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Abstract

Recently there has been an increasing interest for a better understanding of ultra low Reynolds
number �ows. In this context we present a new setup which allows to e¢ ciently solve the stationary
incompressible Navier-Stokes equations in an exterior domain in three dimensions numerically. The
main point is that the necessity to truncate for numerical purposes the exterior domain to a �nite
sub-domain leads to the problem of �nding so called �arti�cial boundary conditions� to replace the
conditions at in�nity. To solve this problem we provide a vector �led that describes the leading
asymptotic behavior of the solution at large distances. This vector �eld depends explicitly on drag
and lift which are determined in a self-consistent way as part of the solution process. When compared
with other numerical schemes the size of the computational domain that is needed to obtain the
hydrodynamic forces with a given precision is drastically reduced, which in turn leads to an overall
gain in computational e¢ ciency of typically several orders of magnitude.

Mathematics Subject Classi�cation (2000). 76D05, 76D25, 76M10, 41A60, 35Q35.

Keywords. Navier-Stokes equations, arti�cial boundary conditions, drag, lift.

1 Introduction

There is an increasing interest in considering applications leading to exterior �ow problems at Reynolds
numbers of the order of one to several thousand. Speci�c examples of situations where such �ows occur
are the sedimentation of small particles in the context of climate prediction [1, 23] and the engineering
of so called micro-air vehicles (MAV) [19, 7, 9, 8]. In the �rst example sedimentation speeds have to be
computed accurately and in the second case the prediction of performance requires that the entire �ow �eld
be calculable in detail and that the hydrodynamic forces be determined with high precision. Linearized
theories (Stokes, Oseen) provide such a quantitative description (better than one percent) for Reynolds
numbers less than one [2] and traditional approximation schemes based on some version of boundary
layer theory work well for Reynolds numbers exceeding some ten thousand [7]. For the intermediate
regime where neither the viscous nor the inertial forces dominate the full Navier-Stokes equations need
to be solved [2]. However, when truncating for numerical purposes the in�nite exterior domain to a �nite
sub-domain one is confronted with the problem of �nding so called �arti�cial boundary conditions�on
the outer boundary of this sub-domain in order to replace the boundary conditions at in�nity [5]. It turns
out that for the Reynolds numbers under consideration any naïve choice of such boundary conditions
modi�es the hydrodynamic forces signi�cantly, unless excessively large computational domains are used.
The scheme of arti�cial boundary conditions proposed here consists of an explicit expression for a

vector �eld that describes the solution to leading order at large distances from the body. This vector �eld
depends explicitly on the hydrodynamic forces which are determined in a self-consistent way as part of
the solution process. This method has been introduced in [5] for the analogous two dimensional problem
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on the bases of recent analytic work [25, 26]. In [6] the method has been further re�ned through the use
of additional analytical input [13], and the e¢ ciency of the scheme is now widely recognized: in [3] the
same ideas have been successfully tested on the semi-in�nite �at plate problem and in [18] the scheme
has been implemented in the context of lattice Boltzmann simulations. The present generalization of the
setup to three dimensions is again based on analytic work [27] and when compared with results obtained
using traditional boundary conditions computational times are again typically reduced by several orders
of magnitude.
As in the two dimensional case second order analytic results can be obtained which will allow for

further improvements, and on the bases of related recent analytic results [21] we expect that analogous
arti�cial boundary conditions will be obtained for Reynolds numbers beyond the critical point where
stationary solutions become unstable and give rise to stable time periodic solutions. Finally, for the case
of particle sedimentation, one also has to be able to handle �nite Rossby numbers since non-symmetric
free falling particles typically rotate. See [10] for a recent discussion of this problem.
To summarize, the purpose of this paper is: �rst, to provide a simple tool that allows to compute

e¢ ciently stationary exterior �ows at low Reynolds numbers with high precision, and second, to bring to
the reader�s attention this new type of numerical schemes based on analytic work, a technique that we
expect to become a standard tool for computations in the low Reynolds number regime well beyond the
simple stationary case presented here.
The paper is organized as follows: In Section 2 we de�ne the arti�cial boundary conditions and their

dependence on the drag and lift. Section 3 is dedicated to the description of the numerical methods.
In Section 4 we compare the numerical results obtained by means of the traditional constant Dirichlet
boundary conditions with those obtained using the proposed adaptive boundary conditions.

2 Arti�cial Boundary Conditions

Consider a rigid body that is placed into a uniform stream of a homogeneous incompressible �uid �lling
up all of R3. This situation is modelled by the stationary Navier-Stokes equations (tildes are used to
indicate dimension-full quantities)

��(~u � r)~u+ ��~u�r~p = 0 ; r � ~u = 0 ; (1)

in ~
 = R3 n ~B, subject to the boundary conditions ~uj@ ~B = 0 and limj~xj!1 ~u(~x) = ~u1. Here, the
body ~B is a compact set of diameter A containing the origin of our coordinate system, ~u is the velocity
�eld, ~p is the pressure and ~u1 is some constant nonzero vector �eld which we choose without restriction
of generality to be parallel to the ~x-axis, i.e., ~u1 = u1e1, where e1 = (1; 0; 0) and u1 > 0. The
density � and the viscosity �, are arbitrary positive constants. From �, � and u1 we can form the length
` = �=(�u1), the so called viscous length of the problem. The viscous forces and the inertial forces are
quantities of comparable size if the Reynolds number Re = A=` is neither too small nor very large.
Below, when solving the problem (1) numerically for the example case where ~B is a prism, we restrict

the equations (1) from the exterior in�nite domain ~
 to a sequence of bounded domains ~D � ~
 and
study the precision of the results as a function of the domain size, once with naïve boundary conditions on
the surface ~�= @ ~D n @ ~B of the truncated domain and once with the newly proposed adaptive boundary
conditions. Note that, in contrast to the �nite volume case, the boundary conditions at in�nity do
not prescribe the total �ux of �uid (from left to right say). In particular, it does not follow from
limjxj!1 (~u(x)� ~u1) = 0, that lim

x!1

R
R2 (~u� ~u1) (x;y) � e1 dy = 0, the correct and non-zero value of

such integrals being intimately related to the forces that act on the body (see below). It is this fact
which makes the numerical implementation of (1) challenging, since any prescription of a vector �eld on
the boundary ~� also �xes the total �ux across the �nite domain ~D, and it is therefore in a way quite
astonishing that the solutions of (1) converge, for an increasing sequence of domains ~D with constant
Dirichlet boundary conditions on ~�, to the solution of the in�nite volume problem. This convergence is
however very slow, since an arti�cial back-�ow of small amplitude has to be created on a big portion
of the domain ~D in order to accommodate for the zero �ux condition for ~u � ~u1 enforced by constant
Dirichlet boundary conditions (see upper half of Figure 1). With our adaptive boundary conditions the
�ux through ~D is �exactly right�, and no portion of the volume ~D is lost for the computation of a
non-physical back-�ow: the �uid is transported within the wake towards the body, and this �uid is then
�radiated�away from the body by a source-like contribution in the velocity �eld ~u� ~u1 (see lower half
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of Figure 1).

Figure 1. Streamlines, upper half: the typical nonphysical back-�ow in the velocity �eld ~u � ~u1 when
imposing constant Dirichlet boundary conditions. Streamlines, lower half: no back-�ow is created with
adaptive boundary conditions.

For the purpose of specifying the boundary conditions we now rewrite the Navier-Stokes equations in
dimensionless form. Namely, we de�ne dimensionless coordinates x = ~x=`, and introduce a dimensionless
vector �eld u and a dimensionless pressure p through the equations ~u(~x) = u1u(x), ~p(~x) =

�
�u21

�
p(x).

In the new coordinates we get instead of (1) the equations

�(u � r)u+�u�rp = 0 ; r � u = 0 ; (2)

in 
 = R3 n B, with the boundary conditions uj@B = 0 and limjxj!1 u(x) = e1, and B is the set of
points x 2 R3 such that `x 2 ~B. The diameter of B is A=` = Re (Reynolds number). In (2) all the
derivatives are with respect to the new coordinates. In what follows we use the notation x = (x;y) with
y = (y1; y2) and u = (u;v) with v = (v1; v2) and we furthermore set r = jxj = (x2 + y2)1=2, where
y = jyj = (y21 + y22)

1=2. For Re small enough and domains B with smooth boundaries, equation (2) is
known to have a unique classical solution [11]. In [27] this solution has been studied in detail in the
half-space D+ =

�
(x;y)2 R3 j x � x+ � 1

	
, and an explicit expression for the downstream asymptotic

behavior has been obtained. Global results, but in less explicit form, can also be found in [27]. Using the
same ideas as in [5] one can reconstruct from the down-stream behavior of the solution the asymptotics
in any direction far away from the body. Explicitly one obtains (in dimension-full variables) that, far
away from the obstacle ~u � ~uABC , where

~uABC(~x) = u1uABC(
~x

`
) ; (3)

and where (in dimension-less variables)

uABC = (uABC ;vABC) ; (4)

vABC = v1;ABC + v2;ABC ; (5)
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with

uABC(x;y) = 1 +
�(x)

4�x
e�

y2

4x c+
1

2�

x

r3
d+

1

2�

y � b
r3

; (6)

v1;ABC(x;y) =
y

8�x2
�(x)e�

y2

4x c+
1

2�

y

r3
d

� 1

2�

1

r

sign(x)

r + jxj

�
b� 1

r

�
1

r
+

1

r + jxj

�
(y � b) y

�
; (7)

v2;ABC(x;y) = �
�(x)

2�x

 
e�

y2

4x +
1

2

e�
y2

4x � 1
y2

4x

!
b

+
�(x)

2�x

 
e�

y2

4x � 1
y2

4x

+ e�
y2

4x

!
(y � b)
y2

y ; (8)

with c = �2d, with � the Heaviside function (i.e., �(x) = 1 for x > 0 and �(x) = 0 for x � 0), with
sign(x) = �1 + 2�(x), and with y � b = y1b1 + y2b2. Note that the vector �elds (uABC ;v1;ABC) and
(0;v2;ABC) are divergence free.
It is the vector �eld ~uABC that we propose to use in order to prescribe arti�cial boundary conditions

on ~�. For the (positive) number d and the vector b one has

d =
1

2�`2u21
~F ; (9)

b =
1

2�`2u21
~L ; (10)

where ~F = ( ~F ; ~L) is the force acting on the body, i.e., ~F is the drag and ~L the lift (dimension-full
quantities). The relations (9) and (10) can be obtained by using the integral form of the Navier-Stokes
equations. Namely, let D(s) be a disk in the y1, y2 plane of radius s, then we we integrate for r and
s large enough the Navier-Stokes equations over the domain S = [�r; r] � D(s) n ~B and apply Gauss�
theorem, which leads to a relation between the integral of the stress tensor over the body surface @ ~B,
which gives ~F, and the integral of the same quantity over the surface @S n@ ~B. The latter integral can be
computed by using the above asymptotic expressions for the velocity �eld and the asymptotic expression
~p � �1

2 (j~uABC j
2 � 1) for the pressure, in the limit where �rst s!1 and then r !1.

3 Solution process

In what follows we describe the discretization method and the solution process considered to solve nu-
merically (1) on a bounded domain by means of the arti�cial boundary conditions. To unburden the
notation we suppress throughout this section the �tildes�.

3.1 Galerkin �nite element discretization

In order to solve equation (1), we consider a discretization based on conforming mixed �nite elements with
continuous pressure. This discretization starts from a variational formulation of the system of equations
(1) on a bounded domain D � R3 containing the body B. First, we introduce some notation needed for
the derivation of this formulation.
For a bounded domain D � R3, let L2(D) denote the Lebesgue space of square-integrable functions

on D equipped with the inner product and norm

(f; g)D =

Z
D

fg dx ; jjf jjD = (f; f)1=2D :

The pressure is assumed to lie in the space L20(D) := fq 2 L2(D) j
R
D
q dx = 0g, which de�nes it uniquely.

The L2(D) functions with generalized (in the sense of distributions) �rst-order derivatives in L2(D) form
the Sobolev space H1(D), while H1

0 (D) := fv 2 H1(D) j vj@D = 0g. Let W = [H1
0 (D)]

3 � L20(D). For
w = fv; pg 2W and � = f'; qg 2W , we de�ne the semi-linear form

A(w;�) = � (((v + u1) � r)v; ')D � (p;r � ')D + 2�
Z
D

D(v) : D(') dx� (r � v; q)D ; (11)
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which is obtained by testing the equations (1) with � 2 W and by integration by parts of the di¤usive
term and the pressure gradient. D(v) denotes the deformation tensor, i.e., D(v) = 1

2 (rv + (rv)
T ).

Then, a weak form of the equations (1) can be formulated as: �nd w = fv; pg 2W , such that

A(w;�) = 0 ; 8� 2W : (12)

The discretization of problem (12) uses a conforming �nite element space Wh � W de�ned on quasi-
uniform triangulations Th = fKg consisting of quadrilateral cells K covering the domain D. We consider
the standard Hood-Taylor �nite elements [16] for the trial and test spaces, i.e., we de�ne

Wh =
�
(v; p) 2 [C(D)]4 j vjK 2 [Q2]3; pjK 2 Q1

	
;

where Qr describes the space of iso-parametric tensor-product polynomials of degree r (for a detailed
description of this standard construction process see for example [4]). This choice for the trial and test
functions guarantees a stable approximation of the pressure since the Babuska-Brezzi inf-sup stability
condition is satis�ed uniformly in D. The advantage, when compared to equal order function spaces for
the pressure and the velocity, is that no additional pressure stabilization terms are needed. The discrete
counterpart of problem (12) then reads: �nd wh = fvh; phg 2 wb;h +Wh, such that

A(wh;�h) = 0 ; 8�h 2Wh : (13)

Here wb;h describes the prescribed Dirichlet data on the boundary � of the domain D. It has to be noted
that the discretization error resulting from the discrete formulation (13) involve two contributions: the
discretization error due to the �nite element discretization and the error contribution resulting from the
approximation of R3 by means of the bounded domain D. Clearly the considered domain D should be
chosen large enough such that the associated error contribution is smaller than the error contribution
due to the �nite element approximation. The problem of equilibrating the error contribution during
the computation can be solved by means of an adequate a posteriori error estimator. In that context a
straightforward approach consists in imposing constant Dirichlet boundary conditions for v on � which
however leads to extremely large and intractable discrete problems (see [5, 6]). Our goal is to avoid
these di¢ culties by imposing adequate non-constant Dirichlet boundary conditions on �. In this paper
we do not address the issue of deriving a posteriori error estimator in order to equilibrate the two error
contributions. For more details with respect to this issue we refer to [15]. Our goal is rather to validate
the proposed arti�cial boundary conditions and quantify the impact of these boundary conditions on the
accuracy of the solution assuming the �nite element contribution to be smaller.

Figure 2. A typical grid used for the numerical solution of the test problem described in Section 4.

3.2 Computation of the drag

As explained in Section 2, the proposed arti�cial boundary conditions are independent of the details of
the geometry of the body but depend explicitly on drag and lift. The accurate determination of these
forces is therefore a key issue in our context. As in [5, 6] we use the approach proposed in [12] which is
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based on a reformulation of the expressions for drag and lift in terms of volume integrals by means of
integration by part i.e. instead of considering the classical formulation

N (w) =

Z
@B

(�(v; p) � n) �  ; (14)

which represents the force acting on the rigid body B in the direction  on @B one consider the equivalent
formulation

N (w) = A(w; ~ ) ; (15)

where ~ 2 H1(D) de�ned such that

~ =  on @B ; ~ = 0 on � : (16)

We de�ne the discrete counterpart Nh
 (w) of N (w) by the equation

Nh
 (wh) = A(wh; ~ ) : (17)

It is important to note that Nh
 (wh) 6= N (wh). The reformulation with Nh

 (wh) allows to attain the full
order of convergence for the values of drag and lift which can be shown to be O(h4) in our context (see
[12] for more details). Convergence records of the drag for the symmetric case are plotted in Table 1,
and of the drag and the lift for the non-symmetric case are plotted in Table 2. See Section 4 for details
concerning the test cases.

Level # Unknowns drag computed by means of
N (wh) Nh

 (wh)

3 389,560 5.20720 4.77064
4 3,093,096 5.16267 4.75981
5 24,658,120 5.04070 4.75453

Extrapolated value O(h2) 5.00000 O(h4) 4.75418

Table 1. Convergence records of the drag for the symmetric case at Re = 1 considering both formulations
Nh
 (wh) and N (wh) using adaptive boundary conditions. The computational domain has a diameter

that is hundred times bigger than that of the rigid body (diam(D) = 100). Note that due to the symmetry
of the test problem the lift is in this con�guration equal to zero. With more than twenty million unknowns
Level 5 involves large computations which need to be executed on a HPC platform. The resulting value
of the drag is after extrapolation used as the reference value for the computations of relative errors when
computing the drag on smaller domains and for other boundary conditions.

Level # Unknowns drag computed by means of lift computed by means of
N (wh) Nh

 (wh) N (wh) Nh
 (wh)

3 389,560 5.22018 4.78124 -0.15182 -0.12436
4 3,093,096 5.17497 4.77037 -0.14401 -0.12387
5 24,658,120 5.05246 4.76507 -0.13782 -0.12365

Extrapolated value O(h2) 5.0116 O(h4) 4.7647 O(h2) -0.13576 O(h4) -0.12364

Table 2. Convergence records of the drag and the lift for the non-symmetric case at Re = 1 considering
both formulations Nh

 (wh) and N (wh) using adaptive boundary conditions. The computational domain
has a diameter that is hundred times bigger than that of the rigid body (diam(D) = 100). With more
than twenty million unknowns Level 5 involves large computations which need to be executed on a HPC
platform. The resulting values of drag and lift are after extrapolation used as reference values for the
computation of relative errors when computing drag and lift on smaller domains and for other boundary
conditions.
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3.3 Solver

The speci�city of the proposed approach is related to the fact that the prescribed boundary conditions
depend on the drag and lift acting on the rigid body B. There is therefore a coupling between the
de�nition of the boundary condition and the solution wh = fvh; phg of (13) to be computed. Numerical
experience show that this coupling can be treated by means of a �xed iteration where the boundary
conditions are determined by means of successive updates, based on previously computed values of the
drag and lift (see Algorithm 1).
The nonlinear algebraic system (13) is solved implicitly in a fully coupled manner by means of a

damped Newton method. Denoting the derivative of A(�; �) taken at a discrete function wh 2 Wh by
A0(wh; �)(�), the linear system arising at the Newton step number k has the following form,

A0(wkh; �h)(ŵkh) = (rkh; �h) ; 8�h 2Wh ; (18)

where rkh is the equation residual of the current approximation w
k
h, and where ŵ

k
h corresponds to the

needed correction. The updates wk+1h = wkh + �kŵkh with a relaxation parameter �
k chosen by means

of Armijo�s rule are carried out until convergence. In practice, the Jacobian involved in (18) is directly
derived from the analytical expression for the derivative of the variational system (13).
It is well known that the ability of the Newton iteration to converge at the local rate greatly depends

on the quality of the initial approximation (see e.g. [17]). In order to �nd such an initial approximation,
we consider a mesh hierarchy Thl with Thl � Thl+1 , and the corresponding system of equations (13) is
successively solved by taking advantage of the previously computed solution, i.e., the nonlinear Newton
steps are embedded in a nested iteration process (see e.g. [24], chapter 8).
The linear subproblems (18) are solved by the Generalized Minimal Residual Method (GMRES), see

[20], preconditioned by means of multigrid iterations. See [24] and references therein for a description
of the di¤erent multigrid techniques for �ow simulations. This preconditioner, based on a new multigrid
scheme oriented towards conformal higher order �nite element methods, is a key ingredient of the overall
solution process. Two speci�c features characterizing the proposed scheme are: varying order of the
�nite element Ansatz on the mesh hierarchy and a Vanka type smoother [22] adapted to higher order
discretization. This somewhat technical part of the solver is described in full details in [14].

Algorithm 1 Overall solution process related to the arti�cial boundary conditions

d0 = 0, c0 = 0 (corresponds to homogeneous Dirichlet boundary condition)
for i = 0; ::: do
i) Solve the discrete Navier-Stokes problem (13) assuming d = di and b = bi for the boundary
conditions leading to the solution wih =

�
vih; p

i
h

	
ii) Compute Dr = Drag(wih) and Lf = Lift(wih)
iii) If convergence attained for Dr and Lf then STOP
iv) Update boundary conditions i.e. di+1 = d(Dr; Lf ) and bi+1 = b(Dr; Lf )

4 Numerical experiments

The goal of this section is twofold. First we compare, for a given con�guration of the �ow, the solution
obtained by means of the proposed adaptive boundary conditions with the solution obtained by means
of constant Dirichlet boundary conditions. The results con�rm the expectations based on the theoretical
results and provide numerical evidence for the validity of our approach. Second we provide quantitative
results for di¤erent Reynolds numbers, which clearly show the drastic improvement in numerical e¢ ciency
that results from the proposed boundary conditions.

4.1 Description of the con�guration

Our model problem consists of a prism [�0:5; 0:5]�[�0:05; 0:05]2 which is immersed into a uniform stream
of a homogeneous incompressible �uid with density � = 1 and dynamic viscosity � = 1. Further we impose
u1 = 1. With A = 1 being the length of the prism, we �nd for the Reynolds number corresponding
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to this con�guration Re = 1. For the computational domain D we use spheres centered at the origin.
Since the prism is aligned with the x-axis, and therefore with the �ow at in�nity, the resulting �ow is
symmetric with respect to the x-z plane and the x-y plane and no lift is produced. We therefore also
consider a second con�guration where we tilt the prism by 10 degrees about the y-axis. The �ow is still
symmetric with respect to the x-z plane but non-symmetric with respect to the x-y plane, and lift is
produced in the negative z direction.

Figure 3. Streamlines around the body for the non-symmetric test case at Re = 1.

4.2 Convergence along cuts

We now discuss various ways of comparing the numerical solutions u = (u;v) of (1) obtained with
constant Dirichlet and with the adaptive boundary conditions with the theoretical predictions. For this
purpose we de�ne so called �cuts�, i.e., we plot components of the vector �eld along certain lines for
which we have precise theoretical predictions. These cuts and the corresponding theoretical predictions
are de�ned in the following table:

Notation De�nition Scaled Velocity Asymptotic
cutIu x > 0; y = 0; z = 0 �2�xu d for x!1
cutIv2 x > 0; y = 0; z = 0 �4�xv2 b2 for x!1
cutIIav1 x = 0; y > 0; z = 0 2�y2v1 d� b1for y !1
cutIIav2 x = 0; y > 0; z = 0 2�y2v2 b2 for y !1
cutIIbu x = 0; y = 0; z > 0 2�z2u b2 for z !1
cutIIbv2 x = 0; y = 0; z > 0 2�z2v2 d� b2 for z !1
cutIIbmu x = 0; y = 0; z < 0 �2�z2u b2 for z ! �1
cutIIbmv2 x = 0; y = 0; z < 0 �2�z2v2 d+ b2 for z ! �1
cutIIIu x < 0; y = 0; z = 0 �2�x2u d for x! �1
cutIIIv2 x < 0; y = 0; z = 0 4�x2v2 b2 for x! �1

Table 3. Nomenclature of the cuts considered for the numerical experiments. The notation is the same
as the one used in the de�nition of the arti�cial boundary conditions (3)-(10), and the asymptotic values
in the forth column are obtained by scaling the velocity components as given in (3)-(10) as indicated in
Column 3 and by taking the limit speci�ed in Column 4.
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4.2.1 Symmetric case

The following �gures summarize our numeric results for the case without lift. From the extrapolated
values in Table 1 we �nd using the de�nitions (9) and (10) for the drag of the symmetric con�guration
F � 4:754 and therefore that d � 2:377.

Figure 4. From above to below, scaled velocity components de�ned by means of cutIu and cutIIav1
considering constant Dirichlet boundary conditions (left column) and the proposed adaptive boundary
conditions (right column). The size of the computational domain D varies in the range diam(D) 2
[10; 100]. The considered con�guration corresponds to the symmetric case at Re = 1.
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Figure 5. From above to below, scaled velocity components de�ned by means of cutIIbv2 , cutIIbmv2 ,
and cutIIIu considering constant Dirichlet boundary conditions (left column) and the proposed adap-
tive boundary conditions (right column). The size of the computational domain D varies in the range
diam(D) 2 [10; 100]. The considered con�guration corresponds to the symmetric case at Re = 1. Recall
that d � 2:377.
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4.2.2 Non-symmetric case

The following �gures summarize our results for the case with lift. From the extrapolated values in Table
2 we �nd for the drag and lift in the x-z plane for the non-symmetric con�guration F � 4:764 and
therefore that d � 2:382 and L � �0:1236 and therefore that b2 � �0:0618. Furthermore d � b2 � 2:44
and d+ b2 � 2:32.

Figure 6. From above to below, scaled velocity components de�ned by means of cutIu and cutIv2
considering constant Dirichlet boundary conditions (left column) and the proposed adaptive boundary
conditions (right column). The size of the computational domain D varies in the range diam(D) 2
[10; 100]. The considered con�guration corresponds to the symmetric case at Re = 1.
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Figure 7. From above to below, scaled velocity components de�ned by means of cutIIav1 , cutIIav2 ,
and cutIIbu considering constant Dirichlet boundary conditions (left column) and the proposed adap-
tive boundary conditions (right column). The size of the computational domain D varies in the range
diam(D) 2 [10; 100]. The considered con�guration corresponds to the symmetric case at Re = 1. Recall
that d � 2:382 and b2 � �0:0618.
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Figure 8. From above to below, scaled velocity components de�ned by means of cutIIbv2 , cutIImu and
cutIIbmv2 considering constant Dirichlet boundary conditions (left column) and the proposed adap-
tive boundary conditions (right column). The size of the computational domain D varies in the range
diam(D) 2 [10; 100]. The considered con�guration corresponds to the symmetric case at Re = 1. Recall
that b2 � �0:0618, d� b2 � 2:44 and d+ b2 � 2:32.
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Figure 9. From above to below, scaled velocity components de�ned by means of cutIIIu and cutIIIv2
considering constant Dirichlet boundary conditions (left column) and the proposed adaptive boundary
conditions (right column). The size of the computational domain D varies in the range diam(D) 2
[10; 100]. The considered con�guration corresponds to the symmetric case at Re = 1. Recall that
d � 2:382 and b2 � �0:0618.
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4.3 Relative errors for drag and lift

The following �gures illustrate the gain in precision for a given computational domain when using adaptive
boundary conditions instead of constant Dirichlet boundary conditions. We note that the �gures are the
result of a very important computational e¤ort since very precise results for the drag and lift have �rst
to be obtained on a very large domain in order to have reference values for drag and lift with respect to
which the relative errors are computed. These values are F � 4:754 for the drag in the symmetric case
and F � 4:764 for the drag and L � �0:1236 for the lift for non-symmetric case and these values have
been computed using the adaptive boundary conditions on a domain of diameter 100. See Table 1 and
Table 2.

Figure 10. Plot of the relative error of the drag as a function of the domain diameter, considering constant
Dirichlet boundary conditions and the adaptive boundary conditions, respectively. The plotted data are
for the symmetric case at Re = 1.

Figure 11. Plot of the relative error of the drag as a function of the domain diameter, considering constant
Dirichlet boundary conditions and the adaptive boundary conditions, respectively. The plotted data are
for the non-symmetric case at Re = 1.

5 Conclusion and outlook

We have discussed the problem of solving numerically the stationary incompressible Navier-Stokes equa-
tions in a domain exterior to a body in three dimensions. A self-consistent scheme for choosing arti�cial
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boundary conditions has been introduced, which incorporates in particular the computation of drag and
lift exerted on the body as part of the solution process. When compared with the results obtained using
traditional constant boundary conditions computational times are typically reduced by several orders of
magnitude.
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