ON OPERATORS OF SAPHAR TYPE

Christoph Schmoeger

Abstract: A bounded linear operator T on a complex Banach space X is called an operator of Saphar type, if T is relatively regular and if its null space is contained in its generalized range $\bigcap_{n=1}^{\infty} T^n(X)$. This paper contains some characterizations of operators of Saphar type. Furthermore, for a function f admissible in the analytic calculus, we obtain a necessary and sufficient condition in order that $f(T)$ is an operator of Saphar type.

1 – Terminology and introduction

Let X denote a Banach space over the complex field \mathbb{C} and let $\mathcal{L}(X)$ be the Banach algebra of all bounded linear operators on X. If $T \in \mathcal{L}(X)$, we denote by $N(T)$ the kernel and by $T(X)$ the range of T. The spectrum of T is denoted by $\sigma(T)$. The resolvent set $\rho(T)$ is defined by $\rho(T) = \mathbb{C} \setminus \sigma(T)$. We write $\mathcal{H}(T)$ for the set of all complex valued functions which are analytic in some neighbourhood of $\sigma(T)$. For $f \in \mathcal{H}(T)$, the operator $f(T)$ is defined by the well known analytic calculus (see [3, §99]).

Let $T \in \mathcal{L}(X)$. Then an operator $S \in \mathcal{L}(X)$ will be called a pseudo inverse for T if

$$TST = T.$$

We then say that T is relatively regular. A relatively regular operator T is called an operator of Saphar type if its null space $N(T)$ is contained in its generalized range

$$T^{\infty}(X) = \bigcap_{n=1}^{\infty} T^n(X).$$
We write $\mathcal{S}(X)$ for the set of all operators of Saphar type. This class of operators has been studied by P. Saphar [6] (see also [1]). Although operators in $\mathcal{S}(X)$ seem rather special, they have an important property:

Theorem 1. T is an operator of Saphar type if and only if there is a neighbourhood $U \subseteq \mathcal{C}$ of 0 and a holomorphic function $F: U \to \mathcal{L}(X)$ such that

$$(T - \lambda I)F(\lambda)(T - \lambda I) = T - \lambda I \quad \text{for all } \lambda \in U.$$

Proof: [5, Théorème 2.6] or [8, Theorem 1.4].

In [6] Saphar considered the following question: if $T \in \mathcal{S}(X)$ and A is an operator in $\mathcal{L}(X)$, when is $T - A$ an operator of Saphar type? In Section 2 of this paper we use the perturbation results of [6] to characterize operators of Saphar type.

Section 3 deals with Atkinson operators, i.e. relatively regular operators having at least one of $\dim N(T)$, $\text{codim } T(X)$ finite. The main results in Section 1 allow us to give a simple proof of the following well known fact: if T is an Atkinson operator, then $\dim N(T - \lambda I)$ (resp. $\text{codim } (T - \lambda I)(X)$) is constant in a neighbourhood of 0 if and only if $T \in \mathcal{S}(X)$.

In Section 4 of the present paper we obtain a necessary and sufficient condition in order that $f(T) \in \mathcal{S}(X)$. Moreover, if $f(T)$ is an operator of Saphar type, we obtain a formula for a pseudo inverse for $f(T)$.

We close this section with some definitions, notations and preliminary results which we need in the sequel.

$\mathcal{R}(X)$ will denote the set of all relatively regular operators in $\mathcal{L}(X)$. Let $T \in \mathcal{L}(X)$. If $S \in \mathcal{L}(X)$ satisfies the two equations

$$TST = T \quad \text{and} \quad STS = S$$

then S will be called a g_2-inverse for T. We shall make frequent use of the following results which will be quoted without further reference.

1) $T \in \mathcal{R}(X)$ if and only if $N(T)$ and $T(X)$ are closed complemented subspaces of X (see [3, Satz 74.2]).

2) If $TST = T$ for some operator S, then TS is a projection onto $T(X)$ and $I - ST$ is a projection onto $N(T)$ (see [3, p. 385]).

3) If S is a pseudo inverse for T, then STS is a g_2-inverse for T (simple verification).
2 – Perturbation properties

We begin with the following basic facts.

Lemma 1. Let $T \in \mathcal{L}(X)$.

(a) If $N(T) \subseteq T^\infty(X)$, then $T(T^\infty(X)) = T^\infty(X)$.

(b) If $N(T) \subseteq T^\infty(X)$ and $T(X)$ is closed, then $T^n(X)$ is closed for each $n \in \mathbb{N}$, hence $T^\infty(X)$ is closed.

Proof:

(a) The inclusion $T(T^\infty(X)) \subseteq T^\infty(X)$ is obvious. Let y be an arbitrary element of $T^\infty(X)$. Then for every $k = 1, 2, \ldots$ there exists $x_k \in X$ so that $y = T^k x_k$. If we set $z_k = x_1 - T^{k-1} x_k$ for $k \geq 1$, then $T z_k = T x_1 - T^k x_k = y - y = 0$, hence $z_k \in N(T) \subseteq T^{k-1}(X)$. It follows that $x_1 = z_k + T^{k-1} x_k \in T^{k-1}(X)$ for all $k \in \mathbb{N}$. Because of $y = T x_1$ we see that $y \in T(T^\infty(X))$.

(b) [7, Satz 4].

Corollary 1. An operator T of Saphar type has the following properties:

(a) $T^n(X)$ is closed for each $n \in \mathbb{N}$, $T^\infty(X)$ is closed.

(b) T maps $T^\infty(X)$ onto itself.

Lemma 2. Let T be a relatively regular operator in $\mathcal{L}(X)$, S a pseudo inverse for T and $A \in \mathcal{L}(X)$. If $\|A\| < \|S\|^{-1}$, then

(a) $N(T-A) \subseteq (I-SA)^{-1}(N(T))$.

(b) $T(X) \subseteq (I-AS)^{-1}((T-A)(X))$.

Proof:

(a) Since $S(T-A) = ST-SA = I-SA-(I-ST)$, we have $(I-SA)^{-1}S(T-A) = I - (I-SA)^{-1}(I-ST)$. Let $x \in N(T-A)$, then $0 = (I-SA)^{-1}S(T-A)x = x-(I-SA)^{-1}(I-ST)x$, hence $x \in (I-SA)^{-1}((I-ST)(X)) = (I-SA)^{-1}((N(T))$.

(b) $(I-AS)TS = TS - ASTS = T(STS) - A(STS) = (T-A)STS$, thus $TS = (I-AS)^{-1}(T-A)STS$. This gives $T(X) = (TS)(X) = [(I-AS)^{-1}(T-A)](STS)(X) \subseteq (I-AS)^{-1}((T-A)(X))$.

The next theorem shows that under the hypotheses of Lemma 2 it follows that T is an operator of Saphar type, if equality holds in (a) (or (b)) for all A with $\|A\|$ sufficiently small.
Theorem 2. Let T be a relatively regular operator and $S \in \mathcal{L}(X)$ a pseudo inverse for T.

(a) If $N(T - \lambda I) = (I - \lambda S)^{-1}(N(T))$ for all $\lambda \in \mathbb{C}$ in a neighbourhood of 0, then $T \in S(X)$.

(b) If $T(X) = (I - \lambda S)^{-1}((T - \lambda I)(X))$ for all $\lambda \in \mathbb{C}$ in a neighbourhood of 0, then $T \in S(X)$.

Proof: Put $G(\lambda) = (I - \lambda S)^{-1} = \sum_{n=0}^{\infty} \lambda^n S^n$ $(|\lambda| < \|S\|^{-1})$, $P = I - ST$ and $Q = TS$. Recall that $P(X) = N(T)$ and $Q(X) = T(X)$.

(a) Since $N(T - \lambda I) = (I - \lambda S)^{-1}(N(T))$ in a neighbourhood U of 0, we have $N(T - \lambda I) = (G(\lambda)P)(X)$ for $\lambda \in U$. It follows that

$$0 = (T - \lambda I)G(\lambda)P = \sum_{n=0}^{\infty} \lambda^n T^n S^n P - \sum_{n=0}^{\infty} \lambda^{n+1} S^n P = T P + \sum_{n=1}^{\infty} \lambda^n (T S^n P - S^{n-1} P) \quad \text{for all } \lambda \in U.$$

This gives

$$(1) \quad T S^n P = S^{n-1} P \quad \text{for all } n \in \mathbb{N}. \quad (2) \quad P = T^n S^n P.$$

We prove by induction that for $n \geq 1$

$$(2) \quad P = T^n S^n P.$$

(1) shows that (2) holds for $n = 1$. Now suppose that (2) holds for some integer $n \geq 1$. This gives

$$T^{n+1} S^{n+1} P = T^n (T S^{n+1} P) = T^n S^n P = P$$

by (1). Thus (2) is proved.

Since $N(T) = P(X)$, it follows that

$$N(T) = P(X) = (T^n S^n P)(X) \subseteq T^n(X) \quad \text{for all } n \geq 1.$$

Therefore $N(T) \subseteq T^\infty(X)$.

(b) Since $Q(X) = T(X) = (I - \lambda S)^{-1}((T - \lambda I)(X))$ in a neighbourhood U of 0, we derive

$$G(\lambda) (T - \lambda I) = Q G(\lambda) (T - \lambda I) \quad (\lambda \in U).$$
Thus
\[G(\lambda)(T - \lambda I) = \sum_{n=0}^{\infty} \lambda^n S^n T - \sum_{n=0}^{\infty} \lambda^{n+1} S^n \]
\[= T + \sum_{n=1}^{\infty} \lambda^n (S^n T - S^{n+1}) \]
\[= TS\left(T + \sum_{n=1}^{\infty} \lambda^n (S^n T - S^{n+1})\right) \]
\[= T + \sum_{n=1}^{\infty} \lambda^n (TS^{n+1} T - TS^n) \quad (\lambda \in U) \]

and so
\[S^n T - S^{n-1} = TS^{n+1} T - TS^n \quad \text{for all } n \in \mathbb{N}, \]

therefore \((S^n T - S^{n-1})P = (TS^{n+1} T - TS^n)P\). Since \(TP\) vanishes, we get
\[TS^n P = S^{n-1} P \quad \text{for all } n \in \mathbb{N}. \]

But this is equation (1). As in part (a) of this proof, it follows that \(N(T) \subseteq T^\infty(X). \]

Let \(T \in \mathcal{R}(X)\) and let \(S\) be a pseudo inverse for \(T\). Define
\[\mathcal{P}_S(T) = \{ A \in \mathcal{L}(X) : \|A\| < \|S\|^{-1} \text{ and } A(T^\infty(X)) \subseteq T^\infty(X)\} . \]

Remarks.

1. The condition \(A(T^\infty(X)) \subseteq T^\infty(X)\) is satisfied by any operator \(A\) which commutes with \(T\).

2. If \(\|A\| < \|S\|^{-1}\) then \(I - AS\) and \(I - SA\) are invertible in \(\mathcal{L}(X)\) and \(S(I - AS)^{-1} = (I - SA)^{-1} S\).

The next result, a perturbation theorem, is due to P. Saphar [6] (see also [1, Theorem 9 in §5]).

Theorem 3. Let \(T\) be an operator in \(\mathcal{S}(X)\) with \(g_2\)-inverse \(S\) and suppose that \(A \in \mathcal{P}_S(T)\). Then \(T - A\) is an operator of Saphar type with \(g_2\)-inverse \(S(I - AS)^{-1} = (I - SA)^{-1} S\) and
\[N(T - A) \subseteq T^\infty(X) \subseteq (T - A)^\infty(X) . \]
Corollary 2. Under the hypotheses of Theorem 3 the equations

\[N(T - A) = (I - SA)^{-1}(N(T)) \]

and

\[T(X) = (I - AS)^{-1}((T - A)(X)) \]

are valid for all \(A \in P_S(T) \).

Proof: By Theorem 3, \((I - (I - SA)^{-1}S(T - A) = (I - SA)^{-1}(I - SA - S(T - A)) = (I - SA)^{-1}(I - ST)\) is a projection onto \(N(T - A)\). It follows that

\[N(T - A) = (I - SA)^{-1}((I - ST)(X)) = (I - SA)^{-1}(N(T)) . \]

According to Theorem 3, \((T - A)S(I - AS)^{-1}\) is a projection onto \((T - A)(X)\), thus

This gives \(T(X) = (I - AS)^{-1}((T - A)(X))\). \(\blacksquare\)

From Theorem 2 and Corollary 2 we obtain immediately the following characterizations of operators of Saphar type.

Theorem 4. Let \(T \) be a relatively regular operator in \(L(X) \). Then the following assertions are equivalent:

(a) \(T \in S(X) \).

(b) \(N(T - A) = (I - SA)^{-1}(N(T)) \) whenever \(S \) is a \(g_2 \)-inverse for \(T \) and \(A \in P_S(T) \).

(c) \(T(X) = (I - AS)^{-1}((T - A)(X)) \) whenever \(S \) is a \(g_2 \)-inverse for \(T \) and \(A \in P_S(T) \).

(d) There is a pseudo inverse \(S \) for \(T \) such that

\[N(T - A) = (I - SA)^{-1}(N(T)) \text{ for all } A \in P_S(T) . \]

(e) There is a pseudo inverse \(S \) for \(T \) such that

\[T(X) = (I - AS)^{-1}(T - A)(X) \text{ for all } A \in P_S(T) . \]

(f) There is a pseudo inverse \(S \) for \(T \) such that

\[N(T - \lambda I) = (I - \lambda S)^{-1}(N(T)) \text{ for all } |\lambda| < \|S\|^{-1} . \]

(g) There is a pseudo inverse \(S \) for \(T \) such that

\[T(X) = (I - \lambda S)^{-1}((T - \lambda I)(X)) \text{ for all } |\lambda| < \|S\|^{-1} . \]
3 – Atkinson operators

Recall that \(T \in \mathcal{L}(X) \) is an Atkinson operator, if \(T \) is relatively regular and at least one of the \(\dim N(T) \), \(\operatorname{codim} T(X) \) is finite. The set of Atkinson operators will be denoted by \(A(X) \).

It is well known (see [1, Theorem 5 in §5]) that \(T \in \mathcal{A}(X) \) and \(\dim N(T) < \infty \) (resp. \(\operatorname{codim} T(X) < \infty \)) if and only if \(T \) is left invertible (resp. right invertible) modulo \(\mathcal{K}(X) \), where \(\mathcal{K}(X) \) denotes the closed ideal of compact operators on \(X \). Therefore the following assertions are valid:

(a) \(A(X) \) is open in \(\mathcal{L}(X) \).

(b) With \(T \) also \(T + K \) lies in \(\mathcal{A}(X) \) for every \(K \in \mathcal{K}(X) \).

(c) If \(T \in \mathcal{A}(X) \) then \(T^n \in \mathcal{A}(X) \) for every \(n \in \mathbb{N} \).

The above results are also valid for semi-Fredholm operators, i.e., operators with closed range having at least one of \(\dim N(T) \), \(\operatorname{codim} T(X) \) finite (see [3, §82]).

To each \(T \in \mathcal{L}(X), T \neq 0 \), we can associate a number \(\gamma(T) \), the minimum modulus of \(T \), which plays an important role in perturbation theory:

\[
\gamma(T) = \inf \left\{ \frac{\|Tx\|}{d(x, N(T))} : x \notin N(T) \right\},
\]

where \(d(x, N(T)) \) is the distance of \(x \) from \(N(T) \). It is of central importance that \(T \neq 0 \) has closed range if and only if \(\gamma(T) > 0 \) [4, Lemma 322].

Lemma 3. Suppose that \(T \in \mathcal{R}(X) \) and \(TST = T \). Then

\[
\|S\|^{-1} < \gamma(T).
\]

Proof: Let \(x \in X \). Then \(x - STx \in N(T) \), thus \(d(x, N(T)) = d(STx, N(T)) \leq \|STx\| \leq \|S\| \|Tx\| \). \(\blacksquare \)

The next theorem, the punctured neighbourhood theorem for Atkinson operators, is well-known. Part (c) of this theorem follows immediately from our results in Section 1.

Theorem 5. Let \(T \in \mathcal{A}(X) \) with \(\dim N(T) < \infty \) (resp. \(\operatorname{codim} T(X) < \infty \)) and pseudo inverse \(S \). Then

(a) \(T - A \in \mathcal{A}(X) \) for all \(A \in \mathcal{L}(X) \) with \(\|A\| < \|S\|^{-1} \).
(b) \(\dim N(T - \lambda I) \) is a constant \(\leq \dim N(T) \) (resp. \(\text{codim } (T - \lambda I)(X) \) is a constant \(\leq \text{codim } T(X) \)) for \(0 < |\lambda| < \|S\|^{-1} \).

(c) \(\dim N(T - \lambda I) \) is constant (resp. \(\text{codim } (T - \lambda I)(X) \) is constant) for \(|\lambda| < \|S\|^{-1} \) if and only if \(T \) is an operator of Saphar type.

Proof:

(a) [1, Theorem 6 in §5].

(b) Theorem V.1.6 and Corollary V.1.7 in [2] show that \(T - \lambda I \) is a semi-Fredholm operator for \(|\lambda| < \gamma(T) \) and \(\dim N(T - \lambda I) \) is a constant \(\leq \dim N(T) \) (resp. \(\text{codim } (T - \lambda I)(X) \) is a constant \(\leq \text{codim } T(X) \)) in the annulus \(0 < |\lambda| < \gamma(T) \). Since \(\|S\|^{-1} < \gamma(T) \), by Lemma 3, and \(T - \lambda I \in \mathcal{R}(X) \) for \(|\lambda| < \|S\|^{-1} \), by (a), the proof of (b) is complete.

At the beginning of this section we have seen that the set \(\mathcal{A}(X) \) of all Atkinson operators is open. The following assertion is obtained from [2, Theorem V.2.6] and shows that the set \(\mathcal{R}(X) \) of all relatively regular operators is in general not open.

Lemma 4. Suppose that \(T \in \mathcal{L}(X) \) has closed range and \(\dim N(T) = \text{codim } T(X) = \infty \). Then there exists a compact operator \(K \) such that \(T + \lambda K \) does not have closed range for all \(\lambda \neq 0 \).

With the help of the above result we now characterize the interior points of \(\mathcal{R}(X) \).

Theorem 6. For an operator \(T \) in \(\mathcal{L}(X) \) the following assertions are equivalent:

(a) \(T \) is an interior point of \(\mathcal{R}(X) \).

(b) \(T \in \mathcal{A}(X) \).

(c) \(T + K \in \mathcal{R}(X) \) for all \(K \in \mathcal{K}(X) \).

Proof:

(a)\(\Rightarrow\)(b): Suppose that \(T \) is an interior point of \(\mathcal{R}(X) \) but \(T \notin \mathcal{A}(X) \), hence \(\dim N(T) = \text{codim } T(X) = \infty \). Because of Lemma 4 there exists an operator \(K \in \mathcal{K}(X) \) such that \(T + \lambda K \) does not have closed range for all \(\lambda \neq 0 \), therefore \(T + \lambda K \notin \mathcal{R}(X) \) for all \(\lambda \neq 0 \). Since \(T \) is an interior point of \(\mathcal{R}(X) \), it follows that \(T + \lambda K \in \mathcal{R}(X) \) for \(|\lambda| \) sufficiently small, a contradiction. Hence \(T \in \mathcal{A}(X) \).

(b)\(\Rightarrow\)(a): Clear since \(\mathcal{A}(X) \) is open and \(\mathcal{A}(X) \subseteq \mathcal{R}(X) \).
(b)⇒(c): Since $T \in \mathcal{A}(X)$ implies $T + K \in \mathcal{A}(X)$ for every $K \in \mathcal{K}(X)$, we get $T + K \in \mathcal{R}(X)$ for every $K \in \mathcal{K}(X)$.

(c)⇒(b): We have $T + \lambda K \in \mathcal{R}(X)$ for all $\lambda \in \mathbb{C}$ and all $K \in \mathcal{K}(X)$, thus (put $\lambda = 0$) T is relatively regular. Lemma 4 shows that $\dim N(T) < \infty$ or $\text{codim } T(X) < \infty$.

Let us write $\mathcal{C}(X)$ for the set of all operators $T \in \mathcal{L}(X)$ with $T(X)$ closed. Then, by Lemma 4, $\mathcal{C}(X)$ is in general not open. If we go through the above proof and make the necessary modifications, we see that for $T \in \mathcal{L}(X)$ the following assertions are equivalent:

(a) T is an interior point of $\mathcal{C}(X)$.
(b) T is a semi-Fredholm operator.
(c) $T + K \in \mathcal{C}(X)$ for all $K \in \mathcal{K}(X)$.

4 – Mapping properties

We begin this section with products of relatively regular operators.

Lemma 5.

(a) Let $T_1, T_2 \in \mathcal{R}(X)$ with pseudo inverses S_1 and S_2, respectively. If $N(T_1) \subseteq T_2(X)$, then $T_1 T_2 \in \mathcal{R}(X)$ and $S_2 S_1$ is a pseudo inverse for $T_1 T_2$.

(b) Let T_1, \ldots, T_m be relatively regular operators with pseudo inverses S_1, \ldots, S_m, respectively. If

$$N(T_1 \cdots T_k) \subseteq T_{k+1}(X) \quad \text{for } k = 1, \ldots, m - 1,$$

then $T_1 \cdots T_m$ is relatively regular and $S_1 \cdots S_m$ is a pseudo inverse for $T_1 \cdots T_m$.

(c) Let $T \in \mathcal{S}(X)$ and $T S T = T$ for some $S \in \mathcal{L}(X)$. Then $T^n \in \mathcal{S}(X)$ and $T^n S^n T^n = T^n$ for all $n \in \mathbb{N}$.

Proof:

(a) Since $(I - S_1 T_1)(X) = N(T_1) \subseteq T_2(X) = (T_2 S_2)(X)$, it follows that $T_2 S_2(I - S_1 T_1) = I - S_1 T_1$, hence $T_2 S_2 S_1 T_1 = T_2 S_2 - I + S_1 T_1$. Then we have

$$T_1 T_2 (S_2 S_1) T_1 T_2 = T_1 (T_2 S_2 - I + S_1 T_1) T_2$$
$$= T_1 \underbrace{T_2 S_2 T_1}_T - T_1 T_2 + \underbrace{T_1 S_1 T_1 T_2}_T$$
$$= T_1 T_2.$$
(b) By (a) and (3), \(T_1T_2(S_2S_1)T_1T_2 = T_1T_2 \). Suppose that
\[
T_1 \cdots T_j (S_j \cdots S_1) T_1 \cdots T_j = T_1 \cdots T_j
\]
for some \(j \in \{1, \ldots, m-1\} \). (3) implies that
\[
N(T_1 \cdots T_j) \subseteq T_{j+1}(X) ,
\]
consequently, by (a),
\[
(T_1 \cdots T_j) T_{j+1}(S_{j+1}(S_j \cdots S_1)) (T_1 \cdots T_j) T_{j+1} = (T_1 \cdots T_j) T_{j+1} .
\]

(c) Since \(T \in \mathcal{S}(X) \), \(N(T) \subseteq T^n(X) \) for \(n \geq 1 \), thus \(N(T^n) \subseteq T(X) \) for \(n \geq 1 \) [4, Lemma 511]. Now use (b). ■

In this section, we shall consider the following question: If \(T \) is an operator in \(\mathcal{L}(X) \) and \(f \) is a function in \(\mathcal{H}(T) \), when is \(f(T) \) an operator of Saphar type? Furthermore, if \(f(T) \in \mathcal{S}(X) \), we shall consider the problem of finding a pseudo inverse for \(f(T) \).

To this end, we need some concepts from [7] and [9]. We define
\[
\rho_{rr}(T) = \left\{ \lambda \in \mathbb{C} : T - \lambda I \in \mathcal{S}(X) \right\}
\]
and
\[
\rho_k(T) = \left\{ \lambda \in \mathbb{C} : (T - \lambda I)(X) \text{ is closed and } N(T - \lambda I) \subseteq (T - \lambda I)\infty(X) \right\} .
\]
Then \(\rho(T) \subseteq \rho_{rr}(T) \subseteq \rho_k(T) \). Theorem 3 in [4] shows that \(\rho_k(T) \) is open. By Theorem 1, \(\rho_{rr}(T) \) is open. Setting
\[
\sigma_{rr}(T) = \mathbb{C} \setminus \rho_{rr}(T) \quad \text{and} \quad \sigma_k(T) = \mathbb{C} \setminus \rho_k(T) ,
\]
we obtain two ‘essential spectra’ of \(T \). We have
\[
\sigma_k(T) \subseteq \sigma_{rr}(T) \subseteq \sigma(T) .
\]
We showed in [7, Satz 2] that \(\partial \sigma(T) \subseteq \sigma_k(T) \), hence \(\sigma_k(T) \neq \emptyset \). It was shown in [9, Theorem 3] that
\[
f(\sigma_{rr}(T)) = \sigma_{rr}(f(T)) \quad \text{for } T \in \mathcal{L}(X) \text{ and } f \in \mathcal{H}(T) .
\]

Theorem 7. Let \(T \in \mathcal{L}(X) \), \(f \in \mathcal{H}(T) \) and let \(Z(f) \) denote the set of zeros of \(f \) in \(\sigma(T) \). Then \(f(T) \) is an operator of Saphar type if and only if \(Z(f) \subseteq \rho_{rr} \). In this case \(Z(f) \) is finite or empty.
Proof: Since \(f(T) \in \mathcal{S}(X) \iff \sigma_{rr}(f(T)) = f(\sigma_{rr}(T)) \iff Z(f) \subseteq \rho_{rr}(T), \) the first assertion is proved. If \(Z(f) \subseteq \rho_{rr}(T), \) then \(f \) does not vanish on \(\sigma_k(T), \) since \(\sigma_k(T) \subseteq \sigma_{rr}(T). \) Satz 3 in [7] shows that \(f \) has at most a finite number of zeros in \(\sigma(T). \) \(\blacksquare \)

We are now going to calculate a pseudo inverse for \(f(T) \in \mathcal{S}(X). \)

Theorem 8. Suppose

(a) \(T \in \mathcal{L}(X) \) and \(f \in \mathcal{H}(T) \) are such that \(f(T) \) is an operator of Saphar type,

(b) \(\lambda_1, \ldots, \lambda_m \) are the zeros of \(f \) in \(\sigma(T) \) with respective orders \(n_1, \ldots, n_m, \)

(c) \(S_j \) is a pseudo inverse for \(T - \lambda_j I \) \((j = 1, \ldots, m). \)

Put

\[
S = \left(\prod_{j=1}^{m} S_j^{n_j} \right) h(T)^{-1},
\]

where \(h \) is a function in \(\mathcal{H}(T) \) such that \(f(\lambda) = \left(\prod_{j=1}^{m} (\lambda - \lambda_j)^{n_j} \right) h(\lambda). \) Then \(S \) is a pseudo inverse for \(f(T). \)

Proof: Put \(p(\lambda) = \prod_{j=1}^{m} (\lambda - \lambda_j)^{n_j}. \) Then \(f(\lambda) = p(\lambda) h(\lambda), \) thus

\[
f(T) = p(T) h(T) = h(T) p(T)
\]

and \(h(T) \) is invertible in \(\mathcal{L}(X). \) Use [3, Satz 80.1] to derive

\[
N \left(\prod_{j=1}^{k} (T - \lambda_j I)^{n_j} \right) = N \left((T - \lambda_1 I)^{n_1} \oplus \cdots \oplus (T - \lambda_k I)^{n_k} \right)
\]

\[
\subseteq (T - \lambda_{k+1} I)^{n_{k+1}}(X)
\]

for \(k = 1, \ldots, m - 1. \) By Lemma 5(c), \((T - \lambda_j I)^{n_j} \) is relatively regular and \(S_j^{n_j} \) is a pseudo inverse for \((T - \lambda_j I)^{n_j} \) \((j = 1, \ldots, m). \) Thus, using (4) and Lemma 5(b), we conclude that \(p(T) \) is relatively regular and \(B = \prod_{j=1}^{m} S_j^{n_j} \) is a pseudo inverse for \(p(T). \) Therefore

\[
f(T) S f(T) = f(T) B h(T)^{-1} f(T) = h(T) p(T) B h(T)^{-1} h(T) p(T)
\]

\[
= h(T) p(T) B p(T) = h(T) p(T) = f(T) \ . \ \blacksquare
\]
REFERENCES

Christoph Schmoeger,
Mathematisches Institut I, Universität Karlsruhe,
Postfach 6980, D-7500 Karlsruhe 1 – GERMANY