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Abstract — Zusammenfassung

Enclosing solutions of an inverse Sturm-Liouville problem with finite data.
This paper is concerned with the reconstruction of an unknown potential q(x) in the
Sturm-Liouville problem with Dirichlet boundary conditions, when only a finite num-
ber of eigenvalues are known. The problem is transformed into a system of nonlinear
equations. A solution of this system is enclosed in an interval vector by an interval
Newton’s method. From the interval vector, an interval function [q](x) is constructed
that encloses a potential q(x) corresponding to the prescribed eigenvalues. To make
this numerical existence proof rigorous, of course, all discretization and rounding errors
have to be taken into account in the computation.

AMS Subject Classifications: 34A55, 34A50, 65L15, 65L70, 65G10.

Keywords: Inverse Sturm-Louville problem, enclosure methods, interval Newton’s
method.

Lösungseinschließung eines inversen Sturm-Liouville-Problems mit end-
lichen Daten. In dieser Arbeit wird die Rekonstruktion eines unbekannten Poten-
tials q(x) im Sturm-Liouville-Problem mit Dirichletschen Randbedingungen behan-
delt, wobei nur endlich viele Eigenwerte als bekannt vorausgesetzt werden. Dieses
Problem wird in ein nichtlineares Gleichungssystem überführt. Mit einem Intervall-
Newtonverfahren wird eine Lösung des Gleichungssystems in einen Intervallvektor
eingeschlossen. Aus dem Intervallvektor wird eine Intervallfunktion [q](x) konstru-
iert, die ein Potential q(x) einschließt, das die gestellte Rekonstruktionsaufgabe löst.
Um auf diese Weise den numerischen Existenznachweis einer Lösung zu führen, sind
die bei der praktischen Berechnung auftretenden Diskretisierungs- und Rundungsfehler
zu berücksichtigen.

1 Introduction

Consider the Sturm-Liouville problem with Dirichlet boundary conditions:

−u′′ + q(x) u = λ u

u(0) = u(π) = 0.
(1)
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In this paper, q(x) is assumed to be a continuous function in [0, π], symmetric about
π
2
, that is q(x) = q(π − x) for all x ∈ [0, π]. A real number λ is called an eigenvalue

of (1) if there is a nontrivial solution u(x) of the boundary value problem (1). In this
case, u(x) is called an eigenfunction of (1). The set of all eigenvalues is the spectrum
of (1). As is well known, the spectrum of (1) is an infinite sequence of real numbers
which is bounded from below and tends to infinity ([23], Theorem 2.1). As in [23], we
refer to (1) as Dirichlet problem and regard eigenvalues of (1) as functionals of q(x),
denoted by λi(q), i ∈ IN , where the λi(q) are ordered increasingly:

λ1(q) < λ2(q) < . . . .

The opposite of the computation of eigenvalues and eigenfunctions of (1) for a given
potential q(x), the inverse Dirichlet problem is concerned with the reconstruction of
q(x) in (1) from spectral data. In his fundamental paper in 1946, Borg [6] proved
that there exists a symmetric potential q(x) corresponding to a given spectrum if the
eigenvalues satisfy certain asymptotic expansions, and that a symmetric potential is
uniquely defined by all eigenvalues of (1). The first numerical scheme was originated
by Gel’fand and Levitan [7] in 1951. Since then, several reconstruction procedures have
been suggested (cf. [4], [5], [8], [12], [17], [18], [24], [25]; further references are given in
[8] and [17]).

A crucial property of the inverse problem is the fact that all eigenvalues are needed
to determine the potential uniquely, whereas in applications only a relatively small
number of the lowest eigenvalues can be measured. Two principal methods have been
developed to deal with this inconsistency.

The first method – originated by Gel’fand and Levitan [7] – works with an auxiliary
potential q̃(x), from which the higher eigenvalues are taken. The completed spectrum
then defines exactly one potential q(x), and the only (though still difficult) remaining
problem is the actual computation of q. However, the choice of the auxiliary potential
q̃ is arbitrary; a small variation on q̃ (measured in the infinity norm) may result in a
large variation on q.

In the second approach, one tries to reconstruct a potential in a given function set S
from finitely many eigenvalues ([5], [11], [17]). In applications, additional information
on properties of the solution (eg. smoothness, monotonicity or periodicity) can be
incorporated into the choice of S. However, for a given number of n eigenvalues and
a given function set S, it may neither be possible to decide whether a solution exists
in S nor whether it is uniquely defined in S. A different choice of S may result in a
different potential q, or in no solution at all.

A representation of the difference between any two potentials with the same n
lowest eigenvalues has been given by Hochstadt [12] and Hald [10] in the form of a
series of functions whose frequency is at least n. Hence, qualitatively speaking, the
lowest eigenvalues determine the low frequency modes of the potential, whereas the
high frequency modes remain undetermined. A popular approach is to assume a finite
trigonometric expansion of q(x) and recover the Fourier coefficients from the given
eigenvalues ([11], [17]).
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Some of the reconstruction procedures developed so far (e.g. [18]) construct an
approximate solution of the inverse Dirichlet problem (that is a function, whose eigen-
values approximate but are not equal to the prescribed eigenvalues). Others ([5], [17])
require an infinite iteration to compute a solution. In addition, to prove the existence
of a solution and the convergence of the iteration, the unknown potential may have to
be sufficiently small.

When developing a new reconstruction scheme, one of our goals was a precise error
estimation in the infinity norm, bounding both the errors committed by the termination
of an infinite iteration and roundoff errors in the calculations and in the representation
of numbers and functions on a computer. In finitely many iterations, we construct
bounds of a solution of the inverse Dirichlet problem (in a given function set S),
without an a priori–restriction on the infinity norm of q.

The inverse problem is transformed into a system of nonlinear equations. Applying
interval Newton’s method to this system, we validate the existence and local uniqueness
of a solution of the system. We enclose this solution in an interval vector, with which
we construct an interval function [q](x) that encloses a solution q(x) of the inverse
Dirichlet problem.

A more detailed description of some aspects of the reconstruction procedure and
further numerical examples are given in the author’s thesis [20], of which the results
presented in this paper are part.

2 The inverse problem

As input data for the inverse Dirichlet problem (IDP) treated in this paper, we are
given real numbers ν1 < ν2 < . . . < νn and symmetric basis functions

q̂(x), qj(x), j = 1, 2, . . . , n.

We seek a potential

q(x) = q(x; a) := q̂(x) +
n∑

j=1

aj qj(x), (2)

where a = (aj) ∈ IRn, so that

λi(q(x; a)) = νi for i = 1, 2, . . . , n, (3)

that is, the lowest n eigenvalues of q(x; a) correspond to the numbers νi.

Thus, (IDP) has become the finite-dimensional problem of determining a ∈ IRn so
that the system of n nonlinear equations defined by (3) holds. Setting

f(a) = (fi(a)) := (λi(q(x; a))− νi), i = 1, 2, . . . , n, (4)

Newton’s method applied to f(a) = 0 defines a reconstruction procedure for (IDP), for

f(a) = 0 ⇔ q(x; a) solves (IDP).
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Applying Newton’s method to f(a) = 0, we compute a sequence of iterated vectors

a(k+1) := a(k) −
(

∂fi

∂aj

(a(k))

)−1

f(a(k)), k = 0, 1, . . . , (5)

and corresponding potentials

q(k)(x) := q(x; a(k)) = q̂(x) +
n∑

j=1

a
(k)
j qj(x), k = 0, 1, . . . ,

where the latter may be interpreted as approximate solutions of (IDP). The partial
derivatives in the Jacobian of f are

∂fi

∂aj

(a) =
∫ π

0
qj(x) g2

i (x; a) dx,

which follows from [23], §2, Theorem 3. Here, gi(x; a) denotes the L2-normalized i-th
eigenfunction of q(x; a) with g′i(0; a) > 0.

We summarize this iteration in Algorithm 1:

Algorithm 1Reconstruction procedure for (IDP)

Newton’s method

1. Choose a(0) ∈ IRn.

2. For k = 0, 1, . . .:

(i) For i = 1, 2, . . . , n:

(a) Compute fi(a
(k)) = λi(q

(k))− νi.

(b) Compute gi(x; a(k)).

(ii) Compute the Jacobian

(
∂fi

∂aj

(a(k))

)
=

(∫ π

0
g2

i (x; a(k)) qj(x) dx
)

, i, j = 1, 2, . . . , n.

(iii) Perform the Newton step

a(k+1) := a(k) −
(

∂fi

∂aj

(a(k))

)−1

f(a(k)).

If an approximate solution q̃ to the inverse problem is known, then q̃ can be
used to choose the starting vector a(0) in algorithm 1 and the basis functions for the
reconstruction. In [20], p. 49, the following theorem has been proved:
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Theorem 1 Consider the inverse Dirichlet problem with given numbers {νi}n
i=1. Sup-

pose we are given an approximate potential q̃(x) with eigenvalues {λ̃i}n
i=1. Now choose

the basis functions

q̂(x) := q̃(x),

qj(x) := −2
d

dx
vj, j = 1, 2, . . . , n,

where vj(x) = y1j(x) y2j(x) and y1j, y2j are the solutions of the initial value problems

−y′′ij + q̃(x) yij = λ̃j yij, i = 1, 2

y1j(0) = 1, y′1j(0) = 0

y2j(0) = 0, y′2j(0) = 1.

(6)

Let

δ :=
n∑

j=1

‖qj‖ ,

κ >
1

16 π δ2 n
max
j=1

‖y1j‖ ‖y2j‖
,

and
γ := 16 π δ2 n

max
j=1

‖y1j‖ ‖y2j‖ e8πκδ ‖y1j‖ ‖y2j‖ .

If
n

max
j=1

|νj − λ̃j| <
1

2γ
, (7)

then the iterated potentials of Algorithm 1 with starting vector a(0) = 0 converge to a
solution q∗(x) = q(x; a∗) of the inverse Dirichlet problem, and the estimate

‖a∗ − a(1)‖ ≤ 2 γ ‖a(1)‖ 2

holds.

‖.‖ denotes the infinity norm in C[0, π] and in IRn, respectively. The proof of the
theorem makes use of the Newton-Kantorovich theorem ([22], p. 155). For q̂(x) ≡ c,
c ∈ IR, we obtain q1(x) = 1, qj+1(x) = cos(2jx), j = 1, . . . , n − 1, which corresponds
to a finite trigonometric expansion of q(x).

As a consequence of this theorem, the reconstruction procedure is relieved from any
a priori–restriction on the infinity norm of the unknown potential q(x). The choice of
qj(x) is motivated by results from [23]. For q̃(x) 6≡ c, the finite trigonometric expansion
of q − q̃ is replaced by linear combinations of the functions qj. Unfortunately, the
practical applicability of Theorem 1 is reduced considerably by inequality (7), which
makes great demands on the quality of the approximate solution q̃.
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3 Computation of eigenvalues and eigenfunctions

In each iteration step 2 (i) of Algorithm 1, the lowest n eigenvalues of q(k)(x) and
their corresponding eigenfunctions have to be computed. We do this by applying the
shooting method to the initial value problem

−u′′ + q(x) u = λu, x ∈ [0, π]

u(0) = 0, u′(0) = 1.
(8)

For a fixed potential q(x), we denote the solution of (8) by u(x, λ). If q(x) is regarded
as a variable, too, we use the notation u(x; q, λ).

To compute eigenvalue bounds, we make use of the well-known fact that the number
of zeroes of u(x, λ) in the interval [0, π] is an increasing function of λ, and that the i-th
eigenfunction of the Dirichlet problem has exactly i− 1 simple zeroes in (0, π). These
properties hold for a large class of Sturm-Liouville problems, see e.g. [9].

Counting the zeroes of u(x, λ) in (0, π) for some λ ∈ IR, we get bounds for the
eigenvalues of q(x). By iterating with respect to λ, these bounds can be made arbitrarily
sharp (see [19], [20] for numerical examples).

Once λi is known, the i-th eigenfunction ui(x) of q(x), normalized so that u′i(0) = 1,
can be computed by solving the initial value problem (8), with the exact eigenvalue λi

inserted for λ. Finally, the L2-normalized eigenfunction gi(x) is obtained by evaluating∫ π
0 u2

i (x) dx.

4 Inclusion of a solution

We have already remarked that the requirements of Theorem 1 are not likely to be
fulfilled in practical applications. Therefore, we use interval Newton’s method applied
to f(a) = 0 (where f is defined by (4)) to compute enclosures of a solution of the
inverse Dirichlet problem. Before we describe the inclusion procedure, we introduce
some notation. For a detailed introduction to interval computations, see [1].

Real bounded and closed intervals are denoted by [a] = [a, a], [b] = [b, b], etc. The
same notation is used for interval vectors, e.g. [a] = ([ai]). The space of m-dimensional
interval vectors is denoted by IIRm. Real (m,m)-matrices are denoted by A = (aij),
the corresponding interval matrices by [A] = ([aij]).

By applying Gaussian elimination algorithm to an (m,m)-interval matrix [A] and
an interval vector [b] with m components, we compute an interval vector [x], so that

{ x = A−1b | A ∈ [A], b ∈ [b] } ⊆ [x]

holds ([1], §15). We denote this vector [x] by IGA([A],[b]).
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A pair of continuous functions w, w, satisfying w(x) ≤ w(x) in D ⊆ IR, define an
interval function

[w](x) := [w(x), w(x)]

:= {w(x) ∈ C0(D) | w(x) ≤ w(x) ≤ w(x) for all x ∈ D }.
We denote by q(x; [a]) a set of linear combinations of the basis functions in the recon-
struction procedure, namely

q(x; [a]) := q̂(x) +
n∑

i=1

[ai] qi(x)

:= { q̂(x) +
n∑

i=1

ai qi(x) | ai ∈ [ai] }.
(9)

It is most important for the implementation of the inclusion procedure that the func-
tion set q(x; [a]) is amenable to symbolic calculations such as symbolic integration or
differentiation. E.g., if the basis functions are differentiable, then symbolic differenti-
ation (that is, treating interval coefficients like real constants) of (9) is possible and
yields enclosures of the derivatives of all q(x) ∈ q(x; [a]):

{ q′(x) | q(x) ∈ q(x; [a]) } = q̂ ′(x) +
n∑

i=1

[ai] q
′
i(x).

The interval function gi(x; [a]) denotes the result of an interval-arithmetic compu-
tation of eigenfunctions, so that

{ gi(x; a) | a ∈ [a] } ⊆ gi(x; [a]).

Similarly, the interval-arithmetic evaluation of the derivative of f on [a] is given by the

interval matrix
∂fi

∂aj

([a]), where

{ (
∂fi

∂aj

(a)

)
| a ∈ [a]

}
⊆

(
∂fi

∂aj

([a])

)
.

The interval Newton operator corresponding to (5) is defined by

IN([a]) := m([a])− IGA

(
∂fi

∂aj

([a]), f(m([a]))

)
,

where m : I IRn → IRn, m([a]) ∈ [a] denotes a selection procedure for a real vector
m([a]) from the interval vector [a]. Usually, m([a]) is taken to be the midpoint of each
component of [a]. The interval Newton operator has the property (see [2]) that if

IN([a]) ⊆ [a], (10)

then IN([a]) encloses a unique zero of f .

The interval version of Algorithm 1 is given by the following reconstruction proce-
dure:
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Algorithm 2Reconstruction procedure for (IDP)

Interval Newton’s method

1. Choose [a](0) ∈ IIRn.

2. For k = 0, 1, . . . :

(i) For i = 1, 2, . . . , n:

(a) Compute fi(m
(k)) = λi(q

(k)
m )− νi,

(b) Compute gi(x; [a](k)),

where
m(k) := m([a](k)),

q(k)
m (x) := q(x; m(k)) := q̂(x) +

n∑

j=1

m
(k)
j qj(x).

(ii) Compute the Jacobian
(

∂fi

∂aj

([a](k))

)
=

(∫ π

0
g2

i (x; [a](k)) qj(x) dx
)

,

i, j = 1, 2, . . . , n.

(iii) Perform the interval Newton step

IN([a](k)) := m(k) − IGA

(
(
∂fi

∂aj

([a](k))), f(m(k))

)
,

[a](k+1) := IN([a](k)) ∩ [a](k).

From the inclusion property (10) of the interval Newton operator, we deduce the
following theorem:

Theorem 2 Let [a](k) be the sequence of interval vectors defined by Algorithm 2. Then
if for one k ∈ IN

IN([a](k)) ⊆ [a](k), (11)

then [a](k+1) encloses exactly one solution a∗ of f(a) = 0. The function set

q(x; [a](k+1)) = q̂(x) +
n∑

j=1

[aj]
(k+1)qj(x)

contains exactly one potential of the form (2), namely

q∗(x) := q(x; a∗) = q̂(x) +
n∑

j=1

a∗j qj(x),

corresponding to the prescribed eigenvalues {νi}n
i=1.

Remark: In applications, inaccuracies of measurement usually prevent the determina-
tion of exact eigenvalues. Therefore, a rigid error estimation for the difference between
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q(x) and the reconstructed potential is desirable. Since Algorithm 2 also applies to
interval eigenvalue data, we obtain safe error bounds (in the infinity norm) by using
interval enclosures [νi] of eigenvalues instead of real numbers νi. Then f(m(k)) becomes
an interval vector, and in the interval Newton step, the interval vector IN([a](k)) must
enclose all solutions x of the linear systems

A (x−m(k)) = − y, A ∈
(

∂fi

∂aj

([a](k))

)
, y ∈ f(m(k)). (12)

For this purpose, one of the methods described in [21] can be applied instead of interval
Gaussian elimination.

5 Eigenvalue enclosures

In Section 3, eigenvalue approximations were computed by the shooting method. In
this section, we compute guaranteed eigenvalue enclosures by a modification of the
shooting method. With Lohner’s enclosure method for the solutions of ordinary initial
value problems implemented in his PASCAL-XSC program called AWA ([14], [15],
[16]), we compute an interval function [u](x) that contains the true solution u(x) of
(8).

Again, we compute eigenvalue bounds by counting zeroes. In order to count the
correct number of zeroes, we have to guarantee that whenever the interval function
[u](x) crosses the x-axis, u(x) has exactly one zero there. To guarantee this, we compute
an enclosure [u′](x) of u′(x) as well, and verify that 0 ∈ [u](x) and 0 6∈ [u]′(x) hold
simultaneously for x ∈ [0, π]. As all zeroes of u(x) are simple, the correct number
of zeroes can be computed if the function enclosures of the solutions of (8) are sharp
enough.

Replacing q(x; a) in (8) by [q](x) := q(x; [a]) and applying AWA to the resulting
initial value problem, we get simultaneous enclosures of the eigenvalues of all potentials
q(x; a) ∈ [q](x), due to the inclusion monotonicity of the interval operations. To
make AWA applicable, [q](x) must be interpreted as a function set in the sense of (9).
However, numerous calculations have shown that the eigenvalue bounds computed
using this approach are not very tight if the diameter

d([q]) := max
x∈[0,π]

( q(x)− q(x) )

of [q](x) is large. In this case, we make use of a monotonicity argument.

With two eigenvalue bounds λ i(qmid) and λi(qmid) of the midpoint function

qmid(x) :=
1

2
(q(x) + q(x))

of [q](x), and the estimate

‖q(x)− qmid(x)‖∞ ≤ 1

2
d([q]),

9



we obtain the bounds

λ i(qmid)− 1

2
d([q]) ≤ λi(q) ≤ λi(qmid) +

1

2
d([q]) (13)

for the eigenvalues of any q(x) ∈ [q](x).

In our numerical examples which we will present in Section 8, we define the selection
procedure m in the interval Newton step of Algorithm 2 to choose the midpoint of the
interval vector [a](k). In this case, eigenvalue bounds of q

(k)
mid(x) are already necessary

to perform the iteration. Therefore, to enclose the eigenvalues of [q](k)(x) := q(x; [a](k))
with the aid of (13), we merely have to compute or estimate the diameter of [q](k)(x), so
that with this method, sharp enclosures of eigenvalues of all potentials q(x) ∈ [q](k)(x)
can be obtained with modest amount of work. These eigenvalue enclosures will be used
to enclose the eigenfunctions gi(x).

6 Eigenfunction enclosures

If we allow an interval [λ] instead of the real parameter λ in the application of AWA
to (8), we compute an interval function u(x, [λ]) satisfying

u(x, λ) ∈ u(x, [λ]) for all x ∈ [0, π] and all λ ∈ [λ].

This property is used to obtain eigenfunction enclosures for q(x) in two steps.

First, we compute an enclosure [λi] of the i-th eigenvalue λi of q(x). Then we apply
AWA to (8) with [λ] = [λi]. Because

ui(x) = u(x, λi) ∈ u(x, [λi]) for all x ∈ [0, π],

the interval function u(x, [λi]) encloses the i-th eigenfunction ui(x) of q(x).

Finally, we insert interval data for both q(x) and λ, apply AWA to (8), and compute
an interval function [u](x) := u(x; [q], [λ]) which satisfies

u(x; q, λ) ∈ u(x; [q], [λ]) for all x ∈ [0, π], all q(x) ∈ [q](x) and all λ ∈ [λ].

To obtain simultaneous enclosures of the normalized eigenfunctions of all q(x) ∈
[q](x), we compute an interval [λi] ⊇ {λi(q) | q(x) ∈ [q](x)} by the method described in
the previous section. After that, we apply AWA to (8) to compute the interval function
u(x; [q], [λi]) containing the i-th eigenfunctions ui(x) of all q(x) ∈ [q](x).

To proceed, we have to give a precise description of the structure of u(x; [q], [λi]).
Applying AWA, the interval [0, π] is divided into equidistant subintervals [xl, xl+1], l =
0, 1, . . . , lmax−1. In each subinterval [xl, xl+1], we compute intervals [ck], k = 0, 1, . . . , r,
that enclose the Taylor coefficients up to order r− 1 and the corresponding remainder
term of all ui(x) = u(x; q, λi(q)) with q(x) ∈ [q](x). Hence, for all q(x) ∈ [q](x),

ui(x) ∈ u(x; [q], [λi]) :=
r∑

k=0

[ck](x− xl)
k, x ∈ [xl, xl+1]. (14)
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This representation allows us to compute enclosures of squares of eigenfunctions
by squaring u(x; [q], [λi]) in each subinterval [xl, xl+1] ⊂ [0, π]. We get an enclosure of
u2

i (x) in the form

u2
i (x) ∈

2r∑

k=0

[dk](x− xl)
k, x ∈ [xl, xl+1]. (15)

Since (x − xl)
k does not change sign in [xl, xl+1], when integrating (15) we may

write the interval coefficients [dk] before the integral ([13], p. 29) to obtain

∫ xl+1

xl

u2
i (x) dx ∈

2r∑

k=0

[dk]
∫ xl+1

xl

(x− xl)
k dx.

Summation over all subintervals of [0, π] results in an interval [zi], which contains ‖u2
i ‖2

2

for all q(x) ∈ [q](x). Division

[gi](x) :=
[ui](x)√

[zi]

yields an enclosure of the L2-normalized eigenfunctions gi(x) of all q(x) ∈ [q](x) of the
form (14). We used this interval function to enclose the Jacobian in Algorithm 2 in an
interval matrix.

7 Enclosures of the partial derivatives

The final step to enclose the elements of the Jacobian is to evaluate the integrals
∫ π

0
[gi]

2(x) qj(x) dx. (16)

We compute enclosures of the form (14) for all basis functions qj(x), using the same
breakpoints as for the [gi](x). After that, the integrals (16) have been calculated by
symbolic multiplication of these interval functions, followed by symbolic integration as
in the previous section.

We summarize the necessary steps to enclose the Jacobian

(
∂fi

∂aj

([a])

)
:

For i = 1, 2, . . . , n :

1. Compute an enclosure [λi] of the i-th eigenvalues of all q(x) ∈ [q](x) := q(x; [a]).

2. For all q(x) ∈ [q](x), λi ∈ [λi], enclose the solutions of

−u′′i + q(x) ui = λi ui, x ∈ [0, π]

ui(0) = 0, u′i(0) = 1

in the interval function [ui](x).
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3. Compute an enclosure [zi] of
∫ π

0
u2

i dx for all ui(x) ∈ [ui](x).

Let [gi](x) :=
[ui](x)√

[zi]
.

For j = 1, 2, . . . , n :

Let
∂fi

∂aj

([a]) :=
∫ π

0
[gi]

2(x) qj(x) dx.

Evaluate the integral by symbolic calculations as described in Section 6.

8 Numerical results

The numerical performance of the reconstruction procedure in this paper is much more
expensive than the algorithms for approximate solutions mentioned in the introduction.
The computation of enclosures of the function value of f and of the Jacobian in Algo-
rithm 2 requires solving 2n eigenvalue problems (by the method described in Section
5, this can be reduced to the computation of only n eigenvalues). To obtain eigenvalue
bounds with the shooting method requires solving several interval–valued initial value
problems for each of these eigenvalues. An additional n initial value problems have to
be solved to compute the eigenfunctions needed in the Jacobian. The computation of
the Jacobian also requires the evaluation of n2 integrals. The large amount of work is
justified in many applications by the possibility to validate the existence of a solution
numerically on the computer and to investigate the sensitivity of the reconstructed
potential to variations in the prescribed eigenvalues by permitting interval data in the
reconstruction.

On the other hand, approximate solutions can be obtained rather cheaply by ap-
proximately solving the eigenvalue problems with the Rayleigh–Ritz method. As the
i-th eigenfunction of the Sturm-Liouville equation resembles sin(ix), the sine func-
tions supply excellent basis functions for the Rayleigh–Ritz method, thus reducing the
eigenvalue problem to the computation of matrix eigenvalues and eigenvectors.

In our numerical examples, we used the Rayleigh–Ritz method as the initial step
of the reconstruction procedure to compute an approximate solution that was further
improved by two or three steps of Algorithm 1 (performed in real machine arithmetic).
An assumed enclosure [q](0)(x) of a solution of (IDP) was obtained using criteria from [3]
for the determination of a starting interval for interval Newton’s method from iterates
of real Newton iteration. With the implementation of Algorithm 2 on a computer, the
existence and inclusion of such a solution was finally proved. In all examples, only one
step of Algorithm 2 was needed for that proof. To make the numerical existence proof
rigorous, all rounding errors were enclosed in the computation.

To demonstrate that the use of interval arithmetic can produce tight enclosures of
the solutions, we used function sets that include the desired potentials in the recon-
struction procedure. We present two examples. In one example, a finite trigonometric
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expansion of q is used (cf. the remark in Section 2). In the other example, symmetric
cubic splines (as an example of a function set suitable for the approximation of smooth
functions) are used. In both examples, potentials with extremely large infinity norm
are reconstructed ( ‖q‖∞ is about 20–100 times larger than in the examples presented
in [5], [17], [18], [24], [25]).

Of course, the input data of the reconstruction problem usually consists of n real
numbers not exactly representable in finite arithmetic. With our method, intervals
accounting for roundoff errors or errors of measurements can be used instead of the
exact values. With these, distinct inverse problems can be solved at the same time,
and a sensitivity analysis of the inverse problem is also accomplished.

Hence, as input data for the reconstruction, in both examples we compare ma-
chine representable approximations of the eigenvalues with interval enclosures of the
eigenvalues of different accuracy. Of course, when the eigenvalues are prescribed to 16
decimal digits and are not infinitely exact, with sufficiently precise arithmetic we could
compute an enclosure of the solution to the 16 digits inverse problem that does not
enclose q(x).

The examples presented here were computed using the 16 decimal digit real and
interval arithmetic of PASCAL-XSC (guaranteeing identical results on any machine).
On an HP personal computer with an Intel 486-processor (66MHz), about fifteen to
twenty minutes were needed to perform the calculations of one reconstruction. Most of
the computation time was consumed by the enclosure step. The solutions of the initial
value problems (8) were enclosed with a variant of Lohner’s program AWA, adapted to
the rather simple structure of the differential equation. To enclose the solutions of the
linear systems in the interval Newton step, the PASCAL-XSC problem solving routine
LSS was used instead of interval Gaussian elimination.

The complete code is available on request to the author’s e–mail address.

Example 1: Reconstruction of q(x) = 100
(

2

π
x− 1

)2

from four eigenvalues

Function set for q(x): Symmetric cubic spline with 8 knots, xi = iπ/7, i =
0, 1, . . . , 7.
qj(xi−1) = qj(x8−i) = δij, i, j = 1, 2, 3, 4.

Initial guess: q(0)(x) = 0.

a) Prescribed eigenvalues: 16 decimal digit approximations:

ν1 = 6.366 206 010 508 312, ν2 = 19.098 834 811 432 28,

ν3 = 31.834 245 487 078 10, ν4 = 44.590 112 710 479 30.

Enclosures in the breakpoints:

[q](0) = 100.000 000 000 149 3
99.999 999 999 851 92, [q](π/7) = 51.020 408 163 275 49

55 22 ,

[q](2π/7) = 18.367 346 938 776 28
4 75, [q](3π/7) = 2.040 816 326 530 814

413.
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b) Prescribed eigenvalues: tight interval enclosures:

ν1 = 6.366 206 010 508 366
258, ν2 = 19.098 834 811 432 39

16,

ν3 = 31.834 245 487 078 23
7 96, ν4 = 44.590 112 710 479 47

13.

Enclosures in the breakpoints:

[q](0) = 100.000 000 000 718 8
99.999 999 999 281 88, [q](π/7) = 51.020 408 163 312 46

218 22 ,

[q](2π/7) = 18.367 346 938 779 06
1 96, [q](3π/7) = 2.040 816 326 531 370

29 854.

c) Prescribed eigenvalues: 10 dezimal digit interval enclosures:

ν1 = 6.366 206 011
0, ν2 = 19.098 834 82

1,

ν3 = 31.834 245 49
8, ν4 = 44.590 112 72

1.

Enclosures in the breakpoints:

[q](0) = 100.000 005 455 594 6
99.999 998 186 155 99, [q](π/7) = 51.020 408 518 437 80

052 080 21 ,

[q](2π/7) = 18.367 346 954 403 94
15 603 61, [q](3π/7) = 2.040 816 333 700 984

19 540 180.

Example 2: Reconstruction of q(x) = 100 cos(10x) from six eigenvalues

Function set for q(x): q(x; a) = a0 +
5∑

j=1

aj cos(2jx).

Initial guess: q(0)(x) = 99 cos(10x).

a) Prescribed eigenvalues: 16 decimal digit approximations:

ν1 = −37.575 466 563 677 14, ν2 = −36.840 425 617 896 98,

ν3 = −35.890 355 745 793 39, ν4 = −35.084 400 836 106 08,

ν5 = −34.766 912 530 639 00, ν6 = 61.476 539 932 499 41.

Enclosure: [q](x) = [−2.475 · 10−9, 2.454 · 10−9]

+ [−6.277 · 10−9, 6.224 · 10−9] cos(2x) + [−6.229 · 10−9, 6.175 · 10−9] cos(4x)

+ [−6.811 · 10−9, 6.754 · 10−9] cos(6x) + [−8.063 · 10−9, 7.998 · 10−9] cos(8x)

+ ( 100 + [−3.624 · 10−9, 3.595 · 10−9] ) cos(10x).

b) Prescribed eigenvalues: tight interval enclosures:

ν1 = −37.575 466 563 669 40
84 88, ν2 = −36.840 425 617 870 27

923 68,

ν3 = −35.890 355 745 696 32
890 44, ν4 = −35.084 400 836 022 44

189 72,

ν5 = −34.766 912 530 601 78
76 22, ν6 = 61.476 539 932 512 59

486 21.

Enclosure: [q](x) = [−4.917 · 10−9, 4.909 · 10−9]

+ [−1.247 · 10−8, 1.245 · 10−8] cos(2x) + [−1.240 · 10−8, 1.241 · 10−8] cos(4x)

+ [−1.356 · 10−8, 1.357 · 10−8] cos(6x) + [−1.602 · 10−8, 1.600 · 10−8] cos(8x)

+ ( 100 + [−7.200 · 10−9, 7.188 · 10−9] ) cos(10x).
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c) Prescribed eigenvalues: 10 dezimal digit interval enclosures:

ν1 = −37.575 466 56
7, ν2 = −36.840 425 61

2,

ν3 = −35.890 355 74
5, ν4 = −35.084 400 83

4,

ν5 = −34.766 912 53
4, ν6 = 61.476 539 94

3.

Enclosure: [q](x) = [−4.284 · 10−7, 1.934 · 10−7]

+ [−1.085 · 10−6, 4.778 · 10−7] cos(2x) + [−1.058 · 10−6, 3.806 · 10−7] cos(4x)

+ [−1.140 · 10−6, 4.124 · 10−7] cos(6x) + [−1.380 · 10−6, 6.022 · 10−7] cos(8x)

+ ( 100 + [−6.231 · 10−7, 2.865 · 10−7] ) cos(10x).
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[23] Pöschel, J., and Trubowitz, E.: Inverse Spectral Theory. Academic Press, Orlando,
1987.

[24] Rundell, W., and Sacks, P. E.: The Reconstruction of Sturm-Liouville Operators.
Inverse Problems 8, 457–482, 1992.

[25] Sacks, P. E.: An Iterative Method for the Inverse Dirichlet Problem. Inverse Prob-
lems 4, 1055–1069, 1988.

16




