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CORRECTIONS  

 

Please note the term of the use cell line 3T3 Swiss fibroblasts is incorrect and has to be 

changed to thymidine kinase-negative L-cells (LTK- mouse fibroblasts) (Ozawa et al., 1989) 

 

Ozawa M, Baribault H, Kemler R. The cytoplasmic domain of the cell adhesion 
molecule uvomorulin associates with three independent proteins structurally related 
in different species. Embo J. 1989; 8: 1711-7. 
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1.  Introduction 

Cell survival, growth and differentiation depend on the cellular microenvironment. The latter 

consists of 3–dimensional molecular network of insoluble polymers, the extracelluilar matrix 

(ECM), consisting of proteins and proteoglycans, and soluble factors such as growth factors, 

nutrients, and ions. Cells are embedded in this microenvironment by specific adhesion 

contacts, which are formed by cell membrane receptors, the integrins, and their ligands, 

small domains within different ECM molecules like fibronectin, laminin or collagen. A 

challenge in tissue repair and regeneration is the reconstruction of the cellular 

microenvironment to control stem cell differentiation. Thereby, the design of topographically 

and geometrically optimized cell substrate contacts on inanimate material is of high 

relevance. For biofunctionalisation of surfaces the structure and orientation of the integrin 

receptors and their ECM ligands as well as their interacting mode has to be known.  

 

1.1  Integrins  

Integrins are major metazoan cell adhesion molecules mediating cell-extracellular matrix 

(ECM) and, in vertebrates, to some extent also (more exception than general role) cell-cell 

interaction (Hynes, 1992). By binding the actin cytoskeleton through adaptor proteins to 

ligands of the ECM, integrins play a key role in translation signals to both sides sides of the 

cell membrane, the so called outside-in and the inside-out signalling. While outside-in 

signalling describes the structural rearrangements of integrins in response to ligand binding, 

inside-out signalling defines the changing of ligand binding ability triggered by cell activation 

signals (Takagi et al., 2002, Giancotti and Ruoslahti, 1999). 

The integrin family in mammalian comprises 18 α and 8 β subunits that are able to assemble 

into 24 heterodimers (Humphries et al., 2006, Hynes, 2002). In the heterodimer, the 

extracellular domains of both subunits associate in non-covalent manner, forming an “ovoid-

like” head with two “legs” (Fig. 1). 

 

1.1.1  Integrin structure in general 

The extracellular domain of the a and ß subunit is about of 1000 or 750 amino acids in length 

while the cytoplasmic tails are relatively short consisting of 20-50 amino acids.  α1, α2, α10, 

α11, and leukocyte integrins αL, αM, αX, αD, αE subunits contain an additional “inserted” I/A 

domain in their extracellular tail. The I/A domain, called also αI or αA-domain is about 180 

amino acids. I/A domain was the first domain to be crystallized and structurally investigated 
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(Lee et al., 1995b). It comprises the ligand binding sites in the integrins that contain this 

domain. 

 

 

 
Fig. 1. Structure of the integrins head-group. 

Electron microscopic imagine of an unliganded 

α5β1 headpiece (left) and crystal structure of 

the corresponding region of αvβ3 (right). Both 

head groups showed a similar conformation 

(Takagi, 2004). 

 

First structural information of the extracellular part of the αvβ3 heterodimer were obtained by 

X-ray crystal structure analysis (Xiong et al., 2001) (Fig. 2).  

Structure analysis revealed that αvβ3 integrin heterodimer forms an ovoid shaped globular 

headpiece by association of the seven-bladed β-propeller of αv subunit and βA domain, also 

called also βI-domain, of the β3 subunit. The dimensions of the head are approximately 9 x 6 

x 4,5 nm (Beglova et al., 2002, Xiong et al., 2001). The αV subunit is formed by an 

β−propeller that is followed by three Ig-like “tight” domains and two “calf” domains. Between 

“thigh” and “calf” domains there is a flexible linker - “knee” - where the Ca2+ ion is 

coordinated. Other 4 metal ions (Ca2+ or Mg2+) are coordinated in the β-propeller stabilising 

the structure of β-hairpin loops.  

The β3 subunit is composed of a βA domain, a “hybrid” domain, an amino-terminal 

plexin/semaphorin/integrin (PSI) domain, four epidermal growth factor (EGF) domains, and 

β−tail domain (βTD). There are three positions in βA domain where metal-ions can bind: the 

metal ion-dependent adhesion site (MIDAS), the ligand-associated metal binding site 

(LIMBS), and the adjacent to the MIDAS site (ADMIDAS). The presence of metal ions in 

these sites changes the conformation of the integrin subunit and regulates ligand binding. 

 

1.2  Integrin ligands 

Mediating cell adhesion to ECM, the integrin receptors bind a wide variety of ligands (van der 

Flier and Sonnenberg, 2001, Plow et al., 2000, Humphries, 1990). However this wide variety 

could be grouped into four main classes taking into consideration recognizable ligdands: 

receptors of collagens, laminin, RGD, and leukocyte-specific integrins (Humphries et al., 

2006, Hynes, 2002) (Fig. 3).  
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Fig. 2. Model of extracellular 

segment of αvβ3 (Xiong et al., 

2001). The αv is shown in blue and β3 

is shown in red. 

 

 

Four α-integrins (α1, α2, α10 and α11) containing additional I/A domain combine with β1 and 

form a group of collagen receptors. In all of these integrins, the 180 amino acid I/A domain 

is responsible for the divalent cation–dependent binding to ligands (Michishita et al., 1993). A 

metal ion in this case is coordinated at the ligand-binding interface of I/A domain of α subunit 

through the MIDAS site, and the metal coordination is completed by a glutamate from the 

ligand (Emsley et al., 2000, Lee et al., 1995b) or, in its absence, by a water molecule (Lee et 

al., 1995a). These integrins recognise GFOGER motif of collagene (Emsley et al., 2000), but 

they are also able to bind to other ligands including laminin. Currently, the mechanism of 

their laminin binding is unknown (Humphries et al., 2006).  

Three α integrins that combined with β1 unit (α3, α6 and α7) compose the group of non-A-

domain-containing laminin-binding integrins. These highly selective laminin receptors 

promote adhesion to basement membrane. 
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Fig. 3. The complete set of mammalian integrins. 24 possible αβ associations are depicted. The 

integrin subfamilies are coloured considering their structure and evolutionary relations. Shown in grey 

α integrins have “inserted” I/A domain. Asterisks denote alternatively spliced cytoplasmic domains 

(Hynes, 2002).   

 

Leukocyte-specific integrins αEβ7, α4β7, four members of β2 subfamily (αL, αM, αX and 

αD), as well as α4β1 and α9β1 recognise Leu-Asp-Val (LDV) motif or related sequences in 

their ligands. These integrins mediate leukocyte adhesion to various cells during immune 

response. α4β1, α9β1 and α4β7 presumably bind LDV motif at the junction between the 

α and β subunits, whereas integrins αL, αM, αX and αD employ an inserted A-domain to bind 

sequences that are structurally similar to the LDV (Shimaoka et al., 2003). Both groups of 

leukocyte-specific integrins and collagene receptors contain the additional I/A domain in their 

α subunits and are restricted to chordates. 

The topic in my work are the ancient RGD-receptors α5β1, αVβ1, αVβ3, αVβ5, αVβ6, αVβ8, 

α8β1, and αIIbβ3. They bind the tripeptide sequence Arg-Gly-Asp (RGD) within their ligands. 

I/A domain lacking molecules of these ancient group of integrin receptors bind their ligands at 

the interface between the β−propeller of the α subunit and βA domain of the β subunit.  
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Fig. 4. Ligand binding site of αvβ3 integrin. (A) The ball-and-stick model. Violet and cyan marks 

show metal ions in MIDAS and ADMIDAS sites respectively. (B)  In this model the peptide is shown in 

yellow; αV and β3 residues are labelled blue and red respectively. Oxygen and nitrogen atoms are 

colored red and blue respectively. The dotted lines represent hydrogen bonds and salt bridges (Xiong 

et al., 2002). 

 

The structure of extracellular domains of αVβ3 in complex with ligand mimetic peptide 

cyclo(RGDf-N{Me}V), revealed by Xiong (Xiong et al., 2002), has established a basis for 

understanding integrin-RGD recognition. According to this model, glycine residue of the 

RGD-sequence lies at the interface between α and β subunits near to the surface integrin 

providing hydrophobic interaction. Arginine and aspartate residues both point away from the 
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binding pocket in opposite directions; arginine is close to Tyr178 of αv subunits, and aspartic 

acid carboxylic group coordinates metal ions at the MIDAS region in the β3 subunits (Fig. 4).   

The structures of other ligand-binding integrins are not yet known, but the αVβ3 - 

cyclo(RGDf-N{Me}V) complex has provided a base for recent  studies of ligand docking in 

other RGD-dependent integrins. The homology modelling led to proposals of αVβ3/αIIbβ3 

ligand binding selectivity (You, 2002), but until now there is no αVβ3/αVβ5 selectivity found; 

the smallest molecules designed as αVβ3 ligands show biselectivity (Meyer et al., 2006). The 

high sequence homology of the β3 and β5 subunits allowed development of the ligand 

binding model for αvβ5 receptor. According to this model the bigger part of the binding 

pocket is highly conserved, especially regarding all residues surrounding MIDAS, ADMIDAS, 

and LIMBS; the hardly achieved selectivity for αvβ5 is based on the larger size of the binding 

pocket of αVβ3  (Marinelli et al., 2003).  

X-ray scattering (Mould et al., 2003) and electron microscopy (Takagi et al., 2003) indicated 

that in the absence of ligand a headpiece of α5β1 is remarkably similar to the crystal 

structure of the extracellular domain of an αvβ3 integrin. There is no atomic resolution 

structure available for α5β1 in complex with its physiological ligand – fibronectin. However, 

based on electron microscopic studies model Takagi (Takagi, 2004, Takagi et al., 2003) 

supposes that the α5β1 binds fibronectin in quite a similar to αvβ3 way (Fig. 5), leaving in 

doubt the earlier two-site binding model, which proposes that the RGD loop in the Fn10 

domain and the synergy site in the Fn9 domain latch simultaneously on to widely separated 

binding pockets on the β1 and α5 subunits respectively. Regarding the studies that show 

minimal effects of dissociation rate but severe effects of the association rate for mutants of 

residues in the synergistic binding site (Humphries et al., 2003, Xiong et al., 2001) the model 

that FnIII domain 9 in fibronectin indirectly supports  binding of the Fn10 domain to the 

integrin was proposed (Takagi, 2004).  

Despite structural differences in β-propeller of aIIb and αv integrins, the binding mode of 

αIIbβ3 ligands is basically similar to all RGD-recognizing integrins (Meyer et al., 2006,  

Claasen et al., 2005, Feuston et al., 2003, Adair and Yeager, 2002). The putative structural 

difference is a deeper ligand binding “pocket”, which demands a longer ligand side chain to 

establish hydrogen binding. Such a structure explains the αIIβ3/αvβ3 selectivity that can be 

achieved by varying the effective distance between the carboxylic and basic function in the 

ligand (Meyer et al., 2006). 
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Fig. 5. Model of α5β1–Fn interface (Takagi, 2004). A molecular surface α5β1 headpiece model (left) 

coloured from red (<−25 kT) to blue (>25 kT) according to electrostatic potential ranging. The dotted 

oval indicates an approximate location of the RGD-docking site. The structure of the Fn9-10 (right), 

fragment of RGD loop is shown in yellow; basic and acidic residues are coloured blue and red 

respectively. 

 

1.3  Integrin clustering  

The clustered integrins are detected on the cell surface (Schneider and Engelman, 2004, Li 

et al., 2003).  Studies in the field of integrin clustering showed its dependence on integrin 

activation by their ligands; ligand-bounded receptors enhance their tendency to cluster 

(Yauch et al., 1997, LaFlamme et al., 1992). From another side, clustering may increase the 

avidity of the receptors and may also lead to additional intracellular signals stimulation. 

Integrin clustering as well as ligand binding is required to engage interactions with a full 

complement of cytoskeletal and signaling proteins (Miyamoto et al., 1995). 

The cytoplasmic tails of the integrin β subunits are able to directly interact and self-assemble 

(Laplantine et al., 2002, LaFlamme et al., 1992) that could be important for receptor 

clustering and further nucleation of focal adhesions. Experimental evidence of αvβ3 

transmembrane domain interaction (Adair and Yeager, 2002, Vinogradova et al., 2002) and 

their ability to form homodi- and trimers (Li et al., 2003, Li et al., 2001) form the basis for 

models of αvβ3 integrin clustering (Fig. 6) (Gottschalk and Kessler, 2004). In these models β3 

subunits form homotrimers, whereas αv subunits form homodimers.  
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Fig. 6. Two possible models 

of αvβ3 clustering. The α 

subunit is colored blue, the β 

subunit is colored red 

(Gottschalk and Kessler, 

2004).  

 

1.4  Focal adhesion formation 

Focal adhesions (FAs) were first identified in electron-microscopy studies 36 years ago 

(Abercrombie et al., 1971). These high-density regions were found located on the plasma 

membrane of cultured cells, in the sites of tight contact of the membrane with substrate. 

Later was also shown the presence of FAs in vivo at cell matrix junctions (Fuchs et al., 

1997). In the FAs, various proteins are associated with cytoplasmic tails of integrins linking 

them to actin-cytoskeleton (Fig. 7); integrins do not have actin-binding sites by themselves. 

In addition to integrins, FAs could contain some other receptors including syndecans (Woods 

et al., 2000, Woods et al., 1998, Zimmermann and David, 1999), layilins (Bono et al., 2001, 

Borowsky and Hynes, 1998), and signaling molecules  (Wei et al., 1999, Tang et al., 1998, 

Myohanen et al., 1993), but their role in adhesion regulation is not yet clear. 
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Fig. 7. Schematic 

illustration of inter-

actions of several 

components of focal 

adhesions (Lo, 2006) 

 

 

There are more than 200 proteins that could be associated to FA formation on the 

cytoplasmic part of membrane (Fig. 8) (Zaidel-Bar et al., 2007). These are not only 

cytoskeleton binding proteins such as talin, vinculin, and α-actinin, but also tyrosine and 

serine/threonine kinases, tyrosine phosphotases, modulators of small GTPases and other 

enzymes. The interactions between FA components can be mediated by some known 

binding motifs including the SH2 domain that is responsible for tyrosine-phosphorylated 

proteins recognition, binding proline-rich motifs SH3, LIM- and PDZ domains. Most proteins 

have so many binding sites that they cannot engage all of them simultaneously; the 

regulation of binding partner selection remains elusive.  

The selectivity of substrate recognition is managed by integrins that bind ligands and 

nucleate FAs. Quantitative fluorescence microscopic studies demonstrate the diversity of 

FAs depending on what integrins are engaged (Zamir and Geiger, 2001a, Zamir and  Geiger, 

2001b). Variations in the structure and molecular composition of cell-matrix adhesions have 

been found, that mainly contained either αvβ3 or α5β1 integrin depending on the ligand 

(Olski et al., 2001, Katz et al., 2000). Therefore Zamir and Geiger (Zamir and Geiger, 2001b) 

suggested a hypothetical model how focal adhesions of two different types are segregated 

(Fig. 9).  
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Fig. 8. A scheme of the interactions between the various constituents of cell-matrix adhesions. 

The components are coloured taking into consideration their structure; different stile lines illustrate the 

type of interactions between the components. Black lines with full circles at their ends denote non-

directional binding interactions, blue arrows represent directional inhibition and red arrows represent 

directional activation interactions (Zaidel-Bar et al., 2007).  

 

1.4.1  Vinculin, paxillin, and focal adhesion kinase (FAK) 

Vinculin, paxillin, and FAK are of the “senior” members of FAs. The vinculin is a ~1000 aa 

molecule containing a globular head and long flexible tail (Winkler et al., 1996). The vinculin 

head has a-actinin and talin binding sites as well as a site for binding the vinculin tail 

(Kroemker et al., 1994). Therefore a “closed” conformation of vinculin exist, in which 

intramolecular interaction between the head and the tail masks binding sites for a-actinin, 
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talin, F-actin, and VASP located in the middle part of the molecule. The switch of vinculin to 

the “open” conformation is induced by phosphoinositol 4,5-biphosphat (Gilmore and 

Burridge, 1996). Both “open” and “closed” conformations of vinculin are able to bind paxillin. 

 

 

Fig. 9. A molecular model of segregation of two types of focal adhesions. (A) Initial adhesions 

contain both α5β1 integrin, whichs binds primarily to fibronectin and αvβ3 integrin, which binds primarily 

to vitronectin. (B) Since substrate-attached vitronectin forms a rigid matrix, αvβ3 integrin remains 

immobile despite the applied contraction force. In contrast, α5β1 integrin is bound to a relatively soft 

fibronectin matrix and thus translocates centripetally owing to the actomyosin driven pulling. 

Abbreviations: a, actin; α, α-actinin, F, FAK; fn, fibronectin; m, myosin II; P, parvin/actopaxin; pa, 

paxillin; ta, talin; te, tensin; vi, vinculin; vn, vitronectin; 51, α5β1 integrin; v3, αvβ3 integrin (Zamir and 

Geiger, 2001b). 
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Paxillin is a multi-domain protein that was found localized in focal adhesions through its LIM 

domains (Turner, 2000). Paxillin binds directly to the cytoplasmic domain of integrin receptor 

(Liu et al., 1999, Schaller et al., 1995), as well as to the vinculin and many other proteins 

involved in effecting changes in the organization of the actin cytoskeleton. Located in the 

cell-matrix adhesions, paxillin is tyrosine-phosphorylated  in contrast to the large non-

phosphorylated cytosolic pools (Cattelino et al., 1997). The paxillin phosphorylation by 

FAK/Src kinases works as a switch in the regulation of cell-matrix adhesion formation 

(Zaidel-Bar et al., 2007). The role of paxillin in targeting of Rac activated effectors and the 

importance in DOCK180/ELMO pathway was revealed (see section 1.5) (Zaidel-Bar et al., 

2005, Brown et al., 2002). 

Playing a prominent role in integrin signalling FAK is one of non-receptor proteins tyrosine 

kinases. Lacking a transmembrane domain on the N-terminal FAK has a β-integrin binding 

site (Schaller et al., 1995), whereas its C-terminal region is rich in protein-protein interactions 

sites, including paxillin-binding one. About 100 residues on the FAK C-terminal part design a 

focal adhesion targeting (FAT) region, which provides targeting FAK to the FA complex 

(Hildebrand et al., 1993). Clustering of integrins leads to a phosphorylation of FAK at its 

central catalytic domain promoting so-called FAK pathway in integrin signalling (see section 

1.5)  

 

1.5  Integrin signalling 

Anchoring of the cell to the ECM through integrin receptors is necessary for survival. The 

integrin binding and clustering could activate signals either for cell proliferation or for 

differentiation. Associated with cytoplasmic part of integrin proteins are not only a physical 

link to actin cytoskeleton that is necessary because of an absence of actin-binding site at the 

receptor. The adapter proteins assist in translation of integrin signalling in both directions: the 

extracellular binding activity of integrins is regulated from inside of the cell (inside-out 

signalling), while the binding of the ligands initiate signals into the cell (outside-in signalling) 

(Giancotti and Ruoslahti, 1999). 

Activation of integrins by inside-out signalling precedes the binding of integrins to 

extracellular proteins. Inactive integrins are in a bent state with closed headpieces (Fig. 10). 

When they become activated by growth factor signalling which is transmitted by binding of 

adaptor molecules to their cytoplasmic tails the integrins extend, swing out and open their 

headpieces representing the activated form. This conformational change is a prerequisite for 

ligand recognition (Luo, 2007).  
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The ECM binding initiates clustering of recruited integrins, association of FA proteins and 

reorganisation of the actin cytoskeleton. In turn, changes in actin filament assembly assist FA 

formation and integrin clustering. Such positive feedback allows for protein aggregations 

detected by microscopy. Clustering of proteins results in growing FA. The size of a mature 

FA in a fibroblast could reach several micrometers in length. High concentration of involved 

proteins facilitates integrin signalling.  

 

Fig. 10. Rearrangement of domains during activation of integrins lacking an I/A domain. The β 

subunit lower legs are flexible and are therefore shown in what may be the predominant (solid 

representation) and less predominant (dashed lines) orientations (Luo, 2007). 

 

1.5.1  FAK pathway  

FAK interacts with the cytoplasmic tail of β integrin either directly or through talin and paxillin. 

Clustering of integrins results in phosphorylation of FAK at Tyr397 (Calalb et al., 1995) that 

leads to formation of phopsphotyrosine docking sites for SH2-domain-containing proteins. In 

addition to phosphoinositide 3-kinase (PI3-kinase), phospholipase C (PLC)-γ, adapter protein 

Grb7 (Akagi et al., 2002), the prominent binding partners are Src family kinases. The binding 

of the SH2 domain of Src induces further Src activation. The activated FAK with recruited Src 

is able to bind paxillin and Cas, a multifunctional adapter protein (Schaller et al., 1999).  

With proline-rich sites for SH3-domain-containing proteins FAK binds two regulators of small 

GTPases: GRAF (GTPase-activated protein for Rho) and ASAP1 (GTPase-activated protein 

for Arf1 and Arf6) (Randazzo et al., 2000, Liu et al., 2002) that direct signal to cytoskeletal 

reorganisation. Thus the integrins signal could transfer through FAK to signaling pathways 

that regulate small GTPases of the Rho and Arf families. 
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Fig. 11. Proposed interactions among the proteins involved in integrin signalling (Parsons, 
2003). 

 

Phosphorylated by FAK Cas is important for sending downstream signals through Sh2/SH3 

adapter protein Crk (Vuori et al., 1996). Rac is a proposed effector of the Cas-Crk complex, 

which plays a prominent role in cell migration (Cary et al., 1998, Klemke et al., 1998). The 

Rac activation could involve recruitment of DOCK180 and ELMO (Brugnera et al., 2002). 

Thus FAK signal through Cas, Crk, DOCK180, and ELMO stimulates GTP loading of Rac. 

Proposed by Parsons (Parsons, 2003) schema of involved in integrin signalling proteins (Fig. 

11) shows signals transduction through FAK to Rac and p21-activated kinase (PAK) playing 

a role in modulating cell adhesion and migration, actin polymerization and MAP kinase 

signalling. 

 

1.5.2  Integrin regulation of cytoskeleton reorganisation 

Cell shape, motility and polarity are regulated by Rho family G-proteins, molecular switches 

that control cytoskeleton reorganization. Two of these family members, Cdc42 and Rac, 

stimulate the formation of protrusions at the leading edge: Rac controls extension of 

lamellipodia and Cdc42 controls extension of filopodia (DeMali and Burridge, 2003). Integrin 

binding to ECM could be an activator of both these small GTPases (Price et al., 1998), 

promoting early phase of adhesion.  The later phase, the maturation of adhesions is 
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associated with RhoA activity (DeMali and Burridge, 2003), under influence of RhoA and 

tension, FAs grow in size to become lager, more stable structures. Integrin engagement 

leads to a transient depression in RhoA activity (Ren et al., 1999). The decrease in RhoA 

activity also could be induced by paxillin phosphorylation (Tsubouchi et al., 2002). But during 

cells adhesion to fibronectin, this initial dip of RhoA activity could be followed by activation 

(Ren et al., 1999). Fig. 12 illustrates the scheme of Rho inhibition  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Role of Src family kinases in the 

inhibition and reactivation of Rho activity 

(DeMali et al., 2003). 

and further reactivation proposed by DeMail (2003). The time-dependent effect characterizes 

signal only from some integrins; other integrin receptors could induce a signal through 

protein tyrosine phosphotase-α (PTPα) earlier than in 45-90 minutes.   

In addition to coordination of cytoskeleton remodelling through Rho family GTPases integrin 

signals are also able to control actin polymerisation through a prominent component of FAs 

vinculin. The major nucleation of actin polymerisation is actin-related protein 2/3 (Arp 2/3) 

complex (Fig. 13). The link between Arp 2/3 complex and ligand-bounded integrins was 

found only in the newest adhesions and not seen in more mature FAs (DeMali et al., 2002). 

Binding of the Arp 2/3 complex to vinculin does not stimulate the complex activity, but 

localizes polymerisation to new sites of integrin engagement. 
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Fig. 13. Link between the actin polymerization machinery and integrins (DeMali et al., 2003).  

 

Another mechanism of integrin-mediated control of actin polymerisation works via the 

proteins of Wiskott-Aldrich syndrome (WASP) family. Activated by Cdc42, Rac, or Nck 

WASP proteins stimulate Arp 2/3 complex (Higgs and Pollard, 2001, Rohatgi et al., 2001). 

The link between the NF-kappaB-inducing kinase (Nik) and integrin β subunit is proposed by 

a complex integrin-linked kinase (ILK) and particulary interesting Cys-His protein (PINCH) 

(Hannigan et al., 1996). This pathway promotes actin polymerization at sites of integrin 

clustering. 

 

1.6  Biofunctionalised surfaces  

Modification of surfaces is a widely employed technique for controlling cell attachment, 

proliferation, and differentiation (Barbucci et al., 2005, Carlsson et al., 1979). Many studies 

examined the ability of adsorbed ECM proteins to regulate cell behaviour on biomaterial’s 

surfaces.  Such proteins as laminin, collagen, and fibronectin are able to stimulate 

proliferation or differentiation of different type cells via integrin signals (Hashimoto et al., 

2006, Stephansson et al., 2002, Nony and Schnellmann, 2001).  The selection of the protein 

as promoter of a certain cell response have to be done taking in consideration that even the 

same cell lines could change their ability to bind certain ECM protein; e.g., activated by the 

tissue injury fibroblasts bind fibrin and fibronectin instead of type I collagen (Clark et al., 

2004, Gailit et al., 1996), invading the fibrin clot in the wound space (McClain et al., 1996, 

McCarthy et al., 1988). 
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The covering of surfaces with ECM proteins by simple absorption is the oldest and most 

popular method but nevertheless has some drawbacks. First of all, the amount and 

conformation of adsorbed proteins varies significantly among different substrates (Iuliano et 

al., 1993, Elwing et al., 1986). These bring uncontrolled factors in design of surfaces for cell 

attachment. This problem could be at least partly solved by non-absorption methods of full-

length protein immobilization, namely by covalent attachment. 

The way of chemical immobilisation of the biologically active molecules should be chosen 

individually for every pair “protein-surface”, and don’t destroy the conformation of cell-binding 

amino acid sequences. There are some published methods of metal surfaces 

biofunctionalisation.  Albumin has been covalently bound to titanium using aminopropylsilane 

(APS) and glutaraldehyde (Nanci et al., 1998). Cytokines like bone morphogenetic proteins 

(BMP-2 and BMP-4) have been bound to titanium with APS and carbonyl diimidazole 

(Becker et al., 2006) or plasma polymerized allylamine and EDC (Puleo et al., 2002). Fibrillar 

type I collagen was immobilised on tantalum oxide layer with silane coupling agent via linker 

(Muller et al., 2005). The methods of full-length proteins immobilisation often include cross-

linking of the biomolecules for stabilization against enzymatic degeneration and for prolonged 

structural and mechanical integrity. For the cross-linking dialdehydes, diisocyanates, azides, 

and carbodiimides could be used (Khor, 1997). 

Such covalent immobilization could be used for design of protein coatings that are much 

more stable than produced by physical adsorption methods. But the next weakness of the 

general idea to use the full-length proteins for surface modification is their tendency to 

depredate.  Inserted in the tissue these proteins are objects of proteolytic degradation and 

need to be continuously refreshed.  The long-term exploitation of these materials would be 

impossible.  

Furthermore, using of the isolated from other organisms and purified proteins increases 

immune response and infection risks. This could be the most dangerous disadvantage of 

using the full-length proteins for medical applications. To avoid immunologic response, 

sensibility to degradation, as well as thermal and chemical instability, the surface materials 

could be modified not with full-length proteins but only with their parts, short amino acid 

sequences that mimic the adhesion domains of ECM proteins (Rowley et al., 1999, Cook et 

al., 1997, Lin et al., 1993, Lin et al., 1992).  

 

1.7  RGD and other cell adhesion sequences  

The RGD amino acid sequence is expressed in many ECM proteins, including fibronectin, 

fibrinogen, vitronectin, bone sialoprotein, osteopontin, thrombospondin, laminin, collagen, 
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von Willebrand factor and other large glycoproteins (Robey, 1996), (Blancher et al., 1996). 

The role of the RGD motif as primary cell attachment cue was revealed in 1984 by 

Pierschbacher and Ruoslahti (Ruoslahti and Pierschbacher, 1987, Pierschbacher and 

Ruoslahti, 1984). Later experiments with synthetic peptides showed that this 3-amino acid 

sequence in small molecules could promote cell attachment via integrin receptors as well as 

the full-length ECM proteins.  

In addition to RGD some short sequences promoting the cell attachment are revealed.  

Mould (Mould et al., 1991) explored the Leu-Asp-Val (LDV) site contained in the connecting 

segment 1 region of fibronectin that is essential for α4β1/α9β1 integrin binding (Yokosaki et 

al., 1998, Tselepis et al., 1997). The motif KQAGDV is the proposed cell recognition site of 

fibrinogen despite two RGD sequences in the molecule (Tamura et al., 2004, Hautanen et 

al., 1989). KQAGDV binds only αIIbβ3 but not αvβ3/αvβ3 receptors. Tripeptide KGD shows 

the same manner of integrin binding. The high selectivity of these peptides is explained by 

the structural difference of binding “pockets” of the integrins; the shorter side-chain of the 

lysine can bind αIIb but not αv (Tamura et al., 2004). Integrin α5β1 is published to recognize 

RRETAWA sequence (Mould et al., 2000, Humphries et al., 2000). 

However, the motif RGD is the most universal short sequence recognisable by many 

members of the integrin family, including α5β1, α8β1, αIIbβ3, αVβ1, αVβ3, αVβ5, αVβ6, and 

αVβ8.  Tripeptide RGD mimics the recognition sites of native ECM proteins, and is able to 

inhibit in a competitive manner their binding to cell integrins, but affinity of the short RGD 

containing peptides is relatively low; e.g. hexapeptide GRGDSP is 1000 times less effective 

in cell attachment assays than fibronectin  (Hautanen et al., 1989). The affinity of RGD-

integrin was shown to be strongly depenent upon peptide content with addition of amino 

acids according to the fibronctin sequence: RGD < RGD-NH2 < RGDS < RGDSP 

(Pierschbacher and Ruoslahti, 1987).   

The conformation of the RGD-loop and its flanking amino acids both in full-length native 

proteins and in short synthetic peptides are mainly responsible not only for their different 

integrin activity (Hersel et al., 2003, Ruoslahti, 1996), but also provide selectivity of binding 

by different integrins (Meyer et al., 2006).  Modern understanding of the structure of the 

extracellular domain of αVβ3 integrin encourages attempts to construct the peptides for 

selective binding of the certain receptors. The structural difference between αIIbβ3 and αVβ3 

allows the design of αVβ3/αIIbβ3 selective ligands, but the searching of αVβ5 selective 

ligand has not been successful yet. β5 and β3 subunits probably have high homology; most 

known small molecules show αVβ3 and αVβ5 biselectivety (Meyer et al., 2006). The 

structure of binding pockets of others RGD-integrins, including fibronectin-specific α5β1, 

have not yet been completely obtained. 
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1.7.1  Methods of RGD functionalisation 

Broad application the new technique RGD-coating in the dental/orthopedic implant design, 

tissue engendering and numerous scientific approaches promotes development of a variety 

of methods of immobilizing the short peptides to many materials. RGD could be covalently 

attached to the polymer, glass or metal surfaces via functional groups (hydroxyl-, amino- or 

carboxyl groups) and/or linker molecules.  

For immobilization of RGD peptides onto polymers in most cases linking via a stable covalent 

amide bond is used. This is usually done by reacting an activated carboxylic group on the 

surface with N-terminus of the peptide (Hersel et al., 2003).  To avoid a potential problem of 

coupling to the surface of the peptide functional amino groups, their blocking with other 

groups could be used (Krijgsman et al., 2002, Quirk et al., 2001).  The general drawback of 

this methodology is the necessity to remove the protecting groups afterwards; the harsh 

treatment in some cases could disrupt peptide bioactivity or affect long-term stability of the 

surfaces (Massia et al., 2000). 

The functional groups on the polymer surfaces for peptide coupling could be generated by 

chemical or physical treatment, e.g. alkaline hydrolysis, reduction, oxidation, or plasma 

treatment (Hersel et al., 2003). Another alternatives are blending with a polymer containing 

functional groups, e.g. poly-L-lysine (Quirk et al., 2001, Yang et al., 2001), and co-

polymerization (Bacakova et al., 2007, Deng et al., 2006, Park et al., 2004, Na et al., 2001). 

The use of self-assembled monolayers (SAMs) is the next strategy of peptide immobilisation 

to the surface. The SAM-modification could be applied to metal as well as glass and 

polymers, providing two general methodologies: 1) coupling of the peptides to the functional 

groups of self-assembled molecules on the surface and 2) use of peptide-containing 

molecules, that are able to assemble in SAMs. 

 

1.7.1.1  Self-assembled monolayers 

Since Sagiv (Sagiv, 1980) reported in 1980 about formation of SAMs of 

octadecyltrichlorosilane (OTS) the SAM-technique becomes common in applications of 

surface science.  Generally, a SAM is a single layer of molecules which are spontaneously 

formed upon solid substrates. The key advantage is that self-assembled monolayers are 

ordered, close-packed molecular assemblies. These thin (10±30Å) layers provide global 

changes in surface character. 

SAM formation provides surface functionalisation by organic molecules terminated by 

functional groups like -SH, silanes, NH2, -CN, and –COOH (Chaki and Vijayamohanan, 

2002). The first two types of SAMs, alkanethiols and organosilanes, could be described as 
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[-CH2-]n chains with a sulphur or silane ion anchor respectively. The end groups of molecules 

in such monolayers may be either hydrophobic (e.g., -CH3) or hydrophilic (e.g., -OH, 

-COOH), providing additional possibilities to control surface reactivity by monolayer 

functionalisation (see sections 3.1.4). 

Silanisation with silane compounds is a common method of modification of glass and others 

siliceous surfaces (SiO2, for example, as was performed in this work). Further immobilisation 

of biomolecules onto the silanised surface is commonly achieved with aminosilanes such as 

(3-Aminopropyl)-triethoxysilane (APTES) (Vansant, 1995). The reactivity of terminal 

aminogroups could be used for covalent binding to isothiocyanate (SCN) groups, for 

example. 

Formation of SAMs of thiols is based on the interaction of sulphur atoms with gold (Ulman, 

1989) silver (Shaporenko et al., 2005) or platinum (Perepichka et al., 2005). The adventage 

of a gold surface is its high resistance to oxidation. Since publication by Nuzzo and Allara in 

1983 concerning dialkyldisulfides (Nuzzo, 1983) many other organosulphur compounds have 

been reported to form SAMs on the gold surfaces in recent years. The point of our interests, 

SAMs formed by octadecylthiol (ODT) molecules on gold surface are stable, compact and 

ordered structures (Vaughan, 1992), (Meucci, 1999); these monolayers are hydrophobic and 

weakly modifies their characteristics even in the presence of redox mediators (Mecheri, 

2002). The advantages of the ODT SAMs makes them highly usable for surface 

functionalisation. 

 

1.8  Patterning methodologies 

The study of the effects of chemical and topographical surface patterning on cell attachment, 

growth and differentiation requires reliable microstructuring technology development. In the 

frames of the two-dimensional chemical patterning the soft lithographic as well as 

photolithographic technologies are commonly used.   

The photolithography has originally been developed for the fabrication of semiconductor 

devices. The basic idea is a patterning of surfaces as a result of UV irradiation through a 

mask, and could be applied to UV-sensitive polymers. A method of multi-step metal-polymer 

coating with final deletion of polymer layer proposed by Scotchford (Scotchford et al., 2003) 

allows the composition of the two metal layers. The limitation of the photolithographic 

methods concerns the physical resolution of the mask structure, mask thickness, and 

requirement of photosensitive materials. 
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The “soft lithography” is a general name for a group of technologies that use electrometric 

materials to create chemical structures on the surface.  The microcontact printing (µCP) and 

microfluidic patterning (µFLP) are two of them.  

Methods of µFLP use soft-polymer stamps for creation of microchannels pattern to deliver 

fluids to selective areas on the surface. The elastic polymer partly contacts with the 

substrate, protecting respective areas; unprotected substrate is open for biomolecules of 

solution that fills up channels of elastic muster (Nalayanda et al., 2007, Situma et al., 2005). 

The critical point of the method is time that is sufficient for biomolecules absorption or binding 

to the surface; in the case of surface-sensitive molecules this time could be relatively short 

and patterning procedure could perform without drying of the surface (Holden et al., 2004). 

µCP is the most widely used technique of soft lithography. Originally developed for 

microelectronics applications, µCP has become popular for patterning of surfaces for cell 

adhesion because of its simplicity, cost-effectiveness and flexibility. The common procedure 

is illustrated in Fig. 14. The main element of the technique is an elastomeric stamp that is 

formed by moulding of liquid-phase polymer (usually polydimethylsiloxane) over a 

microstructured master. The first step of µCP is covering the stamp with “ink”, a solution of 

molecules that later will be transferred to the surface. The molecules absorb on the stamp, 

covering it with homogeneous layer. Second step, actual stamping procedure transfers “ink” 

to substrate material. Final step is optional and allows backfilling of the non-stamped areas 

with second molecule. 

 

 

 

 

 

 

 

 

Fig. 14. Schematic representation of the microcontact 

printing (µCP) technique (Falconnet et al., 2006). 

 

The µCP technology is successfully applied for stamping of polymers (Na et al., 2006) as 

well as biomolecules (Oliva et al., 2003) via their absorption to materials of stamp and later of 

substrate. Printing patterned SAMs extends their utility, providing a flexible method of 

structured surface design. Printed onto the metal alkanothiols is a suitable pattern for further 

treatment by etching that deletes non-protected metal (Wilbur, 1996). 
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1.9  Motivation/ Outlook 

Combing the new technologies in creating topographically well defined 2D and 3D surfaces 

structures with optimal biocompatibility for different purposes, e.g. stem cell differentiation 

and tissue regeneration, is challenging. Multiple biomolecules have to be oriented arranged 

in defined patterns. This requires the development of different bioconjugation strategies that 

could be combined. 

The aim of this work is to create novel strategies of RGD-peptide coupling that could be 

easily applied to homogeneous but predominantly to structured surfaces. For this purpose a 

novel method to bind RGD-peptides covalently to aminated surfaces was developed and 

their biocompatibility was examined. Furthermore, a method for 2D surface patterning was 

designed to which the novel RGD-coupling procedure could be successfully and reproducible 

transferred.  
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2  MATERIALS  

2.1  Chemicals 

Acetone (Sigma Aldrich Chemie GmbH, Taufkirchen, Germany) 

Agarose (Invitrogen GmbH, Karlsruhe) 

Antibodies: 

 Rabbit polyclonal phospho-paxillin (tyr118) antibodies (Cell Signaling, USA) 

 Mouse monoclonal anti-human paxillin antibodies (BD Bioscience Pharmingen, USA) 

 Mouse monoclonal anti-human vinculin antibodies (Sigma Aldrich Chemie GmbH, 

Taufkirchen, Germany) 

 Rabbit polyclonal anti-human fibronectin antibodies (Sigma Aldrich Chemie GmbH, 

Taufkirchen, Germany) 

 Rabbit polyclonal anti-phosphohistone H3 antibodies (Upstate, USA) 

 CyTM2-conjugated goat anti-rabbit antibodies (Dianova, Hamburg, Germany) 

 CyTM2-conjugated goat anti-mouse antibodies (Dianova, Hamburg, Germany) 

 CyTM3-conjugated goat anti-rabbit antibodies (Dianova, Hamburg, Germany) 

 CyTM3-conjugated goat anti-mouse antibodies (Dianova, Hamburg, Germany) 

Butanethiol (Sigma Aldrich Chemie GmbH, Taufkirchen, Germany) 

Chloroform (Sigma Aldrich Chemie GmbH, Taufkirchen, Germany) 

Deoxyribonucleoside triphosphates (dNTPs)(Promega GmbH, Manheim)  

Dithiotritol (Invitrogen GmbH, Karlsruhe)  

Dimethylsulfoxide  (AppliChem GmbH, Darmstadt, Germany) 

Dulbecco’s modified Eagle medium with 4.5 g/L Glucose, Sodium Pyruvate (PAA 

Laboratories GmbH, Cölbe, Germany) 

Ethanol, absolute (Aldrich, Germany) 

Fetal calf serum (Invitrogen GmbH, Karlsruhe)  

Fibronectin 0,1 % solution from bovine plasma (Sigma Aldrich Chemie GmbH, Taufkirchen, 

Germany) 

Geneticindisulfat (G418®) (Carl Roth GmbH + Co KG, Karlsruhe, Germany)  

GoTaq® Polymerase (Promega, Manheim, Germany) 
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HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid ) (Carl Roth GmbH + Co KG, 

Karlsruhe, Germany) 

Hexylthiol (Sigma Aldrich Chemie GmbH, Taufkirchen, Germany) 

H-Gly-Arg-Gly-Asp-Ser-OH (Bachem, Weil am Rhein, Germany) 

MMLV reverse transcriptase (Promega, Manheim, Germany) 

Non-essential amino acids (Invitrogen GmbH, Karlsruhe) 

Octadecylthiol (Sigma Aldrich Chemie GmbH, Taufkirchen, Germany) 

Oregon Green® 488 phalloidin (Invitrogen GmbH, Karlsruhe) 

Phenylmethanesulfonyl fluoride (AppliChem GmbH, Darmstadt, Germany) 

Pluronic® F-68 10% solution (Sigma Aldrich Chemie GmbH, Taufkirchen, Germany) 

Penicillin-streptomycin mixture (Invitrogen GmbH, Karlsruhe) 

Polyethelenglicol-3350 (Sigma Aldrich Chemie GmbH, Taufkirchen, Germany) 

Pyromycin-dihydrochlorid (AppliChem GmbH, Darmstadt, Germany) 

Potassium hexacyanoferrate(II) trihydrate, K4[Fe(CN)6]x3H2O, (Sigma Aldrich Chemie 

GmbH, Taufkirchen, Germany) 

Potassium hexacyanoferrate(III), K3[Fe(CN)6], (Sigma Aldrich Chemie GmbH, Taufkirchen, 

Germany) 

Potassioum thiosulfate, K2S2O3, (Sigma Aldrich Chemie GmbH, Taufkirchen, Germany) 

Potassium hydroxide, (Sigma Aldrich Chemie GmbH, Taufkirchen, Germany) 

Random hexamer primers (Promega, Manheim, Germany) 

RNAtidy G (AppliChem GmbH, Darmstadt, Germany) 

Triton® X-100 (AppliChem GmbH, Darmstadt, Germany) 

Trypsin / EDTA (Invitrogen GmbH, Karlsruhe)  

Trypsin inhibitor from soybean (AppliChem GmbH, Darmstadt, Germany) 
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2.2  Buffers 

TAE:  40 mM Tris / acetate, pH 8.3, 1 mM EDTA  

1x PBS:  137 mM NaCl, 2.7 mM KCl, 6.5 mM Na
2
PO

4
, 1.5 mM KH

2
PO

4
, pH 7.5 

PBS-Tween:  1x PBS, 0.05% (v/v) Tween 20 

1x APBS:   103 mM NaCl, 2.0 mM KCl, 5 mM Na
2
PO

4
, 1.1 mM KH

2
PO

4
, pH 7.5 

Hepes Buffer:  5 mM KCL, 140 mM NaCl, 1 mM MgCl
2
, 0.9 mM  CaCl

2
, 25 mM HEPES,  

pH 7.4 

 

2.3  Solutions 

Antibodies: 

 Mouse monoclonal anti-paxillin (diluted 1 : 1000 in 2,5% BSA / PBS)   

 Mouse monoclonal anti-vinculin (diluted 1 : 1000 in in 2,5% BSA /0,1 % Triton X100 / 

PBS)    

 Rabbit polyclonal anti-phosphopaxillin (diluted 1 : 250 in 2,5% BSA / PBS)  

 Goat-anti-mouse CyTM3 antibodies (diluted 1 : 400 in 2,5% BSA / PBS)  

 Goat-anti-rabbit CyTM3 antibodies (diluted 1 : 400 in 2,5% BSA / PBS)  

 Goat-anti-mouse CyTM2 antibodies (diluted 1 : 300 in 2,5% BSA / PBS)  

 Goat-anti-rabbit CyTM3 antibodies (diluted 1 : 300 in 2,5% BSA / PBS)   

Butanethiol (2 mmol and 10mmol in ethanol) 

DAPI (1 mM in PBS) 

Octadecylthiol (2 mmol in ethanol) 

Oregon Green® 488 phalloidin (diluted 1 : 100 in PBS) 

Phenylmethanesulfonyl fluoride (PDMF), stock (0,25 M in Ethanol)  

Pyromycin-dihydrochlorid (10 mg/ml stock solution in HEPES buffer) 

Trypsin inhibitor from soybean (STI), stock (1 mM in water)  
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2.4  Cultured cell lines 

MC3T3-E1 pre-osteoblastic cells, mouse embryo/fetus calvaria fibroblasts (DCMZ ACC 210) 

Mouse B16 beta3–GFPintegrin–expressing melanoma cells (Ballestrem et al., 2001) 

Rat embryonic fibroblasts (REF52) stably expressing YFP-paxillin (Zimmerman et al., 2004) 

Swiss mouse 3T3 fibroblasts L1, embryonic cell line (ATCC CL-173) 

Xenopus tadpole fibroblasts (Pudney et al., 1973) 

 

2.5  Equipment 

Centrifuges:  

 Biofuge fresco (Kendo, Langenselbold, Germany)  

 Multifuge
R 

3S-R (Kendo, Langenselbold, Germany)  

Confocal Microscope System Zeiss LSM-510 Meta (Jena, germany) equipped with  

 Argon laser (458, 488, 514 nm excitation) 

 Diode Pumped Solid State (DPSS) laser (561 nm) 

 Diode 405-30 laser (405 nm)  

 Helium-Neon Laser (633 NM excitation) 

 Software: LSM Image Browser  

IKA Ultra Turrax® Homogenizers (IKA Labotechnik, Staufen, Germany) 

Fluorecence microscope DMIRE2 (Leica Microsystem, Bensheim) equipped with 

 Digital camera C4742-95-12 ERG (Hamamatsu, Heidelberg, Germany)  

 Software: Openlab 3.1.2 (Openlab, Heidelberg, Germany)  

High vacuum coating unit (Institute for Applied Physics, FZK, Karlsruhe, Germany) 

PCR cycler, Personal cycler and UNO II (Biometra , Göttingen, Germany)  

pH meter pH 521 (WTW, Weilheim, Germany)  

Scanning electron microscope LEO 1530 Gemini (Oberkochen, Germany)  

equipped with FEG 

 Spectrophotometer, Bio-photometer (Eppendorf, Hamburg, Germany)  

 Spectrophotometer, Ultraspec 2100 pro (Amersham, Freiburg, Germany)  
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Water bath: Victor Recker (Krankenhaus-laborbedarf, Berlin, Germany)  

Weighing balances, LC2201P and ISO9001 (Satorius, Göttingen, Germany)  

 

2.6  Materials 

Cell culture flasks 50 cm2 and 250 cm2 (Greiner Bio-One GmbH, Frickenhausen, Germany) 

Glasses 15X15 mm and D12mm (Fisher Scientific GmbH, Schwerte, Germany) 

Microscope Immersion Oil “Immersol” (Carl Zeiss Jena GmbH, Jena, Germany)  

µ-Slid 8 well (Ibidi GmbH, München, Germany)  

Petri dishes, polysterene, 5 ml (Sarstedt, Nümbrecht, Germany). 

Silicone elastomer Sylgrad 184 stamp (Dow Corning, US)  

Grids for transmission electron microscopy (TEM grids) with 400 bars/inch (Agar Scientific, 

England) 
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3  METHODS 

3.1  Functionalisation of surfaces  

3.1.1  Aminosilanisation 

To form functional aminogroups on the surface for further covalent binding to isothiocyonate 

end groups of synthetic peptides I used a procedure of silanisation of glass or SiO2 slides 

with (3-Aminopropyl)-triethoxysilane (APTES). Both liquid and gas phase aminosilanisation 

provides formation of SAM on the surface.  

For cleaning, glass and SiO2 slides were rinsed with absolute acetone, ethanol, and finally 

distilled water. After drying under nitrogen the slides were aminosilanised for 30 seconds in 

4% APTES in chloroform (liquid phase) or for 10 minutes in the presence of APTES vapour 

(gas phase) in a glass container under nitrogen. The aminosilanisation of slides was followed 

by chloroform rinsing and 1 h heating at 40°C to evaporate trace quantities of chloroform. 

 

3.1.2  Fabrication of metal covered slides  

A gold coating was applied to both glass and SiO2 slides. At first, 15x15 mm2 glass and 

10x10 mm2 SiO2 slides were cleaned by rinsing consecutively with acetone, absolute 

ethanol, distilled water and then dried under nitrogen. The coating of the slides with gold 

layer required at first the creation of a chromium layer (thickness 1-2 nm), which acts as an 

adhesion promoter between the glass and the gold. Both metal coatings were formed by e- 

beam evaporation in a home built high vacuum coating unit. The evaporation was performed 

at a chamber vacuum of 10-8 mbar before evaporation and 10-7
 mbar during evaporation and 

with typical evaporation rates of 0.02 - 0.03 nm/s. The control of metal layer thickness was 

performed by a quartz micro crystal balance. Deposition of a 50 nm gold layer required about 

30 minutes after which the samples were kept in the chamber for 15 minutes for cooling 

down. 

The deposition of a 50 nm silver layer on glass slides (with 1 nm chromium layer as adhesion 

promoter) was performed in the same way. The silver-covered samples were not used for the 

preparation of RGD-functionalised structured samples because the silver layer was 

completely floated and resolved during the etching procedure as described in the following 

section. 
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3.1.3.  Microcontact printing and thiol SAMs formation 

To design a patterned gold surface a method of microcontact printing (µCP) was chosen. 

µCP technology allows the creation of a pattern by printing of thiol SAM (in this work, ODT) 

onto the gold surface. As a stamp a polydimethylsiloxane (PDMS) form was used, taken from 

a microfabricated silicon master. 3.5 x 10-2 M solution of ODT in ethanol was used as ink. 

The printed ODT-monolayer protected appropriated areas of gold underneath during the next 

step of pattern design, etching of gold, which was done as follows. 20 µl of ink (ODT in 

ethanol) was dropped on stamp surface and after 20 sec the liquid was blown away and the 

stamp surface was dried under nitrogen. After 40 sec the stamp was pressed onto the gold 

substrate for 60 sec and removed again.  

By the immersion of the substrates in aqueous solution of 3.2 mg potassium 

hexacyanoferrate(II) trihydrate (K4[Fe(CN)6]x3H2O), 33 mg potassium hexacyano-ferrate(III) 

(K3[Fe(CN)6]), 190 mg potassium thiosulphate (K2S2O3) and 400 mg potassium hydroxide in 

10 ml deionised water the metal is reduced and removed solely at those surface areas which 

were not covered with thiol layer by µCP. 

After the etching process the samples were rinsed with water and dried under nitrogen. In the 

last step the samples were aminosilanised (as described in section 3.1.1) for 

functionalisation of glass areas with amino groups. 

For µCP and etching slides were immediately used after gold evaporation.  

 

3.1.4  Biofunctionalisation with RGD-peptides 

3.1.4.1  RGD peptides 

The peptides functionalised with isothiocyanate anchor were synthesised in Prof. Dr. Kessler 

laboratory (TU Munich). The linear peptides PDIT-Ahx-Ahx-GlyArgGly-AspSer-OH (GRGDS) 

and PDIT-Ahx-Ahx-GlyArgGlyAspSerPro-OH (GRGDSP) including their corresponding 

controls PDIT-Ahx-Ahx-GlyArgβAlaAspSer-OH (GβADS) and PDIT-Ahx-Ahx-GlyArgβAla-

AspSerPro-OH (GβADS) were synthesized by Solid Phase Peptide Synthesis (SPPS) on 

tritylchloride polystyrene (TCP) resin (Barlos et al., 1989a) according to Fmoc strategy   

(Barlos et al., 1989b; Pearson et al., 1989) The cyclic peptides c(-RGDfK-) and c(-RGDfKG-) 

as well as the corresponding control peptides c(-RβADfK-) and c(-RβADfKG-) were 

synthesized in a similar way as described by Kantlehner et al. 1999 (Kantlehner et al., 1999) 

and afterwards coupled in solution with the spacer-anchor fragment OH-Ahx-Ahx-PDIT, to 

give the corresponding desired functionalised compounds PDIT-Ahx-Ahx-c(-RGDfK-), PIDT-

Ahx-Ahx-c(-RGDfKG-), PDIT-Ahx-Ahx-c(-RβADfK-) and PDIT-Ahx-Ahx-c(-RβADfKG-).   
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3.1.4.2  RGD peptide coupling 

The lyophilized peptides were dissolved in DMSO at 4 mg/mL and diluted with 100 mM 

Na2HPO4 pH 9.5 to the desired concentration; for cell adhesion assays, the final 

concentration was 0.4 mg/ml. During coupling isothiocyanate groups of peptides bind the 

NH2-groups on the aminosilanised glass (or SiO2) surfaces. The coupling to unstructured and 

micro structured surfaces was carried out in a wet chamber at room temperature.  

After four times 10 min washing with PBS the slides were washed two times with DMEM 

before being used for cell-adhesion. 

 

3.1.4.3  PEG or Pluronic® passivation 

The cell adhesion experiments showed that biofunctionalisation of structured surfaces 

requires an additional blocking/passivation step before or during the peptide coupling to 

prevent unspecific absorption of peptides to gold-ODT layers (see section 4.9.6). Three 

different modification of the passivation treatment were performed: 

(1) 10 min incubation of the structured surfaces with 5% PEG solution followed by 2 hours 

peptide coupling; 

(2) 10 min incubation of the structured surfaces with 5% Pluronic® solution followed by 2 

hours peptide coupling; 

(3) 2 hours peptide coupling in the presence of 2 mM Pluronic® in coupling solution. 

I proved that all these methods could be applied to “gold-ODT – NH2-glass” structured 

surfaces, but for further tests of structured RGD-functionalised surfaces I have made a 

choice in favour of peptide coupling in the presence of Pluronic®. 

 

3.1.5  Coating of the surfaces by absorption  

3.1.5.1 Fibronectin coating 

0,1% fibronectin (Sigma) solution diluted 1 : 5 in water was incubated overnight in plastic µ-

slide wells at 4°C. 100 µl of solution per well was used. After washing with PBS 100 µl of 1% 

pure BSA (Promega) in PBS was added in the well for 30 minutes. After washing 3 times for 

10 min with PBS the slides were used for cell-adhesion. 
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3.1.5.2  Absorbed RGD-peptides on the surfaces 

1 mg/ml peptide solution in PBS was incubated overnight in plastic µ-slide wells at 4°C. 100 

µl of solution per well was used. After washing with PBS 100 µl of 1% pure BSA (Promega) 

in PBS was added in the well for 30 minutes. After washing 3 times for 10 min with PBS the 

slides were used for cell-adhesion. 

 

3.1.6  Fabrication of homogeneous thiol layers on gold 

3.1.6.1  Fabrication of homogeneous ODT-SAMs  

Gold coated glass (50nm thickness of gold layer) were incubated for 2 minutes in 3.5 x 10-2 

M solution of ODT in ethanol, before being rinsed with water and then dried under nitrogen. 

 
3.1.6.2  Fabrication of homogeneous layers of short thiols  

Gold coated glass (50 nm thickness of gold layer) was incubated for 2 minutes in 2 mM or 10 

mM solution of hexylthiol or butanethiol in ethanol. Next they were rinsed with water then 

dried under nitrogen. 

 

3.1.7  Alternative patterning: Gold evaporation through the mask 

Glass slide was APTES-silanised in liquid phase (see section 3.1.1). Immediately after 

silanisation the TEM grids with through slits (400 bars/inch) was fixed on the slide. The slide 

with mask was placed in a high vacuum coating unit and coated with 1nm chromium and 25 

nm gold (see section 3.1.2). After 15 minutes cooling in the chamber the samples were ready 

for further preparation. 

 

3.2  Cell biology methods 

3.2.1  Cell culturing  

Working with cell cultures was always performed under sterile conditions. Mouse 3T3 Swiss 

fibroblasts were cultured in Dulbecco’s modified Eagle medium (DMEM with 4.5 g/l glucose, 

sodium pyruvate) supplemented with 10% FCS, 1% penicillin-streptomycin mixture, and 1% 

non-essential amino acids at 37°C at 7% CO2 supply, 95% humidity. Rat embryonic 

fibroblasts (REF52) stably expressing YFP-paxillin and mouse beta3–GFPintegrin–

expressing melanoma cells were cultured at the same conditions additionally supplied with 
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pyromycin-dihydrochloride (final concentration: 1 mg/ml), and geneticindisulphate (G418®)  

(final concentration: 1.5 mg/ml) respectively. Xenopus tadpole cells were cultured in DMEM 

with 4.5 g/l glucose and sodium pyruvate, supplied with 10% FCS, 1% penicillin-streptomycin 

mixture, 1% non-essential amino acids and 25% H2O at 24°C at 7% CO2 supply, 95% 

humidity. 

After reaching approximately 70% confluence, the cultivated in 50 cm2 flasks cells were split 

1:4 (every 2-4 days). For this, the medium was removed and 1 ml of 0.05% trypsin/ 0.02% 

EDTA solution pre-warmed to 37°C was added to the culture and left in the incubator at 37% 

for approximately 5 minutes until detached from the flask. Trypsin activity was stopped by 

addition of the cell culture medium to the flask.  

 

3.2.2  Cell adhesion assay 

The confluent cell cultures were detached by trypsin/ EDTA treatment. To remove trypsin 

from cell suspension in DMEM, 5 µl of 1 mM soybean trypsin inhibitor (STI) per every 5 ml 

medium was added (final concentration of STI was 10 µM), followed by 3 min centrifugation 

at 900 rpm. After removal of the supernatant, the concentration of the cell suspension was 

reduced to 1.4 x 105 cells in 10 µM STI in DMEM.  To avoid serum-fibronectin contamination 

cell adhesion assays were performed in serum free medium. 

In the 5 ml polystyrene Petri dishes peptide or protein functionalised glass surfaces were 

covered with 5 ml of cell suspension and incubated at 37°C and 7% CO2 for a time sufficient 

for cell spreading depending on the specific cell line that was used. 

 

3.2.2.1  Phenylmethanesulfonyl fluoride (PMSF) as trypsin inhibitor 

PDMS was used as an alternative trypsin inhibitor in the cell adhesion assay procedure. After 

re-suspension of cells adherent to the cell culture dishes, 50 µl of 0,25 M PMSF in 100% 

ethanol was added to every 5 ml of cell suspension; final concentration of PMSF was 2.5 

mM. Adding of the trypsin inhibitor into the solution was followed by 3 min centrifugation at 

900 rpm. After removal of the supernatant, the concentration of the cell suspension was 

reduced to 1.4 x 105 cells DMEM. Further procedures were exactly the same as described in 

section 3.2.2. 
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3.2.2.2  Cell adhesion assay in the presence of Pluronic® 

The cell assay procedure was as described in 3.2.2, excluding the addition of 5 µl of 10% 

Pluronic® solution in the serum-free cell-cultivation medium in every 5 ml Petri dish. 

 

3.2.3  Cell proliferation assay 

The cells were seeded in 5 ml Petri dishes with test samples as described in section 3.2.2 in 

concentration 0.7 x 105 cells in 10 µM STI in serum free DMEM. After 4 hours of incubation at 

37°C and 7% CO2 serum free medium was replaced by supplemented with 10% FCS DMEM. 

Formaldehyde fixation of attached to samples cells was performed in 4, 24 and 48 hours 

after cell seeding. To enumerate cells in the mitotic phase the immunostainig with antibodies 

against phosphorilated histone H3 was performed. Total number of cells was counted with 

DAPI staining. 

 

3.2.4  Competition assays 

The competitive assays were performed for (1) RGD-peptides absorbed on the plastic 

bottom of µ-slide wells and (2) RGD-peptides that were coupled to amino-functionalised 

glasses. 

(1) 200 µl of 1 mM RGD-peptide solution in PBS was added in a µ-slide well and incubated 

overnight at 4°C. After washing with PBS, 200 µl of pure BSA in PBS was incubated in a µ-

well 30 minutes at RT and then it was washed 3 times with PBS, before addition of cell 

suspension with simultaneously supplied with the soluble RGD peptide (see below). 

(2) The RGD-functionalised slide was placed onto the bottom of a µ-slide well. 200 µl of pure 

BSA in PBS was incubated in a µ-well for 30 minutes at RT. The µ-well was washed three 

times with PBS followed by addition of cell suspension together with the soluble RGD 

peptide. 

The cells were trypsinised, and the cell suspension was supplied with STI as described in the 

section 3.2.2. The final concentration was 0.7 x 105 cells in 10 µM STI in DMEM (without 

FCS). 200 µl of the cell suspension was placed in the well of a µ-slide. Simultaneously 6 µl of 

stock solution of H-Gly-Arg-Gly-Asp-Ser-OH (0,1 M in PBS) was added into the suspension; 

the final concentration of the soluble peptide in the well was 3 mM. After 1 hour incubation at 

cell cultivation conditions, the cell suspension was removed; the surface attached cells were 

washed, fixed and stained as described in the following section. 
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3.2.5  Immunocytochemistry 

Slides with attached cells were rinsed three times with PBS and fixed in 4% formaldehyde / 

PBS for 10 min at RT. Cells were permeabilised in 0.5 % Triton X-100 for 10 min and 

washed three times with 0,1 % Triton X100 / PBS prior to blocking with 2.5% bovine serum 

albumin / PBS for 1 hour. Components of focal adhesion complex such as paxillin, 

phospopaxillin, and vinculin were detected with respective monoclonal or polyclonal first 

antibodies (see section 2.3), and incubated in the antibody solution overnight at 4°C. For 

every 15x15 mm2 sample slide 150 µl of antibody solution was used. After washing with PBS 

(3 times) a solution of secondary goat-anti-mouse or goat-anti-rabbit fluorophor-coupled 

antibodies was added for 30 min at 37°C. A washing step (PBS, 3 times) was followed by 

counterstaining with Oregon Green® 488 phalloidin, 30 min, at RT. A nuclear staining with 

DAPI was carried out for 3 min at RT. After three washes with PBS the samples were 

mounted in elvanol. 

When Xenopus fibroblasts were analysed PBS was replaced by APBS due to the different 

osmolarity of amphibian cells.  

 

3.3  Microscopic methods and surface quality control  

3.3.1  Microscopy and image analysis 

Fluorescence of fixed and stained cells were recorded on a Leica DM IRE2 inverted research 

microscope with 5x, 10x, 20x, 40x, and 63x objectives, equipped with a 16 bit greyscale 

digital camera. Narrow band filters A4, L5, and Y3 were used for registration of blue (DAPI), 

green (GFP and Oregon Green® 488), and red (Cy3) fluorescence correspondingly. Images 

exposure times were dependent on signal strength. Greyscale images from every filter were 

handled, coloured and overlaid with Openlab 3.1.2 software package. 

 

3.3.1.1  Statistics 

For statistical data images made on Leica fluorescent microscope were used. The size of an 

image of the surface made with the 40x objectives is 0.03 mm2. The number attached to the 

surfaces cells was counted on a minimum of 30 images for every sample slide. To ensure 

data accuracy the results of calculations for a minimum of 3 different slides were used. The 

numbers of adhered cells were calculated to 1 mm2 and presented as mean ± standard 

deviations. Statistical significance was proved with Student’s t-test.  
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3.3.2 Confocal laser scanning microscopy  

Confocal microscopy is a technique for obtaining high resolution scans of optical slices 

through specimen without having to cut the specimen mechanically. 

Due to the precise lenses and the confocal way of gathering backscattered light, confocal 

microscopes have a higher in-depth resolution than ordinary light microscopesand filter out 

most of the photons coming from out of focus planes. Zeiss LSM-510 Meta Confocal 

Microscope System equipped with an Argon laser (458, 488, 514 nm excitation), Diode 

Pumped Solid State (DPSS) laser (561 nm), Diode 405-30 laser (405 nm), and Helium-Neon 

Laser (633 NM excitation) was used.  

DAPI fluorescence was excited at 405 nm with Diode 405-30 laser, and detected through a 

420–480-nm band-pass filter; pinhole 90 µm. Cy2, Oregon Green, GFP and YFP 

fluorescence was excited at 488 nm with Argon laser, and detected through a 518–550-nm 

band-pass filter; pinhole 96 µm. Cy3 fluorescence was excited at 561 nm with DPSS laser, 

detected through long pass filters at 575 nm; pinhole 78 µm. To improve the signal to noise 

ratio the mode of averaging of 4 lines per frame was chosen. LSM Image Browser software 

was used for image export to TIF-files. 

 

3.3.3  Scanning electron microscopy  

To investigate surface topography scanning electron microscopy (SEM) was used. In a SEM, 

a focused electron beam is scanned along the sample, and detection of secondary or 

backscattered electrons allowed to image probe surface.  

Here, the SEM observations were performed with high-resolution (1.5 nm) microscope LEO 

1530 Gemini equipped with FEG. Imaging with secondary electrons provided investigation of 

gold samples without any additional coating of the surface. 

 

3.3.4  Contact angle measurement 

For the contact angle measurements drops of 50 µl of the peptide solution were placed on 4 

different amino functionalised cover glasses and were removed after 0.25, 1, 2 and 4 hours 

by rinsing the samples with bidistilled water. This experiment was performed with peptide 

concentrations of 0.625 mg/ml, 2.5 mg/ml and 10 mg/ml. Contact angles investigations were 

carried out with bidistilled water using an OCA 20 from data physics (Germany) operated in 

the sessile drop method. The drop volume was 0.5 µl. 
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3.3.5  X-ray photoelectron spectroscopy (XPS) measurement 

XPS experiments were performed in an ESCALAB-5 electron spectrometer (VG Scientific, 

East Grinstead, UK). The photoelectrons were excited by means of non-monochromatized 

MgKα radiation (200 W) in a sample area of about 50 mm2. The kinetic energy of the 

electrons was measured by a 150° hemispherical energy analyzer operated in the constant 

analyzer energy mode (CAE) using 20 eV pass energy for elemental spectra. The 

photoelectron take-off angle was set to 45° with respect to the sample normal. The binding 

energy scale was calibrated using a value of 285.0 eV for the adventitious C 1s 

photoelectron peak and controlled by means of the well-known peaks of metallic Cu, Ag, and 

Au, respectively. 

 

3.4  Molecular biology methods 

3.4.1  Isolation of RNA 

Total RNA was isolated from cultured mouse 3T3 Swiss fibroblasts. A confluent cell 

monolayer of a 50 ml cultured flask was scratched from the bottom and suspended in 1 ml of 

PBS. After 5 minutes centrifugation at 900 rpm the cell pellet was immediately homogenized 

in RNAtidy G. RNAtidy G is a solution of phenol and guanidine isothiocyanate, and dissolves 

cell components while maintaining the RNA integrity. The cell suspension was homogenized 

in 500 µl RNAtidy with ultrasonic homogenizer IKA Ultra Turrax®. For removal of proteins, 

100 µl chloroform was added and vigorously agitated by hand for 15 sec. After 10 000 rpm 

centrifugation for 15 minutes at 4°C, the upper aqueous phase containing the RNA was 

transferred into a sterile tube. A second chloroform extraction was performed and RNA was 

precipitated at -80°C for at least 1h with two volumes of absolute ethanol and 1/10
th 

volume 

3M sodium acetate solution. Following 30 minutes centrifugation at 10,000 rpm the RNA 

pellet was washed with 70% ethanol, dried at RT re-dissolved in an appropriate volume of 

DEPC water.  

  

3.4.2  Quantitative and qualitative determination of total RNA 

Following the RNA elution, RNA was diluted 1:1 with bromophenol blue loading buffer for 

gelelectrophoresis and 1:10 with DEPEC water for spectrophotometry (see sections 3.4.5 

and 3.4.6. 
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3.4.3  Complementary DNA synthesis 

The transcription is the process of overwriting genomic DNA in mRNA. With reverse 

transcriptase it is possible to transcribe mRNA in complementary DNA (cDNA) in vitro. In this 

study, for cDNA synthesis into a microcentrifuge tube 1 µg of total RNA and 1 µl random 

hexamer primers (0.5 µg/µl) were added. After mixing by pipetting, the mixture was heated at 

70°C for 10 minutes and quickly chilled on ice to allow random hexamer primers to bind to 

mRNA. The sample was briefly centrifuged and 4 µl of 5x first strand buffer, 2 µl 10 mM DTT, 

1 µl 10 mM dNTP mix and 1U RNase inhibitor dithiotritol were added to the sample. After 

gently mixing, 0.5 µl (100 U) of reverse transcriptase was added. The reaction was incubated 

at 42°C for 50 minutes then inactivated by heating at 70°C for 15 minutes and stored at -

70°C or used directly for PCR (see section 3.4.4). To control specificity of reverse 

transcription, -RT was also performed using all the other components together with DEPC 

water instead of the reverse transcriptase. 

 

3.4.4  Polymerase chain reaction (PCR) 

PCR is a process of exponential amplification of DNA material using artificial oligonucleotides 

(Meuer et al., 2001). There are three general steps in PCR: melting of DNA template, 

annealing of primers, and extension. The DNA amplification proceeds by temperature cycling 

of the sample. To control temperature for each step a Thermocycler could be used.  

At the melting step, by heating at 95°C DNA template splits into two single-stranded 

molecules. Decreasing of the temperature on the melting step allows small oligonucleotides 

that serve as primers to associate with the single stranded DNA molecules. The annealing 

temperature depends on oligonucleotides contents and could be chosen as 3-4°C lower than 

Tm = 2°C x (Σ(A+T)) + 4°C x (Σ(G+C)).  On the extension (amplification) step, beginning with 

primers heat stable Taq DNA polymerase copies the complete DNA. The optimum 

temperature for amplification normally is 72°C. 

In this work PCR was used to check the expression of integrin genes by mouse 3T3 Swiss 

fibroblasts. To a final volume of 50 µl, reaction buffer (5 x Green GoTag FlexiBuffer), 

nucleotide mix (2.5 mM each), primers (25 µM each), 10 ng DNA template, 1.5 U GoTaq as 

polymerase, and water was added. PCR run in the cycler; the cycler program was designed 

according request for every primers pair.  
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Table1. Primers used for RT-PCR assays. 

Integrin 

subunit 

Forward primer Seq. 

location 

Reverse primer Seq. 

location 

Fragm. 

size 

(bp) 

Anne-

aling 

T(°C) 

Num. 

of 

cycles 

αIIb 5’-TGGTGGTGGC 

AGCAGAAGAA-3’   

2397 - 

2417 

5’-GTAGGGAGG 

AGACG TTGAAC-3’   

2898 - 

2918 

521 55 °C 36 

αv 5’-GTGGGAGACT 

TCAATGGTGA C-3’   

990 - 

1010 

5’-CTGTCTACATCT 

GTA GCTCCC -3’   

1536 - 

1557 

567 55 °C 36 

α5 5’-AAAAGAAACT 

TCAGGTGGCC-3’   

3121 - 

3141 

5’-GAGTCTGAGAT 

CAG GAGGACT -3’   

3341 - 

3362 

241 55 °C 34 

β1 5’-GCTAT 

CGTGCATGTT 

GTGGAG -3’  

2316 - 

2337 

5’-GTTATAATCC 

ATGC CAGGGAC-3’ 

  

2737 - 

2758 

442 55 °C 36 

β3 5’-GAAGGAGAAC 

CTGCTGAAGG-3’   

3228 - 

3248 

5’-GGTTGC TAGT 

AAGC TTGCGC-3’   

3552 - 

3572 

344 55 °C 36 

β5 5’-GAGGATC TAC 

GGACCTT TCTG-3’   

1824 -

1845 

5’-CACCACCA GTG 

CAAAGATGAG-3’   

2174 - 

2195 

371 55°C 32 

β6 5’-GGCTAAAGT 

GGAG CTGTCAG -3’ 

  

738 - 

758 

5’-CTGCTGTCTGC 

AA GGAGAAG-3’   

1108 - 

1128 

390 55°C 32 

β8 5’-CAAAGGACAG 

TGTGCGGAAG-3’   

1425 - 

1445 

5’-GTTGACACAG 

TGCTGTGCTG-3’   

1759 - 

1779 

354 50°C 36 

GAPDH 5’-ACCACAGTCC-

ATGCCATCACT-3’   
 5’-GTCCACCACCC 

TGTTGCTGTA-3’ 

 400 55°C 25 

 

 

3.4.5  Agarose gel electrophoresis  

The agarose gel electrophoresis was used for size-separation of the DNA or RNA fragments. 

Generally the electrophoretic mobility of DNA/RNA fragments depends on the fragment size 

and to a lesser extent on the conformation of the DNA/RNA. Type and concentration of 

agarose as well as applied voltage and electrophoresis buffer used also affects the 

electrophoretic mobility. Agarose gels could be used to resolve DNAs in the great range: of 

50bp to 20 kbp in length. Work with smaller sized DNAs requires a relatively high (2 – 3%) 
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concentration of agarose gel. For the visualisation of the DNA bands ethidium bromide is 

used. 

For separation of PCR products 300 - 600 bp length 1% agarose gel was used. The agarose 

was solved in 1x TAE, and heated in a microwave oven for approximately 1 minute until 

agarose powder was completely solved. After cooling the solution to ~60°C, ethidium 

bromide was added, at final concentration 1 µg/ml. The solution was poured into a gel 

chamber and left to solidify at RT. Gels were electrophoresed at 80V for 40 min. The 

ethidium bromide bond DNAs were visualized under UV light. 

Buffers and solutions:  

50x TAE: 2 M Tris, 50 mM EDTA·Na
2
x 2H

2
O, 1 M acetic acid, pH 8.3.  

1% ethidium bromide stock solution: working concentration 0.5 µg/ml 

10 x loading buffer: 57% glycerol, 100 mM Tris pH 8.0, 10 mM EDTA·Na
2
x 2H

2
O, ~ 0.001% 

bromophenol blue.  

 

3.4.6  Photometry 

For quantification of RNA and DNA photometry was used. Due to their characteristics 

absorption maximum at 260 nm, nucleic acids can be photometrically quantified. 

Contamination with proteins which also have an absorption maximum at ultraviolet 

wavelengths, λ = 280 nm, can falsify the result. Therefore, the ratio of absorption at both 260 

nm to absorption at 280 nm greater than 1.9 for DNA, or greater than 1.8 for RNA is 

indicative of samples that are free of these contaminants. For uncontaminated nucleic acid 

solutions the Lambert-Beer law is applicable: 50 µg/ml double-stranded DNA have an OD260 

of 1.0; 40 µg/ml single-stranded DNA or RNA have an OD260 of 1.0. 
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4  RESULTS 

4.1  Biofunctionalisation of surfaces 

4.1.1  RGD-peptides absorption vs. coupling 

To create a surface with an optimal orientation of the peptide synthetic RGD-peptides used 

for surface biofunctionalisation in this study have an isothiocyanate anchor that is able to 

react with NH2 groups of surfaces (Fig. 15). The necessary NH2-functionalisation of the 

surfaces was performed by liquid and gas phase amino-silanisation of glass or SiO2 slides 

with APTES (see section 3.1.1).  

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15. Coupling of the linear 

GRGDS peptide to a surface 

amino group via an isothio-

cyanate anchor. 

 

To investigate the behaviour of cells on the absorbed RGD-peptide we incubated linear 

GRGDS dissolved in PBS at pH 7.4 in a 1 mg/ml concentration on the plastic surfaces of µ-

slide wells (Ibidi). The solution of commercial peptide GRGDS (Bachem) that has neither Ahx 

spacer nor isothiocyanate group was incubated in  µ-slide wells at the same conditions. Fig. 

16A and 16B show the differences in behaviour of mouse 3T3 Swiss fibroblasts on both 

peptides. The cells are fully spread on the absorbed GRGDS that was synthesised in the 

laboratory of Prof. Dr. Kessler while they spread to a less extent on the commercial peptide 

GRGDS (Bachem).  

The competitive binding assay proved the specificity of RGD-recognition of surface absorbed 

GRGDS by the cells. When present in the cell assay medium at a concentration of 1.5 mg/ml 
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soluble GRGDS completely prevented spreading of fibroblasts on the surface; only round 

cells were found after 1 h of incubation of cell suspension in µ-slide well (Fig. 16C). 

 

Fig. 16. Mouse 3T3 Swiss fibroblasts on the functionalised surfaces. The cells are fully spread on 

the absorbed GRGDS that was synthesised in laboratory of Prof. Dr. Kessler (A) and less extended 

spread on the commercial peptide GRGDS (Bachem) (B). Soluble GRGDS completely prevented cell 

spreading on the absorbed GRGDS from Kesslers Laboratory (C). The fibroblasts are fully spread on 

fibronectin (D) and coupled GRGDS (E), failing the spreading on pure BSA (F). The cells were stained 

for filamentous actin (green) and paxillin (red); nuclei were stained with DAPI (blue). Bars: 50 µm. 

 

Fig. 16D and 16E illustrate the spread morphology of 3T3 Swiss fibroblasts on the fibronectin 

layer and covalent couplings to the surface GRGDS peptide. On the both surfaces the 

fibroblasts demonstrate spread multi-polar cell shape and formed mature focal adhesions 

that were visualised with anti-paxillin staining. 

To prevent unspecific adhesion by charge interactions samples were incubated with 1% pure 

BSA for 30 minutes before cells were seeded onto the surfaces. Fig. 16F shows the inert 

character of BSA to cells. The fibroblasts did not spread on BSA alone. Only few round cells 

were found attached on BSA extending very short protrusions. 

 
4.1.2  Development of coupling conditions 

To prepare a basic pH solution necessary for the reaction of peptide isothiocyanate groups 

with NH2 groups of surfaces the lyophilized peptides after dissolution in DMSO at 4 mg/ml 

were diluted with 100 mM Na2HPO4 pH 9.5 to the desired concentration. The necessary 
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duration for coupling and most efficient peptide concentration was determined by contact 

angle measurement and cell adhesion assays. But first, the requirement of the NH2-group 

was testes by comparing untreated glass and amino-functionalised glass slides after 

incubation with GRGDSP-peptide solution. In the both cases the incubation conditions were 

the same. The cell adhesion assay showed significant difference in the 3T3 Swiss fibroblasts 

recognition of these surfaces; after 1 hour of incubation the cells spread on the GRGDSP-

functionalised aminosilanised glass but remained round on the untreated glass that was 

incubated with GRGDSP at coupling conditions (Fig. 17). 

 

 

 

 

 

 

 

 

Fig. 17. Mouse 3T3 Swiss fibroblasts spread on the GRGDSP-
functionalised aminosilanised glass. The cells stay round on 

the glass that was not treated with aminosilane but incubated with 

GRGDSP at coupling conditions. 

 

4.1.2.1  Concentration of GRGDS 

To define the optimal peptide concentration in the coupling solution the surfaces were 

functionalised with 0.004, 0.008, 0.04, 0.08, and 0.4 mg/ml GRGDS. The cell adhesion assay 

revealed different behaviour of mouse 3T3 Swiss fibroblasts on the tested surfaces. The 

calculated numbers of spread adhered cells and cells that are stay round after 1 hour of 

incubation were dependent on peptide concentration used during coupling procedure (Fig. 

18). The typical saturation curve shows approximately equal numbers of the attached 

fibroblasts on the surfaces that were functionalised with 0.04, 0.08, and GRGDS. With 

increasing of the number of round cells the number of spread fibroblasts notably decease at 

0.008 mg/ml GRGDS; at 0.004 mg/ml GRGDS both parameters dramatically drop down 

demonstrating low suitability of this concentration for surface functionalisation.  

The increase of the number of round cells at 0.008 mg/ml GRGDS could be explained by 

extension of the area that is accessible to initial cell attachment due to reduction of the areas 

covered by spread sells. A concentration of 0.4 mg/ml was chosen as the optimal 
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concentration for coupling; this concentration was 10 times higher than the minimum 

concentration sufficient to achieve saturation level of the tested parameters. 

 

 

Fig. 18. 3T3 fibroblasts on 
the GRGDS-functionalised 

surface. The number of 

spread and round cells 

depends on the peptide 

concentration that was used 

during the coupling 

procedure. 

 

4.1.3  RGD-peptide functionalisation of glass and SIO2 slides 

Both glass and SiO2 slides could be functionalised with amino-groups by APTES silanisation 

producing NH2-groups on the surfaces for further covalent binding of isothiocyonate-

terminated peptides. For both slide types liquid and gas phase amino-silanisation was 

performed. Cell adhesion assay showed suitability of both substrates and allowed to 

compare two aminosilanisation procedures.  

There were only slight differences in the numbers of spread 3T3 Swiss fibroblasts per 1 mm2 

of glass and SiO2 slides that were first treated with APTES in gas or liquid phase and then 

functionalised with GRGDSP peptide (Fig. 19A). Fig. 19B and 19C demonstrate the similar 

shape of the cells on glasses that were treated in gas and in liquid phase. The images of the 

fibroblasts on the SiO2 surfaces are not shown because of a high level of autofluorescence 

with these slides, disturbing microscopic investigations. For this reason glass as a material 

for development of the biofunctionalisation method has been chosen. The cell adhesion 

assay showed a higher number of round cells on the gas phase treated glass surfaces in 

comparison with the liquid phase silanised glass. This fact became a reason to prefer liquid 

phase silanisation for all further experiments. 

 
4.1.4  Blocking reagents 

Cell adhesion assays showed that 3T3 Swiss fibroblasts do not spread on amino-

functionalised surfaces after 1 hour of incubation in cultural medium if the medium was not 

supplemented with FCS. Only a few cells attach to the surface, but they stay round showing 

the same cell shape as in the case of unspecific attachment to BSA covered plastic (Fig. 
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16F). Comparison of the cell attachment to untreated amino-functionalised glass and amino-

functionalised glass that was covered with pure BSA (section 3.2.2), revealed only slight, not 

significant difference in the numbers of round attached fibroblasts (Fig. 20) that could be 

explained by the additional blocking effect of BSA. 

 

Fig. 19. Mouse 3T3 Swiss fibroblasts on the glass and SiO2 GRGDSP-functionalised surfaces. 
(A) The calculated numbers of spread and round 3T3 Swiss fibroblasts per 1 mm2 surface. (B) The 

similar cell shape on peptide-functionalised glass slides that were aminated using of gas (B) and liquid 

(C) aminosilanisation. Bars: 20 µm. 

 

 

 

 

 

 

 

 
 

Fig. 20. Cell attachment to untreated amino-functionalised 

glass and amino-functionalised glass that was covered with 

pure BSA. The difference in the numbers of round attached 

fibroblasts is not significant. 
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4-methoxyphenylisothiocyanate (4MOPIT) was tested as a blocking reagent. NCS group of 

this chemical is similar to a coupling group of investigated peptides (Fig. 21). 4MOPIT should 

react with the surface -NH2 groups that were not coupled with peptide more safely, 

preventing any possible chemical reactions on the surface other than BSA. After the 2h 

peptide coupling procedure followed by PBS washing, I performed incubation of the surfaces 

with 1 mg/ml 4MOPIT solution. To reach the final concentration 4MOPIT was dissolved firstly 

in DMSO at a concentration of 10 mg/ml and then diluted 10 times in 100 mM Na2PO4, pH 

9,5. The 4MOPIT treatment of peptide-functionalised slides was followed by 3 times washing 

with PBS and 2 times washing with cell cultured medium. 

The cell assays showed nearly complete prevention of fibroblasts adhesion to the surface. 

Only a few round cells were found on the peptide-functionalised surfaces that were treated 

with 4MOPIT (data not shown). This complete blocking of the cell spreading demonstrated 

the futility of this chemical treatment as an intermediate step of the surface 

biofunctionalisation.   

 

 

 

 

Fig. 21. Chemical formula of 4-methoxyphenyl-isothiocyanate. 

 
 

4.2  Quality control of biofunctionalisation 

4.2.1  X-ray photoelectron spectroscopy (XPS) 

XPS measurements were performed to investigate the efficiency of peptide coupling. Fig. 22 

shows results of the measurements for untreated, amino terminated, and finally peptide 

exposed glass surfaces. The N 1s peak at 400.2 + 0.2 eV is attributed to –NH2 (Gervais et 

al., 1988) and is a suitable indicator for the peptide uptake. Compared to simply aminated 

surfaces the N/C ratio increases by a factor of about 5 after peptide exposure, which justifies 

the desired immobilization of the peptide.  

 

4.2.2  Contact angle measurement 

The measurement of a water drop contact angle on the surface is used to estimate the 

surface hydrophilic properties. Amino functionalised glass substrates were investigated, 



Results 46 
      
 

 
which treated with peptide solutions for different incubation times. In addition, three different 

concentrations of peptide solution were tested (Fig. 23)  - 0.625, 2.5 and 10 mg/ml. For these 

peptide concentrations the contact angle of the water drops decreases with increasing 

exposure time of the substrate to the peptide solution.  

 

 

 

 

 

 

 
 

 

Fig. 22. XPS analysis.  

Deconvolution of N 1s XPS spectra of a 

glass reference sample (a), an amino 

terminated glass surface (b), and an amino 

terminated glass surface after peptide 

exposure (c). The intensities are 

normalized to the overall carbon content. 

 

 

 

 

 

 

Fig. 23. Contact angle 

measurements. The graph 

shows the development of 

contact angles of water drops 

(0.5 µl) on aminated glass 

substrates treated with peptide 

solutions of different 

concentrations for different 

times.  
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As the polarity of the peptide is higher compared to that of the amino functionalised glass 

substrate, this decrease in the contact angle can be explained by an increasing number of 

peptide molecules coupled to the amino groups. It was obvious that the contact angle 

decreased rapidly between one and two hours irrespective of the peptide concentration while 

the contact angle decrease after further two hours was negligible. This observation can be 

interpreted as a time dependent reaction between the peptide and the amino functions.  

This tendency was reproduced for all used peptide concentrations, showing decreasing of 

contact angle with increasing concentration of the peptide, but this difference observed with 

different peptide concentrations was not significant. The final contact angle reached with 

peptide solutions of 0.625 mg/ml was 23°, while 2.5 mg/ml and 10 mg/ml showed saturation 

at contact angles of 17° and 12° respectively. 

 
4.2.3  Rhodamine-GRGDS 

Rhodamine coupled GRGDS peptide (rhodamine-GRGDS) was synthesised to detect 

peptide on the surface. Aminosilanized glass that was treated with rhodamine-GRGDS at 

coupling conditions was investigated on a fluorescent microscope. In comparison with 

untreated aminosilanised glass the rhodamine-GRGDS coupled samples showed high 

fluorescence in the red spectrum (Fig. 24). 

 

Fig. 24. Fluorescence on the red channel of light fluorescent microscope of aminosilanised 

glass. The glass was treated with rhodamine-GRGDS (A) and untreated (B).  Bars: 20 µm.   

 

4.3  Cell adhesion assay as readout system for biocompatibility 

4.3.1  Mouse 3T3 Swiss fibroblasts express RGD-binding integrins 

RT-PCR analysis revealed the pattern of RGD-binding integrins expressed by mouse 

fibroblasts 3T3 Swiss fibroblasts. Except for the α 8-subunit all integrin receptors which have 
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been characterized to recognize the RGD peptide (Hynes, 2002) are detected. The most 

prominent β-subunit was β6 followed by β3 and β5 while α5 showed strongest expression 

among the α subunits (Fig. 25). GAPDH served as internal standard. 

 

 

 

Fig. 25. RT-PCR analysis 

revealed the RGD-binding 

integrins expressed by 

mouse 3T3 Swiss 
fibroblasts. 

 

 

4.3.2  Fibroblasts adhesion on biofunctionalised surfaces in the presence and 

absence of FCS 

The influence of fetal calf serum (FCS) in the culture medium on the adhesion of mouse 3T3 

Swiss fibroblasts onto RGD-functionalised glass slides was also tested. In presence and 

absence of FCS cells adhered and spread onto investigating surfaces. However, similar tests 

of aminosilanised glass that were not treated with RGD peptides showed that the cells still 

spread onto the NH2-glass when assays were performed in the presence of FCS (Fig. 26), 

which they did not in the medium without FCS (Fig. 17). To explain these results it is 

proposed that proteins contained in FCS absorb to NH2-glass during incubation of the cell 

suspension and promote adhesion of fibroblasts on the formed layer. Thus, cell spreading 

onto surfaces in FCS-containing medium is not only the result of specific recognition of RGD-

peptides, and cannot be used as characteristics of the surface biofunctionalisation.   

 

4.3.3  Trypsin inhibitors 

For cell adhesion assays I used trypsin to re-suspend cells adherent to the cell culture 

dishes. This standard procedure during the process of harvesting cells stipulate for further 

deactivation of trypsin by the use of FCS as medium supplement. The cell adhesion assays 

performed in the absence of FCS required a trypsin inhibiting agent. Two candidates – 

trypsin inhibitor from soybean (STI) and phenylmethanesulfonyl fluoride (PMSF) were tested. 

Both inhibitors were added in suspension of detached from cultured dishes cells in cell-

cultured medium without FCS. The adding of inhibitor was followed by 3 minutes 
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centrifugation at 900 rpm, discard of medium and repeated cells re-suspension with further 

achievement of standard used for cell adhesion assays concentration 1.4 x 105 cells/ml.  

 

Fig. 26. Mouse 3T3 Swiss fibroblasts in the supplemented with FCS medium.  

The cells spread on both the RGD-functionalised and RGD-untreated aminosilanised glass. The cells 

were visualised by actin-cytoskeleton staining with Oregon Green® 488-phalloidin. Bars: 20 µm.  

 

Development of the method was performed with fibronectin coated polystyrene slides. 

Treated with trypsin inhibitor the mouse 3T3 Swiss fibroblasts suspension was incubated 

with the slides for 1 hour at 37°C. The cells adhered to the fibronectin coated surface and 

spread (Fig. 16D). The obvious differences in cell adhesion pattern for these two methods – 

with STI and with PMSF – were not found. However the addition in cell suspension of the 

stock solution PMSF in ethanol caused the destruction of some cells. Taking into 

consideration the possible influence of intracellular proteins release by cell damaging on the 

results of surface tests, we applied STI as a trypsin inhibitor for further experiments.  

 
4.3.4  Cell adhesion: duration and classification 

The time necessary for initial cell attachment to the surfaces was shown to be around 10-12 

minutes (Cohen et al., 2006). The initial substrate recognition is followed by cell spreading. 

The time sufficient for full spreading is dependent upon cell type and suitability of the 

substrate. I have found that mouse 3T3 Swiss fibroblasts reach the full spreading onto 

fibronectin layers as well as onto RGD-functionalised surfaces within 1 hour. After 1-hour 

incubation at cell culturing conditions the fibroblasts formed mature focal adhesions in the 

sites of attachment to the substrate; the cytoskeleton staining reveals formed lamellipodia 

and actin stress fibres in contact with the focal adhesions. 
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For all cell assays a 1 hour adhesion period was used, unless stated differently. The number 

of fully spread cells was counted and noted as number of “spread cells”. The cells that 

retained a round shape, not spreading at all, were noted as “round cells”. The cells that were 

not round, formed very short lamellipodia and filopodia but no focal adhesions, were termed 

“flattened” (Fig. 27).  

 

Fig. 27. Fibroblasts on the surface: spread, flattened, and round. (A) Fully spread mouse 3T3 

Swiss fibroblasts on uniform GRGDS-functionalised surface. (B) Flattened cell attached to 

c(-RβADfK-)-surface. (C) Round attached to aminosilanised glass. Phospho-paxillin staining for focal 

adhesions in red; actin filament labelling with phalloidin in green; staining of nuclei with DAPI in blue. 

Bars: 10 µm.  

 

4.4  Comparison of cell adhesion behaviour to different peptides 

4.4.1  Mouse fibroblasts spread on the RGD-functionalised surfaces 

After establishment of optimal peptide conjugation conditions and adhesion assays different 

linear and cyclic peptides were compared. Mouse 3T3 Swiss fibroblasts spread on RGD-

functionalised surfaces recognising linear peptides - GRGDS and GRGDSP - as well as 

cyclic ones - c(-RGDfKG-) and c(-RGDfK-) (Fig. 28).  

For statistical evaluation spread cells and attached round cells were counted. Linear and 

cyclic RGD containing peptides showed similar abilities to induce cell spreading (Fig. 29). In 

contrast, on the untreated with RGD-peptides surfaces only round cells were found. 

 

4.4.2  Fibroblast FA formation depends on used RGD-peptide  

The spreading behaviours on the different linear and cyclic peptides were compared with 

regards to focal adhesions (FAs).  To visualise the FAs the staining of paxillin, phospho-
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paxillin, and vinculin was used. The proteins involved in FA formation aggregate into clusters 

that can be detected by immunohistochemistry.  

  

Fig. 28. Cell spreading behaviour on different RDG-containing peptides. Linear peptides GRGDS 

(A) and GRGDSP (B); cyclic peptides c(-RGDfKG-) (C) and c(-RGDfK-)(D). Mouse 3T3 Swiss 

fibroblasts are visualised with Oregon Green® 488 phalloidin staining. Scale bars 10 µm. 

 

 

 

 

 

Fig. 29. Linear and cyclic peptides showed 

similar abilities to induce fibroblasts 

spreading. Linear peptides: GRGDS and 

GRGDSP, cyclic peptides: c(-RGDfKG-) and  

c(-RGDfK-). The cells did not spread on RGD-

unfunctionalised aminosilanised glass covered 

only with BSA.  
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Fig. 30. Focal adhesion formation in mouse fibroblasts on different RDG-containing peptides 

visualized by vinculin staining. Confocal laser microscope. Vinculin staining for focal adhesions in 

red, actin filament labelling with phalloidin in green, staining of nuclei with DAPI in blue. Bars: 10µm. 

 

Fig. 30 illustrates differences in the visualised with the vinculin FAs patterns of fibroblasts 

that spread on different peptides. Cells on both linear peptides and the cylic peptide 

c(-RGDfKG-) formed focal adhesions at cell protrusions. Focal adhesions were 

predominantly found at the periphery of the cells, and at the end of F-actin bundles indicating 

properly spread cells. In contrast, focal adhesions were rarely detected in cells spread on the 

cyclo(-RGDfK-). 

Paxillin and phosphopaxillin staining has demonstrated similar difference in FAs formations 

for 3T3 Swiss fibroblasts on the liner and cyclic peptides (Fig. 31). 
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Fig. 31. Cell spreading behaviour on different RDG-containing peptides. Linear peptides GRGDS 

and GRGDSP; cyclic peptides c(-RGDfKG-) and c(-RGDfK-). Paxillin and phosphopaxillin staining for 

focal adhesions in red, actin filament labeling with phalloidin in green, staining of nuclei with DAPI in 

blue. Scale bars 10 µm. 
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4.4.3  Counting of FAs allows to estimate cell spreading and the surface 

biocompatibility 

To estimate cell spreading on different substrates the focal adhesions per cell were counted. 

Quite similar FAs numbers were found in cells on both linear peptides by vinculin or paxillin 

staining (Fig. 32), whereas less than half of them were detected in cells on the cyclic 

peptides. The difference between both cyclic peptides was most prominent in paxillin 

immunostaining because only few focal adhesions were formed per cell on c(-RGDfK-).  

 

Fig. 32. Statistical evaluation of focal adhesion formation per cell on different substrates. Focal 

adhesions visualized by vinculin and paxillin staining. Statistical significant difference between linear 

and cyclic peptides, p < 0.01 (student t test). 

 

The difference in adhesion efficiency was dramatic when the result was related to the total 

number of focal adhesion forming cells. About 95% of the cells plated on the linear peptides 

formed focal adhesions while 70% of the cells on c(-RGDfKG-) and only 20% of those on 

c(-RGDfK-) were positive for vinculin or paxillin. 

 

4.4.4  The fibroblast FA formation on Nc(-RGDfK-) 

The high background and the reduced numbers of FAs observed in adhered to the cyclic 

peptides cells as well as the spreading behaviour of the cells on the control peptide 

c(-RβADfK-) led to a critical reconsidering of the peptide synthesis. The synthesis of the 

functionalised cyclic peptides was modified in order to be able to do the cyclization step and 

the coupling of the spacer and the isothiocyanate anchor on solid phase and on that way 

avoid possible undesirable reactions.  

The peptide synthesised according the changed synthesis procedure - Nc(-RGDfK-) - was 

tested.  Much better results were obtained as documented in Fig. 33 and 34. Vinculin, paxillin 

and phosphopaxillin staining revealed FAs in mouse 3T3 fibroblasts spread on Nc(-RGDfK-)-
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functionalised surface; level of background staining was obviously lower then in the case of 

c(-RGDfK-) (Fig. 30, 31 and 33). Statistical evaluation showed 5 times higher number of 

paxillin-stained FAs in cells on Nc(-RGDfK-) than c(-RGDfK-) (Fig. 32 and 34). Number of 

spread on Nc(-RGDfK-) was similar to other RGD-peptides. 

 

Fig. 33. Cell spreading behavior on Nc(-RGDfK-). Vinculin, paxillin and phosphopaxillin staining for 

focal adhesions in red, actin filament labeling with Oregon Green®-phalloidin in green, staining of 

nuclei with DAPI in blue. Scale bars 10 µm. 

 

 

 

 

 

Fig. 34. Cell spreading behaviour on 

c(-RGDfK-); statistical evaluation. 

Number of spread and round 3T3 

fibroblasts was counted. Focal adhesions 

were visualised by vinculin and paxillin 

staining. 

 

4.5  Mouse 3T3 Swiss fibroblasts spread on fibronectin coating 

To evaluate the biocompatibility of the new developed RGDS surface conjugation method the 

spreading behaviour of mouse 3T3 Swiss fibroblasts on fibronectin was investigated. The 

fibronectin coating was created by absorbed to plastic surface. Oregon Green® 488 

phalloidin treatment revealed actin filaments of the fully spread cells; immunostaining of 

paxillin, vinculin and phosphopaxillin visualised mature FAs on the ends of actin stress fibres 

(Fig. 35). Diagram on the Fig. 35 shows average number of FAs per cell marked with vinculin 

and paxillin, which are in the range observed on linear peptides (Fig. 32). 



Results 56 
      

 
 

 

Fig. 35. Mouse 3T3 Swiss fibroblasts spread on fibronectin coating. Vinculin, paxillin and 

phosphopaxillin staining for focal adhesions in red, actin filament labeling with phalloidin in green, 

staining of nuclei with DAPI in blue. Scale bars 10 µm. 

 

4.6  Cell spreading behaviour of different cell lines spread  

on RGD-functionalised surface 

4.6.1  Xenopus tadpole cells  

To test applicability of the method of aminosilanised glass functionalisation with 

isothiocyanate terminated RGD peptides different cell lines were compared. Xenopus tadpole 

fibroblasts (XTC) showed extensive spreading behaviour on a GRGDS-surface (Fig. 36A). In 

contrast, only a few round cells were found on aminosilanased glass treated with BSA (Fig. 

36B, C). Statistical evaluation showed that more then 90% of the XTC cells on the RGDS-

functionalised surfaces were spread; this correlates well with spreading behaviour of mouse 

fibroblasts on the RGD-surface (Fig. 36C, 29). 
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Fig. 36. XTC on RDGS-functionalised surface. (A) XTC spread on GRGDS;  (B) only few round 

cells were found on BSA covered amino-silanised glass; (C) statistical evaluation of XTC spreading 

behaviour. Phosphopaxillin staining for focal contacts in red, actin filament labelling with phalloidin in 

green, staining of nuclei with DAPI in blue. Scale bars 50 µm. 

   

 

Fig. 37. XTC on RDGS-functionalised surface. (A) XTC spread on GRGDS forming FAs; (B) cells 

stay round on BSA. Phosphopaxillin staining for focal contacts in red, actin filament labelling with 

Phalloidin in green, staining of nuclei with DAPI in blue. Bars 20 µm. 

 

Phosphopaxillin staining revealed well formed focal adhesions on the end of actin fibres in 

the lamellipodia of the Xenopus fibroblasts on RGD-peptide. The fully spread morphology of 
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these cells sharply contrasts with the round shape of XTC on BSA covered aminosilanised 

glass (Fig. 37). 

 

 

4.6.2  Rat embryonic fibroblasts (REF52) stably expressing YFP-paxillin 

Rat embryonic fibroblasts (REF52) stably expressing YFP-paxillin demonstrated high level of 

fluorescence on the green channel even after formaldehyde fixation. REF52 cells incubated 

for 1 hour with GRGDS-functionalised surfaces spread and formed visible paxillin-clusters 

indicating focal adhesions (Fig. 38A). Phosphopaxillin staining, however, showed that FAs 

containing activated paxillin were distributed over the entire cell border (Fig. 38B). 

 

 

Fig. 38. REF52 fibroblasts spreading behaviour on RDGS-functionalised surface. (A) YFP-

paxillin clusters on the green channel of fluorescence microscope; (B) phosphopaxillin staining in red. 

Scale bars 20 µm. 

 

4.6.3  B16 beta3–GFPintegrin–expressing melanoma cells (beta3-GFP) 

Behaviour of B16 beta3–GFP-integrin–expressing melanoma cells on the RGD-

functionalised surface was tested. The cells spread on both linear and cyclic RGD-containing 

peptides (Fig. 39). GFP-integrin clusters were registered in living cells  on GRGDS, 

GRGDSP, c(-RGDfKG-), and c(-RGDfK-) using the Leica fluorescence microscope. 

However, on GRGDS, GRGDSP, and c(-RGDfKG-), the integrin clusters were located in a 

similar manner in separated sites nearly the leading edge of lamellipodia; their location 

correlated well with FAs visualised by phosphopaxillin staining after fixation of cells. In 

contrast, in the case of c(-RGDfK-)  the GFP-fluorescent signal was detected on hole basal 

cell membrane. The immunostaining did not reveal clusters of phosphorilated paxillin under 

the cell body and showed a high level of background fluorescence.  
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Adhesion assay showed that beta3-GFP-integrin cells spread on negative control RβAD-

peptides as well as on RGD-peptides. Fig. 40 illustrates spreading behaviour of the cells on 

GRβADS, GRβADSP, c(-RβADfKG-), c(-RβADfK-)  -functionalised surfaces and on amino- 
 

 

Fig. 39. B16 beta3–GFPintegrin cells on RGD-peptides functionalised surface: linear GRGDS 

and GRGDSP, cyclic c(-RGDfKG-) and c(-RGDfK-). GFP-integrin clusters are visualised by 

fluorescence microscopy; phosphopaxillin staining in red. Bars: 20 µm. 



Results 60 
      

 

 

Fig. 40. B16 beta3–GFPintegrin cells on control peptides: linear GRβADS and GRβADSP, cyclic 

c(-RβADfKG-) and c(-RβADfK-). GFP-integrin clusters are visualised by fluorescence microscopy; 

phosphopaxillin staining in red. Bars: 20 µm. 
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silanised glass covered with BSA. Even on the control peptides and un-functionalised BSA 

surfaces the cells formed GFP-integrin clusters; phosphopaxillin staining showed FAs 

located in the corresponding sites of lamellipodia. 

 

4.6.4  MC3T3-E1 pre-osteoblasts 

The cell adhesion assay with mouse MC3T3-E1 pre-osteoblastic cells showed spreading of 

the cells on GRGDSP-functionalised surfaces. Paxillin and phosphopaxillin staining revealed 

mature FAs in the lamellipodia (Fig. 41). However, similar spreading morphology was 

observed for MC3T3-E1 cells on the surfaces functionalised with control GRβADSP-peptide 

(data is not shown) as well as on unfunctionalised aminosilanised glass covered with BSA 

(Fig. 41). 

 

Fig. 41. MC3T3-E1 pre-osteoblasts on RDGSP-functionalised surface and on aminosilanised 

glass covered with BSA. Phosphopaxillin staining for focal contacts in red, actin filament labelling 

with Phalloidin in green, staining of nuclei with DAPI in blue. Scale bars 10 µm. 
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4.7  Control of the surface biocompatibility 

4.7.1  Control peptides 

The control peptides were synthesized to prove specificity of RGD motif recognition by cells 

in adhesion assays. The chemical formulas of these peptides exactly repeat the formulas of 

the tested RGD-containing peptides with the only exception being that the Glycine in RGD 

motif is replaced with βAlanine. I have tested two linear – GRβADS and GRβADSP – and two 

cyclic – c(-RβADfK-) and c(-RβADfKG-) – control peptides.  The cell adhesion assays 

showed no spread cells on the surfaces that were functionalised with the control peptides. 

However, the flattened cells on the c(-RβADfK-) were found. They did not form focal 

adhesions, but demonstrated morphology that was dissimilar to the completely round shape 

of the cells on other negative peptides GRβADS, GRβADSP, and c(-RβADfKG-) (Fig. 42). 

  

 

Fig. 42. Cell attachment to negative control peptides. The surfaces were functionalised with 

GRβADS (A) and c(-RβADfK-) (B). The cells were visualised with Oregon Green®-phalloidin staining. 

Bars: 10 µm. 

 

The number of attached cells was quite similar to the round fibroblasts on both linear 

negative peptides, and nearly twice higher than the number of cells on  

cyclo(-RGDfKG-) and cyclo(-RGDfK-). The flattened cells were found only on the 

cyclo(-RGDfK-) (Fig. 43). Thus, the control with scrambled RGD motif were not able to 

stimulate cell spreading accompanied with FAs formation, but the corresponding cyclic 

peptide c(RβADfK-) promoted cell flattening on the surface.  
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Fig. 43. Statistical evaluation of cell 

attachment to negative control peptides.  

 

4.5.2  Competition assays 

Soluble RGD peptides added to cell suspension during cell adhesion bind with RGD-

receptors in a competitive manner, preventing adhesion. To prove that 3T3 Swiss fibroblasts 

indeed recognise the RGD motif on the functionalised surfaces I performed the cell adhesion 

assays on the surfaces in the presence of 1,5 mg/ml GRGDS. Indeed, soluble GRGDS in cell 

medium completely prevent cell spreading on linear GRGDS, GRGDSP, and on cyclic c(-

RGDfKG-). Only a few round cells were found on these surfaces  (Fig. 44A). Flattened and 

spread cells were found on c(-RGDfK-), although these cells had no FAs (Fig. 44B).  

 

 

Fig. 44. Cell adhesion assay in the presence of soluble GRGDS. Cells attached to GRGDS (A) and 

c(-RGDfK-)(B) functionalised surfaces. Scale bars 20 µm. 
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The counting of round and flattened cells that attached to RGD-functionalised surfaces in the 

presence of soluble GRGDS showed that 75% of the fibroblasts showed spreading 

behaviour on c(-RGDfK-) in presence of 1,5 mg/ml GRGDS (Fig. 45).  

The test of fibroblasts adhesion on Nc(-RGDfK-) in the presence of soluble GRGDS showed 

no spread cells on the surface;  less than 10 attached round cells per mm2 were found. 

 

 

 
 

 

 

Fig. 45. Cell adhesion assay in the 

presence of soluble GRGDS. Statistical 

evaluation. Soluble RGDS-peptide 

completely prevented cell spreading on 

GRGDS, GRGDSP, and c(-RGDfKG-), but 

on c(-RGDfK-) flattened cells were found. 

 

4.7.3  Proliferation assays 

To estimate the cell ability to proliferate on RGD-functionalised surfaces an enumeration of 

cells in mitotic stage was performed. Immunostaining of phosphorilated histone H3 revealed 

mitotic cells; comparison of their number with total number of surface adhered cells allowed 

calculation of the proliferation index. The diagram in Fig. 46 shows an increase with time in 

the number of mitotic cells cultivated on the GRGDS-functionalised surface for 4, 24 and 48 

hours, that corresponds to an increase in the total number of surface adhered cells.  

 

 

 

 

 

 

 

 

Fig. 46. 3T3 Swiss fibroblasts proliferate 
on GRGDS-functiona-lised surface.  
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The percentage of mitotic cells was relatively low during the first 4 hours that corresponded 

to cell cultivation in the serum free medium. Calculation of mitotic cells at 24 and 48 hours 

after cell seeding showed 15 and 14% of total cell number, respectively. Thus, on the 

GRGDS-functionalised surface mouse fibroblasts were able to grow and proliferate with 

stable velocity. 

 

 

4.8  The RGD-functionalisation of the structured surfaces 

Table 2. Notations used for designed surfaces. 

Notation Surface 

Homogeneous Au-ODT Gold layer covered with octadecylthiol. 

Homogeneous Au-BT Gold layer covered with butanethiol. 

Homogeneous Au-HT Gold layer covered with hexylthiol. 

Homogeneous Au-ODT/RGD Gold layer covered with octadecylthiol that was 

aminosilanised and incubated with isothiocyanate 

terminated RGD-peptide for 2h at coupling conditions.  

When the step of aminosilanisation was missed, it was 

mentioned in the text. 

Homogeneous Au-BT/RGD Gold layer covered with butanethiol that was 

aminosilanised and incubated with isothiocyanate 

terminated RGD-peptide for 2h at coupling conditions. 

Homogeneous Au-HT/RGD Gold layer covered with hexylthiol that was 

aminosilanised and incubated with isothiocyanate 

terminated RGD-peptide for 2h at coupling conditions. 

Homogeneous Au/RGD Gold layer after incubation with isothiocyanate 

terminated RGD-peptide for 2h at coupling conditions. 

Structured Au-ODT  Patterned surfaces created by µCP with octadecylthiol 

on gold layer and further etching. 
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Structured Au-ODT/RGD Patterned Au-ODT surfaces that was aminosilanised 

and incubated with isothiocyanate terminated RGD for 

2h at coupling conditions. 

Structured Au-BT/RGD Patterned surfaces created by µCP with BT on gold 

layer and etching that was aminosilanised and 

incubated with isothiocyanate terminated RGD-peptide 

for 2h at coupling conditions. 

Structured Au-HT/RGD Patterned surfaces created by µCP with HT on gold 

layer and etching that was aminosilanised and 

incubated with isothiocyanate terminated RGD-peptide 

for 2h at coupling conditions. 

Structured Au-through-mask Patterned surface designed by gold evaporation through 

the mask on the previously aminosilanised glass. 

Structured Au-through-

mask/RGD  

Structured Au-through-mask incubated with 

isothiocyanate terminated RGD peptide for 2h at 

coupling conditions. 

 

 
4.8.1  Surface preparation: structured Au-ODT slides 

To design a structured surface the microcontact printing (µCP) method was applied. The grid 

of used silicone elastomer stamp allowed to create a pattern of alternate 21 µm wide lines of 

octadecylthiol (ODT) on the metal (see section 3.1.3). During the etching procedure the 

unprotected metal layer can be reduced and removed from the surface, whereas ODT-

passivated metal lines designed the structured pattern (Fig. 47). Both gold and silver can be 

used as a base for thiol SAMs (Shaporenko et al., 2005). I have found that ODT-µCP cannot 

be applied for passivation of a silver layer. The 50 µm silver layer was completely removed 

from the surface during the etching procedure including the ODT-covered areas. The ODT-

printed gold layer demonstrated resistance to etching that was high enough to protect 

lengthy 21 µm wide areas of homogenous metal from etching.  
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Fig. 47. Light microscope 

image of the Au-ODT 

structured surfaces: alternate 

lines of ODT-passivated Au 

and glass.        

 

4.8.2  Metal: thickness of gold  

To choose the suitable metal thickness electron microscopy of the etched ODT-printed gold 

slides was performed. I have tested 25, 50 and 100 nm gold layers. The precise thickness of 

the metal layer was controlled directly during the coating process with a quartz crystal 

microbalance. 

Taking into consideration that etching duration depends on metal thickness, I have tested 

different treatment times using visual estimation for control of the metal relese from the 

surface. Optimal etching duration for 25, 50 and 100 nm gold layers is was observed at 25, 

40 and 60 minutes respectively.  

 

 

Fig. 48. Electron microscope image of gold areas on the structured Au-ODT slides. 25 nm gold 

slides before (A) and after (B) 20 minutes etching. Surface defects in (B) are seen as black spots. 

Bars: 1 µm. 

 

Etched 50 nm gold layers demonstrated suitable surface quality while 25 nm etched layers 

demonstrated surface defects that were detected by electron microscopy (Fig. 48). The 

etching of 100 nm gold layers required 1 h treatment and refreshment of the solution during 

etching procedure. 
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4.8.3  Adapter metal  

Titanium and chromium were tested as adapter metals to promote the gold attachment on 

the glass or SiO2. For both metals a 1 nm thick layer was shown to be sufficient to promote a 

uniform gold layer.  

Removal of the chromium as well as titanium layer from patterned surface during the etching 

process was controlled by visual estimation that was easy in the case of transparent glass 

but difficult for SiO2 slides. The removal of the adapter metals required 3-4 minutes additional 

exposure in the etching solution. It was shown complete in the case of chromium; however, 

confocal laser microscope showed that removal of a titanium layer was incomplete (Fig. 49). 

 

 

 

 

 

 

 

Fig. 49. Structured Au-ODT slides 
created with Ti as an adapter 

metal. The residue Ti layer was 

found after etching. Confocal laser 

microscope image. Bar: 5 µm. 

 

 
 
4.8.4  Thiol stamping  

I used thiol solution in ethanol in the µCP procedure to create SAMs on the some areas of 

the metal surface.  ODT - CH3(CH2)17SH - was shown to be able to passivate a gold surface, 

creating a patterned structure during µCP.  

As an alternative thiol-coating we have tested butanethiol (BT) - CH3(CH2)3SH. µCP with 

2mmol as well as 10 mmol BT in ethanol was not able to protect the gold layer during 

etching. Large fissures and holes were detected within the Au stripes as seen in the electron 

microscopic image (Fig. 50). 
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Fig. 50. Electron microscope images of gold areas on the structured Au-BT slides. 50 nm gold 

slides after 20 minutes treatment with 2 mmol (A) and 10 mmol (B) solution of butanethiol. Scale bars: 

200 nm. 

 

 

 

Fig. 51. AFM topography of the structured Au-ODT surface. (A) 2D image of 100 µm x100 µm 

area of the glass-Cr-Au-ODT patterned surface after etching; 1 µm Cr, 50 µm Au. (B) 3D image of the 

same area, (C) cross-section. 
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4.8.5  Quality control by atomic force microscopy (AFM) 

Selective etching of a 50 nm gold layer and its removal from glass created a 3D patterned 

structured surfaces. AFM measurement revealed topography of the glass slide covered with 

1 nm chromium and 50 nm gold, then printed with ODT by µCP and etched for 40 minutes. 

The tested 100 µm x 100 µm area included Cr-Au-ODT as well as opened glass stripes (Fig. 

51A). The cross-section of the investigated area (Fig. 51B) showed about 63 nm difference in 

the height of these two regions. The 3D structure of the surface visualised by AFM is shown 

on Fig. 51C. 

 

4.8.6  Alternative patterning: Gold evaporation through the mask 

As described in the section 3.1.7 an alternative patterning procedure was performed to 

produce gold stripes onto amino-silanised glass. Use of the mask with slips allowed creation 

of a patterned surface without an etching step. In Fig. 52 designed pattern is shown: 

alternate gold and amino-glass stripes (400 bars/inch). High magnification (Fig. 52B) 

revealed additional stripes on the pattern, located on both sides of main broad gold stripes 

looking like a “shadow”. It is proposed that such a “double” pattern was created because of 

features of evaporation of two different metals – chromium and gold – on the surface through 

the mask.  

 

 

Fig. 52. The patterned surfaces created by gold evaporation through the mask. Confocal laser 

microscope image. The shadows are indicated by arrows. Bars: 50 µm.  

  

The sources of these metals were located in the evaporation unit at a distance of about 20 

cm; the evaporation through the relatively thick (exact thickness is not specified) mask could 

be a reason for incomplete overlaying of the metal coating areas. Fig. 53 demonstrates that a 

surface evaporated by this method is not homogeneous; there are areas with a different 

quality. 
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Fig. 53. Created by gold evaporation 

through the mask the patterned 
surface showing areas with a different 

quality. Electron microscope image. Bar: 

200 µm. 

 

4.9  Cell behaviour on the structured surfaces 

4.9.1  Mouse fibroblasts spread on structured Au-ODT/RGD surfaces  
without any preferences 

The structured surfaces, which combined gold-ODT and amino-silanised glass stripes, were 

treated with isothocyanate terminated GRGDSP solution at coupling conditions. Adhesion 

assay showed that mouse fibroblasts spread on such surfaces but without any preference. 

The cells demonstrate filopodia, lamellipodia and focal adhesions on both regions – gold-

ODT and NH2-glass (Fig. 54). 

 

 

Fig. 54. Mouse 3T3 Swiss fibroblasts on structured surfaces. (A) RGDS-functionalised  surface: 

Au-ODT and NH2-glass; the fibroblasts spread without any preferences. The cells were visualised by 

filamentous actin staining with phalloidin (green) and DAPI (blue); paxillin immunostaining (red) marks 

focal adhesions. (B) The fibroblasts don’t spread on an unfunctionalised structured surface. The cells 

were visualised by filamentous actin staining with Oregon Green®-phalloidin. Bars: 10 µm. 
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An unfunctionalised structured surface not treated with RGD-peptide showed no spread cells 

on it; only a few round cells were attached (Fig. 54B). 

 

4.9.2  Cells on the RGD-functionalised structured Au-through-mask surface  

The pattern on the amino-silanised glass was created by gold evaporation through the mask 

on the previously amino-functionalised glass (see section 3.1.7). For RGD-functionalisation 

the slides were incubated for 2 hours with peptide solution at coupling conditions. Adhesion 

assay showed that mouse fibroblasts attach to the surfaces without any preference, 

spreading on NH2-glass as well as on gold covered areas (Fig. 55). 

 

 

Fig. 55. RGD-functionalised structured surface: gold through the mask. Mouse 3T3 Swiss 

fibroblasts spread on the structured surfaces without preferences. Confocal laser microscopy. The 

cells were visualised by filamentous actin staining with Oregon Green®-phalloidin. Bar  20 µm. 

 

4.9.3  Cell behaviour on the homogeneous surfaces: Au and on Au/GRGDSP 

To reveal the reasons of uniform fibroblast distributions on patterned surfaces the cell 

behaviour on homogeneous samples was investigated.  At first, I have checked whether the 

adhesive properties of the pure gold can be changed by incubation with peptide solution. For 

this, cell assays for two types of surfaces were performed: (1) pure gold layer (50 nm 

thickness) on the glass and (2) gold covered glass modified by 2 hours incubation with 

coupling solution GRGDSP.  
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Indeed 3T3 Swiss fibroblasts spread on Au/GRGDSP but mainly remained round on the pure 

unfunctionalised gold surface, even after 1-hour in serum-free cell-cultivation medium (Fig. 

56). Confocal laser microscopy revealed numerous filopodia and raffling lamellipodia of the 

spread cells on Au/RGDSP.  More then 80% of the cells on unfunctionalised gold retained a 

complete round shape, others demonstrated slightly elongated – “spindle” – phenotype.  

 

 

Fig. 56. Mouse 3T3 Swiss fibroblasts spread on Au/GRGDSP surface (A) but mainly stayed 

round on the unfunctionalised gold (B). The cells were visualised by filamentous actin staining 

(green) and DAPI (blue). Bars: 20 µm. 

 
4.9.4  Homogeneous surfaces: Au-ODT/GRGDSP  

Cell adhesion assays showed that in the serum-free cultivated medium mouse fibroblasts did 

not spread on Au-ODT if the surface was not treated with RGD-peptide. However, when the 

Au-ODT surface was treated with GRGDSP via adsorption or chemical coupling 3T3 Swiss 

fibroblasts recognized the peptide and adhered to the surface (Fig. 57).  
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The spreading cell morphology was not dependent upon whether or not the Au-

ODT/GRGDSP slides were amino-silanised before GRGDSP treatment, showing the ability 

of RGD-peptide to absorb on Au-ODT. Thus, the procedure of patterned surface design 

requires a passivation step to prevent RGD-absorption on Au-ODT areas. 

 

 

Fig. 57. Mouse 3T3 Swiss fibroblasts spread on Au-ODT/GRGDS. The cell behaviour do not 

depend on whether the surface was not treated with amino-silane (A) or was amino-silanised (B) 

before incubation with GRGDSP; the fibroblasts spread on both samples. Confocal laser microscopy. 

The cells were visualised by filamentous actin staining. Bars: 20 µm. 

 

4.9.5  Homogeneous surfaces designed with short thiols  

The short thiols – butanethiol (BT) and hexylthiol (HT) – were tested as possible candidates 

for design of patterned surfaces instead or together with ODT. At first the cell behaviour on 

uniform Au-BT, Au-HT, Au-BT/GRGDSP, and Au-HT/GRGDSP surfaces was investigated. 

The RGD-functionalisation of the surfaces was included an aminosilanisation step, whiles 

Au-BT and Au-HT slides were fabricated without aminosilane treatment.  

Adhesion assay showed that mouse fibroblasts spread neither on Au-BT nor on Au-

BT/GRGDSP. After 1 hour incubation of suspended cells with both types of slides I observed 

only round cells on them. In contrast, the fibroblasts recognised GRGDSP on hexylthiol layer 

and spread onto the surface, but only attached and stayed round on hexylthiol alone (Fig. 

58). 
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Fig. 58. Mouse 3T3 Swiss fibroblasts spread on Au-HT/GRDSP surface (A) and stayed round on 

Au-HT (B). The cells were visualised by filamentous actin staining (green) and DAPI (blue). Scale 

bars: 20 µm. 

 

Thus hexylthiol was shown not to be able to protect the Au surface from RGD-

functionalisation via absorbtion or coupling.  In contrast, butanethiol was found to be a 

possible alternate candidate for the role of ink for µCP instead of ODT.  

 

4.9.6  Passivation of ODT-gold: PEG and Pluronic® 

To modify the pattern of RGD-peptides distribution on the structured surface Au-ODT/RGD 

via passivation of Au-ODT areas a polyethyleneglycol (PEG) and Pluronic® were used. A 

block copolymer Pluronic® F-68 (Sigma) based on ethylene oxide and propylene oxide has 

formula (PEO)75-(PPO)30-(PEO)75 (Fig. 59A) and molecular weight about 8400. PEG3500 

(Sigma) has molecular formula H(OCH2CH2)nOH (Fig. 59B) and molecular weight about 

3500. 
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Fig. 59. Molecular formula of Pluronic® (A) and polyethyleneglycol (B).  

For Pluronic® F-68: x= 75, y= 30, z = 75; for PEG3500 n = 80. 

 

Overnight incubation of Au-ODT slides with 5% PEG as well as 2 mM Pluronic solution 

before GRGDSP coupling completely prevented cell spreading on the structured Au-

ODT/GRGDSP surface (Fig. 60A). When duration of PEG treatment of Au-ODT samples was 

decreased till only 10 minutes before RGD-peptide coupling, mouse fibroblasts spread on the 

Au-ODT/GRGDSP surface (Fig. 60B). The cells were distributed mainly on the functionalised 

NH2-glass strips avoiding contact to gold-ODT. They spread and form focal adhesions on 

RGD-coupled NH2-stripes. The same cells that were found attached on Au-ODT exhibited a 

round or flattened shape and did not form focal adhesions.  

The similar pattern of the cell distribution was observed on the samples treated with 

Pluronic®. Fig. 60C shows mouse fibroblasts on the Au-ODT slide that was functionalised 

with GRGSP in the presence of 2 mM Pluronic® in coupling solution. Using of Pluronic® as 

well as PEG changed the cell behaviour on the structured Au-ODT/RGD surfaces. The 

fibroblasts demonstrated selective placement, mainly spreading on the areas between Au-

ODT stripes. The treatment with Pluronic® by its own did not induce cell spreading on the 

surface (Fig. 60D).  

Application of Pluronic® during cell adhesion assay was also tested. Added in the cell 

medium copolymer did not change cell adhesion behaviour. There were no differences found 

in cell distribution and spreading on Au-ODT/RGD surfaces in comparison with standard cell 

adhesion assay (data is not shown).  

 

4.9.7  “Bridging” of the cells through unfunctionalised regions 

The pattern of structured surfaces is thin enough to allowed cell bridging through 

unfunctionalised areas. The fibroblasts are able to anchor on the RGD-covered areas 

forming focal adhesions and filopodia (Fig. 61). 
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Fig. 60. Comparison of different passivation techniques by cell assays with mouse fibroblasts 

on the structured Au-ODT/GRGDSP surfaces. (A) Overnight treatment of the slide with 2 mM 

Pluronic® was followed by peptide coupling. (B) 10 min treatment with 5% PEG was followed by 

peptide coupling. (C) Peptide coupling was performed in the presence of Pluronic®. (D) The surface 

was only treated with Pluronic®. 

 

 

Fig. 61. Fibroblasts are able to span unfunctionalised areas. (A) Optical fluorescence microscopy 

image; the mouse 3T3 fibroblast was visualised by actin cytoskeleton staining (green), paxillin staining 

(red) and DAPI (blue). (B) AFM image shows Xenopus fibroblast spanning between two functionalised 

areas. 
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4.9.8  Cell adhesion on RGD-functionalised structured surfaces 

Four RGD-containing isothiocyanate terminated peptides – GRGDS, GRGDSP, c(RGDfKG-), 

and c(-RGDfK-) – were used for biofunctionalisation of Au-ODT patterned surfaces by 

coupling in presence of Pluronic®. Fig. 62 illustrates behaviour of Swiss 3T3 fibroblasts on 

the produced samples. In the case of both linear peptides and cyclo(-RGDfKG-) the cells 

spread mainly on the functionalised stripes avoiding Au-ODT areas. Few Au-ODT attached 

fibroblasts are round or “bridged” between two functionalised areas. In the case of 

cyclo(-RGDfK-) the patterning distribution of the fibroblasts is not obvious; the cells spread 

even on Au-ODT stripes.  

For statistical evaluation spread cells and attached round cells were counted on both areas – 

Au-ODT and biofunctionalised stripes – for all four peptides. Linear GRGDS and GRGDSP 

showed similar abilities to induce cell spreading on functionalised areas (Fig. 62). Less then 

10% cells attached to Au-ODT stripes showing high selectivity of the patterning distribution. 

On cyclo(-RGDfKG-) the fibroblasts mainly adhered on the biofunctionalised areas but 20% 

of the cells were round. In contrast, less then 10% of cells attached to GRGDS- and 

GRGDSP-functionalised areas demonstrated round shape (Fig. 63).  

 

 

Fig. 62. Cell spreading behaviour on the patterned Au-ODT surfaces functionalised with 

different RDG-containing peptides. Linear peptides: GRGDS and GRGDSP; cyclic peptides: 

c(-RGDfKG-) and c(-RGDfK-). Mouse 3T3 Swiss fibroblasts are visualised with Oregon Green®-

phalloidin staining. Scale bars 10 µm. 
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Cyclo(-RGDfK-) –functionalised surface showed low selectivity of cell distribution; the 

number of adhered on Au-ODT fibroblasts was twice lower then on peptide-functionalised 

areas, but more then 30% of the cells spread without any preference. 

Paxillin staining revealed mature FAs in the lamellipodia of 3T3 Swiss fibroblasts spread on 

GRGDS- and GRGDSP-functionalised areas (Fig. 64). On both these linear peptides the 

cells demonstrated full spreading; well formed actin stress fibres spanned to FAs in 

lamellipodia. Thin filopodia were found extending from the cell body. Long filopodia extending 

over the Au-ODT layers that were not terminated by FAs were observed. 

 

 

Fig. 63. Distribution of 3T3 Swiss fibroblasts on biofunctionalised patterned Au-ODT surfaces. 

For functionalisation linear - GRGDS and GRGDSP - and cyclic - c(-RGDfKG-) and c(-RGDfK-) - 

peptides were used.  
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In contrast, on both cyclic peptides the fibroblasts did not form obvious actin stress fibres. 

While on c(-RGDfKG-) the small FAs were revealed, on c(-RGDfK-) paxillin staining was 

negative for most cells. 

Vinculin staining proved results of paxillin visualisation showing well formed FAs in the 

lamellipodia of mouse fibroblast spread on GRGDS-functionalised areas between Au-ODT 

stripes (Fig. 65).  

 

 

Fig. 64. Spreading behaviour of mouse fibroblasts on different RGD-containing peptides. 

Paxillin staining for focal adhesions in red, actin filament labelling with Oregon Green®-phalloidin in 

green, staining of nuclei with DAPI in blue. Scale bars: 10 µm. 
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Fig. 65. Focal adhesion formation in 

mouse fibroblast on GRGDS-

functionalised structured AU-ODT 

surface visualized by vinculin staining. 
Confocal laser microscope. Vinculin 

staining for focal adhesions in red, actin 

filament labelling with Oregon Green®-

phalloidin in green, staining of nuclei with 

DAPI in blue. Scale bar 10µm. 

  

4.9.9  Control of the surface biocompatibility 

4.9.9.1  Control peptides 

Behaviour of 3T3 Swiss fibroblasts on the structured Au-ODT surfaces functionalised with 

control RβAD-peptides was tested. The exchange of Glycine to beta Alanine in the RGD 

recognition motif should prevent cell spreading. The cell adhesion assays showed no spread 

cells on both linear – GRβADS and GRβADSP – and on cyclo(-RβADfKG-) (Fig. 66A). 

However, spread and flattened cells on the c(-RβADfK-) were found (Fig. 66B).  

 

 

Fig. 66. Cells attached to the patterned Au-ODT surfaces functionalised with different control 

RβAD-peptides. (A) Mouse 3T3 Swiss fibroblasts on the GRβADS, GRβADSP and c(-RβADfKG-) 

were round. (B) Some spread and flattened cells on c(-RβADfK-) were found. The cells were 

visualised with Oregon Green®-phalloidin staining. Scale bars 10 µm. 
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Statistical evaluation showed a three times higher number of attached on cyclo(-RβADfKG-) 

–functionalised samples cells in comparison with linear GRβADS and 20 times higher in 

comparison with GRβADSP. All cells attached on GRβADS, GRβADSP, and c(-RβADfKG-) 

were round. Linear GRβADSP demonstrated the lowest ability to induce the cell adhesion. 

Spread and flattened cells were found only on c(-RβADfK-)-functionalised samples; the cells 

avoided Au-ODT stripes and attached to peptide-covered surface (Fig. 67).  

 

  

  

Fig. 67. Statistical evaluation of cell attachment to negative control peptides on structured Au-

ODT surfaces.  

 

Morphology of the cells on c(-RβADfK-) were obviously different from completely round 

fibroblasts on GRβADS, GRβADSP, and c(-RβADfKG-) peptides. However paxillin staining 
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did not revealed FAs in lamellipodia of spread and flattened fibroblasts on c(-RβADfK-) (Fig. 

68). 

 

Fig. 68. Cell behaviour with negative control peptides. The surfaces were functio-nalized with 

GRβADS (A) and c(RβADfK-) (B). Paxillin staining for focal adhesions in red, actin filament labelling 

with phalloidin in green, staining of nuclei with DAPI in blue. Bars: 10 µm 

 

4.9.9.2  Proliferation assays 

To estimate the cell ability to proliferate on the structured Au-ODT surfaces functionalised 

with RGD-peptide an enumeration of cells in mitotic stage was performed. Immunostaining of 

phosphorilated histone H3 revealed mitotic cells; comparison of their number with total 

number of surface adhered cells allowed to calculation of the proliferation index. The diagram 

in Fig. 69 shows an increasing with time in the number of mitotic cells cultivated on the Au-

ODT/GRGDS surface at 4, 24 and 48 hours, that corresponds to an increase in the of total 

number of surface adhered cells. 

 

 

 

 

 

 

 

Fig. 69. 3T3 Swiss fibroblasts proliferate 

on the structured Au-ODT surface 

functionalised with GRGDS-peptide.  
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General dynamics of cell growth and proliferation revealed by counting of patterned surface 

attached fibroblasts correlated well with the results of a proliferation assay for uniform 

GRGDS-surfaces (see section 4.7.3). The low percentage of mitotic cells at first 4 hours after 

cell seeding correlated with cultivation of cell in a serum free medium. At 24 and 48 hours 

this parameter has increased to 11% and 12%, respectively. 

 

4.9.9.3  Long-term stability of the structured distribution of cells  

To test biocompatibility of structured Au-ODT/RGD surfaces the mouse 3T3 Swiss fibroblasts 

were cultivated on patterned samples for two days. Fig. 70 shows cell behaviour on the 

surface at 48 hours after seeding. The cells were polarised and spanned along pattern lines. 

They mainly avoided Au-ODT stripes spreading on RGDS-functionalised areas. 

 

 

Fig. 70. 3T3 Swiss fibroblasts 48h incubated on the structured Au-ODT/GRGDS. Oregon 

Green®-phalloidin staining in green, staining of nuclei with DAPI in blue. Scale bars: 20 µm. 
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5  DISCUSSION 
 

With this work a fast one-step method of surface biofunctionalisation via covalent binding of 

RGD-peptides has been developed. Different isothiocyanate terminated RGD-containing 

peptides including two molecules aminohexanoic acid molecules as a spacer were provided 

by Dr. Horst Kessler (TU, Munich). These were coupled to aminogroups on surfaces. Optimal 

aminofunctionalisation techniques, peptide coupling conditions and passivation processes 

had to be established which led to reproducible bioactivated surfaces of high quality and 

specificity. The method presented here can be applied to homogenous as well as structured 

surfaces. Cell-biological and medical applications require biocompatibility and non-toxicity of 

the designed surfaces, and this has been proven by different sets of experiments including 

focal contact and stress fibre formation, cell proliferation or long term cultivation. In the 

following, experimental results concerning biocompatibility and specificity of the coupling 

procedure, including tailoring and biofunctionalisation of structured surfaces as well as the 

adhesion behaviour of different cell types are discussed in detail.   

 

 

5.1  Biocompatibilty of different compounds required  

for RGD- surface functionalisation 

The developed method of the surface RGD-functionalisation involved covalent binding of the 

peptides via an isothiocyanate linker and aminosilanisation of surfaces. When structured 

surfaces were created with µC printing and etching compounds like gold, titanium or 

chromium for gold adsorption and ODT for masking gold areas during the etching process 

were applied. All materials were monitored for how they influence cell adhesion and viability. 

Highly reactive isothiocyanate groups could have a toxic effect in the case of incomplete or 

incorrect coupling of the molecules to the surface. To prove whether isothiocyanate 

terminated peptides are permissible for cell-biological applications they were absorbed onto 

plastic slides and used as a substrate for cell adhesion. Mouse fibroblasts recognised the 

adsorbed isothiocynanate terminated peptides which were treated with BSA to block 

unspecific binding. Cells spread forming focal adhesions that proving biocompatibility of the 

material. Cells did not spread on BSA covered plastic alone thus proving specificity of 

peptide and/or isothiocyanate recognition. Substrates created by adsorption to the plastic 

using 1 mg/ml isothiocyanate terminated GRGDS solution showed higher cell adhesiveness 

than those adsorbed with the same concentration of commercially available GRGDS 

(Bachem, Germany) lacking the isothiocyanate group and the aminohexanoic acid spacer. 
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These experiments revealed that the isothiocynate peptide itself seems to be non-toxic. The 

improved cell adhesion could be explained by higher absorption properties of isothiocyanate 

linked peptide, however, it cannot be excluded that the isothiocyanate promotes cell 

attachment. Nevertheless, in comparison to the chemical coupling procedure, discussed 

later, very high doses of the peptide need to be applied. 

Aminosilanised glass did not by itself promote adhesion of 3T3 Swiss mouse fibroblasts 

according to cell adhesion assays performed in a serum-depleted medium. After 1 hour 

incubation of suspended cells to aminated glass no spread cells were found on the surface, 

however adhesion assays performed in serum-supplemented medium showed fibroblasts 

adhered to the surface.  This indicates that compounds of the serum can adsorb to the 

aminated surface thereby indirectly mediating cell adhesion or alternatively, growth factors of 

the serum might change the responsiveness of these fibroblasts to amino groups. Long-term 

experiments lasting over at least 2 days showed that cells are able to spread and grow on 

aminosilanised surfaces in the presence of serum. Thus, 3T3 Swiss fibroblasts are not able 

to recognise aminated glass surfaces in the absence of serum, which is a prerequisite when 

specific RGD-peptide recognition has to be investigated. 

Acidic protein bovine serum albumin is widely used in blocking unspecific protein binding 

based on electrical charges between amino acids side chains, due to configurational 

adaptability of the BSA molecule (Shirahama et al., 1989). In comparison to a single amino 

acid solution like 0.3 mg/ml aspartate solution and a mixture of 1 mg/ml arginine plus 

aspartate (data not shown) absorption of 1% pure BSA was found sufficient to prevent 

unspecific adhesion of 3T3 Swiss fibroblasts. I also tried 4-methoxyphenylisothiocyanate to 

block residual free amino groups mimicking the coupling reaction, but this resulted in 

complete loss of adhesion of 3T3 fibroblasts. Most likely the secondary aminogroup in the 

arginine (of the RGD peptide) was coupled to 4-metoxyphenylisothiocyanate and the peptide 

was no longer functional. 

Gold and titanium used in procedures of surface patterning are widely used as metals in 

medical applications. However, the etching of titanium was found uncontrollable with the 

available laboratory equipment. Therefore chromium was used as adapter metal instead of 

titanium. Both Chromium (VI) and Chromium (III) are toxic (Gavin et al., 2007; Gardea-

Torresdey et al., 1999) and the biocompatibility of chromium as well as other materials used 

in the patterning procedure – ODT and Pluronic® – had to be investigated. As criteria for 

biocompatibility cell shape, focal adhesion formation and proliferation rate in long term 

cultivation are often used (Saldana et al., 2005; Altankov et al., 1996). In this study 

proliferation rate over two days cultivation was monitored by phosphohistone staining. This 

staining showed that cells divide with a stable rate comparable to cells cultivated under 

normal conditions (Serrano et al., 2004). The cells remained adhered and spread on RGD-
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functionalised surface areas avoiding settlement on Au-ODT stripes. Instead, they are able to 

form bridges, by spanning through Au-ODT stripes that indicates the cell non-toxicity of Au-

ODT. Thus, all components used in the procedure of patterning are compatible and 

permissible for cell-adhesion applications. 

For structured surface fabrication two different procedures were applied – performing 

aminosilanisation before or after metal layer evaporation. Both methods showed their 

compatibility and applicability for cell adhesion assays. However, technology of “Au-through-

mask” evaporation on previously aminated surfaces led to “shadows” along the Au-stripes 

visualised by electron microscopy. Although not chemically characterized these shadows 

point to a residual adapter metal or gold layers of different thickness and might cause 

decrease in pattern stability. In contrast, the method of aminosilanisation after Au 

evaporation formed distinct borders between functionalised and unfunctionalised areas and 

therefore this technique was further developed. 

Both mentioned methods of patterned surface design were shown to be insufficient to 

promote patterned cell distribution without any additional passivation step. For Au-ODT 

surfaces a method of Pluronic® treatment was found providing further selective cell 

attachment mainly on aminosilanised areas. In contrast, for the application of “Au-through-

mask” an additional gold specific passivation technique that does not affect the amino groups 

on the glass needs to be developed.   

 

 

5.2  Cells bind RGD-peptides specifically 

The specificity of RGD-motif recognition of on designed surfaces is critical for cell-adhesion 

applications because RGD recognition induces outside-in signalling of the integrin receptor 

complex and thereby influences survival, growth, differentiation and migration of cells 

(Giancotti and Ruoslahti, 1999). In this study the use of serum and cell cultivation longer than 

2 hours was found to give false results.   

Comparison of the cell behaviour showed that adhesion assays in serum-supplemented 

medium did not provide specific recognition of the substrate. In presence of foetal calf serum 

the mouse fibroblasts attached and spread, even on unfunctionalised aminated or non-

aminated untreated glass. In contrast, the cells showed obvious RGD-dependent spreading 

in a serum-free medium; in absence of serum the fibroblasts spread neither on 

aminosilanised glass nor on control peptides with a scrambled RGD-motif. Thus, in the 

application of serum free medium in cell adhesion assay it is required in the read-out system 

to test the quality of surface RGD-functionalisation. 
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To prove substrate specificity of cell adhesion in classical cell substrate adhesion assays 

cells are allowed to adhere only for 1-2 hours depending on the cell type (Saldana et al., 

2006). Longer cultivation covers the risk that cells synthesize their own extracellular matrix. 

Furthermore, the work Cohen et al. (Cohen et al., 2006) has shown that cells attach to 

surface within 2-10 minutes and form focal contacts after an additional two minutes. Taking 

both critical variables, serum and time-course of adhesion, many studies of cells on 

structured and functionalised surfaces are questionable and difficult to compare with the 

results presented in this work. Cells have been tested in presence of serum (Anderson et al., 

2004; Kato and Mrksich, 2004; Behravesh et al., 2003) and after 4 and more hours of 

adhesion (Kato and Mrksich, 2004). 

Additional control for recognition specificity is the use of scrambled RGD motifs, by 

exchanging the Glycine to βAlanine which prevents integrin binding and to compete ligand 

receptor interaction by competition with soluble RGDs-peptide. Furthermore, modification of 

the RGD peptide by addition of further amino acids or cyclization of the peptide itself allows 

one to distinguish between integrin receptors to some extent as they differ in their binding 

affinities to certain RGD-peptide modifications (Meyer et al., 2006). Thus, testing a set of 

modified RGD-peptides should further confirm recognition specificity.  

The successful blocking of cell adhesion by soluble GRGDS-peptides in the medium 

confirmed the specific recognition of GRGDS, GRGDSP, and c(-RGDfKG-) motifs by the 3T3 

fibroblasts. Specificity was confirmed as no cell adhesion was observed on the 

corresponding scrambled RGD-peptides containing the βAlanine. However, incomplete 

prevention of fibroblast adhesion to c(-RGDfK-) in the presence of the soluble peptide 

revealed unspecific mechanism of the cell binding to this cyclic peptide. Furthermore, the 

high background signal in the immunostainings (Fig. 30 and 31) point to an unspecific 

adsorption of proteins such as antibodies even in presence of the blocking reagent BSA. 

Unspecific surface adhesion was also visible by the failure in focal contact formation and 

atypical cell shapes. A relatively high amount of fibroblasts adhered to the corresponding 

scrambled peptide c(-RβAGfK-). Although cells were found only flattened rather than spread 

this cell behaviour also pointed to an unspecific binding of incorrectly synthesised molecules 

and showed necessity of change in the synthesis procedure for cyclic peptides. These 

extreme differences in comparison to the other linear and cyclic peptides led to a change in 

cyclic peptide synthesis. The synthesis of the functionalised cyclic peptides was modified in 

order to be able to do the cyclization step and the coupling of the spacer and the 

isothiocyanate anchor on solid phase. This allowed to avoid possible undesirable reactions 

and produce functional and specific cell recognisable peptide Nc(-RGDfK-). Fibroblasts 

spreading behaviour on Nc(-RGDfK-) was similar to c(-RGDfKG-) which was confirmed by 

competition with the soluble peptide and monitored by immunostaining for focal contacts 
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including statistical evaluations. Presence of soluble RGD-peptide in medium completely 

prevented attachment to Nc(-RGDfK-)-surface, confirming RGD-dependence of substrate 

binding.  

Though the cells recognised all tested RGD-containing peptides, differences in spreading 

behaviour of fibroblasts on linear in comparison to cyclic ones were observed. Counting of 

adhered cells to a 1 mm2 area of the functionalised surface did not reveal statistically 

significant differences between peptides. However, the cell shape of fibroblasts spread on 

both linear peptides was found to be elongated exhibiting thick stress fibres of actin 

cytoskeleton. In contrast, on cyclic peptides the cell shape was more rounded. The amount 

of vinculin and paxillin positive FAs was similar for both linier peptides and nearly twice 

higher than for cells on c(-RGDfKG-) and Nc(-RGDfKG-). Importantly, the numbers of FAs 

formed by the fibroblasts on linear peptides perfectly matched to those formed on adsorbed 

fibronectin; there is no significant difference found between them.  

Affinity to distinct integrin receptors depends on ligand conformation and amino acids 

flanking RGD-motif in the molecule (Hersel et al., 2003; Ruoslahti and Pierschbacher, 1987). 

Linear GRGDS and GRGDSP were published to promote α5β1 and αvβ3 integrin binding, 

while cyclo(-RGDfK-) and cyclo(-RGDfKG-) are known to have a higher affinity to αvβ3, 

αvβ5, and αIIbβ3 (Auernheimer, 2005; Bin et al., 2000; Garanger et al.; 2006, Hersel et al., 

2003). A higher ability of linear RGD-peptides in comparison to cyclic ones to block cell 

binding to a fibronectin layer promoted by α5β1 was also reported (Takahashi et al., 2007). 

RT-PCR analyses showed that 3T3 Swiss fibroblasts used in this work express all integrin 

receptors mentioned above. Slight differences in the amount of transcripts were detected 

indicating that at least more α5 than αv and more β6 compared β3 and β1 integrin is 

synthesised. The higher amount of α5 integrin might explain the preference of 3T3 Swiss 

fibroblasts to adhere to linear peptides. However, expression levels of integrin RNA cannot 

completely explain the differences since protein turnover or stability as well as integrin 

activation by inside-out signaling has also to be considered. Nevertheless, the observed 

differences in cell shape and FAs formation between linear and cyclic peptides could be 

induced by stimulation of distinct integrin receptors. A similar dependence on different 

integrin receptors in altering cell morphology has been reported by Danen (Danen et al., 

2002); fibroblastoid and epithelioid cells were found more elongated in the case of α5β1-

integrin mediated adhesion and more round when αvβ3-integrin was responsible for 

spreading. In agreement with this report it is allowed to speculate that the 3T3 Swiss 

fibroblasts respond to linear peptides by predominant use of the α5β1 receptor and therefore 

are of elongated shape. However, when plated onto cyclic peptides αvβ3 integrin is 

preferentially activated and cells take a more round shape. The differences in the numbers of 
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FAs per cell could be then limited by the amount of alpha subunits synthesised in these cells, 

so that less FAs can be formed by αv. 

Immunostaining investigations together with statistical evaluation proved similarity of 

fibroblast behaviour on linear peptides and on absorbed fibronectin layers in terms of 

cytoskeleton organisation and focal adhesion formation. This correlation suggests a high 

level of similarity to the native substrate of the tested inanimate model designed by linear 

RGD-peptides covalently bound to surfaces. On surfaces fabricated with cyclic peptides, the 

fibroblasts demonstrated full spreading but decreased numbers of vinculin- and paxillin-

positive focal adhesions. From other studies it is known, that the ability of cells to spread and 

form focal adhesion contacts depends on the distribution of ligands on the surface. Research 

group of Spatz (Arnold et al., 2004) showed that separation of adhesive dots on 73 nm and 

more led to aberrant cell adhesion and spreading as well as formation of focal adhesions, 

whereas distances up to 58 nm promoted effective cell adhesion. The group of Textor proved 

that increasing of the distance between RGD peptides reduced cell attachment to the 

surface, and reported that the density of RGD peptides also influenced the cell shape 

(Schuler et al., 2006).   

In this work, the presence of RGD-peptides on the functionalised surface was shown with 

XPS, contact angle measurements and by changing in fluorescence intensity after surface 

treatment with rhodamin-RGD. The density of RGD-molecules could not be measured. In 

various approaches for designing optimal adhesive surfaces the functional molecules are 

used in a mixture with nonfunctional, “blank” ones to promote a certain distance between 

cell-recognisable ligands (Holzl et al., 2007; Kato and Mrksich, 2004; Romanova et al., 

2006). Decreased numbers of observed FAs in lamellipodia of fibroblasts on cyclic RGD-

peptides could be explained by non-optimal spacing of high affinity ligands. Low affinity 

ligands, like linear peptides, play a negligible role, since a decrease of linear peptide 

concentration in the coupling solution was shown to lead to a reduction of cell-adhesive 

properties of the functionalised surface. However, in the case of cyclic peptides additional 

experiments are required to find the optimal concentration in order to rule out that the 

observed differences are due to a combined effect of high affinity and high density RGD-

peptides. Since the new synthesis pathway of the cyclic peptides has been started only two 

months ago only initial experiments with the Nc(-RGDfK-) could be included in this thesis.  
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5.3  Designed Au-ODT/RGD pattern promoted selective cell 

distribution 

When the peptide coupling procedure was applied to surfaces structured by the microcontact 

printing method cell adhesion specificity to RGD was lost. Cell adhesion assays showed 

uniform cell distribution on both substrates of patterned surfaces – Au-ODT and 

aminosilanised RGD coupled stripes. Such cell adhesion behaviour with no preference 

indicated that during the coupling procedure RGD-peptides might also adsorb or were 

coupled to Au-ODT areas by unknown mechanisms. To achieve selective RGD-peptide 

distribution between the two different substrates a triblock copolymer Pluronic® F68 based 

on ethylene oxide and propylene oxide and PEG was tested for passivation. Absorption of 

PEG and Pluronic® onto hydrophilic surfaces is used for preventing covering of such surface 

by other molecules, including proteins (DeFife et al. 1999; Prasad et al., 1979; Tan et al., 

2004). Nontoxicity together with cell repellence caused these both polymers is applicable for 

design of patterned substrates (Arnold et al., 2004; Lee et al., 2005; Welle et al., 2005). 

Dependence of PEG and Pluronic absorption on wettability of the surfaces made possible of 

their application to passivation of the hydrophobic ODT-SAMs.  

Pluronic® F68 as well as PEG3350 were both found suitable to generate the desired 

alternating pattern of RGD functionalised aminosilanised glass stripes and inert Au-ODT 

bars. TOF-SIMS analysis performed by Physical Electronics (Chanhassen, USA) confirmed 

that Pluronic® specifically blocked the RGD functionalisation of the Au-ODT lines 

(unpublished data). The success in selected biofunctionalisation of the aminated glass 

stripes became obvious in cell adhesion assays when fibroblasts no longer attached and 

spread on the Au-ODT, but spread on RGD-coupled glass stripes. Pluronic® and PEG were 

shown to have a similar effect of to Au-ODT passivation. As the optimal method the coupling 

buffer was supplemented with 2 mM Pluronic® so that no further washing step is required.  

Statistical evaluation proved that application of PEG or Pluronic® promoted high selective 

distribution of 3T3 fibroblasts on structured Au-ODT surfaces functionalised with GRGDS, 

GRGDSP, and c(-RGDfKG-). Cells preferred to adhere on areas of RGD-functionalised 

aminosilanased glass, and spread on it forming FAs; very few Au-ODT attached cells mainly 

stayed round. On c(-RGDfK-) cell distribution was not highly selective, correlating with other 

evidence of untypical behaviour of this peptide in comparison with other tested RGDs. This 

observation confirmed the sense of the adhesion used. 

Since the structured surface also exhibited some topography, because etching after µC 

printing results in 60 nm deep and 21 µm wide channels, the capacity of cells to adhere to 

non-functionalised patterns was tested. However, this topography by itself is not able to 

promote patterned cell distribution; this was shown by adhesion experiments for the surfaces 
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without PEG and Pluronic® treatment. Therefore, such treatment is a necessary step for 

patterned RGD-functionalisation. To prove that topography of the surface is not able to 

promote cell adhesion by itself, cell assays with the two following types of structured Au-ODT 

surfaces were performed: (1) aminosilanised Au-ODT slides that were not treated with RGD 

peptide and (2) non-aminated Au-ODT slides that were incubated with RGDS for 2 hours. In 

both causes, in serum-free medium mouse fibroblasts adhered neither on Au-ODT nor glass 

or NH2-glass demonstrating no adhesive effect of the surface topography. 

A key question addressed in tissue regeneration using inanimate patterned cell-adhesive 

surfaces is the long-term stability of the pattern under cell culture conditions. Covalent 

immobilisation of RGD-peptides should guarantee a high stability of the pattern. However, in 

addition to the stability of RGD-molecules on the surface the question arises whether the 

cells will change the pattern by producing their own extracellular matrix molecules. A 

patterned substrate is able to effect cell orientation and cell movement that was shown e.g. 

for mouse dermal fibroblasts on two-dimensional collagen surfaces (Poole et al., 2005). The 

fibroblasts cultured on the structured Au-ODT/GRGDS slides for 2 days were found to be 

polarised along the stripes. The cells showed a constant proliferation index quite similar to 

cells cultivated on uniform GRGDS-surface, but the cell shape was obviously different as 

they were more elongated and uniformly orientated. The alignment of fibroblasts along the 

stripes suggests that the initial orientation of the cells according to the structure of the 

inanimated surface defines the later ECM network produced by the cells and thus results in 

the maintenance of the pattern. 

 

 

5.4  Cell behaviour on RGD-surfaces is cell type dependent 

As well as 3T3 Swiss fibroblast adhesion and spreading of other cell lines on the RGD-

functionalised surfaces were also examined. Xenopus fibroblast, a cell line established from 

tadpoles, B16 melanoma cells expressing β3-GFP-integrin and rat fibroblast stably 

transfected with YFP-paxillin were compared. The last two were chosen by promising in vivo 

imaging of focal adhesion formation due to the fluorescent labelled proteins. All cell types 

tested so far recognised and spread on substrates designed by covalent binding of 

isothiocyanate terminated RGD-peptides to aminosilanised glass. The cells showed a 

spreading behaviour similar to that on fibronectin, forming numerous focal adhesions. 

Phosphopaxillin staining revealed FAs at leading edge of lamellipodia; in REF52 rat 

fibroblasts phosphopaxillin clusters arranged in a ring like structure but not overlapping with 

the clusters of YFP-paxillin were observed. Cell adhesion assay with melanoma B16 β3-
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GFP-integrin exhibited GFP-integrin clusters formed on GRGDS, GRGDSP and 

c(-RGDfKG-). 

Importantly, cell behaviour on aminosilanised glass was different, strongly depending on the 

tested cell line. Mouse Swiss 3T3 fibroblasts as well as Xenopus fibroblasts showed high 

selectivity in RGD-dependent adhesion. On aminosilanised glass – treated or untreated with 

BSA – Xenopus fibroblasts did not spread; statistical evaluations showed only few round 

attached cells. In contrast, human melanoma cells and MC3T3-E1 pre-osteoblasts showed 

full spreading on aninosilanised glass as well as on surfaces functionalised with RβAGD 

control peptides. The morphology of these cells was maintained whether they spread on 

RGD-functionalised surface, aminosilanised glass or on control peptides. Immunostaining 

revealed that focal adhesions were present. The melanoma cells transfected with GFP-β3-

integrin showed clusters of the labelled integrin in lamellipodia. Taken together, the 

comparison of the spreading behaviour between different cell lines demonstrated that only 

XTC and mouse 3T3 fibroblast selectively recognised RGD-peptides for adhesion while all 

other analysed cells showed a similar behaviour when plated on aminated or untreated glass 

surfaces which has been treated with BSA to avoid unspecific binding.  

Cell binding to the substrate via RGD-peptides is not only controlled by ligand availability but 

also by “inside-out” signalling. Intracellular proteins are able to alter integrin receptor 

conformation and thereby make them responsive to the ligand and activate their clustering 

(Ginsberg et al., 1992). Overexpression e.g. talin, which binds to the β integrin cytoplasmic 

tail, can result in the receptor activation (Eigenthaler et al., 1997). The observed RGD 

independent spreading and FAs formation of melanoma and pre-osteoblasts on 

aminosilanised and RβAD-surfaces might result from activation of integrin signalling by 

intracellular factors. Constitutively active β integrins are found in some tumours, they change 

the ability of cells to interact with their environment, and such loss in control can result in 

tumour progression (Brandsma et al., 2006). Activation of integrin receptors by clustering 

through overexpression or mutations in melanoma cells leading to a constitutive active 

inside-out-signalling may explain the RGD-independent spreading in these cell lines. 

Overall, the application of the standard conditions for cell adhesion assays developed here 

revealed differences in selectiveness and specificity of ligand recognition among different cell 

lines. This strengthens the idea that the specific commitment of the selected cell line has to 

be investigated parallel to the design and fabrication of the suitable biofunctionalisation of an 

inanimate surface.  
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6  SUMMARY  

Immobilisation of cell adhesive ligands on surfaces is applied to fabricate bioactive materials 

for different purposes, e.g. stem cell differentiation and tissue regeneration. Peptides 

containing the RGD (Arg-Gly-Asp) motif mimic binding sites of many ECM proteins that are 

recognised by integrin receptors. In this work, a novel method for immobilization of RGD-

peptides to surfaces was developed. For this purpose different isothiocyanate terminated 

RGD peptides which include two molecules aminohexanoic acid as spacer were provided by 

Prof. Dr. Horst Kessler (TU, Munich). Covalent binding of these peptides to aminosilane self-

assembled monolayers on glass as well as on silica dioxide surfaces resulted in the 

formation of adhesive surfaces proved by physical and biological methods. 

Cells recognise and spread on RGD-functionalised surfaces, rearranged their actin 

cytoskeleton and formed stress fibres and active focal contacts. Absence of serum in the 

medium was found to be essential for specific recognition of the RGD-motif. The specificity of 

RGD mediated cell-adhesion was proved in competition assays with soluble GRGDS-

peptides. As an additional control non-functional scrambled RGD motifs, containing beta-

Alanine instead of Glycine were used.  

Equal numbers of 3T3 fibroblasts adhered on linear and cyclic RGD peptides; however, actin 

cytoskeleton organisation and focal adhesion formation slightly differed between these 

peptides. When ligand recognition and spreading behaviour of various cell lines were 

compared, cell type specific differences were found. 

The new method of RGD-functionalisation was improved for application to 2D structured 

surfaces. The latter were designed by soft-lithography-based microcontact printing producing 

alternating areas of aminosilanised glass and octadecylthiol self-assembled monolayers.  

Selective RGD-functionalisation of the aminosilanised glass areas resulted in a patterned 

distribution of adhered cells. The biocompatibility of different compounds required for RGD- 

surface functionalisation and the long-term stability of the pattern was demonstrated by cell 

adhesion and cell proliferation assays. 
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7  ZUSAMMENFASSUNG  

Die Immobilisierung von zelladhäsiven Faktoren an Oberflächen findet in der Herstellung von 

bioaktiven Materialien zum Zweck der Stammzellendifferenzierung, Geweberegeneration 

und Organersatzbildung Anwendung. Peptide mit der RGD (Arg-Gly-Asp) Sequenz imitieren 

die Bindungsstellen vieler ECM Proteine, die von Integrinrezeptoren erkannt werden. In der 

vorliegenden Arbeit wurde eine neue Methode zur Immobilisierung von RGD Peptiden an 

Oberflächen entwickelt. Unterschiedliche RGD Peptide, die über zwei Aminohexansäure-

Einheiten mit einer endständigen Isothiocyanat-Guppe verknüpft sind, wurden in der 

Arbeitsgruppe Prof. Dr. Horst Kessler (TU, München) synthetisiert und  zur Verfügung 

gestellt. Die kovalente Bindung der Isothiocyanat-terminierten Peptide an aminosilanisierten 

selbst organisierte Monolagen (SAM: self assembly layer) auf Glass und auf Siliziumdioxid 

ergab die Ausbildung adhäsiver Oberflächen. Dies wurde mittels physikalischen und 

biologischen Methoden bestätigt. 

Maus Fibroblasten (Swiss 3T3) erkannten RGD funktionalisierte Oberflächen und  breiteten 

sich auf diesen Oberflächen aus. Dabei fand eine Umordnung des Actinzytoskeletts und die 

Bildung von Stressfasern und aktiven Fokalkontakten statt. Es wurde gezeigt, dass eine 

spezifische Erkennung der RGD Sequenz nur inserumfreien Medium nachweisbar ist. Die 

RGD Motiv vermittelte spezifische Zelladhäsion wurde durch Kompetition mit löslichem 

GRGDS Peptiden bewiesen. Als zusätzliche Negativ-Kontrolle wurden nicht funktionale RGD 

Motive, die beta-Arginin statt Arginin enhalten, eingesetzt. 

Auf linearem und zyklischem RGD Peptid ist die Anzahl der adhärenten Zellen gleich groß. 

Allerdings unterscheiden sich die Zellen geringfügig in der Anzahl der gebildeten 

Fokalkontakte. Beim Vergleich unterschiedlicher Zelllinien, u.a. Osteoblasten, 

Melanomazellen,  u wurden Zelltyp spezifische Unterschiede deutlich.     

Die neue Methode zur RGD Funktionalisierung wurde für die Anwendung von 2D 

strukturierten Oberflächen verbessert. Letzteres wurde mittels auf Soft-Lithographie 

basierendem „microcontact printing“ gestaltet, aus der alternierend Flächen aus 

aminosilanisiertem Glass und selbst organisierende Monolagen von Octadecanthiol 

hervorgingen. Selektive RGD Funktionalisierung der aminosilanisierten Glassflächen 

resultierten in einer musterabhängigen Verteilung der anwachsenden Zellen. Die 

Biokompatibilität der für die RGD Funktionalisierung benötigten Komponenten und die 

langzeitige Stabilität der Muster wurde mittels Zelladhäsions- und Zellproliferationstests 

bewiesen. 



References 96 
      

 

8  REFERENCES  

Abercrombie, M., Heaysman, J. E., and Pegrum, S. M. (1971). The locomotion of fibroblasts 
in culture. IV. Electron microscopy of the leading lamella. Exp Cell Res 67, 359-367. 

Adair, B. D., and Yeager, M. (2002). Three-dimensional model of the human platelet integrin 
alpha IIbbeta 3 based on electron cryomicroscopy and x-ray crystallography. Proc Natl Acad 
Sci U S A 99, 14059-14064. 

Akagi, T., Murata, K., Shishido, T., and Hanafusa, H. (2002). v-Crk activates the 
phosphoinositide 3-kinase/AKT pathway by utilizing focal adhesion kinase and H-Ras. Mol 
Cell Biol 22, 7015-7023. 

Altankov, G., Grinnell, F., and Groth, T. (1996). Studies on the biocompatibility of materials: 
fibroblast reorganization of substratum-bound fibronectin on surfaces varying in wettability. J 
Biomed Mater Res 30, 385-391. 

Anderson, E. H., Ruegsegger, M. A., Murugesan, G., Kottke-Marchant, K., and Marchant, R. 
E. (2004). Extracellular matrix-like surfactant polymers containing arginine-glycine-aspartic 
acid (RGD) peptides. Macromol Biosci 4, 766-775. 

Arnold, M., Cavalcanti-Adam, E. A., Glass, R., Blummel, J., Eck, W., Kantlehner, M., Kessler, 
H., and Spatz, J. P. (2004). Activation of integrin function by nanopatterned adhesive 
interfaces. Chemphyschem 5, 383-388. 

Auernheimer, J. (2005). Funktionalisierung künstlicher Oberflächen mit Integrinliganden zur 
Stimulierung integrinvermittelter Zelladhäsion. Dissertation, TU München. 

Bacakova, L., Filova, E., Kubies, D., Machova, L., Proks, V., Malinova, V., Lisa, V., and 
Rypacek, F. (2007). Adhesion and growth of vascular smooth muscle cells in cultures on 
bioactive RGD peptide-carrying polylactides. J Mater Sci Mater Med 18, 1317-1323. 

Ballestrem C, Hinz B, Imhof BA, Wehrle-Haller B, (2001) Marching at the front and dragging 
behind: differential alphaVbeta3-integrin turnover regulates focal adhesion behavior. The 
Journal of cell biology. 155(7): 1319-32. 

Barbucci, R., Magnani, A., Chiumiento, A., Pasqui, D., Cangioli, I., and Lamponi, S. (2005). 
Fibroblast cell behavior on bound and adsorbed fibronectin onto hyaluronan and sulfated 
hyaluronan substrates. Biomacromolecules 6, 638-645. 

Barlos, K., Gatos, D., Kallitsis, J., Papaphotiu, G., Sotiriu, P., Weqing, Y., and Schaeffer, W. 
(1989a). Darstellung geschuetzter peptid fragmente unter einsatz substituierter 
triphenylmethyl-harze. Tetrahedron Lett 30, 3943-3946. 

Barlos, K., Gatos, D., Kapalosa, S., Papaphotiu, G., Schaeffer, W., and Weqing, Y. (1989b). 
Veresterung von partiell geschuetzten peptid fragmenten mit harzen. Einsatz von 2-
chlortritylchlorid zur Synthese von Leu15-gastrin I. Tetrahedron Lett 30, 3947-3950. 

Becker, J., Kirsch, A., Schwarz, F., Chatzinikolaidou, M., Rothamel, D., Lekovic, V., Laub, 
M., and Jennissen, H. P. (2006). Bone apposition to titanium implants biocoated with 
recombinant human bone morphogenetic protein-2 (rhBMP-2). A pilot study in dogs. Clin 
Oral Investig 10, 217-224. 

Beglova, N., Blacklow, S. C., Takagi, J., and Springer, T. A. (2002). Cysteine-rich module 
structure reveals a fulcrum for integrin rearrangement upon activation. Nat Struct Biol 9, 282-
287. 

Behravesh, E., Zygourakis, K., and Mikos, A. G. (2003). Adhesion and migration of marrow-
derived osteoblasts on injectable in situ crosslinkable poly(propylene fumarate-co-ethylene 
glycol)-based hydrogels with a covalently linked RGDS peptide. J Biomed Mater Res A 65, 
260-270. 



References 97 
      

 

Bin, H., Senfang, S., Guttenberg, Z., and Baermann, M. (2000). The binding ability of 
immobilized biotinylated cyclic hexapeptide [cyclo(-Arg-Gly-Asp-D-Phe-Lys-Gly-)] containing 
RGD to integrin a Ⅱbb 3 was tested by the methods of ELISA and SPR. Chinese Science 
Bulletin 45, 2148-2152. 

Blancher, C., Omri, B., Bidou, L., Pessac, B., and Crisanti, P. (1996). Nectinepsin: a new 
extracellular matrix protein of the pexin family. Characterization of a novel cDNA encoding a 
protein with an RGD cell binding motif. J Biol Chem 271, 26220-26226. 

Bono, P., Rubin, K., Higgins, J. M., and Hynes, R. O. (2001). Layilin, a novel integral 
membrane protein, is a hyaluronan receptor. Mol Biol Cell 12, 891-900. 

Borowsky, M. L., and Hynes, R. O. (1998). Layilin, a novel talin-binding transmembrane 
protein homologous with C-type lectins, is localized in membrane ruffles. J Cell Biol 143, 
429-442. 

Brown, M. C., West, K. A., and Turner, C. E. (2002). Paxillin-dependent paxillin kinase linker 
and p21-activated kinase localization to focal adhesions involves a multistep activation 
pathway. Mol Biol Cell 13, 1550-1565. 

Brandsma, D., Ulfman, L., Reijneveld, J. C., Bracke, M., Taphoorn, M. J., Zwaginga, J. J., 
Gebbink, M. F., de Boer, H., Koenderman, L., and Voest, E. E. (2006). Constitutive integrin 
activation on tumor cells contributes to progression of leptomeningeal metastases. Neuro 
Oncol 8, 127-136. 

Brugnera, E., Haney, L., Grimsley, C., Lu, M., Walk, S. F., Tosello-Trampont, A. C., Macara, 
I. G., Madhani, H., Fink, G. R., and Ravichandran, K. S. (2002). Unconventional Rac-GEF 
activity is mediated through the Dock180-ELMO complex. Nat Cell Biol 4, 574-582. 

Calalb, M. B., Polte, T. R., and Hanks, S. K. (1995). Tyrosine phosphorylation of focal 
adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family 
kinases. Mol Cell Biol 15, 954-963. 

Carlsson, J., Gabel, D., Larsson, E., Ponten, J., and Westermark, B. (1979). Protein-coated 
agarose surfaces for attachment of cells. In Vitro 15, 844-850. 

Cary, L. A., Han, D. C., Polte, T. R., Hanks, S. K., and Guan, J. L. (1998). Identification of 
p130Cas as a mediator of focal adhesion kinase-promoted cell migration. J Cell Biol 140, 
211-221. 

Cattelino, A., Cairo, S., Malanchini, B., and de Curtis, I. (1997). Preferential localization of 
tyrosine-phosphorylated paxillin in focal adhesions. Cell Adhes Commun 4, 457-467. 

Chaki, N. K., and Vijayamohanan, K. (2002). Self-assembled monolayers as a tunable 
platform for biosensor applications. Biosens Bioelectron 17, 1-12. 

Claasen, B., Axmann, M., Meinecke, R., and Meyer, B. (2005). Direct observation of ligand 
binding to membrane proteins in living cells by a saturation transfer double difference 
(STDD) NMR spectroscopy method shows a significantly higher affinity of integrin 
alpha(IIb)beta3 in native platelets than in liposomes. J Am Chem Soc 127, 916-919. 

Clark, R. A., Lin, F., Greiling, D., An, J., and Couchman, J. R. (2004). Fibroblast invasive 
migration into fibronectin/fibrin gels requires a previously uncharacterized dermatan sulfate-
CD44 proteoglycan. J Invest Dermatol 122, 266-277. 

Cohen, M., Kam, Z., Addadi, L., and Geiger, B. (2006). Dynamic study of the transition from 
hyaluronan- to integrin-mediated adhesion in chondrocytes. Embo J 25, 302-311. 

Cook, A. D., Hrkach, J. S., Gao, N. N., Johnson, I. M., Pajvani, U. B., Cannizzaro, S. M., and 
Langer, R. (1997). Characterization and development of RGD-peptide-modified poly(lactic 
acid-co-lysine) as an interactive, resorbable biomaterial. J Biomed Mater Res 35, 513-523. 

Danen, E. H., Sonneveld, P., Brakebusch, C., Fassler, R., and Sonnenberg, A. (2002). The 
fibronectin-binding integrins alpha5beta1 and alphavbeta3 differentially modulate RhoA-GTP 



References 98 
      

 

loading, organization of cell matrix adhesions, and fibronectin fibrillogenesis. J Cell Biol 159, 
1071-1086. 

DeFife, K. M., Shive, M. S., Hagen, K. M., Clapper, D. L., and Anderson, J. M. (1999). Effects 
of photochemically immobilized polymer coatings on protein adsorption, cell adhesion, and 
the foreign body reaction to silicone rubber. J Biomed Mater Res 44, 298-307. 

DeMali, K. A., Barlow, C. A., and Burridge, K. (2002). Recruitment of the Arp2/3 complex to 
vinculin: coupling membrane protrusion to matrix adhesion. J Cell Biol 159, 881-891. 

DeMali, K. A., and Burridge, K. (2003). Coupling membrane protrusion and cell adhesion. J 
Cell Sci 116, 2389-2397. 

DeMali, K. A., Wennerberg, K., and Burridge, K. (2003). Integrin signaling to the actin 
cytoskeleton. Curr Opin Cell Biol 15, 572-582. 

Deng, C., Tian, H., Zhang, P., Sun, J., Chen, X., and Jing, X. (2006). Synthesis and 
characterization of RGD peptide grafted poly(ethylene glycol)-b-poly(L-lactide)-b-poly(L-
glutamic acid) triblock copolymer. Biomacromolecules 7, 590-596. 

Eigenthaler, M., Hofferer, L., Shattil, S. J., and Ginsberg, M. H. (1997). A conserved 
sequence motif in the integrin beta3 cytoplasmic domain is required for its specific interaction 
with beta3-endonexin. J Biol Chem 272, 7693-7698. 

Elwing, H., Ivarsson, B., and Lundstrom, I. (1986). Complement deposition from human sera 
on silicon surfaces studied in situ by ellipsometry. The influence of surface wettability. Eur J 
Biochem 156, 359-365. 

Emsley, J., Knight, C. G., Farndale, R. W., Barnes, M. J., and Liddington, R. C. (2000). 
Structural basis of collagen recognition by integrin alpha2beta1. Cell 101, 47-56. 

Falconnet, D., Csucs, G., Grandin, H. M., and Textor, M. (2006). Surface engineering 
approaches to micropattern surfaces for cell-based assays. Biomaterials 27, 3044-3063. 

Feuston, B. P., Culberson, J. C., and Hartman, G. D. (2003). Molecular model of the 
alpha(IIb)beta(3) integrin. J Med Chem 46, 5316-5325. 

Fuchs, E., Dowling, J., Segre, J., Lo, S. H., and Yu, Q. C. (1997). Integrators of epidermal 
growth and differentiation: distinct functions for beta 1 and beta 4 integrins. Curr Opin Genet 
Dev 7, 672-682. 

Gailit, J., Xu, J., Bueller, H., and Clark, R. A. (1996). Platelet-derived growth factor and 
inflammatory cytokines have differential effects on the expression of integrins alpha 1 beta 1 
and alpha 5 beta 1 by human dermal fibroblasts in vitro. J Cell Physiol 169, 281-289.  

Garanger, E., Boturyn, D., Coll, J. L., Favrot, M. C., and Dumy, P. (2006). Multivalent RGD 
synthetic peptides as potent alphaVbeta3 integrin ligands. Org Biomol Chem 4, 1958-1965. 

Gardea-Torresdey, J. L., Tiemann, K. J., Gamez, G., and Dokken, K. (1999). Effects of 
chemical competition for multi-metal binding by Medicago sativa (alfalfa). J Hazard Mater 69, 
41-51. 

Gavin, I. M., Gillis, B., Arbieva, Z., and Prabhakar, B. S. (2007). Identification of human cell 
responses to hexavalent chromium. Environ Mol Mutagen.Gervais, M., Douy, A., and Erre, 
R. (1988). Surface analysis of lipopeptides using X-ray photoelectron spectroscopy. J Colloid 
Interface Sci 125, 146-154. 

Giancotti, F. G., and Ruoslahti, E. (1999). Integrin signaling. Science 285, 1028-1032. 

Gilmore, A. P., and Burridge, K. (1996). Regulation of vinculin binding to talin and actin by 
phosphatidyl-inositol-4-5-bisphosphate. Nature 381, 531-535. 

Ginsberg, M. H., Du, X., and Plow, E. F. (1992). Inside-out integrin signalling. Curr Opin Cell 
Biol 4, 766-771. 



References 99 
      

 

Gottschalk, K. E., and Kessler, H. (2004). A computational model of transmembrane integrin 
clustering. Structure 12, 1109-1116. 

Hannigan, G. E., Leung-Hagesteijn, C., Fitz-Gibbon, L., Coppolino, M. G., Radeva, G., 
Filmus, J., Bell, J. C., and Dedhar, S. (1996). Regulation of cell adhesion and anchorage-
dependent growth by a new beta 1-integrin-linked protein kinase. Nature 379, 91-96. 

Hashimoto, J., Kariya, Y., and Miyazaki, K. (2006). Regulation of proliferation and 
chondrogenic differentiation of human mesenchymal stem cells by laminin-5 (laminin-332). 
Stem Cells 24, 2346-2354. 

Hautanen, A., Gailit, J., Mann, D. M., and Ruoslahti, E. (1989). Effects of modifications of the 
RGD sequence and its context on recognition by the fibronectin receptor. J Biol Chem 264, 
1437-1442. 

Hersel, U., Dahmen, C., and Kessler, H. (2003). RGD modified polymers: biomaterials for 
stimulated cell adhesion and beyond. Biomaterials 24, 4385-4415. 

Higgs, H. N., and Pollard, T. D. (2001). Regulation of actin filament network formation 
through ARP2/3 complex: activation by a diverse array of proteins. Annu Rev Biochem 70, 
649-676. 

Hildebrand, J. D., Schaller, M. D., and Parsons, J. T. (1993). Identification of sequences 
required for the efficient localization of the focal adhesion kinase, pp125FAK, to cellular focal 
adhesions. J Cell Biol 123, 993-1005. 

Holden, M. A., Jung, S. Y., and Cremer, P. S. (2004). Patterning enzymes inside microfluidic 
channels via photoattachment chemistry. Anal Chem 76, 1838-1843. 

Holzl, M., Tinazli, A., Leitner, C., Hahn, C. D., Lackner, B., Tampe, R., and Gruber, H. J. 
(2007). Protein-resistant self-assembled monolayers on gold with latent aldehyde functions. 
Langmuir 23, 5571-5577. 

Humphries, J. D., Askari, J. A., Zhang, X. P., Takada, Y., Humphries, M. J., and Mould, A. P. 
(2000). Molecular basis of ligand recognition by integrin alpha5beta 1. II. Specificity of arg-
gly-Asp binding is determined by Trp157 of the alpha subunit. J Biol Chem 275, 20337-
20345. 

Humphries, J. D., Byron, A., and Humphries, M. J. (2006). Integrin ligands at a glance. J Cell 
Sci 119, 3901-3903. 

Humphries, M. J. (1990). The molecular basis and specificity of integrin-ligand interactions. J 
Cell Sci 97 ( Pt 4), 585-592. 

Humphries, M. J., McEwan, P. A., Barton, S. J., Buckley, P. A., Bella, J., and Mould, A. P. 
(2003). Integrin structure: heady advances in ligand binding, but activation still makes the 
knees wobble. Trends Biochem Sci 28, 313-320. 

Hynes, R. O. (1992). Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 
11-25. 

Hynes, R. O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell 110, 673-687. 

Iuliano, D. J., Saavedra, S. S., and Truskey, G. A. (1993). Effect of the conformation and 
orientation of adsorbed fibronectin on endothelial cell spreading and the strength of 
adhesion. J Biomed Mater Res 27, 1103-1113. 

Kantlehner, M., Finsinger, D., et al. (1999). Selektive RGD-vermittelte Adhaesion von 
Osteoblasten an Implantat Oberflaechen. Angew. Chem. 111(4): 587-590. 

Kato, M., and Mrksich, M. (2004). Using model substrates to study the dependence of focal 
adhesion formation on the affinity of integrin-ligand complexes. Biochemistry 43, 2699-2707. 



References 100 
      

 

Katz, B. Z., Zamir, E., Bershadsky, A., Kam, Z., Yamada, K. M., and Geiger, B. (2000). 
Physical state of the extracellular matrix regulates the structure and molecular composition of 
cell-matrix adhesions. Mol Biol Cell 11, 1047-1060. 

Khor, E. (1997). Methods for the treatment of collagenous tissues for bioprostheses. 
Biomaterials 18, 95-105. 

Klemke, R. L., Leng, J., Molander, R., Brooks, P. C., Vuori, K., and Cheresh, D. A. (1998). 
CAS/Crk coupling serves as a "molecular switch" for induction of cell migration. J Cell Biol 
140, 961-972. 

Krijgsman, B., Seifalian, A. M., Salacinski, H. J., Tai, N. R., Punshon, G., Fuller, B. J., and 
Hamilton, G. (2002). An assessment of covalent grafting of RGD peptides to the surface of a 
compliant poly(carbonate-urea)urethane vascular conduit versus conventional biological 
coatings: its role in enhancing cellular retention. Tissue Eng 8, 673-680. 

Kroemker, M., Rudiger, A. H., Jockusch, B. M., and Rudiger, M. (1994). Intramolecular 
interactions in vinculin control alpha-actinin binding to the vinculin head. FEBS Lett 355, 259-
262. 

LaFlamme, S. E., Akiyama, S. K., and Yamada, K. M. (1992). Regulation of fibronectin 
receptor distribution. J Cell Biol 117, 437-447. 

Laplantine, E., Maurer, P., Vallar, L., Eble, J., Paulsson, M., Bruckner, P., Kieffer, N., and 
Aumailley, M. (2002). The integrin beta1 subunit cytoplasmic tail forms oligomers: a potential 
role in beta1 integrin clustering. Biol Cell 94, 375-387. 

Lee, J. O., Bankston, L. A., Arnaout, M. A., and Liddington, R. C. (1995a). Two 
conformations of the integrin A-domain (I-domain): a pathway for activation? Structure 3, 
1333-1340. 

Lee, J. O., Rieu, P., Arnaout, M. A., and Liddington, R. (1995b). Crystal structure of the A 
domain from the alpha subunit of integrin CR3 (CD11b/CD18). Cell 80, 631-638. 

Lee, J. H., Go, A. K., Oh, S. H., Lee, K. E., and Yuk, S. H. (2005). Tissue anti-adhesion 
potential of ibuprofen-loaded PLLA-PEG diblock copolymer films. Biomaterials 26, 671-678. 

Li, R., Babu, C. R., Lear, J. D., Wand, A. J., Bennett, J. S., and DeGrado, W. F. (2001). 
Oligomerization of the integrin alphaIIbbeta3: roles of the transmembrane and cytoplasmic 
domains. Proc Natl Acad Sci U S A 98, 12462-12467. 

Li, R., Mitra, N., Gratkowski, H., Vilaire, G., Litvinov, R., Nagasami, C., Weisel, J. W., Lear, J. 
D., DeGrado, W. F., and Bennett, J. S. (2003). Activation of integrin alphaIIbbeta3 by 
modulation of transmembrane helix associations. Science 300, 795-798. 

Lin, H. B., Garcia-Echeverria, C., Asakura, S., Sun, W., Mosher, D. F., and Cooper, S. L. 
(1992). Endothelial cell adhesion on polyurethanes containing covalently attached RGD-
peptides. Biomaterials 13, 905-914. 

Lin, H. B., Lewis, K. B., Leach-Scampavia, D., Ratner, B. D., and Cooper, S. L. (1993). 
Surface properties of RGD-peptide grafted polyurethane block copolymers: variable take-off 
angle and cold-stage ESCA studies. J Biomater Sci Polym Ed 4, 183-198. 

Liu, S., Thomas, S. M., Woodside, D. G., Rose, D. M., Kiosses, W. B., Pfaff, M., and 
Ginsberg, M. H. (1999). Binding of paxillin to alpha4 integrins modifies integrin-dependent 
biological responses. Nature 402, 676-681. 

Liu, Y., Loijens, J. C., Martin, K. H., Karginov, A. V., and Parsons, J. T. (2002). The 
association of ASAP1, an ADP ribosylation factor-GTPase activating protein, with focal 
adhesion kinase contributes to the process of focal adhesion assembly. Mol Biol Cell 13, 
2147-2156. 

Lo, S. H. (2006). Focal adhesions: what's new inside. Dev Biol 294, 280-291. 



References 101 
      

 

Luo, B. H., Carman, C. V., and Springer, T. A. (2007). Structural basis of integrin regulation 
and signaling. Annu Rev Immunol 25, 619-647. 

Marinelli, L., Lavecchia, A., Gottschalk, K. E., Novellino, E., and Kessler, H. (2003). Docking 
studies on alphavbeta3 integrin ligands: pharmacophore refinement and implications for drug 
design. J Med Chem 46, 4393-4404. 

Massia, S. P., Stark, J., and Letbetter, D. S. (2000). Surface-immobilized dextran limits cell 
adhesion and spreading. Biomaterials 21, 2253-2261. 

McCarthy, J. B., Chelberg, M. K., Mickelson, D. J., and Furcht, L. T. (1988). Localization and 
chemical synthesis of fibronectin peptides with melanoma adhesion and heparin binding 
activities. Biochemistry 27, 1380-1388. 

McClain, S. A., Simon, M., Jones, E., Nandi, A., Gailit, J. O., Tonnesen, M. G., Newman, D., 
and Clark, R. A. (1996). Mesenchymal cell activation is the rate-limiting step of granulation 
tissue induction. Am J Pathol 149, 1257-1270. 

Mecheri, G., Piras, Ciotti, Cocco and Caminati (2002). Immobilization of electroactive 
molecules in organized thin films Materials Science and Engineering 22, Pages 307-312. 

Meucci, G. a. C. (1999). Mater Sci Eng, 135. 

Meuer, S., Wittwer, C. Nakagawara K.. (2001). Rapid Cycle real-time PCR. Springer-Verlag, 
Berlin. 

Meyer, A., Auernheimer, J., Modlinger, A., and Kessler, H. (2006). Targeting RGD 
recognizing integrins: drug development, biomaterial research, tumor imaging and targeting. 
Curr Pharm Des 12, 2723-2747. 

Michishita, M., Videm, V., and Arnaout, M. A. (1993). A novel divalent cation-binding site in 
the A domain of the beta 2 integrin CR3 (CD11b/CD18) is essential for ligand binding. Cell 
72, 857-867. 

Miyamoto, S., Teramoto, H., Coso, O. A., Gutkind, J. S., Burbelo, P. D., Akiyama, S. K., and 
Yamada, K. M. (1995). Integrin function: molecular hierarchies of cytoskeletal and signaling 
molecules. J Cell Biol 131, 791-805. 

Mould, A. P., Askari, J. A., and Humphries, M. J. (2000). Molecular basis of ligand 
recognition by integrin alpha 5beta 1. I. Specificity of ligand binding is determined by amino 
acid sequences in the second and third NH2-terminal repeats of the alpha subunit. J Biol 
Chem 275, 20324-20336. 

Mould, A. P., Komoriya, A., Yamada, K. M., and Humphries, M. J. (1991). The CS5 peptide is 
a second site in the IIICS region of fibronectin recognized by the integrin alpha 4 beta 1. 
Inhibition of alpha 4 beta 1 function by RGD peptide homologues. J Biol Chem 266, 3579-
3585. 

Mould, A. P., Symonds, E. J., Buckley, P. A., Grossmann, J. G., McEwan, P. A., Barton, S. 
J., Askari, J. A., Craig, S. E., Bella, J., and Humphries, M. J. (2003). Structure of an integrin-
ligand complex deduced from solution x-ray scattering and site-directed mutagenesis. J Biol 
Chem 278, 39993-39999. 

Muller, R., Abke, J., Schnell, E., Macionczyk, F., Gbureck, U., Mehrl, R., Ruszczak, Z., Kujat, 
R., Englert, C., Nerlich, M., and Angele, P. (2005). Surface engineering of stainless steel 
materials by covalent collagen immobilization to improve implant biocompatibility. 
Biomaterials 26, 6962-6972. 

Myohanen, H. T., Stephens, R. W., Hedman, K., Tapiovaara, H., Ronne, E., Hoyer-Hansen, 
G., Dano, K., and Vaheri, A. (1993). Distribution and lateral mobility of the urokinase-receptor 
complex at the cell surface. J Histochem Cytochem 41, 1291-1301. 



References 102 
      

 

Na, K., Choi, H. K., Akaike, T., and Park, K. H. (2001). Conjugation of Arg-Gly-Asp (RGD) 
sequence in copolymer bearing sugar moiety for insulinoma cell line (MIN6) culture. Biosci 
Biotechnol Biochem 65, 1284-1289. 

Na, K., Jung, J., Shin, B., and Hyun, J. (2006). Micropatterning of cell-repellent polymer on a 
glass substrate for the highly resolved virus microarray. Langmuir 22, 10889-10892. 

Nalayanda, D. D., Kalukanimuttam, M., and Schmidtke, D. W. (2007). Micropatterned 
surfaces for controlling cell adhesion and rolling under flow. Biomed Microdevices 9, 207-
214. 

Nanci, A., Wuest, J. D., Peru, L., Brunet, P., Sharma, V., Zalzal, S., and McKee, M. D. 
(1998). Chemical modification of titanium surfaces for covalent attachment of biological 
molecules. J Biomed Mater Res 40, 324-335. 

Nony, P. A., and Schnellmann, R. G. (2001). Interactions between collagen IV and collagen-
binding integrins in renal cell repair after sublethal injury. Mol Pharmacol 60, 1226-1234. 

Nuzzo, A. (1983). Adsorption of bifunctional organic disulfides on gold surfaces. J Am Chem 
Soc 105, 4481 - 4483. 

Oliva, A. A., Jr., James, C. D., Kingman, C. E., Craighead, H. G., and Banker, G. A. (2003). 
Patterning axonal guidance molecules using a novel strategy for microcontact printing. 
Neurochem Res 28, 1639-1648. 

Olski, T. M., Noegel, A. A., and Korenbaum, E. (2001). Parvin, a 42 kDa focal adhesion 
protein, related to the alpha-actinin superfamily. J Cell Sci 114, 525-538. 

Park, K. H., Na, K., and Lee, K. C. (2004). Immobilization of Arg-Gly-Asp (RGD) sequence in 
sugar containing copolymer for culturing of pheochromocytoma (PC12) cells. J Biosci Bioeng 
97, 207-211. 

Parsons, J. T. (2003). Focal adhesion kinase: the first ten years. J Cell Sci 116, 1409-1416. 

Pearson, D. A., Blanchette, M., Baker, M. L., Guidon, C. A. (1989). Trialkyle silanes as 
scavengers for the trifluoroacetic acid deblocking of protecting groups in peptide synthesis. 
tetrahedron Lett. 30: 2739-2742. 

Perepichka, D. F., Kondratenko, M., and Bryce, M. R. (2005). Self-assembly and multistage 
redox chemistry of strong electron acceptors on metal surfaces: polynitrofluorenes on gold 
and platinum. Langmuir 21, 8824-8831. 

Pierschbacher, M. D., and Ruoslahti, E. (1984). Cell attachment activity of fibronectin can be 
duplicated by small synthetic fragments of the molecule. Nature 309, 30-33. 

Pierschbacher, M. D., and Ruoslahti, E. (1987). Influence of stereochemistry of the sequence 
Arg-Gly-Asp-Xaa on binding specificity in cell adhesion. J Biol Chem 262, 17294-17298. 

Plow, E. F., Haas, T. A., Zhang, L., Loftus, J., and Smith, J. W. (2000). Ligand binding to 
integrins. J Biol Chem 275, 21785-21788. 

Poole, K., Khairy, K., Friedrichs, J., Franz, C., Cisneros, D. A., Howard, J., and Mueller, D. 
(2005). Molecular-scale topographic cues induce the orientation and directional movement of 
fibroblasts on two-dimensional collagen surfaces. J Mol Biol 349, 380-386. 

Prasad, K. N., Luong, T. T., Florence, A. T., Paris, J., Vaution, C., Seiller, M., and Puisiex, F. 
(1979). Surface activity and association of ABA polyoxyethylene–polyoxypropopylene block 
copolymers in aqueous solution. J Colloid Interface Sci 69, 225. 

Price, L. S., Leng, J., Schwartz, M. A., and Bokoch, G. M. (1998). Activation of Rac and 
Cdc42 by integrins mediates cell spreading. Mol Biol Cell 9, 1863-1871. 

Pudney, M., Varma, M.G., and Leake, C.J. (1973). Establishment of  a cell line (XTC 2) from 
the South African clawed toad, Xenopus laevis. Experientia 29, 466–467. 



References 103 
      

 

Puleo, D. A., Kissling, R. A., and Sheu, M. S. (2002). A technique to immobilize bioactive 
proteins, including bone morphogenetic protein-4 (BMP-4), on titanium alloy. Biomaterials 23, 
2079-2087. 

Quirk, R. A., Chan, W. C., Davies, M. C., Tendler, S. J., and Shakesheff, K. M. (2001). 
Poly(L-lysine)-GRGDS as a biomimetic surface modifier for poly(lactic acid). Biomaterials 22, 
865-872. 

Randazzo, P. A., Andrade, J., Miura, K., Brown, M. T., Long, Y. Q., Stauffer, S., Roller, P., 
and Cooper, J. A. (2000). The Arf GTPase-activating protein ASAP1 regulates the actin 
cytoskeleton. Proc Natl Acad Sci U S A 97, 4011-4016. 

Ren, X. D., Kiosses, W. B., and Schwartz, M. A. (1999). Regulation of the small GTP-binding 
protein Rho by cell adhesion and the cytoskeleton. Embo J 18, 578-585. 

Robey, P. G. (1996). Vertebrate mineralized matrix proteins: structure and function. Connect 
Tissue Res 35, 131-136. 

Rohatgi, R., Nollau, P., Ho, H. Y., Kirschner, M. W., and Mayer, B. J. (2001). Nck and 
phosphatidylinositol 4,5-bisphosphate synergistically activate actin polymerization through 
the N-WASP-Arp2/3 pathway. J Biol Chem 276, 26448-26452. 

Romanova, E. V., Oxley, S. P., Rubakhin, S. S., Bohn, P. W., and Sweedler, J. V. (2006). 
Self-assembled monolayers of alkanethiols on gold modulate electrophysiological 
parameters and cellular morphology of cultured neurons. Biomaterials 27, 1665-1669. 

Rowley, J. A., Madlambayan, G., and Mooney, D. J. (1999). Alginate hydrogels as synthetic 
extracellular matrix materials. Biomaterials 20, 45-53. 

Ruoslahti, E. (1996). RGD and other recognition sequences for integrins. Annu Rev Cell Dev 
Biol 12, 697-715. 

Ruoslahti, E., and Pierschbacher, M. D. (1987). New perspectives in cell adhesion: RGD and 
integrins. Science 238, 491-497. 

Sagiv (1980). Organized monolayers by adsorption. 1. Formation and structure of oleophobic 
mixed monolayers on solid surfaces. J Am Chem Soc 102, 92 - 98. 

Saldana, L., Gonzalez-Carrasco, J. L., Rodriguez, M., Munuera, L., and Vilaboa, N. (2006). 
Osteoblast response to plasma-spray porous Ti6Al4V coating on substrates of identical alloy. 
J Biomed Mater Res A 77, 608-617. 

Saldana, L., Vilaboa, N., Valles, G., Gonzalez-Cabrero, J., and Munuera, L. (2005). 
Osteoblast response to thermally oxidized Ti6Al4V alloy. J Biomed Mater Res A 73, 97-107. 

Schaller, M. D., Hildebrand, J. D., and Parsons, J. T. (1999). Complex formation with focal 
adhesion kinase: A mechanism to regulate activity and subcellular localization of Src 
kinases. Mol Biol Cell 10, 3489-3505. 

Schaller, M. D., Otey, C. A., Hildebrand, J. D., and Parsons, J. T. (1995). Focal adhesion 
kinase and paxillin bind to peptides mimicking beta integrin cytoplasmic domains. J Cell Biol 
130, 1181-1187.  

Schuler, M., Trentin, D., Textor, M., and Tosatti, S. G. (2006). Biomedical interfaces: titanium 
surface technology for implants and cell carriers. Nanomed 1, 449-463. 

Shaporenko, A., Ulman, A., Terfort, A., and Zharnikov, M. (2005). Self-assembled 
monolayers of alkaneselenolates on (111) gold and silver. J Phys Chem B 109, 3898-3906. 

Schneider, D., and Engelman, D. M. (2004). Involvement of transmembrane domain 
interactions in signal transduction by alpha/beta integrins. J Biol Chem 279, 9840-9846. 

Scotchford, C. A., Ball, M., Winkelmann, M., Voros, J., Csucs, C., Brunette, D. M., Danuser, 
G., and Textor, M. (2003). Chemically patterned, metal-oxide-based surfaces produced by 



References 104 
      

 

photolithographic techniques for studying protein- and cell-interactions. II: Protein adsorption 
and early cell interactions. Biomaterials 24, 1147-1158. 

Serrano, M. C., Pagani, R., Vallet-Regi, M., Pena, J., Ramila, A., Izquierdo, I., and Portoles, 
M. T. (2004). In vitro biocompatibility assessment of poly(epsilon-caprolactone) films using 
L929 mouse fibroblasts. Biomaterials 25, 5603-5611. 

Shaporenko, A., Ulman, A., Terfort, A., and Zharnikov, M. (2005). Self-assembled 
monolayers of alkaneselenolates on (111) gold and silver. J Phys Chem B 109, 3898-3906. 

Shimaoka, M., Xiao, T., Liu, J. H., Yang, Y., Dong, Y., Jun, C. D., McCormack, A., Zhang, R., 
Joachimiak, A., Takagi, J., et al. (2003). Structures of the alpha L I domain and its complex 
with ICAM-1 reveal a shape-shifting pathway for integrin regulation. Cell 112, 99-111. 

Shirahama, H., Shikuma, T., and Suzawa, T. (1989). Participation of electrolyte cations in 
albumin adsorption onto negatively charged polymer latices Colloid & Polymer Science 267, 
1435-1536. 

Situma, C., Wang, Y., Hupert, M., Barany, F., McCarley, R. L., and Soper, S. A. (2005). 
Fabrication of DNA microarrays onto poly(methyl methacrylate) with ultraviolet patterning and 
microfluidics for the detection of low-abundant point mutations. Anal Biochem 340, 123-135. 

Stephansson, S. N., Byers, B. A., and Garcia, A. J. (2002). Enhanced expression of the 
osteoblastic phenotype on substrates that modulate fibronectin conformation and integrin 
receptor binding. Biomaterials 23, 2527-2534. 

Takagi, J. (2004). Structural basis for ligand recognition by RGD (Arg-Gly-Asp)-dependent 
integrins. Biochem Soc Trans 32, 403-406. 

Takagi, J., Petre, B. M., Walz, T., and Springer, T. A. (2002). Global conformational 
rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 
110, 599-511. 

Takagi, J., Strokovich, K., Springer, T. A., and Walz, T. (2003). Structure of integrin 
alpha5beta1 in complex with fibronectin. Embo J 22, 4607-4615. 

Takahashi, S., Leiss, M., Moser, M., Ohashi, T., Kitao, T., Heckmann, D., Pfeifer, A., Kessler, 
H., Takagi, J., Erickson, H. P., and Fassler, R. (2007). The RGD motif in fibronectin is 
essential for development but dispensable for fibril assembly. J Cell Biol 178, 167-178. 

Tamura, T., Hato, T., Yamanouchi, J., and Fujita, S. (2004). Critical residues for ligand 
binding in blade 2 of the propeller domain of the integrin alphaIIb subunit. Thromb Haemost 
91, 111-118. 

Tan, J. L., Liu, W., Nelson, C. M., Raghavan, S., and Chen, C. S. (2004). Simple approach to 
micropattern cells on common culture substrates by tuning substrate wettability. Tissue Eng 
10, 865-872. 

Tang, H., Kerins, D. M., Hao, Q., Inagami, T., and Vaughan, D. E. (1998). The urokinase-
type plasminogen activator receptor mediates tyrosine phosphorylation of focal adhesion 
proteins and activation of mitogen-activated protein kinase in cultured endothelial cells. J Biol 
Chem 273, 18268-18272. 

Tselepis, V. H., Green, L. J., and Humphries, M. J. (1997). An RGD to LDV motif conversion 
within the disintegrin kistrin generates an integrin antagonist that retains potency but exhibits 
altered receptor specificity. Evidence for a functional equivalence of acidic integrin-binding 
motifs. J Biol Chem 272, 21341-21348. 

Tsubouchi, A., Sakakura, J., Yagi, R., Mazaki, Y., Schaefer, E., Yano, H., and Sabe, H. 
(2002). Localized suppression of RhoA activity by Tyr31/118-phosphorylated paxillin in cell 
adhesion and migration. J Cell Biol 159, 673-683. 

Turner, C. E. (2000). Paxillin interactions. J Cell Sci 113 Pt 23, 4139-4140. 



References 105 
      

 

Ulman, E., Tillman (1989). The Packing and Molecular Orientation of Alkyl Thiol Monolayers 
on Gold Surfaces. Langmuir 5, 1147, 1147. 

van der Flier, A., and Sonnenberg, A. (2001). Function and interactions of integrins. Cell 
Tissue Res 305, 285-298. 

Vansant, v. D. V. a. V. (1995). Characterization and Chemical Modifcation of The Silica 
Surface. 

Vaughan, F., Swart and Yarwood (1992). Thin Solid Films, 574. 

Vinogradova, O., Velyvis, A., Velyviene, A., Hu, B., Haas, T., Plow, E., and Qin, J. (2002). A 
structural mechanism of integrin alpha(IIb)beta(3) "inside-out" activation as regulated by its 
cytoplasmic face. Cell 110, 587-597. 

Vuori, K., Hirai, H., Aizawa, S., and Ruoslahti, E. (1996). Introduction of p130cas signaling 
complex formation upon integrin-mediated cell adhesion: a role for Src family kinases. Mol 
Cell Biol 16, 2606-2613. 

Wei, Y., Yang, X., Liu, Q., Wilkins, J. A., and Chapman, H. A. (1999). A role for caveolin and 
the urokinase receptor in integrin-mediated adhesion and signaling. J Cell Biol 144, 1285-
1294. 

Welle, A., Horn, S., Schimmelpfeng, J., and Kalka, D. (2005). Photo-chemically patterned 
polymer surfaces for controlled PC-12 adhesion and neurite guidance. J Neurosci Methods 
142, 243-250. 

Wilbur, K., Biebuyck, Kim, Whitesides (1996). Microcontact printing of self-assembled 
monolayers: applications in microfabrication. Nanotechnology, 452-457. 

Winkler, J., Lunsdorf, H., and Jockusch, B. M. (1996). The ultrastructure of chicken gizzard 
vinculin as visualized by high-resolution electron microscopy. J Struct Biol 116, 270-277. 

Woods, A., Longley, R. L., Tumova, S., and Couchman, J. R. (2000). Syndecan-4 binding to 
the high affinity heparin-binding domain of fibronectin drives focal adhesion formation in 
fibroblasts. Arch Biochem Biophys 374, 66-72. 

Woods, A., Oh, E. S., and Couchman, J. R. (1998). Syndecan proteoglycans and cell 
adhesion. Matrix Biol 17, 477-483. 

Xiong, J. P., Stehle, T., Diefenbach, B., Zhang, R., Dunker, R., Scott, D. L., Joachimiak, A., 
Goodman, S. L., and Arnaout, M. A. (2001). Crystal structure of the extracellular segment of 
integrin alpha Vbeta3. Science 294, 339-345. 

Xiong, J. P., Stehle, T., Zhang, R., Joachimiak, A., Frech, M., Goodman, S. L., and Arnaout, 
M. A. (2002). Crystal structure of the extracellular segment of integrin alpha Vbeta3 in 
complex with an Arg-Gly-Asp ligand. Science 296, 151-155. 

Yang, X. B., Roach, H. I., Clarke, N. M., Howdle, S. M., Quirk, R., Shakesheff, K. M., and 
Oreffo, R. O. (2001). Human osteoprogenitor growth and differentiation on synthetic 
biodegradable structures after surface modification. Bone 29, 523-531. 

Yauch, R. L., Felsenfeld, D. P., Kraeft, S. K., Chen, L. B., Sheetz, M. P., and Hemler, M. E. 
(1997). Mutational evidence for control of cell adhesion through integrin diffusion/clustering, 
independent of ligand binding. J Exp Med 186, 1347-1355. 

Yokosaki, Y., Matsuura, N., Higashiyama, S., Murakami, I., Obara, M., Yamakido, M., 
Shigeto, N., Chen, J., and Sheppard, D. (1998). Identification of the ligand binding site for the 
integrin alpha9 beta1 in the third fibronectin type III repeat of tenascin-C. J Biol Chem 273, 
11423-11428. 

You, M., Kogan, Chen, Li, Kassir, Holland, and Dixon (2002). A 3D Structure Model of 
Integrin 41 Complex: I. Construction of a Homology Model of 1 and Ligand Binding Analysis. 
Biophys J Vol. 82, p. 447-457. 



References 106 
      

 

Zaidel-Bar, R., Kam, Z., and Geiger, B. (2005). Polarized downregulation of the paxillin-
p130CAS-Rac1 pathway induced by shear flow. J Cell Sci 118, 3997-4007. 

Zaidel-Bar, R., Milo, R., Kam, Z., and Geiger, B. (2007). A paxillin tyrosine phosphorylation 
switch regulates the assembly and form of cell-matrix adhesions. J Cell Sci 120, 137-148. 

Zamir, E., and Geiger, B. (2001a). Components of cell-matrix adhesions. J Cell Sci 114, 
3577-3579. 

Zamir, E., and Geiger, B. (2001b). Molecular complexity and dynamics of cell-matrix 
adhesions. J Cell Sci 114, 3583-3590. 

Zimmerman, B., Volberg T., Geiger, B. (2004). Early molecular events in the assembly of the 
focal adhesion-stress fiber complex during fibroblast spreading. Cell Motil Cytoskeleton. 
Jul;58(3):143-59. 

Zimmermann, P., and David, G. (1999). The syndecans, tuners of transmembrane signaling. 
Faseb J 13 Suppl, S91-S100. 

 

 

 

 

  

  

  

  

 

 

 



Miscellenous 107 
      

 

9  MISCELLENOUS 

List of abbreviations 

4MOPIT 4-methoxyphenylisothiocyanate 

ADMIDAS  Adjacent to the MIDAS site  

APS  Aminopropylsilane 

APTES  (3-Aminopropyl)-triethoxysilane 

Arp 2/3 Actin-related protein 2/3  

BMP  Bone morphogenetic protein 

BT Butanethiol 

DMEM  Dulbecco’s modified Eagle medium  

DMSO Dimethylsulfoxide 

DTT  Dithiotritol  

ECM Extracellular matrix  

EGF  Epidermal growth factor  

FA Focal adhesion  

FAK  Focal adhesion kinase  

HT Hexylthiol 

ILK  Integrin-linked kinase 

LIMBS  Ligand-associated metal binding site  

MIDAS  Metal ion-dependent adhesion site  

ODT Octadecylthiol 

OTS  Octadecyltrichlorosilane 

PDMF  Phenylmethanesulfonyl fluoride 

PDMS Polydimethylsiloxane 

PEG  Polyethelenglicol 

PI3-kinase  Phosphoinositide 3-kinase  

PSI  Aminoterminal plexin/semaphorin/integrin  

REF Rat embryonic fibroblasts 

SAM  Self-assembled monolayer 

SPPS Solid phase peptide synthesis 

STI  Trypsin inhibitor from soybean 

TCP  Tritylchloride polystyrene 

WASP Wiskott-Aldrich syndrome protein 

XTC Xenopus tadpole fibroblasts  

βTD  β−tail domain  

µCP  Microcontact printing  

µFLP  Microfluidic patterning 
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