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ABSTRACT. For a bounded linear operator A4 on a Banach space we characterize
the isolated points in the spectrum of 4, the Riesz points of A4, and the poles
of the resolvent of 4.

1. TERMINOLOGY AND INTRODUCTION

Throughout this paper E will be an infinite-dimensional complex Banach
space and A4 will be a bounded linear operator on E. We denote by N(A4) the
kernel and by A(E) the range of 4. The spectrum of 4 will be denoted by
a(A). The resolvent set p(A) of A is the complement of o(A) in the complex
plane C. For any 4 in p(A4) the resolvent operator (Al — 4)~! is denoted by
R;(A).

Let Ay be an isolated point in a(A4). The spectral projection corresponding
to Ao will be denoted by P, . We have E = P, (E) ®@ N(F,,).

In [3] Mbekhta introduced two important subspaces of E:

K(A) = {x € E : there exist ¢ > 0 and a sequence (x,),>1 € E
such that Ax; = x, Ax,.;1 =x, foralln eN,
and || x,|| < c¢"||x|| for all n € N},

Ho(A) = {x € E: lim ||l4"x|/'/" = o}

and proved the following

Theorem 1. A point iy € o(A) is isolated in a(A) if and only if there is a
bounded projection P on E such that

P(E) = Ho(ol — A) and N(P) = K(AI — A).

In the present paper we shall prove that Ay € o(A) is an isolated point of
o(A) if and only if K (Aol — A) is closed and E = K (Aol — A) ® Ho(Aol — A)
(where @ denotes the algebraically direct sum). This characterization leads to
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716 CHRISTOPH SCHMOEGER

a characterization of the poles of the resolvent of 4 and to a characterization
of the Riesz points of 4. This will be done in §3 of this paper.

2. PRELIMINARY RESULTS

The operator A is said to have the single-valued extension property (SVEP)
in A9 € C if for any holomorphic function f: U — E, where U is a neigh-
bourhood of Ag, with (Al — A)f(A) =0, the result is f(1) = 0. We say that 4
has the SVEP if 4 has the SVEP in each 1 € C.

The following theorem collects some results due to Mbekhta (see [4]).

Theorem 2. (a) A(K(A)) = K(A) and A(Hy(A)) C Ho(A4);
(b) A has the SVEP in Ay if Ho(Aol — A) is closed,
(c) A has the SVEP in iy if and only if K(AoI — A) N Ho(Aol — A) = {0} .

The proof of the next result is immediate.

Proposition 1. Let x € Hy(A) and define the function g on C\{0} by
2 A'x
g(4) = Z FrEs
n=0

Then g is holomorphic and (AI — A)g(4) = x for all 2 € C\{0}.

Proposition 2. Let F be a closed subspace of E such that A(F) = F. Then
F CK(A).

Proof. Since F is a Banach space and A(F) = F, the open mapping theorem
shows the existence of a constant ¢ > 0 so that

for each u € F there exists v € F such that

2.1
(2.1) Av=wu and |v| <c|u|-.

Let x € F. Use (2.1) to construct a sequence (x,),>1 € F such that 4x, = x,
AXpy1 = X, and || x,|| < c"||x|| . It follows that x € K(A4). 0O

Let us review the classical definitions of ascent and descent. The ascent p(A)
and the descent q(A) are the extended integers given by

p(A4) =inf{n > 0: N(4") = N(4A"*1)},
g(A) =inf{n >0: A"(E) = A" (E)}.

The infimum over the empty set is taken to be oo. It follows from [2, Satz
72.3] that if p(A4) and q(A4) are both finite then they are equal.

We have the following characterization of the poles of the resolvent of A
(see [2, Satz 101.2]):

Theorem 3. The complex number Ay is a pole of R;(A) if and only if 0 <
p(Aol — A) = q(Agl — A) < 0o. In this case we have

Py (E) = N((dol — A)P) and N(Py,)= (Al — A)(E),
where p = p(Agl — A) is the order of the pole Ay .

The next proposition is a generalization of [1, Theorem 2].
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Proposition 3. Suppose that A has the SVEP in Ay =0 and q(A) < co. Then
p(A4)=q(4).

Proof. Let ¢ = q(A), B = A7, and E = E/N(B). Since N(B) is closed, E
is a Banach space. Let B: E > E be the corresponding canonical injection. It
is easy to see that the operator B~!: 49(E) — E is closed, thus 44 (E) is the
domain of a closed linear operator. Since A(A4(E)) = A9(E) and A has the
SVEP in 0, [1, Corollary 4] shows that N(4)NA9(E) = {0} . Use [2, Satz 72.1]
to derive p(4) <oo. O

Corollary 1. The following assertions are equivalent:
(a) 0 isapoleof R;(A);
(b) A has the SVEP in 0 and g(A) < .
Proof. (a) implies (b). Since 0 is isolated in o(A4), 4 has the SVEP in 0.

Theorem 3 shows that g(4) < .
(b) implies (a). Proposition 3 and Theorem 3. O

3. ISOLATED POINTS OF THE SPECTRUM
The starting point of our investigation is

Proposition 4. Suppose that 0 is an isolated point in o(A). Then
(a) Po(E) = Hy(A);
(b) N(P) =K(4).

Proof. (a) follows from [2, Satz 100.2].

(b) Since 0 is isolated in g(A), o(A4p,k) = {0} and 0 € o(A4|n(p,)) [2, Satz
100.1]. Then N(P) is closed and A(N(Py)) = N(FPy). Hence, by Proposition
2, N(Py) C K(A4). By Theorem 2(c), K(A) N Hy(A) = {0} . Therefore,

K(A)=K(A)NE =K(A)N[N(Py) & Py(E)]
= N(Py) + K(A)N Hy(A) = N(F). O
Theorem 4. The following assertions are equivalent:
(a) O is an isolated point in o(A),
(b) K(A) is closed and E = K(A) ® Hy(A) (& denotes the algebraically
direct sum).

Proof. (a) implies (b). Use Proposition 4 or Theorem 1.

(b) implies (a). Since K(A) is closed, A(K(A4)) = K(4) (Theorem 2(a)),
and N(A) C Hy(A), the operator 4: K(A) — K(A4) is invertible. Hence there
exists € > 0 such that Al — Ajg 4 is invertible if |A| < ¢. In particular,

(3.1) (Al — A)(K(A)) =K(A) if | <e.
Since for all A #0, N(Al — A) C K(A4), we have

(3.2) NAI—-A)={0} ifO0<]i<e.
By Proposition 1, for all A #0,

(3.3) Ho(A) C (Al — A)(E).

Now, (3.1) and (3.3) imply
E=K(A)® Hy(A) C (Al - A)(E) ifO<]|i<e.
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Consequently, {1 €C:0 < |i| <e&} C p(A4) and the proof is complete. O

Now we are in a position to present the announced characterization of the
poles of the resolvent of 4.

Theorem 5. The following assertions are equivalent:

(a) O is a pole of the resolvent of A;
(b) A has the SVEP in 0 and q(A) < oo;
(c) There exists p € N such that

N(AP) = Hy(4) and AP(E)=K(A);

(d) A has the SVEP in 0 and there exists p € N such that K(A) = AP(E);
(e) g(A) < oo and Hy(A) is closed.

Proof. By Corollary 1, (a) and (b) are equivalent.

(a) implies (c¢). Use Theorem 3 and Proposition 4.

(c) implies (a). By Theorem 3, we have to show that p(4) and g(A) are
both finite. Since

N(AP*!) C Ho(A) = N(4P) C N(4P+),

we have p(4) < p. Use Theorem 2(a) to derive AP*Y(E) = A(AP(E)) =
A(K(A)) = K(A) = AP(E). Thus g(4) <p.

(a) implies (d). Use (b) and (c).

(d) implies (b). As in the proof of “(c) implies (a),” we have AP(E) =
AP*Y(E), hence g(A4) < co.

(a) implies (e). Clear.

(e) implies (b). By Theorem 2(b), 4 has the SVEP in 0. O

The remainder of this paper deals with Riesz points and Riesz operators. A
complex number Ay is called a Riesz point of A4, if

(Aol —A) = q(Agl —A4) < 0 and dim N(Agl —A4) = codim(Ag] —A)(E) < c0.

Note that a Riesz point of A is either a pole of the resolvent (and hence isolated
in g(A)) or a point in the resolvent set g(A4).

Proposition 5. The complex number Ay € o(A) is a Riesz point of A if and
only if Ay is isolated in o(A) and the corresponding spectral projection is finite
dimensional.

Proof. [2, Satz 105.3]. O

The next theorem uses the subspaces K(A4) and Hy(A4) and the SVEP to
characterize the Riesz points of 4.

Theorem 6. The following assertions are equivalent:
(a) O is a Riesz point of A;
(b) K(A) is closed, dim Hy(A) < oo, and E = K(A) ® Hy(A), where @
denotes the algebraically direct sum;
(c) 9(A) < 0o and dim Hy(A) < o0
(d) dim Hy(A) < oo and K(A) = AP (E) for some p € N,
(e) A has the SVEP in 0, q(A) < oo, and dim N(A4) < oo.
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Proof. (a) < (b). Proposition 4 and Theorem 4.

(c) = (a). Since N(A4") C N(A™') C Hy(A) and dim Hy(A4) < oo, there
exists p € N such that dim N(4?) = dim N(4P*!) < co. This gives N(A4?) =
N(A4P*!), thus p(A4) < co. By Theorem 3, 0 is a pole of R;(A), hence 0
is isolated in o(A4). Proposition 4 shows that dim Py(E) < co. Now use
Proposition 5.

(a) = (d). Propositions 4 and 5 show that dim Py(E) = dim Hy(A4) < oo
and N(Py) = K(A4). Since 0 is a pole of R;(4), we conclude from Theorem
3 that K(A4) = AP(E) for some p € N.

(d) = (c). AP*(E) = A(K(A)) = K(A) = AP(E), thus g(A4) < .

(a) = (e). Clear.

(e) = (a). By Proposition 3, p(4) = q(A4) < co. [2, Satz 72.6] shows that
dim N(A4) = codim A(E) < oo, thus 0 is a Riesz point of 4. O

The operator A4 is called a Riesz operator if every A € a(A4)\{0} is a Riesz
point of A.
An immediate consequence of Theorem 6 is

Theorem 7. The following assertions are equivalent:

(a) A is a Riesz operator;

(b) dim Hy(Al — A) < 00, E=K(AI — A) ® Hy(Al — A), and K(AI — A) is
closed for all A € a(A)\{0};

(c) q(Al — A) < oo and dim Hy(AI — A) < oo for all A € a(A4)\{0};

(d) dim Ho(Al — A) < oo for all A € a(A)\{0} and for each 1 € a(A4)\{0}
there exists p(A) € N such that K(Al — A) = (AI — AYW(E).
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