Offprint from

PROCEEDINGS

OF THE

ROYAL IRISH ACADEMY

SECTION A - MATHEMATICAL AND PHYSICAL SCIENCES

ATKINSON THEORY AND HOLOMORPHIC FUNCTIONS IN BANACH ALGEBRAS

By Christoph Schmoeger

Mathematisches Institut I, Universität Karlsruhe

ROYAL IRISH ACADEMY

19 DAWSON STREET DUBLIN 2, IRELAND

ATKINSON THEORY AND HOLOMORPHIC FUNCTIONS IN BANACH ALGEBRAS

By Christoph Schmoeger

Mathematisches Institut I, Universität Karlsruhe

(Communicated by T. T. West, M.R.I.A.)

[Received 13 September 1989. Read 25 June 1990. Published 28 June 1991.]

ABSTRACT

Let A be a unital Banach algebra and K an inessential ideal of A. We investigate the spectral properties of a holomorphic function f (defined on a region in C) where the values of this function are K-Atkinson elements of A (i.e. each $f(\lambda)$ is left or right invertible modulo K).

Introduction

Let X denote a complex Banach space, $\mathcal{L}(X)$ the set of all bounded linear operators on X, and $\Phi(X)$ the set of all Fredholm operators in $\mathcal{L}(X)$. In [7], Gramsch proved the following theorem:

let G be a region in C and $T: G \to \mathcal{L}(X)$ a holomorphic operator function such that $T(\lambda) \in \Phi(X)$ for all $\lambda \in G$. Then there exist a discrete subset M of G and constants $n, m \ge 0$ with the following properties:

dim $N(T(\lambda)) = n$ and codim $T(\lambda)(X) = m$ for $\lambda \in G \setminus M$, dim $N(T(\lambda)) > n$ and codim $T(\lambda)(X) > m$ for $\lambda \in M$, ind $T(\lambda) = n - m$ for all $\lambda \in G$.

 $(N(T(\lambda)))$ denotes the kernel of $T(\lambda)$, $T(\lambda)(X)$ denotes the range of $T(\lambda)$.)

The aim of this paper is to extend the above result from an operator-valued function T to a holomorphic function f (defined on a region in C) with values in a complex Banach algebra A. The values of this function f are assumed to be left or right invertible modulo K, where K denotes an inessential ideal of A.

In the first section we give the preliminary definitions and results which we need in the sequel. Sections 2 and 3 deal with the basic Atkinson and Fredholm theory in semisimple Banach algebras. General Banach algebras are considered in section 4. In section 5 we consider holomorphic functions with values in a complex Banach algebra. In particular, we extend some results due to Gramsch [7] and Rowell [10].

Proc. R. Ir. Acad. Vol. 91A, No. 1, 113-127 (1991)

1. Preliminaries and notations

In this paper we always assume that A is a complex Banach algebra with identity $e \neq 0$.

Given a left ideal L of A the *quotient* is the ideal $L: A = \{a \in A : aA \subseteq L\}$. The quotient of a maximal left ideal is called a *primitive ideal*. We denote the set of primitive ideals by $\Pi(A)$. Observe that each $P \in \Pi(A)$ is closed.

If $J \subseteq A$ is non-empty and $\Omega \subseteq \Pi(A)$, we define

$$h(J) = \{ P \in \Pi(A) : J \subseteq P \} \text{ and } k(\Omega) = \bigcap_{P \in \Omega} P.$$

The radical of A is the intersection of the primitive ideals of A and is denoted by rad(A). A is said to be semisimple if $rad(A) = \{0\}$. A is said to be primitive if $\{0\} \in \Pi(A)$ (a primitive Banach algebra is semisimple). Let $P \in \Pi(A)$, then A/P is primitive [5, prop. 26.9].

In a semisimple Banach algebra A, the *socle* of A, soc(A), is defined to be the sum of all minimal right ideals (which equals the sum of all minimal left ideals [5, prop. 30.10]) or $\{0\}$ if A has no minimal right ideals. Thus soc(A) is an ideal of A.

For each subset M of A the left annihilator and the right annihilator are the sets

$$L(M) = \{y \in A : yM = 0\}$$
 and $R(M) = \{y \in A : My = 0\}$ respectively.

If $M = \{x\}$ we simply write L(x) and R(x). Since A has an identity, we have

$$L(xA) = L(x)$$
 and $R(Ax) = R(x)$.

Let X be a complex Banach space, and let $\mathcal{L}(X)$ be the Banach algebra of bounded linear operators on X. If $T \in \mathcal{L}(X)$, we denote by N(T) its kernel and by T(X) its range.

2. Atkinson and Fredholm theory in semisimple Banach algebras

Fredholm theory in semiprime rings was pioneered by Barnes [2], [3]. This theory was then extended by Schreieck [11] and Weckbach [12] to elements of a semiprime algebra A, which are left or right invertible modulo soc(A).

The main references concerning Atkinson and Fredholm theory are [2], [3], [10], [11], [12] and the monograph [4] of Barnes, Murphy, Smyth and West. Throughout this section, A will denote a semisimple Banach algebra.

- **2.1 Definition.** The *ideal of inessential elements* of A is given by I(A) = k(h(soc(A))). An ideal K of A is called *inessential* if $K \subseteq I(A)$.
- **2.2 Definition.** Let K be an inessential ideal of A. An element $x \in A$ is called a K-Atkinson element of A if x is left or right invertible modulo K. To be more precise, we define:

The

Th

th

2.

if

}

entity

 \mathcal{L} . e set

by ? if ./P

he 5, of

ıe

 $\Phi_l(A, K) = \{x \in A : \text{ there exists } y \in A \text{ with } yx - e \in K\};$ $\Phi_r(A, K) = \{x \in A : \text{ there exists } y \in A \text{ with } xy - e \in K\}.$

The set of K-Atkinson elements is

$$\mathcal{A}(A, K) = \Phi_l(A, K) \cup \Phi_r(A, K).$$

The set of K-Fredholm elements of A is defined to be

$$\Phi(A, K) = \Phi_l(A, K) \cap \Phi_r(A, K).$$

The following characterisation of Atkinson elements is due to Barnes [3, theorem 2.3] and Rowell [10, prop. 2.13, 2.19].

2.3 Proposition. (a) $\Phi_l(A, \operatorname{soc}(A)) = \Phi_l(A, I(A))$ and $\Phi_r(A, \operatorname{soc}(A)) = \Phi_r(A, I(A))$.

(b) Let K be an inessential ideal of A and $x \in A$. Then $x \in \Phi_l(A, K)[\Phi_r(A, K)]$ if and only if there exists an idempotent $p \in \text{soc}(A) \cap K$ such that Ax = A(e-p)[xA = (e-p)A].

PROOF. [4, F.1.10]; [10, prop. 2.13, 2.19].

2.4 Proposition. Let K be an inessential ideal of A.

(a) $x, y \in \Phi_t(A, K)[\Phi_r(A, K)] \Rightarrow xy \in \Phi_t(A, K)[\Phi_r(A, K)].$

(b) $x, y \in A, xy \in \Phi_l(A, K)[\Phi_r(A, K)] \Rightarrow y \in \Phi_l(A, K)[x \in \Phi_r(A, K)].$

(c) $x \in \Phi_l(A, K)[\Phi_r(A, K)], u \in K \Rightarrow x + u \in \Phi_l(A, K)[\Phi_r(A, K)].$

PROOF. Straightforward.

We close this section with a proposition due to Schreieck [11, Satz 5.4]. First we need the following definition. Let $x \in A$. We say that x is relatively regular if there exists $y \in A$ such that xyx = x.

2.5 Proposition. Let K be an inessential ideal of A. Then $x \in \Phi_l(A, K)[\Phi_r(A, K)] \Leftrightarrow x$ is relatively regular and $R(x) \subseteq K[L(x) \subseteq K]$.

PROOF. (\Rightarrow) By Proposition 2.3(b) there exists $p = p^2 \in \text{soc}(A) \cap K$ such that Ax = A(e - p). Therefore yx = e - p for some $y \in A$. Further, we have R(x) = R(Ax) = pA, thus xp = 0. It follows that xyx = x - xp = x and $pA \subseteq K$.

(\Leftarrow) Take $y \in A$ such that xyx = x. Put p = e - yx. It follows that $p^2 = p$, Ax = Ayx and R(x) = R(Ax) = R(Ayx) = R(A(e - p)) = pA. Since $R(x) \subseteq K$, we have $p = e - yx \in K$. Thus $x \in \Phi_l(A, K)$.

3. Atkinson and Fredholm theory in primitive Banach algebras

In this section, A will be a primitive Banach algebra. A non-zero idempotent $e_0 \in A$ is called *mimimal* if e_0Ae_0 is a division algebra. Min(A) denotes the set of all minimal idempotents of A.

Note that $soc(A) \neq \{0\}$ if and only if $Min(A) \neq \emptyset$ [4, BA.3.1]. To avoid trivialities, we assume that Min(A) is non-empty.

Fix $e_0 \in Min(A)$, and let

$$x \to \hat{x}: A \to \mathcal{L}(Ae_0)$$

denote the left regular representation of A on the Banach space Ae_0 , that is $\hat{x}(y) = xy(y \in Ae_0)$. For details see [4, p. 30] or [9, corollary 2.4.16]. Note that

$$\hat{x}(Ae_0) = xAe_0 \text{ and } N(\hat{x}) = R(x) \cap Ae_0 = R(x)e_0.$$

It follows from [4, F.2.1] that dim $\hat{x}(Ae_0)$, dim $N(\hat{x})$ and codim $\hat{x}(Ae_0)$ (=dim (Ae_0/xAe_0)) are independent of the particular choice of $e_0 \in \text{Min}(A)$.

- **3.1 Definition.** For $x \in A$ we define the rank of x by $\operatorname{rank}(x) = \dim \hat{x}(Ae_0)$ (=dim xAe_0). The nullity of x is defined to be $\operatorname{nul}(x) = \dim N(\hat{x})$. The defect of x is defined by $\operatorname{def}(x) = \dim(Ae_0/xAe_0)$.
- 3.2 Remark. (a) If Ax = A(e p) and $p = p^2$, then

$$R(x) = pA$$
 and
 $\operatorname{nul}(x) = \dim R(x)e_0 = \dim pAe_0 = \operatorname{rank}(p)$. (3.1)

(b) If xA = (e - q)A and $q = q^2$, then

$$Ae_0 = (e - q)Ae_0 \oplus qAe_0 = xAe_0 \oplus qAe_0$$
 and $def(x) = \dim qAe_0 = \operatorname{rank}(q)$. (3.2)

3.3 Theorem. (a) $x = 0 \Leftrightarrow \operatorname{rank}(x) = 0$.

(b) $soc(A) = \{x \in A : rank(x) < \infty\}.$

The proof may be found in [4, F.2.4].

The next theorem is a characterisation of Atkinson elements in terms of nullity and defect.

3.4 Theorem [12, Satz 3.5]. $x \in \Phi_l(A, I(A))[\Phi_r(A, I(A))] \Leftrightarrow x$ is relatively regular and $\operatorname{nul}(x) < \infty[\operatorname{def}(x) < \infty]$.

PROOF. 1. If $x \in \Phi_l(A, I(A))$ there exists $p = p^2 \in \text{soc}(A)$ such that Ax = A(e - p) (Proposition 2.3). By Proposition 2.5 and Remark 3.2, we conclude that x is relatively regular and that nul(x) = rank(p). Because of Theorem 3.3(b) and $p \in \text{soc}(A)$, it follows that $\text{nul}(x) < \infty$.

2. Take $y \in A$ such that xyx = x. Put p = e - yx. It follows that $p^2 = p$, Ax = Ayx and R(x) = R(Ax) = R(Ayx) = pA. Thus $rank(p) = \dim pAe_0 = \dim R(x)e_0 = \operatorname{nul}(x) < \infty$. From Theorem 3.3(b) we derive $p = e - yx \in \operatorname{soc}(A)$, hence $x \in \Phi_l(A, \operatorname{soc}(A)) = \Phi_l(A, I(A))$.

```
1 triviali-
```

A similar proof deals with the case of $x \in \Phi_r(A, I(A))$.

Let K be an inessential ideal of A. Since $\Phi_l(A, K) \subseteq \Phi_l(A, I(A))$ and $\Phi_r(A, K) \subseteq \Phi_r(A, I(A))$, it follows from Theorem 3.4 that for a K-Atkinson element x at least one of the quantities nul(x), def(x) is finite. Thus we are in a position to define the index for an Atkinson element.

 $\hat{x}(y) =$

3.5 Definition. The *index* of $x \in \mathcal{A}(A, K)$ is defined by $\operatorname{ind}(x) = \operatorname{nul}(x) - \operatorname{def}(x)$.

(=dim

3.6 Proposition. Let K be an inessential ideal of A. (a) $x \in \Phi_l(A, K)[\Phi_r(A, K)], u \in K \Rightarrow x + u \in \Phi_l(A, K)[\Phi_r(A, K)]$ and ind(x + u) = ind(x).

(b) $x \in A$ is left invertible if and only if $x \in \Phi_t(A, K)$ and nul(x) = 0. (c) $x \in A$ is right invertible if and only if $x \in \Phi_r(A, K)$ and def(x) = 0.

 $\ell(Ae_0)$ fect of

PROOF. (a) [10, lemma 3.2(1)].

(b) (\Rightarrow) If x is left invertible, then $x \in \Phi_l(A, K)$ and $R(x) = \{0\}$. Hence $\operatorname{nul}(x) = \{0\}$.

 (\Leftarrow) By Proposition 2.3, there exists $p = p^2 \in \text{soc}(A) \cap K$ such that Ax =A(e-p). Using Remark 3.2(a) this gives R(x) = pA and nul(x) = rank(p) = rank(p)0. Hence p = 0 and Ax = A.

(c) (\Rightarrow) If x is right invertible, then $x \in \Phi_r(A, K)$ and xA = A. Hence $xAe_0 =$ Ae_0 where $e_0 \in Min(A)$. Thus def(x) = 0.

 (\Leftarrow) By Proposition 2.3, there exists $q = q^2 \in \text{soc}(A) \cap K$ such that xA =(e-q)A. Using Remark 3.2(b) this gives def(x) = rank(q) = 0. Hence q = 0and xA = A.

3.7 Theorem [12, theorem 3.7]. Let K be an inessential ideal of A. (a) If $x, y \in \Phi_l(A, K)[\Phi_r(A, K)]$, then $\operatorname{ind}(xy) = \operatorname{ind}(x) + \operatorname{ind}(y)$.

(b) If $xy \in \Phi(A, K)$, then ind(x) = ind(xy) - ind(y).

PROOF. (a) It suffices to consider only the case where $x, y \in \Phi_l(A, K)$.

Case 1: $x, y \in \Phi(A, I(A)) = \Phi(A, soc(A))$. Using [4, theorem F.2.9] this gives ind(xy) = ind(x) + ind(y).

Case 2: $x \notin \Phi(A, \operatorname{soc}(A))$ or $y \notin \Phi(A, \operatorname{soc}(A))$. It follows from Proposition 2.4 that $xy \in \Phi_l(A, \operatorname{soc}(A)) \setminus \Phi_r(A, \operatorname{soc}(A))$. Hence $\operatorname{ind}(xy) = -\infty = \operatorname{ind}(x) + \operatorname{ind}(y)$.

(b) It follows from Proposition 2.4 that $x \in \Phi_r(A, soc(A))$ and $y \in \Phi_l(A, soc(A))$ soc(A)). If $x \in \Phi(A, soc(A))$, then $y \in \Phi(A, soc(A))$ (Proposition 2.4). Now use (a). If $x \notin \Phi(A, \operatorname{soc}(A))$, then $x \notin \Phi_l(A, \operatorname{soc}(A))$ and $y \notin \Phi_r(A, \operatorname{soc}(A))$. Hence $\operatorname{ind}(x) = -\operatorname{ind}(y) = -\infty.$

The next theorem shows that the sets

$$\Phi_r^{(n)}(A, K) := \{x \in \Phi_r(A, K) : \operatorname{ind}(x) = n\} (n \in \mathbf{Z} \cup \{-\infty\}), \\ \Phi_r^{(n)}(A, K) := \{x \in \Phi_r(A, K) : \operatorname{ind}(x) = n\} (n \in \mathbf{Z} \cup \{\infty\})$$

(3.1)

(3.2)

lity

lar

is ıd

p)

'n

and
$$\Phi^{(n)}(A, K) := \{x \in \Phi(A, K) : \text{ind}(x) = n\} (n \in \mathbb{Z})$$

are open subsets of A.

3.8 Theorem. Let K be an inessential ideal of A. For each $x \in \mathcal{A}(A, K)$ there is a positive $\gamma(=\gamma(x))$ with the following properties: if $s \in A$ and $||s|| < \gamma$, then

(a) $x + s \in \mathcal{A}(A, K)$, $\operatorname{ind}(x + s) = \operatorname{ind}(x)$;

(b) $\operatorname{nul}(x+s) \le \operatorname{nul}(x)$, $\operatorname{def}(x+s) \le \operatorname{def}(x)$.

PROOF. Let $x \in \Phi_l(A, K)$ (the proof for the case $x \in \Phi_r(A, K)$ is similar). By Proposition 2.3, we can find an idempotent $p \in \text{soc}(A) \cap K$ such that Ax = A(e-p). Hence

$$yx = e - p \tag{3.3}$$

for some $y \in A$. Put $\gamma = ||y||^{-1}$. Let $s \in A$ and $||s|| < \gamma$, then e + ys is invertible and

$$y(x+s) = e + ys - p.$$
 (3.4)

Thus

$$(e+ys)^{-1}y(x+s) = e - (e+ys)^{-1}p, (e+ys)^{-1}p \in K,$$
(3.5)

which implies that $x + s \in \Phi_l(A, K)$.

From (3.3), (3.4) and Proposition 3.6 we derive yx, $y(x+s) \in \Phi(A, K)$ and ind(yx) = ind(e-p) = ind(e) = 0 = ind(e+ys) = ind(e+ys-p) = ind(y(x+s)). Hence, by Theorem 3.7(b),

$$\operatorname{ind}(x+s) = \operatorname{ind}(y(x+s)) - \operatorname{ind}(y) = \operatorname{ind}(yx) - \operatorname{ind}(y) = \operatorname{ind}(x). \tag{3.6}$$

Next we show $\operatorname{nul}(x+s) \le \operatorname{nul}(x)$. Let $a \in R(x+s)$, then $0 = (e+ys)^{-1}y(x+s)a = a - (e+ys)^{-1}pa$ and thus $a \in (e+ys)^{-1}pA$. Hence $R(x+s) \subseteq (e+ys)^{-1}pA$ and

$$R(x+s)e_0 \subseteq (e+ys)^{-1}pAe_0 (e_0 \in Min(A)).$$

This shows $\operatorname{nul}(x+s) \le \operatorname{rank}(p) = \operatorname{nul}(x)$ (Remark 3.2(a)). In view of (3.6), we conclude that $\operatorname{def}(x+s) \le \operatorname{def}(x)$.

Now we consider the special Banach algebra $\mathcal{L}(X)$ where X is a complex Banach space. For this purpose we need the following two classes of bounded linear operators:

 $\mathcal{F}(X)$ the ideal of finite rank operators in $\mathcal{L}(X)$;

3.

if

J

 $\mathcal{K}(X)$ the closed ideal of compact operators on X.

3.9 Example. (a) $\mathcal{L}(X)$ is primitive.

(b) $\operatorname{soc}(\mathcal{L}(X)) = \mathcal{F}(X)$, $\operatorname{Min}(\mathcal{L}(X)) = \{P \in \mathcal{L}(X) \colon P^2 = P \text{ and } \dim P(X) = 1\}$.

(c) For $T \in \mathcal{L}(X)$ we have $\operatorname{nul}(T) = \operatorname{dim} N(T)$ and $\operatorname{def}(T) = \operatorname{codim} T(X)$.

(d) $\mathcal{K}(X)$ is an inessential ideal of $\mathcal{L}(X)$.

(e) An operator T in $\mathcal{L}(X)$ is relatively regular with $\mathrm{nul}(T) < \infty$ or $\mathrm{def}(T) < \infty$ if and only if $T \in \mathcal{A}(\mathcal{L}(X), \mathcal{H}(X))$.

PROOF. (a), (b), (c) [4, F.2.2.].

(d) [8, Satz 106.2].

(e) [6, p. 28].

An operator $T \in \mathcal{A}(\mathcal{L}(X), \mathcal{H}(X))$ is called an Atkinson operator.

Using Theorem 3.4 and the definition of nullity and defect, the following result is easy to confirm.

3.10 Proposition. Let K be an inessential ideal and $e_0 \in Min(A)$. If $x \in \mathcal{A}(A, K)$, then \hat{x} is an Atkinson operator on Ae_0 .

Let X^* denote the conjugate space of the Banach space X. The adjoint of a linear operator T in $\mathcal{L}(X)$ is denoted by T^* .

The next proposition will be needed in section 5.

3.11 Proposition. If $T \in \mathcal{L}(X)$ is an Atkinson operator, then T^* is an Atkinson operator and

$$nul(T) = def(T^*)$$
 and $def(T) = nul(T^*)$.

PROOF. Clearly, T* is relatively regular. Using [8, Satz 82.1], the result follows.

4. General Banach algebras

In this section we assume that A is an arbitrary Banach algebra. Thus soc(A) might not exist. The quotient algebra A' = A/rad(A) is semisimple [5, prop. 24.21], hence A' has a socle.

We write x' for the coset $x + \operatorname{rad}(A)(x \in A)$ and if $S \subseteq A$ write $S' = \{x' : x \in S\}$.

- **4.1 Definition.** (a) The *presocle* of A is defined by $psoc(A) = \{x \in A: x' \in soc(A')\}$.
 - (b) The ideal of inessential elements is defined to be I(A) = k(h(psoc(A))).
 - (c) An ideal K of A is inessential if $K \subseteq I(A)$.

Observe that psoc(A) is an ideal of A and that soc(A) = psoc(A) if A is semisimple.

If K is an inessential ideal of A, the sets

). By

re is a

Ax =

tible

(3.3)

3.4)

1.5)

nd)).

5)

--

$$\Phi_l(A, K), \Phi_r(A, K), \mathcal{A}(A, K) \text{ and } \Phi(A, K)$$

are defined as in Definition 2.2.

Notation. If K = I(A) we write $\Phi_l(A)$, $\Phi_r(A)$, $\mathcal{A}(A)$, $\Phi(A)$ instead of $\Phi_l(A, I(A))$, $\Phi_r(A, I(A))$, $\mathcal{A}(A, I(A))$, $\Phi(A, I(A))$.

Recall that the quotient algebra A/P is primitive $(P \in \Pi(A))$.

4.2 Theorem. (a) $\Phi_{l}(A) = \Phi_{l}(A, \operatorname{psoc}(A)), \ \Phi_{r}(A) = \Phi_{r}(A, \operatorname{psoc}(A)).$

(b) If $x \in \Phi_l(A)[\Phi_r(A)]$ there exist $\epsilon > 0$ and a finite subset Ω of $\Pi(A)$ such that if $y \in A$ and $||x - y|| < \epsilon$ then

(b.1) $y + P \in \Phi_t(A/P)[\Phi_r(A/P)]$ for all $P \in \Omega$,

(b.2) y + P is left [right] invertible for all $P \in \Pi(A) \setminus \Omega$.

Proof. [10, prop. 2.19, theorem 2.22]. ■

4.3 Corollary. If $x \in \Phi_l(A)[\Phi_r(A)]$ there exist $P_1, \ldots, P_n \in \Pi(A)$ such that

$$x + P \in \Phi_l(A/P)[\Phi_r(A/P)]$$
 for all $P \in \Pi(A)$ and

$$\operatorname{nul}(x+P)=0[\operatorname{def}(x+P)=0] \text{ for all } P\in\Pi(A)\setminus\{P_1,\ldots,P_n\}.$$

Proof. Theorem 4.2; Proposition 3.6.

In view of Corollary 4.3 the concepts of nullity, defect and index can be extended as follows.

4.4 Definition. (a) If $x \in \mathcal{A}(A)$ the nullity, defect and index functions $\Pi(A) \to \mathbf{Z} \cup \{-\infty, \infty\}$ are defined by

$$\nu(x)(P) = \operatorname{nul}(x+P), \, \delta(x)(P) = \operatorname{def}(x+P),$$

$$\iota(x)(P) = \operatorname{ind}(x+P).$$

(b) If $x \in \mathcal{A}(A)$ we define

$$\operatorname{nul}(x) = \begin{cases} \sum_{P \in \Pi(A)} \nu(x)(P) & \text{for } x \in \Phi_l(A), \\ \infty & \text{for } x \notin \Phi_l(A) \end{cases}$$

$$def(x) = \begin{cases} \sum_{P \in \Pi(A)} \delta(x)(P) & \text{for } x \in \Phi_r(A), \\ \infty & \text{for } x \notin \Phi_r(A) \end{cases}$$

and
$$ind(x) = nul(x) - def(x)$$
.

Note that $\operatorname{ind}(x) = \sum_{P \in \Pi(A)} \iota(x)(P)$ if $x \in \Phi(A)$.

4.5

soc p €

Th giv

Cŧ

4

3

4.5 Remark. If A is a primitive Banach algebra and $\{0\} \neq P \in \Pi(A)$ then $soc(A) \subseteq P$ [4, p. 38]. Suppose $x \in \Phi_l(A)$. By Proposition 2.3 there are $y \in A$ and $p \in \operatorname{soc}(A)$ such that yx = e - p. It follows that $p \in P$ for all $P \in \Pi(A)$, $P \neq \{0\}$. Thus x + P is left invertible in A/P for all $P \in \Pi(A)$, $P \neq \{0\}$. Proposition 3.6(b) gives $\nu(x)(P) = 0$ for all $P \in \Pi(A)$, $P \neq \{0\}$. Hence $\operatorname{nul}(x) = \nu(x)(\{0\})$.

Similar: $x \in \Phi_r(A) \Rightarrow \operatorname{def}(x) = \delta(x)(\{0\}).$

Now Proposition 3.6, Theorem 3.7 and Theorem 3.8 extend to the general case.

4.6 Proposition. Let $x \in A$. Then x is left [right] invertible if and only if $x \in \Phi_l(A)[\Phi_r(A)]$ and $\nu(x)(P) = 0[\delta(x)(P) = 0]$ for all $P \in \Pi(A)$.

Proof. [10, prop. 2.18, 3.4]; Proposition 3.6. ■

4.7 Theorem (Index). Let K be an inessential ideal of A.

(a) If $x,y \in \Phi_l(A, K)[\Phi_r(A, K)]$, then

$$\iota(xy) \equiv \iota(x) + \iota(y)$$
 and $\operatorname{ind}(xy) = \operatorname{ind}(x) + \operatorname{ind}(y)$.

(b) If $xy \in \Phi(A, K)$, then

$$\iota(x) \equiv \iota(xy) - \iota(y)$$
 and $\operatorname{ind}(x) = \operatorname{ind}(xy) - \operatorname{ind}(x)$.

PROOF. The argument is analogous to the one in Theorem 3.7, with use being made of [4, F.3.8].

- **4.8 Theorem.** Let K be an inessential ideal of A. For each $x \in \Phi_t(A, K)[\Phi_r(A, K)]$ there is a positive γ with the following properties: if $s \in A$ and $\|s\| < \gamma$, then
 - (a) $x + s \in \Phi_l(A, K)[\Phi_r(A, K)];$
 - (b) $\nu(x+s)(P) \le \nu(x)(P)$ $[\delta(x+s)(P) \le \delta(x)(P)]$ for all $P \in \Pi(A)$;
 - (c) $\operatorname{nul}(x+s) \leq \operatorname{nul}(x) [\operatorname{def}(x+s) \leq \operatorname{def}(x)];$
 - (d) $\iota(x+s) \equiv \iota(x);$
 - (e) $\operatorname{ind}(x+s) = \operatorname{ind}(x)$.

PROOF. Let $x \in \Phi_l(A, K)$ (the proof for the case $x \in \Phi_r(A, K)$ is similar). There exist $z \in A$ and $k \in K$ such that zx = e - k. By Theorem 4.2(a), we can find $y \in A$ and $p \in psoc(A)$, such that

$$yx = e - p. (4.1)$$

Put $\gamma_0 = \min\{\|y\|^{-1}, \|z\|^{-1}\}$. Let $s \in A$ and $\|s\| < \gamma_0$, then e + ys and e + zs are invertible, thus $(e + zs)^{-1}z(x + s) = e - (e + zs)^{-1}k$ and $(e + zs)^{-1}k \in K$. Hence $x + s \in \Phi_l(A, K)$. Since yx = e - p, we have

$$y(x + s) = (e + ys) - p,$$
 (4.2)

therefore

1)),

int

$$yx, y(x+s) \in \Phi(A). \tag{4.3}$$

Since $p \in \operatorname{psoc}(A)$, [4, BA.3.4] shows that $p' + P' \in \operatorname{soc}(A'/P')(P \in \Pi(A))$, thus, by [4, BA.2.6],

$$p + P \in \operatorname{soc}(A/P)$$
 for all $P \in \Pi(A)$. (4.4)

Combining (4.3) and Corollary 4.3,

$$yx + P \in \Phi(A/P)$$
 for all $P \in \Pi(A)$. (4.5)

In view of (4.4), (4.5) and Proposition 3.6(a), we conclude that

$$u(yx)(P) = ind(e - p + P) = ind(e + P) = 0$$
 (4.6)

for all $P \in \Pi(A)$.

$$ind(yx) = \sum_{P \in \Pi(A)} \iota(yx)(P) = 0.$$
 (4.7)

Analogous arguments (use (4.2)) show that

$$\iota(y(x+s))(P) = \operatorname{ind}(e+ys+P) = 0 \text{ for all } P \in \Pi(A)$$
 (4.8)

and

$$\operatorname{ind}(y(x+s)) = 0. (4.9)$$

By Theorem 4.7(b), (4.8) and (4.9), we derive

$$\iota(x+s) \equiv \iota(x)$$
 and $\operatorname{ind}(x+s) = \operatorname{ind}(x)$.

So far, we have

$$||s|| < \gamma_0 \Rightarrow x + s \in \Phi_t(A, K),$$

 $\iota(x + s) \equiv \iota(x)$ and $\operatorname{ind}(x + s) = \operatorname{ind}(x).$

According to Theorem 4.2(b), there exist $\epsilon > 0$ and $P_1, \ldots, P_n \in \Pi(A)$ such that if $||s|| < \epsilon$ then

$$x + s + P_j \in \Phi_l(A/P_j)$$
 $(j = 1, ..., n)$ (4.10)

and

x + s + P, x + P are left invertible for all $P \in \Pi(A) \setminus \{P_1, \dots, P_n\}$. (4.11)

(4.3)

thus,

By Theorem 3.8, for each $j \in \{1, ..., n\}$, there exists $\gamma_j \in (0, \epsilon]$ such that if $||s+P_j|| < \gamma_j$ then

$$\operatorname{nul}(x+s+P_i) \leq \operatorname{nul}(x+P_i). \tag{4.12}$$

(4.4)

(4.5)

.6)

7)

1)

Note that $\operatorname{nul}(x+s+P)=\operatorname{nul}(x+P)=0$, whenever $P\in\Pi(A)\setminus\{P_1,\ldots,P_n\}$. Put $\gamma_{n+1} = \min\{\gamma_1, \ldots, \gamma_n\}$. From (4.12) we derive for $||s|| < \gamma_{n+1}$

$$\nu(x+s)(P) \le \nu(x)(P)$$
 for all $P \in \Pi(A)$.

Put $\gamma = \min\{\gamma_0, \gamma_{n+1}\}\$ and the proof is complete.

5. Holomorphic functions

In this section G will denote a region in C and f a function on G with values in A.

As an immediate consequence of Theorem 4.8 we have the following proposition.

- 5.1 Proposition. Let K be an inessential ideal of A. Suppose that f is continuous and $f(\lambda) \in \mathcal{A}(A, K)$ for all $\lambda \in G$. Then
 - (a) ind($f(\lambda)$) is constant on G;
 - (b) either $\operatorname{nul}(f(\lambda)) = \infty$ for all $\lambda \in G$ or $\operatorname{nul}(f(\lambda)) < \infty$ for all $\lambda \in G$;
 - (c) either $def(f(\lambda)) = \infty$ for all $\lambda \in G$ or $def(f(\lambda)) < \infty$ for all $\lambda \in G$.

A subset M of the region G is called discrete if M has no accumulation points in G. Thus M is at most countable and $G \setminus M$ is again a region.

5.2 Lemma. Let A be primitive and let f be holomorphic such that m =max rank $(f(\lambda))$ exists. Then there is a discrete subset M of G such that

$$rank(f(\lambda)) = m \text{ for all } \lambda \in G \setminus M.$$

PROOF. Fix $e_0 \in Min(A)$, and let the operator-valued function $\bar{f}: G \to \mathcal{L}(Ae_0)$ be given by $\bar{f}(\lambda) = \widehat{f(\lambda)}$ for $\lambda \in G$. Since \bar{f} is holomorphic and dim $\bar{f}(\lambda)(Ae_0) =$ $\dim \widehat{f(\lambda)}(Ae_0) = \operatorname{rank}(f(\lambda)) \leq m$ for all $\lambda \in G$, the result follows from [7, lemma 3.2].

The idea of the next lemma goes back to a theorem of Gramsch [7, Satz 3.3].

5.3 Lemma. Let X be a complete Banach space and $T: G \to \mathcal{L}(X)$ be a holomorphic function. If $T(\lambda) \in \mathcal{A}(\mathcal{L}(X), \mathcal{K}(X))$ for all $\lambda \in G$, then, for every $\lambda_0 \in G$, there exist a positive δ and constants α , $\beta \leq \infty$ such that

$$\dim N(T(\lambda)) = \alpha \leq \dim N(T(\lambda_0)) \tag{5.1}$$

and

$$\operatorname{codim} T(\lambda)(X) = \beta \leq \operatorname{codim} T(\lambda_0)(X), \tag{5.2}$$

whenever $0 < |\lambda - \lambda_0| < \delta$.

PROOF. Take $\lambda_0 \in G$. Suppose first that $\dim N(T(\lambda_0)) < \infty$. In this case, the proof of (5.1) is contained in the proof of [7, Satz 3.3].

If $\dim N(T(\lambda_0)) = \infty$, then $\dim N(T(\lambda)) = \infty$ for all $\lambda \in G$ (Proposition 5.1). Thus (5.1) is proved.

Suppose now that $\operatorname{codim} T(\lambda_0)(X) < \infty$. Using Proposition 3.11 we have $T(\lambda)^* \in \mathcal{A}(\mathcal{L}(X^*), \mathcal{H}(X^*))$ and $\operatorname{codim} T(\lambda)(X) = \dim N(T(\lambda)^*)$ for all $\lambda \in G$. According to (5.1) there exist $\delta > 0$ and a constant β such that

$$\dim N(T(\lambda)^*) = \beta \leq \dim N(T(\lambda_0)^*) \quad (0 < |\lambda - \lambda_0| < \delta),$$

that is

$$\operatorname{codim} T(\lambda)(X) = \beta \leq \operatorname{codim} T(\lambda_0)(X),$$

whenever $0 < |\lambda - \lambda_0| < \delta$.

If codim $T(\lambda_0)(X) = \infty$, then codim $T(\lambda)(X) = \infty$ for all $\lambda \in G$ (Proposition 5.1).

The next theorem plays a central role in our investigations.

5.4 Theorem. Let A be primitive, K an inessential ideal of A, and let $f: G \to A$ be holomorphic such that $f(\lambda) \in \mathcal{A}(A, K)$ for all $\lambda \in G$.

(a) If $f(\lambda) \in \Phi_l(A, K)$ for all $\lambda \in G$, then, for every $\lambda_0 \in G$, there exist a positive δ and a constant α such that

$$\operatorname{nul}(f(\lambda)) = \alpha \leq \operatorname{nul}(f(\lambda_0)),$$

whenever $0 < |\lambda - \lambda_0| < \delta$.

(b) If $f(\lambda) \in \Phi_r(A, K)$ for all $\lambda \in G$, then, for every $\lambda_0 \in G$, there exist a positive δ and a constant β such that

$$def(f(\lambda)) = \beta \leq def(f(\lambda_0)),$$

whenever $0 < |\lambda - \lambda_0| < \delta$.

PROOF. Fix $e_0 \in \text{Min}(A)$, and let the holomorphic operator-valued function: $\bar{f}: G \to \mathcal{L}(Ae_0)$ be given by $\bar{f}(\lambda) = \widehat{f(\lambda)}$ for $\lambda \in G$. It follows from Proposition 3.10 that $\bar{f}(\lambda)$ is an Atkinson operator on Ae_0 , $\text{nul}(f(\lambda)) = \text{dim}N(\bar{f}(\lambda))$ and $\text{def}(f(\lambda)) = \text{codim } \bar{f}(\lambda)(Ae_0)(\lambda \in G)$. The result follows by Lemma 5.3.

Notation. For $\delta > 0$ and $\lambda_0 \in \mathbb{C}$ define

$$K_{\delta}(\lambda_0) = \{\lambda \in \mathbb{C} : |\lambda - \lambda_0| < \delta\} \text{ and } \dot{K}_{\delta}(\lambda_0) = K_{\delta}(\lambda_0) \setminus \{\lambda_0\}.$$

5.5 Theorem. Let and let $f: G \rightarrow A$

(a) Suppose λ_0 such that $v(f(\lambda))$ i $v(f(\lambda_0))$.

(b) Suppose λ_0 such that $\delta(f(\lambda))$ $\delta(f(\lambda_0))$.

PROOF. (a) Account such that if $||f(\lambda)||$

$$f(\lambda) + P_j \in$$

$$f(\lambda) + P, f($$

Choose now δ_0 the holomorphi By (5.3) an and $\alpha_j \in \mathbb{N} \cup \{0\}$

By (5.4), nul($K_{\delta_0}(\lambda_0)$. Put δ

and

_

for all $\lambda \in K$ (b) The β

Now we

5.6 Theorem

(a) Supp M_{ic} of G su

> (i) v(f) (ii) for

(b) Su_1 M_B of G s (5.2)

n this case, the proof

G (Proposition 5.1).

3.11 we have $T(\lambda)^*$ all $\lambda \in G$. Accord-

 $|\delta| < \delta$

 $\in G$ (Proposition

let $f: G \rightarrow A$ be

re exist a positive

i, there exist a

Inction: \tilde{f} : G tion 3.10 that $def(f(\lambda)) =$

5.5 Theorem. Let A be an arbitrary Banach algebra, K an inessential ideal of A, and let $f: G \to A$ be holomorphic.

(a) Suppose $\lambda_0 \in G$ and $f(\lambda) \in \Phi_l(A, K)$ for all $\lambda \in G$. Then there exists $\delta > 0$ such that $v(f(\lambda))$ is independent of λ for $0 < |\lambda - \lambda_0| < \delta$ and is bounded above by $v(f(\lambda_0))$

(b) Suppose $\lambda_0 \in G$ and $f(\lambda) \in \Phi_r(A, K)$ for all $\lambda \in G$. Then there exists $\delta > 0$ such that $\delta(f(\lambda))$ is independent of λ for $0 < |\lambda - \lambda_0| < \delta$ and is bounded above by $\delta(f(\lambda_0))$.

PROOF. (a) According to Theorem 4.2(b), there are $\epsilon > 0$ and $P_1, \ldots, P_n \in \Pi(A)$ such that if $||f(\lambda) - f(\lambda_0)|| < \epsilon$ then

$$f(\lambda) + P_j \in \Phi_l(A/P_j) \qquad (j = 1, \dots, n), \tag{5.3}$$

$$f(\lambda) + P, f(\lambda_0) + P$$
 are left invertible in A/P for all $P \in \Pi(A) \setminus \{P_1, \dots, P_n\}$. (5.4)

Choose now $\delta_0 > 0$ so that $||f(\lambda) - f(\lambda_0)|| < \epsilon$ for $|\lambda - \lambda_0| < \delta_0$. For $P \in \Pi(A)$ let the holomorphic function $f_P : K_{\delta_0}(\lambda_0) \to A/P$ be given by $f_P(\lambda) := f(\lambda) + P$.

By (5.3) and Theorem 5.4(a), for each $j \in \{1, ..., n\}$ there exist $\delta_j \in (0, \delta_0]$ and $\alpha_j \in \mathbb{N} \cup \{0\}$ such that

$$\operatorname{nul}(f_{P_j}(\lambda)) = \alpha_j \leq \operatorname{nul}(f_{P_j}(\lambda_0)) \qquad (0 < |\lambda - \lambda_0| < \delta_j).$$

By (5.4), $\operatorname{nul}(f_P(\lambda)) = \operatorname{nul}(f_P(\lambda_0)) = 0$ for all $P \in \Pi(A) \setminus \{P_1, \ldots, P_n\}$ and all $\lambda \in K_{\delta_0}(\lambda_0)$. Put $\delta = \min\{\delta_1, \ldots, \delta_n\}$. Then we have

$$v(f(\lambda))(P_j) = \alpha_j \le v(f(\lambda_0))(P_j)$$
 $(j = 1, ..., n)$

and

$$\nu(f(\lambda))(P) = \nu(f(\lambda_0))(P) = 0 \qquad (P \in \Pi(A) \setminus \{P_1, \dots, P_n\})$$

for all $\lambda \in \dot{K}_{\delta}(\lambda_0)$.

(b) The proof is similar.

Now we are in a position to present the main results of this paper.

- **5.6 Theorem.** Let K be an inessential ideal of A, and let $f: G \rightarrow A$ be holomorphic.
- (a) Suppose $f(\lambda) \in \Phi_l(A, K)$ for all $\lambda \in G$. Then there exists a discrete subset M_{α} of G such that

(i) $v(f(\lambda))$ is independent of λ for $\lambda \in G \setminus M_{\alpha}$,

(ii) for each $\mu \in M_{\alpha}$ there is a primitive ideal P such that

$$v(f(\mu))(P) > v(f(\lambda))(P) \qquad (\lambda \in G \backslash M_{\alpha}).$$

(b) Suppose $f(\lambda) \in \Phi_r(A, K)$ for all $\lambda \in G$. Then there exists a discrete subset M_B of G such that

(i) $\delta(f(\lambda))$ is independent of λ for $\lambda \in G \setminus M_{\beta}$,

(ii) for each $\mu \in M_B$ there is a primitive ideal P such that

$$\delta(f(\mu))(P) > \delta(f(\lambda))(P) \quad (\lambda \in G \setminus M_{\beta}).$$

PROOF. (a) Let M_{α} be the set of points $\mu_0 \in G$ with the following property: there exists some neighbourhood $U \subseteq G$ of μ_0 such that with some constant $\gamma \ge 0$ and with some primitive ideal P the following assertion holds:

$$v(f(\lambda))(P) = \gamma < v(f(\mu_0))(P) \text{ for } \lambda \in U \setminus \{\mu_0\}.$$

Take $\mu_0 \in M_{\alpha}$. By Theorem 5.5(a), there exists $\delta > 0$ such that $\nu(f(\lambda))$ is independent dent of λ for $0 < |\lambda - \mu_0| < \delta$. Thus M_{α} is a discrete subset of G. Put $G_0 = G \setminus M_{\alpha}$. Observe that G_0 is a region.

Let $\mu \in G_0$. By Theorem 5.5(a), there exists $\delta > 0$ with

$$P \in \Pi(A) \Rightarrow \nu(f(\lambda))(P)$$
 is constant in $K_{\delta}(\mu)$. (5.5)

Fix $\lambda_0 \in G_0$ and define

$$G_1 = \{ \mu \in G_0 : \nu(f(\mu))(P) = \nu(f(\lambda_0))(P) \text{ for all } P \in \Pi(A) \},$$

$$G_2 = G_0 \setminus G_1.$$

From (5.5) we obtain that G_1 and G_2 are open subsets of G_0 . Since G_0 is connected and $\lambda_0 \in G_1$, it follows that $G_2 = \emptyset$. Hence

$$G_1 = G_0 = G \backslash M_{\alpha}.$$

This proves (i). The definition of M_{α} shows that (ii) holds.

(b) The proof is similar.

5.7 Corollary. Let K be an inessential ideal. Suppose that $f: G \rightarrow A$ is a holomorphic function with $f(\lambda) \in \Phi(A, K)$ for all $\lambda \in G$. Then $\iota(f(\lambda)) = \iota(f(\mu))$ for $\lambda, \mu \in G$. Furthermore there exists a discrete subset M of G such that

(i) $v(f(\lambda)) = v(f(\mu))$ and $\delta(f(\lambda)) = \delta(f(\mu))$ for $\lambda, \mu \in G \setminus M$;

(ii) for each $\mu \in M$ there is a primitive ideal P such that

$$v(f(\mu))(P) > v(f(\lambda))(P)$$
 and $\delta(f(\mu))(P) > \delta(f(\lambda))(P)$ $(\lambda \in G \setminus M)$.

PROOF. Define the sets M_{α} and M_{β} as in Theorem 5.6. By Proposition 5.1(a), $\iota(f(\lambda))(P)$ $(P \in \Pi(A))$ is constant in G. This shows $M_{\alpha} = M_{\beta}$. Put $M = M_{\alpha}$ $(=M_{\beta})$. Then (i) is valid. To prove (ii), use again the continuity of the index.

5.8 Corollary. Let K be an inessential ideal, and let $f: G \rightarrow A$ be holomorphic. Suppose that $f(\lambda) \in \Phi_t(A, K)[\Phi_r(A, K), \Phi(A, K)]$ for all $\lambda \in G$ and that $f(\lambda_0)$ is left invertible [right invertible, invertible] for some $\lambda_0 \in G$. Then there exist a discrete subset M of G and a holomorphic function $g: G \backslash M \rightarrow A$ such that

 $g(\lambda)f(\lambda) =$

PROOF. We assi $v(f(\lambda_0))(P)=0$

v(

Put $M = M_{\alpha}$. It 4.6). The existe: [1, theorem 1].

The author

III ALLAN, G. F Math. S

[2] BARNES, B. . of an al [3] BARNES, B.

[4] BARNES, B.

theory [5] BONSALL, F Spring

[6] CARADUS, Math.

171 GRAMSCH, 81.

[8] HEUSER, H 9 RICKART,

[10] ROWELL, J 69-85

[11] SCHREIECK Karls

[12] WECKBACI ment

$$g(\lambda)f(\lambda) = e[f(\lambda)g(\lambda) = e, f(\lambda)g(\lambda) = g(\lambda)f(\lambda) = e]$$
 for all $\lambda \in G \setminus M$.

PROOF. We assume that $f(\lambda_0)$ is left invertible. By Proposition 4.6, we have $v(f(\lambda_0))(P) = 0$ for all $P \in \Pi(A)$. Theorem 5.6(a) shows

$$\nu(f(\lambda))(P) = 0$$
 for all $\lambda \in G \backslash M_{\alpha}$ and all $P \in \Pi(A)$.

Put $M = M_a$. It follows that $f(\lambda)$ is left invertible for all $\lambda \in G \setminus M$ (Proposition 4.6). The existence of a holomorphic $g: G \setminus M \to A$ with $g(\lambda)f(\lambda) = e$ follows from [1], theorem [1].

ACKNOWLEDGEMENT

The author wishes to thank the referee for his many helpful suggestions.

REFERENCES

- Allan, G. R. 1967 Holomorphic vector-valued functions on a domain of holomorphy. J. Lond. Math. Soc. 42, 509-13.
- [2] BARNES, B. A. 1968 A generalized Fredholm theory for certain maps in the regular representation of an algebra. Can. J. Math. 20, 495-504.
- [3] BARNES, B. A. 1969 The Fredholm elements of a ring. Can. J. Math. 21, 84-95.
- [4] BARNES, B. A., MURPHY, G. J., SMYTH, M. R. F. and West, T. T. 1982 Riesz and Fredholm theory in Banach algebras. Boston/London/Melbourne. Pitman.
- [5] BONSALL, F. F. and DUNCAN, J. 1973 Complete normed algebras. Berlin/Heidelberg/New York. Springer.
- [6] CARADUS, S. R. 1974 Operator theory of the pseudo-inverse. Queen's Papers in Pure and Applied Math. no. 38. Queen's University, Belfast.
- [7] GRAMSCH, B. 1967 Spektraleigenschaften analytischer Operatorfunktionen. Math. Z. 101, 165-
- [8] HEUSER, H. 1986 Funktionalanalysis (2nd edn). Stuttgart. Teubner.
- [9] RICKART, C. E. 1960 General theory of Banach algebras. Princeton. Krieger.
- [10] ROWELL, J. W. 1984 Unilateral Fredholm theory and unilateral spectra. Proc. R. Ir. Acad. 84A, 69-85.
- [11] SCHREIECK, M. 1984 Atkinson-, Fredholm- und Rieszelemente. Dissertation, Universität Karlsruhe.
- [12] Weckback, Ä. 1983 Wesentliche Spektren und Störungen von Atkinson- und Fredholmelementen. Dissertation, Universität Karlsruhe.

y: there ≥ 0 and

in the second second

depen- $G \setminus M_{\alpha}$.

(5.5)

cted

ис Э.