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Abstract

Various online stores have recently integrated different kinds of recommender sys-

tems in their e-commerce storefronts. Customers profit from a faster finding of

relevant products; the stores profit from rising sales. Scientific and technical infor-

mation (STI) providers, e. g. university libraries, are a very promising application

area of recommender systems as well due to high search costs for their goods and

the general problem of assessing the quality of information products. Nevertheless,

the usage of recommendation services in this market is still in its infancy. The goal

of this book is to present economical concepts, statistical methods and algorithms,

technical architectures, as well as experiences from case studies on how recommender

systems can be integrated at STI providers.

An analysis of the market of STI shows that changes in the strategic position

of the players due to the ongoing process of digitization give recommender systems

a crucial role in the future business profile of STI providers. The discussion of

the mechanism design of recommender systems concludes, that privacy issues and

the cold start problem play a critical role in this market. A survey of major STI

providers depicts, that most providers do not feature any such services yet. A

case study reports on the worldwide first introduction of rating and review services

supporting a role system of different user and target groups open to the general

public at a large scientific library (University Library of Karlsruhe).

Revealed preference theory, self-selection, and transaction cost analysis are the

economic basis for the introduction of behavior-based recommender systems at STI

providers. Three algorithms for the generation of behavior-based recommendations

are presented: LSD, POSICI, and POMICI. Privacy issues and scalability are the

biggest concerns for algorithms. A typical STI provider has tens of millions of prod-

ucts, which is at least one order of magnitude larger than large e-commerce shopping

sites. Developed especially for scalability and privacy, all three algorithms generate

item-to-item recommendations out of anonymous market basket data. POSICI and

POMICI are designed to lessen the cold start problem by computing recommenda-

tions out of small sample input data.

A behavior-based recommendation service relying on these algorithms was im-

plemented and introduced in different national and international library catalogs;

currently this service is commercialized under the BibTip brand. User evaluations

of the portrayed systems showed room for improvement in the interface design. Re-

coDiver, a dynamic graph-based user interface to recommendations featuring radial

tree layouts was developed as an alternative Java applet interface for the existing

behavior-based service. The user evaluation shows a clear preference towards this

interface.

Keywords

Recommender system, recommendation service, scientific information, consumer

buying behavior, user interface design.
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Chapter 1

Introduction

Various online stores have recently integrated different kinds of recommender sys-

tems in their e-commerce storefronts. Thereby, the general public is becoming more

and more accustomed and positively attached to these value-adding services. Recom-

mender systems in online stores present products as recommendations to customers

according to the customers’ current interests and needs. Customers profit from a

faster finding of relevant products; stores profit from rising sales.

Scientific and technical information providers, e. g. university libraries, are a very

promising application area of recommender systems as well. Nevertheless, the usage

of recommendation services in this market is still in its infancy. The goal of this

book is to present economical concepts, statistical methods and algorithms, technical

architectures, as well as experiences from case studies on how recommender systems

can be integrated at providers of scientific and technical information.

1.1 Recommender Systems

In everyday life we have to make choices in areas of little or no personal experience.

A common solution to this problem lies in asking peers. Recommendation letters for

job applications, movie reviews in newspapers, or restaurant guides are a first step

of scaling-up the social word of mouth process. Recommender systems aggregate

knowledge from many peer groups to the level of expert advice services. They better

the social process and bear the potential to significantly reduce transaction costs for

the consumer by means of their aggregation capabilities.

Generally speaking, a recommender system reads observed user behavior or opin-

ions from users as input, then aggregates and directs the resulting recommenda-

tions to appropriate recipients. The developers of the first recommender system—

Tapestry developed at the Xerox Palo Alto Research Center [GNOT92]—introduced

the term “collaborative filtering”, which was later adopted by several others. “Rec-

ommender system” was coined by Resnick and Varian in 1997 [RV97] to better de-

scribe the action than “collaborative filtering” for two reasons: first, recommenders

may not explicitly collaborate with recipients, who may be unknown to each other,

and second, recommendations may suggest particularly interesting items, in addi-
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tion to indicating those that should be filtered out. On the one hand, recommender

systems bear the potential to significantly reduce the transaction costs of finding a

suitable product for a specific customer need. On the other hand, recommender sys-

tems can be utilized as community tools featuring the interaction of customers. This

helps to intensify the relationship with customers in the long run. When focusing

on the information channel aspect of recommender systems, the term “recommen-

dation service” is used. Recommendation services are market information systems

of electronic markets. A recommender system might manage a bundle of different

recommendation services.

Recommender systems, especially when based on the approach of explicitly ask-

ing the users for input, are built upon the vision of the “prosumer”—sometimes also

used in the form “prosumption”. The portmanteau prosumer stems from merging

producer and consumer. This idea was first described—although not named—by

Toffler in his 1970’s book “Future Shock” [Tof70]. In a market saturated by mass

production of standardized products, businesses are forced to a process of mass

customization for growing profit. For such a high degree of customization the par-

ticipation of customers in the production process is necessary. Pine [PI93] describes

the shift from mass production to mass customization as well as the necessary or-

ganizational changes for this new business competition. The rise of e-commerce has

not so much influenced the production variety of physical goods, but made possible

the customization of services and even of the shops themselves. Concerning services,

in classical organizations the idea of the prosumer was pursued through various self-

service approaches (restaurants, automatic teller machines,. . . ), in e-organizations

the idea can be pursued even more consequently by supplying electronic tools to the

customers. Recommender systems are one important building block for a high level

of personalization in e-commerce. Presenting every customer his personal shop with

tailored services is a way to introduce the idea of mass customization to e-commerce.

Recommender systems support a customization of the consumer experience in the

presentation of the products sold at an online shop. By means of this, a differ-

ent store personally designed for each customer becomes possible. By means of his

explicit input together with his behavior each prosumer creates his own store.

Today’s participants of online communities like Flickr1 or YouTube2, the so-called

Web 2.0, are prototypes of prosumers. Amazon.com3 with its recommender services

is sometimes considered to books what is Flickr to photos or YouTube to videos. It

serves as a platform for consumers to discuss about books by means of the review

and rating recommendation services. Every user of a well designed recommender

system not only consumes information but produces recommendations as well.

Recommender systems are related to marketing systems but taking a somehow

reversed approach. Classical marketing systems help the marketer by grouping con-

sumers and products and then match the resulting marketing segments and product

categories for campaign management. Recommender systems start with direct in-

1http://flickr.com/
2http://www.youtube.com/
3http://www.amazon.com/

http://flickr.com/
http://www.youtube.com/
http://www.amazon.com/
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teraction with consumers to guide them to products according to their needs and

interests. Another relative of recommender systems can be found in supply-chain

decision-support systems. To decide about the quantity of production and the dis-

tribution to warehouses and stores, these systems give predictions about aggregated

consumption of segments of customers, e. g. the predicted demand in a specific city

within a certain month. Recommender systems deal with the same sort of questions

on the level of individual consumers. Recommendations are products, that the sys-

tem predicts this specific consumer in this moment to buy with a much higher than

average probability. Summing up, by gathering data and guiding the customers to

the right products, recommender systems can reduce the general marketing costs for

the shop or service provider.

Recommender systems support sales at online stores in at least three ways

[SKR01]:

Turning visitors into buyers. The majority of visitors browsing an online store

leave without a purchase. Recommender systems help, by pointing to suitable

products, to turn those visitors into buyers, who would have left the store

because they didn’t find a suitable product although it was somewhere in the

store.

Increasing cross-sell. Recommending additional items associated with the prod-

ucts in the shopping cart before the checkout process brings the customer back

to the shelves and thereby can significantly increase cross-sell.

Locking-in the customers. In the Internet the competitor is always just one click

away; gaining consumer loyalty is an essential business strategy. From the

supplier’s perspective an installed base of customers should be locked-in. The

extent of a customer’s lock-in is measured by the switching costs to a competi-

tor. The more a customer uses the recommender systems—teaching it about

his interests and needs—the more he becomes locked-in to the supplier. “Even

if a competitor were to build the exact same capabilities, a customer . . . would

have to spend an inordinate amount of time and energy teaching the competi-

tor what the company already knows” [PIPR95]. Considering behavior-based

recommender systems that analyze the purchase history of a customer, this

data might even be completely lost when switching to a competitor.

1.2 Scientific and Technical Information

Recommender systems are valuable tools in many areas. This book puts a spe-

cial emphasis on the market of STI. Although recommender systems are especially

valuable in information economics, they still hardly exist for scientific information.

In this work, the term STI is used very broadly. It includes every information that

is of value to the academic community or the research and development department

of any organization. It is considered as a synonym to “information of STM” (science,

technology, and medicine), that can sometimes be found in the literature as well.
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Most of today’s STI exists in the form of journal articles or books. Other media

types that play a growing role include but are not limited to CDs, DVDs, audio

and video files, interactive computer graphics or programs, and collections of raw

statistical data from experiments and surveys. The more of these media types an

information research tool supports, the more helpful it generally is to the users.

Information goods as a key resource of the 21st century might even displace indus-

trial goods as key drivers of markets. Not only is the foundation of the developed

countries’ economic prosperity based on the efficient conversion of information to

knowledge, but also on distributing this knowledge in the educational system. In

this context, providers of scientific and technical information play a decisive role for

the economic wealth of a society. Valid and credible information is a scarce resource.

Information consumes the attention of its recipients. “Hence a wealth of informa-

tion creates a poverty of attention and a need to allocate that attention efficiently

among the overabundance of information sources that might consume it” [Sim71].

Recommender systems are tools in the economics of attention, they help to filter

out the noise.

Although some particularities of STI exist, the general market for STI should be

evaluated by means of the same attributes as other industries: price, quality, and

entry. A large number of studies exists about the market of STI due to the attention

of public decision makers (see Section 2.1). On the one hand this attention stems

from the fact, that science has a key role in fostering economic growth. On the

other hand the funding structure of goods of STI is unique: a large part of the

scientific activity is publicly funded, the output is typically “donated” to privately

owned journals, so is the majority of refereeing services, and finally, these journals

are bought by publicly-funded libraries. This structure is in question by many

public authorities because of its seemingly lacking relative efficiency. For example,

between 1975 and 1995, privately owned journals have increased prices by 300%

beyond inflation [DGL+06]. One of the many problems within this market is the

fact, that libraries have only an imperfect knowledge of the value of the journals for

the end users. Facilitating aggregated data from recommender systems for collection

management purposes helps libraries to decide, which journals are essential for their

customer group of scientists.

The cost structure of an information supplier differs from other industries. The

production of information in general is costly but the reproduction is cheap. Even

in the non-digital world, books that cost hundreds of thousands of Euros to produce

can be printed and bound for a few Euros. Intellectual property rights to restrict the

reproduction helps to ensure the production of information. But a too conservative

approach of the management of intellectual property can also hinder the development

of new revenue sources [SV99]. Information goods have high fixed costs but low

marginal costs. One of the implications of this is, that cost-based pricing doesn’t

work, the goods must be priced according to consumer value. A field experiment on

the pricing of digital scientific information conducted by the author showed that even

for very low prices below 1.00 Euro a significant price elasticity of demand exists,

allowing for pricing based on consumer value [Neu07b]. Recommender systems can
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help to determine the specific value of a good to a customer allowing for a detailed

level of differential pricing.

STI is an experience good: consumers must experience every new article or book

to value it. It is impossible to determine the value of the good before the transaction,

or, as Arrow puts it in his classical paper [Arr62]: “. . . there is a fundamental paradox

in the determination of demand for information; its value for the purchaser is not

known until he has the information, but then he has in effect acquired it without

cost.” The market of STI is a market with asymmetric information, which occurs

when the seller knows more about a product than the buyer. Akerlof, Spence, and

Stiglitz have made early and significant contributions to the analysis of markets

of this kind (see e. g. [Ake70, Spe74, RS76]). Branding and reputation, e. g. of

the authors or the publisher, are a way to value STI before the consumption. But

recommender systems can help to value a specific information good for an individual

customer before the purchase. The characteristic of STI as experience goods makes

recommender systems especially useful in STI markets.

A particularity of the market of STI is the large number of different available

products. A large library contains tens of millions of documents exceeding by far

the number of any large consumer store. This leads to higher search costs for

information goods; search costs have been an early area of concern in the economics

of information (see e. g. [Sti61]). Further on, the evaluation of the quality of a

scientific document is very hard and time consuming even if the content is already

available. In new research fields acknowledged experts that could be referenced

might not even yet exist. This makes automatic research tools that estimate the

quality of the information exceptionally helpful.

This work will not go into detail, in which format the STI reaches the customer.

Technology has just the meaning of the packaging of the information by which it

reaches the end consumer. Sometimes Internet technology is portrayed as a threat

to the information business for its copying and sharing capabilities. But it should be

stated, that “the technology infrastructure makes information more accessible and

hence more valuable” [SV99]. More customers can be reached and the delivering of

the information good was never as easy as it is today. It is a matter of the business

concept to use this opportunity. The changes this brings to the market of STI are

discussed in the Chapter 2.

1.3 Motivation and Focus

Although recommendation services are frequent in e-commerce storefronts, they

hardly exist at STI providers. Scientific libraries, the most widespread form of

providers of STI, have been somehow slow to integrate recommender services in

their online public access catalogs (OPAC). At libraries the profit contribution of

a product (library document) is not the first concern and the customers (library

users) are coming due to very different incentives compared to online stores of phys-

ical consumer goods. Nevertheless, libraries are still definitively a very promising
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application area. Due to the supply complexity or the cost of evaluation of the qual-

ity, technicians, scientists, and students are more and more incapable of efficiently

finding relevant literature in conventional database oriented catalog systems and

search engines. A common solution to this problem lies in asking peers for recom-

mendations of reading’s on the topic of interest. Recommender systems aggregate

knowledge from many peer groups to the level of expert advice services, thus opti-

mizing the approach taken before by many single individuals separately. By means

of recommendation services library OPACs can be turned into customer oriented

service portals supporting the interaction of the customers.

The approach of stakeholders, i. e. system managers and users, towards recom-

mender systems depends on the application area. Although algorithms to compute

recommendations might often be applicable in many areas, when it comes to moti-

vation and incentives of stakeholders, different mechanisms are at work in different

application areas. The mechanism design of a recommender service is a very critical

aspect when it comes to the long term success of the service. Therefore, a profound

analysis of the market of scientific information is necessary to successfully integrate

recommender systems at providers of STI.

Considering technical aspects, the typical legacy information architectures differ

widely from one area to the other. E-commerce shopping applications are built from

other basic modules than library OPAC software. Last but not least, the number

of products in (compound) library catalogs are often counted in tens or hundreds

of millions, exceeding by far the number of products of any consumer store. This

leads to new types of scalability problems that do not exist in most e-commerce

applications. Suitable statistical algorithms for regular incremental updates of the

computed recommendations have to go hand in hand with scalable database and

service architectures.

The motivation of this work lies in developing the necessary components to make

possible the successful integration of recommender systems at providers of STI.

When it comes to the market of STI, the focus is set on scientific libraries. The de-

veloped systems have been integrated as standard services open to the general public

into the OPACs of different libraries. Thereby, firsthand experience and evaluations

of the new developed scientific techniques could be gained and are presented in the

next chapters as well.

1.4 Chapter Guide

This book is structured in the following way. Chapter 2 gives an introduction to

the market of STI. The players in the market are analyzed by means of a special

value-chain presentation. It is shown that the strategic disposition of value-adding

search and community tools like recommender systems is crucial to the future suc-

cess of the players to intensify their relationship to regular customers. Chapter 3

starts with a classification of recommender systems before analyzing the pros and

cons of different systems. Designing recommender systems means designing games
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of static mechanism design, a special class of games of incomplete information. The

different classes of recommender systems are evaluated in a qualitative way by their

mechanism design problems and solutions. A survey of existing recommender sys-

tems at major STI providers is given in Chapter 4. Although some scientific digital

libraries are experimenting with such systems, they are generally still no standard

features. Next, in Chapter 5 the focus is set on explicit recommender systems. The

integration of group-specific rating and review services into the OPAC of the Uni-

versity Library of Karlsruhe is described as a case study. Usage statistics are given

and the services are evaluated. Chapters 6 to 8 study behavior-based systems in

more detail. Chapter 6 gives an overview of the general concepts of behavior-based

recommendations, as there are preference theory, self-selection, data-mining, and

diffusion processes. In Chapter 7 different algorithms to compute recommendations

from behavioral data are described. The application of these algorithms are shown

in Chapter 8. There, detailed integration information of behavior-based services in

different university libraries as well as national and international compound catalogs

can be found. In Chapter 9 a new interface for the visualization and exploration of

information spaces is presented and evaluated. Finally, Chapter 10 gives an overall

discussion of the main results of this study.
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Chapter 2

The Market of Scientific and

Technical Information

In Chapter 1 it was argued that STI plays a decisive role for the long term economic

wealth of a population. The main players involved in the production of STI are

authors, scientific libraries, publishers, bookstores, scientific associations, and col-

lecting societies. This chapter examines the role of the different players in the market

to determine where the introduction of recommender systems is a strategic option

to gain further impact on the market in the future. In order to do this, a struc-

tural model for the value chain of the production within STI markets is developed

based on the 2-3-6-concept, a special value chain presentation. The analysis reveals

that none of the players can be expected to stay within its historically grown core

competencies. Due to technical developments—generally summarized as the process

of digitization—and the associated changes concerning the structure of transaction

costs, each player can cover more fields of value adding activities. Setting a stronger

focus on portal and search services like recommender systems is a strategic posi-

tioning recommendation for scientific libraries, publishers, bookstores, and scientific

associations (with different priorities) in order to persist in the STI market of the

future.

2.1 Information Providers in the Digital Age

The very heart of the business of information providers lies in collecting documents

and delivering this information. Since information and communication are highly

influential elements of our society, many public funded scientific libraries with long

traditions exist to secure the collected knowledge of humankind. Changes of the

worldwide educational systems within the last decades have lead to a growing pro-

duction and demand of STI, more people than ever before are working in the sci-

entific community. Digitization offers the technical means that enable information

providers to cope with the growing data storage and transfer volumes. The pro-

cess of digitization has conquered different classical segments of the STI market at

different speeds. Reasons for the delayed adoption of the technology of the digital
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age and its possibilities are manifold. They include—but are not limited to—legal

and contractual aspects like intellectual property rights with the technical issue of

digital rights management as well as economical aspects like missing standardization

in the industry or failures of the market. Scientific journals e. g. are already mostly

available in digital form, while most books are still exclusively sold as paper copies.

In some contexts the term digital interactive services (DIS) is used. DIS stands

for the industry which has evolved around the electronic commerce for digital in-

formation goods. The core science, technology, and medicine publishing market is

estimated between U.S. Dollar 7,000,000,000 and U.S. Dollar 11,000,000,000, while

in 2001 OECD countries (members of the Organization for Economic Co-operation

and Development) allocated U.S. Dollar 638,000,000,000 to research and develop-

ment [DGL+06].

Lifelong learning as well as the growing sector of e-learning increase the demand

of STI even further [Dea97]. Especially in the e-learning context, digital STI services

are necessary to prevent discontinuities in the used media (e. g. switching back to

paper) [KGKF01]. General or issue-related document delivery services are playing

an important role in supplying individuals with STI when institutional flat rates are

not available. Besides the market of the academic sector a multitude of commercial

service providers are offering digital STI.1 For example, the service subito2 of research

libraries in Germany, Austria, and Switzerland has grown from 101,756 orders in

1998 to 1,339,902 in 2005. 84.5% of the deliveries in 2005 were ordered by non-

commercial customers with a great share from academic institutions and 15.5% of the

orders came from commercial customers from various industries paying higher prices.

The subito history is accompanied by legal disputes with publishing companies trying

to shut it down. In the year 2006 the deliveries dropped the first time back to a

total of 1,225,323 due to a service stop in certain countries for legal reasons. [NHS02]

presents a more detailed analysis of this service. Further information on the issue of

pricing of digital information with a focus on document delivery services can be found

in [Neu07b]. The politically planned change of the rights of creators of copyrighted

works in Germany (Urheberrecht) in the year 2008 will bring more changes to these

type of services and the whole STI industry and market.

Although new players could enter the market trying to overtake the traditional

players by consequently facilitating all technical means of the digital age, this hardly

ever happens. It can be observed that all players in the market of STI are taking part

in the process of digitization step by step. For example, setting up new purely digital

libraries rarely occurs. Usually the traditional paper-oriented scientific libraries are

extended to handle digital documents and are turned into so-called hybrid libraries,

which then not only contain paper documents, but digital content as well. A few

successful counterexamples can be found in the area of public authority funded dig-

ital archives like PubMed Central3. PubMed Central is the U.S. American National

Institutes of Health free digital archive of biomedical and life science journal liter-

1http://www.sub.uni-goettingen.de/ebene 1/1 doklie.htm
2http://www.subito-doc.de/
3http://www.pubmedcentral.nih.gov/

http://www.sub.uni-goettingen.de/ebene_1/1_doklie.htm
http://www.subito-doc.de/
http://www.pubmedcentral.nih.gov/
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ature. In most cases the driving factor behind setting up completely new services

is the public authorities’ dissatisfaction with the pricing policy of quasi monopolis-

tic publishers, in case of PubMed Central with the publisher Elsevier. It is often

questioned if today’s scientific journals still fulfill their double role of certification

and dissemination in an optimal way. The main issue for the public authorities is

the fact, that in the process of publication the copyright of the majority of scientific

results of publicly funded research is transferred to private publishing companies.

The public authorities (who already financed the original research in the first place)

then have to pay a second time to make the results accessible to other researchers.

The subscription prices of scientific journals have been steadily increasing in the

last 30 years. Between 1975 and 1995, they increased 200%–300% beyond inflation

and were accompanied by a fall in subscriptions both by individual researchers and

by scientific libraries. Journal prices far outpaced the evolution of library budgets,

which did increase at a somewhat slower pace than total academic research budgets

[DGL+06]. The first digital access models were introduced by publishers in 1995.

Although this dramatically simplified the technical access for research, actual ac-

cess still relies on the payment of subscriptions. A lot of studies are taking place

trying to solve the question how the future of the market of STI should look like

[Art01, Deu01, Kie01, DGL+06]. The open accessibility for the scientific community

or for the taxpayers to the scientific results they produced or financed, respectively,

is the most common goal. [OMS05] presents the results of a survey about the usage

of open access publishers among scientists, a study of the financial and non-financial

effects of alternative business models for scholarly journals can be found in [Kau05].

Most of the problems of the technical realization of STI processes have already

been solved due to early research activities. These results have already helped with

the integration at many information providers. Therefore, the focus here is not set

on technical details. References to the early technical issues can be found e. g. within

projects such as the “Stanford Digital Library Project”4 within the U.S. American

“Digital Library Initiative Phase 2”5 or the Chablis-Project [BKEJ+98] within the

program “Distributed Processing and Delivery of Digital Documents” (Schwerpunkt-

programm Verteilte Vermittlung und Verarbeitung Digitaler Dokumente – V3D2) of

the Deutsche Forschungsgemeinschaft6. When it comes to the question, how rec-

ommender systems can be integrated into the developed STI library and service

platforms, more information and case studies will be presented in the later chapters.

The main concern of this chapter is to identify players that will profit from the

introduction of recommendation services and to determine what kind of role these

systems can play in the strategic position of the players in the market. The relevant

players in the market are: authors, bookstores, collecting societies, consumers, copy

equipment manufacturers and operators, public authorities, publishers, scientific

associations, and scientific libraries. Before the activities of the main players are

analyzed in detail, the interaction of the players in the market is portrayed.

4http://www-diglib.stanford.edu/
5http://www.dli2.nsf.gov/
6http://www.dfg.de/

http://www-diglib.stanford.edu/
http://www.dli2.nsf.gov/
http://www.dfg.de/
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Figure 2.1: Interaction of the players in markets of STI
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Figure 2.1 depicts the traditional flow of physical goods, information and money

between the players. For reasons of clarity, only the flows of the most common

classical business models of the market are shown. For example, depending on the

market power of the journal, sometimes authors have to pay for their article to be

published even if they also have to transfer the copyright to the publisher and the

journal is not open access. Since this is not the general approach, no monetary

flow from the author to the publisher is plotted. Further on, one has to keep in

mind, that the same person can take multiple roles within the market of STI. E. g.

most authors of scientific publications are consumers of STI as well. The process

of digitization will change—and as a matter of fact with some participants already

has—the interaction schemes shown. This includes the merging of players as well.

Depending on the viewpoint, the foundation of publishing houses within scientific

associations can either be seen as a merger of the roles of the two players into a

new kind of player, or as one legal person taking on different roles at the same time.

Figure 2.1 portrays the traditional role of a scientific association focusing on scientific

content and its creation outside of profit-oriented publishing activities. How this is

changing—or already has—will be discussed in Section 2.3.5.

Copy equipment manufacturers and operators, public authorities, and collecting

societies are in no position now or after changes in the market through the process of

digitization to offer recommendation services to customers, therefore their activities

will not be analyzed in detail in this chapter. Collecting societies (in Germany e. g.

the Verwertungsgesellschaft Wort7) provide an indirect payment service and can not

be seen as normal players within the value chain. Therefore they are, unfortunately,

not included in several studies [Art01, Kie01] and not explicitly taken into account,

although they influence the structure of STI markets with the transaction cost they

impose on market participants. The possible reproduction of information via copying

adds some special features to the market of STI. Collecting societies were installed

to solve the problem of fair distribution of the value-added. In Figure 2.1 their role

can be seen as an agent taking money from different players and redistributing it

towards those players not able to get a fair remuneration otherwise. Digital rights

management might lead to a more exact method of this distribution process away

from lump sums. Several service providers offer payment services which can be

easily integrated in digital processes [KS02]. A more detailed economic analysis of

the market of STI can be found in [GSNHS03].

2.2 The 2-3-6-Value-Chain for STI Markets

In this section a structural model for the value chain of the market of STI is developed

based on [NHS02] and [GSNHS03]. The systematic analysis of the development

options of market participants made possible by technological progress helps to

identify the application area and potential of recommender systems for scientific

and technical information providers. To understand the roles of the players in the

7http://www.vgwort.de/

http://www.vgwort.de/
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market the so called 2-3-6 concept [EA96] for DIS is applied. Schlueter and Shaw

[SS97] analyze DIS structures and dynamics in the area of e-commerce by means

of the 2-3-6-concept. In this book, the 2-3-6-concept is used to identify the market

potential of recommender systems at the players in the STI market. Starting with

the assignment of relevant activities of core processes to the players a qualitative

analysis of the dynamic changes in the strategic positions of the players becomes

possible.

The 2-3-6-value-chain first separates two horizontal strings of processes: one

string for the scientific and technical content and one infrastructure string (see Fig-

ure 2.2). The infrastructure string portrays the relevant factors for the change in

content creation and market making by the process of digitization. The telecommu-

nication industry, payment providers, as well as the hardware and software industry

are players on the infrastructure string. The added value in DIS is portrayed on

3 stages looking at the 2 strings at the same time. Therefore, six core processes

of value adding can be differentiated. Each of these processes is further divided

into relevant activities the players might undertake (see Figure 2.3). For example,

within the core process “Content direction”, the activities are “Content creation”,

like writing a professional article, but also the “Process of peer-reviewing” for sci-

entific journals, and the “Initiation of content creation”, like the announcement of a

special issue. The activities within one core process can be carried out by different

players. Assigning the relevant activities to each player gives the role of this player

in the market of STI. The determined roles should not be seen as static but under-

going a change depending on technical progress, cost structures, earning schemes,

and the legal framework.

Focusing on the market of STI, the core processes of “Content direction”, “Con-

tent packaging”, “Market making”, and “Delivery support and services” are the

most relevant. The other two processes, “Transport” and “Interface and systems”

are relevant factors for DIS but are mainly of importance in other areas like the

telecommunication industry or the hardware industry. Here, the industrial struc-

ture of these industries, especially their earning and cost structure, is taken as a

given fact. Currently, there is no relevant independent software industry of recom-

mender system software. Nearly all of the existing systems on the market are in

house developments. Recommendation services fall into the core process of “Mar-

ket Making”. Depending on type, target users, and application they can play a

significant role in “Portal services” and “Research tools”.

2.3 The Strategic Positions of the Market Players

In the following the relevant activities of the players of STI markets are assigned

to the processes of the 2-3-6-value-chain. The traditional domains are distinguished

from the potential future activities, thereby portraying the shift from the current

role within the market to the strategic position each player may take in the future.

In some cases, the digitization together with the Internet as a new distribution
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channel has already lead to changes at some of the players. In these cases, still the

traditional pre-digitization processes are defined in the value-chain but the ongoing

shift is discussed in the text.

2.3.1 Authors in STI Markets

The process of content creation necessary for any further steps towards the market

usually lies within the domain of the author, therefore the first player to be analyzed

here. In Figure 2.4 the author’s traditional activities are marked as well as the

activities the author might be able to do in the future by means of digitization. The

change resulting from technical progress is easily observed. Although the creation

of content surely stays the central activity within the value-chain, the process of

digitization makes other activities available. Authors today have the possibility of

the electronic preparation of their own article and the immediate distribution of it

with the help of the Internet, e. g. by a PDF-document on their website. However,

besides other problems, this does neither solve the question of the estimation of the

quality by users, nor the question, how users should be convinced of the article’s

relevance in the abundance of information on the Internet. “Portal services” and

“Research tools” are none of the author’s activities now or in the future, thus leaving

the option of recommender systems blank. A single author generally does not have

enough user traffic nor enough single documents to gain from the general advantages

of a recommendation service.

2.3.2 Publishers in STI markets

Traditionally publishing houses used to print their products on paper and earned

their money by marketing them. The development of electronic distribution channels

seems to be the biggest challenge for this industry. Figure 2.5 shows the potential
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Figure 2.4: The role of the author within the 2-3-6-value-chain
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Figure 2.6: The role of the bookstore within the 2-3-6-value-chain

future activities of publishers. By means of digitization they can especially cover

more processes in the area of “Market making”. This can already be observed with

the larger players of the industry, e. g. Elsevier with its online portal ScienceDirect8

or Springer with SpringerLink9. These portals with their large quantity of documents

and many users from academic institutions (holding an institutional license to these

portals) are especially well suited areas for recommender systems. It is expected,

that they will include some type of recommendation service in the near future.

2.3.3 Bookstores in STI markets

The bookselling trade is already undergoing a structural change right now, although

so far it is not the digitization but the new distribution channel Internet that is of

main concern (see in detail [ROW01]). Digital books are still a market niche since

the bookstore and publishers do not favor such products due to problems concerning

the digital rights management. Figure 2.6 points out the complete potential of the

strategic options of bookstores including digital content. “Research tools” has always

been a classic domain of bookstores, the future might bring an extension towards

“Portal services”. This can already by observed at Amazon.com. Amazon.com has

been the most successful player taking advantage of the chance to new business

models the Internet opened. The early introduction and wide range of recommender

services at Amazon.com’s first online store10 (see [GGSHST02] for an overview)

has been a strategic column of their market success. It will be analyzed in more

8http://www.sciencedirect.com/
9http://www.springerlink.com/

10http://www.amazon.com/

http://www.sciencedirect.com/
http://www.springerlink.com/
http://www.amazon.com/
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Figure 2.7: The role of the scientific library within the 2-3-6-value-chain

detail in Section 4.3. Currently, most e-commerce bookstores (and competitors of

Amazon.com, e. g. buch.de internetstores AG in Germany) are rushing to offer some

kind of recommendation service.

2.3.4 Scientific Libraries in STI markets

In Figure 2.7 it can be observed that scientific libraries are involved in three core

processes: “Content packaging”, “Market making”, and “Delivery support and ser-

vices”. With the process of digitization going on, it still is not obvious, what the

position of scientific libraries within STI markets should be and might be in the fu-

ture. Preservation and categorization of their book inventory is the classical domain

of libraries. Including digital content into the catalog today is mostly a question

of copyright laws and digital rights management. What is of greater interest to

this study is the market making. OPACs with their metadata text searches are the

common research tools for scientific libraries. The following question needs to be

resolved: Should scientific libraries be turned into customer oriented service portals

that support the interaction of customers? Depending on the type, recommender

systems can be utilized as research tools for single users or as interaction platforms

for the communication between users. Both approaches offer significant value-adding

benefits to the libraries’ patrons. The official mandate of state or university libraries

should pronounce which approach should be taken.
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Figure 2.8: The role of the scientific association within the 2-3-6-value-chain

2.3.5 Scientific Associations in STI markets

The process of digitization enables larger associations to cover more processes closer

to the market. Scientific associations can found their own publishing companies to

self-market their created and reviewed content. A large potential of conflict with

commercial publishers can be seen by comparing Figures 2.8 and 2.5. ACM and

IEEE are two examples of large associations having founded their own publishing

company including an online portal to its content: ACM operates ACM Portal11 and

IEEE runs IEEE Xplore12. These portals are taken up again in Section 4.1. With

more technological advances, smaller associations are likely to follow. Recommender

systems would add a significant value to such portals.

2.4 Recommender Systems in the Future Busi-

ness Process Profile of Information Providers

Comparing the traditional and future roles of the players in the last section it is

obvious that all of them have the potential to broaden their activities towards the

market side of the value chain. What is relevant for this study is the fact, that au-

thors, libraries, publishers, bookstores, and scientific associations might develop into

strategic positions where their customers are the end users of scientific and techni-

cal information. These players—and also new possible entrants to the market—can

try to take over activities in the core process of “Market making”. All but the

11http://portal.acm.org/
12http://ieeexplore.ieee.org/

http://portal.acm.org/
http://ieeexplore.ieee.org/
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authors are coming into positions where they can drive the market or are being

driven by market forces to offer advanced research tools and portal services to their

customers. They compete on grounds where recommender systems are the tools of

choice of many customers. In an ongoing competition optimized research functions

and portal services might be the central requirement for consumers for their deci-

sion to choose one or the other information provider. The combination of research

function and the option of buying or loaning out will be a crucial point in the de-

cision making process of the consumer on the Internet. Therefore, having the right

combination of services in the portfolio is of great interest to any player to profit

from the value added.



22 2. The Market of Scientific and Technical Information



Chapter 3

Classification and Mechanism

Design of Recommender Systems

The success of a recommender system depends not only on the method of gener-

ating recommendations but upon the users’ acceptance in various areas. In this

chapter, different aspects of recommender systems that can serve as building blocks

for different types and classifications of systems are determined. Depending on the

goal, several classification schemes are possible. A classification based on the type

of input data is presented in detail. The structure of the next chapters is derived

from this classification.

Considering the customer service character of a recommender system, the over-

all mechanism of gathering and handling input from the customers is a key factor

for success. With services whose mechanisms demand a strong user participation

through some kind of automatic survey, the users must be motivated to actively

participate and contribute truthfully to the system. Generally speaking, a recom-

mender system can be interpreted as a static mechanism design game which belongs

to the class of games of incomplete information. Depending on the choice of the

mechanism, e. g. the type of the recommender system, several problems like bias

or free riding might occur. In the second part of this chapter, the mechanism de-

sign problems—and solutions—for the different types of recommender systems are

studied in more detail.

3.1 Classifications of Recommender Systems

This section presents a straight-forward classification of recommender systems. It is

chosen to structure the remaining chapters of this book and to explain the different

types of systems presented. Classification details that did not influence the design

choices of the case studies in the next chapters are omitted. For more elaborated

abstract classifications the reader is referred to the following papers: Resnick and

Varian [RV97] present a classification of recommender systems based on the tech-

nical design as well as on the domain space of the service application. Focusing on

e-commerce, a technical classification can be found in [SKR99] or [SKR01]. Ado-
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mavicius and Tuzhilin [AT05] give a more up-to-date overview on the generation of

recommendation methods. [HKTR04] deals with the question of how to evaluate

different types of recommender systems. An input/output-based classification of

recommender systems including—as an example—a detailed analysis of the existing

services at Amazon.com is presented in Gaul et al. [GGSHST02].

The approach used in this book is based to some extent on the input-data clas-

sification approach of Gaul et al. and to some extent on privacy issues. Three

classification dimensions for recommender systems are relevant:

Explicit versus implicit input data. Explicit recommendations are based on di-

rect user feedback. The input data of an explicit recommender system comes

from directly asking the users for their opinion on objects. Implicit recommen-

dations are based on behavioral usage data as e. g. purchases, a user’s browser

session, or library lending data.

Degree of personalization. Observing or asking users for input is generally con-

nected to some kind of identification of users; presenting recommendations to

appropriate users makes it necessary to identify the appropriate ones. This

identification can take place on different levels: Transaction or session level,

pseudonyms, pseudonyms and attributes of the user, full identification, full

identification and search context.

User-centered vs. item-centered. Most systems in e-commerce are built in a

user-centered approach. Behavior or explicit input of preferences from users

is gathered to classify the users into various groups on different levels accord-

ing to their interests. This approach is favored from the sales point of view

since it has the benefit of collecting valuable information for customer rela-

tionship management. Depending on the amount of available data, customers

may well be classified down to groups of size one, allowing for one-to-one mar-

keting. Nevertheless, this approach is not necessarily advantageous for both

parties, privacy concerns may interfere with the participation on the customer

side. When it comes to application areas with strong privacy concerns, item-

centered recommender systems are the technique of choice. Here, anonymous

users can be observed and their usage of items is stored and processed as

item-to-item relations. User-centered recommender systems determine simi-

larities between users and store user-to-user relations, item-centered systems

determine relationships between items. The usage of item-centered services

can be open anonymously to the general public without revealing one’s own

preferences besides the single object, one is currently inspecting.

Sometimes in the literature “content-based recommender systems” can be found

and these are classified as a subgroup of implicit recommender systems. These

systems in general cluster or classify objects based on their content or metadata

descriptions. Content analysis includes e. g. automatic keyword extractions from

scientific texts or automatic speech or text extraction and analysis from pictures,

graphics, or videos. Metadata include product descriptions in consumers stores as
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well as full bibliographic data of library documents. The importance and usefulness

of such retrieval tools is out of question. One of their advantages is, that they

are not prone to the mechanism design problems discussed in the next section.

Some drawbacks of the content-based approach are known as well. Behavior-based

recommender systems, as opposed to content-based systems, can work with legacy

systems where no digital full text documents are available and where the metadata

are incomplete. In addition, recommender systems can handle a multitude of object

types in a uniform way. In the context of STI, this includes conventional books

or journals, digital full texts, images, video or audio files, 3D models and others.

For the behavior-based system, it is sufficient to associate each object by a unique

identifier, while a content-based system needs methods for similarity computation

not only of objects of the respective type—which in itself is not trivial—but also

for pairs of objects that do not share the same type. Behavior-based systems are

language-independent and can easily integrate objects from different languages into

the recommendation lists. Finally, content-based search and retrieval tools are not—

lacking any kind of user participation—covered by the definition of recommender

systems by Resnick and Varian given in Section 1.1 and thus are not considered in

the remainder of this book. Therefore, this work considers “implicit recommender

system” to be a synonym for “behavior-based recommender system”.

Explicit recommender systems are discussed in Chapter 5, while implicit—or

behavior-based—recommender systems are the topic of Chapters 6 to 8.

3.2 Mechanism Design

The success of a recommender system critically depends upon the users’ acceptance

of the system. As has been shown above, the choice of the recommender mechanism

implies considerable differences in the way that users interact with the system in

that it determines for instance the effort the user has to put into using the system

and, even more critical, to contribute to it. For systems that demand a strong

participation of the users, like explicit reviews, the users must be motivated to

actively participate and contribute truthfully to the system.

The choice of the recommender system thus can be interpreted as a static mech-

anism design game which belongs to the class of games of incomplete information

[FT95, pp. 243-318]. Optimal mechanisms have the property that agents partici-

pate voluntarily and that it is in their own best interest to behave truthfully. Such

mechanisms are called incentive compatible. Unfortunately, however, often the com-

bination of incomplete and asymmetric information leads to inefficient outcomes.

While a game theoretic formal analysis of this game is out of the scope of this

contribution, a framework of stylized and simplified two-person games is presented

which allow a qualitative discussion of the impacts of known mechanism design

problems (bias, free riding, credibility, privacy, recognition, as well as feedback and

network effects) for the classes of recommender systems introduced in the next chap-

ters.
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The set of games comprises two classes of players in our case, the operator of the

recommender system and the users. The objective of the operator is to choose the

recommender mechanism which maximizes the number of high-quality contributions

with a given budget or, alternatively, to minimize his cost while keeping the system

above a certain quality level. He may choose between explicit or behavior-based

recommender mechanisms. Three classes of users can be distinguished, namely active

and passive impartial users (e. g. students or researchers) and biased users (e. g.

authors, editors, publishers, and their direct competitors). The operator, however,

cannot observe the type of the user. Impartial users have the goal of minimizing

their effort when using the mechanism or, alternatively, maximizing their utility

from using the system. Biased users have the goal of maximizing their own utility

or of minimizing the utility of their competitors, for instance in terms of book sales.

Users may choose between consuming recommendations, contributing truthfully

to the system, and contributing in a biased way to the system.

Next, a short explanation of the known mechanism design problems listed above

is given:

Bias (shilling). Bias in general refers to conscious or unconscious prejudice of the

contributors. The most extreme form is shilling, where authors or publishers

contribute glowing reviews and ratings for their own books and very negative

reviews for the books of competitors.

Free riding. Free riding is due to the fact that recommendations are a public good

which can be consumed by any user. However, as any public good, recommen-

dations are in short supply because of the missing benefits for the authors of

recommendations.

Credibility. Recommendations are only perceived as useful if they can be trusted.

Users are very sensitive to credibility problems, e. g. when they realize that a

supposedly objective review comes with a huge advertisement.

Privacy concerns versus recognition. On the one hand, it is often desirable to

give active users some form of public recognition, like the inclusion into the

list of the top n reviewers. On the other hand, users may choose to remain

anonymous. Another problem concerning privacy is the revelation of interest

of users to the public. This is a major concern for industrial research, because

of its effect on competition.

Feedback effects. Feedback effects are known as path dependencies in nonlinear

systems; this means that an early positive feedback may lead to a wide audience

for a book while an early negative feedback may make this book to a failure

in the market.

Network effects. With every user that contributes to the system, it becomes more

useful, and therefore more attractive to other potential users.
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Table 3.1: The relevant mechanism design problems as a consequence of playing the

stylized mechanism design game
User Mechanism design problems

User type Action Explicit Recom-

mendations

Behavior-based

Recommendations

Impartial

passive

Consumption

only

Free riding, network

effects

—

Impartial

active

Truthful con-

tribution

Privacy (Privacy)

Biased Biased contri-

bution

Bias, feedback, credi-

bility

(Bias)

Feedback and network effects are dynamic effects and occur only in repeated

games.

Table 3.1 summarizes the mechanism design problems resulting from the oper-

ator’s choice of mechanism. As can be seen, implicit, behavior-based recommender

systems have less problems than the explicit ones. The most important problem

is that of obtaining a sufficiently large usage data set—this is called the cold start

problem—but since most recommenders are added to an existing library system in

order to complement the services of that system, it is possible to collect the desired

data before the launch of the recommender application. Behavior-based recom-

mender systems reveal preferences of users; in a competitive environment, this leads

to privacy problems for users, and hence, to acceptance problems.

Explicit recommender systems are prone to biased recommendations, where doc-

uments are ranked or reviewed not according to their quality, but to other motives

like acquaintance with the author. Equally, they have the problem of free riding,

because users automatically profit from recommendations given by other users but

must be motivated to write their own reviews due to the transaction costs of doing

so. Credibility is a problem for explicit systems since recommendations might be

filtered by the operator in order to suppress undesirable reviews or rankings. The

credibility problem is much less pronounced in the scientific community, but the per-

ceived credibility is mainly determined by the reputation of the organization offering

the service. Considerable privacy concerns exist in these services, because in order

to give public recognition to users, their (pseudonymous) identity must be revealed,

which allows conclusions about their preferences. In explicit systems, feedback ef-

fects are quite pronounced. Reviews often depend on the reviews previously written,

as these tend to influence the perception of the item and thus the judgment the user

passes in the review.

Network effects are relevant to all recommender systems that are based on user

input or behavior, although it is easier to attain a critical mass with behavior-based

systems than with explicit ones.

As Avery stated, the market for evaluations is a specific one [ARZ99]; it is there-

fore crucial to implement an incentive system that takes into account the specific
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requirements for the users’ motivation as well as the particular combination of prob-

lems that are relevant for the chosen mechanism. Optimally, users are intrinsically

motivated to publish their opinion; in that case, no extrinsic motivation must be

offered [Pre99]. An extrinsic motivation can take forms like payments for reviews,

free goods, or public recognition on a review high score. However, for the operator

extrinsic motivation systems may lead to an efficient provision of good recommen-

dations (public goods), but it might be impossible for the operator to maintain a

balanced budget at the same time, when individuals hide their true preferences to

improve their individual welfare [Cla71, Gro73]. Payments and free goods on the

one hand motivate users to contribute their reviews, and they may attract new users

to join, but on the other hand, they may displace those users whose motives are al-

truistic and who for instance participate for the benefit of the scientific community.

Unfortunately, it has been shown that experiments to measure these motivations

correctly are very hard to accomplish [KP02].

Mechanism design problems are more prominent in explicit than in implicit rec-

ommender systems. In behavior-based systems free riding is almost not possible and

creating bias deliberately in a system with web robot prevention has very high trans-

action costs and, therefore, is unattractive in many application areas. Whether a

recommender system is operated as a stand-alone service or as a value-added service

to an already high-frequented e-commerce site or library makes an essential differ-

ence. For stand-alone systems, the cold start problem of achieving a critical mass

is the most important obstacle. At e-commerce or information sites like libraries all

customers contribute to behavior-based systems helping to scale them up, regardless

of their interest and usage of the recommendation service itself.

Recognition of good cooperation within explicit systems can be measured by

reputation systems (even for credence goods [Emo97]). A user point account tracks

useful and undesirable behavior and adds credit or deducts points, respectively. An

automatic decrease in points (discounting) over time is necessary to keep customers

motivated to contribute. Desirable und undesirable behavior e. g. can be measured

by the textual quality of reviews; this quality again can be measured by ratings from

other users for this review.

Credibility is a crucial point for the long-run success of a recommendation ser-

vice. In the academic environment the credibility of a library’s recommender service

comes to a large part from the reputation of the institution it belongs to. If sales

promotions or advertisements of any kind within the main platform (online store,

library, etc.) exist, a customer should experience a clear separation between these

and the recommender system. In e-commerce applications like Amazon.com this is

often not the case: product managers place products with a high contribution to

profit next to real recommendations from other customers.

Shilling of recommender systems by outsiders (not the operator but other “cus-

tomers”) is often a sign of faulty mechanism design. How shilling can be done

technically for various recommendation generating algorithms is shown in [LR04].

Producers (e. g. authors) often wish to influence the systems to recommend their

own products. The possibility to anonymously submit contributions—e. g. ratings
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or reviews—and thereby pushing one’s own product (or discrediting competitors) is a

significant incentive that can lead to a large amount of contributions in e-commerce.

In the short-run such false recommendations are often welcome by e-retailers to

increase the revenue, in the long run they discredit the credibility of all recommen-

dations.
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Chapter 4

A Survey of Recommender

Systems at Major STI Providers

The usage of recommender systems at major STI providers is still in its infancy.

This chapter gives an overview of the existing recommendation services at scien-

tific libraries, some of the relevant scientific projects, as well as the most relevant

e-commerce application for STI. While the quantity—not necessarily the quality as

well—of recommender systems in commercial applications is quite high, very few

scientific recommender research groups have their own permanently running ser-

vices open to the general public. Although nearly all traditional scientific libraries

at large universities have been turned into hybrid libraries covering both paper and

digital documents, more advanced research tools besides standard database meta-

data searches do not exist often. Purely digital libraries of large scientific associations

are currently beginning to experiment with recommender systems. Many of the new

research tools are based on content analysis and feature user interfaces similar to the

ones used by recommender systems for the presentation. Therefore, for comparison

purposes, some content-based services are discussed in this chapter as well, even if

they do not fulfill the definition of a recommender system from Section 1.1.

4.1 Scientific Libraries

When browsing through the Open Public Access Catalogs (OPACs) of Europe’s

national libraries which are members of The European Library1 (formerly Gabriel,

the portal of European national libraries that has been funded by the European

Union) and the OPAC of the U.S. American Library of Congress, not a single oper-

ational recommender system can be found. However, some scientific digital libraries

are already experimenting with such systems. Unfortunately—and contrarily to

Amazon.com where at least the general principles behind the behavior-based rec-

ommender have been published—the digital libraries of the scientific organizations

discussed here, ACM Portal and IEEE Xplore, do not reveal the principles and algo-

1http://www.theeuropeanlibrary.org/

http://www.theeuropeanlibrary.org/


32 4. A Survey of Recommender Systems at Major STI Providers

rithms employed in their recommender services. Therefore, the description of these

services here is limited mainly to the characteristics perceived by the user.

4.1.1 ACM Portal

The ACM portal2 incorporates an implicit non-personalized recommendation service

as well as a content-based research tool.

The content-based system analyzes the text of research papers. The service is

available on the detail page for each document, where the link “Find similar Articles”

causes the system to search for related articles. According to the announcement

by White [Whi01], the “algorithms used for Similar searches are not obvious, but

involve the use of dictionaries, thesauri, and cluster analysis of full-text indices.” The

results are ranked according to their title, publication, date, publisher, or relevance,

but there is no information available as to how exactly this relevance measure is

computed.

The behavior-based recommender system can be found at the bottom of the

document detail page under the heading “Peer to Peer – Readers of this Article have

also read”. At the time of writing, this recommendation service seemed less useful

than the content-based one, as many of the recommendation lists contained a paper

on data structures for quadtree approximation or another paper titled “constructing

reality”. Thus, it is conjectured, that it is based on a simple frequency count of the

items and does not filter random occurrences from the usage history as described in

Section 7.1. Furthermore, given the apparent size of the set of recommended articles,

the recommender seems to be a relatively new addition to the ACM digital library

whose performance might improve as the size of the observed data set increases.

4.1.2 IEEE Xplore

The IEEE Xplore site3 currently has no recommender application on their production

site. There exists, however, a system under development that can be reached via

the IEEE e-Workshop page4 which at the time of writing this study delivered empty

lists. According to Grenier [Gre05] the system will be content-based, but no further

algorithmic details are given.

4.1.3 CiteSeer

CiteSeer5 [GBL98] originally started as an internal research project at NEC Re-

search Institute. It has implemented several ways to find and recommend related

documents. The current version only contains non-personalized services, although

in the first publications [BLG00] the authors still presented personalized services

based on account information. While the reasons for the withdrawal of personalized

2http://portal.acm.org/
3http://ieeexplore.ieee.org/
4http://research.ieeexplore.ieee.org/research/search.jsp
5http://citeseer.ist.psu.edu/

http://portal.acm.org/
http://ieeexplore.ieee.org/ 
http://research.ieeexplore.ieee.org/research/search.jsp
http://citeseer.ist.psu.edu/
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services are not published, this might either be due to the scalability problems when

moving from a restricted corporate environment to a global web service or to the

reluctance of Internet users to use personal accounts for their research tasks.

CiteSeer’s recommendation services or related content-based tools basically fall

into three classes:

Link structure based. Four relations based on the citation link structure are ex-

ploited to derive recommendations for a given document:

Documents that are cited by the document. This is a classical strategy

in literature search, but it is restricted to the past as a document can

only include those that temporally preceded it.

Documents that cite the document. This relation is the inverse of the

former and helps finding works that build upon the findings of the docu-

ment.

Co-citations. This group includes all documents that are cited together with

the document in publications.

Active bibliography. These documents cite the same publications as the

document.

These four approaches exhaustively search the direct neighborhood of a doc-

ument, but ignore anything that has a higher distance than two in terms of

hops in the citation network. Although the more advanced methods for in-

stance by Brin et al. [PBMW98] are mentioned in [LGB99], they are currently

not implemented.

Content-based. These limitations do not apply to the lists generated by the con-

tent-based methods; these results are summarized under the headings “Similar

documents (at the sentence level)” and “Similar documents based on text”.

According to the developers [LGB99], these lists are compiled using a weighted

sum of TF-IDF of word vectors, distance computation between the documents’

headers using LikeIt [Yia97], and a measure called CCIDF (Common Cita-

tion × Inverse Document Frequency) that uses the references analogously to

TF-IDF. The term frequency / inverse document frequency (TF-IDF) mea-

sure [SY73] originates from information retrieval. It is used to determine the

importance of a term for a document. The term frequency (TF) is defined as

the number of occurrences of a term in a document, normalized by the num-

ber of all term occurrences in that document. The inverse document frequency

(IDF) is a measure of the importance of a term in a corpus of documents; it

is the logarithm of the quotient of the number of all documents and the num-

ber of documents containing the term. The TF-IDF measure is given as the

fraction TF
IDF .

Explicit. In addition, the site offers its users the possibility of rating a paper on a

scale from 1 to 5, and to additionally enter comments, i. e. short reviews, on

the paper.
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4.1.4 Google Scholar

Google Scholar6 uses a function for finding related articles that resembles the similar

pages feature offered by the Google search engine. The service is based on an analysis

of the content of the documents, and according to the help pages, the results are

ranked according to their similarity to the document for which the recommendations

were requested as well as to the relevance of the paper derived from the PageRank

of the respective document [PBMW98]. Furthermore, it is possible to search for

documents that cited the document of interest, but documents cited by it cannot

be retrieved via Google Scholar. Google Scholar is also used e. g. by JSTOR7, in a

way similar to that in which the Google search engine is embedded in other sites, to

provide similar publications.

4.2 Scientific Projects

4.2.1 TechLens

The TechLens8 recommender is an extension of the known collaborative filtering

GroupLens system [RIBR94] to the domain of scientific papers. Motivated by the

flood of scientific publications in all domains, the system integrates different content-

based (CBF) and collaborative filtering (CF) approaches [MAC+02, TMA+04] into

hybrid approaches. The objective of collaborative filtering is to make predictions

about the opinion a user will express concerning a given item based on the judgments

of other, similar users about that item. Judgments are usually given as ratings on a

numerical scale, and the similarity between users is defined as the similarity of past

ratings submitted by the users. The idea behind collaborative filtering is that users

who have expressed a similar taste in the past tend to agree on similar ratings in

the future.

The two methods from collaborative filtering included in the system work on the

citation graph, where papers are interpreted as customers, and the citation links

that they contain are seen as recommendations for the cited papers. The similarity

of two papers is then defined as the share of common citations. The first idea, Pure

CF, is to build a k-nearest neighbors CF system that generates recommendations

for a paper based on its citations, using the recommendations, i. e. citations, from

the k most similar papers. The second, Denser CF, goes one step further by using

the citations of the citations in the original paper as input.

The CBF methods rely on the TF-IDF measure on the papers’ titles and abstracts

that are submitted to Porter’s stemming algorithm [Por80]. The first one, Pure CBF

calculates the similarity of the paper to other papers and recommends the most

similar ones. In addition, CBF Separated also considers the text of the papers the

current paper cites, generates recommendations for each of these papers and then

6http://scholar.google.com/
7http://www.jstor.org/
8http://techlens.cs.umn.edu/tl3/

http://scholar.google.com/
http://www.jstor.org/
http://techlens.cs.umn.edu/tl3/
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merges the recommendation lists in order to recommend the papers with the highest

similarity scores. Finally, CBF Combined first merges the titles and abstracts of the

current paper and the papers cited by it before identifying the papers with the

highest similarity to the merged text.

Different hybrid algorithms are assembled from these building blocks: CF-CBF

Separated, CF-CBF Combined, CBF Separated-CF, and CBF Combined-CF. All of

these use the first algorithm in their name to generate input for the second one that

generates recommendations for each of the first-level recommendations and ranks

them. The fusion algorithm, on the other hand, runs both CF and CBF in parallel.

Those papers that appear in both recommendation lists are sorted according to the

sum of their ranks in these lists, the other papers are appended to the combined list.

As experiments have shown, the quality of the recommendations depends on the

nature of the paper for which recommendations are sought. For instance, novel

material can best be found in the CiteSeer data set used for the evaluation by either

Pure CF or the Fusion method, whereas recommendations on introductory papers

are best obtained from CBF Separate or CF-CBF Separate.

4.2.2 The Melvyl Recommender Project

The Melvyl recommender project [WS06] initiated by the California Digital Library

aimed at using both analysis of circulation data of documents and content-based

methods exploiting terms from bibliographic records. The circulation data used

by the project contain pseudonymous identification numbers for each patron of the

library that allow to track purchases in the sense of checked out physical items.

Digital content purchases are not included in the data set.

Whitney et al. [WS06] have identified a number of problems—like data sparsity

and privacy concerns of the patrons—when using standard collaborative filtering

methods, which motivated them to pursue an item-to-item approach. A similarity

graph is constructed from the purchase histories, using documents as nodes and the

number of common purchases as edge weights. The recommendations for a given

document are generated by identifying all neighbors of the document and sorting

them according to the edge weights. Since results were mixed, they were filtered

according to an adapted classification scheme from the library in order to remove

unrelated recommendations. This procedure, though, always entails the danger of

removing potentially interesting items from other disciplines.

4.3 E-Commerce: Amazon.com

Amazon.com’s website has been, for the last years, the most prominent example

for the integration of information services, especially recommendation and personal-

ization, into a commercial website and as such has deserved a closer consideration.

Especially two services will be detailed here: the explicit and the implicit recom-

mender system. An overview of the other recommender services on the site around

the year 2001 can be found in [GGSHST02].
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The implicit recommender (“Customers Who Bought This Item Also Bought”) is

based on the principles published in the article by Linden et al. [LSY03] and various

patents held by the company [LJB01]. It relies on item-to-item collaborative filtering

by recommending items that are similar to objects that have attracted the customer’s

attention. Products of interest are those items that the user either has bought in the

past, has currently in the shopping cart, has rated, or products whose detail pages

the customer is inspecting. The motivation to deviate from the more classical user-

to-user collaborative filtering was mainly motivated by scalability considerations,

since Linden et al. [LSY03] claim that the existing algorithms do not scale to the

order of magnitude of Amazon.com’s product and customer data bases. This implies

that, as the patent claim states, the similarity between items is not user specific, but

general. The similarity measure may for instance be computed as the cosine between

the purchase vectors of each pair of items. The recommender then chooses those

items that have the highest similarity. For binary entries in the purchase matrix

(customer has bought the item or not), this is equivalent to recommending the

items that have been bought most frequently together with the article in which the

customer is interested. Linden et al. name as main advantage of this algorithm its

scalability that, coupled with a massive amount of offline computation of similarities,

allows a fast generation of recommendations for each of the several million articles

offered by Amazon.com. Contrarily to the behavior-based recommender system

presented in Section 8 of this work, the Amazon.com recommender is not able to

distinguish between random, independent co-purchases that have no significance,

and meaningful co-purchases that are due to dependent purchase processes.

The explicit recommender system allows users to rate items using a short rating

of one to five stars on the one hand and a textual review on the other. This is done

at the same time on the same web page. By this design, the ratings are considered

as a tool to present the overall opinion detailed in the textual review; the ratings are

generally used to sort the reviews for display purposes. Contrarily to the explicit

recommender system presented in Chapter 5, at Amazon.com reviews and rankings

are two features of one service, not two independent services. Active reviewers are

incentivized for instance with badges for the top n reviewers or shopping coupons.

Item-to-recommendation relations at Amazon.com are obviously based on some

fuzzy title-based concept. Ratings and reviews contributed to a specific product are

also displayed at products with a close relationship in the title. A book review writ-

ten for the hardcover edition might also be helpful for the paperback. Presenting

reviews of an older edition at the product page of an updated and extended edition

of a scientific book is questionable at least. At Amazon.com not only are reviews of

older editions shifted to new ones but vice versa without making this process visible

to the user. Very misleading results are produced by this item-to-recommendation

identification mechanism when it comes to positive title correlations between prod-

ucts of different media formats. Anyone who was once disappointed about the movie

adaption of his favorite novel understands, that it is not a good idea to automati-

cally transfer reviews between books, radio plays, or even movie DVDs. Presenting
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as much reviews as possible to any product seems to be the main criteria for Ama-

zon.com.

The main motivation behind the use of personalization and recommendation

services is that the conversion rates of the recommended items are considerably larger

than those advertised via untargeted ads. The downside of this is the high incentive

for shilling, that has already been discussed in Section 3.2. In the last years at various

occasions Amazon.com has ascertained that different services at their website have

been abused.9 The possibility for everybody—including authors and publishers—to

anonymously submit reviews or ratings and thereby pushing one’s own product or

discrediting competitors seems to be a significant incentive that has lead to the large

amount of reviews at Amazon.com. Recently, this mechanism design has started to

discredit the credibility of all recommendations and thereby the positive attitude

of the customers towards the service. After some negative publicity Amazon.com

has changed the mechanism design so that only customers who have purchased at

least one item with the according account can submit reviews. In other countries

(e. g. Germany with Amazon.de10) the mechanism design is different. Here, reviews

can still be submitted from new (fake) accounts without prior purchases (status of

2007-05-03).

4.4 Social Tagging

Social websites are the most recent trend in the media industry. They include user-

centric publishing, like wikis and blogs, and social resource sharing tools. Websites

like Flickr, del.icio.us11, YouTube, MySpace12, and Wikipedia13 have flourished and

caught the attention of the media industry. The main reasons for the success of

these social web sites is the opportunity of participation without special skills and

without overhead for every individual. Social websites have attracted a huge number

of individual users which have created huge amounts of content in these websites

within a very short period of time. It seems that social websites effectively handle

the knowledge acquisition problem by attracting huge masses of active users. Tags

are user created metadata of items. The determination of items with similar tag

clouds gives way to item-centered recommender systems; classifying users by their

contributed tags leads to user-centered systems. In this section, three services in the

area of STI are portrayed and analyzed.

9http://news.com.com/2100-1023-976435.html, http://www.wired.com/techbiz/media/news/
2002/07/53634, http://www.cnn.com/2004/TECH/internet/02/14/glitch.reveals.ap/index.html

10http://www.amazon.de/
11http://del.icio.us/
12http://www.myspace.com/
13http://www.wikipedia.org/

http://news.com.com/2100-1023-976435.html
http://www.wired.com/techbiz/media/news/2002/07/53634
http://www.wired.com/techbiz/media/news/2002/07/53634
http://www.cnn.com/2004/TECH/internet/02/14/glitch.reveals.ap/index.html
http://www.amazon.de/
http://del.icio.us/
http://www.myspace.com/
http://www.wikipedia.org/


38 4. A Survey of Recommender Systems at Major STI Providers

4.4.1 BibSonomy and CiteULike

In social websites, in addition to content- or behavior-based structures, information

on the social web between users becomes available and is exploited for giving recom-

mendations. In a scientific library setting BibSonomy14 [HJSS06] is an experimental

social bookmark and publication sharing system which investigates how the social

structure can contribute towards deriving good recommendations. At the core of

BibSonomy is the formal definition of a folksonomy as a quintuple of users, tags,

resources, the ternary tag assignment relation between users, tags, and resources,

and a user-specific subtag-supertag relation which defines a user-specific hierarchy

of tags. While ignoring the subtag-supertag relation, a folksonomy falls back on

the ternary tag assignment relation which can be interpreted as a triadic context in

formal concept analysis and interpreted as a tripartite undirected hypergraph with

three types of vertices, namely users, tags, and resources, and the set of hyperedges

defined by the ternary tag assignment relation. Tag assignments can be easily aug-

mented with other attributes like date, user group, or resource type which define an

extended context of the structure.

Figure 4.1 shows BibSonomy’s detail page for the contribution by Hotho et al.

[HJSS06]. In addition to browsing the bibliographic data, the user can follow dif-

ferent links. The tag cloud on the right hand side of the screen shows the tags

users have associated with the current document. Clicking on a tag either in the

tag cloud or in the list displayed with the bibliographic information leads to the

document owner’s entry page, filtered for resources that are correspondingly tagged.

Clicking on the author link leads to a page displaying the resource that also have

this author on their author lists.

CiteULike15 pursues an approach of social tagging similar to BibSonomy. It

also supports tags and allows to follow links for tags, authors, as well as the users

that have a document in their library. Both sites alleviate the task of entering

the bibliographic information by offering an import plugin from selected sites like

e. g. CiteSeer or IEEE Explore. The United-Kingdom-based CiteULike started the

service in 2004, even before the Germany-based BibSonomy.

4.4.2 LibraryThing

LibraryThing16 is another social cataloging web application for storing and sharing

personal library catalogs and book lists that started in 2005. It offers recommen-

dations based on the tag clouds of users. In general, the document data has to be

imported by the users. It mainly is a service that lives through its own portal, but

tries to spread its output through other institutions.

LibraryThing is commercially offering its data to libraries for use in local library

catalogs. Figure 4.2 shows the integration within the OPAC of the J. Paul Leonard

Library at San Francisco State University. One problem arises with this approach:

14http://www.bibsonomy.org/
15http://www.citeulike.org/
16http://www.librarything.com/

http://www.bibsonomy.org/
http://www.citeulike.org/
http://www.librarything.com/
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Figure 4.1: The BibSonomy entry for [HJSS06]
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Figure 4.2: LibraryThing recommendations and tags added to the document details

at the J. Paul Leonard Library at San Francisco State University
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the user base is separated from the contributor base. All input data stems from

the LibraryThing website. The community of users at the LibraryThing website

generates tags and recommendations suited for their interest and background. The

user group at a library that shows the output of LibraryThing most likely differs

from the LibraryThing contributor base. Recommendations are most useful for a

peer group if they are created from the input of the same peer group. A user at a fine

arts university gets the same LibraryThing-recommendations for a interdisciplinary

book as a student at a technical college in case both their institutional libraries

integrated the LibraryThing recommendations. Both users might prefer different

recommendations from their peer group. Nevertheless, the approach of LibraryThing

has one important positive aspect: a community at a single library is often too small

to achieve critical mass for a successful recommendation service.

A second drawback of this approach is that the tag clouds that emerge at social

websites seem to be less useful than the classification systems developed by scientific

communities (e. g. the Mathematics Subject Classification17 or the ACM Computing

Classification System18)—at least for STI providers.

17http://www.ams.org/msc/
18http://www.acm.org/class/

http://www.ams.org/msc/
http://www.acm.org/class/
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Chapter 5

Case Study: Explicit

Recommender Services for

Scientific Libraries

In March 2006, a group-specific item-centered explicit recommender system featur-

ing a rating and a review service was added to the OPAC of the Library of the

Universität Karlsruhe (TH). The goal is to turn the online public access catalogs of

libraries into customer oriented service portals including the support of customer in-

teraction. In this chapter, the services are described, usage statistics are given, and

the question, which type of recommender system is appropriate for which customer

need, is covered. The mechanism design of the recommender systems is discussed

as well as possible extensions to the current implementation. A description of these

services was first published in [Neu07a].

5.1 General Setup

In the scientific world the organized exchange about the quality of a publication is

usually performed by dedicated survey and review journals, where domain experts

discuss and review the publication and give a state-of-the-art survey of a certain

specialized research topic. Examples include e. g. ACM Computing Surveys and

ACM Computing Reviews in the field of computer science. The introduction of

explicit recommender systems heralds a change in this system. First, review journals

require a conscious effort to locate the review for a publication, an effort that not

every user is willing to spend, especially if reading the review implies the monetary

costs of buying the journal. Explicit recommender systems, on the other hand, are

integrated into the OPAC and thus deliver the information to the user at minimal

costs for the user. In addition, at least for books that receive broad public attention,

many reviews and publications are produced by their readers which reduces the

influence that a single review has on the user’s purchase decision.

Libraries are an application area with strong privacy concerns, therefore, item-

centered recommender systems are the technique of choice. The usage of recom-
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mendations is open anonymously to the general public without revealing one’s own

preferences besides the single object, one is currently inspecting. While the item-

centered approach has some limitations when it comes to determine the users overall

interest, many scientific libraries refrain from collecting document browsing or lend-

ing histories of individual users. The recent interest of politicians in this data for

dragnet investigation and the knowledge of scientists about it would most likely

influence the scientific freedom at the institution the specific library belongs to.

In the portrayed item-centered recommender systems the customer interaction

takes place around the library’s objects. This constraint can be regarded as strength.

The interacting library users build a social network, but they do not just connect to

each other, they connect through a shared object. This object is the reason and the

necessity for the connection. It is a case of object-centered sociology [SKCvS01].

In March 2006 a rating service and a review service were introduced together

at the University Library of Karlsruhe1. Inspecting ratings and reviews is open to

the general public, submitting ratings and writing reviews is only open to logged-in

users to prevent fraudulent use. The account to login comes with the possession of

a library card only. The difference to most other systems lies, first, in the support

of different user and target groups; and second, on a role system based on scien-

tific experience, where the roles are reliably determined and tracked by the library

administration. Most other applications are based on less reliable self-assessment

for the determination of user groups. E. g., [GSHJ01] presents an early application

of group-specific behavior-based recommendation services based on self-assessment

in e-learning. With the services portrayed in this chapter, the user group of the

rater or reviewer is stored and processed with each rating and review; different re-

views for different target groups can be submitted for each catalog object from each

user. In the current implementation three different user groups exist: students (Stu-

denten), university staff (Mitarbeiter), and externs (Externe) officially not directly

associated with the university. Although scientific staff is not distinguishable from

administrative staff in this way it is obvious from the work tasks that the staff group

is actually a close approximation of all scientists at the Universität Karlsruhe (TH).

These groups are chosen for legacy reasons. They have been used by the library

administration for many years preceding these services; they are not only checked

for each customer before handing out the library card but also tracked over time

in case of status changes. While one could easily come up with more sophisticated

classifications, the guaranteed correctness made these user groups the pragmatic

choice for a system with an existing customer base of roughly 25,000 customers.

All presented systems are fully operational services accessible by the general

public in the online catalog of the University Library of Karlsruhe (UBKA – Univer-

sitätsbibliothek Karlsruhe)2. Further information on how to use these services can

be found at “Participate!” at the scientific projects website3. The library’s docu-

1http://www.ubka.uni-karlsruhe.de/
2http://www.ubka.uni-karlsruhe.de/catalog/
3http://reckvk.em.uni-karlsruhe.de/

http://www.ubka.uni-karlsruhe.de/
http://www.ubka.uni-karlsruhe.de/catalog/
http://reckvk.em.uni-karlsruhe.de/
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Figure 5.1: Detailed inspection page

ments covered by the services include digital and paper books and journals, various

data mediums, as well as picture, audio and video files.

As a starting point to all services the detailed inspection page of a library docu-

ment was chosen. None of the services has an exclusive starting page; first, one has to

choose an object to see the respective recommendations. The general research work

flow starts with entering search words into the traditional database oriented OPAC

search page. This results in getting a list of documents with short titles, author,

and year of publication. Choosing one document from the list displays the detailed

document inspection page. Figure 5.1 shows this page for “Economics, organization

and management” by Milgrom and Roberts [MR92]. The recommender system in-

formation can be found in the colored box on the right hand side next to the cover

image. Unfortunately, the OPAC is only available in German. Figure 5.2 shows an

enlarged cutout of this area with an English translation next to it. The recommen-

dation services are accessible by clicking on the links: “Recommendations [BibTip]”

displays behavior-based recommendations as described in Chapter 8; “Submit rat-

ing” opens the submission page for document ratings; “Show reviews” opens the

page for browsing user reviews for the document; “Write review” opens the editing

page for document reviews; “My reviews” opens a page for the management of all

reviews written by the current user. Rating averages for the three user groups can

be directly inspected at the stars. Only suitable links are shown, if no reviews or
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Figure 5.2: Enlarged cutout of the detailed document inspection page showing the

user front end of the recommendation services

behavior-based recommendations exist, the respective links are omitted. If one is

not logged in, the log-in page is displayed before the various submission and editing

pages.

The services described in this chapter were programmed in PHP, use PostgreSQL

databases, and are running on Linux servers.

5.2 Rating Service

The rating service was set up to give the customers a tool for a first quick estimation

of the overall quality of a document within certain user groups. A rating for a library

object can be submitted by a logged-in user on a Likert scale from 1 (very bad) to

5 (very good). The submission page is reached via the link “Bewertung abgeben –

Submit rating” on the detailed document inspection page (conf. Figures 5.1 and 5.2).

The submission interface for the title “Information rules” by Shapiro and Varian is

shown in Figure 5.3. In bold font the name of the current user is shown: “Bewertung

durch. . . – Rating by. . . ”. The possible rating values are explicitly shown including

the star graphics:

• 5 stars – sehr gut – very good

• 4 stars – gut – good

• 3 stars – mittel – average

• 2 stars – schlecht – bad

• 1 star – sehr schlecht – very bad

Every user can rate every document only once. The ratings are processed sep-

arately for each customer group and shown in aggregated form. In Figure 5.2 6
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Figure 5.3: Submission page for document ratings

ratings from students with and average of 3.5 stars, 5 ratings from staff with an

average of 4.6 stars, and 1 from the group of externs with a good (4 stars) rating

can be seen. Therefore, the book of Milgrom and and Roberts seems to be an overall

good book at first glance, which is even more valued by scientists than by students.

5.3 Review Service

The review service was introduced to give the library’s customers a tool to manage

detailed information about the content, the quality, and the adequacy of a document

for a specific task, e. g. preparation for a student’s examination. This is especially

helpful when the library object is not digitally available through the OPAC. Browsing

the information of this service takes significantly longer than with the rating service

and should be used if the customer already considers the document potentially useful.

The system is designed in the following way. Every logged-in user can submit four

different reviews for each library document, one for the target group of students

(Studenten), one for university staff (Mitarbeiter), one for Externs (Externe), and

an additional one not assigned to any target group (nicht zugeordnet). By means of

this, special characteristics of a document can be considered. Parts of a book may

be well suited for a specific course (target group of students), while other aspects of

the same book are more valued by scientists, e. g. the list of references or chapters

on advanced material.

Figure 5.4 shows the editing page for reviews for the book (Werk) “Service man-

agement and marketing” by Grönroos [Grö05]. The review author has to choose a

target group (Zielgruppe) and to decide whether his real name should appear with

the review (Anonymitätsgrad – degree of anonymity). Reviews can be managed

(written, edited, deleted, saved) within the system over several sessions, only after

explicitly releasing them (Freigabestatus – status of release) they become visible to
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Figure 5.4: Editing page for reviews
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Figure 5.5: Browsing page for reviews

others. Terms of use (Nutzungsbedingungen) are shown, but no automatic check

from library staff is included in the workflow of submitting a review. Every reader

can report offending reviews but no such case has occurred so far. In such a case,

the review will be deleted and the author will be contacted. The service manage-

ment knows every reviewer even if one chooses not to show one’s real name with the

review.

Additionally, a rating service with reviews as the central objects is provided.

Thereby, readers of a review can give feedback about the quality of the review. The

user group handling and presentation in this review rating service is implemented

similar to the service built around the library documents presented in the previous

section.

The browsing page for reviews is shown in Figure 5.5. The author (Autor)

chose to stay anonymous (XXXX) , the review was submitted on 2006-03-03, the

author belongs to the staff group (Mitarbeiter), and the target group is students

(Studenten), it has been rated (Rezensionsbewertung) two times by students with

an average of 4.0 (good) and three times by scientists with an average of 5.0 (very

good). On the left hand side various sorting criteria (up and down) for reviews

exist: reviewer (Rezensent), date (Datum), ratings (Bewertung) from the different

user groups, reviewer group (Status des Rezensenten), as well as target group. If

you scroll down, more reviews for this title can be found.
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Figure 5.6: Number of document ratings, reviews, and ratings of reviews online for

the general public in the OPAC from 2006-03-03 to 2007-12-20

Table 5.1: Number of contributions by user group (status of 2007-12-20)

Students Researchers Externs Total

Document ratings 148 116 34 298

Reviews 29 21 13 63

Ratings of reviews 11 11 0 22

5.4 Usage Statistics

In this section, usage statistics of the explicit recommendation services at the Library

of the Universität Karlsruhe (TH) are given. The discussion, i. e. mechanism design

problems that may have an influence on these numbers, technical issues, and an

outlook how to push the usage of the different services, follows in the next section.

Figure 5.6 shows the history of the total number of document ratings, released

reviews, and ratings of reviews online from 2006-03-03 to 2007-12-20. The total

number as well as the distribution of all contributions by the three user groups on

the last day of this time period is portrayed in Table 5.1. Table 5.2 depicts the

distribution by rating values of document ratings and ratings of reviews. Table 5.3

shows the distribution of reviews by target group.
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Table 5.2: Number of ratings by rating value (status of 2007-12-20)

very bad bad average good very good

Document ratings 5 9 29 91 164

Ratings of reviews 0 1 3 9 9

Table 5.3: Number of reviews by target group (status of 2007-12-20)

Students Researchers Externs Not assigned

Target group of review 19 4 2 38

5.5 Discussion

5.5.1 Usage and Mechanism Design

Although recommender systems are clearly beneficial to users, scientific libraries

have been slow compared to e-commerce to introduce such systems as regular fea-

tures in their OPACs. To the best of knowledge, the presented recommendation

services were the first of their respective kind at large scientific libraries and have

received positive feedback from the library community. Nevertheless, the overall

amount of user contributions is still low although constantly growing (conf. Fig-

ure 5.6). The small number of contributions can be attributed in different parts to

the general size of the potential contributor group, free riding, the non-visibility of

the services due to a lack of marketing, and technical issues in the user interface.

When users decide to contribute, they are obviously more interested in recogniz-

ing good books and reviews than in marking bad ones (conf. Table 5.2). Table 5.1

shows the tendency, that the system is accepted best within the group of researchers,

considering that the total number of persons in this group is significantly smaller

than in the student group.

The explicit recommender systems at the University Library of Karlsruhe in the

current setup are designed to prevent shilling from outsiders. The large downturn is

the limitation of the amount of potential contributors. A service run through its own

portal open to all Internet users most likely has an even smaller conversation rate of

turning visitors into contributors, but the final amount of contributions will be much

higher. This favors an approach like LibraryThing (conf. Section 4.4.2). Clicking

in the OPAC on cover images like the one seen in Figure 5.1 brings the library

user directly to the corresponding page at Amazon.de. Although by means of this

mechanism a one click connection from the inspection of ratings and reviews to e-

retail exists and the intersection of the set of university staff and the set of authors

of library documents is not empty, currently self promotion of authors seems not to

be present, the credibility is not challenged so far. The size limitation of the group

of potential reviewers as well as the lack of extrinsic motivation are two important

aspects for the slow growth of ratings and reviews.

Contrarily to Amazon.com a non-fuzzy item-to-recommendation relationship is

used. Ratings or reviews are not automatically shifted to other editions or documents
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with a strong correlation in the title. While this limits the visibility of reviews, it

produces no misleading results as can be often found at Amazon.com (conf. Section

4.3). This should help to build up trust in the usefulness of the recommender system

at the University Library of Karlsruhe.

5.5.2 Technical Issues

One technical problem of the current implementation that influences the usage of

the service in a negative way is the fact, that customers searching the catalog are

normally not logged-in. The majority of paper documents in the library is available

via open access; one only has to login to order in advance an already lent book or

an older book from the depot. The hurdle of first logging-in seems too much of a

hassle for many users for submitting ratings. Currently, the login mechanism of the

recommendation service is even separated from the general OPAC log-in. When a

user is already logged-in into the OPAC—as it is then already clearly stated on the

web-site on all pages in his session—and gets a second request for a log-in without

any explanation, this is often considered as an error and the transaction is stopped

before finalizing the contribution. This has been stated repeatedly from first-time

users and can be found in the usage statistics as well. From 2007-01-01 to 2007-

12-21 the link “Submit rating” has been clicked 949 times; 123 ratings have been

submitted within this period. This shows that only in about 1 out of 8 clicks, the

users make the effort to log-in and give a rating.

Another technical issue lies in the pop-up-based interface. After the extensive

use of pop-up advertisements on various websites and the spread of pop-up-blockers

on the consumer side in the Internet, most service operators have switched back to

one-window-only interfaces and successfully regained customer confidence. In the

OPAC of the university library, a click on any of the links to display reviews, submit

a review, submit a rating, or browse one’s own reviews always opens a new browser

window (conf. Figures 5.3, 5.4, and 5.5) cluttering up screen space. This has been

reported by several users as an annoyance.

Furthermore, the visibility of a service is essential for its usage. Amazon.com

e. g. displays recommendations directly on the product page. The recommendation

service gets into the eye of every customer even if the customer was completely

unaware of it before. At the Library of the Universität Karlsruhe (TH) the reviews

are accessible via a single link that is only displayed if reviews are available. The

review link is one out of a list of twelve on the right hand side of the detailed

inspection page (conf. Figure 5.1). When browsing through the catalog, the user

has to visually search this list at every detailed inspection page to see if reviews

exist for a certain document. This slows down the search process tremendously and

can be found responsible for the fact, that the most users are completely unaware

of the existence of the service in the first hand. The best solution lies in the direct

display of the reviews on the detailed inspection page. A colored graphics icon that

draws the attention of the users to the link to the review page is the second best

solution to heighten the visibility of a new service. Since November 2007, the link
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to the review page is shown in a different color (although still in the same style in

the same position). The future will show, if this is enough to spread word in the

potential user community about the service.

All these technical issues were known to the author of this book before the

launch of the services. The original design of the explicit recommender system fea-

tured neither double log-ins nor pop-ups, but a more prominent display of reviews.

This design is implemented and running within the digital library of the chair of in-

formation services and electronic markets4 (EM) at the Universität Karlsruhe (TH).

It is accessible by the staff and students of this division. The implementation and

user interface design displayed in this chapter is to a large part due to the corporate

design of the OPAC and the preferred web development tools (e. g. dbkit) of the

Library of the Universität Karlsruhe (TH). At the choice of either staying with the

much smaller user group at the EM or agreeing to interface changes and getting

field experiment data from a university library, the author chose the latter. Unfor-

tunately, the interface changes were done in a way that highly influences the usage of

the service. Chapter 9 gives a more detailed study on design issues at STI Providers.

5.5.3 Extensions

The problem of user motivation to contribute will be investigated in the future in

the following form. Since the start of the services no technical incentive system

like user point accounts was included, neither were any library customers directly

asked to contribute. This approach was taken to measure the intrinsic motivation

of customers. Next, students will be asked to write reviews on literature they are

using for seminars. Thereby the number of quality reviews will be increased. The

better visibility of the systems opens the way to feedback effects leading to further

reviews. At a later stage it is planned to include a reputation system with lists

of best reviewers, best reviews, etc. The last step would be the introduction of a

compensation system to raise extrinsic motivation.

Gathering and managing metadata like keywords for all documents with a limited

number of staff is a challenge for every large scientific library. Once a larger number

of reviews exists, a feature to search the full text of all reviews can be used as an

approximation to a user generated indexing of the library catalog. E. g. typing in a

course name shows literature considered useful by students (although not necessarily

by the lecturer).

The ratings of reviews are a direct approach to determine the quality of a review.

An alternative approach to the quality management of a review service is to bundle

all reviews within a certain field in a separate review journal portal where each

review undergoes the regular editorial process of such a journal. For this approach,

the workflow of review-journals needs to be built around the existing review system.

By means of this, new peer-reviewed review-journals can be easily set up for different

scientific communities of various areas. The reviews can then be browsed either

through the portal of their corresponding journal (with links to the documents within

4http://www.em.uni-karlsruhe.de/

http://www.em.uni-karlsruhe.de/
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the OPAC) or directly within the OPAC at their associated documents. On the one

hand, for the readers of a review, the advantage is that reviews are better integrated

into the user’s search process compared to traditional review-journals. On the other

hand, the motivation of scientists to contribute reviews to the system is strengthened.

Currently motivation to contribute mostly comes from altruism. In the future, the

publication of a review which is part of an official peer-reviewed review-journal will

contribute towards the author’s scientific standing, thereby improving the career

chances, and by means of this in the long run a better financial standing of the

review author can be expected.



Chapter 6

General Concepts of

Behavior-Based Recommender

Services

In the next chapters, the focus of this book is set on behavior-based recommender

systems. In this chapter, different aspects are presented that play important roles

in the general design of implicit recommendation services but do not belong to the

area of mechanism design as discussed in Section 3.2. First, it is portrayed how

preferences of customers can be determined from their behavior. Second, it is shown

how self-selection leads to the necessary homogeneity of the user group that is used to

collect the behavioral input data to the recommender system. Section 6.3 discusses

different types of behavioral data and their general applicability as input data. The

general knowledge discovery process of implicit recommender systems is depicted in

the fourth section. Then, issues that arise when the observed users differ from the

target group of the recommendation service are presented. Finally, the important

service question of how many recommendations can be generated out of a certain

amount of input data is discussed.

6.1 Revealed Preference Theory and Choice Sets

Paul A. Samuelson pioneered the revealed preference theory to appraise supplier

options on the basis of consumer behavior [Sam38a, Sam38b, Sam48]. This theory

gives the basis of how customer purchase data can be used to determine the prefer-

ence structure of decision makers. Behavioral data is the best indicator of interest in

a specific product and outperforms surveys with respect to reliability significantly.

Modelling the preference structure of decision makers in a classical way leads

to causal models which explain the choice of the decision maker, allow prediction

of future behavior and to infer actions of the seller to influence/change the choice

of the decision maker (e. g. see Kotler [Kot80]). In the setting of STI Providers

causal modelling of the preference structure of decision-makers would require the

identification (and estimation) of such a model which explains the choice of a decision
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maker or of a homogeneous group of decision makers (a customer segment) for

each of the products—in the library scenario often more than 10,000,000 products.

Solving the model identification problem requires selecting the subset of relevant

variables out of 210,000,000 subsets in the worst case in an optimal way. While a

lot of research has investigated automatic model selection, e. g. by Theil’s R2 or

Akaike’s information criterion (AIC) (for further references see Maddala [Mad01,

pp. 479–488]), the problem at this scale can still be considered as unsolved.

The idea to ignore interdependencies between system elements for large systems

has been successfully applied in the derivation of several laws in physics. The first

example is the derivation of Boltzmann’s famous H-theorem where the quantity H

which he defined in terms of the molecular velocity distribution function behaves

exactly like the thermodynamic entropy (see Prigogine [Pri62]).

For the development of algorithms for the generation of recommendations in the

next chapter the interdependencies between model variables are completely ignored.

For this purpose, an ideal decision maker without preferences is constructed. Such

an ideal decision maker can be regarded as a prototype of a group of homogeneous

decision makers without preferences against which groups of decision makers with

preferences can be tested. For a group of ideal decision makers, this is obvious, for

a group of decision makers with preferences the principle of self-selection (see next

section) grants homogeneity. The ideal decision maker draws k objects (each object

represents a co-purchase, i. e. a product pair) out of an urn with n objects with

replacement at random and—for simplicity—with equal probability. The number

of possible co-purchases—and thus the event space—is unknown. In marketing

several conceptual models which describe a sequence of product sets (e. g. total

set ⊇ awareness set ⊇ consideration set ⊇ choice set [Kot80, p. 153]) have been

developed (see e. g. Narayana and Markin [NM75] or Spiggle and Sewall [SS87]).

Narayana and Markin have investigated the size of the awareness set for several

branded products empirically. E. g., they report a range from 3–11 products with

an average of 6.5 in the awareness set for toothpaste and similar results for other

product categories. Although, as mentioned, the event space is unknown, the event

space size is larger than k and in the worst case bounded by k times the maximal

size of the awareness set. Considering the previously mentioned average sizes of

awareness sets and the fact that the size of a market basket and thereby the number

of co-purchased products k usually remains small—often k < 20 holds—this setup

leads to sample sizes that can be handled by suited algorithms.

A survey of the statistical problems (e. g. violation of the independence of ir-

relevant alternatives assumption, biases in estimating choice models etc.) related

to this situation can be found in Andrews and Srinivasan [AS95] or Andrews and

Manrai [AM98]. Recent advances in neuroimaging even allow experimental proofs

of the influence of branding on brain activity in a choice situation which leads to

models which postulate interactions between reasoning and emotional chains (e. g.

Deppe et al. [DSK+05] or Bechara et al. [BDTD97]).
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6.2 Self-Selection

The term self-selection is used to describe the process of individuals selecting them-

selves into a certain group. For an introduction on self-selection see e. g. [MR92].

James J. Heckman became famous for his investigation on self-selection as an un-

desirable mechanism leading to selection-bias in statistical analyses [Hec79, HS85,

HS90].

In the area of recommender systems self-selection is highly welcome: it is crucial

in identifying homogeneous user segments. Here, the signaling model of Michael

Spence describes the utilized mechanism. Spence investigated the signaling that

potential employees give employers by means of their acquisition of a certain educa-

tional degree [Spe74]. This mechanism can be translated to the signaling that cus-

tomers give by purchasing or using a certain product. Behavior-based item-centered

recommender services are observing the behavior of users and thereby implicitly

collecting information about the objects the users are purchasing or inspecting; the

necessary homogeneity of a group of users in this case is granted by the principle

of self-selection. Geyer-Schulz et al. [GSHNT03b] argue that this theory allows ob-

servation of aggregate buying processes for self-selected groups of consumers and

thus detecting outliers in aggregate processes. For a library context this is essential,

because it preserves the privacy of the individual and thus addresses the problem of

privacy discussed in Chapter 3.

6.3 Prices, Transaction Costs, Market Baskets,

Lending Data, and Browser Sessions

Institutional flat rates via site license schemes, pay-per-view to individual customers,

and fee-based digital document delivery services are the dominant pricing schemes

for digital scientific and technical information today. Paper bound STI is to a large

part bought by institutional libraries and then lent by the readers. The general

problem that arises for behavior-based recommender systems lies in this structure:

the buyers of STI products are different from the actual users. This special property

of STI markets has to be taken into account when implicit recommender systems

are introduced within this market. This section shows, how, by argumenting with

transaction costs, the preference theory and self-selection principles can still be used

to collect behavioral data within this market.

A customer segment is a set of anonymous customers with common interest

shown by purchasing the same object. While a purchase in general is attributed

with a certain price the customer is paying, the relevant measure is not the price but

the transaction cost. The transaction cost is the complete cost incurred in making

the economic exchange. While the term was coined later in the 1950s, Ronald H.

Coase is famous for analyzing the concept in his influential article “The Nature of

the Firm” [Coa37]. In this article he speaks of ”costs of using the price mechanism”.

In STI markets, search costs make up a large amount of the transaction costs.
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In the library environment, a purchase incidence can be identified with the closer

inspection of a detailed document view recorded by the web server of the OPAC.

The reason for this to work lies in the search cost which the user incurs when in-

specting document details. For information products this has been shown to hold

in [GSHJ02]. In this context a market basket corresponds to all detailed document

views in a single user’s browser session. The self-selection constraint is that the

search cost of a user is so high that a user is willing only to inspect the detailed in-

formation of documents which are of interest to him. The higher the users value their

time, the more effective is the self-selection constraint in this context. Inspection

of the detailed information of a document signals genuine interest in the document.

The self-selection constraint enforces the credibility of this signal. Furthermore,

when the self-selection constraint holds, one can rely on this signal, because it will

not be in the interest of users to fake interest. In addition, the self-selection con-

straint ensures that the recommendations are presented only to interested users since

only those visit the detailed information page where recommendations are offered.

Therefore, in the next chapters, a “detailed document inspection” is interpreted as

a synonym to “purchase occasion” and “market baskets” as a synonym to “user

sessions” within a library’s OPAC.

While ordering or lending transaction data of documents are arguably closer

related to purchases, for libraries often a low degree of service reduces the utility of

these transaction streams for the identification of recommendations. Usage behavior

can be observed at different stages: detailed inspections of documents in the OPAC,

ordering paper documents from the magazine, ordering paper documents that are

currently lent, and finally picking-up a paper document or downloading a file from

the digital library. The main concern for the data selection is bias. It can be shown

that lending and ordering data is highly biased, since e. g. students very often do

not order the book they are mostly interested in, because this is already lent, but

actually their consideration-set only includes documents that they will be able to

obtain timely before the corresponding examination. For this reason the behavior-

based recommendation service at the University Library of Karlsruhe portrayed in

Chapter 8 is based on anonymized OPAC searches (hits on document inspection

pages) and not on lending data.

6.4 Knowledge Discovery and Data Mining

Considering the implementation and evaluation of recommender systems, a system

can be split up into different processes with evaluation aspects from different re-

search fields. Generally, recommender systems fall into the field of KDD, sometimes

used as an abbreviation of “Knowledge Discovery in Databases” and sometimes of

“Knowledge Discovery and Data mining”. Figure 6.1 displays the internal processes

of an implicit recommender system in a linear way. The first three sections of this

chapter have dealt with the selection of the data. The preprocessing step is described

in the next case study in Section 8.1.1. The algorithms for the data mining process
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Figure 6.1: KDD processes of an implicit recommender system

and their interpretation are described in general form in Chapter 7 and more specific

in Chapter 8 for the case of the University Library of Karlsruhe. The presentation

process is discussed by means of human computer interface design in Chapter 9.

The utility evaluation of a recommender system needs to consider all processes.

6.5 Observed Users vs. Target Group of Recom-

mendations

One of the main mechanism design problems of behavior-based recommender sys-

tems is the cold start problem (conf. Section 3.2). A certain amount of usage data

has to be observed before the first recommendations can be computed. To overcome

this problem, sometimes usage data from different but similar applications is used

to lessen the cold start problem. But starting with recommendations drawn from

almost similar applications in general is a bad idea since it can not be guaranteed

that the usage patterns of customers in these applications are identical. This holds

for explicit systems as well; this has been discussed in Section 4.4.2. Behavior-based

recommendations are best suited to the user group whose usage data is used to gen-

erate the very same recommendations. The group of observed users should ideally

be identical with the target group of the recommendations. Thus, to lessen the cold

start problem it is better to use small sample test statistics to faster generate qual-
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ity recommendations out of the first small samples of user behavior as portrayed in

Section 7.2.

6.6 Factors for the Diffusion of Recommendations

When one suggests the introduction of behavior-based recommender systems to STI

providers, inevitably the question arises: how many product recommendations does

such a system generate? In e-commerce obviously holds: the more the better (conf.

the analysis of Amazon.com in Section 4.3). From the scientific point of view it

is clear, that generally, considering the same input data, the quantity of generated

recommendations is negatively correlated to the quality of these recommendations.

While the quantity and quality highly depend on the used algorithm, some general

factors for the diffusion of item-centered recommendations out of the noise of the

market basket input data can be determined.

The amount of new recommendations by time in item-centered behavior-based

systems is influenced by the following factors:

The total amount of available usage data. Generally, the more data the bet-

ter.

The number of products. When leaving the amount of usage data fixed, the

larger the number of used products, the longer it generally takes for a sin-

gle product to get significantly many purchases for statistical recommendation

analysis.

The size of the market baskets. With a fixed amount of single purchases, fewer

but larger market baskets contain more co-purchases than many small baskets.

The usage distribution of the products. With a uniform product usage distri-

bution it takes longer for recommendations to appear than with highly skewed

distributions. In the latter case, some products are bought much more often

than others, these highly frequented products will have recommendations be-

fore the less frequented ones. Because of this recommendations are generated

for the used part of a library early.



Chapter 7

Algorithms for Behavior-Based

Recommender Systems

Different methodologies exist for the generation of behavior-based recommendations.

This chapter focuses on methods that are especially suited to the needs and chal-

lenges associated with the application area of STI providers. The behavioral input

data consists of market baskets that can be found likewise in e-commerce, library

environments, or (Web 2.0) social network sites. The relevant problem that has to

be solved is the question, which co-purchases or co-inspections of products in the

market baskets occur non-randomly, hinting to an underlying relation of these prod-

ucts. First, a method developed for large samples based on calculating inspection

frequency distribution functions following a logarithmic series distribution is pre-

sented. Second, two algorithms for small samples—to ease the cold start problem

of new recommendation services—are described. Third, a short overview of related

methods including a comparison with the previously presented methods is given.

7.1 Purchase Noise Filtering by Means of the

Logarithmic Series Distribution

The algorithm presented in this section aggregates the market basket data into in-

spection frequency distribution functions to generate recommendations. The method

is based on Ehrenberg’s repeat-buying theory [Ehr88]. Recommendation services op-

erational at different information providers that rely on this method are presented in

Chapter 8. The description of the algorithm in this section is based on [GSHNT03b].

This section is structured as follows: in Section 7.1.1 a general introduction into

Ehrenberg’s ideas is given, Section 7.1.2 presents the classical repeat-buying theory

for consumer panel analysis, Section 7.1.3 describes the modifications necessary to

make this theory applicable to anonymous market basket data, finally, the algorithm

for the generation of recommendations is presented in Section 7.1.4.
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7.1.1 Ehrenberg’s Repeat-Buying Theory

In purchasing a non-durable consumer product a consumer basically makes two de-

cisions: the decision to purchase a product of a certain product class (purchase

incidence) and the decision to choose a certain brand (brand choice). Ehrenberg’s

main conceptual insight is that repeat-buying behavior can be adequately modeled

by formalizing the purchase incidence process of a single brand. As a result Ehren-

berg’s repeat-buying theory is of a considerable simplicity and elegance:

Of the thousand and one variables which might affect buyer behavior, it

is found that nine hundred and ninety-nine usually do not matter. Many

aspects of buyer behavior can be predicted simply from the penetration and

the average purchase frequency of an item, and even these two variables

are interrelated. A. S.C. Ehrenberg [Ehr88]

Historically, repeat-buying theory was developed for the analysis of consumer

panels. A consumer panel consists of a sample of consumers who report their pur-

chases completely and faithfully to a marketing research company like e. g. AC-

Nielsen. Such a full report contains the sequence of all purchases of a consumer over

an extensive period of time for all outlets and is called the purchase history of a

consumer. The list of products purchased at a single trip to the store is called a

market basket. In a consumer panel the identity of each consumer is known and an

individual purchase history can be constructed from the union of all market baskets

of a single consumer. Crucial for the success of consumer panel analysis was the

choice of purchase occasions as unit of analysis. A purchase occasion is a binary

variable coded as one if a consumer has purchased at least one item of a product

in a trip to a store and zero otherwise. The number of items purchased as well

as package sizes are ignored. One of the earliest uses of purchase occasions can be

attributed to L. J. Rothman [S.R65].

Ehrenberg’s classic book [Ehr88] on repeat-buying theory remains a readable

standard reference and a suitable introduction to consumer panel analysis for the

practitioner. The theory presented in the next section can be found in much more de-

tail there. However, in order to be applicable for recommender systems the following

insight, which is not at the center of Ehrenberg’s theory, is necessary. Ehrenberg’s

theory faithfully models the noise part of buying processes. That is, repeat-buying

theory is capable of predicting random co-purchases of consumer goods. Intention-

ally bought combinations of consumer goods as e. g. a six-pack of beer, spare-ribs,

potatoes, and barbecue-sauce for dinner are outliers. In this sense, Ehrenberg’s

theory acts as a filter to suppress noise (stochastic regularity) in buying behavior.

7.1.2 Repeat-Buying Theory for Consumer Panel Analysis

Consumer panel analysis is carried out in distinct time-periods (such as 1-week, 4-

week, quarterly periods) conforming with other standard marketing reporting prac-

tices. A particular simplification resulting from this time-period orientation is that
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most repeat-buying results for any given item can be expressed in terms of penetra-

tion and purchase frequency. The penetration is the proportion of consumers who

buy an item at all within a given period. The purchase frequency w is the average

number of times these consumers buy at least one item in the period. The mean pur-

chase frequency w is itself the most basic measure of repeat-buying in Ehrenberg’s

theory and in this book.

By arguing that consumers purchase products independently, because of e. g. re-

stocking items only as necessary, Ehrenberg [Ehr88, p. 128] postulated the following

stochastic process model of compound Poisson form for the description of stationary

purchasing behavior over a sequence of equal periods of time:

1. Purchases of a specific consumer are regarded as independent drawings from

a Poisson distribution.

2. The average purchase rates of consumers differ in the long run, they follow a

Gamma-distribution with exponent k and mean m.

These assumptions lead directly to a negative binomial distribution (NBD) with

exponent k and mean m = ak for the probability of observing a consumer with r

purchase occurrences in the observation period:

Pr =

∞∫
0

e−
µ
a µk−1

akΓ(k)

e−µµr

r!
dµ = (1 + a)−k Γ(k + r)

Γ(r + 1)Γ(k)

(
a

1 + a

)r

(7.1)

with variance σ2 = m
(
1 + m

k

)
.

In day-to-day marketing practice this theory successfully predicts which propor-

tion of buyers of a product buy it also in the next period and which not, how often

repeat-buyers buy in each period, and what the influence of light, medium, and

heavy buyers is on the purchases of the next period. In addition, Ehrenberg sug-

gests that this model with its strong independence structure explains the regularities

in markets and thus can be used as a filter to discover non-random deviations from

regular market behavior. It is this last usage which will be exploited here by using

repeat-buying theory to account for random co-occurrences of products and thus to

identify deviations as interesting recommendations.

The lower level of Figure 7.1 illustrates the basic idea of Ehrenberg’s purchase

incidence models: a consumer in a panel purchases a specific consumer product

following a stationary Poisson process. This process is independent of the other

purchase processes of the consumer. The rationale is that in each household certain

consumer products are stored and only restocked as soon as the household runs

out of the item (e. g. coffee, soap, tooth-paste). Chatfield et al. [CEG66] proved

that aggregating these purchase processes over a population of consumers under the

(quite general) assumption that the parameters µ of the Poisson distributions of the

purchase processes of the individual consumers (the long run average purchase rates)

follow a truncated Γ-distribution results in a logarithmic series distribution (LSD).
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The LSD is a one parameter (q) distribution which gives according to Ehrenberg

the probability that a specific product is purchased a total of 1, 2, 3, . . . , r times with-

out knowing the number of non-buyers. Its frequency distribution P (r purchases),

its mean w (the mean purchase frequency), and its variance σ2 are shown in Formu-

las 7.2, 7.3, and 7.4, respectively. Note that σ2 > w is a characteristic of the LSD

distribution. For further details on the LSD distribution, see e. g. [JKK93].

P (r purchases) =
−qr

r ln(1− q)
, r ≥ 1 (7.2)

w =
−q

(1− q) ln(1− q)
(7.3)

σ2 =
w

(1− q)
− w2 =

−q
(
1 + q

ln(1−q)

)
(1− q)2 ln(1− q)

(7.4)

The following assumptions on consumer purchase behavior lead to a LSD:

1. The share of never-buyers in the population is unknown. In the classic con-

sumer panel setting, this assumption is usually unnecessary. However, in In-

ternet environments, this assumption definitely holds and is necessary. The

implication of this is that it restricts the analysis to the LSD-model which

in consumer panel analysis serves only as an approximation for the negative

binomial distribution (NBD) model.

2. The purchases of a consumer in successive periods is Poisson distributed with

an average µ which can be observed in the long run if a purchase is indepen-

dent of previous purchases (as is often observed) and a purchase occurs in an

irregular manner that seems random (see [WT87] for more details).

3. The distribution of µ in the population follows a truncated Γ-distribution so

that the frequency of any particular value of µ is given by (ce−µ/a/µ)dµ, for δ ≤
µ ≤ ∞, where δ is a very small number, a a parameter of the distribution, and

c a constant so that
∫∞

δ
(ce−µ/a/µ)dµ = 1.

Ehrenberg’s argument [Ehr88, p. 259] for a Γ-distribution of the µ in the

population of consumer purchase processes is the following: if for different

products x1, x2, x3, x4, . . . the average purchase rate of x1 is independent of

the purchase rates of the other products, and x1

(x1+x2+x3+x4+...)
is independent

of a consumer’s total purchase rate of buying all the products then it can be

shown that the distribution of µ must be a Γ-distribution. In several consumer

panel studies these independence conditions have been shown to hold at least

approximately (for example see [Ask75, CE76, PW78, Sic82]).

4. The market is stationary or in equilibrium. This is violated e. g. when new

brands in a consumer product market are launched. For STI providers, new

acquisitions of books is an example for the violation of this assumption. Still,

as long as new acquisitions constitute only a tiny fraction when compared to
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the full collection, we assume that this condition still tends to hold for most

documents most of the time.

That these assumptions lead indeed to an LSD distribution can be seen from

Chatfield’s proof whose most important steps are repeated here for the sake of

completeness:

1. The probability pr of r purchases of a consumer is e−µµr

r!
(Poisson).

2. Integration over all consumers in the truncated Γ-distribution leads to

pr = c

∞∫
δ

e−µµr

r!

e−
µ
a

µ
dµ =

c

r!(1 + 1
a
)r

∞∫
δ

e−(1+ 1
a
)µ((1 +

1

a
)µ)r−1d(1 +

1

a
)µ (7.5)

Let r ≥ 1, t = (1 + 1/a)µ, and q = a
1+a

. Since δ is very small, one can

approximate

pr =
c

r!(1 + 1
a
)r

∞∫
δ

e−ttr−1dt ≈ c

r!(1 + 1
a
)r

Γ(r) = c
qr

r
= qpr−1(r − 1)/r (7.6)

3. For r ≥ 1,
∑

pr = 1 holds. Therefore, by analyzing the recursion p1 = −q
ln(1−q)

and pr = −qr

r ln(1−q)
hold. (Compare with Formula 7.2.)

7.1.3 Repeat-Buying Theory for Anonymous Market Basket

Data

So far about repeat-buying theory in the classic marketing setting of consumer

panel analysis. A direct application of this theory in the context of STI providers,

especially scientific libraries, immediately evokes the following obvious counter-

arguments:

• Users hardly ever borrow a book more than once. So, there are almost no

repeat-buys in the data.

• Per document payment for the service is rare to non-existent (see [Neu07b]

both for the general statement and counterexamples).

• Ehrenberg’s repeat-buying theory is based on purchase histories. The classic

model presented in Section 7.1.2 can not be applied to anonymous session data

which is the only data source that can be analyzed at public institutions like

libraries under the privacy requirements of data protection laws (in Germany

the Datenschutzgesetz).

• Ehrenberg’s repeat-buying theory is for homogeneous and stationary markets

only. A STI provider usually serves a heterogeneous, even fragmented mar-

ket with non-stationarities in important market segments (e. g. IT-technology

related information).
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Nevertheless, the following will show, that these arguments do not hold. The

general similarity of market baskets, browser sessions, and library lending data has

already been discussed in Section 6.3. For the STI setting the upper level of Figure

7.1 is considered. The basic idea is to treat anonymous market baskets as a consumer

panel with unobserved consumer identity. This implies that the purchase process of

a document which can be observed is an aggregation of all purchase processes of all

users of the library which inspect a certain detailed document view. In Figure 7.1

this aggregation process is illustrated for document x1 by the dotted arrows from

the lower to the upper level. In consumer panel analysis such aggregations have

not been of interest yet. However, e. g. for planning the capacity of local nodes of

a telephone system similar aggregate processes (of incoming calls) are traditionally

modelled as Poisson-processes for the analysis as queuing systems.

Although penetration is easily measured within personalized systems, here pen-

etration is of less concern, because in the library setting the proportion of library

users in the population is unknown due to the anonymity of market baskets.

For giving recommendations, document pairs have to be considered. That is

for some fixed document x in the set X of documents of the library the purchase

frequency of pairs of (x, i) with i ∈ X \ x. The probability pr(x∧ i) that users make

r inspections of detailed document views x and i during the same sessions which

follow independent Poisson processes with means µx and µi is [JKB97]: pr(x ∧ i) =
e−µxµr

x

r!

e−µiµr
i

r!
. For the recommendations for document x, the conditional probability,

that document i has been inspected under the condition that document x has been

inspected in the same session, is needed. Because of the independence assumption

it is easy to see [GSHJ02] that the conditional probability pr(i | x) is again Poisson

distributed by

pr(i | x) =
pr(x ∧ i)

pr(x)
=

e−µxµr
x

r!

e−µiµr
i

r!
e−µxµr

x

r!

=
e−µiµr

i

r!
= pr(i). (7.7)

With the help of self-selection, purchase processes for each library user segment—

a set of anonymous users with common interests which inspected a document pair

in the same session—can be identified. The occurrence of repeat-purchases in a

library setting on the aggregate level is best explained by the way research is done

at a university. Today research is organized as a communication-intensive team-

effort including university teachers and students. Repeat purchases on the aggregate

level are now triggered by several informal word-of-mouth processes like e. g. the

tutoring of students in a seminar, the recommendations given in various feedback

and review processes etc. A second effect which triggers repeat-purchases is the

complementary nature of the net of science: e. g. several independent application-

oriented research groups in marketing research, telecommunications, statistics, and

operations research apply Poisson-processes in their field of study. For each of these

segments the purchase histories can be identified as follows [GSHJ02]: For each

document x the purchase history for this segment contains all sessions in which

x has been inspected. For each pair of documents (x, i) the purchase history for

this segment contains all sessions in which (x, i) has been inspected. The stochastic
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process for the (x, i) segment—n library users which have inspected document x and

another document i—is represented by the sum of n independent random Bernoulli

variables which equal 1 with probability pi, and 0 with probability 1 − pi. The

distribution of the sum of these variables tends to a Poisson distribution. For a proof

see Feller [Fel71, p. 292]. Assuming that the parameters µ of the segments’ Poisson

distributions follow a truncated Γ-distribution, Chatfield’s proof can be repeated

and thus establishes that the probability of r inspections of document pairs (x, i)

follow a LSD.

However, it is expected that non-random occurrences of such pairs occur more of-

ten than predicted by the logarithmic series distribution because of the way research

and teaching is organized at a research university and that non-random occurrences

of such pairs can be identified and used as recommendations. For this purpose the

LSD for the whole market (over all consumers) from market baskets is estimated

from anonymous web-sessions. The mean purchase frequency w is computed and

Equation 7.3 is solved for q, the parameter of the LSD. By comparing the observed

repeat-buying frequencies with the theoretically expected frequencies outliers are

identified as recommendations.

The LSD-model limits the kind of market analysis that can be conducted. For

example, analysis of the behavior of different types of library users (e. g. light and

heavy users) is possible only with a full NBD-model.

A recommendation for a document x simply is an outlier of the LSD-model—that

is a document y that has been used more often in the same session as could have

been expected from independent random choice acts. A recommendation reveals a

complementarity between documents.

The main purpose of the LSD-model in this setting is to separate non-random

co-occurrences of information products (outliers) from random co-occurrences (as

expected from the LSD-model). The LSD-model is used as a filter for discovering

irregularities.

7.1.4 The LSD-Algorithm for the Generation of Recommen-

dations

Table 7.1 presents the algorithm that is derived from the theory of the previous

sections. As necessary in repeat-buying theory step 1 of the algorithm counts re-

peated usage of two information products in a single session only once. A rationale

for this correction is that repeated inspection of detailed meta data for documents

in a single session reflects the user’s decision process leading to a purchase decision.

Step 2 of the algorithm discards all frequency distributions with a small number of

observations. The reason is that no valid LSD-model can be estimated. Of course,

the implication is that for these cases no recommendations are given; Section 7.2

presents solutions how to compute recommendations for these cases. For each re-

maining frequency distribution, step 3 computes the mean purchase frequency, the

LSD parameter, and the outliers as recommendations.
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Table 7.1: The LSD-algorithm for the generation of recommendations

1. Compute for all documents x in the market baskets the frequency distributions

f(xobs) for repeat-purchases of the co-occurrences of x with other documents

in a session, that is of the pair (x, i) with i ∈ X \ x. Several co-occurrences

of a pair (x, i) in a single session are counted only once.

(Frequency distribution)

2. Discard all frequency distributions with less than l observations.

(Current setting: l = 10)

3. For each frequency distribution:

(a) Compute the robust mean purchase frequency w by trimming the sample

by removing x percent of the high repeat-buy pairs.

(Current setting: x = 20%)

(b) Estimate the parameter q for the LSD-model from

w = −q
(1−q)(ln(1−q))

(Currently by a bisection method)

(c) Apply a χ2-goodness-of-fit test with a suitable α between the observed

and the expected LSD distribution f(xexp) with a suitable partitioning.

(Current settings: 0.01 and 0.05)

(d) Determine the outliers in the tail. Compute for each r of repeat-buys the

ratio sr of the observed frequency to the expected frequency according to

the LSD-model: sr = fr(xexp)

fr(xobs)
.

If sr < t with t a suitable threshold, then all documents in class r are

recommended.

(Current setting: t = 0.5)
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Figure 7.2: Exemplary logarithmic plot of the observed and expected (LSD) inspec-

tion frequency distribution

High repeat-buy outliers may have a considerable impact on the mean purchase

frequency and thus on the parameter of the distribution. The statistical standard

procedure for outliers is trimming the sample (step 3a). By computing a robust

mean the chances of finding a significant LSD-model are considerably improved.

Detailed statistics for this are provided in the case study on the behavior-based

recommendation services presented in Chapter 8 (see Tables 7.2 and 8.4).

In step 3d outliers are identified as belonging to classes with r repeat-buys if the

ratio of the expected random co-occurrences according to the LSD-model to the ob-

served co-occurrences is below a certain threshold. The threshold can be interpreted

as the maximum acceptable percentage of random co-occurrences recommended.

Several other options for determining the outliers in the tail of the distribution are

possible:

1. Outliers at r are above
∑∞

r fr(xexp).

2. Set β as the acceptable type two error for recommendations that is recom-

mending a document although it is only a random co-occurrence. Accept

all documents in classes r . . .∞ with
∑∞

r fr(xexp) < β. From the bound-

ary class r + 1 draw j documents at random (anyway you like) as long as

β −
∑∞

r fr(xexp) > j · fr+1(xexp)

n·fr+1(xobs)
.

These options lead to variants of the method which exhibit different first and second

type errors.

As Figure 7.2 here exemplarily shows, the framework described above holds for

STI providers, in this case for the book “Infrared and Raman Spectroscopy” by Bern-

hard Schrader (1995) in the UBKA. The observed frequency distribution f(x obs)
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corresponds to the ranking by decreasing number of repeated co-purchases in Fig-

ure 8.4. Recommendations are the outliers, i. e. products that have been bought

together more often than expected by the stochastic model. More specifically, an

LSD-model with a robust mean of 1.410 and a robust parameter q = 0.479 passes

a χ2-goodness-of-fit test at α = 0.01 (χ2 = 8.016 which is below 13.816, the critical

value at α = 0.01). Table 7.2 shows the corresponding statistical output of the

LSD-algorithm.

7.2 POSICI and POMICI: Recommendations

from Small Samples

In Section 3.2 the cold start problem was determined as one of the key problems

with the introduction of new recommendation services. Although, as stated there,

it is of less concern with behavior-based services and even more so in the case of

value-added services connected to already existing websites with regular user traf-

fic, it is commonly of main concern to the system operator that the new service

becomes visible and helpful to the users as fast as possible. In this section two algo-

rithms, first published by Neumann and Geyer-Schulz in [NGS07], are described that

were developed to generate recommendations out of small samples of co-purchases

of products. They speed up the diffusion of recommendations especially at an early

stage of a new introduced service or for products recently added to the catalog.

The application area lies within sample sizes of co-purchase frequencies that do not

allow a more sophisticated statistical analysis like the LSD-approach presented in

Section 7.1. The cold start problem is lessened by faster generating quality recom-

mendations out of the first small samples of user behavior. Nevertheless, the critical

point remains to reliably separate meaningful co-purchases from random ones.

The development was motivated by a case study in one possible application

area: German library meta catalogs. An analysis of market basket sizes at different

organizational levels of German research library networks revealed that at the highest

network level market basket size is considerably smaller than at the university level,

thus leading to less co-purchases (conf. to Section 6.6). In analogy to the LSD-

approach of Section 7.1 the independent stochastic processes are modelled. The co-

purchase frequencies with a high occurrence probability are considered as noise and

the unlikely ones are the basis for the generation of recommendations. The statistical

tests are based on modelling the choice-acts of a decision maker completely without

preferences as described in Section 6.1.

7.2.1 A Motivational Example: Statistical Properties of

Market Baskets in Library Meta Catalogs

Table 7.3 shows some characteristics of the usage data of the UBKA and Karls-

ruhe’s Virtual Catalog (KVK)1, a meta library catalog searching 52 international

1http://kvk.ubka.uni-karlsruhe.de/

http://kvk.ubka.uni-karlsruhe.de/
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Table 7.2: Example of the statistical output of the LSD-algorithm

# Web-site: 4122050§UBKA_OPAC
# Total number of observations: 124

# Max repeat-buys: 17

# Sample mean=3.5241935483871 and var=22.5236082206035

# Case: E var>mean

# Estimate for q=0.883334725189209

# Robust estimation: Trimmed begin 0: 0 / end 0.2: 24 (24 observations)

# Robust estimation: Number of observations: 100

# Robust mean=1.41 and var=0.4019

# Robust estimate for q=0.478939454650879

# Plot: Observed repeat-buys and robust estimated LSD

# (q=0.478939454650879)

# repeat-buys nf(x_obs) nf(x_exp) f(x_exp)/f(x_obs) show

1 67 73.469 1.097 0

2 25 17.594 0.704 0

3 8 5.618 0.702 0

4 4 2.018 0.504 0

5 0 0.773 - 0

6 1 0.309 0.309 1

7 0 0.127 - 0

8 0 0.053 - 0

9 0 0.023 - 0

10 0 0.010 - 0

11 0 0.004 - 0

12 0 0.002 - 0

13 6 0.001 0.000 1

14 8 0.000 0.000 1

15 0 0.000 - 0

16 1 0.000 0.000 1

17 4 0.000 0.000 1

# Recommendations found with threshold=0.5: 20

# Chi-square test for q=0.883334725189209 and 124 observations

# Class nf(x_obs) nf(x_exp) chi-square

# 1 67 50.983 5.032

# 2 25 22.517 0.274

# 3 8 13.260 2.087

# 4 4 8.785 2.606

# 5 0 6.208 6.208

# 6 20 22.247 0.227

# ------------

# 16.434
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Table 7.2 (continued)

# Chi-square test for q=0.478939454650879 and 100 observations

# Class nf(x_obs) nf(x_exp) chi-square

# 1 67 73.469 0.570

# 2 25 17.594 3.117

# 3 8 5.618 1.010

# 4 0 3.319 3.319

# ------------

# 8.016

#

# Robust estimate performes better with chi-square value: 8.016

# Chi-square test threshold with alpha=0.05 and 2 d.f.:5.991

# Chi-square test threshold with alpha=0.01 and 2 d.f.:13.816

# Sample comes from LSD with alpha=0.01

# Col: IV

Table 7.3: Statistical properties of the data (status of 2007-02-19)

UBKA KVK

Number of total documents in catalog ∼ 1,000,000 > 10,000,000

Number of total co-inspected documents 527,363 255,248

Average market basket size 4.9 2.9

Av. aggregated co-inspections per document 117.4 5.4

catalogs. Because of the smaller market basket size, the shorter observation period,

and the much higher (unknown) number of total documents in the meta catalog

KVK, the average aggregated co-inspections per document in the KVK is very small.

The distribution for k ≤ 15 is shown in Figure 7.3. Due to sample size constraints

methods using statistical tests on distributions (like LSD) are only reliably applica-

ble with many co-inspections. Special small sample statistics are needed to compute

recommendations out of samples of few co-inspections. POSICI and POMICI are

based on the assumption that all documents in the catalog have the same prob-

ability of being co-inspected. In real systems generally this assumption does not

hold, but especially when starting to observe new catalogs no information about

the underlying distribution of the inspection processes of documents is known. Fi-

nally, recommendations are co-inspections that occur significantly more often then

predicted in the case of the assumption being true.

7.2.2 Mathematical Setup

For the mathematical formulation we use the following notation. The number of to-

tal documents n+1 in the catalog is finite but unknown (this leaves n documents as

possible co-inspections for each document D in the catalog). Recommendations are

computed separately for each document D. Each user session (market basket) con-
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Figure 7.3: Distribution of co-inspections in the KVK for k ≤ 15 (status of 2007-

02-19)

tains all documents that the user inspected within that session, multiple inspections

of the same document are counted as one. All user sessions are aggregated. The

aggregated set C(D) contains all documents, that at least one user has inspected

together with D. The number of co-inspections with D of all elements of C(D) is

known, this histogram is called H(D), it is the outcome of a multinomial experiment.

When removing all documents with no inspections from H(D) and then re-writing

the number of co-inspections as a sum, it can be interpreted as an integer partition of

k with the number of co-inspections of each co-inspected document as the addends.

k is the number of non-aggregated co-inspections (multiple inspections in different

sessions are counted separately). For the theory of partitions see Andrews [And76].

E. g. 4 + 1 + 1 is an integer partition of k = 6 and shows that the corresponding

document D has been co-inspected in at least 4 (the highest number) different

sessions with 3 (the number of addends) other documents, with the first document

4 times and with the second and third one time each.

7.2.3 POSICI: Probability Of Single Item Co-Inspections

The first method presented here is based on the following question:

What is the probability pj (n) that at least one other document has been

co-inspected exactly j times with document D?
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Figure 7.4: Inspection probabilities pj (n) for k = 6 and n = 6, . . . , 50 in POSICI
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Figure 7.5: Inspection probabilities pj (n) for k = 8 and n = 8 . . . , 50 in POSICI
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To answer the question the setup of the multinomial distribution is used directly.

Let (N1, . . . , Nn) be the vector of the number of times document i (1 ≤ i ≤ n) was

co-inspected with D. Then (N1, . . . , Nn) ∼M (k; q1, . . . , qn) , qi = 1
n
, 1 ≤ i ≤ n.

Now define Ai = {Ni = j}. By applying the inclusion-exclusion principle we can

now compute:

pj (n) = P

(
n⋃

i=1

Ai

)
=

n∑
ν=1

(−1)ν−1
∑

1≤i1<...<iν≤n

P (Ai1 ∩ . . . ∩ Aiν ) (7.8)

Since many of the addends on the right hand side are known to be equal to zero, this

equation can be implemented quite efficiently. Figure 7.4 shows pj (n) for k = 6 and

growing n and Figure 7.5 displays the distribution of the probabilities for k = 8. In

general limn→∞ p1 (n) = 1 and limn→∞ pj (n) = 0 for j = 2, 3, . . . holds. Further on,

pj (n) is decreasing in j for all n. Based on these probabilities we define the POSICI

Recommendation Generating Algorithm:

1. Let D be the document for which recommendations are calculated.

2. Let n = k and t be a fixed chosen acceptance threshold (0 < t < 1).

3. Determine j0 = minj=2,...,k {j | pj (n) < t p1 (n)}.

4. Recommend all documents that have been co-inspected with D at least j0

times.

Thus, e. g. in the setting of Figure 7.5 and t = 0.2 all documents that have been

co-inspected at least 4 times are being recommended. POSICI is built on the theory,

that co-inspections other than j times add more noise than information about the

incentive to co-inspect the current document j times.

7.2.4 POMICI: Probability Of Multiple Items Co-Inspec-

tions

The second method is derived from the question:

What is the probability ppart (n) that the partition corresponding to the

complete histogram H(D) of all co-inspections with D occurs?

To answer this question the problem is re-formulated in an algebraic setting. Let X

be the set of words of length k from an alphabet of n letters, and li the number of

letters (i. e. documents), that occur exactly i times in x ∈ X (i. e. in H(D)). Two

groups are acting on the set X:

• The symmetric group Sn of all permutations of the n letters

• The symmetric group Sk of all permutations of the k positions of a word

The actions of the groups Sn and Sk commute thus inducing the action of the group

G := Sn × Sk on X.
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Definition 7.1. Let x ∈ X. The subset Gx := {gx | g ∈ G} of X is called the orbit

of x under the action of G.

To answer the previous stated question, the cardinality of the orbits of the action

of G on X has to be determined to compute

ppart (n) =
|Gx|
|X|

(7.9)

Since this can not be done in a straight-forward way, some more theory is necessary.

Definition 7.2. Let x ∈ X. The subgroup Gx := {g ∈ G | gx = x} of G is called

the stabilizer of x under the action of G.

The following theorem now helps with the computation of the cardinalities.

Theorem 7.1. Orbit-stabilizer theorem. With the above definitions, |G| =

|Gx| |Gx| holds.

The cardinality of X and the order of G are easily determined:

|X| = nk, |G| = |Sn| |Sk| = n! k! (7.10)

By means of the orbit-stabilizer theorem, Equation 7.9 can now be written in

the form:

ppart (n) =
|Gx|
|X|

=
|G|

|X| |Gx|
(7.11)

|Gx| is still unknown. To compute it, the orbit-stabilizer theorem is applied a

second time. Now, the orbit of the identity element id of the action of the group

Gx on the set Sn is considered. The resulting equality is frequently stated in the

literature as a corollary to Lagrange’s group theorem:

|Gx| = |Gxid| |Gxid| (7.12)

Remember li to be the number of the kinds of letters, that appear exactly i times

within the word x. Then, the orbit Gxid is isomorphic to
�k

i=0 Sli , since only letters

in a word can be permuted, that appear in the same amount and every permutation

of this kind can be realized by one element of Gx. Thus, the following holds:

|Gxid| = |
k�

i=0

Sli| =

(
n−

k∑
i=1

li

)
!

k∏
j=1

lj! (7.13)

The stabilizer group Gxid is composed of those pairs (id, g) ∈ G, of which the

permutation g of the k positions leaves the word x invariant. (j!)lj is the number

of the permutations of those letters, that can be found j times within the word x.

Thus, the order of the stabilizer can be computed to be:

|Gxid| =
k∏

j=1

(j!)lj (7.14)
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Figure 7.6: Inspection probabilities ppart (n) for k = 6 and n = 6, . . . , 50 in POMICI

By putting all previous results together, the question at the beginning of this

section can be answered. The probability ppart (n), that the partition correspond-

ing to the complete histogram H(D) of all co-inspections with D occurs, can be

calculated to be:

ppart (n) =
|Gx|
|X|

=
|G|

|X| |Gxid| |Gxid|
=

n! k!

nk
(
n−

∑k
i=1 li

)
!
∏k

j=1 lj! (j!)lj
(7.15)

In general limn→∞ p1+···+1 (n) = 1 and = 0 for all other partitions holds. As can

be seen exemplary in Figures 7.6 and 7.7, depending on k only above a certain n

the order by probability of the partitions is stable. The smallest of these n is used

to construct the POMICI Recommendation Generating Algorithm:

1. Let D be the document for which recommendations are calculated.

2. Let t be a fixed chosen acceptance threshold (0 < t < 1).

3. Let nD be the smallest integer, after which the order by probability of the

partitions for n ≥ nD is stable.

4. Let s be the largest integer that occurs in the partition with the highest prob-

ability below t p1+···+1 (nD).

5. For all partitions part with ppart (nD) < t p1+···+1 (nD) do



7.2. POSICI and POMICI: Recommendations from Small Samples 79

10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

P
ro

ba
bi

lit
y

1+1+1+1+1+1+1+1
2+1+1+1+1+1+1
2+2+1+1+1+1
2+2+2+1+1
2+2+2+2
3+1+1+1+1+1
3+2+1+1+1
3+2+2+1
3+3+1+1
3+3+2
4+1+1+1+1

4+2+1+1
4+2+2
4+3+1
4+4
5+1+1+1
5+2+1
5+3
6+1+1
6+2
7+1
8

Figure 7.7: Inspection probabilities ppart (n) for k = 8 and n = 8, . . . , 50 in POMICI

(a) Recommend all documents from H(D) that have been co-inspected at

least s times.

Thus, e. g. in the setting of Figure 7.6 and t = 0.05 all documents that have been

observed within the partitions 3+2+1, 3+3, 4+1+1, 4+2, 5+1 or 6 and have been co-

inspected at least 3 times are being recommended (nD = 21, p1+···+1 (21) = 0.4555).

Note, that this choice of nD indicates a risk-averse decision maker. POMICI is built

on the theory, that the distribution of co-inspections other than j times reveals

more information than noise about the incentive to co-inspect the current document

j times.

7.2.5 POSICI vs. POMICI—Differences, Similarities, and

Improvements

Since both methods are based on a homogeneous group of decision makers modeled

by the underlying uniform multivariate distribution, a direct connection between

them exists. The sum of the probabilities of all partitions from POMICI with at

least one product that was co-inspected exactly j times is equal to the probability

in POSICI, that there exists at least one product, that was co-inspected exactly j

times. In other words, we get from POMICI to POSICI by aggregating all partitions

that only differ in the noise area defined in the POSICI underlying preference theory.
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documents with k ≤ 15 on the KVK data for various t

Thus, Equation 7.15 can also be used instead of the inclusion-exclusion principle to

calculate the probability in Equation 7.8.

By setting the threshold t for the POSICI and POMICI algorithms respectively,

the number of generated recommendations can be adjusted for both methods. As

can be seen in Figure 7.8, when the total number of recommendations is equal,

POMICI generally generates longer recommendation lists for fewer documents than

POSICI. The POSICI method is stable towards pathological distributions in the

input data considering the various factors that influence the amount of generated

recommendations (conf. Section 6.6). A larger threshold t will always generate

at least as many recommendations as a smaller t-value. This is not the case with

POMICI. The two-step-approach of the POMICI algorithm—first choosing parti-

tions and then choosing products out of these partitions—makes POMICI more

prone to pathological data. In extreme cases a smaller t-value might produce more

recommendations than a larger one. Nothing is said about the quality of the rec-

ommendations in this case; a careful consideration of the input data and choice of t

should be done. As can be seen on the left hand side of Figure 7.8, in the considered

library area, POMICI behaves in a stable and expected way.

POSICI and POMICI are based on different assumptions in the underlying pref-

erence theory. To determine which method leads to qualitatively better recommen-

dations in a specific setting the following question has to be answered. When does

the partition tail of smaller integers resembles noise and when incentive behavior?
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One way to answer the question lies in the human evaluation of larger data sets.

This is planned for the library application. Groups of different levels of expertise will

evaluate datasets of co-inspected documents and determine manually recommenda-

tions from these datasets. Then the recommendations of different recommendation

generating algorithms will be compared with the manually selected objects.

Two ways to enhance the algorithms appear to be promising. First, if the overall

inspection probability of documents is known (through large behavioral data sets),

both methods can be extended to be based on an underlying non-uniform multino-

mial distribution. This can not be applied in the case of a cold start but can be

useful in the scenario of very small market baskets covering a large part of the total

documents. Second, portraying the additions of further co-purchases (k → k +1) as

a Markov-process enables one to calculate the probability of a product with currently

low co-inspections to develop into high co-inspections, thus a reliable recommenda-

tion.

7.3 Related Methods

The generation of recommendation methods presented in the previous sections are

especially suited to the large samples at STI Providers; recommendation services

built around these algorithms will be presented in Chapter 8. By means of examples

from these services, Section 8.5.2 will present recommendations of higher order based

on the LSD-Algorithm and Section 8.5.3 will discuss approaches in the case of non-

stationarity. The remainder of this chapter shortly discusses methods, that have

been considered for the same kind of data. A general overview on generation of

recommendation methods can be found in [AT05]. However, applying traditional

recommender approaches is difficult in an STI context. The main two reasons for

this are the large number of documents in scientific libraries (10 to 100 million) and

the anonymity of users. The number of documents exceeds the number of articles

of retailers considerably, even Amazon.com is one order of magnitude smaller.

7.3.1 Collaborative Filtering

One of the first recommender systems was GroupLens [KMM+97] for recommend-

ing Usenet news based on user ratings of single news articles and user correlation

coefficients. Collaborative filtering methods suffer from the anonymity of user data

and inherently high update complexity of correlation coefficients. In addition, the

expressiveness of linear product moment correlation coefficients is severely limited.

The calculation effort for updating these coefficients is generally O(n2) in the number

of documents in a library which is computationally expensive. A detailed analysis

on the evaluation of collaborative filtering recommender systems can be found in

[HKTR04].
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7.3.2 Regression Models

The main advantage of regression models is that different data sources can be in-

tegrated in their model equations; they allow for recommending items based on

user attributes as well as product attributes and expert ratings [AEK00, MN02].

However, in a library context the only legal data source is anonymous usage data.

This means that in a library context for each document for which recommendations

are desired a model must be selected out of 2n−1 possible models. In practice the

model selection problem is considerably simplified by pruning all variables with a

correlation coefficient of zero. However, in the context of a library this still implies

the automatic model selection of n models and their estimation. Nevertheless, auto-

matic model selection still is a challenging and difficult task. The currently fastest

regression methods still require the inversion of the model’s covariance matrix. Both

model selection and model estimation require a high computational overhead.

7.3.3 Association Rules

A very popular method to find correlated product groups from market basket data

are association rules [AIS93, AS94] and their variants [BMS97, AL99]. A general

introduction to association rules can be found in [Ada01]. They have the advantage

that no model assumptions need to be made and that they can thus be applied

to data of any kind of structure. But they are not very well suited for very large

scale data, because of the necessity of making a priori assumptions on thresholds as

e. g. support and confidence. In addition both of these parameters depend on total

sample size and thus all parameters must be recomputed with every update. For a

library context the fact that thresholds are not robust over longer periods of time

and must be continuously readjusted to ensure high recommendation quality is a

severe disadvantage. The requirement of continuous data analysis for the successful

operation of a recommender system is unacceptable for most STI providers. The

overall performance of the two methods except for grave parameter misspecifications

of the association rule method is still very similar. A detailed comparison with the

LSD-method from Section 7.1 on the base of usage data from a business-to-business

electronics merchant can be found in [GSHT03]; [GSH02] presents a comparison for

a business-to-consumer information broker.

7.3.4 Clustering

The use of cluster algorithms for recommender systems has been considered both for

preprocessing to reduce the size of large data sets and for the actual generation of

recommendations. For a general overview of cluster algorithms, the reader is referred

to [Bez81, Boc74, DHS01]. Borchers et al. [BLKR98] state, that clustering of items

leads to better recommendation quality and improves the scalability of recommender

systems. Sarwar et al. [SKKR02], on the other hand, advocate a clustering of the

users with the scalable neighborhood algorithm to reach a better scalability. [UF98]

proposes to partition both the user and the item set. [FGSN06] presents a method to
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generate recommendations by means of an algorithm first described in [SSP03]. The

method is based on sampling the matrix of co-inspection frequencies using random

walks such that during the walks, the co-inspection frequencies of subsequent objects

increase monotonically. The data accumulated during these walks is then used to

identify clusters, based on the idea that document pairs occurring at a later part of

a walk are more important than those at an earlier part. In addition, longer walks

tend to carry more information than short ones do. The method has been evaluated

on data from the University Library of Karlsruhe (see [FGSN06]); due to scalability

problems, no recommendation service relying on this method has been opened to

the general public so far.
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Chapter 8

Case Study: Behavior-Based

Recommender Services for

Scientific Libraries

A first behavior-based item-centered recommendation service using browser session

input data was introduced in the OPAC of the University Library of Karlsruhe

(UBKA) in 2002. In the following years, this system has continuously been improved,

evaluated, and additionally set up as external service for different national and inter-

national library catalogs. The last major update was the switch to the current web

service version (facilitating WSDL, XML and SOAP) in 2006. To answer the ques-

tion, which co-inspections occur non-random, the algorithms of the previous chapter

are applied. Descriptions and evaluations of earlier designs can be found in any

of the following contributions: [GSNT03b, GSHNT03c, GSHNT03b, GSHNT03a,

GSNT03a]. A more up-to-date service analysis from the customer side including a

comparison with the explicit recommendation services presented in Chapter 5 can be

found in [Neu07a]. This type of recommender system is best suited to users trying to

find standard literature or further readings of a field corresponding to the document

they are currently inspecting. Although it does not support the direct interaction

(communication) between customers, everybody using the system profits from the

actions of other library users.

This chapter describes the current state of the general service, the system ar-

chitecture and implementation, and different forms of evaluation. Furthermore, it

shortly reports on commercializing the service under the BibTip brand as well as on

extensions to the existing service.

8.1 Service Description

The service description of the behavior-based recommender system for libraries is di-

vided into two parts. First, the choice and properties of the input data are discussed.

Second, screen-shots are presented to describe the user interface of this service.
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Figure 8.1: Hit list of an OPAC search at the University Library of Karlsruhe

8.1.1 Input Data

In Section 6.3 various possibilities of collecting usage data were discussed. Since

bias is the main concern for the data selection, the implicit recommender system

portrayed in this chapter is based on browser sessions of users visiting the OPAC.

Users generally start by entering search words to look for corresponding documents.

This results in getting a list of documents with short titles, author, and year of pub-

lication. Figure 8.1 shows the hit list for the search words “economics organization

management”. The user now has the choice of either going back and altering his

search or choosing one document from the hit list by clicking on it. As described in

Chapter 6, by choosing one document out of a given set, the user reveals his prefer-

ence of this document. Clicking on the list opens the detailed document inspection

page of the respective item, an example of this kind of page was already shown in

Figure 5.1. Whenever the user chooses within the same session a document from

a hit list—from the same list by going back or from a totally different list after a

new search—this document is added to the session basket. These co-inspections—

documents that have been been inspected by a user within the same session—are

the input data of the recommender system.

On a detailed inspection page, the user also has the choice to flip through the

hit list by backwards- and forwards-buttons. In these cases, the inspections are

not counted for the session basket, because the user revealed no preference: it is
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Figure 8.2: Co-inspection graph of the Karlsruhe Library Portal on 2005-12-20

not shown, which document will be presented next. Most users prefer not to flip

through lists: from 2007-01-01 to 2007-12-21 in the UBKA 1,693,429 times a click

on a list was done, the flip mechanism was used only 50,313 times.

By putting all anonymous session baskets together (conf. Chapter 7 for details),

an undirected graph of co-inspections is created. The nodes represent inspected

items, the edges determine which items have been co-inspected, the weights de-

scribe the number of sessions that contained both documents. Figure 8.2 shows the

complete co-inspection graph without weights a few days after the start of the us-

age observation in the Karlsruhe Library Portal1, a meta search interface for books

and serials in libraries of the region of Karlsruhe. Clearly, many short session of

only two or three items can be seen near the border of the graphic, large sessions

are presented as complete subgraphs in circular form. In the upper right corner a

1http://www.ubka.uni-karlsruhe.de/kvk/ka opac/ka opac engl.html

http://www.ubka.uni-karlsruhe.de/kvk/ka_opac/ka_opac_engl.html
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Figure 8.3: Number of daily observed co-inspections in the UBKA from 2001-01-01

to 2007-09-02

connected subgraph can be seen that consists of at least five different cliques, most

likely stemming from five different sessions.

The input data of the UBKA service comes from two periods. At first, the user

sessions were parsed for preprocessing by Perl scripts from Apache log files with

link embedded session identifiers. This had one major advantage: before the UBKA

recommendation service was started in 2002, older still existing log files starting

from 2001-01-01 could be parsed. Thereby, the cold start problem was solved: the

new service started with a significant amount of recommendations on the first day.

Figure 8.3 shows the daily number of observed co-inspections in the UBKA from

2001-01-01 to 2007-09-02. Apache log files were used from 2001 to 2005 as input

data. Various changes in the OPAC software led to changes in the session mechanism

(e. g. the time out) in this period. Although web robot detection was implemented

and the Perl parser was programmed to deal with different session times in public

access terminals and to detect session re-starts from bookmarks, the number of

co-inspections in Figure 8.3 can still be seen to vary from time to time.

In general, undetected web robots are of no big concern in this application.

Web robots do not pass the search input page of the OPAC. The only way for

web robots to reach detailed inspection pages is by links to these pages on websites

outside the OPAC. Web robots do not browse documents in a meaningful way. Thus,

behavioral data of undetected web robots in the OPAC generally qualifies as noise

and is successfully filtered out by the algorithms presented in Chapter 7.
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Figure 8.4: Recommendation list page showing recommendations of “Three-

Dimensional Computer Vision” by Olivier Faugeras (1993)

After the web service version of the recommender system was introduced in 2006,

the input data is homogeneous. Apache log files are not used any more, but the

OPAC itself is instructed to prevent robots and write the observed session baskets

directly into the database system of the recommendation service. Except for the

UBKA, the input data of all other supported STI providers stems completely from

the web service version.

8.1.2 User Interface

The behavior-based recommendation service does not have an exclusive starting page

in any of the supported STI providers, it is always reached via the detailed document

inspection page. The layout of the inspection page depends on the corporate design

of the respective library. In most cases, a textual or graphical link to a separate

page containing the list of recommendations is presented on the inspection page if

and only if recommendations exist. Few library operators prefer to directly present

the recommendations on the detailed inspection page. In the UBKA case, the link

to the behavior-based recommendations is presented in the topmost line of the user

front end of all recommendation services as presented in Figure 5.2. Clicking on

“Empfehlungen [BibTip]” opens the page with the list of recommendations.

Figure 8.4 shows the recommendation list page of “Three-Dimensional Computer

Vision” by Olivier Faugeras (1993). Unfortunately, the UBKA is only available in

German. On the left hand side the main document by Faugeras is presented, the

list of recommendations is placed in the center (conf. to Figure 8.5 for an enlarged

cutout), and on the right hand side user surveys can be seen that will be discussed
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Figure 8.5: Enlarged cutout of the recommendation list page (Figure 8.4) showing

the list of recommendations of “Three-Dimensional Computer Vision” by Olivier

Faugeras (1993)

in Section 8.3.3. The number of co-inspections of the recommended objects with

the main document is given in brackets after each title. The recommender list

page can be adapted to the corporate design of the respective library, thus it looks

slightly different at all supported STI providers. Clicking on an element of the list

of recommendations opens the detailed document inspection page of the respective

object.

8.2 Implementation

The implementation of the behavior-based recommender system is portrayed in three

parts. First, an overview of the system architecture and software is given. Next,

advantages that result from the distributed design are discussed. And last, the

control interfaces for the management of the system by the operator are presented.

8.2.1 System Architecture

Figure 8.6 shows the general concept of the architecture of the behavior-based rec-

ommendation service. The recommender system resides on two logical servers. The

connection server speaks to the customers: it collects the behavioral data and creates

the web pages with the recommendation lists. The recommendation server speaks

to the connection server only: it requests the observed co-inspections, computes the

recommendations, and sends these back to the connection server.

All internal components of the recommender system employ the Simple Object

Access Protocol (SOAP) [BEK+00] to communicate with each other. SOAP was

chosen for its independence from programming language, platform and transport
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Table 8.1: SOAP message with recommendation list in XML format (abridged)

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<getRecommendationsResponse xmlns="urn:KVKRec">

<requestedDocument xmlns:types="urn:KVKRec:DataTypes"

xsi:type="types:documentIdentifier">

<ID xsi:type="xsd:string">4157123</ID>

<catalog xsi:type="xsd:string">UBKA</catalog>

</requestedDocument>

<recommendations xmlns:types="urn:KVKRec:DataTypes"

xsi:type="types:arrayOfRecommendations">

<item xmlns:types="urn:KVKRec:DataTypes"

xsi:type="types:recommendation">

<document xmlns:types="urn:KVKRec:DataTypes"

xsi:type="types:documentIdentifier">

<ID xsi:type="xsd:string">10172544</ID>

<catalog xsi:type="xsd:string">UBKA</catalog>

</document>

<buys xsi:type="xsd:integer">8</buys>

</item>

...

<item xmlns:types="urn:KVKRec:DataTypes"

xsi:type="types:recommendation">

<document xmlns:types="urn:KVKRec:DataTypes"

xsi:type="types:documentIdentifier">

<ID xsi:type="xsd:string">9061290</ID>

<catalog xsi:type="xsd:string">UBKA</catalog>

</document>

<buys xsi:type="xsd:integer">34</buys>

</item>

</recommendations>

</getRecommendationsResponse>

</soap:Body>

</soap:Envelope>
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Figure 8.6: General concept of the architecture of the behavior-based recommenda-

tion services

mechanism. This and the multitude of freely available SOAP implementations al-

low to facilitate different programming languages for different tasks and problems.

Having this freedom of choice concerning the programming language makes it pos-

sible to offer recommender services to partners without enforcing a certain technical

infrastructure. The actual data is sent in XML format via SOAP. As an exam-

ple, Table 8.1 shows the SOAP message including the recommendation list in XML

format which corresponds to the recommendation list page depicted in Figure 8.4.

Furthermore, the Web Services Description Language (WSDL) [CCMW01] is

used to define data types and interfaces. WSDL descriptions provide a solid spec-

ification, which allows to replace single components without making global mod-

ifications. This has proven very useful in the realm of data collection, where it

was possible to easily add different sources. As an example, Table 8.2 shows the

WSDL file residing on the recommmendation server which defines the format of the

recommendation list message depicted in Table 8.1.

The behavioral data is collected by JavaScript code embedded in the OPAC de-

tailed inspection page. The script reports every view of a document with timestamp

and session identifier to an observation daemon written in PHP. In the next step

preprocessing is applied, the data is grouped by sessions, and sets of co-inspections

are generated and made accessible via a SOAP service also implemented in PHP.

The provided baskets are then retrieved by the recommendation server via SOAP

and written to an intermediate database table. After the retrieval, the recommender

system is triggered to update its recommendations. The generated recommendations

can again be queried using a SOAP interface. The recommendation server is im-

plemented in Perl using SOAP::Lite for communication, the connection server is

programmed in PHP 5 with the PHP Data Objects (PDO) extension. Both are

running on Linux, use PostgreSQL as the database system and the Apache HTTP

Server as the web server. Thus, the complete recommender system is built on open

source software.

Currently all supported catalogs are updated daily in the night at times of low

user traffic. The current implementation features incremental updates with a com-
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plexity of O(n2) in time and space with n the number of items co-inspected in

the update period. Only for inspected documents the recommendations are re-

computed. Since the upper bound is reduced by a reduction of the update period,

this improves the scalability of the algorithm.

Figure 8.7 shows the message trace triggered by the browser of a user who re-

quests a detailed view of a document (see Figure 5.1) and then visits the recommen-

dation list page for this item (see Figure 8.4). On the recommendation server, the

design of the database features special purpose tables for the seen requests. E. g. a

special table exists for fast look-ups about the existence of recommendations for a

requested document.

The data of each customer is handled separately in the database. The recom-

mendations for one customer are generated out of the usage data of the very same

customer only. The integration of the service on the customer side is done by adding

three segments to the HTML-code of the detailed inspection page of the OPAC of

the customer:

• Div tags to store values for ISXN, short-title, and internal id

• A script tag with the BibTip JavaScript URL as source attribute

• A div tag to determine the place for inserting the recommendation list or the

link to the recommendation list
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Table 8.2: WSDL defining the recommendation list SOAP message (abridged)

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions

name="KVKRec"

targetNamespace="urn:KVKRec"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="urn:KVKRec"

xmlns:types="urn:KVKRec:DataTypes"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:types>

<xsd:schema

targetNamespace="urn:KVKRec:DataTypes"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:types="urn:KVKRec:DataTypes"

...

<xsd:complexType name="documentIdentifier">

<xsd:annotation>

<xsd:documentation>Unique identifier comprising a catalog and

an id</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element maxOccurs="1" minOccurs="1" name="catalog"

type="xsd:string"/>

<xsd:element maxOccurs="1" minOccurs="1" name="ID"

type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="recommendation">

<xsd:annotation>

<xsd:documentation>A recommendation consisting of a document

and the number of buys</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element maxOccurs="1" minOccurs="1" name="document"

type="types:documentIdentifier"/>

<xsd:element maxOccurs="1" minOccurs="1" name="buys"

type="xsd:integer"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="arrayOfRecommendations">

<xsd:annotation>

<xsd:documentation>A list of recommendations</xsd:documentation>

</xsd:annotation>

<xsd:complexContent>

<xsd:restriction base="SOAP-ENC:Array">
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Table 8.2 (continued)

<xsd:sequence>

<xsd:element maxOccurs="unbounded" minOccurs="0"

name="item" type="types:recommendation"/>

</xsd:sequence>

<xsd:attribute ref="SOAP-ENC:arrayType"

wsdl:arrayType="types:recommendation[]"/>

</xsd:restriction>

</xsd:complexContent>

</xsd:complexType>

</xsd:schema>

</wsdl:types>

<wsdl:message name="getRecommendationsResponse">

<wsdl:part name="requestedDocument" type="types:documentIdentifier"/>

<wsdl:part name="recommendations" type="types:arrayOfRecommendations"/>

</wsdl:message>

...

<wsdl:portType name="KVKRecPortType">

<wsdl:operation name="getRecommendations">

<wsdl:input message="tns:getRecommendations"/>

<wsdl:output message="tns:getRecommendationsResponse"/>

</wsdl:operation>

...

</wsdl:portType>

<wsdl:binding name="KVKRecBinding" type="tns:KVKRecPortType">

<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="getRecommendations">

<soap:operation soapAction="urn:KVKRec#getRecommendations"/>

<wsdl:input>

<soap:body namespace="urn:KVKRec" parts="document" use="literal"/>

</wsdl:input>

<wsdl:output>

<soap:body namespace="urn:KVKRec"

parts="requestedDocument recommendations" use="literal"/>

</wsdl:output>

</wsdl:operation>

...

</wsdl:binding>

<wsdl:service name="KVKRec">

<wsdl:port binding="tns:KVKRecBinding" name="KVKRecPort">

<soap:address

location="http://ubrec.em.uni-karlsruhe.de/cgi-bin/UBRecSoapServer"/>

</wsdl:port>

</wsdl:service>

</wsdl:definitions>
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Table 8.3: Example of the HTML-source-code of a detailed document view including

behavior-based recommendations (abriged)

<body>

...web page content of detailed view...

<div id="bibtip_isxn" style="display:none">0-13-224650-3</div>

<div id="bibtip_shorttitle" style="display:none">Economics, organization

and management / Milgrom, Paul , 1992</div>

<div id="bibtip_id" style="display:none">2654629</div>

...web page content of detailed view...

<script src="http://recommender.ubka.uni-karlsruhe.de/js/bibtip_ubka.js"

type="text/javascript"></script>

...web page content of detailed view...

<div style="display:none" id="bibtip_reclist"></div>

...web page content of detailed view...

</body>
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Table 8.3 shows as an example the integration of the recommender service into the

detailed document inspection page of Milgrom and Roberts [MR92] in the OPAC of

the UBKA.

8.2.2 Advantages of the Distributed Design

The advantages of the described design lie in its scalability and its universality.

The scalability stems from the clean separation of concerns which allows to divide

work among multiple computers. By using web services built upon SOAP, content

aware multilayer switches can be used to balance the load among similarly config-

ured servers. Furthermore, the time-consuming task of calculating recommendations

has no effect on the performance or availability of the web service that delivers rec-

ommendations to the client. The main reason for this is that the estimation of the

stochastic processes and the outlier detection can be decoupled from the delivery

process of recommendations. Delivering recommendations stays as simple as an

indexed look-up on a database table, keeping the process fast and easy. Without

taking the time for network connection initiation into account, it takes less than 50

ms to deliver the recommendations for a document, even though the system within

the OPAC of the University Library of Karlsruhe contains nearly 3 million individual

recommendations, which are calculated from more than 33 million observations.

While scalability ensures that the system can be used by an arbitrary number of

users in parallel, universality of the system not only allows to add new interfaces—

the next chapter of this work presents the alternative RecoDiver interface—but, on

a different level, completely independent catalogs as well. Although this chapter

focuses on the installation for the OPAC at Karlsruhe, this is only one example of

different parallel services that are provided through the same infrastructure. Cur-

rently, eleven information providers (including international meta and compound

library catalogs) with separated data sources, calculation of recommendations, and

custom interfaces featuring their own corporate design are supported. The com-

mercial service BibTip presented in Section 8.4 will further increase the number of

independent supported catalogs.

8.2.3 System Operator Control Interface

The systems architecture enables the start of recommendation services for new

clients (STI providers) with minimal effort. Adding an independent service for a

new information provider as described in the previous section is done by insert-

ing its service name in one single configuration file on the recommendation server.

This results in automatic creation of independent database space and web services,

thereby, recommendations for this client are generated and presented only on the

basis of its own usage data.

For controlling the recommender system different tools were developed to guar-

anty a high service rate by enhancing the overall reliability. All services are automat-

ically polled every minute from servers outside of the general recommender system
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Figure 8.8: Recommendation server monitoring of network traffic and machine pa-

rameters

architecture to check for service interruptions or delays. Any response problems are

pushed by email to the system operator. These requests are not counted for usage

analysis. In addition to the available standard features of servers two web front ends

for the system operator were developed.

First, network traffic and several machine parameters are monitored constantly

and are graphically processed for inspection with the mrtg package2. It allows the

visual inspection on daily, weekly, and monthly basis of the following parameters:

CPU utilization, network traffic, used memory and swap, as well as disk space on

the connected RAIDs (Redundant Arrays of Independent Disks). Figure 8.8 shows

a small part of this interface as an example. The nightly recommendations update

and database security back-up are easily identified.

Second, a much more complex interface was implemented in Perl for the surveil-

lance of the update process, the generated recommendations, and the usage. Under

the categories of “process quality”, “service usage”, “user acceptance”, and “pro-

fessional evaluation” it allows for separate catalogs a fast inspection of the most

relevant service parameters: gathered usage data, number of recommendations and

lists, recommendation service requests on different time bases, SOAP request param-

eters, most requested recommendations, products with the most recommendations,

time and data space of the last recommendation updates, as well as graphical visu-

alization of the votes of ongoing user evaluations. As an example, Figure 8.9 shows

a small part of this interface depicting the nightly updates of the UBKA catalog.

2http://www.mrtg.org/

http://www.mrtg.org/
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Figure 8.9: System operator monitoring tool for recommendation statistics
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Table 8.4: Statistics of the computation of recommendation lists in the UBKA for

the observation period 2001-01-01 to 2007-12-26
I II III IV V
q no χ2 Sign. Sign. Not

∑
undef. (< 3 classes) α = 0.05 α = 0.01 sign.

A
Obs. 128,768 19,070 0 0 0 147,838
< 10 (0) (3,404) (0) (0) (0) (3,404)

B
x = 1 137,349 0 0 0 0 137,349

(0) (0) (0) (0) (0) (0)
C

x > σ2 1,161 126,152 654 1,419 12,993 142,379
r ≤ 3 (0) (30,950) (529) (1,140) (6,586) (39,205)

D
x > σ2 0 31,712 5,469 2,472 48,777 88,430
r > 3 (0) (31,674) (5,469) (2,472) (47,575) (87,190)

E
σ2 > x 0 20,998 20,080 6,284 47,979 95,341

(0) (20,998) (20,080) (6,284) (47,979) (95,341)∑
267,278 197,932 26,203 10,175 109,749 611,337

(0) (87,026) (26,078) (9,896) (102,140) (225,140)
(n) denotes n lists of recommendations

8.3 Evaluation

Although the described implicit recommender system is integrated as external ser-

vices in currently eleven library catalogs, this evaluation focuses mainly on the

UBKA service. The UBKA was the first supported catalog and allowed the in-

tegration of user surveys, which is not possible in most of the others catalogs due to

restrictions by the respective library managers.

The evaluation is divided into four parts. First, statistical properties of the

generated recommendations are given. Second, the usage of the service is discussed.

Third, the results of the user surveys are presented. And fourth, the diffusion of

recommendations in the UBKA is analyzed.

8.3.1 Recommendation Statistics

Table 8.4 summarizes the statistical results of the computation of recommendation

lists in the UBKA by means of the LSD-algorithm for the observation period 2001-

01-01 to 2007-12-26. On the left hand side a classification according to the co-

inspections can be seen, on the top a classification according to the χ2-goodness-

of-fit test is given (conf. Table 7.2). 611,337 of the overall quantity of 929,637

documents have been inspected by users in a session together with at least one

other document. A total of 33,452,367 user inspections were observed. From these
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Figure 8.10: Distribution of the length of recommendation lists on a logarithmic

scale in the UBKA on 2007-12-26

data 225,140 lists with recommendations have been generated with a total number

of 2,915,168 recommendations. Thus, the average length of a recommendation list

is 12.9 documents.

As Table 8.4 shows, recommendations are identified with this model even if the

LSD-model estimated can not be tested for significance (column II of Table 8.4)

or if the LSD-model is not significant (column V of Table 8.4). The reason for

this is that the LSD-model is used as an approximation of an underlying stationary

stochastic purchase process which is removed in order to present the non-random

outliers as recommendations. Especially for documents observed over a longer period

of time, combinations with documents recently bought by the library obviously

violate assumptions underlying the LSD-model, because pairs with a recently bought

document had a smaller chance to be inspected together in a session than pairs of

older documents. Nevertheless, for relatively short time periods and periods of small

library growth, the LSD-model holds to be a robust first approximation and thus a

useful filter of randomness.

Figure 8.10 shows the distribution of the length of recommendation lists on a

logarithmic scale in the UBKA on 2007-12-26. Two outliers can be seen. The longest

recommendation list consists of 975 objects. This list belongs to the general “Lecture

notes in computer science” series of Springer (Berlin, Heidelberg, New York), which

is published since 1973 and available in electronic form through a site license of the

University Library of Karlsruhe. The second longest list with 520 items belongs to
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a German introductory mathematics course book that seems to be used by most

students in the technical fields of the Universität Karlsruhe (TH). While lists of this

length will not be browsed completely by users, the average list length of 12.9 items

can easily be inspected.

Since the usage distribution of documents in nearly every library is highly skewed

(newer documents, or documents to topics that interest a large part of the overall

library users, in general are more requested), many recommendations will be gener-

ated for documents that are used often while seldom used documents have fewer or

no recommendations. Of the 929,637 documents in the catalog, 225,140 documents

have lists with recommendations, a total of 2,915,168 recommendations exist. Be-

cause of the skewness, the coverage of actual detailed document inspections is 74.9%

(much higher than the coverage of the complete catalog). So the probability that

recommendations exist for a document a user is currently interested in is 0.749.

8.3.2 Usage

The usage of the service, at least all SOAP requests to the recommendation server,

are logged in database tables for statistical analysis. From 2007-01-01 to 2007-12-

21 the users of the UBKA inspected 1,693,429 detailed document inspection pages.

This is equal to the number of SOAP requests the connection server sent to the

recommendation server asking for the existence of recommendations. In 425,803

cases, no recommendations for the inspected documents were available; in 1,267,626

cases a list of recommendations existed, thus the link to the recommendation page

was shown on the detailed document page. This is the previously mentioned service

availability rate of 0.749. 11,473 times the users clicked on the link to open the

recommendations list page. In 57 percent of the cases a user requested the list of

recommendations, a click on one of the recommendations is reported.

Regarding these numbers, the difference of the only one percent click-rate to

open the list but the 57 percent usage rate of the recommendations in the list is

striking. While a click-rate of one percent is comparable to many such systems in

e-commerce, it is not necessarily satisfying for the system operator. Two possible

explanation models exists. Under the assumption, that the behavior-based recom-

mender service is widely known among the potential users, these number can be

interpreted as follows: the majority of the users does not consider the service to be

useful, thus ignoring it; a minority considers the service as useful, thus requests from

time to time the list of recommendations and then in most cases, clicks on one of the

recommendations. Two problems with this model arise. First, the next section will

show, that the users in general are quite content with the service. Second, surveys in

lectures have shown, that the service is actually nearly completely unknown among

students. Thus, the low click-rate of one percent seems to stem from the lack of

knowledge about the existence of the service. The question remains, why the service

is unknown. Here, the argumentation from Section 5.5.2 can be repeated. The link

to the behavior-based recommendation service is “hidden” in a list of other links

on the side on the page. Only recently, the BibTip icon has been added and the
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Figure 8.11: Histogram of the distribution of user votes about the general quality

of the UBKA recommendation service from 2005-03-23 to 2007-12-21

link has been moved to the first place in the second box on the right hand side of

the detailed inspection page (conf. Figure 5.1). Before this change, the link to the

service was the word “Empfehlungen”, which appeared in the ninth line of similarly

looking bibliographic links like “titles from the same author”. A user had to scan all

lines at each inspection page to see, if the link is there showing that recommenda-

tions exist. In other libraries and library meta catalogs that have signed up for the

BibTip service, the link will be shown in a more prominent place. This might allow

in the future to better judge the importance of lucid user interfaces for this service.

8.3.3 User Surveys

For collecting the single subjective impressions and opinions of the users of the

system two surveys have been placed next to the recommendation list. One allows to

give opinions about the service in general, the other about single recommendations.

Since March 2005 in the UBKA an online survey asking “I consider the rec-

ommendation service in general: (Ich finde den Empfehlungsdienst allgemein:)“ is

placed alongside the list of recommendations as can be seen on the right hand side

of Figure 8.4. On a five item Likert scale the possible answers are (1) very bad,

(2) bad, (3) average, (4) good, and (5) very good. The results of this survey, which

are depicted in Figure 8.11, show that users are generally very content with the

existing service. 303 user votes with a mean of 4.29 and a variance of 1.41 have been

collected. The distribution of the votes and thereby the mean as well has been very

stable over the time of the observation period. Figure 8.12 shows the growth history

of the votes from 2005-03-23 to 2007-12-21.

The users are able to submit their opinions about single recommendations as

well. This can be done by means of the “+” and “–” icons next to each list entry
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Figure 8.14: Number of products with recommendation lists in the UBKA from

2001-01-01 to 2007-09-02

as seen in Figure 8.4. The explanation of this feature on the right hand side of

the website mentions, that the user can thereby help to improve the quality of

recommendations. Figure 8.13 shows the results of this survey. This data is currently

collected for survey purposes only. Due to its design, it is not an objective survey

about the quality of recommendations. Most likely, users will often only use the

service to mark recommendations that are not correct in their opinion. At the time of

writing, this data is not used in any way for the generation of the recommendations,

the system is strictly behavior-based. It remains to be determined, if mixing this

explicit information with the collected implicit behavioral data will improve the

overall recommendation quality.

8.3.4 Diffusion of Recommendations

The amount of observed co-inspections in the UBKA that is used as the input to

the recommendation generating algorithms has been discussed in Section 8.1.1 and

shown in Figure 8.3. Changes in the mechanism to determine the browser session of

a single user and restructurings in the library catalog design have lead to measurable

changes of the statistical properties of the input data. This has influences on the

diffusion of recommendations as has been discussed in Section 6.6. Figure 8.14 shows

the number of products with recommendation lists in the UBKA from 2001-01-01 to

2007-09-02; Figure 8.15 depicts the growth of the total number of recommendations
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2007-09-02

in the UBKA in the same period. In the years 2001 to 2005 various changes of

the diffusion speed can be seen. The introduction of the web service version of the

recommender system in 2006 improved the reliability and consistency of the input

data. In 2006 and 2007 the number of recommendations has grown in a steady rate.

Besides the number of recommendations, the distribution of recommendations

among the products is relevant. This can be measured be analyzing the graph of

recommendations. The general setup of such a graph has been discussed in Sec-

tion 8.1.1 by means of the example of Figure 8.2. On 2007-09-30, the co-inspection

graph of the UBKA consisted of 509,201 items, the recommendation graph had

178,568 nodes. Figure 8.16 shows the growth of the quotient of the size of the max-

imal cluster divided by the total number of nodes in the co-inspection graph of the

UBKA at the end of each month from January 2001 to September 2007. Figure 8.17

shows the same quotient for the recommendation graph. With more and more be-

havioral data on the nearly stationary set of documents of the library, the discussed

quotient of the co-inspections graph tends to 1—on 2007-09-30 it was 0.979 (the

maximal cluster consisted of 498,478 nodes). The growth rate of the quotient in the

recommendation graph has significantly slowed down at 0.858 on 2007-09-30 (the

maximal cluster consisted of 153,269 nodes). Thus, displaying the recommendations

as a graph means foremost to somehow visualize the largest cluster. Chapter 9 will

go into more detail on this problem.
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8.4 BibTip: Commercial Implicit Recommenda-

tion Services for Libraries

The behavior-based recommendation service at the University Library of Karlsruhe

and Karlsruhe’s Virtual Catalog got large attention within the library community.

Thus, it was decided to bring the service to the market. The service is offered to Eu-

ropean libraries under the BibTip brand3 with the University Library of Karlsruhe

as the main contact. The connection server resides at the library; the library staff

manages the customer support. The recommendation server at the chair of informa-

tion services and electronic markets computes the recommendations and speaks only

to the connection server via the previously described web services. The customers

pay a yearly fee for the provision of the service. The integration of the service on

the customers side is done by only adding three segments to the HTML-code of the

OPAC as described in Section 8.2.1.

8.5 Extensions, Improvements, and Further Ap-

plications

Several extensions, improvements, and further applications of the portrayed recom-

mender system are possible.

The list-based user interface seen in Figure 8.4 is easy to understand but very

limited for grasping the whole graph of recommendations. Chapter 9 discusses an

alternative graph-based user interface for the behavior-based recommendation ser-

vice.

While many software applications for product management in traditional retail

or e-commerce stores exist, collection management at libraries still mostly relies on

the knowledge of the librarians and requests from patrons. Usage data from an

implicit recommender system connected with the metadata of the documents are a

very good basis for more advanced approaches. Repeat-buying models aggregated

at the level of document categories could be used for implementing a more customer

centric collection policy.

In the remainder of this section, first an e-mail notification service to extend

the communication channels to the users of the recommender system is discussed.

Second, recommendations of higher order relying on more than one item-to-item

relationship are depicted. And finally, an outlook for taking product life cycles into

account for the generation of recommendations is given.

8.5.1 Notification Service

An e-mail notification service was added to the recommender system. It was accessi-

ble through a link on the top of the recommendation list page. Users with a library

3http://www.bibtip.org/

http://www.bibtip.org/
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account received an e-mail including a direct link to the recommendation page if

new recommendations appeared for a previously specified document. The usage of

this service didn’t meet the first expectations. Users seem to be skeptic about any

service that tries to grab their attention—like spam mails—at times when they do

not even visit the library. Due to privacy concerns about the user accounts, the

service was hosted by the University Library of Karlsruhe and accessed the recom-

mendation server via a web service considering the generation date of every single

recommendation in the history. After database problems at the library, the service

was canceled in 2007. It is planned to relaunch this notification service in the near

future by means of RSS feed techniques. Thereby, each user can decide within the

RSS reader when to poll the service. Further on, this way it is no longer connected

to existing user accounts, but opened as a personalized service to the general public.

8.5.2 Higher Order Recommendations

So far, information products related to one single item have been considered. Rec-

ommendations of higher order are items that are related to a set of other items. E. g.

by analyzing the click-stream within one user session a set of products relevant to the

user can be determined; the items placed in a virtual shopping cart at an e-commerce

site is a relevant set as well for presenting additional products during the check-out

process. The more items that are relevant for a specific user are known—this can

be considered as the profile of an anonymous user—the more specific and useful

recommendations can be given. The algorithms presented in Chapter 7 generalize

to higher order associations in a straight-forward way.

With millions of products, computing recommendations for all possible sets is

very space and time consuming. Even the number of all existing two-item-sets in

the usage data can be very large in highly connected co-inspection graphs. To limit

the number of statistical models that have to be computed, higher order recom-

mendations can also be presented out of the data of single item recommendations.

Figure 8.18 shows the complete recommendation graph of Karlsruhe’s Virtual Cat-

alog (conf. Section 7.2.1) a few days after the start of the recommendation service

for this meta library catalog. In the nodes, the ISXNs of the products are given;

the weights of the edges are the number of co-inspections; a directed edge points

to an item recommended as additional reading to the father node. Clearly, some

fully connected subgraphs of three and four items can be seen. When a user has

inspected any subset of nodes of a fully connected subgraph, all other nodes within

this subgraph can be presented as recommendations.

8.5.3 Non-Stationary Regime

The LSD-Algorithm presented in Section 7.1 is based on the assumption of station-

arity, although even Ehrenberg stressed, that this only has to hold for currently

examined products within a possible short analysis period. When STI products are

available for longer time periods, a non-stationary regime for these products can be
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Figure 8.18: Recommendation graph of Karlsruhe’s Virtual Catalog on 2006-06-07
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Figure 8.19: Monthly co-inspections of the document pair (6262739,5368367) from

February 2001 to October 2007 in the UBKA catalog with a fitted cubic spline

assumed. This gives way for taking product life cycles into account for the gener-

ation of recommendations. The general life time of products even depends on the

scientific discipline. E. g. computer science books dealing with a specific version of

a programming language or software in general have a shorter life time than history

documentaries or introductions to abstract algebra. On the basis of usage data,

product growth models (e. g. Bass’ model [Bas69] with its many successors) can be

computed and the growth model can be used for weighting the inspections. Prod-

uct B, that has been co-inspected with product A 30 times in the last three months

might be a better recommendation to A than Product C, that has been co-inspected

with product A 500 times in the last 10 years but is in its last life stage.

This implies that one could first identify documents with a short life cycle like

e. g. those on the previous fashionable programming technology and, based on this

classification, attenuate or even remove recommendations to these books on the

now obsolete technology from the recommendation list. Alternatively, the life cycle

phase of a document could be presented in the user interface. Iconic labels could

e. g. convey information like “A classic on this subject” or “Obsolete” to the user.

As a generalization, life cycles of sets of products can be considered. Figure 8.19

shows the monthly co-inspections of a pair of computer science books from Febru-

ary 2001 to October 2007 in the UBKA with a fitted cubic spline. The spline
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hints, that the relationship of these two books is coming to the end of its life cy-

cle. Currently, different recommendation generating algorithms regarding life cycles

are developed and evaluated to be applied for the behavior-based recommendation

service presented in this chapter.

Analyzing the usage of document sets defined by content classifications through

library metadata (title words, keywords, library classifications etc.) even makes it

possible to identify general reading trends and thereby trends in their respective

scientific area. Life cycle analysis might become an important tool for the previously

mentioned collection management at libraries.



Chapter 9

Case Study: Visualizing and

Exploring Information Spaces

The previous chapters showed that behavior-based systems play a major role within

the variety of recommender systems. The general interface approach of these sys-

tems is to present a list of products that are either related to the customer’s purchase

(or inspection) history or have been co-purchased by other customers together with

the product of current interest. This interface has two main advantages: it is easily

understood and easily integrated by HTML lists or tables into the shop website.

The large drawback of this presentation is that the customer is completely unaware

of the overall connections between the products. Conceptually, behavior-based rec-

ommendations are the weighted edges of a digraph with the products as nodes. In

its most common form, the weight of an edge presents the amount of co-purchases

of the two products associated with the nodes connected by the edge. Users could

significantly benefit from a more advanced user interface presenting this kind of

connection. This becomes even more clear in the case of new products with few

recommendations due to the small amount of behavioral data gathered so far. A

new product might only have three (first level) recommendations, while the recom-

mended three products might each have ten different recommendations, i. e. a total

of 30 second level recommendations of the new product assuming disjunctive sets of

recommendations. A direct presentation of the subgraph of the first and second level

recommendations (a total of 33 products in this example) is more useful than just

presenting direct neighbors of the graph (first level recommendations) and leaving

the back and forth browsing to detect the second order neighbors to the customers.

This chapter presents and evaluates a tool to dynamically browse such a network

of recommendations. First, an overview of existing visual interfaces to information

providers is given. Then a new graph-based user interface to recommendations is

presented, evaluated, and discussed.
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9.1 A Survey of Visual Interfaces to Information

Providers

Since the 1990s an extensive amount of research has been conducted on visual in-

terfaces to information providers, especially digital libraries [Shi07]. The search and

retrieval activities supported by such interfaces include the formulation and modifi-

cation of search queries, the cognition of the structure and content of search results,

browsing to gain an overview of the coverage of a digital collection, and understand-

ing how the retrieved documents are related to one another [BC02]. This section

discusses a number of existing visual interfaces. While some have focused on a single

one of these activities, most have tried to deal with more than one activity at once.

Fowler et al. [FFW91] present a document retrieval system that integrates query,

thesaurus, and documents through a common visual representation, namely fisheye

views and overview diagrams of thesaurus terms and bibliographic elements. The

user may formulate and modify queries and visualize search results using a unified

interface. Jones [Jon98] presents VQuery, a query interface which exploits Venn-like

diagrams for query formulation as an alternative to the commonly used Boolean

logic in textual queries. Envision [FHN+93, NFH+96] provides its search results as

scatterplots of various bibliographic attributes, e. g. authors and publication date.

Users may directly manipulate a number of parameters of such scatterplots in order

to find the relevant literature. The interface presented in [MHML05] also employs

scatterplots to represent sets of objects in digital libraries using metadata fields and

citation data. VisMeB [KRML03] is a metadata visualization system that aims at

improving the process of finding relevant information in an intuitive yet multifunc-

tional way. It uses scatterplots, pie and bar charts, along with so-called SuperTables.

The idea of using multiple coordinated views is also reflected in MedioVis [GGJ+05],

a visual information seeking system that consists of scatterplots, tables, and spa-

tial representations. Its main goal is to simplify the user’s process of information

retrieval and thus encouraging the use of the library. In addition to scatterplots,

the Informedia project [Chr02] has developed two visualization techniques to access

a multi-terabyte digital video library, namely timelines and maps, which allow the

user direct manipulation of the information displayed. The graphical user interfaces

developed for the BalticSeaWeb project [LN98] also allow to restrict the search to

a certain region by selecting a particular area on a map. A different direction is

pursued by [HKW94, BST98, FR98]. These systems enable the user to navigate

through the information space of documents which are interconnected by relevance,

i. e. similar keywords. Sebrechts et al. [SCL+99] present NIRVE, a tool that sup-

ports 3D and 2D visualizations of search results along with a textual representation.

The three different interfaces were evaluated against each other. Their experimental

results showed that only under the right combination of task, user, and interface did

the 3D visualization result in a similar performance than comparable 2D and tex-

tual tools. LibViewer [RB99] uses metaphor graphics to display information about

the documents in a digital library in an intuitive way, i. e. sets of documents are
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arranged on a virtual bookshelf using different colors, sizes, formats and so on. Sim-

ilarly, the NSDL Virtual Spine Viewer [Dus04] allows to explore both certain subjects

and search results by browsing scatterplots of virtual book spines. Sumner et al.

[SBAG03, BBS06] proposed a conceptual browsing interface for educational digital

libraries based on semantic-spatial maps called strand maps. Such strand maps pro-

vide a visual organization of relevant conceptual information in order to promote

the use of science content during digital library use. The fluid interface proposed in

[GPJB05] visualizes document collections in a digital library via zoomable treemaps.

In addition, the integrated document reader allows for intuitive navigation between

multiple documents in a working set.

There is also a multitude of visual interfaces to information providers other than

digital libraries. For example, the visual search engine Grokker1 employs Venn di-

agrams, nested circles and squares to visualize the combined results of several web

search engines. The FedStats Browser [KS03] is a metadata-driven visual informa-

tion browser for federal statistics that exploits folders, trees, and maps to assist the

user in finding the right table, chart, or report, without being familiar with different

terminologies. Mane et al. [MB06] present the SRS browser, a visual interface to

about 400 biomedical databases. The application interactively displays entities and

their relations, e. g. gene and protein metadata. Collages and ambient slideshows

are used in [CLF+04] to enable users to gain a comprehensive view on image collec-

tions. CombinFormation [KKD+06] represents collections as compositions of image

and text surrogates in order to promote the understanding of individual information

resources along with their relationships.

Some of the above interfaces seem to be for expert users only. For example, an

average library user may find it hard to deal with scatterplots. One of the design

goals for RecoDiver—the interface presented in the remainder of this chapter—is

that the interface should arrange its information as clearly as possible so that it is

easy to understand and to use.

To the best of knowledge, no existing interface to digital libraries has visualized

the relevance between documents based on recommendations. Users would highly

benefit from such an interface since recommendations often capture relevant docu-

ments that would not be found when looking for similar metadata like keywords.

Whenever there is a relation among the data elements to be visualized, the ele-

ments can be visualized as a graph. Graph drawing for information visualization has

become a large research field in the past decades. The graph drawing community

has presented many algorithms to layout nodes and edges of both trees and arbi-

trary graphs [HMM00]. Laying out a graph is certainly not trivial, e. g. determining

the minimum number of edge crossings is NP-complete in general [GJ83]. However,

besides graph layout, navigation and interaction in graphs is also important. An-

other concern lies in reducing the visual complexity of large graphs. Incremental

exploration techniques provide a viable solution for both issues. At any time, the

application displays only a small subgraph of the full graph. This “window” can

1http://www.grokker.com/
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then be moved by the user who navigates through the graph. Repositioning nodes

on the screen is an important aspect. This must happen in a way by which the user

can recognize nodes that have already been included in the previous window. Some

research results have been published in this area. E. g. Huang et al. [HEC98] present

a tool to explore the WWW and Deligiannidis et al. [DSK07] use incremental ex-

ploration techniques to visualize metadata modeled using the Resource Description

Framework (RDF). RecoDiver, which is introduced in the following section, pursues

a similar strategy to visualize the graph of recommendations between individual

documents.

9.2 RecoDiver: A Graph-Based User Interface to

Recommendations

RecoDiver is described in four sections. First, the general features of the interface

are depicted. Second, the mechanism for automically layouting the recommendation

graph is discussed. Third, filtering tools for analyzing the documents within the

graph are shown. And last, the implementation of the Java applet and the underlying

software architecture is portrayed.

9.2.1 The User Interface Design of RecoDiver

The RecoDiver user interface consists of four parts (see Figure 9.1): the graph display

in the center, a panel for displaying detailed information on the right, a histogram

on the left, and a toolbar at the top.

The default use case of the applet is the following: the user searches the catalog,

finds a document he is interested in and then switches to the RecoDiver view to

find related documents. The previously viewed main document serves as a starting

point for the dive into the recommendation graph. The initial view of the applet

shows the main document and all first and second level recommendations. Hence,

the drawn graph shows the second order neighborhood of the main document node

as will be described in more detail in Section 9.2.2. For clarity reasons, the direction

of the edges is not explicitly shown.

Each document node is represented by the cover image of the document. The

image data is sourced from Amazon.com. Currently, a question mark is displayed, if

a book cover is not available or could not be retrieved yet. In the future, it is planned

to display title information instead; given the space constraints, some technical (e. g.

generation of a short title) as well as design issues still need to be solved for a clear

and understandable presentation. The borders of the nodes are colored to signal the

availability of the document: green means the document is currently available for

lending, yellow indicates that a waiting list exists, and red means that the document

currently cannot be checked out at the library.

When the user moves his mouse cursor over a document node, the cover image

is magnified and a tooltip with information about author, title and publisher is
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Figure 9.1: The RecoDiver applet embedded into the website of the University

Library of Karlsruhe



118 9. Case Study: Visualizing and Exploring Information Spaces

Figure 9.2: The radial tree layout applied to a second order neighborhood of the

recommendation graph

displayed. Clicking on a document node selects this node as the new main document,

which causes the graph to update itself. The graph is completed to the second order

neighborhood of the new document, while nodes farther away are cut from the

displayed graph. Missing data is dynamically retrieved from the recommendation

server. As soon as the structural data is complete, the new main document node is

moved into the center and its recommendations are arranged accordingly.

The transition is animated to keep it easy to follow. For the animation a method

by Yee et al. [YFDH01] is employed, which interpolates between polar coordinates

instead of Cartesian coordinates to avoid nodes crisscrossing each other. This leads

to a less confusing animation in radial layouts.

After the animated transition, the view shows the new main document and its

second order neighborhood. The previous view can be restored using the history

function of the applet. The history function resembles the page history of a common

Internet browser application. It allows to navigate back and forth between views

using the buttons located in the toolbar.

9.2.2 Radial Tree Layout

The intent was to make it as easy as possible for the user to grasp the meaning of the

graph and to draw information from the visualization. The radial tree layout allows

to communicate the distance of a recommended document to the main document

best and aids a comprehension of “nearness”.

Figure 9.2 illustrates the layout applied to the graph of recommendations. The

main document is positioned in the center. The first level recommendations are

placed on an imaginary ellipse surrounding the main document. The second level

recommendations are placed on a second, bigger ellipse which encircles the first

one. This property makes it easy to distinguish between first and second level

recommendations.
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The positions of single nodes on the ellipses are determined by a minimum span-

ning tree (MST), which is calculated with the main document serving as root node.

The edges of the MST are emphasized in Figure 9.2 by a slightly thicker stroke.

9.2.3 Dynamic Visual Filtering

The overall clarity of the visualized graph is anti-proportional to the number of

nodes. Thus, if the number of displayed documents exceeds a certain limit, the in-

formational gain of the visualization is lost in clutter. Limiting the number of visual

elements is a way to improve clarity [HMM00], but generally results in withholding

information that might be useful to the user. The question was raised on how to

cope with this difficulty.

The first thought was to thin out the graph by applying graph-based metrics; e. g.

as used in the field of social network analysis. This approach was dropped, because it

leads to fitting the recommender system to the constraints of the visualization. But

the research was aimed at improving the visualization and usability of generated

recommendations. Thus, a second approach was pursued which does not rely on

thinning out the network of recommendations. If the amount of information cannot

be reduced, the user must be provided with tools to separate the wheat from the

chaff. Below, two tools are presented, that allow to intuitively filter the displayed

data. Both filters prove useful to restore clarity especially when the number of

displayed products exceeds a certain limit.

Publication year histogram. The panel on the left side shows a histogram that

visualizes the distribution of the years of publication of the currently displayed

documents. This display has two purposes. The first one is simply to provide

an overview to the user. The second purpose is to allow the user to filter the

displayed data. When the user selects a histogram bar with his mouse, all

books that were published in the selected year are highlighted, while all others

are faded into the background. By holding the control key, the user can select

a range or any set of years.

Filtering by publication date becomes especially useful if the user is only in-

terested in recent publications. This is often the case, if the customer group

of the STI provider stems from the area of scholastic research and study. Fur-

thermore, this tool can be used to discover trends: the histogram clearly shows

an increase or decrease in published books per year.

Meta data search box. A second filter, the search box, is located in the upper

right of the toolbar. It can be used to search the metadata of all displayed prod-

ucts. The search tool features case-insensitive incremental search. Matches are

highlighted as one types to give quick feedback about the issued query. This

way the user has to type less, owing to the fact that often only a few letters

from a word will suffice to narrow down the selection.



120 9. Case Study: Visualizing and Exploring Information Spaces

Figure 9.3: Product filtering in RecoDiver: Publication date (2005–2007, see upper

left corner) and keyword (“Tiger”, see upper right corner) filtering is active

When the user in Figure 9.1 clicks on the already selected book “Mac OS X

internals” by Singh, then uses the filters to restrict the selection to products that

were both published in the years from 2005 to 2007 and contain the string “Tiger”

in their metadata, one gets the result shown in Figure 9.3. The six highlighted

recommendations can be seen to pass the filtering choices.

9.2.4 Implementation

The RecoDiver user interface is implemented in Java. Java’s applet technology

allows to embed the application seamlessly into the existing online catalog of the

library. This is important, because RecoDiver is supposed to enhance the current

OPAC as an optional research tool for (advanced) users. Another reason for choosing

Java is the existence of the freely available prefuse toolkit [HCL05], a visualization

framework for the Java programming language, which eases the development of

graphical user interfaces due to its object-oriented framework.

RecoDiver is powered by the distributed architecture described in Section 8.2.

The system is divided into several components, each of which handles a distinct task:

collecting data as well as preprocessing is done by the connection server, computing

of recommendations happens on the recommendation server, and last but not least,

different interface agents deliver and display the recommendations to the users. In

this setting, RecoDiver is the user-interface, visualization is shifted to the user’s

computer.
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RecoDiver retrieves recommendations by means of the same web services as the

interface agent that generates the lists of recommendations in HTML (conf. Sec-

tion 8.2.1). The additional features RecoDiver provides, like drawing a graph, fil-

tering and searching, utilize only the user’s computer. Virtually no extra load is

put onto the servers by the local visualization and navigation processes. However,

only the number of recommendations retrieved by the RecoDiver applet are higher

than that of the list-based interface since also the second level recommendations are

considered and loaded. In total, however, the amount of transferred data is actually

reduced, because no HTML code needs to be added; the recommendations are sent

in XML-format via SOAP.

9.3 Evaluation

A usability evaluation to assess the user acceptance of RecoDiver was conducted.

The questionnaire consisted of two parts. First, a subset of the questions from

[Lew95] was used to evaluate the general usability of the application. The results of

these general questions are presented in Section 9.3.1. The second part of the eval-

uation, which is discussed in Section 9.3.2, compared the existing recommendation

list-based interface (see Figure 8.4) as it is in use at the University Library of Karls-

ruhe with the RecoDiver interface. The survey was conducted using the open-source

tool LimeSurvey2. The participants were 22 students and researchers of different

fields from the Universität Karlsruhe (TH), most with a technical background. Due

to the overall technical focus of the university and the background and spread of

the evaluation group, the sample can be considered representative for the group of

potential end-users of the application.

9.3.1 Usability Evaluation of RecoDiver

The usability of the RecoDiver was rated rather high. For example, more than 90%

of the 22 participants were satisfied with how easy it is to use the application. About

95% found the application simple to use.

The percentage of users that felt comfortable using RecoDiver (68%) is a little

lower. Similarly, about 18% did not find the organization of information on the

screen to be clear. However, since some users were not familiar with the visualization

of relational data as a graph, these results are nevertheless rather pleasant.

A vast majority (95%) of the participants agreed that it was easy to learn to use

RecoDiver. About 82% consented that the interface of the applet is pleasant and

that they liked using it.

Only 36% agreed that the application had all the functions and capabilities they

expected it to have. Some suggestions were made regarding additional functionality.

Most proposals longed for a better integration of the existing web services of the

University Library. For example, the website of the library allows users to mark

2http://www.limesurvey.org/
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Table 9.1: Survey results comparing RecoDiver with the list-based recommender

interface
RecoDiver list-based

more intuitive 59% 22%

better filtering 77% 13%

connection analysis 100% 0%

recommendation strength 27% 41%

more pleasant 77% 9%

preferred interface 63% 13%

certain books as favorites, that can be accessed later on, while RecoDiver does not

yet provide access to this service. Overall, 86% of the participants stated that they

were satisfied with the application.

9.3.2 Comparative Interface Survey

The second part of the questionnaire compared the new interface with the existing

list-based one. Over 86% of the participants stated that they are familiar with the

existing recommendation service as it is in use on the website of the University

Library. For the other participants this interface was demonstrated. See Section 8.3

for an evaluation of the list-based interface.

The participants were asked to compare the two interfaces. Table 9.1 presents

an overview of the results. The missing percentage (to 100%) of users did not decide

on the specific questions. About 59% agreed that the RecoDiver interface is more

intuitive than recommendation lists; only 22% stated the opposite. A vast majority

(77%) attested RecoDiver to provide better filtering of recommendations. Moreover,

all users found it more helpful in analyzing the connections between documents

(“connection analysis” in Table 9.1). As anticipated, more users (41%) stated that

recommendation lists allow to distinguish weak and strong recommendations more

clearly than the RecoDiver interface (“recommendation strength”). This is due to

the fact, that the current RecoDiver interface does not regard the strength of a

recommendation, i. e. the number of times the two documents have been purchased

together, while this number is explicitly displayed on the recommendation list. When

it comes to how pleasant the interfaces are, over 77% found RecoDiver more pleasant

compared to 9% who voted for recommendation lists. Similarly, about 63% preferred

RecoDiver over recommendation lists; only 13% chose the list interface.

The majority of the participants (about 82%) would like the University Library

to provide an interface like RecoDiver by default. A slightly smaller group (73%)

would even like to use a similar interface on e-commerce sites as well.

Some users stated that graphical interfaces are beneficial once their meaning has

been understood. However, in some cases, especially when there were many connec-

tions between documents, the visualization was still perceived as overly complex.
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Nevertheless, the participants considered RecoDiver as an alternative interface that

would clearly enhance the existing recommender service at the University Library.

9.4 Discussion and Outlook

RecoDiver is the first application for browsing recommendations of library docu-

ments on dynamic graphs. It enables the user to inspect connections between objects

while providing a local view of the current neighborhood of recommendations. Vi-

sualizing the graph of recommendations without filtering is the approach presented

in this chapter. This works significantly well both with smaller separated clusters

of recommendations and large but not highly connected graphs. In the latter case,

the background-foreground-filtering by the histogram of years of publication or the

title and author search help to easily identify relevant readings for the user. As

the evaluation has shown, the approach of never-filtering-out-objects comes to a

limit at some point with large and highly connected graphs. These types of graphs

are much more likely to appear at library applications than in e-commerce due to

the difference in the magnitude of the number of products. Especially, many edges

between different second level recommendations of the main document make the

visual inspection complex. In these cases, the weight of the edges (the number of

co-purchases of the products) can be used to thin out the graph before its presenta-

tion to the user. Minimum weight thresholds reduce the number of presented edges

and documents, while minimum spanning trees can reduce the number of presented

edges. A priori cluster analysis by random walks can be facilitated as well in the case

of highly connected graphs (conf. Section 7.3.4). Different types of these methods

were implemented in a prototype version of RecoDiver. The evaluation of different

filtering algorithms showed the following: when applying one of these approaches

to dynamic graphs, the main problem is the breakup into disconnected subgraphs.

There is no known easy user interface for the general public (besides users trained

in graph theory) to inspect such a complex process in a meaningful way at a general

STI provider or e-commerce site.

Considering the technical aspects of RecoDiver, various inconsistencies of the

behavior of the applet with different Java versions and web browsers were experi-

enced. A switch from Java applet to Adobe Flash technology seems to be a good

choice to overcome this issue at a first glance. Due to its widespread use within the

WWW, the Adobe Flash Player currently is installed on more end-users’ computers

than a Java plug-in. Nevertheless, today more advanced code libraries for dynamic

graph layouts exist in Java compared to Adobe Flash, easing the development of

graph-based user interfaces like RecoDiver. The flare project3 might make some of

these libraries available in Adobe Flash in the future. A more detailed study of the

suitability of these two programming languages together with a user survey about

the technologies’ user acceptance will decide about the path to take for the final im-

3http://flare.prefuse.org/
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plementation of the service and its integration into the website of an STI Provider

open to the general public.



Chapter 10

Discussion

Each of the previous chapters of this book has dealt with a different aspect of

recommender systems for scientific and technical information providers. In this

section, the lessons learned from each chapter are presented in condensed form and

discussed. Detailed outlooks to further research on the various topics were already

given in the according chapters. Please review Sections 5.5.3, 7.2.5, 8.5, and 9.4 for

detailed discussions and outlooks on the presented material.

In the first chapter it was depicted that the STI market is especially suited for

recommender systems due to high search costs for goods and the general problem of

assessing the quality of information products. Recommender systems were defined

to comprise some kind of user participation. In many e-commerce shopping sites a

list of “recommendations” is given; in most cases these do not stem from user input,

but from being manually placed by product managers of the shopping site according

to their contribution to profit. Automatically generated recommendations which

truthfully reflect the preferences of their user-community as described in this book

are valuable to both providers and customers.

Chapter 2 showed, that recommender systems are an important research area as

they play a crucial role in the future business profile and thus in the competitive

strategy of STI providers.

From Chapter 3 it can be concluded, that, when one wants to start a success-

ful recommendation service, a very strong focus should be set on the mechanism

design. Currently the biggest amount of research capacity in the area of recom-

mender systems goes into the improvement of the algorithms for the generation of

recommendations, especially for collaborative filtering by means of association rules.

Unfortunately, most of the developed techniques are never applied outside a labo-

ratory prototype working with small data samples. But scalability issues can only

be tested in a real service environment. Also, trustworthy feedback from a broader

user community is necessary for evaluation purposes.

The overview of existing recommendation services at major STI providers pre-

sented in Chapter 4 gave a somehow disappointing result. Most providers do not

feature any such services yet, although some seem to work in the background and

are expected to launch such services in the near future. The question remains, why
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are STI providers slower to act than the general business-to-consumer e-commerce?

Here, three major factors can be accounted:

Missing pressure by competition. In Chapter 2 it was presented, that a large

part of the STI market is controlled by quasi-monopolistic publishing compa-

nies. But an institutional library can also be considered a quasi-monopolistic

provider of STI to the faculty and student body of the institution. Driving to

the next major city to visit the library of a different university is forbidden by

the transaction cost—the access to this library might even be restricted to their

faculty and student body. There are quasi-monopolistic market structures on

different levels. A monopolist is not required to offer a good service if the

customers depend on the good. Unfortunately, this explains, why many STI

providers currently consider recommender systems as not necessary for their

revenue stream or public tax funded mission. The currently ongoing change in

the market structure discussed in Chapter 2 will lead to more pressure for good

customer services and, thereby, to more recommender systems in the future.

Scalability issues. The number of products at STI providers, often tens of mil-

lions, forbids the application of “standard” recommendation generating algo-

rithms. Chapter 7 presents a way out of this dilemma. The scalability is shown

by the case study presented in Chapter 8.

Anonymity of users. First, the end-users of the STI (scientists etc.) are not the

direct customers (i. e. for example libraries) of the publishing industry. The

usage data has to be collected at providers like libraries. These public insti-

tutions in general have much higher restrictions for the protection of privacy

than a single e-commerce store. Nevertheless, this work has shown, that even

anonymously collected usage data from libraries are sufficient (conf. Chapter 6)

for setting up successful recommendation services (conf. Chapter 8).

The report on the introduction of explicit recommender systems at the University

Library of Karlsruhe (conf. Chapter 5) not only shows the necessity of the correct

mechanism design, but also, what other influences like the user interface play an

important role when implementing recommender systems. It proves, that such sys-

tems can be technically integrated as add-on services to large legacy library OPAC

applications. The support of different user and target groups significantly helps to

channel the recommendations to appropriate recipients. To the best of knowledge, it

was the first system worldwide of this kind that was actually introduced as a service

to all customers at a large scientific library.

When discussing behavior-based recommender systems for STI providers, the

absence of purchases—including prices and money transactions—is often stated to

be a knock-out criteria for such services. The argumentation by means of revealed

preferences, self-selection, and transaction costs in Chapter 6 proves this to be wrong.

Although, as mentioned before, a lot of research has been done on recommenda-

tion generating algorithms, the scalability issues due to the large number of products

at STI providers as well as the cold start problem are not solved by the “traditional”
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algorithms. The LSD-, as well as the POSICI- and POMICI-algorithms presented

in Chapter 7 are considered to hopefully bring the “traditional” methods one step

further. The behavior-based recommendation service presented in Chapter 8 already

relies on these methods, the development of these algorithms might be one of the

reasons, why this implicit service was the first service of its kind at a large scientific

library and is currently being commercialized under the BibTip brand. For the fu-

ture, the item-centered approach all systems have in common makes it possible to

amplify the described services by cross-usage of data. E. g. the rating data can be

used to further filter the behavior-based recommendations.

The general strategy of this study was the following: new scientific methods

should not only be developed—and then the research finishes with a proof of concept

in a laboratory prototype—but for economic research they should be tested in field

experiments with real customers in services open to the general public. Although

this is time-consuming, it allows for better evaluation and application forecasts. The

drawback lies in many small compromises that have to be made when implementing

services within websites of STI providers that are service but not research oriented.

Examples for these compromises have been given for the case of the user interfaces in

Chapters 5 and 8. Chapter 9 depicts a user interface prototype to show, what kind of

graphical interfaces the author of this book has in mind for boosting the usage of the

developed recommender systems. Currently, no recommender systems exists, that

features such interfaces, although the user evaluation shows, that it is preferred over

the currently used interfaces. It is a variable that might have a significant influence

on the overall usage of the recommendation services. For economical success, many

variables need to be in tune.
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