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A computer-assisted proof for photonic band gaps

Vu Hoang, Michael Plum, and Christian Wieners (March 13, 2008)

ABSTRACT. We investigate photonic crystals, modeled by a spectral problem for Maxwell’s equa-
tions with periodic electric permittivity. Here, we specialize to a two-dimensional situation and to
polarized waves. By Floquet-Bloch theory, the spectrum has band-gap structure, and the bands are
characterized by families of eigenvalue problems on a periodicity cell, depending on a parameter k
varying in the Brillouin zone K. We propose a computer-assisted method for proving the presence
of band gaps: For k in a finite grid in K, we obtain eigenvalue enclosures by variational methods
supported by finite element computations, and then capture all k ∈ K by a perturbation argument.

1. Introduction

A photonic crystal is a material with periodic dielectric structure. It is well known (see [10, 11, 6])
that the propagation of electromagnetic waves in photonic crystals exhibits band-gap behavior,
i. e., light whose frequency falls into a band-gap cannot propagate inside the material. For appli-
cations, it is interesting to design structures having band-gaps; however, the task of predicting and
proving the existence of gaps is, from an purely analytical viewpoint, extremely difficult and te-
dious; see [5]. In this paper, we propose a computer-assisted method for proving the existence of
band-gaps.

We consider a mathematical model for two-dimensional photonic crystals. This model arises as
follows: we start with the homogeneous Maxwell’s equations (in dimensionless form)

curlE = −∂B

∂t
, curlH =

∂D

∂t
, div B = 0, div D = 0,

together with the constitutive relations

D = εE, B = µH.

Here, E,H, D, B denote the electric field, the magnetic field, the displacement field and the mag-
netic induction field, respectively. ε is the electric permittivity, and µ the magnetic permeability.

In the context of photonic crystals, we assume µ = 1, and ε(x) to be a periodic function in space,
i. e., there exist linearly independent vectors, a1, a2 ∈ R2 such that ε(x + aj) = ε(x) for x ∈ R2,
j = 1, 2. We will call the parallelogram Ω spanned by a1, a2 a periodicity cell of ε or of the
associated lattice Za1 + Za2 ⊂ R2. Furthermore, we assume that 0 < εmin ≤ ε(x) ≤ εmax for
x ∈ R2.

Looking for monochromatic waves

E(x, t) = ei ωtE(x), H(x, t) = ei ωtH(x)

1991 Mathematics Subject Classification. 65N55, 65F10.
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we obtain the time-harmonic Maxwell’s equations

curlE = −iωH,
1
ε

curlH = iωE, div H = 0, div(εE) = 0,

and applying curl to the first two equations gives two decoupled systems:

curl curl E = ω2εE, div(εE) = 0

and
curl

1
ε

curlH = ω2H, div H = 0.

Further specializing to a 2D-situation, we suppose ε = ε(x1, x2), and look for polarized waves

E = (0, 0, u).

The divergence condition on E implies u = u(x1, x2); thus, curl curl E = (0, 0,−∆u), whence
the first equation for E reads, with λ = ω2,

−∆u = λεu on R2.

We realize this spectral problem in the Hilbert space L2(R2), with inner product weighted by ε,
using the self-adjoint operator A defined by

D(A) := H2(R2), Au := −
1

ε
∆u . (1)

Applying Floquet-Bloch theory to this operator we obtain the band-gap structure of the spectrum
σ(A) of A. More precisely, we have

σ(A) =
⋃

n∈N

In , (2)

where In are compact real intervals with min In → ∞ as n → ∞. In is called the n-th spectral
band [10, 11, 13]. Although “usually” the bands In overlap there might be gaps between them;
these are the band-gaps of prohibited frequencies mentioned earlier. Floquet-Bloch theory further
gives

In = {λk,n : k ∈ K} = [min
k∈K

λk,n,max
k∈K

λk,n] ,

where K is the Brillouin zone (a compact set in R2, determined by Floquet-Bloch theory, and
depending only on the periodicity cell Ω of ε), and λk,n is the n-th eigenvalue of the problem

−(∇+ i k) · (∇+ i k)u = λεu on Ω, with periodic boundary conditions on ∂Ω. (3)

λ·,n is called the n-th branch of the dispersion relation.
In our two-dimensional situation (in contrast to the one-dimensional case), no additional, more
direct analytical characterization of In is known. Nevertheless, one can try to obtain information
about the band structure (for a specific dielectric function ε) simply by choosing a finite grid in
the Brillouin zone and then computing λk,1, . . . , λk,N numerically for k in the grid. One might
then find numerical evidence for a gap. If so, we propose the following strategy for proving the
existence of a spectral gap by computer-assistance: we compute verified eigenvalue enclosures for
λk,1, . . . , λk,N (N chosen fixed) for k in the grid. Using a perturbation argument we are then able
to deduce also enclosures for λk,1, . . . , λk,N for k between grid-points. If the grid is sufficiently
fine and our eigenvalue enclosures are sufficiently accurate (see below) we can rigorously prove
the existence of a gap.
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2. Formulation of the spectral problem

For the periodic lattice Λ := Za1 + Za2 we define the space

H1(R2/Λ) =
{

u ∈ H1
loc(R

2) : u(x + y) = u(x) for all y ∈ Λ and a.e. x ∈ Ω
}

of periodic H1-functions in R2, and for a periodicity cell Ω ⊂ R2 of Λ we consider the space

H1
per(Ω) =

{
u|Ω : u ∈ H1(R2/Λ)

}
(containing periodic boundary conditions on ∂Ω). Every function u ∈ H1(R2/Λ) is uniquely de-
fined by its restriction u|Ω ∈ H1

per(Ω). The corresponding Brillouin zone K ⊂ R2 is a periodicity
cell of the dual lattice Λ′ = {y′ ∈ R2 : y · y′ ∈ 2πZ for all y ∈ Λ}. More precisely, K is the set of
all y′ ∈ R2 which are closer to zero than to every other point of Λ′.
In order to study the spectrum of the operator A introduced in (1), we are led, by Floquet-Bloch
theory, to the family of eigenvalue problems (3), which are realized by the family of operators Ak

given by

D(Ak) := H2(Ω) ∩H1
per(Ω),

Aku := −1
ε
(∇+ i k) · (∇+ i k)u =

1
ε

[
−∆u− 2i k · ∇u + |k|2u

]
for every k ∈ K. Each Ak is self-adjoint in L2(Ω) with respect to the weighted inner product

〈u, v〉ε =
∫

Ω
ε u v dx

with associated norm ‖ · ‖ε. Furthermore, Ak has a compact resolvent and therefore a discrete
spectrum

σ(Ak) = {λk,n : n ∈ N} .

Floquet-Bloch theory further gives (compare (2))

σ(A) =
⋃

k∈K

σ(Ak) =
⋃

n∈N

[λmin,n, λmax,n] ,

with λmin,n = mink∈K λk,n, λmax,n = maxk∈K λk,n. Our aim is to prove the existence of a
spectral gap, i. e., to find some m ∈ N such that

λmax,m−1 < λmin,m ,

by providing guaranteed bounds for λmax,m−1 and λmin,m.

Mainly for numerical purposes (more precisely, in order to avoid the necessity for numerical basis
functions in H2(Ω)), we also consider the weak formulation of the eigenvalue problem Aku = λu,
which reads

ak(u, v) = λ〈u, v〉ε , v ∈ H1
per(Ω) , (4)

where

ak(u, v) :=
∫

Ω
∇ku · ∇kvdx (u, v ∈ H1

per(Ω)), ∇ku := ∇u + i ku .

The associated energy norm (respectively semi-norm if k = 0) is denoted by |||v|||k =
√

ak(u, u).
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3. Eigenvalue bounds

In this section we summarize enclosure results for eigenvalues of Ak (or of the variational prob-
lem (4)), where k ∈ K is fixed. The enclosures are obtained by computing approximations and
by providing explicit error bounds. We first compute numerical Rayleigh-Ritz approximations
(λ̃k,n, ũk,n) ∈ R× Ṽ (for n = 1, ..., N ) of the discrete problem

ak(ũ, ṽ) = λ̃〈ũ, ṽ〉ε for all ṽ ∈ Ṽ ,

where Ṽ ⊂ H1
per(Ω) is a finite dimensional subspace, N ∈ N is chosen fixed, N ≤ dim Ṽ . We

assume that ũk,1, . . . , ũk,N are linearly independent.
Upper bounds for the first N eigenvalues are directly obtained from the approximations by the
Rayleigh-Ritz method based on Poincaré’s min-max principle:

THEOREM 1. Define the hermitian matrices

A =
(
ak(ũk,m, ũk,n)

)
m,n=1,...,N

, B =
(
〈ũk,m, ũk,n〉ε

)
m,n=1,...,N

∈ CN,N ,

and let

Λk,1 ≤ Λk,2 ≤ · · · ≤ Λk,N

be the eigenvalues of the matrix eigenvalue problem Ax = ΛBx. Then,

λk,n ≤ Λk,n , n = 1, ..., N .

For a proof, see [14].
Lower bounds for eigenvalues can be obtained by a dual approach due to Goerisch, if a certain spec-
tral separation parameter β is known (see the following Theorem 2, and the subsequent remarks),
and if dual approximations

σ̃k,n ≈ ∇kũk,n, σ̃k,n ∈ H(divk,Ω) := {τ ∈ L2(Ω)2 : ∇k · τ ∈ L2(Ω)}

have been computed in addition.

THEOREM 2. Let γ > 0 be an arbitrary shift parameter.
For scaled dual approximations σ̂k,n := 1

λ̃k,n+γ
σ̃k,n, n = 1, ..., N , define

S :=
(
〈σ̂k,m, σ̂k,n〉

)
m,n=1,...,N

∈ CN,N ,

T :=
1
γ

(
〈ũk,m +

1
ε
∇k · σ̂k,m, ũk,n +

1
ε
∇k · σ̂k,n〉ε

)
m,n=1,...,N

∈ CN,N .

If β ∈ R satisfies

0 < β ≤ λk,N+1 + γ, (5)

if the matrix P := A + (γ − 2β)B + β2(S + T) is positive definite, and if the eigenvalues

θ1 ≥ θ2 ≥ · · · ≥ θN

of the eigenvalue problem(
A + (γ − β)B

)
x = θ Px (6)

are negative, we have the lower eigenvalue bounds

µk,n := β − γ − β

1− θn
≤ λk,n, n = 1, ..., N.
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PROOF. The result is a direct consequence of the general Goerisch-Theorem on lower eigenvalue
bounds (see, e. g., [2, Theorem 5]), applied to the shifted eigenvalue problem

ak(u, v) + γ〈u, v〉ε = (λ + γ)〈u, v〉ε , v ∈ H1
per(Ω) .

This theorem requires the choice of a vector space X , a sesquilinear form b on X , and a linear
operator T : H1

per(Ω) → X . Here, we use

X := L2(Ω)3, b(w, z) :=
∫

Ω
(w1z1 + w2z2 + γεw3z3) dx, T (u) := (∇ku, u) .

Note that, for n = 1, . . . , N ,

wn :=
(

σ̂k,n,
1
γ

[
ũk,n +

1
ε
∇k · σ̂k,n

])
∈ X

satisfies b(wn, Tϕ) = 〈ũk,n, ϕ〉ε (ϕ ∈ H1
per(Ω)) as needed, and that (b(wm, wn))m,n=1,...,N =

S + T. �

REMARK 3. The application of Theorem 2 requires some care; thus we shortly comment on prac-
tical aspects for our specific problem.

a) The choice of a suitable spectral separation parameter β is more problematic than indicated
by (5), because in fact we need, much stronger than (5), that

Λk,N + γ < β ≤ λk,N+1 + γ (7)

(with Λk,N defined in Theorem 1), in order to obtain negative eigenvalues θ1, . . . , θN of
problem (6) as required. Note that the matrix on the left-hand side of (6) is negative definite
if and only if Λk,N + γ < β.
In our application of Theorem 2, however, we check (5) and the negativity of θ1, . . . , θN ,
instead of checking (7), in order to avoid the computation of Λk,N .
For the construction of β, we use a spectral homotopy method explained in the next section.

b) The condition of the matrix P being positive definite (required in Theorem 2) is usually not
critical. It is satisfied, for example, if β − γ is not an eigenvalue of problem (4) (i. e., if
equality is avoided in (7)). In numerical practice, positive definiteness of P is of course
checked directly during the verified solution of problem (6).

c) If N is chosen suitably, we do not need lower bounds for all eigenvalues λk,1, . . . , λk,N , but
only for λk,N−`, . . . , λk,N with some “small” ` ∈ N0, usually even only for ` = 0. For this
reduced task, a slightly different application of Goerisch’s general theorem can be used which
requires the verified solution of an (` + 1) × (` + 1) matrix eigenvalue problem only, rather
than the N ×N problem (6). Nevertheless we used the “full” Theorem 2 because the quality
of its lower bounds is usually better than for the (` + 1)× (` + 1) version, and since N is not
too large (≈ 10) anyway in our applications.

d) In order to obtain close bounds, the dual approximation σ̃k,n ∈ H(divk,Ω) has to be com-
puted such that both defects, ∇kũk,n − σ̃k,n and λ̃k,nũk,n + 1

ε∇k · σ̃k,n are small. Practically
we proceed as follows: given (λ̃k,n, ũk,n) ∈ R × Ṽ , we search an approximate minimizer
σ̃k,n ∈ W̃ (with W̃ ⊂ H(divk,Ω) denoting some suitable finite dimensional approximation
subspace) of the functional

Jk,n(σ̃) =
1
2
‖σ̃ −∇kũk,n‖2 +

c

2
‖λ̃k,nũk,n +

1
ε
∇k · σ̃‖2

ε
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(with a suitable parameter c > 0, and with ‖ · ‖ denoting the unweighted L2-norm), i. e., we
solve the following linear problem for σ̃k,n ∈ W̃ :∫

Ω
(σ̃n,k −∇kũk,n) · τ̃ + c

∫
Ω

ε
(
λ̃k,nũk,n +

1
ε
∇k · σ̃k,n

)
∇k · τ̃ dx = 0, τ̃ ∈ W̃ .

e) The spectral shift γ > 0 can be chosen arbitrary; an optimal choice is not predictable analyti-
cally. We choose γ according to a strategy discussed in [3].

f) In the computation of the entries of the matrices A,B,P entering problem (6), we have to
take care of all possible numerical errors, i. e., rounding errors (by interval arithmetic; see
e.g. [7, 15]) and possibly also quadrature errors. Therefore, the matrix entries are usually
complex intervals. For the verified solution of the matrix eigenvalue problem (6) (and also
of the Rayleigh-Ritz problem Ax = ΛBx) we thus need to handle interval matrices. Many
approaches to this problem are known in numerical linear algebra (see, e.g., [1]). We use the
following Lemma which is very simple in its application.

LEMMA 4. Let A,B ⊂ CN,N be Hermitian matrices with interval entries, and with B positive
definite for all B ∈ B. For some fixed Hermitian A0 ∈ A,B0 ∈ B, let (λ̃n, x̃n) (n = 1, . . . , N)
denote approximate eigenpairs of A0x = λB0x, with x̃∗mB0x̃n ≈ δm,n.
Suppose that, for some r0, r1 > 0,

‖X∗AX−X∗BXΛ‖∞ ≤ r0, ‖X∗BX− I‖∞ ≤ r1, A ∈ A, B ∈ B ,

where X = (x̃1, . . . , x̃N ),Λ = diag(λ̃1, . . . , λ̃N ). If r1 < 1, we have for all A ∈ A, B ∈ B and
all eigenvalues λ of Ax = λBx

λ ∈
N⋃

n=1

B(λ̃n, r), where r =
r0

1− r1
, and B(λ, r) = {z ∈ C : |z − λ| ≤ r} .

Moreover, each connected component of this union contains as many eigenvalues as midpoints λ̃i.

PROOF. Since r1 < 1, the matrix X∗BX is regular and we have ‖(X∗BX)−1‖∞ ≤ 1
1− r1

.
Moreover the eigenvalue problem Ax = λBx is equivalent to(

Λ + (X∗BX)−1
(
X∗AX−X∗BXΛ

))
y = λy

(where y = X−1x), whence Gershgorin’s Theorem gives the result. �

Note that guaranteed bounds r0 and r1 can easily be computed (using interval arithmetic).

4. Spectral homotopy

For determining a spectral separation parameter β, as needed in Theorem 2, we consider the func-
tions

εs(x) := (1− s)εmax + sε(x) , x ∈ Ω, 0 ≤ s ≤ 1 ,

and the family of eigenvalue problems

ak(u, v) = λ〈u, v〉εs , v ∈ H1
per(Ω) , (8)

where 0 ≤ s ≤ 1, and with k ∈ K still fixed as in the previous section. For s ∈ [0, 1], let
(λ(s)

n )n∈N denote the sequence of eigenvalues of problem (8), ordered by magnitude. We observe
the following simple facts:
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i) For s = 0, problem (8) has constant coefficients. Thus, it is solvable in closed form if
the parallelogram Ω is a rectangle. E. g., if Ω = (0, 1)2, as in our numerical example, the
solutions are

λ(n1,n2) =
1

εmax

(
(2πn1 + k1)2 + (2πn2 + k2)2

)
, (9)

u(n1,n2)(x) = exp
(
2πi (n1x1 + n2x2)

)
, n1, n2 ∈ Z ,

and the eigenvalues λ
(0)
n are obtained from these by ordering according to magnitude.

ii) For s = 1, problem (8) coincides with our given problem (4), whence λ
(1)
n = λk,n (n ∈ N).

iii) εs is decreasing in s, whence the Rayleigh quotient of problem (8) is increasing in s. Poincaré’s
min-max principle therefore implies that

for each fixed n ∈ N, λ(s)
n is increasing in s . (10)

We perform the following homotopy method along s ∈ [0, 1], compare also [12, 4]. With N ∈ N
denoting the number of eigenvalues we wish to enclose, we choose some M > N such that
there is a reasonable gap between λ

(0)
M−1 and λ

(0)
M . Suppose that for some s1 > 0 approximations

λ̃
(s1)
1 , . . . , λ̃

(s1)
M−1 have been computed which indicate (not prove!) that

λ
(s1)
M−1 < λ

(0)
M . (11)

Then, since λ
(0)
M ≤ λ

(s1)
M by (10), we can apply Theorem 2 to problem (8) with s = s1, with M − 1

instead of N , and with β := λ
(0)
M +γ. The conjecture (11) gives rise to the hope that the eigenvalues

θ1, . . . , θN of the corresponding problem (6) are negative; compare Remark a) after Theorem 2. If
they turn out indeed to be negative (according to the verified solution of problem (6)), Theorem 2
gives lower bounds

µ(s1)
n ≤ λ(s1)

n , n = 1, . . . ,M − 1 . (12)

Let s1 be chosen “almost” maximal with the property that Theorem 2 successfully gives lower
bounds µ

(s1)
n as described above.

Now suppose first that µ
(s1)
M−2 and µ

(s1)
M−1 are “well separated”. Then we repeat the above procedure

with s1 in place of 0 and M −1 instead of M : For some s2 > s1 (to be chosen “almost” maximal),
we compute approximations λ̃

(s2)
1 , . . . , λ̃

(s2)
M−2 which indicate that λ

(s2)
M−2 < µ

(s1)
M−1. Then, since

µ
(s1)
M−1 ≤ λ

(s1)
M−1 ≤ λ

(s2)
M−1 by (12) and (10), we can apply Theorem 2 to problem (8) with s = s2,

with M − 2 instead of N , and with β := µ
(s1)
M−1 + γ. If the θ-eigenvalues turn out to be negative

(as expected), Theorem 2 gives lower bounds

µ(s2)
n ≤ λ(s2)

n , n = 1, . . . ,M − 2 .

If µ
(s1)
M−2 and µ

(s1)
M−1 are not “well separated”, i. e., if they belong to a cluster µ

(s1)
M−L, . . . , µ

(s1)
M−1, but

µ
(s1)
M−L−1 and µ

(s1)
M−L are “well separated”, we choose s2 > s1 (“almost” maximal) and compute

approximations λ̃
(s2)
1 , . . . , λ̃

(s2)
M−L−1 indicating that λ

(s2)
M−L−1 < µ

(s1)
M−L. We apply Theorem 2 with

s = s2, M − L − 1 instead of N , and β := µ
(s1)
M−L + γ. In the successful case we obtain lower

bounds

µ(s2)
n ≤ λ(s2)

n , n = 1, . . . ,M − L− 1 .

We go on with this algorithm until sr = 1 for some r ∈ N (or until the algorithm breaks down
since no eigenvalue is left to continue with). With R denoting the total number of eigenvalues
which had to be “dropped” during the algorithm according to the above description, we finally
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obtain lower bounds

µk,n = µ(1)
n ≤ λ(1)

n = λk,n , n = 1, . . . ,M −R ,

and we are done if M −R ≥ N .

In addition, we compute upper bounds Λk,1, . . . ,Λk,N by Theorem 1 (directly for problem (4), i. e.,
without any homotopy algorithm).
The condition M − R ≥ N is very likely to be satisfied if M is chosen such that λ

(0)
M > Λk,N

(with not too small gap between them). If it is not satisfied, the algorithm has to be re-started with
some larger M .

The homotopy algorithm is illustrated in Figure 1 for the specific example investigated in Section 6,
and for some particular choice of k ∈ K.

10.80.60.40.20

λ11

λ10
λ9
λ8

λ7

λ6
λ5
λ4
λ3

λ2
λ1

Figure 1: Illustration of the homotopy for the example of Section 6, and for k = (2.5130, 0.4046):
we choose M = 11, N = 4, s1 = 1/32, s2 = 4/32, s3 = 8/32, s4 = 19/32, s5 = 22/32,
s6 = 28/32, s7 = 1. By (9), we have λ0

11 ≥ 28.21, and by Theorem 2 we compute lower bounds
µ

(s1)
10 = 27.13, µ

(s2)
9 = 24.90, µ

(s3)
8 = 23.85, µ

(s4)
7 = 23.37, µ

(s5)
6 = 22.81, µ

(s6)
5 = 22.47,

µ
(1)
4 = µk,4 = 21.42.

5. A perturbation argument

Eigenvalue bounds (obtained according to the previous sections) for k in a finite set K ⊂ K
guarantee, in the case Λk,m−1 < µk,m, that the intervals (Λk,m−1, µk,m) are in the resolvent set
of the operator Ak for the corresponding k ∈ K. Assume λgap ∈ (Λk,m−1, µk,m) for all k ∈ K
(and some m). We now consider the perturbation of the eigenvalues of Ak when the parameter k
is subjected to a small change. If the set K ⊂ K is sufficiently dense, and λgap has some distance
from the spectra of Ak for all k ∈ K, the following perturbation argument will guarantee that λgap

is in the resolvent set for all k ∈ K, which gives the desired proof of a spectral gap. Of course, we
need to quantify the expressions “sufficiently dense” and “some distance”.
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First we write, for u, v ∈ H1
per(Ω),

ak+h(u, v) =
∫

Ω
(∇k + ih)u · (∇k + ih)v dx

=
∫

Ω
(∇ku · ∇kv − 2ih · (∇ku)v + |h|2uv) dx

= ak(u, v) + skh(u, v) (13)

(using integration by parts), where

skh(u, v) :=
∫

Ω

(
− 2ih · (∇ku)v + |h|2uv

)
dx .

Applying the Cauchy-Schwarz inequality for u ∈ H1
per(Ω), v ∈ L2(Ω) yields

|skh(u, v)| ≤ 2
∣∣∣ ∫

Ω

√
ε

ε
h · (∇ku)v dx

∣∣∣ + |h|2
∣∣∣ ∫

Ω

ε

ε
uv dx

∣∣∣
≤ 2|h|

√
εmin

|||u|||k‖v‖ε +
|h|2

εmin
‖u‖ε‖v‖ε . (14)

Since the domain D(Ak) = H2(Ω) ∩H1
per(Ω) of Ak is independent of k, we conclude from (13)

that

Ak+h = Ak + Skh

holds, where the operator Skh: D(Ak) → L2(Ω) is defined by skh(u, v) =: 〈Skhu, v〉ε for all
v ∈ L2(Ω) .

Let R(Ak, λ) = (λ id−Ak)−1 : L2(Ω) → D(Ak) be the resolvent of Ak for λ ∈ C \ σ(Ak).

LEMMA 5. Let λ be in the resolvent set of Ak and ‖SkhR(Ak, λ)‖ε < 1. Then λ also belongs to
the resolvent set of Ak+h.

PROOF. We have Ak+h − λ id = Ak + Skh − λ id =
(

id+Skh

(
Ak − λ id

)−1
)
(Ak − λ id), so

(λ id−Ak+h)−1 exists since id−SkhR(Ak, λ) has a bounded inverse by our assumption (implying
that the inverse can be represented by a convergent Neumann series). �

Provided we know that λ does not belong to the spectrum of Ak, this lemma gives a sufficient
condition for λ not belonging to the spectrum of Ak+h.

For practical use, we need to rewrite the assumption of Lemma 5 with computable terms:

LEMMA 6. Let λ ∈ [Λk,m−1 + δ, µk,m − δ] for some δ > 0 and some m ∈ N. Then

‖SkhR(Ak, λ)‖ε ≤
1
δ

(
2|h|

√
µk,m

εmin
+
|h|2

εmin

)
.

PROOF. For u ∈ H1
per(Ω) we obtain from (14) that

‖SkhR(Ak, λ)u‖2
ε = 〈SkhR(Ak, λ)u, SkhR(Ak, λ)u〉ε

= skh(R(Ak, λ)u, SkhR(Ak, λ)u)

≤
( 2|h|
√

εmin
|||R(Ak, λ)u|||k +

|h|2

εmin
‖R(Ak, λ)u‖ε

)
‖SkhR(Ak, λ)u‖ε
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and thus ‖SkhR(Ak, λ)u‖ε ≤ 2|h|√
εmin

|||R(Ak, λ)u|||k + |h|2
εmin

‖R(Ak, λ)u‖ε. Expanding u with re-
spect to a complete orthonormal system of eigenfunctions {uk,n}n∈N of Ak we can estimate

‖R(Ak, λ)u‖2
ε =

∑
n∈N

1
(λk,n − λ)2

|〈u, uk,n〉ε|2 ≤
1
δ2
‖u‖2

ε

and

|||R(Ak, λ)u|||2k = 〈AkR(Ak, λ)u, R(Ak, λ)u〉ε

=
∑
n∈N

λk,n

(λk,n − λ)2
|〈u, uk,n〉ε|2 ≤

µk,m

δ2
‖u‖2

ε ,

using λk,n

(λk,n−λ)2
= 1

λk,n−λ + λ
(λk,n−λ)2

≤ 1
δ + λ

δ2 = δ+λ
δ2 ≤ µk,m

δ2 . The desired inequality follows.
�

Lemmata 5 and 6 together give the following

THEOREM 7. For k ∈ K, choose δk > 0 and suppose that, for some m ∈ N and some interval I ,

a) I ⊂ [Λk,m−1 + δk, µk,m − δk] for all k ∈ K,

b) K ⊂
⋃

k∈K B(k, rk), where rk =
√

εmin

(√
µk,m + δk −

√
µk,m

)
and

B(k, rk) = {k′ ∈ R2 : |k′ − k| < rk} .
Then, I is contained in a spectral gap, i. e., I ⊂ (λk,m−1, λk,m) for all k ∈ K.

PROOF. For k′ ∈ K find some k ∈ K with |h| < rk for h = k′ − k, which is possible by
assumption b). Then, we have |h|+√

εmin
√

µk,m <
√

εmin

√
µk,m + δk and thus

1
εminδk

(
|h|2 + 2|h|

√
εmin

√
µk,m

)
< 1 .

Then, assumption a) and Lemmata 5 and 6 imply I ⊂ (λk+h,m−1, λk+h,m) = (λk′,m−1, λk′,m).
�

6. A numerical example

The numerical tests are realized in the finite element code M++ [16] supporting periodic boundary
conditions. We use bi-quadratic finite elements on quadrilaterals, and the matrix eigenvalue prob-
lems are solved approximately by a preconditioned subspace iteration with Ritz projections [8].
Finally, for obtaining reliable results, all bounds are calculated with the interval library of C-XSC
[7] (version 2.0 [9]). Within this software, all integrals, and other expressions involved in the
inclusion algorithm, are evaluated by interval arithmetic guaranteeing a full rounding error control.
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6.1. A Candidate. Let Λ = Z2, Ω = (0, 1)2, whence K = [−π, π]2. Let ε(x) = 1 for
x ∈ [1/16, 15/16]2 and ε(x) = 5 else. By symmetry we have the same spectrum for k = (k1, k2),
(−k1, k2), (k1,−k2), (k2, k1), so that the computations can be reduced to K0 ⊂ K, see Fig. 2: the
symmetry of the material distribution transfers to corresponding symmetry properties of the eigen-
functions (e. g., u(k1,k2),n(x, y) = u(−k1,k2),n(1− x, y)), and thus, to a corresponding coincidence
of the eigenvalues, i. e., we have {λk,n : k ∈ K} = {λk,n : k ∈ K0}.

(−π,−π) (π,−π)

(π, π)

K0

(−π, π)

Figure 2: Illustration of the Brillouin zone K (left) and the periodic material distribution ε (right).

By first numerical tests along k ∈ ∂K0 we observe a candidate for a spectral gap between λk,3 and
λk,4, see Fig. 3.

(0, 0)(π/2, 0)(π, 0)(π, π/2)(π, π)(π/2, π/2)(0, 0)

λk,n

35

30

25

20
possible band gap

15

10

5

Figure 3: Illustration of the eigenvalue distribution {λk,n : k ∈ ∂K0} for n = 1, 2, 3, 4, 5, 6.

In a second numerical test, λk,1, ..., λk,4 are computed for k in a grid in K, and again we observe
the same possible gap, see Fig. 4.
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 5

 10

 15

 20

 25

 30

-4-3-2-1 0 1 2 3 4-4-3-2-1 0 1 2 3 4

Figure 4: Illustration of the eigenvalue distribution of λk,n for n = 1, 2, 3, 4, 5 for k in a grid in K.

6.2. The band gap verification. Verifying the existence of a band gap for this example consists
of the following steps:

• The numerical approximation indicates a possible band gap interval
(λ̃max,3, λ̃min,4) = (17.26, 19.19);

• We select a suitable finite subset K ⊂ K0. For each k ∈ K we compute an upper eigenvalue
bound Λk,3 and a lower eigenvalue bound µk,4 (see Tab. 1); Tab. 2 illustrates the correspond-
ing homotopies needed for Theorem 2, as explained in Section 4.

• For each k ∈ K we compute

δk ≤ min{18.2− Λk,3, µk,4 − 18.25}, rk =
√

εmin

(√
µk,4 + δk −

√
µk,4

)
.

• We check

K0 ⊂
⋃
k∈K

B(k, rk) (see Fig. 5).

Theorem 7 proves the existence of a spectral gap containing the interval I = (18.2, 18.25).

Figure 5: Illustration of the covering⋃
B(k, rk) of K0 by 95 balls. The

approximate eigenfunctions ũk,n are
computed in a finite element space Ṽ
with dim Ṽ = 12290, for the dual ap-
proximations W̃ = Ṽ × Ṽ is used. The
full verification process required 52 h
computing time.
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k Λk,1 Λk,2 Λk,3 µk,4 δk

(0.0000,0.0000) 0.000 14.907 17.148 19.915 0.115
(0.0982,0.0000) 0.005 14.890 17.109 19.908 0.120
(0.0982,0.0982) 0.011 14.873 17.069 19.976 0.124
(0.1963,0.0000) 0.020 14.835 17.004 19.939 0.131
(0.1963,0.1963) 0.040 14.772 16.857 20.099 0.146
(0.2945,0.0982) 0.050 14.727 16.824 19.991 0.150
(0.3927,0.0000) 0.080 14.598 16.723 19.974 0.161
(0.3927,0.2945) 0.125 14.502 16.396 20.321 0.195
(0.4909,0.0982) 0.130 14.401 16.553 20.012 0.179
(0.5890,0.0000) 0.179 14.171 16.502 19.937 0.184
(0.5890,0.1963) 0.199 14.156 16.323 20.203 0.203
(0.5890,0.3927) 0.258 14.093 15.905 20.647 0.245
(0.6872,0.0982) 0.248 13.893 16.387 20.073 0.197
(0.7854,0.5890) 0.495 13.532 15.184 21.380 0.314
(0.8836,0.0982) 0.406 13.254 16.329 20.076 0.198
(0.8836,0.2945) 0.446 13.261 15.975 20.496 0.238
(0.9817,0.0982) 0.499 12.906 16.330 20.162 0.203
(1.0799,0.0982) 0.602 12.546 16.345 20.188 0.201
(1.1781,0.1963) 0.729 12.187 16.228 20.323 0.212
(1.1781,0.3927) 0.788 12.218 15.743 20.860 0.260
(1.1781,0.8836) 1.102 12.338 14.089 22.679 0.412
(1.2763,0.0000) 0.832 11.804 16.455 20.180 0.189
(1.3744,0.1963) 0.982 11.443 16.305 20.447 0.204
(1.5708,0.0000) 1.251 10.683 16.594 20.336 0.174
(1.5708,0.1963) 1.270 10.697 16.405 20.520 0.193
(1.5708,0.4909) 1.370 10.769 15.623 21.367 0.270
(1.5708,1.1781) 1.932 11.133 13.170 24.078 0.487
(1.6690,0.0000) 1.408 10.312 16.649 20.374 0.168
(1.7671,0.0000) 1.574 9.945 16.706 20.395 0.161
(1.7671,0.1963) 1.593 9.960 16.518 20.620 0.180
(1.8653,0.0000) 1.748 9.582 16.764 20.464 0.155
(1.8653,0.2945) 1.790 9.616 16.368 20.889 0.195
(1.8653,0.6872) 1.977 9.767 15.147 22.218 0.312
(1.9635,0.0000) 1.929 9.223 16.823 20.494 0.149
(1.9635,0.1963) 1.948 9.239 16.637 20.639 0.168
(1.9635,1.4726) 2.953 10.039 12.405 25.532 0.543
(2.0617,0.0000) 2.118 8.871 16.881 20.509 0.142
(2.0617,0.2945) 2.160 8.907 16.489 20.939 0.182
(2.1598,0.0000) 2.313 8.525 16.938 20.580 0.136
(2.1598,0.1963) 2.332 8.542 16.755 20.764 0.155
(2.1598,0.3927) 2.386 8.592 16.291 21.269 0.201
(2.1598,0.7854) 2.604 8.787 15.009 22.683 0.323
(2.2580,0.0000) 2.514 8.187 16.993 20.608 0.130
(2.2580,0.4909) 2.627 8.293 16.058 21.634 0.224
(2.3562,0.0000) 2.720 7.859 17.046 20.629 0.124
(2.3562,0.1963) 2.738 7.876 16.864 20.845 0.143
(2.3562,1.9635) 4.412 9.383 11.133 23.201 0.488
(2.4544,0.0000) 2.929 7.541 17.094 20.632 0.119

k Λk,1 Λk,2 Λk,3 µk,4 δk

(2.4544,0.0982) 2.934 7.545 17.047 20.654 0.124
(2.4544,0.2945) 2.969 7.581 16.710 21.072 0.158
(2.4544,0.5890) 3.087 7.700 15.858 22.046 0.242
(2.4544,0.8836) 3.282 7.896 14.857 23.167 0.334
(2.5525,0.0000) 3.139 7.237 17.138 20.705 0.114
(2.5525,0.0982) 3.143 7.242 17.091 20.754 0.119
(2.5525,0.3927) 3.208 7.310 16.503 21.394 0.179
(2.6507,0.0000) 3.346 6.950 17.176 20.725 0.110
(2.6507,0.0982) 3.351 6.954 17.130 20.773 0.115
(2.6507,0.2945) 3.384 6.992 16.796 21.046 0.149
(2.6507,2.4544) 5.730 9.267 10.012 20.791 0.270
(2.7489,0.0000) 3.546 6.685 17.209 20.740 0.107
(2.7489,0.0982) 3.550 6.689 17.162 20.787 0.111
(2.7489,0.1963) 3.562 6.704 17.030 20.913 0.125
(2.7489,0.5890) 3.693 6.856 15.988 22.090 0.229
(2.7489,1.5708) 4.567 7.839 12.675 24.122 0.532
(2.7489,2.7489) 6.315 9.318 9.503 19.911 0.181
(2.8471,0.0000) 3.728 6.451 17.235 20.751 0.104
(2.8471,0.0982) 3.732 6.455 17.189 20.797 0.109
(2.8471,0.1963) 3.744 6.470 17.057 20.914 0.122
(2.8471,0.3927) 3.792 6.529 16.606 21.429 0.168
(2.8471,1.1781) 4.296 7.139 14.029 24.552 0.403
(2.8471,1.9635) 5.251 8.211 11.490 22.228 0.404
(2.9452,0.0000) 3.881 6.261 17.254 20.759 0.102
(2.9452,0.0982) 3.885 6.266 17.207 20.803 0.106
(2.9452,0.2945) 3.916 6.307 16.876 21.182 0.141
(2.9452,0.8836) 4.193 6.665 15.060 23.297 0.314
(2.9452,2.2580) 5.803 8.511 10.689 20.988 0.289
(2.9452,2.7489) 6.531 9.110 9.545 19.648 0.154
(2.9452,2.8471) 6.648 9.185 9.385 19.489 0.137
(2.9452,2.9452) 6.741 9.221 9.279 19.377 0.125
(3.0434,0.0000) 3.987 6.134 17.265 20.763 0.100
(3.0434,0.0982) 3.990 6.139 17.219 20.806 0.105
(3.0434,0.1963) 4.002 6.154 17.087 20.900 0.119
(3.0434,0.2945) 4.021 6.180 16.888 21.188 0.139
(3.0434,0.4909) 4.081 6.263 16.356 21.786 0.192
(3.0434,0.6872) 4.171 6.385 15.734 22.509 0.252
(3.0434,2.4544) 6.172 8.702 10.209 20.288 0.220
(3.0434,2.6507) 6.461 8.937 9.764 19.778 0.168
(3.0434,3.0434) 6.863 9.197 9.212 19.238 0.110
(3.1416,0.0000) 4.024 6.088 17.269 20.764 0.100
(3.1416,0.0982) 4.028 6.094 17.223 20.807 0.105
(3.1416,0.1963) 4.039 6.109 17.091 20.896 0.118
(3.1416,0.3927) 4.084 6.172 16.643 21.433 0.164
(3.1416,2.8471) 6.731 9.084 9.422 19.400 0.128
(3.1416,3.0434) 6.884 9.177 9.216 19.216 0.108
(3.1416,3.1416) 6.905 9.189 9.189 19.193 0.105

Table 1: Eigenvalue bounds for k ∈ K, obtained by Theorems 1 and 2. For the lower bounds µk,4

the spectral homotopy method described in Section 4 is used; see Table 2.
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10 ≥ 29.165

(0.5890,0.0000) µ
30/32
5 ≥ 20.215, µ

18/32
6 ≥ 20.540, µ

15/32
7 ≥ 21.077, µ

11/32
8 ≥ 21.385, µ

9/32
9 ≥ 21.645, λ0

10 ≥ 28.691

(0.5890,0.1963) µ
31/32
5 ≥ 20.899, µ

20/32
6 ≥ 21.458, µ

16/32
7 ≥ 21.962, µ

13/32
8 ≥ 22.207, µ

10/32
9 ≥ 22.524, λ0

10 ≥ 28.699

(0.5890,0.3927) µ
31/32
5 ≥ 20.988, µ

21/32
6 ≥ 21.677, µ

16/32
7 ≥ 22.475, µ

15/32
8 ≥ 22.976, µ

11/32
9 ≥ 23.694, λ0

10 ≥ 28.722

(0.6872,0.0982) µ
30/32
5 ≥ 20.709, µ

20/32
6 ≥ 21.281, µ

16/32
7 ≥ 21.533, µ

12/32
8 ≥ 22.149, µ

10/32
9 ≥ 22.674, λ0

10 ≥ 28.224

(0.7854,0.5890) µ
31/32
5 ≥ 21.929, µ

24/32
6 ≥ 22.747, µ

17/32
7 ≥ 23.285, µ

16/32
8 ≥ 23.844, µ

10/32
9 ≥ 24.305, λ0

10 ≥ 27.827

(0.8836,0.0982) µ
28/32
5 ≥ 20.377, µ

20/32
6 ≥ 20.720, µ

16/32
7 ≥ 20.968, µ

9/32
8 ≥ 21.378, µ

8/32
9 ≥ 22.106, λ0

10 ≥ 27.299

(0.8836,0.2945) µ
29/32
5 ≥ 21.030, µ

22/32
6 ≥ 21.685, µ

17/32
7 ≥ 22.069, µ

12/32
8 ≥ 22.489, µ

9/32
9 ≥ 23.139, λ0

10 ≥ 27.314

(0.9817,0.0982) µ
28/32
5 ≥ 20.886, µ

22/32
6 ≥ 21.688, µ

18/32
7 ≥ 22.160, µ

11/32
8 ≥ 22.658, µ

9/32
9 ≥ 23.054, λ0

10 ≥ 26.842

(1.0799,0.0982) µ
27/32
5 ≥ 20.763, µ

22/32
6 ≥ 21.401, µ

18/32
7 ≥ 21.871, µ

10/32
8 ≥ 22.510, µ

8/32
9 ≥ 22.783, λ0

10 ≥ 26.389

(1.1781,0.1963) µ
26/32
5 ≥ 20.637, µ

22/32
6 ≥ 21.010, µ

18/32
7 ≥ 21.739, µ

9/32
8 ≥ 22.219, µ

7/32
9 ≥ 22.742, λ0

10 ≥ 25.946

(1.1781,0.3927) µ
27/32
5 ≥ 21.268, µ

24/32
6 ≥ 22.081, µ

19/32
7 ≥ 23.065, µ

12/32
8 ≥ 23.334, µ

8/32
9 ≥ 23.842, λ0

10 ≥ 25.969

(1.1781,0.8836) µ
30/32
5 ≥ 23.2, µ

28/32
6 ≥ 24.6, (0.µ19/32

7 ≥ 24.9, µ
17/32
8 ≥ 25.3, µ

9/32
9 (0. ≥ 26.0, µ

1/32
10 ≥ 26.5, λ0

11 ≥ 27.575

(1.2763,0.0000) µ
25/32
5 ≥ 20.531, µ

22/32
6 ≥ 20.878, µ

18/32
7 ≥ 21.239, µ

6/32
8 ≥ 21.493, µ

6/32
9 ≥ 22.222, λ0

10 ≥ 25.493

(1.3744,0.1963) µ
25/32
5 ≥ 21.022, µ

24/32
6 ≥ 21.914, µ

20/32
7 ≥ 22.876, µ

10/32
8 ≥ 23.419, µ

8/32
9 ≥ 24.025, λ0

10 ≥ 25.059

(1.5708,0.0000) µ
24/32
5 ≥ 21.066, µ

24/32
6 ≥ 21.717, µ

20/32
7 ≥ 22.112, µ

6/32
8 ≥ 22.499, µ

6/32
9 ≥ 23.260, λ0

10 ≥ 24.180

(1.5708,0.1963) µ
24/32
5 ≥ 21.023, µ

24/32
6 ≥ 21.691, µ

20/32
7 ≥ 22.318, µ

7/32
8 ≥ 22.669, µ

5/32
9 ≥ 23.020, λ0

10 ≥ 24.188

(1.5708,0.4909) µ
26/32
5 ≥ 22.046, µ

26/32
6 ≥ 22.770, µ

20/32
7 ≥ 23.176, µ

10/32
8 ≥ 23.470, µ

5/32
9 ≥ 23.837, λ0

10 ≥ 24.228

(1.5708,1.1781) µ
30/32
5 ≥ 24.6, µ

30/32
6 ≥ 25.4, (0.µ20/32

7 ≥ 26.1, µ
18/32
8 ≥ 27.1, µ

8/32
9 (0. ≥ 27.7, µ

7/32
10 ≥ 28.0, µ

4/32
11 ≥ 28.5, λ0

12 ≥ 29.3

(1.6690,0.0000) µ
24/32
5 ≥ 21.032, µ

23/32
6 ≥ 21.452, µ

20/32
7 ≥ 21.844, µ

5/32
8 ≥ 22.421, µ

5/32
9 ≥ 23.038, λ0

10 ≥ 23.750

(1.7671,0.0000) µ
24/32
5 ≥ 20.8, µ

22/32
6 ≥ 21.3, (0.µ21/32

7 ≥ 22.5, µ
5/32
8 ≥ 22.7, µ

5/32
9 (0. ≥ 23.3, µ

1/32
10 ≥ 23.7, λ0

11 ≥ 31.2

(1.7671,0.1963) µ
25/32
5 ≥ 21.4, µ

23/32
6 ≥ 21.9, (0.µ21/32

7 ≥ 22.7, µ
7/32
8 ≥ 23.3, µ

5/32
9 (0. ≥ 23.7, µ

2/32
10 ≥ 24.2, λ0

11 ≥ 30.7

(1.8653,0.0000) µ
25/32
5 ≥ 21.3, µ

22/32
6 ≥ 21.8, (0.µ21/32

7 ≥ 22.2, µ
4/32
8 ≥ 22.6, µ

4/32
9 (0. ≥ 23.1, µ

2/32
10 ≥ 23.8, λ0

11 ≥ 30.7

(1.8653,0.2945) µ
26/32
5 ≥ 21.94, µ

23/32
6 ≥ 22.36, (1.µ21/32

7 ≥ 22.73, µ
6/32
8 ≥ 23.03, (1.µ3/32

9 ≥ 23.29, µ
2/32
10 ≥ 23.82, λ0

11 ≥ 30.075

(1.8653,0.6872) µ
28/32
5 ≥ 23.01, µ

25/32
6 ≥ 23.58, (1.µ21/32

7 ≥ 24.16, µ
11/32
8 ≥ 24.69, (1.µ5/32

9 ≥ 25.36, µ
5/32
10 ≥ 25.47, λ0

11 ≥ 28.918

(1.9635,0.0000) µ
25/32
5 ≥ 21.14, µ

21/32
6 ≥ 21.76, (1.µ21/32

7 ≥ 22.05, µ
3/32
8 ≥ 22.63, (1.µ3/32

9 ≥ 22.98, µ
2/32
10 ≥ 23.37, λ0

11 ≥ 30.379

(1.9635,0.1963) µ
25/32
5 ≥ 20.97, µ

20/32
6 ≥ 21.20, (1.µ20/32

7 ≥ 21.32, µ
2/32
8 ≥ 21.83, (1.µ1/32

9 ≥ 22.43, µ
1/32
10 ≥ 22.92, λ0

11 ≥ 29.894

(1.9635,1.4726) µ
32/32
5 ≥ 26.511, µ

29/32
6 ≥ 26.756, µ

21/32
7 ≥ 27.726, µ

18/32
8 ≥ 28.254, µ

11/32
9 ≥ 28.509, µ

7/32
10 ≥ 29.044

µ
7/32
11 ≥ 29.639, µ

5/32
12 ≥ 29.985, µ

4/32
13 ≥ 30.720, λ0

14 ≥ 34.514

(2.0617,0.0000) µ
25/32
5 ≥ 20.91, µ

21/32
6 ≥ 21.81, (1.µ21/32

7 ≥ 22.20, µ
2/32
8 ≥ 22.57, (1.µ2/32

9 ≥ 22.80, µ
2/32
10 ≥ 22.94, λ0

11 ≥ 29.965

(2.0617,0.2945) µ
26/32
5 ≥ 21.47, µ

21/32
6 ≥ 22.18, (1.µ21/32

7 ≥ 22.32, µ
4/32
8 ≥ 22.81, (1.µ3/32

9 ≥ 23.42, µ
3/32
10 ≥ 23.97, λ0

11 ≥ 29.242

(2.1598,0.0000) µ
26/32
5 ≥ 21.58, µ

22/32
6 ≥ 22.66, (1.µ22/32

7 ≥ 23.25, µ
5/32
8 ≥ 23.90, (1.µ5/32

9 ≥ 24.18, µ
5/32
10 ≥ 24.83, λ0

11 ≥ 29.555

(2.1598,0.1963) µ
26/32
5 ≥ 21.42, µ

21/32
6 ≥ 21.80, (1.µ20/32

7 ≥ 22.15, µ
2/32
8 ≥ 22.49, (1.µ2/32

9 ≥ 22.52, µ
1/32
10 ≥ 23.09, λ0

11 ≥ 29.069

(2.1598,0.3927) µ
27/32
5 ≥ 22.01, µ

21/32
6 ≥ 22.33, (1.µ21/32

7 ≥ 22.75, µ
5/32
8 ≥ 23.39, (1.µ5/32

9 ≥ 23.93, µ
3/32
10 ≥ 24.59, λ0

11 ≥ 28.598

(2.1598,0.7854) µ
29/32
5 ≥ 23.22, µ

23/32
6 ≥ 23.94, (1.µ22/32

7 ≥ 25.03, µ
11/32
8 ≥ 25.64, (1.µ9/32

9 ≥ 26.11, µ
5/32
10 ≥ 26.84, λ0

11 ≥ 27.704

(2.2580,0.0000) µ
26/32
5 ≥ 21.37, µ

22/32
6 ≥ 22.46, (1.µ21/32

7 ≥ 23.12, µ
5/32
8 ≥ 23.42, (1.µ3/32

9 ≥ 23.67, µ
3/32
10 ≥ 24.04, λ0

11 ≥ 29.148

(2.2580,0.4909) µ
28/32
5 ≥ 22.69, µ

22/32
6 ≥ 23.53, (1.µ22/32

7 ≥ 23.80, µ
7/32
8 ≥ 24.41, (1.µ7/32

9 ≥ 24.55, µ
3/32
10 ≥ 25.23, λ0

11 ≥ 27.962

(2.3562,0.0000) µ
26/32
5 ≥ 21.18, µ

22/32
6 ≥ 22.26, (1.µ19/32

7 ≥ 22.55, µ
5/32
8 ≥ 23.01, (1.µ2/32

9 ≥ 23.61, µ
2/32
10 ≥ 23.85, λ0

11 ≥ 28.745

(2.3562,0.1963) µ
27/32
5 ≥ 22.02, µ

22/32
6 ≥ 22.47, (1.µ20/32

7 ≥ 23.09, µ
6/32
8 ≥ 23.50, (1.µ4/32

9 ≥ 24.13, µ
3/32
10 ≥ 24.77, λ0

11 ≥ 28.259

(2.3562,1.9635) µ
23/32
5 ≥ 23.415, µ

20/32
6 ≥ 23.938, µ

16/32
7 ≥ 24.714, µ

13/32
8 ≥ 25.032, µ

8/32
9 ≥ 25.307, µ

5/32
10 ≥ 25.956

µ
4/32
11 ≥ 26.616, µ

3/32
12 ≥ 27.136, λ0

13 ≥ 28.529

(2.4544,0.0000) µ
26/32
5 ≥ 21.00, µ

22/32
6 ≥ 22.09, (1.µ18/32

7 ≥ 22.50, µ
6/32
8 ≥ 23.04, (1.µ1/32

9 ≥ 23.55, µ
1/32
10 ≥ 23.67, λ0

11 ≥ 28.346

(2.4544,0.0982) µ
26/32
5 ≥ 20.96, µ

22/32
6 ≥ 22.14, (1.µ18/32

7 ≥ 22.50, µ
6/32
8 ≥ 23.03, (1.µ1/32

9 ≥ 23.36, µ
1/32
10 ≥ 23.87, λ0

11 ≥ 28.101

(2.4544,0.2945) µ
27/32
5 ≥ 21.67, µ

22/32
6 ≥ 22.54, (1.µ19/32

7 ≥ 23.04, µ
7/32
8 ≥ 23.51, (1.µ3/32

9 ≥ 23.78, µ
1/32
10 ≥ 24.39, λ0

11 ≥ 27.623

(2.4544,0.5890) µ
29/32
5 ≥ 23.30, µ

22/32
6 ≥ 23.61, (1.µ21/32

7 ≥ 24.18, µ
9/32
8 ≥ 24.60, (1.µ7/32

9 ≥ 25.05, µ
2/32
10 ≥ 25.70, λ0

11 ≥ 26.935

(2.4544,0.8836) µ
30/32
5 ≥ 23.744, µ

22/32
6 ≥ 24.715, µ

22/32
7 ≥ 24.964, µ

10/32
8 ≥ 25.241, µ

10/32
9 ≥ 26.037, µ

2/32
10 ≥ 26.559

µ
1/32
11 ≥ 26.788, λ0

12 ≥ 28.502

(2.5525,0.0000) µ
27/32
5 ≥ 21.85, µ

23/32
6 ≥ 23.14, (1.µ19/32

7 ≥ 23.49, µ
9/32
8 ≥ 24.11, (1.µ3/32

9 ≥ 24.74, µ
3/32
10 ≥ 25.13, λ0

11 ≥ 27.951

Table 3: Eigenvalue homotopy (first part).
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(2.5525,0.0982) µ
27/32
5 ≥ 21.81, µ

23/32
6 ≥ 23.19, (1.µ19/32

7 ≥ 23.49, µ
9/32
8 ≥ 24.10, (1.µ3/32

9 ≥ 24.61, µ
3/32
10 ≥ 25.26, λ0

11 ≥ 27.706

(2.5525,0.3927) µ
28/32
5 ≥ 22.417, µ

22/32
6 ≥ 22.707, µ

18/32
7 ≥ 22.998, µ

8/32
8 ≥ 23.583, µ

3/32
9 ≥ 23.909, λ0

10 ≥ 24.527

(2.6507,0.0000) µ
27/32
5 ≥ 21.71, µ

23/32
6 ≥ 23.00, (1.µ18/32

7 ≥ 23.38, µ
9/32
8 ≥ 23.65, (1.µ1/32

9 ≥ 24.26, µ
1/32
10 ≥ 24.38, λ0

11 ≥ 27.559

(2.6507,0.0982) µ
27/32
5 ≥ 21.67, µ

23/32
6 ≥ 23.06, (1.µ18/32

7 ≥ 23.38, µ
9/32
8 ≥ 23.64, (1.µ1/32

9 ≥ 24.06, µ
1/32
10 ≥ 24.58, λ0

11 ≥ 27.314

(2.6507,0.2945) µ
27/32
5 ≥ 21.371, µ

22/32
6 ≥ 22.268, µ

17/32
7 ≥ 22.886, µ

8/32
8 ≥ 23.146, µ

1/32
9 ≥ 23.584, λ0

10 ≥ 24.616

(2.6507,2.4544) µ
13/32
5 ≥ 21.360, µ

12/32
6 ≥ 21.803, µ

10/32
7 ≥ 22.403, µ

9/32
8 ≥ 22.950, µ

6/32
9 ≥ 23.427, µ

5/32
10 ≥ 24.017

µ
4/32
11 ≥ 24.515, µ

4/32
12 ≥ 25.067, λ0

13 ≥ 31.231

(2.7489,0.0000) µ
27/32
5 ≥ 21.604, µ

23/32
6 ≥ 22.899, µ

17/32
7 ≥ 23.328, µ

10/32
8 ≥ 23.721, λ0

9 ≥ 24.211

(2.7489,0.0982) µ
27/32
5 ≥ 21.564, µ

23/32
6 ≥ 22.952, µ

17/32
7 ≥ 23.328, µ

10/32
8 ≥ 23.695, λ0

9 ≥ 23.966

(2.7489,0.1963) µ
27/32
5 ≥ 21.440, µ

22/32
6 ≥ 21.910, µ

15/32
7 ≥ 22.322, µ

8/32
8 ≥ 22.713, λ0

9 ≥ 23.725

(2.7489,0.5890) µ
29/32
5 ≥ 22.879, µ

22/32
6 ≥ 23.242, µ

18/32
7 ≥ 23.920, µ

11/32
8 ≥ 24.275, µ

4/32
9 ≥ 24.663, λ0

10 ≥ 25.761

(2.7489,1.5708) µ
29/32
5 ≥ 24.726, µ

20/32
6 ≥ 25.442, µ

20/32
7 ≥ 25.946, µ

14/32
8 ≥ 26.402, µ

12/32
9 ≥ 26.931, µ

7/32
10 ≥ 27.402

µ
4/32
11 ≥ 27.664, µ

3/32
12 ≥ 28.281, λ0

13 ≥ 28.652

(2.7489,2.7489) µ
7/32
5 ≥ 20.25, µ

7/32
6 ≥ 20.47, (1.µ5/32

7 ≥ 20.84, µ
5/32
8 ≥ 20.88, µ

1/32
9 (1. ≥ 21.15, µ

1/32
10 ≥ 21.16, λ0

11 ≥ 21.774

(2.8471,0.0000) µ
27/32
5 ≥ 21.513, µ

23/32
6 ≥ 22.812, µ

16/32
7 ≥ 23.247, µ

11/32
8 ≥ 23.824, λ0

9 ≥ 24.568

(2.8471,0.0982) µ
27/32
5 ≥ 21.473, µ

23/32
6 ≥ 22.865, µ

16/32
7 ≥ 23.249, µ

11/32
8 ≥ 23.817, λ0

9 ≥ 24.323

(2.8471,0.1963) µ
27/32
5 ≥ 21.348, µ

22/32
6 ≥ 21.821, µ

14/32
7 ≥ 22.259, µ

9/32
8 ≥ 22.782, λ0

9 ≥ 24.082

(2.8471,0.3927) µ
28/32
5 ≥ 22.069, µ

22/32
6 ≥ 22.386, µ

15/32
7 ≥ 22.776, µ

10/32
8 ≥ 23.273, λ0

9 ≥ 23.611

(2.8471,1.1781) µ
32/32
5 ≥ 25.926, µ

23/32
6 ≥ 27.236, µ

23/32
7 ≥ 27.225, µ

17/32
8 ≥ 27.583, µ

12/32
9 ≥ 28.238, µ

8/32
10 ≥ 28.566

µ
3/32
11 ≥ 29.114, µ

3/32
12 ≥ 29.488, µ

3/32
13 ≥ 30.046, µ

1/32
14 ≥ 30.615, λ0

15 ≥ 39.403

(2.8471,1.9635) µ
21/32
5 ≥ 22.756, µ

15/32
6 ≥ 23.320, µ

15/32
7 ≥ 23.582, µ

10/32
8 ≥ 24.074, µ

9/32
9 ≥ 24.646, µ

5/32
10 ≥ 25.042

µ
3/32
11 ≥ 25.443, µ

2/32
12 ≥ 25.855, λ0

13 ≥ 30.274

(2.9452,0.0000) µ
27/32
5 ≥ 21.448, µ

23/32
6 ≥ 22.748, µ

15/32
7 ≥ 23.116, µ

11/32
8 ≥ 23.413, λ0

9 ≥ 24.928

(2.9452,0.0982) µ
27/32
5 ≥ 21.406, µ

23/32
6 ≥ 22.802, µ

15/32
7 ≥ 23.118, µ

11/32
8 ≥ 23.413, λ0

9 ≥ 24.683

(2.9452,0.2945) µ
28/32
5 ≥ 22.258, µ

23/32
6 ≥ 23.207, µ

16/32
7 ≥ 23.627, µ

12/32
8 ≥ 23.917, λ0

9 ≥ 24.205

(2.9452,0.8836) µ
31/32
5 ≥ 24.968, µ

23/32
6 ≥ 25.703, µ

20/32
7 ≥ 25.879, µ

16/32
8 ≥ 26.386, µ

8/32
9 ≥ 26.844, µ

6/32
10 ≥ 27.534

µ
1/32
11 ≥ 27.836, λ0

12 ≥ 28.785

(2.9452,2.2580) µ
15/32
5 ≥ 21.524, µ

11/32
6 ≥ 21.853, µ

11/32
7 ≥ 22.369, µ

8/32
8 ≥ 22.909, µ

7/32
9 ≥ 23.391, µ

4/32
10 ≥ 23.557

µ
2/32
11 ≥ 23.865, µ

2/32
12 ≥ 24.447, λ0

13 ≥ 31.623

(2.9452,2.7489) µ
6/32
5 ≥ 20.138, µ

5/32
6 ≥ 20.386, µ

5/32
7 ≥ 20.624, µ

4/32
8 ≥ 21.168, µ

4/32
9 ≥ 21.605, µ

3/32
10 ≥ 22.223

µ
3/32
11 ≥ 22.340, µ

3/32
12 ≥ 22.885, λ0

13 ≥ 33.348

(2.9452,2.8471) µ
4/32
5 ≥ 19.809, µ

4/32
6 ≥ 20.116, µ

4/32
7 ≥ 20.540, µ

4/32
8 ≥ 21.040, µ

3/32
9 ≥ 21.323, µ

3/32
10 ≥ 21.825

µ
3/32
11 ≥ 22.202, µ

3/32
12 ≥ 22.479, λ0

13 ≥ 33.704

(2.9452,2.9452) µ
3/32
5 ≥ 19.803, µ

3/32
6 ≥ 19.884, µ

3/32
7 ≥ 20.461, µ

3/32
8 ≥ 20.481, µ

2/32
9 ≥ 21.011, µ

2/32
10 ≥ 21.048

µ
2/32
11 ≥ 21.589, µ

2/32
12 ≥ 21.607, λ0

13 ≥ 34.065

(3.0434,0.0000) µ
27/32
5 ≥ 21.408, µ

23/32
6 ≥ 22.708, µ

14/32
7 ≥ 22.961, µ

12/32
8 ≥ 23.624, λ0

9 ≥ 25.292

(3.0434,0.0982) µ
27/32
5 ≥ 21.366, µ

23/32
6 ≥ 22.762, µ

14/32
7 ≥ 22.963, µ

12/32
8 ≥ 23.625, λ0

9 ≥ 25.047

(3.0434,0.1963) µ
27/32
5 ≥ 21.242, µ

22/32
6 ≥ 21.718, µ

12/32
7 ≥ 22.039, µ

10/32
8 ≥ 22.525, λ0

9 ≥ 24.807

(3.0434,0.2945) µ
28/32
5 ≥ 22.218, µ

23/32
6 ≥ 23.168, µ

15/32
7 ≥ 23.462, µ

13/32
8 ≥ 24.186, λ0

9 ≥ 24.569

(3.0434,0.4909) µ
29/32
5 ≥ 23.01, µ

23/32
6 ≥ 23.85, (2.µ17/32

7 ≥ 24.46, µ
14/32
8 ≥ 24.83, (2.µ3/32

9 ≥ 25.52, µ
2/32
10 ≥ 25.83, λ0

11 ≥ 26.574

(3.0434,0.6872) µ
30/32
5 ≥ 23.88, µ

23/32
6 ≥ 24.71, (2.µ18/32

7 ≥ 25.02, µ
15/32
8 ≥ 25.47, (2.µ5/32

9 ≥ 26.04, µ
4/32
10 ≥ 26.46, λ0

11 ≥ 27.114

(3.0434,2.4544) µ
11/32
5 ≥ 20.828, µ

9/32
6 ≥ 21.453, µ

9/32
7 ≥ 22.024, µ

7/32
8 ≥ 22.266, µ

6/32
9 ≥ 22.918, µ

5/32
10 ≥ 23.413

µ
4/32
11 ≥ 23.963, µ

4/32
12 ≥ 24.610, λ0

13 ≥ 32.666

(3.0434,2.6507) µ
7/32
5 ≥ 20.167, µ

6/32
6 ≥ 20.646, µ

6/32
7 ≥ 21.039, µ

5/32
8 ≥ 21.561, µ

5/32
9 ≥ 22.141, µ

4/32
10 ≥ 22.595

µ
4/32
11 ≥ 23.126, µ

4/32
12 ≥ 23.753, λ0

13 ≥ 33.359

(3.0434,3.0434) µ
1/32
5 ≥ 19.600, µ

1/32
6 ≥ 19.622, µ

1/32
7 ≥ 19.880, µ

1/32
8 ≥ 19.888, µ

1/32
9 ≥ 20.359, µ

1/32
10 ≥ 20.377

µ
1/32
11 ≥ 20.640, µ

1/32
12 ≥ 20.649, λ0

13 ≥ 34.794

(3.1416,0.0000) µ
27/32
5 ≥ 21.394, µ

23/32
6 ≥ 22.697, µ

14/32
7 ≥ 23.079, µ

12/32
8 ≥ 23.473, λ0

9 ≥ 25.660

(3.1416,0.0982) µ
27/32
5 ≥ 21.353, µ

23/32
6 ≥ 22.751, µ

14/32
7 ≥ 23.080, µ

12/32
8 ≥ 23.474, λ0

9 ≥ 25.416

(3.1416,0.1963) µ
27/32
5 ≥ 21.228, µ

22/32
6 ≥ 21.706, µ

12/32
7 ≥ 22.188, µ

11/32
8 ≥ 22.909, λ0

9 ≥ 25.175

(3.1416,0.3927) µ
28/32
5 ≥ 21.948, µ

22/32
6 ≥ 22.273, µ

13/32
7 ≥ 22.628, µ

11/32
8 ≥ 22.933, λ0

9 ≥ 24.704

(3.1416,2.8471) µ
4/32
5 ≥ 19.927, µ

4/32
6 ≥ 20.412, µ

4/32
7 ≥ 20.745, µ

4/32
8 ≥ 21.086, µ

4/32
9 ≥ 21.651, µ

4/32
10 ≥ 22.082

µ
4/32
11 ≥ 22.335, µ

4/32
12 ≥ 22.885, λ0

13 ≥ 34.437

(3.1416,3.0434) µ
1/32
5 ≥ 19.690, µ

1/32
6 ≥ 19.798, µ

1/32
7 ≥ 19.947, µ

1/32
8 ≥ 20.028, µ

1/32
9 ≥ 20.215, µ

1/32
10 ≥ 20.308

µ
1/32
11 ≥ 20.448, µ

1/32
12 ≥ 20.561, λ0

13 ≥ 35.162
(3.1416,3.1416) λ0

5 ≥ 19.739

Table 4: Eigenvalue homotopy (second part).
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