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ABSTRACT

Let A be a unital Banach algebra and K an inessential ideal of A. We investigate
the spectral properties of a holomorphic function f (defined on a region in C)
where the values of this function are K-Atkinson elements of A (i.e. each f(A) is
left or right invertible modulo K).

Introduction

Let X denote a complex Banach space, HAX) the set of all bounded linear
operators on X, and ®(X) the set of all Fredholm operators in XX). In [7],
Gramsch proved the following theorem:

let G be a region in C and T : G — HAX) a holomorphic operator
function such that T(A) €E D(X) forall A\EG. Then there exist a discrete
subset M of G and constants n, m = 0 with the following properties:

dim N(T(A)) =n and codim T(A\)(X) = m for € G\M,
dim N(T(A)) >n and codim T(AN)(X)>m for \EM,
ind TW)=n—mforall A€G.

(N(T(A)) denotes the kernel of T(A), T(A)(X) denotes the range of
T(A).)

The aim of this paper is to extend the above result from an operator-valued
function T to a holomorphic function f (defined on a region in C) with values in
a complex Banach algebra A. The values of this function f are assumed to be left
or right invertible modulo K, where K denotes an inessential ideal of A.

In the first section we give the preliminary definitions and results which we
need in the sequel. Sections 2 and 3 deal with the basic Atkinson and Fredholm
theory in semisimple Banach algebras. General Banach algebras are considered
in section 4. In section 5 we consider holomorphic functions with values in a
complex Banach algebra. In particular, we extend some results due to Gramsch
[7] and Rowell [10].

Proc. R. Ir. Acad. Vol. 91A, No. 1, 113-127 (1991)




114 Proceedings of the Royal Irish Academy

1. Preliminaries and notations

In this paper we always assume that A is a complex Banach algebra with identity
e#0. :

Given a left ideal L of A the quotient is the ideal L : A={a €A : aAC L}.
The quotient of a maximal left ideal is called a primitive ideal. We denote the set
of primitive ideals by II(A). Observe that each P € II(A) is closed.

If JC A is non-empty and Q) C TI(A4), we define

h(J)={PETI(A):JC P} and k()= () P.

PrPEQ

The radical of A is the intersection of the primitive ideals of A and is denoted by
rad(A). A is said to be semisimple if rad(A) = {0}. A is said to be primitive if
{0} €II(A) (a primitive Banach algebra is semisimple). Let P € TI(A), then A/P
is primitive [5, prop. 26.9].

In a semisimple Banach algebra A, the socle of A, soc(A), is defined to be the
sum of all minimal right ideals (which equals the sum of all minimal left ideals [5,
prop. 30.10]) or {0} if A has no minimal right ideals. Thus soc(A) is an ideal of
A.

For each subset M of A the left annihilator and the right annihilator are the
sets

L(M)={y€A:yM =0} and R(M) ={y € A: My = 0} respectively.
If M = {x} we simply write L(x) and R(x). Since A has an identity, we have
L(xA) = L(x) and R(Ax) = R(x).

Let X be a complex Banach space, and let 4(X) be the Banach algebra of bounded

linear operators on X. If T€ #X), we denote by N(T) its kernel and by T(X)
its range.

2. Atkinson and Fredholm theory in semisimple Banach algebras

Fredholm theory in semiprime rings was pioneered by Barnes [2], [3]. This
theory was then extended by Schreieck [11] and Weckbach [12] to elements of a
semiprime algebra A, which are left or right invertible modulo soc(A).

The main references concerning Atkinson and Fredholm theory are [2], [3],
(10], [11], [12] and the monograph [4] of Barnes, Murphy, Smyth and West.

Throughout this section, A will denote a semisimple Banach algebra.

2.1 Definition. The ideal of inessential elements of A is given by I(A)=
k(h(soc(A))). An ideal K of A is called inessential if K C I(A).

2.2 Definition. Let K be an inessential ideal of A. An element x € A4 is called a

K-Atkinson element of A if x is left or right invertible modulo K. To be more
precise, we define:
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®(A, K) = {x € A: there exists y E A with yx —e € K};
®,(A, K) = {x € A: there exists y €A with xy — e € K}.

The set of K-Atkinson elements is
A, K) = (A, K)U DA, K).
The set of K-Fredholm elements of A is defined to be
®(A, K) = P(A, K) ND(A, K).

The following characterisation of Atkinson elements is due to Barnes [3,
theorem 2.3] and Rowell {10, prop. 2.13, 2.19].

2.3 Proposition. (a) ®(A, soc(Ad))=D(A, I(A)) and O(A, soc(A))
= ® (A, I(A)).

(b) Let K be an inessential ideal of A and x € A. Then x € ®(A, K)[®.(A, K)]
if and only if there exists an idempotent p € soc(A) N K such that Ax =

A(e — p)[xA = (e — p)A].
Proor. [4, F.1.10]; [10, prop. 2.13,2.19]. B

2.4 Proposition. Let K be an inessential ideal of A.
(a) x, y € @AA, K)[PAA, K)] = xy € P(A, K)[®AA, K)].
(b) x, y E A, xy € (A, K)[P,(A, K)] >y E (A, K)[x € DA, K)].
(©) x € B(A, K)[®(4, K)], u€ K>x +u€ &4, K[®.(4, K)]

ProoF. Straightforward. B

We close this section with a proposition due to Schreieck [11, Satz 5.4]. First
we need the following definition. Let x € A. We say that x is relatively regular if
there exists y € A such that xyx = x.

2.5 Proposition. Let K be an inessential ideal of A. Then x € (A, K)[P/(A,
K)] & x is relatively regular and R(x) C K[L(x) C K].

Proor. (=) By Proposition 2.3(b) there exists p = p* € soc(A) N K such that
Ax = A(e — p). Therefore yx = e — p for some y € A. Further, we have R(x) =
R(Ax) = pA, thus xp = 0. It follows that xyx =x — xp = x and pA C K.

(&) Take y € A such that xyx =x. Put p =e — yx. It follows that p’=p,
Ax = Ayx and R(x) = R(Ax) = R(Ayx) = R(A(e — p)) = pA. Since R(x) C K, we
have p=e—-yxEK. Thusx € P[4, K). B

3. Atkinson and Fredholm theory in primitive Banach algebras

In this section, A will be a primitive Banach algebra. A non-zero idempotent
eo € A is called mimimal if e,Ae is a division algebra. Min(A) denotes the set of
all minimal idempotents of A.
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Note that soc(A) # {0} if and only if Min(A) # @ [4, BA.3.1]. To avoid triviali-

. ties, we assume that Min(A) is non-empty.
Fix e; € Min(A), and let

x—>%A— HAe)

denote the left regular representation of A on the Banach space Aeq, that is £(y) =
xy(y € Aeo). For details see [4, p. 30] or [9, corollary 2.4.16].
Note that

£(Aeo) = xAeo and N (£) = R(x) N Ae, = R(x)eo.

It follows from [4, F.2.1] that dim £(Ae;), dim N(£) and codim 2(Aeo) (=dim
(Aeo/xAeo)) are independent of the particular choice of e, € Min(A).

3.1 Definition. For x €A we define the rank of x by rank(x)=dim £(Aeo)
(=dim xAeo). The nullity of x is defined to be nul(x) = dim N (%). The defect of
x is defined by def(x) = dim(Aey/xAeq).

3.2 Remark. (a) If Ax = A(e — p) and p = p?, then

R(x) = pA and (3.1)
nul(x) = dim R(x)eo = dim pAe, = rank( p).
(b) If xA = (e — g)A and q = ¢°, then
Aep = (e — q)Aey D gAeo = xAeo P gAey and (3.2)

def(x) = dim gAe, = rank(q).

3.3 Theorem. (a) x=0& rank(x) = 0.
(b) soc(A) = {x € A: rank(x) < }.

The proof may be found in [4, F.2.4].

The next theorem is a characterisation of Atkinson elements in terms of nullity
and defect.

3.4 Theorem [12, Satz 3.5]. x € ®,(A4, I(A))[PAA, I(A))] & x is relatively regular
and nul(x) < oo[def(x) < =].

Proor. 1. If x € @A, I(A)) there exists p = p* € soc(A) such that Ax = A(e - p)
(Proposition 2.3). By Proposition 2.5 and Remark 3.2, we conclude that x is
relatively regular and that nul(x)=rank(p). Because of Theorem 3.3(b) and
P €soc(A), it follows that nul(x) < e,

2. Take y € A such that xyx = x. Put p = e — yx. It follows that pP=p, Ax=
Ayx and R(x) = R(Ax) = R(Ayx) = pA. Thus rank(p) = dim pAe, = dim R(x)eo
=nul(x) <=. From Theorem 3.3(b) we derive p = e — yx €soc(4), hence
x € (A ,s0c(A)) = P(A, I(A)).
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A similar proof deals with the case of x € ®,(4, /(4)). &

Let K be an inessential ideal of A. Since ®(A, K)C ®(A, 1(4)) and
®,(A, K) C®(A, I(A)), it follows from Theorem 3.4 that for a K-Atkinson
element x at least one of the quantities nul(x), def(x) is finite. Thus we are in a
position to define the index for an Atkinson element.

3.5 Definition. The index of x € #(A, K) is defined by ind(x) = nul(x) — def (x).

3.6 Proposition. Let K be an inessential ideal of A. ,

(a) x€®(A4, K)[P(4, K)], ueK=>x+u€ ®(A, K)[P.(A, K)] and
ind(x + ©) = ind(x).

(b) x € A is left invertible if and only if x € ®(A, K) and nul(x) = 0.

(c) x € A is right invertible if and only if x € ®,(A, K) and def(x) = 0.

Proor. (a) [10, lemma 3.2(1)].
(b) (=) If x is left invertible, then x € Pi(A, K) and R(x) = {0}. Hence nul(x) =
0

(<) By Proposition 2.3, there exists p = p* €s0c(A) N K such that Ax =
A(e — p). Using Remark 3.2(a) this gives R(x) = pA and nul(x) = rank(p) =
0. Hence p =0 and Ax = A.

(¢) (=) If x is right invertible, then x € ®,(4, K) and xA = A. Hence xAeo =
Ae, where e € Min(A). Thus def(x) = 0.
(<) By Proposition 2.3, there exists g = q* € soc(A) N K such that x4 =
(e — q)A. Using Remark 3.2(b) this gives def (x) = rank(g) = 0. Hence ¢ = 0
andxA=A. R

3.7 Theorem [12, theorem 3.7]. Let K be an inessential ideal of A.
(a) If x, y € @A, K)[®,(A, K)), then ind(xy) = ind(x) + ind(y).
(b) If xy € ®(A, K), then ind(x) = ind(xy) — ind(y).

Proor. (a) It suffices to consider only the case where x, y € P(A, K).

Case 1: x, y € D(A, I(A)) = (A, soc(A)). Using [4, theorem F.2.9] this gives
ind(xy) = ind(x) + ind(y).

Case 2: x & ®(A, soc(A)) or y & B(A, soc(A)). It follows from Proposition 2.4
that xy € @A, soc(A))\®,(4, soc(4)). Hence ind(xy) = — o = ind(x) + ind(y).

(b) It follows from Proposition 2.4 that x € d,(A, soc(A)) and y € P(A,
soc(A)). If x € ®(A, soc(A4)), then y € P(A4, soc(A))(Proposition 2.4). Now use
(a). If x & ®(4, soc(A4)), then x & P4, soc(A)) and y & ®,(A, soc(A)). Hence
ind(x) =— ind(y) = —~. H

The next theorem shows that the sets

(A, K) := {x € ®AA, K) : ind(x) = n}(n €ZU {~=}),
DA, K) = {x € DA, K) : ind(x) = n}(n € Z U {=})
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and (4, K) := {x € (4, K) : ind(x) = n}(n€Z)
are open subsets of A.

3.8 Theorem. Let K be an inessential ideal of A. For each x € (A, K) there is a
positive y(=vy(x)) with the following properties: if s € A and ||s| < v, then

(@) x + s € (A, K), ind(x + 5) = ind(x);

(b) nul(x + 5) < nul(x), def(x + 5) < def(x).

Proor. Let x € ®A, K) (the proof for the case x € (A, K) is similar). By
Proposition 2.3, we can find an idempotent p € soc(A) N K such that Ax =
A(e — p). Hence

yx=e—p 3.3)

for some y € A. Put y = |y[|™". Let s € A and ||s|| < y, then e + ys is invertible
and

y(x+s)y=e+ys—p. (3.4

Thus
(e +ys) 'y(x + s)=e—(e+ ys)_lp, (e + ys)"lp €K, 3.5

which implies that x + s € ®,(4, K).
From (3.3), (3.4) and Proposition 3.6 we derive yx, y(x + 5) € ®(A, K) and
ind(yx) = ind(e — p) = ind(e) = 0 = ind(e + ys) = ind(e + ys — p) = ind(y(x + 5)).
Hence, by Theorem 3.7(b),

ind(x + 5) = ind(y(x + s5)) — ind(y) = ind(yx) — ind(y) = ind(x). (3.6)
Next we show nul(x+s)<nul(x). Let a€R(x+s), then 0= (e+
¥8)"'y(x + s)a=a — (e + ys) 'pa and thus a € (e + ys) pA. Hence R(x +s)C
(e + ys)"'pA and
R(x + s)eq C (e + ys) " 'pAeo (eo € Min(A)).

This shows nul(x + 5) < rank(p) = nul(x) (Remark 3.2(a)). In view of (3.6), we
conclude that def(x + 5) < def(x). W

Now we consider the special Banach algebra #(X) where X is a complex
Banach space. For this purpose we need the following two classes of bounded
linear operators:

FH(X) the ideal of finite rank operators in A(X);
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H(X) the closed ideal of compact operators on X.

3.9 Example. (a) £(X) is primitive.
(b) soc(HX)) = HX), Min(#X)) = {P € AX): P> = P and dimP(X) = 1}.
(c) For T € #X) we have nul(T) = dimN (T') and def(T) = codimT (X).
(d) H(X) is an inessential ideal of L(X).
(¢) An operator T in £(X) is relatively regular with nul(T) <wordef(T) <
if and only if T € HAX), H(X)).

Proor. (a), (b), (c) [4, F.2.2.].
(d) [8, Satz 106.2].
(e) [6,p-28]. W

An operator T € (LX), H(X)) is called an Atkinson operator.
Using Theorem 3.4 and the definition of nullity and defect, the following result
is easy to confirm.

3.10 Proposition. Let K be an inessential ideal and eq € Min(A). If x € (A, K),
then % is an Atkinson operator on Aeo.

Let X * denote the conjugate space of the Banach space X. The adjoint of a
linear operator T in £(X) is denoted by T*.
The next proposition will be needed in section 5.

3.11 Proposition. If T € HAX) is an Atkinson operator, then T* is an Atkinson
operator and

nul(T) = def (T *) and def(T) = nul(T*).

Proor. Clearly, T* is relatively regular. Using [8, Satz 82.1], the result follows.
[ |

4. General Banach algebras

In this section we assume that A is an arbitrary Banach algebra. Thus soc(A)
might not exist. The quotient algebra A’ = Alrad(A) is semisimple {5, prop.
24.21], hence A’ has a socle.

We write x' for the coset x + rad(4)(x € A) and if S C A write §’' = {x":x € §}.

4.1 Definition. (a) The presocle of A is defined by psoc(A) = {x € A: x" € soc(A")}.
(b) The ideal of inessential elements is defined to be I(A) = k(h(psoc(A))).
(c) An ideal K of A is inessential if K C I(A).

Observe that psoc(A4) is an ideal of A and that soc(A) = psoc(A) if A is
semisimple.
If K is an inessential ideal of A, the sets
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®(4, K), DA, K), (A, K) and ®(A, K)

are defined as in Definition 2.2.

Notation. If K = I(A) we write ®(A), ®,(A), H(A), D(A) instead of (A, I(A)),
D4, I(A)), H(A, I(A)), D(A, I(A)).

Recall that the quotient algebra A/P is primitive (P € I1(A)).

4.2 Theorem. (a) ®(A) = By(A, psoc(A)), DAA) = ®,(A, psoc(A)).
(b) If x € BLA)[D,(A)] there exist € > 0 and a finite subset ) of TI(A) such that
ify€ A and ||x - y| < € then

b.l)y+Pe D(A/P)[®,(AIP)] for all PE Q,
(b.2) y + P is left [right] invertible for all P € TI(A\Q.

Proor. [10, prop. 2.19, theorem 2.22]. W
4.3 Corollary. If x € ®(A)[®(A)] there exist Py, ..., P, €I(A) such that
x+PE @,(A/P)[CID,(A/P)] for all P € 1I(A) and
nul(x + P) = 0[def(x + P)=0] forall P€ N(AWNP,, ..., P}
Proor. Theorem 4.2; Proposition 3.6. W

In view of Corollary 4.3 the concepts of nullity, defect and index can be
extended as follows.

4.4 Definition. (a) If x € s/(A) the nullity, defect and index functions
II(A) - Z U {~o, =} are defined by

Wx)(P) = nul(x + P), 8(x)(P) = def(x + p),
«x)(P) = ind(x + P).

(b) If x € A(A) we define

2 w0)P)  forxe D[(A),
nul(x) = { P

0 for x &€ @A)

%( ) 8x)(P)  for x € B(A),
def(x) = o for x & ®,(A)

and ind(x) = nul(x) — def(x).

Note that ind(x) = X ux)(P) if x € B(A).
pell(A)
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4.5 Remark. If A is a primitive Banach algebra and {0}# P € TI(A) then
soc(4) C P [4, p. 38]. Suppose x € ®,(A). By Proposition 2.3 there are y € A and
p € soc(A) such that yx =e —p. It follows that p € P for all P € II(4), P # {0}.
Thus x + P is left invertible in A/P for all P € [I(A4), P # {0}. Proposition 3.6(b)
gives W(x)(P) =0forall PE TI(A), P #{0}. Hence nul(x) = »x){0}).

Similar: x € ®,(A) > def(x) = 8(x)({0}).

Now Proposition 3.6, Theorem 3.7 and Theorem 3.8 extend to the general
case. A

4.6 Proposition. Let x € A. Then x is left [right] invertible if and only if
x € ®A)[®(A)] and Ux)(P) = 0[8(x)(P) = 0] for all PE 11(A).

Proor. [10, prop. 2.18, 3.4]; Proposition 3.6. W

4.7 Theorem (Index). Let K be an inessential ideal of A.
(2) If x,y € ®AA, K)[®HA, K)), then

Uxy) = ux) + ) and  ind(xy) = ind(x) + ind(y).
(b) If xy € ®(A, K), then
ux) = xy) — W) and  ind(x) = ind(xy) — ind(x).

Proor. The argument is analogous to the one in Theorem 3.7, with use being
made of [4, F.3.8]. W

4.8 Theorem. Let K be an inessential ideal of A. For each x € ®(A, K)[®.(A, K)]
there is a positive y with the following properties: if s € A and Isll < v, then

(a) x+s5sED(A, K)[®A(A4, K)};

®) Ax+s}P)= Wx)(P) [8(x + s)(P) < 8(x)(P)] for all PE T1(A);

(¢) mnul(x + s) < nul(x) [def(x + 5) < def(¥)];

(d) ux +5)=ux);

(e) ind(x+s)= ind(x).

ProOF. Let x € ®(A, K)(the proof for the case x € ®,(4, K) is similar). There

exist z € A and k € K such that zx = e — k. By Theorem 4.2(a), we can findy€ A
and p € psoc(A), such that

yx=e—p. ' 4.1)
Put yo = min{|ly|| ™", lz]|"*}. Let s€ A and lIsll < yo, then e + ys and e + zs are

invertible, thus (e + zs) 'zx +s)=e—(e+ z5) 'k and (e+zs) "'k € K. Hence
x+ s € ®[(A, K). Since yx =e —p, We have

yx+s)y=(e+ ys) — P» 4.2)

therefore
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yx, y(x + 5) € B(A). 4.3)

Since p € psoc(A), [4, BA.3.4] shows that p’+P' € soc(A'/P")(P € I1(A)), thus,
by [4, BA.2.6],

p + P Esoc(A/P)for all P € TI(A). “4.4)
Combining (4.3) and Corollary 4.3,
yx + P € ®(A/P) for all P €TI(A). 4.5)
In view of (4.4), (4.5) and Proposition 3.6(a), we conclude that
Yyx)(P) =ind(e — p + P) = ind(e + P) = 0 4.6)

for all P € I1(A).
So

ind(yx) = %(A) {yx)(P) = 0. (4.7)

Analogous arguments (use (4.2)) show that
Wy(x + 5))(P) = ind(e + ys + P) = 0 for all P € II(A) 4.8)
and
ind(y(x +s5)) = 0. “4.9)
By Theorem 4.7(b), (4.8) and (4.9), we derive
Yx +5) = ux) and ind(x + s5) = ind(x).
So far, we have

sl < vo>x + s € ®(A4, K),
Yx +5) = «(x) and ind(x + 5) = ind(x).

According to Theorem 4.2(b), there exist € >0 and Py, .. ., P, € [1(A) such that
if |ls]| < € then

X+s+PEQAIP) (j=1,...,n) (4.10)

and

x+s+ P,x+ P are left invertible for all P € I(A)\{Py, ..., P.}. (4.11)




(4.3)

thus,

(4.4)

4.5)

6)

)

SCHMOEGER — Atkinson theory 123

By Theorem 3.8, for each j e{1,...,n}, there exists v; € (0, €] such that if
s + P}l < vy; then

nul(x + s + P;) < nul(x + P;). (4.12)

Note that nul(x + s + P) = nul(x + P) = 0, whenever PETI(A\{P;, . .., P} Put
Ynes = min{y1, . . ., ¥n}. From (4.12) we derive for ||sl| < Ya+1

nx + 5)(P) < »x)(P) for all PE TI(A).
Put y = min{yo, ¥»+1} and the proof is complete. ]

5. Holomorphic functions

In this section G will denote a region in C and f a function on G with values
in A. ’

As an immediate consequence of Theorem 4.8 we have the following proposi-
tion.

5.1 Proposition. Let K be an inessential ideal of A. Suppose that f is continuous
and f(A) € HA, K) for all \E G. Then

(a) ind(f(A)) is constant on G;

(b) either nul(f(A)) = = for all A E G or nul(f(A)) < for all AE G;

(c) either def(f(A)) == forall AE G or def(f(A)) < forall \EG.

A subset M of the region G is called discrete if M has no accumulation points
in G. Thus M is at most countable and G\M is again a region.

5.2 Lemma. Let A be primitive and let f be holomorphic such that m=
max rank (f(A)) exists. Then there is a discrete subset M of G such that
AEG

rank(f(A)) = m for all A€ G\M.

Proor. Fix e € Min(A), and let the operator-valued function f: G — HAeo) be
given by f(A) = fZ(D for AE G. Since f is holomorphic and dim f (A)(Aeo) =
dim m(Aeo) = rank(f(A)) < m for all A€ G, the result follows from {7, lemma

32]. W
The idea of the next lemma goes back to a theorem of Gramsch [7, Satz 3.3].
5.3 Lemma. Let X be a complete Banach spaceand T : G — H(X) be a holomorphic

function. If T(X) € U(AX), H(X)) for all AE G, then, for every do € G, there
exist a positive & and constants , B < o such that

dim N(T (V) = & < dim N(T (Ao)) (5.1)

and
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codim T(A)(X) = B < codim T (r0)(X), (5.2)

whenever 0 < |x - Ao < 5.

Proor. Take Ay € G. Suppose first that dimN (T'(Xo)) < . In this case, the proof
of (5.1) is contained in the proof of [7, Satz 3.3].

If dimN (T'(A)) = @, then dimN (TA))==for all A€ G (Proposition 5.1).
Thus (5.1) is proved.

Suppose now that codim7 (2)(X) < . Using Proposition 3.11 we have T(A)*
€ A(AX*), H(X*)) and codimT(A)(X) = dimN (T(M)*) for all A € G. Accord-
ing to (5.1) there exist 6> 0 and a constant S such that

ditaN (T(1)*) = B< dim N(T(A)*) (0<|A~ Ag| < 3),

that is

codimT (A)(X) = B < codimT (A)(X),

whenever 0 < |A — A < &.

If codim T (A0)(X) = o, then codim T(M)(X)=cwforall AEG (Proposition
51 m

The next theorem plays a central role in our investigations.

5.4 Theorem. Let A be primitive, K an inessential ideal of A,andletf: G— A be
holomorphic such that FA) € A, K) forall \€EG.

(@) Iff()) € (4, K) forall X € G, then, for every Ao € G, there exist a positive
8 and a constant a such that

nul(f(A)) = a < nul(f(A)),

whenever 0 < |A — 1| < 8.

(®) If f(A) € D4, K) for all A€ G, then, for every Ay € G, there exist a
positive & and a constant B such that

def(f(1)) = B =< def(f(o)),

whenever 0 <|A — \o| < 8.

Proor. Fix e, € Min(4), and let the holomorphic operator-valued function: f:G
— HAeq) be given by f M =FX)forreG. It follows from Proposition 3.10 that

f(2) is an Atkinson operator on Aeo, nul(f(A)) = dimN (f(A)) and def(f(A)) =
codim f(A)(Aeo)(A € G). The result follows by Lemma 5.3. W

Notation. For 6 > 0 and Ao € C define

Ks(ho) ={AEC: A - 1| < 8} and Ks(do) = Ks(Ao)\{Ag).

e
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5.5 Theorem. Let A be an arbitrary Banach algebra, K an inessential ideal of A,
and let [ : G — A be holomorphic.

(a) Suppose Ao € G and f(A) € ®,(A, K) for all A € G. Then there exists §>0
such that v(f(X)) is independent of A for 0 < |A — Ao < 8 and is bounded above by
v(F(Mo)-

(b) Suppose Ao € G and f(A) € ®,(A, K) for all A E G. Then there exists 6> 0
such that 8(f(X)) is independent of A for 0 < |A— Aol < B andis baﬁ‘;ded above by

8 f(2o))-

Proor. (a) According to Theorem 4.2(b), there are e >0 and Py, . . ., P, 11(A)
such that if [[f(A) — f(Ao)ll < € then

F)+ P,EDLAIP)  (j=1,...,m), (5.3)

f(A) + P,f(Ao) + P areleft invertible in A/P for all P € TI(A)MPs, . . . , Pa}-
(5.4)
Choose now & > 0 so that [f(A) — f(Ao)l| < € for |A = Ao| < &. For PE II(A) let
the holomorphic function fp : Ks(Ao) — A/P be given by fp(A): =f(A) + P.

By (5.3) and Theorem 5.4(a), for each jE{1,...,n} there exist & € (0, 8]
and a; € N U {0} such that

nul(fp(A) = & < nul(fr (o)) (0 <A — Aol < 8).

By (5.4), nul(fp(A)) = nul(fp(Xo)) =0 for all PE TI(AMN{Py, ..., Ptandall AE
Ka(Ao). Put 8 =min{8y, . . ., 8,}. Then we have

v(FO)P) = g =<v(fRo))(PB)  ((=1,...,n)
and
V(FW)P) = v(fQA))(P) =0  (PETANMPy, - - -, P.})

for all A € Ks(Ao)-
(b) The proof is similar.

Now we are in a position to present the main results of this paper.

5.6 Theorem. Let K be an inessential ideal of A, and let f : G — A be holomorphic.
(a) Suppose f(X) € ®lA, K) for all A E G. Then there exists a discrete subset
M, of G such that
(i) v(f(A)) is independent of A for A€ G\M,,
(ii) for each € M, there is a primitive ideal P such that

v(f(R)P)>v(F(DP)  (AEG\Mo).

(b) Suppose f(A) € @A, K) for all A€ G. Then there exists a discrete subset
Mg of G such that
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(NfN) =
@) 8(f(n)) is independent of A for A e G\My, K0
(ii) for each p e Mg there is a primitive ideql P such that Proor. We asé\
(AP =
AW > )P (e Guy) ) (
v
PrOOF. (a) Let M, be the set of points uy € G with the following property: there
exists some neighbourhood U/ C G of ug such that with some constant y =0 and put M = Mg It
with some primitive ideal P the following assertion holds: 4.0). The existe:
{. theorem 1].
VFONP) = ¥ < v(f(uo))(P) for A € Dh{ug). ‘

Take uo € M,,. By Theorem 5.5(a), there exists 8 > 0 such that v(f(1)) is indepen-

dent of A for 0 < | — Ho| < 8. Thus M., is a discrete subset of G. Put G, = G\ M, 'T'he author
Observe that Gy is a region

Let 4 € Gy. By Theorem 5.5(a), there exists 8 > 0 with

: AN, G. F
P EII(4) > v(f(A))(P) is constant in Ky(w). (5.5) A s
121 Barnes, B-;
Fix Ao € G, and define of an a
[3] BArNES, 1133
4] Barnts, B.
G1 =11 € Go: v(F(W)(P) = v(f (Ao))(P) for all P & 1(A)}, W
G2 = Go\G,. : 5] BonsavL, F
Spring!
From (5.5) we obtain that G1 and G, are open subsets of Go. Since G, is connected | fol (‘A"A&:‘S{,_‘
and Ao € G, it follows that G, =§. Hence ; |7} GramscH,
= = Hl".USEl;, E
G =G, G\M,,. ; “t“ R;uKART,J‘
: ROWELL,
This proves (i). The definition of M, shows that (ii) holds. ; |10} Row 69-8¢
(b) The proof is similar. | ' [11] SCHREIECK
Karls
5.7 Corollary. Let K be an, inessential ideal. Suppose that [+ G — Ais a holomorphic 112 WECKmB:S
function with FA) € d(4, K) for all A € G. Then {f(r) = Uf(w)) for A, p€ G. .

Furthermore there exists a discrete subset M of G such that

M v(F(0) = v(f(w) and AFN) = 8(f(w) for A, pE G\M;

(i) for each w € M there Is a primitive ideal P such that

Y(f(W)(P) > v(f(W)(P) and Hf)P) > 8(f))P)  (AeG\M )-

Proor. Define the sets M, and Mg as in Theorem 5.6, By Proposition 5.1(a),
{f(A))(P) (PETI(A)) is constant in G. This shows M, = Mg. Put M=M,
(=Mj;). Then (i) is valid. To prove (ii), use again the continuity of the index. =

5.8 Corollary. Let K pe an inessential ideal, and let f:G>A be holomorphic.
Suppose that f(\) € DA, K)[P,(A, K), ®(A, K)] for all A€ G and that f(A) is
left invertible [right invertible, invertible] for some Ay € G. Then there exist a discrete
subset M of G and q holomorphic function 8 1 G\M - A such thar
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KN (V) = e[f()g() = e, f(N)g(A) = g(W)f (X) = €] for all A € G\M.

Proor, We assume that f(Ao) is left invertible. By Proposition 4.6, we have
v( [(A))(1) = 0 for all P € TI(A). Theorem 5.6(a) shows

v(f(A))(P) =0 for all A € G\M,, and all P €II(4).

Put M M. It follows that f(A) is left invertible for all A € G\M (Proposition
4.0). 'The existence of a holomorphic g : G\M — A with g(A)f (1) = e follows from
{1, theorem 1. H
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