dxi

≤ φ2i, i = 1, . . . , n,

and let Φ′
1 = diag(φ1i), Φ′

2 = diag(φ2i), and set ∆ = (Λ + Φ′
2)
−1. Let

Γ(x̂, [x̂], ∆) := max{0, x̂−∆(Mx̂+Φ(x̂))+ (In−∆(M + [Φ′
1, Φ

′
2]))([x̂]− x̂)}.

In Theorem 2.1 of [5] it was proven for the interval vector Γ(x̂, [x̂], ∆) that if

the interval inclusion

Γ(x̂, [x̂], ∆) ⊆ [x̂− r, x̂ + r]

holds, then x∗ ∈ [x̂− r, x̂ + r], where x∗ is a solution of ALCP (Φ, M). Note

that

In −∆(M + [Φ′
1, Φ

′
2]) = ∆(∆−1 − (Λ−B + [Φ′

1, Φ
′
2]))

= ∆(Λ + Φ′
2 − [Λ−B + Φ′

1, Λ−B + Φ′
2])

= ∆[B, B + Φ′
2 − Φ′

1]

and

(In −∆(M + [Φ′
1, Φ

′
2]))([x̂]− x̂) = ∆[B, B + Φ′

2 − Φ′
1][−r, r]

= ∆(|B|+ Φ′
2 − Φ′

1)[−r, r].

Let Γ(x̂, [x̂], ∆) = [Γ(x̂, [x̂], ∆), Γ(x̂, [x̂], ∆)]. Then we have

Γ(x̂, [x̂], ∆) = max{0, x̂−∆(Mx̂ + Φ(x̂)) + ∆(|B|+ Φ′
2 − Φ′

1)r}
Γ(x̂, [x̂], ∆) = max{0, x̂−∆(Mx̂ + Φ(x̂))−∆(|B|+ Φ′

2 − Φ′
1)r}.

We verify at first Γ(x̂, [x̂], ∆) ≤ x̂ + r. Considering

(In −∆(|B|+ Φ′
2 − Φ′

1))r = ∆(∆−1 − |B| − Φ′
2 + Φ′

1)r

= ∆(Λ− Φ′
2 − |B| − Φ′

2 + Φ′
1)r

= ∆(Λ + Φ′
1 − |B|)r

≥ ∆(Λ− |B|)r = ∆ < M > r

15



and

< M > r = < M > |x̂|+ max{0,−Mx̂− Φ(x̂)− < M > |x̂|}
≥ < M > |x̂| −Mx̂− Φ(x̂)− < M > |x̂|
≥ −Mx̂− Φ(x̂)

we have

(In −∆(|B|+ Φ′
2 − Φ′

1))r ≥ −∆(Mx̂ + Φ(x̂))

and so

x̂−∆(Mx̂ + Φ(x̂)) + ∆(|B|+ Φ′
2 − Φ′

1)r ≤ x̂ + r,

from which, together with the fact that x̂+r ≥ x̂+ |x̂| ≥ 0 by (12), it follows

that

max{0, x̂−∆(Mx̂ + Φ(x̂)) + ∆(|B|+ Φ′
2 − Φ′

1)r} ≤ x̂ + r.

Using again r ≥ |x̂|, and so x̂− r ≤ x̂− |x̂| ≤ 0, we have

max{0, x̂−∆(Mx̂ + Φ(x̂))−∆(|B|+ Φ′
2 − Φ′

1)r} ≥ x̂− r.

The proof is complete.

Remark 4.2. If Φ(x) = (Φi(xi)) is isotone, M ∈ H+
n , then ALCP (Φ, M)

has a unique solution. The proof can be found in [5].

Theorem 4.3. Let Φ(x) = (Φi(xi)) be isotone and continuously differen-

tiable, M ∈ H+
n , and denote by x∗ the unique solution of ALCP (Φ, M). Let

x̂ ∈ Rn be fixed, let r be defined by (12). Suppose that for any x ∈ [x̂−r, x̂+r]

0 ≤ φ1i ≤
dΦi(xi)

dxi

≤ φ2i, i = 1, . . . , n, (13)

and let Φ′
1 := diag(φ1i), Φ′

2 := diag(φ2i). Let ∆ = diag(δi) with

0 < δi ≤ δ∗i :=
1

mij + φ2i

, i = 1, . . . , n. (14)

Then

e(x̂) = x̂− x∗ ∈ Σ([J ]D,∆, h∆(x̂)) := {x ∈ Rn : Jx = h∆(x̂), J ∈ [J ]D,∆},
(15)
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where the interval matrix [J ]D,∆ is defined by

([J ]D,∆)ij =

{
[δi min{0, mij}, δi max{0, mij}] j 6= i,

[δi(mii + φi1), 1] j = i.

Moreover, [J ]D,∆ ⊂ H+
n , and so contains no singular matrices.

Proof. The proof is an immediate consequence of Theorem 3.8 and Theorem

3.11.

The next discussion is concerned with LCP (q, M). In this case Φ′(x) ≡ 0

and we obtain from Theorem 4.3 the following result.

Corollary 4.4. Let M ∈ H+
n , q ∈ Rn. Let x∗ denote the unique solution of

LCP (q, M), and let x̂ ∈ Rn be given. Let ∆ = diag(δi) with

0 < δi ≤ δ∗i :=
1

mii

, i = 1, . . . , n. (16)

Then

e(x) = x̂− x∗ ∈ Σ([J ]Rn,∆, h∆(x̂)) := {x ∈ Rn : Jx = h∆(x̂), J ∈ [J ]Rn,∆},
(17)

where the interval matrix [J ]Rn,∆ is defined by

([J ]Rn,∆)ij =

{
[δi min{0, mij}, δi max{0, mij}] j 6= i,

[δimii, 1] j = i.

Moreover, [J ]Rn,∆ ∈ H+
n , and so contains no singular matrices.

Now we reconsider the norm estimation for e(x̂) = x̂− x∗ given in Theorem

3.15. This result is in general not easy to apply. For the case of ALCP (Φ, M)

with M ∈ H+
n and Φ isotone, an efficient and computational bound can be

given, however. We need the following theorem. See [9], Theorem 2.1.

Theorem 4.5. Let M ∈ H+
n with diagonal part Λ. Then for 1 ≤ p ≤ +∞

and D = diag(di), di ∈ [0, 1], we have

max
d∈[0,1]n

‖(In −D + DM)−1‖p ≤ ‖ < M >−1 max{Λ, In}‖p.
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Theorem 4.6. Let M ∈ H+
n with diagonal part Λ, and let Φ(x) = (Φi(xi)) be

isotone and continuously differentiable. Let x̂ ∈ Rn be fixed. Let r be defined

by (12), D := [x̂ − r, x̂ + r], and let Φ′
1 = diag(φ1i) and Φ′

2 = diag(φ2i) be

defined by (13). Then for any ∆ = diag(δi) with δi > 0, i = 1, . . . , n, we

have for the solution x∗ of ALCP (Φ, M)

‖x̂− x∗‖p ≤ ‖(< M + Φ′
1 >−1 max{Λ + Φ′

2, ∆
−1}‖p · ‖h∆(x̂)‖p =: Ebnd

∆,p(x̂).

(18)

Proof. Since M ∈ H+
n and Φ is isotone, it is clear that ∆(M + Φ′(u)) ∈ H+

n .

For the matrix (9) we obtain

JD,∆(d, u) = In −D + D∆(M + Φ′(u)),

which together with Theorem 4.5 and (13) yields

‖(JD,∆(d, u))−1‖p ≤ ‖ < ∆(M + Φ′(u)) >−1 max{∆(Λ + Φ′(u)), In}‖p.

Since

< ∆(M + Φ′(u)) >−1 ≤ (∆(< M > +Φ′
1))

−1

and

max{∆(Λ + Φ′(u)), In} ≤ max{∆(Λ + Φ′
2), In},

we obtain, using the monotonicity of ‖ · ‖p,

‖(JD,∆(d, u))−1‖p ≤ ‖(∆(< M > +Φ′
1))

−1 max{∆(Λ + Φ′
2), In}‖p

= ‖(< M > +Φ′
1)
−1∆−1 max{∆(Λ + Φ′

2), In}‖p

≤ ‖(< M > +Φ′
1)
−1 max{Λ + Φ′

2, ∆
−1}‖p.

Therefore we obtain (18) from (10).

As a special case of Theorem 4.6 we obtain the following result for LCP (q, M).

Corollary 4.7. Let M ∈ H+
n with the diagonal part Λ. Let ∆ = diag(δi)

with δi > 0, i = 1, 2, · · · , n. For any x̂ ∈ Rn we have the following error

bound for the solution of LCP (q, M):

‖x̂− x∗‖p ≤ ‖ < M >−1 max{Λ, ∆−1}‖p · ‖h∆(x̂)‖p =: Ebnd
∆,p(x̂). (19)
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For ALCP (Φ, M) with Φ having a bounded derivative for all x ∈ Rn we have

the following results.

Corollary 4.8. Let Φ(x) = (Φi(xi)) be isotone, M ∈ H+
n , and denote by x∗

the unique solution of ALCP (Φ, M). Let x̂ ∈ Rn be given. Suppose that for

all x ∈ Rn

0 ≤ φ1i ≤
dΦi(xi)

dxi

≤ φ2i, i = 1, . . . , n, (20)

and let

Φ′
1 := diag(φ1i), Φ′

2 := diag(φ2i).

Let ∆ = diag(δi) with

0 < δi ≤ δ∗i :=
1

mii + φ2i

, i = 1, . . . , n. (21)

Then

e(x̂) = x̂− x∗ ∈ Σ([J ]Rn,∆, h∆(x̂)) := {x ∈ Rn : Jx = h∆(x̂), J ∈ [J ]Rn,∆},
(22)

where the interval matrix [J ]Rn,∆ is defined by:

([J ]Rn,∆)ij =

{
[δi min{0, mij}), δi max{0, mij}] j 6= i,

[δi(mii + φi1), 1] j = i.

Moreover, [J ]Rn,∆ ∈ H+
n , and so contains no singular matrices.

Corollary 4.8 is a special case of Theorem 3.18 and Theorem 3.19.

Theorem 4.9. Let M ∈ H+
n with diagonal part Λ, and let Φ(x) = (Φi(xi))

be isotone and continuously differentiable. Let x̂ ∈ Rn be given, and assume

that (20) holds for all x ∈ Rn. Then for any ∆ = diag(δi) with δi > 0,

i = 1, . . . , n, we have

‖x̂− x∗‖p ≤ ‖(< M + Φ′
1 >−1 max{Λ + Φ′

2, ∆
−1}‖p · ‖h∆(x̂)‖p =: Ebnd

∆,p(x̂).

(23)

Proof. It can be proved in a similar manner as in Theorem 4.6.
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5 Numerical Experiments

In this section by using Matlab with the support of Intlab [25], we perform

the numerical experiments for five test problems:

• one LCP (q, M) with M ∈ Pn but M /∈ H+
n (Example 5.1);

• two LCP (q, M) with M ∈ H+
n (Example 5.2 and 5.3);

• one ALCP (Φ, M) with M ∈ H+
n and Φ diagonal isotone (Example 5.4);

• one ALCP (Φ, M) with M ∈ H+
n and Φ diagonal isotone and having

bounded derivative (Example 5.5).

The exact solution x∗ of each test problem is known before hand for the

numerical experiment. For Example 5.2 to 5.5 the test point x̂ = (x̂i) is

generated in the following way:

x̂i := max{0, vi − 0.5} × 1010(wi−0.5),

where wi and vi are random numbers in [0, 1]. The function “verifylss.m” of

Intlab is used to include the solution sets (15) and (22) for ALCP (Φ, M),

and (17) for LCP (q, M), respectively. Denote by [x̂ − x∗]∆ the enclosure

returned by “verifylss.m”, and define

Elis
∆ (x̂) := max{‖y‖∞ : y ∈ [x̂− x∗]∆}.

Subsequently we denote Ebnd
∆,∞(x̂) (see (23)) by Ebnd

∆ (x̂) for convenience. We

choose ∆ = ε∆∗ with 0 < ε ≤ 1, where ∆∗ = diag(δ∗i ) with δ∗i , i = 1, . . . , n,

is defined by (14) or (21) for ALCP (Φ, M) and by (16) for LCP (q, M), re-

spectively. The goal of the numerical experiments is to investigate

• the impact of ∆ on the enclosure of Σ([J ]D,∆, h∆(x̂));

• the impact of ∆ on Ebnd
∆ (x̂).

In order to demonstrate the impact of ∆, we report the ratio

%ε :=
Elis

ε∆∗(x̂)

‖x̂− x∗‖∞
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for ε ∈ (0, 1].

In order to demonstrate the impact of ∆ on Ebnd
∆,∞(x̂) we plot the logarithm

of the ratio

κε :=
Ebnd

ε∆∗(x̂)

‖x̂− x∗‖∞
for ε ∈ (0, a] with a � 1. The data are plotted for Example 5.2 in Fig. 1

and for Example 5.4 in Fig. 2. Very similar numerical results are obtained

for Example 5.2 to 5.5.

The values of κε for ε = 1 are listed in the tables to compare the preciseness

of Elis
ε∆∗(x̂) and Ebnd

ε∆∗(x̂). We also list the value

κ̃ :=
Ebnd

In
(x̂)

‖x̂− x∗‖∞
,

where Ebnd
In

(x̂) is the error bound (2.4) given by Chen et al. in [9], which is

obtained from (18) by choosing ∆ = In and p = ∞.

In reporting the numerical results the notation “NaN” indicates that no

meaningful result is returned by “verifylss.m”.

5.1 An LCP with a P-Matrix

We consider an LCP (q, M) with the data

M =

(
1 −4

5 7

)
, q =

(
−1

3

)
,

which has the unique solution x∗ = (1, 0)T . One can verify that M ∈ Pn but

M /∈ H+
n . This example was studied in [9]. We obtain for x̂ = (1, 1)T

Ebnd
I2

(x̂) = max
d∈[0,1]2

‖(I −D + DM)−1‖∞‖min{x, Mx + q}‖∞ = 20.
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Considering now the solution set Σ([J ]Rn,∆, h∆(x̂)), where

[J ]Rn,ε∆∗ =

(
[ε, 1] [−4ε, 0]

[0, 5
7
ε] [ε, 1]

)
, hε∆∗(x̂) =

(
−4ε

min{1, 15
7
ε}

)
.

It can be verified that [J ]Rn,ε∆∗ contains no singular matrices. For any 0 <

ε ≤ 1 we compute the enclosure of its solution set by Cramer’s rule:

[x̂− x∗]ε∆∗ =

(
[−4

ε
,−4 + 4

ε
min{1, 15

7
ε}]

[ ε min{7,15ε}
7+20ε2

, 20
7

+ 1
ε2

min{1, 15
7
ε}]

)
.

For ε ∈ (0, 1] it holds

[x̂− x∗]ε∆∗ ⊇ [x̂− x∗]∆∗ =

(
[−4, 0]

[ 7
27

, 27
7
]

)
.

From this we get

Elis
∆∗(x̂) = 4 < 20 = Ebnd

I2
(x̂).

By choosing ∆ equal to the inverse of the diagonal of M we get from (10)

‖x̂ − x∗‖∞ = 4. This is also obtained from (2.2) in [9] if applied to r(x) =

min{x, ∆(Mx + q)}, as was pointed out by the referee.

5.2 An LCP with an H-Matrix

Let M = (mij) ∈ Rn×n with

mij =


c, j = i + 1,

b + µ sin( i
n
), j = i,

a, j = i− 1,

0, otherwise.

The example was also studied in [9]. We generate the exact solution x∗ = (x∗i )

by setting

x∗i := max{0, vi − 0.5} × 1010(wi−0.5).
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Then the column vector q = (qi) is generated in the following way:

qi :=

{
−(Mx∗)i, x∗i > 0,

−(Mx∗)i + max{0, ṽi − 0.5} × 1010(w̃i−0.5), x∗i = 0.

where wi, vi, w̃i and ṽi are random numbers in [0, 1]. We report the numerical

results in Table 1 for the following choices of the parameters π = (µ, a, b, c):

π1 = (0, −1, 2, −1), π2 = (n−2, −1.5, 2, −0.5),

π3 = (1, −1.5, 3, −1.5), π4 = (n−2, −1.5, 2.2, −0.5).

For these choices we even obtain M-matrices.

5.3 An LCP with H-Matrix Arising from Journal Bear-

ing Problem

The following problem arises in discretizing the free boundary problem for

a journal bearing by a finite difference method [6]. Let M = (mij) ∈ Rn×n

with

mij =



−h3
i+ 1

2

, j = i + 1,

h3
i− 1

2

+ h3
i+ 1

2

, j = i,

−h3
i− 1

2

, j = i− 1,

0, otherwise,

and let q = (qi) with

qi = µ(hi+ 1
2
− hi− 1

2
), i = 1, 2, · · · , n.

The details of computing µ and hi− 1
2

can be found in [11]. The numerical

results for µ = 0.8 are reported in Table 2 for the choice of n=20, 50,100,

200, 500.
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5.4 An ALCP arising from obstacle Bratu problem

Let n be the square of a positive integer k, c ∈ Rn be constant, and let

Φ(x) = (ex1 , ex2 , · · · , exn)T + c,

M =
1

h2


H −I

−I H
. . .

. . . . . . −I

−I H


where h = 1

n+1
,

H =


4 −1

−1 4
. . .

. . . . . . −1

−1 4

 ∈M√
n.

Set x∗ = (0, 1, 0, 1, · · · , 1)T ∈ Rn and choose c = (ci)
T ∈ Rn as in [3]:

ci = −

{
(Mx∗)i + ex∗i x∗i > 0,

(Mx∗)i + ex∗i − ξi otherwise,

where ξi is a random nonnegative number. The ALCP (Φ, M) models the

obstacle Bratu problem [24] and was studied in [3]. The matrix M is an

H-matrix with positive diagonal elements, Φ is an isotone diagonal mapping.

We treat the problem as an ALCP (Φ, M) with the enclosure computed by

using Theorem 4.1, and report the numerical results in Table 3 for the dif-

ferent choices of the dimension n=52, 72, 92, 152, 202.

5.5 An ALCP (Φ, M) with bounded derivative

We study an NCP with all the data being randomly generated. Take f(x) =

D(x) + Mx + p with M = AT A + B, where the elements of A ∈ Rn×n

are randomly generated in the interval [−5, 5], and B is a skew symmet-

ric matrix generated in a similar way. The vector p ∈ Rn is generated
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from a uniform distribution in the interval [−500, 500]. We take D(x) =

diag(a0 + aj arctan(xj)) with aj generated randomly in [0, 1] and a0 > 0

large enough such that f ′(x) is an H-matrix for all x ∈ Rn. Then we have

Φ(x) = D(x)+p. Similar problems were studied in [18, 26]. Obviously f has

a bounded derivative. The numerical results are reported in Table 4 for the

choices of the dimension n=10, 20, 50, 100, 200.

6 Concluding Remarks

In the paper we formulate the error estimation for NCP (f) as enclosing the

solution of a linear system of equations with its coefficient matrix contained

in a known interval matrix. Based on this formulation, upper bounds of the

error of an approximate solution x̂ for ALCP (Φ, M) and LCP (q, M) are

given. The following phenomena can be observed in the numerical experi-

ments without exception.

• The error estimation obtained from the formulation of LIS is quite pre-

cise, in fact it is mostly of the same order of magnitude as that of the exact

error when choosing ∆ = ε∆∗ with ε → 1−.

• When ε � 1, then the interval matrix contains a matrix which is ap-

proximately singular. The estimation becomes bad. Numerical results show

that the estimation delivered by ”verifylss.m” becomes worse and worse as

ε → 0, and can not return meaningful results completely when ε is relatively

close to 0.

• For both ALCP (Φ, M) and LCP (q, M), with the choice of ∆ = ε∆∗,

the upper bounds (18) and (19) of the error obtain a minimum at ε = 1 (i.e.

with the choice ∆ = ∆∗). They are always sharper than the bound with the

choice ∆ = In. For Example 5.3 the bounds are sharper by two orders of

magnitude. This phenomena is observed for all the cases in the numerical
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Table 1: %ε, κε and κ̃ for Example 5.2

%ε, ε = 0.001 %ε, ε = 0.01 %ε, ε = 0.1 %ε, ε = 1 κε, ε = 1 κ̃

π1 1.2376e+03 1.2867e+02 1.7016e+01 4.7560e+00 4.0126e+02 8.0251e+04

π2 3.0961e+03 3.1067e+02 3.4189e+01 5.8566e+00 7.8831e+02 1.5766e+03

π3 6.4719e+02 6.6442e+01 8.1716e+00 1.5259e+00 1.1000e+01 2.4200e+01

π4 4.3448e+02 4.4590e+01 6.4868e+00 3.1684e+00 7.3882e+01 2.5787e+02

Table 2: %ε, κε and κ̃ for Example 5.3

%ε, ε = 0.001 %ε, ε = 0.01 %ε, ε = 0.1 %ε, ε = 1 κε, ε = 1 κ̃

n=20 2.1954e+01 3.6319e+00 2.9310e+00 1.5218e+00 3.1440e+01 1.2619e+03

n=50 5.3897e+03 5.4831e+02 6.2486e+01 1.9011e+00 1.2389e+02 6.3177e+03

n=100 1.1618e+03 1.1801e+02 1.4986e+01 3.1231e+00 7.3378e+02 5.1208e+04

n=200 8.8857e+03 5.9513e+03 6.5251e+02 6.9192e+00 2.8929e+03 1.7705e+05

n=500 6.5660e+03 2.6104e+03 3.0057e+02 8.6819e+00 1.5437e+04 1.0642e+06

Table 3: %ε, κε and ‖r‖∞ (see (12)) for Example 5.4

%ε, ε = 0.001 %ε, ε = 0.01 %ε, ε = 0.1 %ε, ε = 1 κε, ε = 1 ‖r‖∞
n=25 1.2693e+03 1.2704e+02 1.2831e+01 1.4950e+00 4.2502e+00 8.9571e+00

n=49 1.2310e+03 1.2497e+02 1.4253e+01 2.6267e+00 1.0962e+01 2.7047e+00

n=81 2.8601e+03 2.8863e+02 3.1093e+01 4.7700e+00 2.0011e+01 3.1352e+00

n=225 4.5441e+03 4.5613e+02 4.7048e+01 5.3182e+00 3.1561e+01 1.2153e+01

n=400 NaN NaN NaN NaN 3.8036e+01 1.1382e+01

Table 4: %ε, κε and ‖r‖∞ (see (12)) for Example 5.5

%ε, ε = 0.001 %ε, ε = 0.01 %ε, ε = 0.1 %ε, ε = 1 κε, ε = 1 ‖r‖∞
n=10 3.8574e+02 6.6436e+01 9.6348e+00 1.2362e+00 4.6768e+00 9.5349e+00

n=20 1.2310e+03 1.2497e+02 1.4253e+01 2.6267e+00 1.0513e+01 2.4407e+00

n=50 NaN NaN NaN 1.6596e+00 1.5936e+01 1.9735e+01

n=100 NaN NaN NaN NaN 4.4943e+01 1.1382e+01

n=200 NaN NaN NaN NaN 7.8151e+01 4.8426e+01
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experiments, although the data is plotted just for example 5.2 and for 5.4.

See Fig.1 and Fig. 2 at the end of this paper.

• Recently, Rohn developed a software (a Matlab function ”intervalhull.m”

based on Intlab) for computing the smallest interval vector containing the

solution set of a linear system with interval data. This vector is usually

called the interval hull of the solution set. This software can be downloaded

in http://www.cs.cas.cz/ rohn/matlab/index.html. The interval

[x̂− x∗]∆∗ =

(
[−4, 0]

[ 7
27

, 27
7
]

)

for Example 5.1 can be be computed with this software. For the other ex-

amples, the preciseness of ”intervalhull.m” is better compared with ”veri-

fylss.m”. The difference is not obvious, especially for problems with large

dimension.
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