Causal Inference from Statistical Data

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der Fakultat fir Informatik
der Universitat Fridericiana zu Karlsruhe (TH)

genehmigte
Dissertation
von
Xiaohai Sun

aus Shanghai, China

Tag der mundlichen Prufung: 15. April 2008
Erster Gutachter: PD Dr. Dominik Janzing
Zweiter Gutachter: Prof. Dr. Bernhard Scholkopf



[ 7%4]

REZHR, MEATHPR,

By means of the easy and the simple we grasp the laws of the whole world.

When the laws of the whole world are grasped, therein lies perfection.
Book of Changes




Abstract

“Automatic causal discovery” is a rather young researcl,a@which increasing atten-
tion is paid in recent years as more and better data have lgegeailable. Until the early
nineties, most researchers still shunned away from disgy$srmal methods for infer-
ring causal structure from purely observational statitiata without using controlled ex-
periments, i.e., interventions. The seminal works of girGlymour, and Scheines [153]
and the works of Pearl [125] in the last fifteen years havebéisteed a promising basis
of learning causality from such data. Bayesian networks asegl @s a concrete vehicle,
where the corresponding directed acyclic graph can bepreatyd causally. The test of
statistical (conditional) independence between obseraedom variables provides a pri-
mary tool for learning such causal graphs. The theory angbthetical applications of
their approach, however, are far from fully developed. Téseatial shortcomings are the
following. For the one thing, the test of independence istlam the strict assumption
of multivariate Gaussian distribution. Moreover, if vegf independence relationships
are present, only few causal directions can be determinieel cdntribution of this thesis
includes a direct attempt to address these problems.

A so-called kernel-based test of independence is furthezldped, which is conducted
without making any specific assumption about the distrdsutiThe kernel method maps
data into an appropriate feature space by a nonlinear tnanation, where also the non-
linear relations in the original space can be captured bsetations in the feature space.
The singular values of the inherent covariance matrix g®a measurement of the mag-
nitude of statistical dependences, which serves as a vefylaglditional tool for learning
causal structures.

A new inference principle of determining the causal dir@asi is developed for the case
when no statistical independence relations are preserg. cbmplexity of conditional
distributions gives hints on the causal direction in sutinegions that are rarely examined.

Experiments with many simulated and real-world data shat tie proposed methods
surpass in certain aspects other state-of-the-art agpesdo the same problem.



Zusammenfassung

“Automatisiertes Erkennen von kausalen Zusammenhang&ndin noch recht junges
Forschungsgebiet, das seit den letzten Jahren immer mdhrekksamkeit bekommt, weil
mehr und bessere Daten zur Verfigung stehen. Bis zum Antangednziger Jahre
z6gerten noch die meisten Wissenschatftler sich mit denmebharon Ursache-Wirkungs-
Beziehungen anhand von statistischen Daten zu besch@ftgelediglich auf Beobach-
tungen beruhen, d.h. ohne Zuhilfenahme von Interventidnaten vergangenen fiinfzehn
Jahren sind vielversprechende Grundlagen fiir das maskaibearnen von Kausalstruk-
turen von Spirtes, Glymour und Scheines |153] sowie von B&28] geschaffen worden.
Diese beruhen auf Bayesschen Netzen, bei denen der zugelgérightete azyklische
Graph kausal interpretiert werden kann. Wichtigstes Hiltsshzum Lernen von solchen
Kausalgraphen bilden dabei Tests auf (bedingte) stattstisdbhangigkeiten zwischen
den betrachteten Zufallsvariablen. Die Theorie und dikgisghe Umsetzung dieser An-
satze sind allerdings bei weitem nicht ausgereift. Die wggtén Unzulé&nglichkeiten sind
folgende zu nennen: Zum einen basieren die Unabhangitdsigsauf der starken An-
nahme multivariater Gaul3-Verteilungen. Zum anderen lasseh nur wenige kausale
Richtungen identifizieren, wenn wenige Unabhangigkeitshamgen vorliegen. Der
Beitrag dieser Arbeit setzt gerade bei diesen beiden Ndehtan.

Es wird ein sogenannter kern-basierter Unabhéngigkeitstester enwickelt, der ohne
die Annahme einer speziellen Verteilung auskommt. Dieretinode bildet Daten durch
eine nicht-lineare Transformation in einen geeigneten Wiaalsraum ab, in dem sich
auch urspringlich nicht-lineare Zusammenhénge als Katrehen im Merkmalsraum
manifestieren. Die Singularwerte der Kovarianzmatrixdraf eine Quantifizierung der
Stéarke der statistischen Abhéngigkeiten, die sich sehalgutusatzliches Hilfsmittel zum
Lernen von Kausalstrukturen einsetzen liel3.

Es wird ein neues Inferenzprinzip entwickelt zum Schatzenkewrsalrichtungen fur
den bisher kaum betrachteten Fall dass keine statististh@bhangigkeiten vorliegen.
Dabei liefert die Komplexitat bedingter Verteilungen Hinseeauf die kausalrichtung.

Experimente mit simulierten und realen Daten zeigen, dassatgeschlagenen Metho-
den in mancher Hinsicht die aktuell bestehenden, anerlkeemAnsatze zur Losung des-
selben Problems ubertreffen.
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1. Introduction and Motivation

The central aim of many studies in medicine, biology, sagyg) and economics is the elucidation
of cause-and-effect relations among variables or evemtsiany real-life situations, randomized
controlled experiments or interventions cannot alwaystbeed to provide causal knowledge.

Methods for finding a causal structure from purely obseoveti data are of special interest. The
first chapter introduces the framework of causal modelindy simmarizes the seminal works
of Spirtes et al.[[153] and Peall [125], which showed thatjarreasonable assumptions, it is
possible to get hints on causal relationships from non-gx@ntal data.

1.1. Causal modeling framework

Since the early nineties, it has become popular to expressateelations by a graphical repre-
sentation, the so-called causal structure or causal graph.

Definition 1 (Causal Structure) A causal structure of a set of random variabléss a directed
acyclic graph (DAG) in which each node (vertex) corresponds to a distinct elemyeot a set

of distinct elementX := (X, X,,...) of V, and each arrow (a directed edge) represents direct
causal relationship between the corresponding nodes.

For example, Fig.1l1 illustrates a causal structure Withdes representing variabl&s, . . ., X7
and each arrow fronk; to X; is interpreted as a direct causal influenceXgfon X;. When
talking about the relations in a DAG, we use the wording ofifamelations: if there is a link
from X, to X;, we say thatX;, is a parent ofX;. Some authors [8, 68] call such a graph an
“acyclic digraph” instead of DAG. The corresponding undiszl graph of a DAG/ is called the
adjacency structure (or skeleton)®f

Regarding notations, we will normally not sharply distirgjubetween a single random vari-
able and a set of variables. The capitalized variable¥’, 7, ... are used to depict a single
variable or a set of variables. A vertexdhnormally corresponds to a random variabléjinbut
it can also represent a set of variables, if necessary. Tdrer&, Y, 7, . . . are also used to depict
a vertice representing the corresponding variable or thefsariables. The context will make
clear whether variables or vertices are meant.

As a graphical representation, a DAG is capable of disptagause-and-effect relationships
between variables intuitively and clearly. Furthermor®AG can handle uncertainty through
the established theory of probability on graphical mod&<DAG G with the probabilistic in-
terpretation represents a probability distributiBn The primary link between the topology of a
DAG and the underlying probability distributioR is the independence relations between vari-
ables. We recall the formal definition of conditional indegence.
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Figure 1.1.: Graphical representation of direct causali@nmftes betweef variables by DAG,
I.e., causal structure.

Definition 2 (Independence Relation)Let X = (Xi,...,X,), Y = (Y4,....Y,), Z =
(Zy1,...,Z) be three disjoint subsets of the 3&bf all measured variables. Conditional df
X, andY are independently related to each other if and only if

P(x1,. o oy Yty o5 Ynl2t, ooy 2k) = P(ay, o xml2n, oo 26) Pyt ooy Ynlzt, oo 28)

for all possible values; of X, y; of Y;, andz; of Z,.

We use a notation of independence relations introduced hyiO@E6]: X 1 Y |Z meaning
X andY are independent conditional éh If Z is empty,X andY are said to be marginally
(unconditionally) independent when their joint probabittan be factorized in the same way:

X1lY & X1Y|0 & P(z,y)=P)Py)

for all possible values of X andy of Y. If X andY are not unconditionally or conditionally
independent, then they are said to be unconditionally oditimmally dependent, denoted as
X L YorX L Y|Zrespectively. One of the essential alternatives to relaegraphical

structures to the conditional independence relationsisdhcalled Markov condition [153, 125].

Definition 3 (Markov Condition) Let G be a DAG andP the joint distribution over a set of
variablesV. Let X CV be a variable or set of variables that is represented by a nodg The
pair (G, P) satisfies the Markov condition if and only if, conditionalahof X's direct parents
in G, everyX is independent irP of every other variable or set of variables that is represent
by a node ing, excepting its descendants.

The pair(G, P) which satisfies the Markov condition is called a Bayesian ndtf118]. The
Markov property can be found in many areas of research irr dodgoproximate problems which
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are too complex otherwise. For example, a (first order) Magk@cess assumes that knowing
a system’s current state is relevant to its future, but kngwiow it got to its current state is
completely irrelevant. The intuition behind the Markov peoty for causal structures is that
ignoring a variable’s effects, all the relevant probabligisnformation about a variable that can
be obtained from a model is contained in its direct causegrefbre, the Markov condition is
used as a bridge principle linking the causal interpretatiba DAG to its probabilistic inter-
pretation. Variants of the Markov properties of causaldtites have been discussed by many
philosophers[[131, 163, 146, 135, 27]. Lauritzen! [98] digtished among the pairwise, local
and global Markov properties. However, it can be shown tiaheee Markov properties are
equivalent for a strictly positive probability distribati.

A more generally useful graphical relation in DAGs: d-sepian [124] (“d” for “directed”
or “dependence”) turns out to be equivalent to the globalkdarproperty of Bayesian net-
works [99], and hence also to the other Markov propertiesigenl that the probability distribu-
tion is strictly positive.

Definition 4 (d-Separation)In a DAG G, two disjoint sets of nodeX¥ andY are d-separated
by a set of nodeSyy (excludingX andY), if and only if along every path between a node in
X and a node i’ there is a node (distinct from.X andY’) satisfying one of the following two
conditions:

(1) Z is a collider on the path and none &for its descendants are ifixy, or

(2) Z is not a collider andZ is in Sxy .

AnodeZ in DAG is a collider on a path if two arrow heads meeXat.e.,— Z «, otherwiseZ is
called a non-collider on the path. An unshielded collidetofalso called-structure) in a DAG

G is a substructur&X’ — Z < Y in G for three distinct nodes, wher€ andY are not adjacent
to each other (see Fig._1.7). X andY are adjacent, we call it a shielded collider. The cor-
responding adjacency structure is called unshielded etddd triple respectively. Throughout
this thesis, collider can be unshielded or shielded, urdgpBcitly stated otherwise.

The notation of d-separation is, in particular, defined Yoo tlistinct nodesX andY. Def-
inition [4 implies that a path between two nod&sandY in G is blocked when one of the
conditions is fulfilled, and activated otherwisg.andY are d-separated by a s&t,, when all
paths between them are blocked, otherwise, we callthahdY” are d-connected. By choosing
d-separation to link DAGs to probability distributions,eoassumes that the disjoint subsets of
variablesX C V andY CV are independent conditional ¢hC V\{ X UY } in all of the distribu-
tions P that a DAGG can represent, if vertice§ andY are d-separated by a set of verticem
g.
Given the Markov condition or the d-separation critericeyesal different DAGs may deter-
mine the same set of conditional independence restricionghe set of measured variables.

Definition 5 (Markov Equivalence) Two DAGs7; andG, on a set of nodes are Markov equiv-
alent if and only if

(1) G, andG, have the same adjacencies, and

(2) G, andG, have the same unshielded colliders.
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If no further assumptions are made, the Markov conditiondwsdparation are just mathematics
connecting DAGs and probability distributions and needimatlve causation at all. One might
use this mathematical theory solely to produce a compacekgant representation of indepen-
dence structures, i.e., Bayesian netwq®sP). The probability distributionP can be specified
by the conditional distributions with respect to the cop@sding DAGG. More specifically,
supposeV random variables(y, . .., Xy are measured. We denote the joint distributidby

P(Xy,...,Xy) oOr Px, xu,
which is described by the values
P(Xi=x,...,Xy=2zyn) OF P(z1,...,2xn),

where(zy,...,xy) runs over all possiblév-tuples. Since we assume that all probability mea-
sures are represented by densitiéss interpreted as a probability density throughout thisthe
According to an iterated application of Bayes’ rule one maydeze the joint probability mea-
sure into

N

P(xy,...,zn) = P(x1) P(x3|x1) ... P (xN|21, ..., 2N_1) = HP(xj|cmj) : (1.1)

j=1

The rightmost term in Eq[(1l.1) is just a short notation, sing; := (xy,...,z;_;) denotes
the values of allj — 1 ancestorsAN; := (X;,...,X,_1) of X,. Obviously, any reordering
Xr1), Xr2), - - - Xa(vy, Wherer € Sy is a permutation, defines a distinct corresponding fac-
torization into some other conditional probability measur

Furthermore, ifP satisfies the Markov condition with respect to a D&Gthe joint measure

can be decomposed into
N

P(zy,...,zn) = HP(:):j|paj) , (1.2)
j=1
wherepa; depicts the tuple of values of all; parentsPA; C V\{X;} of X; in G. If G can
be indeed interpreted causally, each tePpiX;|PA;) (j = 1,...,N) formalizes the distribu-
tion of an effect given the values of all its direct causese Thnditional probability measures
P(X,|PA;) for each nodeX; are called the Markov kernels correspondingjtoAll these N
Markov kernels together define uniquely a joint measure theN variables.

Definition 6 (Causal Model)A causal modelis a paifG, Pg) consisting of a causal structuge
and a set of parametef®; compatible withg. The parameter®; assign a probability measure
P(X,|PA;) (the so-called Markov kernel) to each node C V, wherePA; C V\{X;} are the
parents ofX; in G.

In other words, a causal structure serves as a blueprinbforig a causal model, which speci-
fies how each variable is influenced by its parents in the wstrecDue to the acyclicity, a DAG
entails an ancestral ordering on the variables. TypicalAG does not determine a unique total
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ordering, but merely a partial ordering. If there are nod/édionditional) independence relations,
we only need to focus on complete acyclic causal grgjitig““which are defined by an ordering
7 of the nodes and drawing arrows from each node to all its ssces. In the general case, i.e.,
some (conditional) independence relations are valid, anmesasily identify any causal gragh

as an proper subgraph embedded in a suitgsie™ by checking for each nod&; the set of
its parents irge™**which can be dropped without changing the Markov keri&ls;|pa;) and
consequently the joint probability measure More generally, we may consider the factorization
of Eq. (1.2) as the special case whérés the unique complete (fully connected) acyclic graph
that corresponds to the orderidg, ..., Xy, i.e.,G has arrows from eacH; to every.X; with
i<j. Likewise, we callP;(x;|an;) Markov kernels corresponding to an ordering

Since a Bayesian network represents the joint distribuleerning Bayesian networks can
reveal insights into the underlying causal model that theeoked data come from. But, the
causal model should have more power than only represeiéngriderlying joint measure. The
principal quality and power that distinguish a causal strreefrom the graphical representation
of a closely related Bayesian network is the assigned aldiggxhibit causal knowledge from
data instead of merely representing dependences. In dojragcusal model becomes suitable
for predicting the effect of potential interventions orians in different circumstances. However,
there are some fundamental difficulties to interpret a Bayesetwork causally (called causal
Bayesian network).

First, causality itself is yet not a well-understood coriceWhether a causal relation is a
property of the real world or rather a concept in our mindpimgl us to organize our perception
of the real world is a very philosophical question rathenthavery scientific one. Even though
the intuitive meaning of cause and effect in real life oftemquite clear (not always obvious),
there is a lack of widely accepted clear notation of causkedfect relationship in scientific
research. For these reasons, we preferably treat causslyrimitive throughout this thesis.

Nevertheless, we propose to keep the concept of manipalatiterion [153] in mind, since
the main benefit of having causal knowledge is being ableddipt the effect of a manipulation
or intervention. The manipulation criterion charactesitge causal influence of; on X; in the
manner that if one had a way of setting just the valueX ond then measuring’;, the causal
influence ofX; on X; will be reflected as a change in the distribution’of. That is, there exist

stateSrgl) andx§2) of X; which can be set, formalized as the so-called do-calculis,[183],
such that
P(X; |do X;=a") # P(X; |do X;=z) . (1.3)

Roughly speaking, if one can manipulate something and songegtse changes, then the former
causally influences the latter. The impact of a manipulatipan intervention will spread in
the causal direction, but not opposite to the causal doectif a Bayesian network does not
reflect the real causal directions, it cannot be used to sitmuhe impact of interventions and
consequently should not be interpreted causally.

By means of a real-life example, we clarifies the differendgvben the graphical representa-
tion of a Bayesian network and the causal structure. Suppas¢hie leftmost plot of Fid. 1.2 il-
lustrates the graphical representation of a Bayesian nkti@phaving Down’s syndrome (preva-
lence of trisomy 21) with maternal age, two blood markees, free R-HCG (3-human chorionic
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SYNDROME . Sy NDRO!\I'
RANSLUCENCY, TRANSLUCENCY
Figure 1.2.: Graphical representations for having Dowwigdsome (prevalence of trisomy 21):

sparse Bayesian network (leftmost), diagnostic model witbng independence re-
lations (middle) and fully connected Bayesian network (imgbst).

gonadotrophin) and PAPP-A (pregnancy associated plasotaiprA), and nuchal translucency
(NT). It is well known that the risk of having a term pregnanaith Down’s syndrome in-
creases with maternal age and the blood markers and NT ané ldgrrelated with Down’s
syndrome[[15/1,, 148]. The arrows in the Bayesian network cantbepreted causally due to a
thought experiment of the hypothetical interventions: aidh’s syndrome really could be treated
with success, the measurement of blood markers and NT waaldge, but not maternal age. In
contrast, although a fully connected Bayesian network (nigist plot) is also able to represent
the observed distribution perfectly (we will elaborate ba teason later), we cannot interpret it
causally, because it is not capable of simulating the imphictterventions.

Another problem of interpreting a Bayesian network caus@liyhe existence of potential
hidden common causes (confounders) of measured varialblesinstance, if there is some
variable that is a cause of both maternal age and Down’s eymglre.g., a genetic factor, then
the arrow between them in the Bayesian network (leftmost @i¢tig.[1.2) is not an accurate
depiction of the causal relationships for Down’s syndron@ne possibility is to manage the
measuring so that the set of variabksnclude all of the common causes of pairsiinthe so-
called causal sufficiency assumption. Unless explicithfest otherwise, we assume throughout
this thesis that no common causes of any pair of variabldsagtaph is left out. Another more
general possibility to enable one to focus on the structuee the measured variables that results
from the presence of unmeasured variables without exXglicitluding them in the model is the
concept of ancestral graphs [133] permitting undirectedi l@irdirected edges, which indicates
sampling bias and confounding respectively.

1.2. Task of causal inference

The situation that we would like to focus on in this thesidis following. An underlying process
generates entities that share the same causal strgcover a set of variableg: = { X, X,, .. .}.
The entities may have different parameters, i.e, prolltdsiﬂ?g). We assume that each entity
independently samples the joint distributiBfi) defined by its causal modg, Pg)) to generate
data points(xgi), xéi), ...) of all variables in the model. Admittedly, one cannot be ghed in



1.2. Task of causal inference

E T T T : |

S - = =DAGS i

% 401 —— Markov Equivalence Classes of DAGs J
L/

5 o

E L/

§ 30 7

Z %

S 20 /

L L/

: /

= e, /

S /

S 10 )

3 o

O LS

2 o

3 0 Y : ; :

Number of Nodes

Figure 1.3.: The number of nodes against the natural |dgaritf the number of possible DAGs
and Markov equivalence classes of DAGs.

the real world the observed data are indeed sampled fromradeflying model”. Nonetheless,
we assume in addition that the observed data fairly reflecptiobabilities determined by the
underlying model, i.e., the relative frequencies from dateery close to the actual underlying
probabilities, provided that the sample size is large eho@gusal inference copes with the task
to estimate the underlying structure representing caetationships from finite data.

In principle this task can be done by performing parametaniag for all possible structures,
and then selecting those structures for which the joint glodlly measure over the domain is
sufficiently close to the observed measure. Unfortunabgiiollowing such brute force approach
we will be faced with the essential difficulties of structuearning. The space of all DAGs or
Markov equivalence classes of DAGs is extremely large. o, fa is known [134, 156, 83,
111] that givenN labeled vertices the number of DAGs can be counted a reaereguation.
Moreover, Gillispie et al.[[68] wrote a computer program tauct the equivalence classes of
DAGs up to10 nodes. Figl_1l3 shows the natural logarithm of both numbveng;h indicate a
super-exponential growth of possible structures in thelmemof nodes. For instance, there exists
nearly4.18 x 10*® different DAGs and approximately. 12 x 10'® different Markov equivalence
classes of DAGs with0 nodes.

The other problem of the brute force search strategy is teanay end up the search through
the structures with several equally good candidates. Iticodar, a Bayesian network over all
complete graphs can represent any probability measurats\dymain, consequently represents
the observed measure exactly. Although such a causal medelcomplete graphs could be
considered as the generating model, it will not be a preferabswer, when the data could be
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sampled from a sparse network. Moreover, human beings ggnerefer simple answers to
things. Therefore, some kind of simplicity principle (eall Ockham'’s razor) in causal infer-
ence is desirable. The simplicity of a causal modglPg) is primarily reflected in the causal
structure, i.e., the number of links in the DA% The parameter®; of a model, i.e., the set of
Markov kernels, provide an additional criterion for the plraity.

To make the goodness of a candidate for the causal strugipegent, we consider the graphi-
cal representation of having Down'’s syndrome (Eigl 1.2yess@mple again. The blood markers
and NT are widely accepted as identification tests for Dosyrglrome, because they are directly
influenced by Down’s syndrome. When modeling the medicalrbats of having Down’s syn-
drome, trained physicians are usually inclined to provideditional probabilities in diagnostic
directions, e.g.P(Down’s Syndromelndicator. The shorthand “Indicator” stands for free 3-
HCG,PAPP-A, and NT. A model reflecting this might look like thee in the middle plot of
Fig.[1.2, which has some arrows opposite to directions imle$t plot. However, according to
this diagnostic model, maternal age, free R-HCG, PAPP-A,Nihdre mutually independent,
which is inconsistent with the Bayesian network as shownfimiest plot. If we would like to
correct the model (in the sense that the Bayesian networleiteftmost plot is the underlying
model) to be a generating model in form of a Bayesian network,roust add some extra struc-
ture making maternal age, blood markers, and NT dependargxémple the rightmost plot of
Fig.[1.2. Although the observed probability measure (dist@any probability measure) can be
perfectly represented by such a fully connected DAG (rigignplot), one would not consider
this structure as a good candidate for the underlying camedekl, since there is a simpler struc-
ture (leftmost plot) which can represent the observed fitihameasure as well as the much
more complicated structure. This example makes a mainreatua good candidate for the
causal structure apparent, namely somewhat minimalitiggrstructure with respect to links. In
other words, if for some reason one wishes to represent algpcal relation by a DAG with
some links directed opposite to the true causal directioa,total number of links in the hy-
pothetical DAG that correctly represents the independeglegions can not decrease, and most
likely it will increase.

From the viewpoint of parameterization, we expect that alg@mdidate for the causal model
(G,Pg) should be stable or simple in the set of paramef®ysi.e., the set of Markov ker-
nels. Suppose the leftmost and rightmost plots of Eig. 1e2tao Bayesian networks that
can correctly describe the observed joint probability meas For the sake of simplicity, we
assume that the maternal age is given. The models based daftthest DAG have advan-
tage over the models based on the rightmost DAG, namely tigatdonditional probabilities
P(Indicator| Down’s Syndrome (Markov kernel with respect to the leftmost structure) amgen
stable than the conditional probabilitié¥ Down’s SyndromeIndicator (Markov kernel with
respect to the rightmost structure), in the sense that thex laould be changed and the former
would remain unchanged, if we could intervene or manipulagesariable “Down’s Syndrome”.
This is because the conditional probabilities for the lefstnmodel reflect general properties
of the relation between Down’s syndrome and tests, and theyhe ones that a developer of
tests can publish, whereas the conditional probabilibesHe rightmost model are a mixture of
Down’s syndrome-test relations and prior frequencies ef@lown’s syndrome. Due to Bayes’
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rule on conditionals, we have

P(Indicator| Down’s SyndromégP(Down’s Syndrome

P(Down’s SyndromeIndicaton = P{Indicaton

In other words, if a new drug is developed to prevent someraegwomen from Down’s Syn-
drome, i.e.,P(Down’s Syndromeis changed, the distributioR(Down’s SyndromeIndicator
will consequently be changed, but the distributiBfindicator| Down’s Syndrome will remain
the same. We intend to utilize such inherent differencesapgrties of Markov kernels with
respect to different structures to make causal inferenbes Way we will have some simplicity
criterion even though the generating model indeed hasydalinected structure.

In summary, the task of causal inference is finding simpleefethat represent the observed
data, in the sense of requiring less links and having stadni@peters. The underlying graphical
structure of such models provides a good candidate for firesentation of causal relationships.

1.3. State-of-the-art causal inference algorithms

As mentioned previously, without restrictive assumptjanbrute force search over all possible
structures requires super-exponential time in the numbeaables in the model. Over the
last years, a large amount of work has been dedicated to fatimy reasonable assumptions
and feasible search strategies to identify a good causaltste. A detailed discussion of the
complexity of causal inference with different concepticas be found in[53].

In general, two basic search strategies, constraint-kasgdiodel-based approaches, are typ-
ically employed. The constraint-based approaches maodyd on the structure of the model,
while the model-based approaches take the parameters ofdtlel into account. The model-
based approaches often base the search strategy on a Bas@s&anTherefore, it is also called
in many literature score-based search. Surely, a non-Bay@sodel-based search can be de-
signed.

A Bayesian score-based search assigns a score to each ¢amdatiel, characterizing how
well that model describes the data, and maximizes this §86r&9]. Cooperl[38] and Chick-
ering et al. [[30]_33] showed that given a complete datasenartddden variables, locating the
Bayesian network structure that has the highest posterdatility is NP-hard, which suggests
the use of heuristic strategies for finding close-to-optmaolutions. Particularly for purely dis-
crete networks, various search strategies for models Wwghtaximum score are proposed, e.g.,
greedy search by Chickering [32], and MCMC by Herskovits [89Ine of the challenges of
applying score-based methods is the assessment of infeenpaiors on possible causal models
and on parameters for those models. On the one side, they abitepresent prior information is
a great advantage of score-based approaches. On the oaghsi choice of priors is not trivial.

It is currently common to specify some form of non-informratpriors on models, e.g., uniform
prior over all possible models. Even though non-informafwiors typically require only a few
parameters to be specified, it is sometimes not obvious hsettthem. In addition, there are
both theoretical and computational difficulties in cal¢ulg scores for models with hidden vari-
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ables, if a general framework, i.e., ancestral graphs|[188]used. Finally, it is noteworthy that

Cowell [41] showed that if a node ordering, e.g., the causdémiis given the score-based and
constraint-based learning for complete data (no missihgegan observed data) are equivalent
under the assumption of no hidden variables, in the sensédotiaprefer the same structures as
output.

Constraint-based approaches [153, 125] carry out indepeerdests on the database and build
a Bayesian network in agreement with the obtained indepeedestrictions. They make weak
commitments as to the nature of causal relationships. Tkekmeown example of this kind
of approaches is the so-called inductive causation (IC)rakgo [125]. The IC algorithm can
be broken into an adjacency phase and an orientation phdasemain drawback of IC is that
one makes binary decisions about the relations betweeablesi in the adjacency phase when
conditional independence is tested. These decisions hvdrie based on some statistical test,
may be erroneous and affect the subsequent behavior ofghathim, which makes the whole
algorithm unstable. Moreover, testing conditional indegence, especially in a continuous do-
main, is a challenging task in its own right. Standard refieets of IC are the PC [152] and
FCI algorithms[[158]. PC excludes hidden common causesgwtll allows them. The usual
implementation of PC/FCI employs standard statistical tesiish are based upon partial cor-
relations (Fisher’s Z) in continuous domains ayrdtests in discrete/categorical domains. The
limitations of both tests are obvious: the former relies s gtrict assumption of a multivariate
Gaussian distribution and the latter leads to a combiradtexplosion of the contingency table,
especially if the cardinality of the conditioning set isgar Another shortcoming of such tests
is that without discretisizing or embedding data, hybriddels, i.e., models of both continuous
and discrete/categorical variables, can not be treatedCity® at all.

A first attempt to modify PC by measuring dependences via atumformation is made by
Cheng et al.[[28], the so-called BN-PC algorithm. Unfortuhat€hickering et al.[[34] showed
that the “monotone faithfulness assumption” made by BN-P@dcoot be generally valid. Fur-
thermore, the current implementation of BN-PC can only bdiegpo purely discrete domains.
The essential difficulty is that usual methods for estimatgbmutual information from continu-
ous data involve the explicit estimation of the densitidsicl is hard for high-dimensional data,
unless suitable smoothness assumptions are made.

For purely continuous domains, Margaritis [107, 109] psgaba distribution-free indepen-
dence test for structural learning via constraint-basqaagrhes. His test of independence is
Bayesian, because it calculates the exact posterior pidgpabindependence by using Bayesian
integration based on a sophisticated iterative procedulesoretization over observed domains.

Apart from the difficulty of testing independence, anotheakness of constraint-based ap-
proaches is that there are some distinct DAGs that repregantly the same set of independence
relations, the Markov equivalence class. Some interestimgjrical results for the size of Markov
equivalence classes with up 16 nodes can be found in [68]. A straightforward consequence is
that one cannot determine the causal direction betweenéwerdient variable¥ andY” if only
these two are measured, because hypothetical DAGsY and X < Y are Markov equivalent
to each other. This problem is traced back to the fact thabalih a cause normally changes the
probability of a direct effect when controlling the direffieet’'s other causes, such a dependency
may be symmetric. Causation, however, is asymmetric evease of two dependent variables.
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Kano et al.[[96] have also recognized this problem and pregh@scausal inference rule using
non-normality via structural equation models. They utitizhe fact that linear causal relations
can induce non-Gaussian joint measures. The non-Gaussiasune would require nonlinear
relations for hypothetical models that are inconsisternhwhe generating causal order. Based
on this observation, their inference algorithm, the sdecaLINGAM algorithm [143], which
is based on independent component analysis (ICA) selectslsfmd which linear cause-effect
relations are sufficient whenever such causal hypotheesgmasible for an observed distribution.
However, the underlying idea is only justified for real-veduvariables and how to extend their
algorithm to other kinds of domains is not straightforwaktbte that LINGAM is an algorithm
of non-Bayesian model-based approaches.

1.4. Inductive causation

Since we intend to propose new methods of constraint-bgseaches for causal inference,
we would like to have a close look at the inference princigla oonstraint-based approach, in
particular the details of the so-called inductive causefl€) algorithm.

First, IC makes the Markov assumption. Any population poetlby a Bayesian network
(output of IC) implies the independence relations entailedhie Markov condition. However,
it does not follow that the population induces exactly thasd no additional independence re-
lations in the population. The faithfulness [153] (alsd@distability by Pearl [125]) condition
formulates this converse principle.

Definition 7 (Faithfulness Condition) Let G be a DAG andP a probability distribution gen-
erated byG. The pair(G, P) satisfies the faithfulness condition if and only if no coiodil
independence implied by holds unless entailed by the Markov condition applied to

The pair (G, P) which satisfies both Markov and faithfulness conditions afled a faithful
Bayesian network. Because faithful Bayesian networks share#iure of simplicity in graphi-
cal structureg/, they are good candidates for causal structures. To seelteofaithfulness con-
dition leads to simplicity of structures, we will once agaonsider the causal relations among the
maternal age, Down’s syndrome and various diagnostic testee example of having Down'’s
syndrome. In the case of the fully connected Bayesian netasihown in the rightmost plot
of Fig.[1.2, the Markov assumption alone puts no restrictiom the distributions that this struc-
ture could produce, because one obtains no independemt®msl whatsoever from applying
the Markov condition or the d-separation criterion to theresponding DAG. But in some of
the distributions that this structure could produce, nmeteage might be independent of each
diagnostic test “by coincidence”. If the observed disttib induces indeed such independence,
this fully connected Bayesian network contradicts the falttess assumption and cannot be
accepted as a good candidate for the causal model.

Roughly speaking, faithfulness requires that the verifieastraints are not implied by acci-
dent, but by the structure. If two effects, e.g., a direcuiaficeX — Y and an indirect influence
viaZ, X — Z —Y happen to exactly balance and thus cancel, then there nmegia Bssociation

11
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Figure 1.4.: Graphical representation ob-&tructure (unshielded collider afi). As a causal
structure 7 is the common effect of mutually independent causesndY’.

at all between causally connected variablesandY . In such a case the population is unfaith-
ful to the graph that generated it. In other words, undehfaibess assumption, we can say
that whatever structure generated the data, it implies bgphration exactly the independence
relations that are present in the population. Admittedigould happen that particular choices
of the parameters entail probability distributions whiotply additional independence relations
not represented in the DAG. However, it can be shown that stli@lb probability distributions
described by Bayesian networks, in a measure-theoretie siemgly a conditional independence
if and only if the DAG represents the corresponding d-sdjmardl13].

If the probability distribution is perfectly known, i.e.,itout error, and the faithfulness as-
sumption is fulfilled, it can be shown that the constrainédzh approaches yield the correct
Bayesian network [152, 169], i.e., the Markov equivalen@sglof DAGs. Note that such a
nice property is not guaranteed by the other approachegiofi@amg a scoring function, as they
can get stuck at local optima. That is the reason why we pteéconstraint-based approach to
a score-based search. It should be mentioned that evenhtibedaithfulness condition is not
explicitly used by a Bayesian score-based approach, on@slata implicit preference for faith-
ful structures provided that the priors are strictly pesitiensities on the space of all conditional
distributions [113, 129].

From the algorithmic viewpoint, the Markov and faithfulsessssumption leads in some situ-
ations to a unigue causal structure. Suppose we have a piopula/olving only three distinct
variablesX, Y, andZ. The only independence relation in this populatiorXisl. Y (see the
first column of Tab[_1]1 for all non-trivial relations). Theegtion is what structure might have
produced data with these independence restrictions. Tdphgrthat satisfy the Markov condi-
tion share the feature that each has a direct link betwéamd Z and a direct link betweel
andZ, i.e., 6 fully connected DAGs, 3 DAGs with only two arrows aswn in Fig[1.¥ and one
DAG as in Fig[1.h. Adding faithfulness assumption redubesset of ten to a singleton, i.e., the
so-calledv-structure as shown in Fifg,_1.4. The so-called “explainingy@ phenomenon [174]
gives a typical example of suchstructures in real-life situations. This phenomenon soal
known as Berkson’s paradox, or “selection bias” in statsst&fter all, thev-structure is the only
structure satisfying the given set of independence cansdratherwise the Markov or faithful-
ness condition would be violated.

Having embedded such triples into a larger network, theidenation above leads to an essen-
tial strategy for learning structure hystructure identification. Such kind of structural leagin

12
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Independence btwk, Y andZ | v-Structure | Nonw-Structure |

Presentin Population| Absent in Population
Absent in Populationn Absent in Populatior
Absent in Populationn Absent in Populatior
Absent in Population) Presentin Population
Absent in Populatior) Absent in Populatior
Absent in Populatior) Absent in Populatior

BB
= |||
N N =N N =

| <IN

Table 1.1.: The configurations of all possible non-triviadépendence relations between three
distinct nodesX, Y and Z imply the v-structure (Fig["1}4) and non-structure
(Fig. [1.1) respectively, when Markov and faithfulness agstions are made. All
structures have the adjacenky- 7 —Y'.

is efficient, because the maximum numbewafonfigurations is generally less th(i@ﬁ), where

N is the number of nodes. For instance, a model witmodes can only have maximum 100
v-configurations (seé [68]). The key properties for discmgestructures among more than three
variables can be summarized as follows:

» Any two distinct variablesX andY” are directly connected by an edge (with yet unknown
orientation) if and only if there exists no set of variables,, C V\{X U Y} such that
X 1L Y|Sxy. This is due to the faithfulness condition that every edgth@resulting
graph induces a dependence that cannot be screened off Giiaoimg on any subset of
variables. An induced dependence can always be screengdhaffunderlying relation is
indirect.

* For subgraphs of the forti — 7 —Y, X +— 7 —Y,andX «— Z <Y, whereX andY are
nonadjacent, the dependence betw&eandY can only be screened off by conditioning
on subsets that contain.

» For subgraphs of the forlY — Z — Y, whereX andY are nonadjacent, conditioning on
any subset which contairis will induce dependence betweghandY .

Based on these thoughts, the IC algorithm conducts three steps, which are itemized in
Fig.[1.5, to learn the causal structure. Figl 1.6 demorestrah example, where the underlying
true causal model has the structure as shown in[Fig. 1.1r &feetest of conditional indepen-
dence (step 1), the underlying skeleton as shown in the dsftplot of Fig[1.6 is obtained. In
the posterior orientation phase, step 2 provides a partitnlected graph whose orientation is
only given by the detectedtstructures (Fig._116, middle). The remaining edge can bectéd
(Fig.[1.6, rightmost) in step 3, since the reverse directimuld produce new-structures or
directed cycles. Note that the output in this example is natetely directed.

If the distribution P is indeed faithful to some graph and we have a perfect way of deter-
mining Sxy for all pairs(X,Y), it is then guaranteed that IC produces a graph that is Markov
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Input: A set of variables’.

Step 1: Connect vertices{ —Y if and only if no set of variableS'xy CV\{XUY } can be found
with X 1 Y |Sxy. This provides an undirected gragh i.e., the underlying adjacency
structure.

Step 2: Orient a substructur& — 7 — Y, where X andY are nonadjacent, into astructure
X—Z<Y,if Z¢Sxy.

A4

Step 3: Orient as many of the remaining undirected edge8 as possible whenever their dire
tions follow from the assumption that neither additionadtructures (apart from those found
in the previous step) nor directed cycles exist.

Output: A graphg.

Figure 1.5.: Three-step-scheme of the IC algorithm. Stegatches for the underlying adjacency
structure. Steps 2 and 3 orient the edges.

Figure 1.6.: Stepwise results of the IC algorithm for leagnihe structure as shown in Fig. 11.1.
Step 1 learned the adjacency structure. Step 2 identified-8tauctures. Step 3
orientedXs — X, due to the assumption that no additionadtructures are present.
Step 3 further oriented’s — X; and X, — X; under the assumption that no directed
cycles are present. The final output is a partially directegly.
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Figure 1.7.: A Markov equivalence class of three differamtictures. X L Y| Z is the only
independence relation betwe&n Y andZ. The maximally oriented graph learned
by a constraint-based approach, e.g., IC, is an undireatectste, whereX andY
are nonadjacent (rightmost plot). It should be stressetdlearepresentation of this
undirected structure (rightmost plot) excludes thstructure (Fig[_1l4), because a
constraint-based approach represents sustnuctures explicitly. We call the struc-
ture as shown in the leftmost plot “fork”, and the structussshown in the middle
two plots “chain”.

equivalent to the original one. Even though IC leaves thaildedf the tests of conditional in-
dependence in step 1 unspecified, it is well-known that adestdependence can fail if it is
based on finite sample sizes. In addition, an error made ieaHg phase of orientation can have
cascading effects in the orientation of the output. Due iittstability, the resulting structure is
sensitive to the order in which conditional independentaions are checked.

Step 3 of IC can be systematized in several ways. Meek [11@8)stl that the four rules
proposed by Verma et al. [1/70] are sufficient, so that repeapglication will eventually orient
all edges that are common to the Markov equivalence classasuch partially oriented graph
a maximally oriented graph. These four rules can be found2%] p. 51. Note that rule 4 is
not required if the starting orientation is limited ¢estructures. The first three rules, which are
actually needed for step 3 of IC are summarized in Appendik B.3

The output of IC, a maximally oriented graph, is often not ctetely directed, e.g., the three
structures in Fid. 117 are equivalent with respect to theoisep independence constraints (see the
second column of Tap.1.1) and thus indistinguishable byri@atticular, if no independence can
be verified, the usual IC algorithm provides a fully conndced completely undirected graph
as output. In particular, IC is not capable of learning dimtbetween two dependent variables,
when only these two are measured. In such cases, additidaagince rules are desirable.

1.5. Thesis goal and outline

The goal of this thesis is to develop new techniques for rexog the causal relationships from
statistical data and demonstrate their utility by applytingm to real-world problems. Aside of
the contributions of each individual chapter, the thesigoiuces mainly two novel techniques
for learning causal structures: a so-called kernel depealmeasure (Chapter 2[fb 5), and an
inference rule via properties of Markov kernels (Chapier @)toThe former tool uses the main
ideas of a constraint-based approach and goes beyond hganagnitude of dependences is
used), while the latter is a non-Bayesian model-based apiprodhe reminder of the thesis
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document is structured as follows.

In Chapter 2, we first introduce the so-called kernel depereleneasures. Based on the
kernel measures, Chapfér 3 presents a kernel statistitalfteslependence. Such a statistical
hypothesis test is not only able to capture the conditiondépendence between continuous
variables, without assumption of a specific kind of disttib, but also to deal with hybrid
models containing both continuous and discrete/categjorariables in a straightforward way.

By means of the independence constraints obtained by thelkmsts, Chaptér 4 elaborate
on the problems of inferring the causal structure and ptesero-called robust causal learning
(RCL) algorithm. RCL learns the graphical representation o dafavor of constraints of small
conditioning sets, under the reliability assumption ofstheonstraints. Since the independence
relations are essential for learning directions in thecstme, RCL is especially suited to learn
sparse models.

Chaptefb copes with the problem of inferring causal strectising kernel dependence mea-
sures. First part of this chapter is spent on introducing @entation heuristics under some
assumption about the magnitude of dependences measuredr®) knethods. After that, a fast
kernel-based causal learning (KCL) algorithm is preser&ll. uses an auxiliary graph which
is obtained by the orientation heuristics to explore thae&lcy structure by kernel test of inde-
pendence. The use of the degree of dependences radicallyeiethe search space of possible
DAGs. The algorithm is particularly suitable for dense megdsince the degree of dependences
give some hints about the direction of edges without inddpeoe relations.

Chaptei 6 strives for an inference principle, which goes hdymnstraint-based approaches.
We aim at the challenging problem how to make causal inferdretween structures within
a Markov equivalence class. In particular, we try to infeuasa direction between only two
dependent variables. The main idea is to capture the asymbettveen the causal and effect by
evaluating the plausibility or complexity of parametersaafausal model, i.e., the set of Markov
kernels. The chapter introduces a first concept of plausialov kernels (pIMK) via low-order
(first and second) statistical moments and presents thalkm @IMK algorithm to discover the
causal order.

Chaptei .V introduces a kernel-based norm to define the coityptEixMarkov kernels and
shows its application to causal inference between only tepeddent variables. In the last
chapter, the main results of this thesis are summarized modtiook to future work is given.
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2. Kernel Dependence Measure

Conditional independence relationships between varigih#gsa crucial role in constraint-based
approaches of structural learning. However, measuringgaddence or dependence is a non-
trivial problem currently unsolved in its generality. Indlchapter, we will introduce the so-called
kernel dependence measures, which can generally captthidifear and nonlinear relation-
ships.

2.1. Linear and nonlinear dependence

In probability theory and statistics, correlation indesthe magnitude of a linear relationship
between two random variables. There are a number of diffe@sfficients for different situa-
tions. The most popular is the Pearson correlation coefifigiewhich is obtained by dividing
the covariance of two variables by the product of their staddieviations, namely

o CovlX,Y] _  EB(X-EX)(Y-BF]) 1] 2.1)
VVar[X[Var[Y]  /E[(X - E[X])?[E[(Y — E[Y])?] o
where ‘E[ -], “ Var[-]” and “Cov| -|” depict the expectation, variance and covariance of corre-

sponding random variables.

Suppose variabl® is linearly related to standard normally distributed vialgaX oc A/ (0, 1)
added with a standard normally distributed naise\ (0, 02), i.e.,Y = X +¢. Throughout this
thesis (i, o%) denotes a normal (Gaussian) distribution with mgamd variance? (standard
deviationo > 0). Fig.[2.] illustrates the correlation coefficients betweéeandY in the case of
noises with different variances. It shows that the largentlriance of the noise, the noisier the
relation, the smaller the correlation coefficigntin such linear case, correlation is capable of
characterizing the dependence betwéeandY'.

In general, dependences in nature can be generated bymslaips of various forms. In a
nonlinear case, the correlation coefficient is not suiteshéasure the dependence, for instance,
samples based on the relatibh= X? + ¢ (see the first plot of Fig._ 2.2 for one sample) or
Y =sin(7X)+e€ (see the first plot of Fid. 213 for one sample). Althou§randY” are obviously
strongly dependent in samples, the correlation coefficggesinall. It is noteworthy that the cor-
relation coefficient of transformed data would be large & tlonlinear transform of the original
variable were known (see the second, the third and the f@lothof Fig.[2.2 and Fid. 2]3).

In some situation, the correlation coefficient is not ableapture dependences at all. To
make this apparent, we sampled data as shown in the firstfofatyd2.4. The original sample
(Xo, Yp) is transformed by a rotation of angle(in degree), denotedX,,, Y,,). The second and
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2. Kernel Dependence Measure
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Figure 2.1.: Correlation coefficients indicate the stremjtimear relation between two variables
X andY'. 100 data points ok are sampled from the standard Gaussian distribution
N(0,1). Y is linearly related taX, i.e.,Y = X +¢, with an independent Gaussian
noisee; o NV (0, 02), where(oy, 09, 03, 04) = (0.01, 0.5, 1, 4) are the standard devia-
tions. The larger the variane€ of the noise, the noisier the relation, the smaller the
correlation coefficienp.
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Figure 2.2.: Correlation coefficients are not suitable foasuing the strength of a quadratic
relation between two variables. 100 data pointXodre sampled from the standard
Gaussian distributioV'(0, 1). Y is quadratically related t&, i.e.,Y = X2+ with
a Gaussian noisex N (0,0.25). The correlation coefficient is small in the original
data (leftmost plot). However, if the functional forXi? of the quadratic relation
were known, the correlation coefficient of transformed dafaand X?2) would be
large (second plot from left). The correlation coefficierduld be also large with a
transform of similar polynomial function, e.g¥;® or X* (the last two plots).
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2.1. Linear and nonlinear dependence
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Figure 2.3.: Correlation coefficients are not suitable forasuging the strength of a periodi-
cal relation between two variables. 100 data pointsXofre sampled from the
standard Gaussian distributioxf(0,1). Y and X has a periodical relation, i.e.,
Y =sin(w X )+e with a Gaussian noisex N (0, 0.25). The correlation coefficient is
small in the original data (leftmost plot). However, if thenttional formsin(7X)
of the periodical relation were known, the correlation @ioefnt of transformed data
(X andsin(7 X)) would be large (rightmost plot). The correlation coeffitieould
be also large if an appropriate polynomial function coulddaend for the transform
(the second and third plot from left).
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Figure 2.4.: An example of a nonlinear dependence, wheredtrelation coefficient vanishes,
although a strong dependence is present. The half of thielf@@adata points ot
is sampled from; o< A/(1,0.01) and the other half frona, < A/(—1,0.01). Data
points for X are sampled according to the distributidd&X |y <0), P(X|Y >0) x
N(0,1). (X,,Y,) denotes the original data(, Y') transformed by a rotation of an-
glew in an anticlockwise directionX, andY; (leftmost plot) as well as(y, andYy,
(second plot from right) are mutually independent, wheréasandY;; (second plot
from left) are strongly dependent. Theoretically, the etation coefficient vanishes
for all w. The rightmost plot visualizes the typical curve of therestied correlation
coefficient (red line) fow € [0, 90|, and a typical curve of the estimated kernel-based
dependence measures (blue line), which will be discuss8datior Z2.5.
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2. Kernel Dependence Measure

the third plot of Fig[ 2.4 visualize the transformed d@as, Y;5) and(Xoo, Yoo). According to
the underlying model withP(X,|Yy < 0) = P(Xo|Yy > 0) (see Fig[ 214 for description of the
generating model)X, andY, are independent. It is obvious th&f, andY,, are independent for
w=0,90, 180, ....

In this example, it is easy to see that the correlation matyiaf the data matrix

iS a unit matrix, namely

00 = PXoXo PXoYo _ 10
0 PYoXo PYoYo 0 1 .

Further, it is well known that the rotation matri¥, of anglew in an anticlockwise direction has

the form of .
R — ( cos(jggw) sin(qggw) ) ‘

—sin({g5w) cos(ig5w)

Hence, data transformed by a rotation anglean be calculated by

Xw . _ _ XO
<Yw)_.pw_3wpo_3w(yo),

and the corresponding correlation matpixis given by
po = E[Ry, (Do — E[Do])(Dy — E[Dy])" RL] = Rupo R, = po.

This means that the correlation coefficient indeed vaniébresll values ofw, while the depen-
dence actually vanishes only for few specific rotation angle: 0, 90, 180, . . .. In this example,
correlation coefficient fails to capture the dependenceatetaly. In other words, “uncorrelated”
does not mean “independent”. For this reason, it is not vergrssing that the performance of
solving real-world problems by the PC/FCI algorithm is somes unsatisfactory, since it takes
only correlation, i.e., the linear dependences into actoun

The examples as shown in Hig. 2.3 and Eigl 2.4 suggest thapmagiate nonlinear transform
with e.g., polynomialsX — (X, X2 X3, ...) of the original variable might be generally useful
for revealing various kinds of dependence. In various apfibns, however, it is very hard to find
the proper parameters. And a well-fitting transform, if ploles may cause high-dimensionality
of parameters, since we do not have a direct access to thelyingeeal relationship. In order
to transform the non-linear relationship into a linear amthie feature space, we will employ the
so-called kernel method [137] as the general framework.
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2.2. Positive definite kernel and RKHS

2.2. Positive definite kernel and RKHS

The idea of “kernelization” is to transform the original datith a “feature map’’[3]. The kernel
method maps variables into an appropriate feature spacenbylaear transformation, where
the nonlinear dependences in the original space are cddiyreorrelations between variables in
the feature space. Hence, the conditional independenbe ioriginal space has clear statistical
or probabilistic meaning in the feature space. Althoughtbed “kernel” is traditionally used in
statistics in a different meaning, which does not imposétipesiefiniteness, e.g., kernel density
estimation of Parzen window approach [122], “kernel” megmssitive definite kernel”[[10]
throughout this thesis.

Definition 8 (Positive Definite Kernel)A positive definite kernel on a nonempty &et defined
by a symmetric functioh : X x X — IR such that for arbitraryn € N andz®, ... 2™ e X
the matrixK with (K);; := k(z9, 2} is positive definite, i.e.,

n

Z cicik (x(i), m(j)) >0

ij=1
forall ¢i,...,c,€R.

A popular positive definite kernel on a subsgétof IR"™ is the so-called Gaussian radial basis
function (RBF) kernel,
lz — 2'||”

ky(z,2") = exp (——) , (2.2)

202

with z, 2’ € X and parametes ¢ IR". Every positive definite kernel defines a magrom X
into a feature space, i.e., an RKH#Son X':

b X — H

r — k(x,-).

Here,®(z) denotes the function that assigns the value 2') to 2’ € X, i.e.,®(x)( - ) =k(z, ).
Given the inner productk(z, -),k(2/, -)) = k(z,2’), the feature spac# is defined by the
completion of an inner product space spanned by the furetion -) € H for all x € X'. Due to
the reproducing property

for all f € ’H, positive definite kernels are also called reproducing kernels. In view of the map
®, the reproducing property amounts to
(B(x), D(2')) = k(z,2") .

Therefore, the inner product spakeon X' constructed in this way is a possible instantiation of
the feature space associated with a kekndh some situation, we writéH v, k) explicitly to
make clear that the RKHE y on X’ is induced byk .
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2. Kernel Dependence Measure

The main benefit of mapping a random variabkés= ("), ... 2() on X into an RKHS
(Hx,kx), i.e., X — ®(X), is that one can do linear statistics in the feature spgdge The
random variable@(X) (feature representation of random varialileon the RKHSH y is useful
to represent the distribution of .

2.3. Cross-covariance operator and independence

Following the lines of Baker [12], Gualtierotii [80] and Fukizu et al. [61], we introduce now
the cross-covariance operator, expressing correlatietvgden variables in the feature space.

Suppose we have a random vedtdr, V') taking values ot'’x)). The base spaceésand) are
topological spaces. The measurability of spaces is defintdraspect to the Boret-field. The
joint probability measure ofX, Y) is denoted byPxy, and the marginal probability measure by
Px and Py. We make the following assumption for a kernel and a randomabte throughout
this thesis.

Assumption 1 A positive definite kernét and a random variableX on measurable spac#
satisfy
Ex [k(X,X)] < .

Using the reproducing property of EQ. (2.3), it is easy totba¢ Assumptionll guarantegsy
andHy are included in_?( Py ) and L?( Py ), respectively, wheré&? () denotes the Hilbert space
of square integrable functions with respect to a meagusee [62], p. 6).

Definition 9 (Cross-Covariance Operator)Let(H v, kx) and(Hy, ky) be RKHSs of functions
on measurable spaces and ), respectively, which satisfy Assumption 1. It is known thexeth
exists a unique operatatyy from’H y to H, such that

(9, Zyvx gy, = Exy [f(X)g(Y)] = Ex [f(X)] Ey [g(Y)] = Cov [f(X),9(Y)]  (2.4)
holds for all f e Hy andg € Hy. Itis called the cross-covariance operator.

As the operatolyx is a linear map on RKHSs (froi y to Hy), the above definition means
thatXyx works as an analogue to the covariance matrix for finite dgioeral random variables.
From the definition, it is obvious that}, = ¥ xy, whereX* denotes the adjoint of an operator
Y. If Y is equal toX, the positive self-adjoint operat@iy y is called the covariance operator.
Furthermore, lefPy andPy be the orthogonal projections which maf, onto R(Xx ) and
Hy ontoR(Xyy ), respectivelyR(X) denotes here the range of an operalott is known that
Yyx has arepresentation of the form [12]

Syx = SV SV, (2.5)
where Vyx: Hy — Hy is the unique bounded operator such thét x| < 1 and Vyx =

Py VyxPx. || - || is used for the operator norm of a bounded operator [i\él|,=sup ;_; ||V f]|-
To evaluate various nonlinear correlation through the cawae operator, the RKHS should be
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2.4. Conditional cross-covariance operator and conditiowi@pendence

“rich enough” to express such a variation of nonlinear fiomg. We make the following as-
sumption for RKHSs throughout this thesis.

Assumption 2 Let1 denote the function with constant valuen X. ThenHy+1R -1 is dense
in L?(Px), where “+” means the sum of RKHSs.

The kernels that satisfy Assumptiadn 2 are necessarily @ttaristic”. The class of characteristic
kernels is in general useful for inference on probabiliti€ukumizu et al.[[61, 62] used the
notation of “probability determining” for this class of kezls. Probability determining kernels
mean that the associated RKHS determines a probability byxpectation ofk(z, -). We
prefer the term “characteristic” because of the analogi wie characteristic function (see [63]
for more details).

The L?(Px)-space is a rich class of functions including all bounded suesble functions,
such as the index function of a measurable set. Thus, uneglabtbve assumptions, the following
characterization of independence is easy to be proved1déelheorem 2).

Theorem 1 Under Assumptioris 1 and 2, the random variableandY are independent if and
only if the operatoXyy vanishes. That is,

ZYX:O ~— X1Y.

Many popular kernels satisfy Assumptioh 2. A famous classuch kernels is given by the
so-called universal kernels, proposed by Steinwart/[1B%imple criterion for the universality,
as well as various examples of universal kernels, are giyestéinwart [159].

Definition 10 (Universal Kernel) A positive definite kerngty on a compact sett’ is called
universal if the associated RKH$ is dense in the Banach space of bounded continuous func-
tions.

Since the Banach space of bounded continuous functions ampam subset’ of IR™ is dense
in L?(Px) for any probability measur®y on X, any universal kernel on a compact subset of
IR™, e.g., the Gaussian RBF kernel and Laplacian kernel, satisfissmptiori 2, and thus can
be used to capture independence. Another important exasie Gaussian RBF kernel on
the entire Euclidean space. Assumptidn 2 holds also in #é®,cas shown by Lemnia 4 in
AppendixA.l.

In summary, Gaussian RBF kernels can be used to capture theeimdience between random
variables either on a compact subselltf or the entireR™. The former fact has been shown
by Gretton et al. (se€ [75], Theorem 6), and the latter by Baah §L1] by a direct argument.

2.4. Conditional cross-covariance operator and
conditional independence

Following the lines of Fukumizu et al. [61], we define the citiothal cross-covariance operator
and derive its relation to the conditional independencentiom variables.
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2. Kernel Dependence Measure

Definition 11 (Conditional Cross-Covariance Operator)Let (Hy, kx), (Hy, ky), (Hz,kz)
be RKHSs on measurable spacgs), Z, respectively. And letX, Y, Z) be a random vector
on X x Y x Z. The conditional cross-covariance operator(df, Y') givenZ is defined as

Yyx|z = Yyx — Z%/gVYZVZXE;@( ; (2.6)

wherely , andV; x are the bounded operators in EQ. (R.5) 01, andX ; x, respectively.

If Eg} exists, we sometimes rewritey x|, as
Syx|z = Syx — Syz385,57x (2.7)

for convenience of calculation. Obviously; ., =Xxy|z. If X andY coincide, the positive
self-adjoint operatoEyy | is called the conditional covariance operator. The coowii cross-
covariance operator expresses the conditional covari@ngeX ) andg(Y') givenZ in the feature
space, as shown in the following theorem, which generatlzsesult on conditional covariance
operator (see [62], Proposition 3). The same relation waggar by Fukumizu et al. (see [61],
Proposition 5) with more sophisticated assumptions. A gmproof is given in Appendik Al2.

Theorem 2 Under Assumptiohl 2,
<97 EYX|Zf>Hy = Ez [Cov [f(X),9(Y)|Z]]

forall feHy andgeH,y.

As with the connection between vanishing of the cross-camae operator and the marginal
independence, one would wish for an analogous relatiorts#tiyween vanishing of conditional
cross-covariance operator, i.&yx|z = O and the conditional independence, i.&., 1L Y| Z.
Unfortunately, Fukumizu et al. [61] show the equivalence

Yyxiz=0 <= Pxy=Ey [PX\Z ® PY\Z] )

which means that the conditidny x|z = O is weaker than the conditional independenceXof
andY given Z, since

XL1Y|Z = Pxy=Ez[Pxz®Pyz] = XL1Y|Z.

Nevertheless, Fukumizu et al. [61] also show tha¥iis a part of eitherX andY’, one ob-
tains the equivalence with the conditional independenaa. nétational simplicity, we define
the shorthands{ := (X, Z) andY := (Y, Z). Due to the fact thak I Y| Z if and only if
(X,Z) L (Y,Z)| Z (see[46], Lemma 4.1) we can characterize the conditiortpendence
X LY|ZbyZy,=0. To state the result more precisely, we need to introducefateal
assumption on the kernels. To avoid detailed mathematisaligision, we restrict our attention
to the following class of spaces for the base spaces.

Assumption 3 The base space of a kernel admits a metric.
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2.5. Hilbert-Schmidt dependence measure

The above assumption is satisfied by most of the sets thasackin our context, such as sub-
sets in the Euclidean space and discrete sets, while moesaj@ases may be discussed. Under
Assumptiori B, it is known (seé [51], Lemma 9.3.2) that for drinespace the Banach space of
the bounded continuous functions is characteristic (obg@bdity-determining). Since the Ba-
nach space is contained Ir¥( P) for any probability measur®, it is easy to derive Theorein 3
in the same manner as Theorem 7.in/[61]. Recall that for two RKH$snd+, on X and),
respectively, the tensor produlty @ Hy is the RKHS ont’ x ) with the positive definite kernel
kx®ky (seel[10] for details) where

(kX ® k)}) ((33, ZE/), (y, y/>) = ké’(($7 QZ,) k’y(y, y/) :

Note that if the two RKHSs both have Gaussian kernels, theactdproduct is also an RKHS
with a Gaussian kernel, which satisfies Assumptidns 1Cand 2.

Theorem 3 Let(Hx, kx), (Hy, ky), and(Hz, kz) be RKHSs on measurable spacésy, and
Z, respectively, and |gtX, Y, Z) be a random vector oA’x)x Z. We further definé&l := (X, Z)
andY :=(Y, Z). If kernelsky®kz, ky®kz, kz, and (kx®kz)2(kyQkz) satisfy Assumptions [, 2
and[3, we have

ZYX|Z:O <~ XJLY’Z.

Fukumizu et al. (see [61], Corollary 9) have provEdy , =0 < X LY | Z. Based on
this corollary, the proof of Theoref 3 is trivial. Since inngealX ;. , # Xy, We prefer a
definition which is inherently symmetric with respect to lkangingX andY’.

2.5. Hilbert-Schmidt dependence measure

To derive dependence measures based on the previous resuiteed to evaluate how far the
operator is from zero. Although there are other choices feasaring the “size” of an operator,
such as the largest eigenvalue or determinant (seee.§)., Y6 focus on the Hilbert-Schmidt

norm in this thesis. This norm, when applied to the crosstdamnce operator, was proposed
by Gretton et al.[[73] as an independence criterion. For ampgse, we extend it also to the
conditional cross-covariance operator.

Definition 12 (HS Norm of Operators) The Hilbert-Schmidt (HS) norm &f: Hy — Hy is
defined, provided that the sum below is finite, by

o0

2 2
1Z]s = Z <80j72¢i>7{y7

1,j=1

where{¢;}2, and{;}22, are complete orthonormal systems of separable RKH$andH,,
respectively.

An RKHS (Hy, kx) is separable, when the topological spatis separable ankly is continuous
on X x X [102]. It is easy to see that this definition generalizes tted&nius norm on matrices,
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2. Kernel Dependence Measure

i.e., the trace of the squared matrijZ||?q = Tr(XX*). The squared HS norms of the cross-
covariance and conditional cross-covariance operatdrba&vour dependence measures. This is
justified by Theorerhll and Theoréin 3, which imply

[Syx|lfs =0 <= X1V,
ISyxi2llhs =0 = X1Y|Z,

under Assumptiors I] 2, afd 3.

It is known that the absolute or square value of a correlata®ificient is bounded from above
by 1 and indicates the strength of correlation. The sign ind&dhe manner of correlation.
In contrast, the value of a kernel dependence measure iyamannegative and not bounded
from above byl. The value of the afore-introduced kernel measure evdgtdapends on the
choice of kernels. Fukumizu et al. [63] currently proposeatbemalization of the (conditional)
cross-covariance operator that makes the afore-intratldependence measure independent of
the choice of kernels. However, its computation requirenen the unconditional case already
regularization coefficients, which causes trouble for timpieical estimation in practical appli-
cations. Fortunately, various experiments later will shbat the issue of kernel choice is not
so crucial for our purpose as it seems to be, provided thatmalzation factor for the kernel
measure is introduced, which makes the measures of unmoraliand conditional dependence
comparable.

To motivate our normalization factor for the kernel measure show by means of graphical
models why the comparablilty of unconditional and conditibdependence is desirable. Sup-
pose a DAGS including variablesX, Y andZ is given. Imagine that the dependence between
variablesX andY is partly induced by a direct relation frorki to Y and partly by an indirect
relation overZ, e.g., via a pattX — Z — Y. According to the d-separation criterion (see Def-
inition M), conditioning onZ blocks the indirect connection frooY to Y via Z and changes
the dependence betweéhandY. When the connections betweéhand Z and betweert’
and Z are very weak, the dependence betwéeandY is dominated by the direction relation
between them. In such situation, one would expect that theitonal (given”) dependence
measure achieve almost the same value as the unconditioealio particular, the measure of
unconditional (given empty set) and conditional (givéh dependence measure &f andY
should have the same value/f L (X,Y"). Actually mutual information, a popular dependence
measure, fulfills this requirement automatically, becdiise Y') =1(X, Y|Z) always holds for
Z L (X,Y). However, the norm#Xyx s and||3y ¢, [[5s constructed above do not coincide
in that case. To make the measure of unconditional and eonditdependence in some sense
comparable, we have to renormalize the afore-introduc@entience measure appropriately.
For this purpose, we show the following theorem.

Theorem 4 Let X, Y and Z be random variables withX,Y") 1L Z. Then we have

Yigiz =2vx @717,
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2.6. Empirical estimation of Hilbert-Schmidt dependenaasure

whereT;: Hz — Hz is defined as
<h27Tzh1> = EZ [hl(Z)hg(Z)] . (28)
for arbitrary h, hy € Hz. Hence we obtain
2
155 %12 0lhs = 1T2l5is 1 5vxlIs - (2.9)

The proof of this theorem can be found in Appendix]A.3. Egd)&uggests to rescale the
dependence measufi&y v ,[liis by 1/172[lfs- By means of this rescaling, the conditional
dependence measure equals the marginal one, if condisa@inable” is independent ofX
andY'.

Definition 13 (Kernel Dependence MeasureJhe kernel unconditional (marginal) and condi-
tional dependence measure can be defined by

Hyx = |Zyxlis
2
Hyxiz = |[Syxzllus/Oz
respectively, where the scalay, := || 7|5 > 0 makesHyy|, and Hyx comparable, in the

sense thatX,Y) 1L Z impliesHyy; = Hyx.

It is straightforward to express the renormalization fagtg = ||7||34 in terms of kernels,
since the operatdf is given by

Ty = k(- 2)k(z, ) Ps(2),
which implies
Te(T) = > k*(2,2) Pz(2)Ps(?).

z,2'€Z

For notational convenience, we henceforth drop the dodbts-on the variables for the indices
of the conditional cross-covariance operators. All canddl cross-covariance operators, e.g.,
Yyx|z for measuring conditional independence betw&eandY hereafter should be interpreted
with the implicit understanding that the conditioning \ednlie 7 is a part of bothX andY'.

2.6. Empirical estimation of Hilbert-Schmidt
dependence measure

Since we need to estimate the dependence measures froneaimber of samples in practical
situations, we define the estimators and show the conveegenthe population ones in this
section.
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2. Kernel Dependence Measure

Suppose(zM), y, W), .., (z), y™, 2(") is an independent and identically distributed
sample from the joint probabilityxy . Definel%ﬁ? €Hy by

]{J(Z —]CX __ZkX

andk|) € Hy, k%Y € 1> analogously.

First we consider an empirical estimator|dt vy ||%s. By replacing the expectation with the
empirical average in Eq.(2.4), the squared ndjtiy || is approximated by

2 a i(") 2
us Z <90m7 yx¢l>H

Il,m=1

= Z Z<kg()790m>< B o) (B om) (R, ).

=11,5=1

~

|S

y

where{¢,}72, and{¢,,}°°_, are complete orthonormal systemsiof andH,,, respectively. Let
K be the centralized kernel matrix (see elg., [138]) defined as

. 1 1
Ky = (1n - —1n1;) Kx (In - —1n1;>
n n

where(Kx);; = kx (2@, 29) is the kernel matrix, and,, = (1, . )T is the vector with all
entries equal td. The matnxKy |s defined analogously by usn@é ). Then, it is easy to
see thatk(, k) = (Kx)i; and(k$), k) = (Ky);;. We have

= Ty oo (B),, (Bx), = oo (R

~

|E

K X,f(y are matrices of inner products between centered obsemgaiio respective feature
spaces. The trace of their product can, in some sense, bpreted as a measure of similar-
ity between two kernel matrices x and Ky measured by Frobenius inner product. It is easy to
see that the inner product is always nonnegative, due tatie¢Hat kernel matrices are positive
definite. Another possible interpretation of the HS-normdacross-covariance operator is the
following. According to [24], one can represefity and Py Py as Hilbert space vectors in fea-
ture space, then the kernel maximum mean discrepancydistéance of the mean elements of
Pxy and Px Py, in feature space (see [24] for details). An empirical eaton of the HS-norm
for a cross-covariance operator, which is also called tiggr- Schmidt Independence Criterion,
or HSIC by Gretton et all [73], can be defined as follows.

Definition 14 (Empirical Unconditional Dependence MeasureAn empirical estimate of the
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2.6. Empirical estimation of Hilbert-Schmidt dependenaasure

Hilbert-Schmidt unconditional dependence measure is
() 1 P e

Note that the normalization factor proposed in Secfion 2.6nly used for the conditional
dependence measure. The unconditional dependence medlsnot be rescaled. As mentioned
previously, the absolute value of the empirical measuredeéined above actually depends on
the choice of kernels and is only bounded from below by 0 btbnanded from above. It is not
clear how to interpret the value of empirical dependencesomres. Nevertheless, because of the
smoothness assumption implicitly made by kernels, thisddaneasure captures the dependence
between two variables in a reasonable way.

As an example, we can calculate the empirical unconditidepeéndence measure for the sam-
ple as shown in Fid. 214 by using Gaussian kernels. The rigsttiot shows that the estimators
are alway larger than zero for all rotation anglesand the empirical measure is nearly zero
whenw =0 or w = 90. The empirical kernel dependence measure reaches its maximnen
w = 45. This behavior reflects the intuitive understanding of thearlying dependence. The
degree of dependence achieves its maximum whed5.

The next step is to show how to estimate the HS-norm of a dondit cross-covariance op-

n)

erator, IetEYX, E(YZ, Z(ZX, E(Z”Z denote the empirical estimators corresponding to the otispe
operators. Based on E@. (R.7), the empirical conditionadsamvariance operatm(y";w is de-
fined as 1

20 =S -5 (B +er) S5 (2.12)

wheree > 0 is a regularization constant that enables inverdidh s analogous to Tikhonov
regularization([ /7] or ridge regressian [92]. The most natunbiased estimatQ?(Z”) for 5 is
given by a U-statistic

n(n —1)
Y kz (20, 20))"
i#j
with 2, 20) ¢ Z. Henceforth, the corresponding estimator for the condticdependence
measure can be defined as follows.

B =

Definition 15 (Empirical Conditional Dependence Measure)An empirical estimate of the
Hilbert-Schmidt conditional dependence measure is

R A(n) R
Hgll)?\)z = HTI(KYKX — 2KyKZ(KZ +el)” 210, K x

—|—j€yi€z(f€z+€I)_2f?zf?xl?z(f/€z+€f)_2f?z> . (212)

The regularizer is required as the observed data are firfiterems the feature space could be infinite-dimensional.
The regularization may be understood as a smoothness aésarap the eigenfunctions df . Our experi-
ments in Sectioh 5.4.4 will give some numerical evidencétti@empirical measures are insensitive,tif it is
chosen in the intervdl 0~1°, 10~2]. In our experiments, we always chok& °.
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2. Kernel Dependence Measure

The estimatord’) anlelgfxe| , are justified by the following two results on their statiatic
consistency.

Theorem 5 (Fukumizu et al.[[60])
Iﬁlﬁ‘}( — Hyx = O,(n~"/?) (n — 00).

The notationO,,(n~/2) means the convergence in probability (See [166] for moraildgtat
raten~'/2, which means for alt > 0 there exists: >0 such that

P <n1/2 ‘]I?]Igg)( —HYX) > c> <€
asn is sufficiently large.

Theorem 6 If the regularization parameterin Eq. (2.12) satisfies
e—0, en'’? w00 (n— 00),

then we have R .

The letterP over the arrow indicates a convergence in probability. Tio®{pof Theorem b
is given in AppendiX’/A.4. The above theorem shows thatténds to zero sufficiently slowly,
the empirical estimatoH%foZ convergences télyx;. For notational convenience, we will

henceforth omit the upper index of the empirical estimatord usely and]ﬁly)ﬂz to denote
the empirical estimators dflyx andHyx,, respectively.

2.7. Computation of empirical Hilbert-Schmidt
dependence measure

Kernel matrices allow us to capture dependence in a non¥gre setting. On the other hand,
working with kernel matrices of data points implies not only the storagerdfentries, but also
the O(n?) complexity of matrix multiplication and inversion. A naimmplementation would
requireO(n?) operations. If the sample sizeis large, the computation will be inefficient.
Fortunately, the problem of time and memory requirement@fe matrices is not a new
one. Various methods have been developed to alleviate thelhumber of possible values of
a variableX is smaller than the number of data pointsthe rank of the kernel matrik'x is
smaller tham. Even when this is not the case, we may still have good lo-ggproximations.
For a positive definite matrix, e.g., kernel matricek y, Ky orKZ in Eqg. (2.10) or Eq.[(2.12),
we can use an incomplete version of the Cholesky decompositie- LL' [55] whereL is a
lower triangular matrix determined uniquely by this eqoati This may lead to considerably
fewer columns than the original matrix. Afcolumns are returned, the storage requirements are
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2.7. Computation of empirical Hilbert-Schmidt dependeneasure

O(kn) instead ofO(n?), and the running time of many matrix operations reduce® (ok?)
instead ofO(n?).

The other question is the choice of kernels. Actually, theiadhof kernels:y andk,, specifies
the sets of functions that we use for characterizing the ni#grece, via the correlation between
f €Hax andg € Hy. While in general we can apply different kernelstoand ), for simplicity
we restrict ourselves in this thesis to the case where thekesoels are the same. Certainly,
the absolute values of both (marginal and conditional) ddpace measures strongly depend on
the choice of kernels. However, every statistical meastidependence between continuous
variables relies on explicit or implicit assumptions ongedies of the probability distributions.
We believe that one of the most natural assumptions whitiHestds to a feasible dependence
measure is that dependence between continuous variahl&s should be considered greater
when correlations arise between smooth functipfag, g(y), but lesser when these correlations
are only seen for non-smooth(x) andg(y). That kernel dependence measures embody this
assumption can be seen from the discussion in Section 4/Bjvjhich we now summarize. Let
¢i(x) be thei-th eigenfunction of the integral operator with kerhel(z, 2’), and lety; (y) be the
j-th eigenfunction corresponding tg,(y, y’). We consider the case whetev(¢,(X), ¢i(Y))
is large for some value df and small otherwise. In this case, subject to a mild comadlitin the
kernel spectrum (see Lemma 4 in[76]. This is satisfied forgsen kernels, for instance), the
spectral norm of the covariance operator decreases faastrg. Since the spectral norm is the
largest singular value of the covariance operator, it Weddhat the HS norm likewise decreases.
In other words, as the nonlinear mapping required to obtaiigh covariance becomes more
“‘complex”, the dependence as measured by kernels decrsasely’ 6] for more details, and for
a proof of the result).

If we choose identical Gaussian kernels (our default usalekernel) for each variable, the
computation has two free parameters: the regularizatioanpetere for the conditional depen-
dence measure of Eq. (2]111) and Hq. (R.12), as well as thd widf the kernel in Eq.[(2]2).
To see how the kernel width influences the value of the dependence measure, we conseder t
Fourier transform of an isotropic Gaussian kerngl) = (7o?) exp(—||w||*/0?). The feature
spaceF, contains functions whose Fourier transform decays verghapln the case of a too
largec?, all entries of kernel matrices are almost the same. Smallereans greater sensitivity
to dependence, although makingjtoo small causes sensitivity to drop again, because anyoverl
small o? leads to diagonal kernel matrices and our criteria becoivialtr From the computa-
tional point of view, the smaller?, the more complexity, since the kernel matrices containemor
non-negligible eigenvalues. Admittedly, we have no ppiei way of choosing ands?. In
our experiments, unless otherwise noted, we used the ragrla=10-°. In our experimental
work, it turned out that the evaluation of dependence catérat we used for structural learn-
ing was reasonably robust, dfis chosen sufficient small (see Fig. 5.10 in Seclion 5.4.4¢ W
set20? = 1in Eq. (2.2), since all variables are independently rescadehave unit variance in
pre-processing.
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3. Kernel Statistical Test of
Independence

Causal inference by a constraint-based approach naturallydes inferring whether a causal
relation between two variables is present or not. This ve®lthe choice of a cut-off value for

some kind of dependence measures, e.g., our kernel meastiels judges whether conditional

dependence between them is present or not. However, ahgfoaigard threshold does not work

well in general, because the value of kernel dependenceumesadepends on the choice of
kernels and could theoretically be small even under depaydsee Theorem 8 in [76]). In this

chapter, we introduce statistical hypothesis tests tcheetwt-off value in a principled way.

3.1. State-of-the-art tests of independence

Given some dependence measure, one wishes to make a dedigtrer two variables are de-
pendent or not. A principled way of deciding whether a hypst& s true or not is the statistical
test. In such tests, there is a “null hypothesis” which cgpoands to the state of independence
and an “alternative hypothesis” which corresponds to thmosjte situation, i.e., state of depen-
dence. The goal is to determine, with high confidence, if tik lypothesis can be discarded
in favor of the alternative. The result of an independengaokiyesis test may be negative, i.e.,
independent, or positive, i.e., dependent.

If the null hypothesis, i.e., state of independence, is thtint the dependence measure from
sample should follow the null distribution, which can be slated by random permutations
(see [[71] for permutation tests). If the alternative is triee dependence measure will be, in
the genetic case ,“large”. To specify a “large” measure,restold with riska (the so-called
significance level, usually =5%) is pre-specified.

The p-value is the probability that the sample could havenldrawn from the population
being tested given the assumption that the null hypothesiaé. A p-value 06.02, for example,
indicates that one would have only2& chance of drawing the sample being tested if the null
hypothesis was actually true. The further out the teststtats in the tail, the smaller the p-value,
and the stronger the evidence against the null hypothefasan of the alternative. If the p-value
is larger than the significance level, the null hypothes&iepted, otherwise the null hypothesis
is rejected in favor of the alternative (see Figuré 3.1).

Since the decision is made based on one sample, we can notripgetely certain. If the
result of the hypothesis test does not coincide with thempidruth, which might not be known,
then an error has occurred. Statisticians speak of two ebgsatistical errors, classified as the
typel andI error. The typd error, also known as a “false positive”. the error of rejegta
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3.1. State-of-the-art tests of independence

Accept Null Hypothesis => Independet%ce Reject Null Hypothesis => Dependen:
< c
2 S
5 5
e !
@ @
= | 0.05 =
= p-value > 0. =
Z 2 a=0.05
a =005 p-value< 0.05

Figure 3.1.: One-sided statistical independence hypisthest with a significance level=0.05.
If the p-value is larger than.05, null hypothesis, i.e., state of independence, is
accepted, otherwise independence hypothesis is rejected.

Declared Non-Significant Declared Significant
(Accept Independence) (Reject Independence Dependence)
True Null Hypothesis True Negative False Positive
(State of Independence) (Typel error)
True Alternative Hypothesig False Negative True Positive
(State of Dependence) (Typell error)

Table 3.1.: Typd and typell error of independence hypothesis test.

null hypothesis when it is actually true. This is the errorgecting independence although
independence is true. The tyfierror, also known as a “false negative”: the error of acoegpai
null hypothesis when the alternative hypothesis coincwdésthe ground truth. This is the error
of accepting independence when dependence is presenf3. JTadummarizes the situation in a
traditional form.

Based on the same fundamental concept of statistical teslisegtablished statistical tests of
independence vary in the way of capturing dependencesthiestest statistics. The populgt
test is based on the contingency table for discrete/catajalomains. The Fisher’s Z test [56]
is based on partial correlations and therefore only justif@ continuous domains under the
assumption that the variables are multivariate Gaussstrildlited. Mutual information, which
is based on the entropy concept of Shannon|[142], can beabneonsidered as a distribution-
free dependence measure. It can be shown [see [178], AppAhdhat mutual information
is proportional to they? test based on maximum likelihood estimation, the so-cdikadihood
ratio 2 test. For this reason, a likelihood rafd test and a permutation test by means of mutual
information are expected to be similar in performance. Thpigcal estimation of (conditional)
mutual information on discrete/categorical domains isl wsfablished, while the estimation of
(conditional) mutual information on continuous domains ison-trivial problem currently un-
solved in its generality, unless suitable assumptions afahmess are made. We are of the
opinion that kernel methods provide a convenient tool taim&ssmoothness in an implicit way.
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3. Kernel Statistical Test of Independence

The extension of kernel dependence measures to high-diomahslata is straightforward.

A totally different method of testing independence on awmius domains is proposed by
Margaritis et al.[[107, 109]. Their method is not based onraveational hypothesis test but on
the calculation of probability of independence given datah® Bayesian approach. To deter-
mine whether two variables are (conditionally) independdre Margaritis’ Bayesian method
discretized the domains by maximizing the posterior prditplof dependence given the data.
If the probability of independence larger thanthe independence is verified, otherwise depen-
dence. More precisely, the method determines the probabfldependence by calculating the
likelihoods of modeling the data as dependent with a jointtimomial distribution or as inde-
pendent with two marginal multinomial distribution. Marge’ Bayesian method is impressive
because it is the first practicable distribution-free l@agrof Bayesian network in continuous
domains, although it involves a sophisticated process wfailio discretization.

Note thaty? test, Fisher's Z test and Margaritis’ Bayesian method sHeetoperty of good
scalability with respect to sample size. They remain efficigvhen the sample size becomes
large. Unfortunately, work with kernel matrices of a largember of data points, which is re-
quired for the computation of empirical kernel measure8 beiinefficient. However, the power
of kernel measures is the ability of capturing linear and-hoear relations, without requiring
the specification of any kind of dependence model. Moredi@mel measures can be applied
to discrete/categorical, continuous, vectorial, or ewdrrid domains. For discrete domains, one
can use integers, 2, .. ., d to specifyd different categories, if the categories can be ordered in
some intuitive sense. For strictly nominal-categoricahdms, the natural way to represent the
d nominal alternatives, nametyunit vectors in al-dimensional Cartesian coordinate system

{(1,0,...,0)", (0,1,0,...,0)",...,(0,0,...,0,1)"} ¢ R?. (3.1)

Note that, in the binary case, the representations of inée@e 1} or two-dimensional vectors
{(0,1),(1,0)} does not makes any difference at all.

3.2. Statistical test via kernel dependence measure

To design a statistical test of independence via kernel ureasve need the statistics of the
dependence measure if the null hypothesis is true, i.enuhledistribution of Hyx or Hyx|z.
For this purpose, we employ the random permutation to sit@tles state of independence.

Let us first consider the marginal calgx. To simulate the null distribution dflyx under
independency, we apply a set of random permutations {7, ..., w,,} to the X- or theY'-
vector of the original data matrikX,Y), whereX = (2%, .. 2(™)T and so on. The marginal
distribution P(X') or P(Y") of the original data does not change in the shuffled datay™ )
with Y™ = (y™®) . y@@NT andr; € 7. However, the relation betweeki andY in the
original data is released. For each shuffled data¥et ™ ), we compute the empirical estimate
of the kernel dependence measIEAﬂ}pwith j=1,...,m. The null distribution of measuréyyx
can be simulated byH, , ..., H,,}.

The way of using random permutations to simulate the nuttidistion of Hyx|, under con-
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3.2. Statistical test via kernel dependence measure

ditional independency from data matriX, Y, Z) is not straightforward. On the one side, the
random permutation should release the connection betweandY” to simulate the indepen-
dency between them. On the other side, it has to keep the hmetation betweenX and 7
and the relation betweeri and Z, since is tied to a specific value. Applying a random per-
mutationr; € 7 to the two-dimensiondlY, Z)-vector of the original data matrikX, Y, Z), the
conditional marginal distributio®(Y|Z) of shuffled datasetX, Y™, Z™ ) remains indeed the
same as that of the original datag&t Y, 7), sinceP (3 |2()) = P(y(™ ®)| (=) But, the con-
ditional marginal distributionP(X |Z) changes, because the conditional probab#ity:*)|z®),

in general, does not equél(xz™|z(™)), In particular, the conditional joint probabilities of
(X,Y™ | Z™) and(X,Y™ | Z) are different:

P (20, yms ) | ;@) £ p () ym@) | ;0
The only exception is the case when

ST ) @) ) mm) — ) (3.2)
Therefore, we have to restrict the set of random permutsitidn those that satisfy the condition
of Eq. (3.2) to simulate the null distribution &fy x|, under the conditional independency. A
related observation in the context of the conditional capsimade by Patton (see [123], p. 534).

If Z is categorical, the condition of Ed. (8.2) restriatdo random permutations within the
same category af. In the case of a real-valued, the condition of Eq.[(3]2) could be said to
hold if (™) andz¥ are “similar” in some sense. This suggests the use of clagtezchniques
to search for an appropriate partition of data pointg of

In our experiments, we applied the standard K-means clogteyn data pointg z(1),. .. 2™}
and chose the number of clustersso that' =3. Various experiments showed that the decision
of independence is robust with respect to ‘the choice.of n. is nottoo large, i.e ;- > 2. If the
number of clusters,. is chosen as large as the number of data poeinevery dlstlnct data point
builds a separate cluster and the condition of EqJ (3.2}ictstr to the identity. The null dis-
tribution of the dependence measures is degenerate liigs, @obability mass is concentrated
on one point. With such a choice of, permutations can not provide any information about the
distribution of dependence measure under conditionaliedéency.

Having chosen an appropriate paramete(number of clusters of data points &), the null
distribution of the conditional kernel meastliig x|, under conditional independendy 1L Y’ | Z
can be simulated by applying a set of random permutations: {ry,..., 7} to the two-
dimensional(Y, Z)-vector of data matriX X, Y, Z) within the same cluster of data points of
7. Fig.[3.2 summarizes the three-step-schema of the hypsttess by means of kernel depen-
dence measures. The parametedescribes the number of permutations to simulate the null
distribution. We chosen = 1000 in our experiments and set the significance leveb 0.05,
unless explicitly stated otherwise.

Obviously, permutation tests are computationally timastoning due to then replications.
An alternative kernel statistical test based on moment Inagds currently proposed by Gretton
et al. [74]. Instead of computing the HS-norm of the operdtaactly, they designed a test statis-
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3. Kernel Statistical Test of Independence

Input: A data sampléX, Y, Z) with X =(z() ..., (T andY’, Z is given analogously.

Step 1: Calculate the empirical estimatidit, of the dependence measﬂ}AiIe;zX‘Z for the original
sample.

Step 2: If Z is empty, randomly shuffle data vectbr. If Z is not empty, cluster vectar into
partitions in an appropriate way. Randomly shuffle the two-dimensional w€xtd&) with
respect taZ-clustersm times. Calculate the empirical estimation of the dependence measure
Hy)z for each of then shuffled samples, s, .. ., Hi,.

Step 3:_For eaghﬁlo from the first step, calculate its p-valpén the null distribution estimated by
{Hy,...,H,,} from the second step. {f> «, the independence hypothesis L Y | Z is
rejected; otherwiseX 1 Y | Z is accepted.

Output: A verified constraintX L Y |ZorX LY |Z.

Figure 3.2.: Permutation test of (conditional) indepermgewia kernel dependence measures.
Typically, we setn=1000 anda=0.05, unless explicitly stated otherwise.

tics based on entries of kernel matrices. But, for one thimg,alternative test is only designed
for unconditional cases. For the other thing, we expect tiiatpermutation test outperforms
this alternative, particularly if the sample size is smalb(, less than 200), since the estimation
of second moments of entries of kernel matrices tends to beliable (seel[74] for numerical
experiments with text data). In practice, employing th@mplete Cholesky decomposition [55]
for the computation of kernel measures makes the permotests efficient (see SectibnP.7 for
details).

3.3. Simulated experiments with kernel independence
test

It is known that there is yet no general good way to test inddpace, especially between con-
tinuous variables. Theoretically, the kernel dependeneasmure can capture both linear and
nonlinear dependences without assumptions of a specifendiemce model. Therefore, the sta-
tistical test by means of the kernel measure provides a usefufor handling the challenging
task of testing independence. In this section, we demdestame simulated experiments with
the kernel independence test, in particular some examplesmtinuous domains.
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3.3. Simulated experiments with kernel independence test
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Figure 3.3.: One dataset 0%, X, X3, Xy,Y) is sampled (of size00) from the functional
model, defined by EqL(3.3). The first four plots visualize tblationship between
X;(t=1,...,4)andY, respectively. One dataset(0f;, X>, Y) is sampled (of size
200) from the functional model, defined by E@. (8.4). The righstnalot visualizes
the functional relationship betweéx;, X,) andY".

3.3.1. Examples for kernel independence test on continuous
domains

First, we consider the following functional model:
y; = 0.1exp(3zy,) + (229, — 1)* + 10sin(ws,) +0ay, + ¢, i=1,...,200 (3.3)

whereXy, ..., X, and error terng; are randomly generated from a standard normal distribution
VariableY has a nonlinear additive dependence on the first three Vesiaimd is independent
of the last one. A simulation was performed for statisticaldpendence tests of the mutual de-
pendence betweek,, ..., X, andY. The first four plots in Fig._3]3 visualize the relationship
betweenX,, ..., X, andY. An experiment consisting af000 replications shows that the de-
pendence relatioX; £ Y could be verified correctly i80.8% of all cases99.4% for X, £ Y,
100% for X3 £ Y, and99.1% for X, I Y with a sample size df00.

The second example is also an artificial one, first introdune@u et al. [79]. (z1,, z2,),
1=1,...,200, are generated randomly from a uniform distribution in th& square and set the
response to

exp {8[(z1, — 0.5)* + (x5, — 0.5)?]}
exp {8 [(z1, — 0.2)%2 + (a9, — 0.7)?]}

y; = 40 +exp {8 [(z1, — 0.7)* + (z2, — 0.2)*] } + €.

(3.4)

The errorse; were drawn from a standard normal distribution. We testedféfiowing inde-
pendence relationsX; 1L X, X; £ X5 |Y, and(Xy, X5) L Y. 99.4% of 1000 replications
verified X; 1 X, correctly,99.8% for X; L X, |Y, and100% for (X, X3) L Y. This example
makes one advantage of kernel test apparent, i.e., thelkeaasures can be straightforwardly
applied to quantifying dependence between variables tdrdifit dimensions.

In summary, the results of both functional models showetthekernel independence test re-
liably detected the nonlinear dependence using only a mtelsample size. The kernel measure
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3. Kernel Statistical Test of Independence

Figure 3.4.: Dynamic Bayesian network of a coupled time serie

provides a good alternative to capture the dependence eeteantinuous variables.

3.3.2. Examples for kernel independence test on time series

Now, we consider a more challenging situation, namely tierées. The difficulty of time series
is that the assumption of the i.i.d. sample could be violagsen though it is stationary. Due
to the additional temporal information, the causal di@ttis sometimes known in time-series
data. DAGs, which capture the fact that time flows forwardh lba naturally used for for mod-
elling time-series data. Arcs within a time-slice can beclied or undirected, since they model
“‘instantaneous” dependence. If all arcs are directed, Wathin and between slices, the model
is called “Dynamic Bayesian Networks” (DBN) [117].

In our experiments, we are interested in the case of a uectdid influenceX — Y between
two times seriesX = (..., Xy, X1, Xyyo,...) andY = (... Y, Y11, Yiio,...) with pointt € Z
in time. The graphical representation is given by a DBN as shiowFig.[3.4. The indepen-
dence constraints;,; 1L X;.o | Xy, Xya1) and( X1 A Yii2|Y;, Yiy1) characterize the causal
direction X — Y, because the dependence betwEgn and X,,, is spurious, whereas the de-
pendence betweekl, ,; andY;,, is generated by the direct causal influence fr&nto Y. The
spurious dependence can be screened off by conditionirfyearausé X, X, ), while the gen-
uine dependence induced by the direct causal influence thersxreened off by conditioning
on the effectY;, Yt+1)ﬂ We show a simulated experiment to demonstrate how well dépeare
or independence is captured by kernel tests.

We sample chaotic time series from coupled Hénon maps [8§.parameters for the coupled
Hénon maps are chosen as follows:

Yipo = 14401Y, —(1-9)04Y2, =y Xi1 Vi - (3.9)

This specific choice of parameters guarantees the dynamihs times serieX = (X,, X1, ...)

LAnother well-known way to capture causality in bivariatadiseries is the so-called Granger causdlity[175, 72],
which utilizes the temporal properties and is expressedrimg of predictability. The standard test of Granger
causality developed by Granger [72] is based on a lineaessgyin model. A test of Granger causality in kernel
formalism will be interesting line of further research.
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3.3. Simulated experiments with kernel independence test
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Figure 3.5.: Noiseless data sampled from coupled Hénon mi#psoupling parametey =0.5
as shown in EqL(3]5) and sampling interkat 5 (see text).

andY =(Yg, Yy, .. .), i.e., there exists no time stego that for alk > ¢, X; or Y; takes a constant
value.

Both X andY are dynamical systems of the second order. We &¥t") with initial points
(Xo, Yo) = (X1,Y1) = (0,0) and collect data points fak andY everyk time steps, i.e. X =
(oo Xoy Xoak, Xigog, .. ) andY = (... Yy, Vi, Yok, - . .). The time stepk is called sampling
interval. The sampling interval simulates the situation in real applications, e.g., in tie\s
of biological data, where the exact time delay of influencéghtbe unknown. This problem is
known as temporal aggregation in some literatures [17].

X andY are uncorrelated foy =0, while they are synchronized for> 0. Fig.[3.5 illustrates
the dynamics betweel andY with coupling parametey=0.5 and sampling intervat =>5.

Fig.[3.6 illustrates datasets of sample si2e used in our experiments. All samples are added
with an independent normally distributed noi&&0, 0.2%). This noise simulated the noise of
measurements in practice. We conducted the experimeritsl @D replications for different
coupling factorsy and different sampling intervals

Tab.[3.2 shows the acceptance quota of independence hgpotfieethe kernel independence
tests (permutation tests with significance levet 0.05). In the cases of =0, i.e., X 1L Y, tests
achieved consistent results. In the dependent casesy i), the underlying causal direction
could be in most cases correctly identified when the sampiitegval & is smaller thari. If
k>7,1.e., atoo large sampling rate, the dependences betwggrandY; and between;,; and
X, vanish. Hence, the causal direction was not erroneousgrm@ted, but indeterminate. The
best performance was achieved et 5. Interestingly, Yu et al/ [182] found also that a sampling
interval of 5 yielded the best results in their experiments with simddti®logical data of time
series.
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3. Kernel Statistical Test of Independence
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Figure 3.6.: Samples dfo0 data points from coupled Hénon maps with different coupjag

rametersy as shown in EqL(315) and different sampling interva(see text).

Accepting Yii1 L Xiqo| X, Xega Accepting X;i1 L Yiio|Y:,Yiga
v (coupling)[| 0 [ 01 ]o2] 03 04 05 o [o01]o2]03]04]o05
k=1 95.6 | 89.1 | 76.7 | 65.8 [ 59.9 [ 52.1 942201 o | o | 0o | o
k=3 93.5 | 88.9 | 89.6 | 833 | 778 | 64.9 (933 ] 13 | 0 [ 01 | 02 | 02
k=5 95.1 | 68.1 | 68.7 | 79.0 | 913 | 944|956 | 1.1 | 0 | 01 | 23 | 96
k=1 945 [ 90.1 | 80.9 | 79.8 [ 89.6 | 97.4 || 95.1 | 2.4 | 5.0 | 338 | 52.2 | 59.9
k=9 94.6 | 86.1 | 93.4 | 96.9 | 97.7 | 985 || 95.3 [ 29.8 [ 64.3 | 94.2 | 99.4 | 99.6

Table 3.2.: Kernel independence test on time series of edugénon maps with different cou-
pling parameters as shown in Eq[(3]5) and different sampling interja(see text).
The entries show how often (in percentage) the independsrameepted.
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3.3. Simulated experiments with kernel independence test

Z o IN(0,3) + N (L, 3)

X oc Z + Lsin(272) + 0.1N(0, 1) Y o £ 4 sin(2rZ + 0.35) + 0.1N(0, 1)

Figure 3.7.: Graphical representation of the underlyingleh@f the meander dataset. The gen-
erating model impliesy £ Y andX LY |Z.

3.3.3. Numerical comparison of independence tests on continuous
domain

In order to provide some numerical evidence of the perfogaant various tests on continuous
domains, we conduct experiments with toy data generateahgus functional models. Similar
models are originally used by Margaritis in [108].

Three independence tests, i.e., Fisher’s Z test undervauéite Gaussian assumption, Mar-
garitis’ Bayesian method [107, 109] and permutation teskeiael dependence measures, are
evaluated on the so-called Meander dataset, shown in thpltafof Fig.[3.8. It resembles a
spiral. This dataset is challenging because the jointibigion of X andY given Z changes
dramatically with the given value of. The data were generated by the model and equations
shown in Fig[3.l7. According to the functional relatioxi,andY are conditionally independent
given Z, however, unconditionally dependent, in fact stronglyrelated as seen from the right
plot of Fig.[3.8.

We generated 000 datasets of different sample sizes and ran independertse feab.[3.B
shows the results for samples size ranging fizihto 200. The dependence betweghandY
can already be captured by the linear relation, as seen tiemight plot of Fig[ 3.B. For this
reason, all methods achieved very good performance ahgesti £ Y from merely20 data
points (see Fid. 319 for a sample2if data points).

Testing conditional independende L Y | Z is more challenging. Here, the kernel test clearly
outperforms other two methods. The Fisher’s Z test fails gletely due to the incorrect mul-
tivariate Gaussian assumption. The Margaritis’ Bayesiathateor the kernel test performs
better, as the sample size becomes larger and larger. Thteptag in Fig.[3.10 shows the fre-
quencies of p-values of testing L Y | Z from 1000 datasets of sample si2® by the kernel
independence test, while the left plot shows the probaslibf independence by the Margaritis’
Bayesian method. The kernel independence test made sigiiijitass errors than the Margari-
tis’ Bayesian method.

In order to gain more numerical evidence of performance amnimg models with various
nonlinear relations, we sampled dataset80of data points by models shown in Fig. 3.11. The
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3. Kernel Statistical Test of Independence
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Figure 3.8.: Three-dimensional plot of the Meander datdsft) and projection of data along
axis (right). The generating model is shown in Figl 3.7.

Rejecting X LY Accepting X LY |Z
Sample Size 20 | 50 [ 100 [ 150 [ 200 [| 20 [ 50 | 100 | 150 | 200
Fisher's Z 100 [ 100 [ 100 [ 100 [ 100 [ 0O 0 0 0 0

Margaritis’ Bayesian|| 94.3 | 100 | 100 | 100 | 100 || 4.8 | 15.1 | 21.2 | 23.2 | 33.2
Kernel Dependence| 99.9 | 100 | 100 | 100 | 100 || 35.1 | 49.7 | 67.0 | 75.3 | 79.9

Table 3.3.: Numerical comparison of various independersé&ston continuous domains, i.e.,
Fisher’s Z test, Margaritis’ Bayesian method, and permoitetiest via kernel depen-
dence measures. The underlying model Meander is given hy8Eg One sample
is illustrated in Fig[.3.8. The experiments are conductet Wi00 replications. The
entries show how often (in percentage) the constraing. Y andX L Y |Z are
verified.
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Figure 3.9.: A sample of Meander dataset of S@eThe underlying model as shown in Hig.13.7
impliesX £ YandX LY |Z.
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Figure 3.10.: Experimental results of Margaritis’ Bayesmeathod and kernel test of indepen-
dence, whenX 1 Y |Z is tested. Both methods are conducted wi#ho repli-
cations. The left plot is the histogram of the resultiigndependenceof all 1000
samples, obtained by the Margaritis’ Bayesian method. Ttegandence hypoth-
esis is accepted in only/8% of all cases. The right plot is the histogram of the re-
sulting p-values of all000 samples, obtained by the kernel-based indepdence test.
The independence hypothesis is acceptedhin’% of all cases (see also Tab.13.3).
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3. Kernel Statistical Test of Independence

’ My :=(fi, fj) H fa 1= 2sin(z) ‘ fz = In(|z|) ‘ fa = }1—1 ‘ f5 = exp(z) ‘

fi=x M,y My Ms3 My
fg = QSin(x) — M5 M6 M7
f3 = ln(‘l‘D - - Mg Mg
Ja = %lﬂ - - - Mo

Table 3.4.:10 different pair of functions f;, f;) with ¢, j=1, ..., 5 define the functional models
M, ..., My, which are used to generate data by two models as shown iB Eif}.

Z < N(0,2) X < N(0,2) Y o< NV(0,2)

X o f(Z) +N(0,1) Y o« f5(Z) + N(0,1) Z o« fi(X)+ f;(Y) + N(0,1)

Figure 3.11.: Graphical representation of a fork (left) @ndollider (right) structure. Models
with a fork structure (non-structure) implyX £ Y andX L Y| Z, while models
with a collider structure(-structure) implyX L Y andX X Y |Z. The pairs of
functionsM;, = (f;, f;) for both models are defined in Tab.13.4.

left plot of Fig.[3.11 is a non~structure: fork structure, while the right plot isvastructure:
(unshielded) collider structure. Models of a fork struetimply the independence relations
X L YandX L Y|Z, while models of a collider structure imply the independerelations
X LYandX LY |Z.

We definef; 5 in the same way as Margaritis proposed in [108] and use al pthe func-
tions M, = (fi, f;), i-e.,10 different combinationg/, . . . , M, as shown in Talp. 3/4, added by a
Gaussian noise as underlying ground-truth for the sampldve sample o200 data points for
the fork structure (left plotin Fig. 3.11) withf, . .., M, (see Tal._3]4) is visualized in Fig. 3112
and Fig[3.1B. The performance of various independencelt@l replications on these datasets
is summarized in Tal._3.5. One sample266 data points for the collider structure (right plot
in Fig.[3.11) with My, ..., M, (see Tab_3l4) is visualized in Fig.3114 and Fig. B.15. The pe
formance of various independence test$ @f0 replications on these datasets is summarized in
Tab.[3.6.

One can see that all three methods make relatively few eatodsscovering independence,
i.e., X 1 Y in a collider structure (see the left half of Tab.13.6) akd L Y | Z in a fork
structure (see the under half of TAb.]3.5). Only the Fish&t&st performed very bad in the case
of testing conditional independenéé I Y | Z (see the first row of the under half of Tab.13.5)
on data sampled by modeld; and M,. It is hard to evaluate the performance of these three
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3.3. Simulated experiments with kernel independence test
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Figure 3.12.: The underlying model is a fork structure (Bd.1, left), whereX andY have a
functional relationM;, = (f;, f;) (see Tald_314) wittZ, respectively. The fork struc-
ture implies thatX andY are unconditionally dependent. The illustrated sample
contains200 data points.

Figure 3.13.: The underlying model is a fork structure (BdL1, left), whereX or Y has a
functional relationM, = (f;, f;) (see Tab[_3]4) with?Z, respectively. The fork
structure implies thak” andY are independent, conditional ¢h The illustrated
sample contain200 data points.
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3. Kernel Statistical Test of Independence

Rejecting X LY
My =(fi, ) M, ‘ M, ‘ M; ‘ M,y ‘ M; ‘ Mg ‘ Mz ‘ Ms ‘ My ‘Mw
Fisher's Z 100 | 4.2 | 93.6 | 100 | 1.8 | 57.6 | 71.5 | 17.5 | 41.0 | 58.6
Margaritis’ Bayesian| 100 | 2.0 | 42.5 | 100 | 2.0 | 27.6 | 100 | 1.7 | 4.0 | 18.6
Kernel Dependence| 100 | 95.6 | 63.9 | 100 | 63.9 | 56.1 | 100 | 11.5 | 97.8 | 68.7
Accepting X LY |Z
Fisher's Z 94.0 | 95.6 | 94.1 | 95.6 | 95.5 | 72.2 | 10.6 | 81.5 | 1.2 | 64.3
Margaritis’ Bayesian|| 97.0 | 97.6 | 97.9 | 98.7 | 97.0 | 97.9 | 98.9 | 98.3 | 98.7 | 98.8
Kernel Dependence| 93.8 | 93.8 | 92.5 | 93.4 | 93.3 | 93.5 | 93.4 | 94.5 | 94.2 | 92.9

Table 3.5.: Numerical comparison of various independeeststi.e., Fisher's Z test, Margaritis’
Bayesian method, and test via kernel dependence measurentnuous domains
sampled by a fork structure (Fig._3]11, left). The paraméfge=(f;, f;) of models
is defined in Tab_3l4. The entries show how often (in perge)tX’ A Y and
X 1 Y| Z are verified aftett 000 replications of simulations.
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Figure 3.14.: The underlying model is a collider structufig (3.11, right), whereZ has a func-
tional relationM;, = (f;, f;) (see Tabl_3]4) with\ andY. The collider structure
implies thatX andY are unconditionally independent. The illustrated sampte ¢
tains200 data points.
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3.3. Simulated experiments with kernel independence test

Figure 3.15.: The underlying model is a collider structu¥ig(3.11, right), whereZ has a func-
tional relation)M;, = (f;, f;) (see Tabl_3]4) withX andY". The collider structure
implies thatX andY are dependent, conditional . The illustrated sample
contains200 data points.

Accepting X LY Rejecting X LY |Z
Mk:(fi,fj) M. 10 M ‘ Mo ‘ M3 ‘ My ‘ M5 ‘ Mg ‘ M~ ‘ Mg ‘ Mg ‘ Mo
Fisher's Z 94.6 100 | 41 | 921 | 771 | 47 | 588 | 61.2 | 51 | 3.9 | 208
Margaritis’ Bayesian 98.1 914 | 39 | 109 | 848 | 3.1 | 91 | 750 | 21 | 3.7 | 67
Kernel dependence 94.1 100 | 92.0 | 60.7 | 100 | 96.0 | 51.7 | 100 | 18.7 | 93.6 | 46.9

Table 3.6.: Numerical comparison of various independeestsi.e., Fisher's Z test, Margaritis’
Bayesian method, and test via kernel dependence measurentnuous domains
sampled by a collider structure (Fig._3l11, right). The paeterM, = (f;, f;) of
models is defined in Tab._3.4. The entries show how often (ilngreage)X I Y
andX X Y | Z are verified afted 000 replications of simulations.
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3. Kernel Statistical Test of Independence

P(X=1)=0.6 P(Y=1)=0.5

Z=0R/(X, Y)

Figure 3.16.: Graphical representation of a 2-bit noisy GfR & noise levet € [0, 1] as shown

in Eq. (3.6).

methods in testing dependence, iE.,. £ Y in a fork structure (see the upper half of TabJ3.5)
andX X Y | Zin a collider structure (see the right half of Tab.13.6). B tasults indicate that
the fluctuation of the kernel-based approach within difiéraodels is significantly smaller than
that of the other two methods.

3.3.4. Numerical comparison of independence tests on discrete
domain

The kernel independence test can be straightforwardlyieppd both continuous and discrete
variables. In order to give numerical evidence of the pentonce, we conduct experiments with
toy data on discrete domains. The data are sampled fromalbglmked models, namely noisy
OR gates. Such Boolean functions are simplified models forynrgnitive causal relations in
real life. Note that one can easily get an AND gate by invgrtinputs and outputs from an OR
gate, therefore the results of OR can be easily re-intexgnetith reference to AND.

In general, an n-bik;, ..., X,, €{0, 1} noisy OR gate (see Henridn [88]) can be characterized
by the conditional probabilities

P (Xn+1 =1 | Tyyenn 7$n) = (1 - TQ) (1 - TT1+...+In) + ]

with parameters,, r, € [0, 1]. r; can be interpreted as the probability of suppressing thetinp
1; ro can be interpreted as the probability for a spontaneoussioreof the output. I, andr,
vanish, the OR gate is deterministic. For the sake of natatisimplicity, we chose; =r, =:r

in our experiments, i.e.,

P(Xpp=1]z1,...,2,) = (L —7r) (L —rWFFon) (3.6)

We use the shorthand QRX;, ..., X,,} to depict a noisy OR gate with noise levet [0, 1].

We sampled data from a 2-bit noisy OR (Hig._3.16) wihY as inputs and’ as output. The
underlying model implies’ 1L Y andX X Y |Z. We sampled 000 datasets for each of the
noise levels =0, 0.1,0.2,0.3 and sample sizeX), 50, 100, 150, 200. Fig.[3.17 shows the noise
statistics in the term of percentage of erroneous output8(if data points.

48



3.3. Simulated experiments with kernel independence test
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Figure 3.17.: Noise statistics in the term of percentagemineous outputs ih000 data points

sampled by the 2-bit noisy OR gate as shown in Eig.13.16. Tbes pllustrate

4 different noise levels: = 0,0.1,0.2,0.3 as shown in Eq.L(316). Each box has
lines at the lower quartile, median, and upper quartile eslof the percentage of
erroneous outputs. The whiskers are lines extending frath ead of the box to
show the extent of the rest of the percentage. Outliers ar@dincentage beyond
the ends of the whiskers.
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3. Kernel Statistical Test of Independence

Accepting X LY

Sample Size 20 50 100 150 200

Noisy OR x2 M KD x> M KD x2 M KD X2 M KD X2 Ml KD
r=20 94.0 | 97.4 | 88.0 | 94.7 | 96.3 | 90.8 | 95.6 | 95.9 | 92.5 | 94.3 | 93.7 | 92.4 | 94.1 | 94.3 | 91.8
r=0.1 93.1 | 96.4 | 86.5 | 94.6 | 96.0 | 90.7 | 94.2 | 94.0 | 91.1 | 95.8 | 96.3 | 94.4 | 94.2 | 94.8 | 92.3
r=20.2 93.6 | 96.9 | 86.9 | 94.9 | 96.1 | 91.3 | 96.3 | 96.1 | 93.1 | 95.7 | 95.7 | 93.5 | 93.6 | 94.0 | 91.4
r=20.3 94.5 | 97.1 | 87.3 | 95.9 | 97.0 | 93.0 | 93.5 | 93.6 | 90.7 | 93.6 | 94.1 | 91.6 | 94.4 | 94.8 | 93.2
Noisy OR Rejecting X LY |Z

r=0 24.8 | 54.8 | 23.5 | 94.5 | 97.7 | 91.9 | 100 | 100 | 98.0 | 100 | 100 | 100 | 100 | 100 | 100
r=0.1 23.5 | 33.7 | 16.9 | 57.6 | 57.0 | 54.8 | 85.9 | 84.7 | 89.2 | 97.6 | 97.3 | 98.0 | 99.3 | 99.2 | 99.7
r=0.2 14.9 | 18.9 | 89 | 25.1 | 22.7 | 22.5 | 39.8 | 40.7 | 40.5 | 56.2 | 57.2 | 60.0 | 71.6 | 72.5 | 74.8
r=0.3 99 | 109 | 7.0 | 104 | 103 | 96 | 16.3 | 16,5 | 16.3 | 19.1 | 21.5 | 19.2 | 23.1 | 23.9 | 23.9

Table 3.7.: Numerical comparison of three different indefence tests, i.e., likelihood rati¢
test, permutation test via mutual information (MI), andrpatation test via kernel de-
pendence (KD) measure. The generating models are noisy @R w#h4 different
noise levels-=0,0.1,0.2,0.3 as shown in Fig.3.16 and Eq. (B.6). The experiments
are conducted with000 replications. The entries show how often (in percentage) th
constraintX I Y or X L Y | Z is verified.

We perform three independence tests i.e., likelihood rgtitest, permutation test via mutual
information (MI) and permutation test via kernel dependefiD) measure. A significance level
of 5% are used for all tests. In permutation tests via Ml and KD, wedua repetition factor of
100. As seen from Tall. 3.7, their performance are very simitathe sense that the levels of
typel andIl errors are almost the same. The larger the sample size atestheoisy the model,
the better the performance. The kernel-based method Ilgliyorse than the other two in the
case of20 data points. Taking the computational efficiency into actpthe likelihood ratioy?
test is clearly the winner in this example. The actual beoétihe kernel test does not lie in the
tests on discrete domains, but in tests on continuous oichgbmains. Nonetheless, the kernel
independence test provides an alternative to the popudts ¢@ discrete domains.

3.4. Real-world experiments with kernel independence
test

To demonstrate the effectiveness of statistical test dpeddence by means of kernel measures,
we demonstrate some real-world applications in this sectio
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3.4. Real-world experiments with kernel independence test
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Figure 3.18.: Data on 35 consecutive patients under tredtfoe heart failure with the drug
digoxin. Clearances are given in ml/min/1.73mz2, urine flownifmin.

3.4.1. Digoxin clearance

The study of the passage of drugs through the body is impanianedical science. The right-
most 3d-plot of Figl_3.118 shows a real-world datases8®ronsecutive patients under treatment
for heart failure with the drug digoxin [82] (see alsa [5] 23B3and [52] p. 42 for the same
dataset). The renal clearances of digoxin, creatininepaneé flow were determined simultane-
ously in each of the patients receiving digoxin, in most obwhthere was prerenal azotemia.
The digoxin clearance is the amount of blood that in a givéerual is cleared of digoxin. The
creatinine clearance is defined similarly and used as a measkidney function. Of medi-
cal interest is the hypothesis that digoxin clearance igpeddent of urine flow conditioning
on creatinine clearance. Halkin et al. [82] and Edwards [iqed their analysis on the (par-
tial) correlation coefficient. Recall that a partial cortela coefficient is calculated by the usual
correlation coefficients as defined in Eq. {2.1):

Pyx|z = yx  Papx (3.7)
\/(1 — Pzy)(1 = pyx)

Tab.[3.8 shows the results of permutation test via kernet@é@nce measure in comparison
with correlation analysis. A visual inspection of the das shown in the first plot of Fig._3.118,
indicates that the linearity assumption appears to be nadwe for the dependence between the
creatinine and digoxin clearances (Hig. 3.18, leftmost)in@ar relation between them was first
suggested by Jelliffe et al. [95] and later confirmed by uasiolearance studies, which revealed
a close relationship between creatinine and digoxin ciegran many patients. The ready ex-
planation is that both creatinine and digoxin are mainlgnglated by the kidneys. In agreement
with this explanation, both correlation analysis and ketest indeed found the unconditional
and conditional dependence (first and second row of[Tah. 3.8)

As one can see from Fig._3]18, the relations between craattiearance and urine flow (sec-
ond plot) and between digoxin clearances and urine flond(ihliot) are less linear than the rela-
tion between creatinine and digoxin clearance (first plble correlation analysis (see alsol[52]
p. 43) did not find the dependence between creatinine cleamamd urine flow, while kernel test
did (third row of Tab[[3.B). Both partial correlation techmégand test via the kernel measure
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3. Kernel Statistical Test of Independence

Correlation Analysis Kernel Dependence

Independence Hypothesis Measure| p-Value | Test Measure| p-Value | Test

Creatinine Clearancé. Digoxin Clearance 0.7754 0.00 Reject || 0.0625 0.00 Reject
Creatinine Clearancd. Digoxin Clearanc¢Urine Flow || 0.7584 0.00 Reject | 0.0134 0.00 Reject
Creatinine Clearancé. Urine Flow 0.3092 0.07 | Accept || 0.0212 0.01 Reject
Creatinine Clearancé: Urine Flow| Digoxin Clearance|| 0.1914 0.40 | Accept|| 0.0025 0.58 | Accept
Digoxin Clearancel. Urine Flow 0.5309 0.00 Reject | 0.0254 0.00 Reject
Digoxin Clearancel Urine Flow| Creatinine Clearance| 0.4847 0.02 Reject || 0.0040 0.17 | Accept

Table 3.8.: Correlation analysis and kernel independersteote digoxin clearance data. The
significance levelv=0.05 is chosen.

found that, given digoxin clearance, creatinine clearamas not significantly related to urine
flow rate (fourth row of Tald. 318).

Moreover, both methods found that in these patients digde@rance was significantly related
to urine flow rate (fifth row of Tall._318). This finding is cortsist with the opinion of Halkin et
al. [82], who suspected that the elimination of digoxin ntigh subject to reabsorption, which
might give rise to a correlation with urine flow.

However, if the linear dependence model is wrong, a biastah@® of the partial correlation
and a biased test for independence via linear model maytr@sst via kernel dependence mea-
sure accepted the hypothesis that, given creatinine cleardigoxin clearance is independent of
urine flow, whereas the partial correlation did not confirims tiypothesis (sixth row of Tab. 3.8).
The finding that digoxin clearance is independent of urine ftontrolling for creatinine clear-
ance is particularly of medical interest.

In summary, the results revealed that the test via kernedrlignce measure is superior to cor-
relation analysis. This example makes it clear that, infracindependence by kernel measures
does not necessarily require the independence by coarlatalysis, although it is theoretically
apparent that non-vanishing of correlation implies nonistaing of dependence by the kernel
measure.

3.4.2. Rats’ weights

A dataset of rats’ weights is studied first by Morrison [11t6gn by Mardia et al! [106] and by
Edwards([52]. The data stem from a drug trial, in which thegheiosses of male and female
rats under3 drug treatments are studied. different kinds of rats of each sex are assigned at
random to each drug. Weight losses are observed after onavandeeks. There are thixd
observations=4rat x 2 genderx 3 drug) on variables: sex, drug, and weight loss after one and
two weeks. The data, which are visualized in [Eig. B.19 carobed in [52] p. 76. Both “sex”
and “drug” have categorical domains. The domain of varideight loss” is 2-dimensional,
since weight losses are characterized by distinct values @fie week and after two weeks.
Models on hybrid domains (mixture of categorical and camtuns variables of different di-
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3.4. Real-world experiments with kernel independence test

Omitting Drug C Including Drug C

Independence Hypothesig Kernel Measurel p-Value | Test Kernel Measure p-Value | Test

Sex I Drug 0.0000 0.33 | Accept 0.0856 0.80 | Accept
Sex L Drug| Weight Loss 0.0049 0.46 | Accept 0.0045 0.83 | Accept
Sex L Weight Loss 0.3545 0.14 | Accept 0.3690 0.00 | Reject
Sex L Weight Losg Drug 0.0049 0.99 | Accept 0.0030 0.91 | Accept
Drug L Weight Loss 0.3545 0.08 | Accept 0.2800 0.02 | Reject
Drug L Weight Losg Sex 0.0049 0.91 | Accept 0.0073 0.77 | Accept

Table 3.9.: Kernel independence test on rats’ weight dalte. right half of the table shows the
test results on the whole dataset, while the left half of &iet shows the test results
on the dataset omitting drug C. This way, the effect of drug &pigarent.

mensions) can be treated in a sophisticated way by convehtieethods (see e.d., [52] p. 76). In
contrast, the kernel measure can deal with categoricabbrtiimensional variables in a straight-
forward way. More precisely, in conventional methods, ablé “sex” has the value sét, 2}
for {male female;, and variable “drug” has the value sgt, 2, 3} for {drug A drug B, drug C}

in [52]. The kernel methods use the assignm(it 0), (0,1)} for the value set of sex and
{(1,0,0),(0,1,0), (0,0, 1)} for the value set of drug. In the binary case, the vectorisitgsnent
makes no difference to the scalar assignment. In the casteafiary value set, the vectorial as-
signment is more suitable, since the scalar assignmentsmakestrictive assumption about the
differences between tttedrugs. Note that testing independence between vectorialblas can
not be treated by conventional methods in a straightforwaayl like kernel methods.

Tab.[3.9 summarizes the results of kernel tests of noratrimtdependence relations between
“sex”, “drug” and “weight loss” in the case that drug C is otad (12 data points) or included
(24 data points). Edwards (see [52] p. 78) suspected that there difference between drug A
and B with regard to weight loss, whereas drug C differs wifielm them. One may expect this
finding intuitively from the plot of data as shown in Fig. 3. e result of kernel independence
test is consistent with this finding.

3.4.3. Doctor visits and age/gender

In some social and medical studies, an ensemble of assbdigptheses need to be tested.
As an example, we study the behavior of doctor visits, moeeipely, we analyze the relation
between the age or gender of a person and the number of hilwtiar visits in Germany. Such
studies are useful for countries with large public healti@eawvhere the incentive structures may
not promote efficient use of resources. By means of this exam@ will show that the kernel
independence test provides more power than linear anatyie so-called multiple testing.

The typical real-world data of this context provides a langenber of subgroups (male over
50 who are poor-earning, etc.). The independence hypothagibe tested on each of the sub-
groups. In particular, the underlying distributions of gudps may differ from each other. Since
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3. Kernel Statistical Test

of Independence
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Figure 3.19.: Data from drug trial on rats. The weight lossésr one week and after two weeks

of 24 male and female rats under 3 drug (drug A, B and C) treasrar studied.
Drug A, B and C are randomly assigned to the rats.
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Figure 3.20.: Q-Q plot of p-values on doctor visit data: jsea of hypothesis tests on the rela-
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tion between doctor visits and age (left plot), and betwemstat visits and gender
(right plot). FDR is controlled at a level 6f%. The vertical lines depict the cut-off
of rejecting independence. The multiple testing via kemebsure rejected more
independence hypotheses, i.e., detected more depentiganté)e multiple testing

via correlation analysis.



3.4. Real-world experiments with kernel independence test

a series of tests is conducted, each with a pre-specifiedfisayice levela, the appropriate
threshold to declare a set of p-values significant becomest maore complex. This is known as
the “multiple testing” (or “multiple comparison”) problemn statistical tests. In the absence of
dependence, each test has a chancetofyield a significant result, and the chance of drawing
at least one false conclusion increases rapidly with thelbmurof tests performed.

An elegant way to deal with this problem, which was first aded for ecological studies
by Garcial[64] 65], is to control the proportion of signifitaasults that are in fact typeerrors
(“false discoveries”), the so-called false discovery (&BR), instead of controlling the chance
of making even a single typeerror. A comprehensive overview of various versions of FDR
control can be found in [20, 168]. Storey presented in [16@agesian interpretation of the
FDR. Based on the FDR control, Benjamini et al./[18,/19, 21] dgwedl the so-called multiple
testing method.

The dataset that we studied originally come from the Gern@gioSEconomic Panel, 1995-
1999 [78], and are extracted by Winkelmamnn [177]. The ols@ms include persons aged
20— 60 associated with non-guest worker households in west GernRnivately insured indi-
viduals (about% of the entries) as well as observations with missing valuesacluded from
the analysis. The final sample compris@s837 observations. Thé variables, which we are in-
terested in, are DCTORVISITS (number of doctor vistis in last three monthsEAR (calendar
year of the observation, i.6.995, ..., 1999), AGE (in years, the interval0 — 60 is discretisized
into 2,...,5 for 20 — 30,...,50 — 60), GENDER (“0” for female and “1” for male), HEALTH
(self-assessment, “-1” for bad, “1” for good, otherwise);@nd INCOME (logarithm of monthly
gross income, “-1” for low, i.e. smaller than“0” for middle, i.e., betweefi and8, “1” for high,

i.e., larger tham).

After partitioning the dataset subject t&XR, GENDER, HEALTH, and NCOME, we obtained
90 subgroups for the study of age difference in doctor visittepartitioning the dataset subject
to YEAR, AGE, HEALTH, and NCOME, we obtainedl80 subgroups for the study of gender
difference in doctor visits. Fid. 3.20 visualizes the setesfulting p-valuep, ) < ... <prup <
... < pram Of testing the set 090 or 180 independence hypotheses via correlation and kernel
measure.r is the permutation that sorts the p-values in an increasidgro The plot ofp,;
versusr(i) is called Q-Q (“Q” stands for quantile) plot of p-values (§£89,/90] for details).

Using the Q-Q plot of p-values, Benjamini et al. (Se€ [19] p.ptesented a so-called adaptive
procedure to control the FDR in multiple testing with indeg@ent test statistics. A graphical
implementation and a detailed computational example af phocedure can be found in [19].
Conducting the Benjamini's procedure, a cut-off of p-valumsdecision of dependence can be
found when FDR is controlled at a level §fc. As one can see from Tdb. 3110, the test via kernel
measures provides more power than correlation analysieifrémework of multiple testing, in
the sense that significantly more dependences can be dktatbe kernel dependence measure
than via the correlation coefficient.

In order to take a close look at the dependences detectedrbgl keethods, we illustrate the
Q-Q plots with different colors for different subgroups. Apendence can be observed over the
whole time period (1995-1999) studied (see first row of Ei@13 Since a major health care
reform took place in 1997 in Germany, this finding supporesdhnjecture that an age/gender
difference in the number of doctor visits was insensitivéhi® system reform. The dependence
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3. Kernel Statistical Test of Independence

Number of Rejected Hypotheses Dependence
Independence Hypothesjs Number of All Hypotheses Correlation Coeﬁicienﬁ Kernel Measure
Doctor Visits L Age 90 3 14

Doctor Visits I Gender 180 29 54

Table 3.10.: Multiple hypothesis testing by means of catreh and kernel measure on doctor
visit data. The level of FDR is controlled &%. The kernel method has more
power in the sense that testing via the kernel measure ddtsanificantly more
dependence than testing via correlation.

corresponds to the middle income group in most cases (se®Vasf Fig.[3.21).

The resulting subgroups, for which a gender difference e libhavior of doctor visits is
verified, indicate that men less often visit doctor than wome&his tendency is, in particular,
present, if the person actually feels good or not so bad (s¢é&pow 3, column 2 of Fig._3.21),
and is relatively young, i.e20—40 (see plot in row 2, column 2 of Fig. 3.21).

The resulting subgroups, for which an age difference in thmlver of doctor visits is veri-
fied, indicate a positive correlation in men and negativeatation in women (see plot in row
2, column 1 of Fig[.3.21). That means the older the men, thesrafien his doctor visits. And
the older the women, the less often her doctor visits. Thideacy was observed, in particu-
lar, in subgroups of men of bad health or women of good heakb plot in row 3, column 1
of Fig.[3.21). We conjecture that this finding might be due yaagologist visits of women in
younger years and the relatively bad health status of meldar gears. The dependence corre-
sponds to a middle income group in most cases (see plot imlasif Fig.[3.21). We conjecture
that an extremely high or low income substantially influenite2 behavior of doctor visits.
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Figure 3.21.: Q-Q plot of p-values on doctor visit data: j4ea of hypothesis tests on the rela-
tion between doctor visits and age (plots in left columny batween doctor visits
and gender (plots in right column). Different colors indedifferent subgroups.
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4. From Independence Relations to
Causal Structure

Having introduced the kernel-based tool of independenste wee move to the task of learning
the causal structure based on obtained independenceonslatAt a first glance, it would be

straightforward to incorporate the “oracle” (not necesgdernel-based) which tells us of the
independence into the schema of the IC algorithm. In practiee oracle does not always work
correctly, since we do not have direct access to the truelptpu distribution and can only do

inference based on finite data points. In this chapter, weeldborate on the question how to
get structural information by independence constraintsclvmight exhibit conflicts.

4.1. Logic of independence relations in DAG

Ideally, a good causal model should perfectly representttuerlying probability distribution
of observed data. The term “perfectly” means that everypeddence relation induced by the
causal structure, i.e., a DAG, is true in the underlying distributiof?, and every independence
relation in the distributionP is induced by the topological property, i.e., d-separatag. In
other words, we search for a faithful Bayesian netw@kP) (see Sectioh 1l4), which satisfies
both Markov and faithfulness conditions.

In practice, the set of all possible independence relatidmained by some test could be in-
compatible, in the sense that there is no faithful Bayesiawar&, whose corresponding DAG
represents all independence relations. To find a principbadof handling this problem, we take
a closer look at the link between independence relationéals.

Some logical rules as shown in Flg. ¥.1 are exploited explian a probabilistic graphical
model, where independence is captured by d-separation @sDA54,124| 67]. Note that
these rules are merely necessary conditions for a faitbfulesentation of independence relations
by DAGs. Note that, to the best of our knowledge, how to comepthese rules to a set of
sufficient conditions is unknown. The rules (A1)-(A4) charize all independence assertions
that logically follow from a so-called semi-graphoid [12&4,/162]. Those relations satisfying
(A1)-(A5) are called graphoids. The logic rule (A5) does hold universally[14, 15], but only
under additional conditions, e.g., the strict positivitiytbe probability distributionP, in the
sense thaP(X) =0 only for X =pfis required by Spohn (see [155], Theorem 4). In addition,
if the faithfulness is fulfilled, (A6) and (A7) hold.

We consider the general case where every node correspoadstof variables (instead of only a single variable),
which can be straightforwardly identified with a vectoriatible. X should be generally understood as a set of
variables.
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4.2. Conflicts of representing independence relations

(Al) Symmetry: (XLY|S) = (Y LX]|S).

(A2) Decomposition: (X L (Y1,Y3)]S) = (X LY1]9).

(A3) Weak Union: (X L (Y1,Y2)]S) = (X LY1](S,Y2)).

(A4) Contraction: (X LY1[S)AN(X LYz[(8 Y1) = (X L (Y1,Y2)]9).

(A5) Intersection: (X LY Y2)A (X LY2|(S, Y1) = (X 1 (Y1,Y2)]9).

(AB) Weak Transitivity: (X LY | A (X LY (S, 2) = (X LZ|S)VY LZ|S).

(A7) Chordality: (X LY |(Z1,Z2))N(Z1 L Z5|(X,)Y)) = (X LY |Z) V(X LY |Z,).

Figure 4.1.: Rules that characterize independence assertimt logically follow from the
Markov and faithful conditions.

4.2. Conflicts of representing independence relations

As mentioned previously, the independence relations gbdefrom real data are not always
logically compatible. For one thing, the oracle which teltsof the conditional independence
from finite data does not always work correctly. For the otherg, the assumptions we made,
i.e., Markov, faithfulness, acyclicity and no-hidden-aoon-causes, etc., could be violated in
real-world data.

4.2.1. Relevant Independence constraints

An independence constraint (or just constraint) is an irddpnce relatioX’ 1 Y | S or a de-
pendence relatiotk X Y |S with disjoint subsetsX,Y, S C V. The number of all possible
constraints is exponential in the number of variable¥inin practice, we have to restrict our-
selves to a subset of constraints. Let us first specify theaet constraints with respect to an
undirected graph (adjacency structuge)

Definition 16 (Relevant Constraints with respect to Undireted Graph) A constraintX I
Y|SorX LY|S is relevant with respect to an undirected graghover V), if the following
conditions are satisfied:

(1) X,Y CV are two distinct nodes an8 CV\{ X UY'} is a set of nodes ig.

(2) The conditioning sef satisfies the “necessary path condition”, which states tivarg node
in S occurs on an undirected path betweErandY in G [158].

As a set of variablesX or Y could be empty. But, as a nod¥, or Y is non-empty, since nodes
representing empty sets are not allowed. As a set of nétesuld be empty. We call the cardi-
nality of S, i.e., the number of nodes i#, the order of the constraint. The shorthahdlepicts
the class of constraints of ordérc IN. If G is fully connected, all non-trivial constraints are
relevant. But, if some edges can be excluded, e.g., due tamahigdependence, the necessary
path condition can reduce the number of constraints whief e be considered in exploring
structure. The other key point of the relevant constramtlat we intend to restrict ourselves to
the constraints of entire nodes, not parts of nodes, as tisrcation of nodes plays an important
role in our method. We will elaborate on this later.
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4. From Independence Relations to Causal Structure

(RD) (X LZ|S)A(Y LZ|S)A(X LY|S) = (X LY[(S.2)).
(R2) (X LZ|S)A(Y LZ|S)A(X LY]S) = (X L Z|(S.Y) V(Y L Z[(5X)).
(R3) (X LY|Z)AX LY |Zs) = (X LY |(Z1,Z)V (Z1 L Za] (X.Y)).

Figure 4.2.: Implications from constraints of a lower ortteiconstraints of a higher order that
are induced by the rules in Fig. 4.1.

Speaking of relevant constraints with respect to a DAGquires a pre-specified definition
or construction of nodes i§. Each node irg can correspond to a single variable, but in real-
world applications, we have also the situation that one modeesponds to a subset of measured
variables). How to construct meaningful nodes is a non-trivial prohl&imce the construction
of nodes inG exhibits a clustering o¥, the task can also be understood as a kind of causally
meaningful clustering oi’. We will propose a constraint-based approach to explonai &
clustering in association with structural learning in $at#.3.

Now, we elaborate on the implications among constraintsiftérént orders induced by a
faithful Bayesian network. The semi-graphoid rules (A1%#)An Fig.[4.] are satisfied by every
probability distribution, although the results of indedence tests in practice are not necessarily
consistent with them. We consider only rules (A5)-(A7). g the goal of structural learning
in mind, we rephrase them into three corresponding rules-(R3) as shown in Fid. 4.2 to
clarify the implications from constraints of a lower orderdonstraints of a higher order. More
precisely, rule (R1) or (R2) states a general way to get cansdraf clas<’, . ; from constraints
of classCy, wherek denotes the cardinality ¢f. Rule (R3) describes a logical implication from
constraint clasg; to constraint clas€,. The derivation of (R1)-(R3) from (A5)-(A7) will be
apparent in the following sections.

Corresponding to (R1)-(R3), three conflicting situations cacuoin real-world data i.e., the
constraints obtained from the empirical independencs tisinot follow the logical rules. The
next sections will elaborate on these conflicts and prop@seswf handling them.

4.2.2. Non-transitivity conflicts

The first conflicting situation, where the weak transitiioperty (A6) is violated, can be ex-
emplified by the rats’ weight data introduced in Secfion2.4The independence constraints
betweenX, Y andZ obtained by the kernel test of independence are

(XLZ)ANYLZ) AXLY)A(XLY|Z), (4.1)

whereX: SEX, Y: DRUG (including drug C),Z: WEIGHT Loss(see the right half of Tab._3.9).
If X andY are indeed unconditionally and conditionally independené (A6) implies

(XLY)A(XLY|Z) = (XLZ) Vv (YLZ).
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4.2. Conflicts of representing independence relations

The marginal independence betwe¥randZ or betweeny” and Z displays a conflict with the
constraints in Eq[(411) obtained by tests.

From another point of view, applying the equivalerfee= b) = (b= —a) to the weak tran-
sitivity property, the unconditional dependence betw&eand Z and the marginal dependence
betweeny” andZ imply an unconditional or conditional dependence betw&eandY’, because

(XLZ)ANYLZ) = (XLY)V (X LY|Z).

The unconditional or conditional dependence betwEeandY” contradicts the given constraints
in Eq. (4.1) as well.

Definition 17 (Non-transitivity Conflict) If constraints
(X LZISHSNY LZ|IS)ANXLY|S) AN (XLY|(S Z)) (4.2)

for a triple of distinct nodesy, Y, Z C V and a set of nodeS CV\{XUY UZ} in G is obtained,
then a so-called non-transitivity conflict is present.

In the presence of a non-transitivity, (A6) or (R1) does ndtdhdConsequently, there are no
faithful Bayesian networks representing all these four tan#s. The derivation above shows
also that the non-transitivity conflict can be resolved ifagsume that one of the four constraints
is wrong. Now, the question is which one is more likely to deda

In general, a constraint of low order is more reliable, beeasting independence relations
with a large conditioning set is more difficult, given a certaumber of data points. For this
reason, the following assumption of reliable constraiais lse reasonably made.

Assumption 4 Let (X,Y)), (X2, Ys) be two pairs of distinct nodes in a DAG Z C V\{ XU
XoUY;UY3} anode ing, and S € V\{X;UX,UY; UY,UZ} a set ofk nodes inG. The
identification of constrainf(; 1 Y | S or X; £ Y;|S is more reliable than the identification of
constraintX, L Y5 | (S, Z) or Xo L Y5 | (S, Z).

Note thatX; # Y; and X5 # Y5, but X; and X, (or Y; andY5) could denote the same node.
Effectively, we assume that the constraints (of orklgon the left side of (R2) can be more
reliably tested than those (of orde1) on the right side, without checking the weak transitivity
property explicitly.

Assumptioni 4 introduces a partial order on constraints aeéeps(X; L Y)|S) € Ci to
(X2 L Y5 (S, Z)) € Cry1, which can be incorporated to resolve the non-transitieggflict as
shown in Eq.[(42). Consequently, we conclude

(XLY|S) A (X LY]|(S 2), (4.3)

which indicates a-structure (Figl_114), i.e., an unshielded collider&naccording to Step 2 of
IC (Fig.[1.5).

In other words, accepting Assumptioh 4 in addition to Markod faithfulness assumptions,
an unshielded collider o can be identified by three constraints of oré€k: number of nodes
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4. From Independence Relations to Causal Structure

Csex > CDRUGD

CVEIGHT LOSS>

Figure 4.3.: Rats’ weight data represented by a DAG, if Asgionf is made.

in S)
(XLZ|IS)N Y LZ]S) AN (XLYI|S). (4.4)

If S'is empty, we need only marginal constraints (without anydittomal constraints)
XAL2OONYLZ)AN(XLY) (4.5)

to identify v-structures in the DAG. Based on this consideration, undsumptior 4 the con-
straints

(SEX 1L DRUG) A ((SEx £ WEIGHT Loss) A (DRUG £ WEIGHT Los9),

obtained by kernel independence test on the afore-memticas’ weight data lead to a-
structure as shown in Fig. 4.3, saying thaxSand DrRuG influence the VBIGHT Lossof rats.

It should be mentioned that a non-transitivity conflict @balso be traced back to the fact that
the true distribution underlying the real-world data isaed not faithful. Consider the simplest
example with an underlying causal structufe—~ Z — Y. If causation fails to be transitive, we
would then observe the exactly same constraints as showa. i@H).

4.2.3. Non-intersection conflicts

Another uncertain situation, which often occurs in realdaata, can be exemplified by the
digoxin clearance data already discussed in Section 3T#dindependence constraints obtained
by kernel tests are

(X LY) A (X L2Z), (4.6)

and
(XLY|Z) A(XLZ|Y), (4.7)

where X: URINE FLOW, Y: DIGOXIN CLEARANCE, Z: CREATININE CLEARANCE (see
Tab.[3.8). If we make the Assumptibh 4 stating that the unitimmadl constraints can be tested
more reliably and thus are true, a nosstructure (Figl_1l7) would be reasonable for the set of
constraints obtained by tests. The question is how to reptéise two conditional independence
constraints by a DAG, i.e., remove edge— Y or remove edgeX — Z. The two conditional
constraints in Eq.[(417) are indeed not compatible. If welapipe rules of intersection and
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4.2. Conflicts of representing independence relations

decomposition to EqL(4.7), we obtain two marginal indegerme relations:
(X LY | 2O)INXLZ|Y) = (XLY,Z2) = (XLY)AN(XLZ).

The two marginal independence relations induced by the ladés contradict the constraints in
Eq. (4.6). As a note aside, in the real data example of digdei@rance, the kernel independence
test confirmedX L (Y, Z) with a p-value 00.007, i.e., urine flow is dependent of clearances.
Consequently, the intersection property (A5) is violatédX L Y |Z)A (X L Z|Y) and
one of the marginal dependences, i8.£. Y or X f Z, is true. Nonetheless, we need the all
marginal dependences betweEnY, Z to be true, i.e. (X L Z) A (Y L Z) N (X LY),
otherwise the necessary path condition for the constraitd Y | Z) and(X 1L Z|Y') would
be not fulfilled according to Definition_16.

Definition 18 (Non-intersection Conflict)If the constraints
(XALZIS) A LZIS)AXLY[S) A (XLY[(S2)A(XLZ[(SY)) (48)

hold for distinct nodes(, Y, Z CV and a set of nodeS C V\{XUYUZ} in G are obtained, then
a so-called non-intersection conflict is present.

As mentioned previously, the intersection property (A5¢slaot hold in general. Martih [1110]
pointed out that the assumption of strict positivity of tban} density, under which the intersec-
tion property (A5) is valid[[155], is actually too strong andt necessary. He showed that the
intersection property only holds, whénand Z are measurably separated conditionallysn
The so-called “measurable separability” concept is intozdl by Florens et al. [57] and provides
a sufficient assumption to make the intersection propetig {/&10].

A trivial example for violation of the intersection propers thatY and~ are related determin-
istically with each other (seé [141,166, 103] for more théogat discussions about deterministic
relations between nodes), i.&/,and Z contain entire information about each other. The un-
certainty ofY (or Z) vanishes due to the knowledge &f(or V), then any node in the graph
is independent of givenY and independent df given Z. Then, testing conditional depen-
dences betweeX andY given Z and betweernX andZ givenY cannot provide any evaluable
information about the dependence betwéeand(Y, Z). Note that we observed in many real-
world applications that the empirical kernel dependencasruleeﬁyz|5 is indeed large when
non-intersection is present, which indicates, in genarhigh degree of dependence betw&en
andZ givens.

It should be stressed that the situation tHaandZ are deterministically related is a very spe-
cific case of non-intersection conflicts defined above. Thelitimn of Eq. [4.8) is substantially
weaker, since it needs to hold for merely one nodén the graph. Essentially, it reveals some
symmetry of constraints betwe&handZ with respect to only one nodg.

It is obvious that Assumptidd 4 cannot help us to prefer orth@tonstraints

(lel(S’Z))v(XJLZHSvY)) Eck+17

wherek is the number of nodes i. To avoid speculating on which constraint might be more
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4. From Independence Relations to Causal Structure

DIGOXIN CLEARANCE
CREATININE CLEARANCE

Figure 4.4.: Graphical representation of Digoxin cleaeadata.

Figure 4.5.: Graphical representation of Rats’ weight data.

reliable under some additional restrictive assumptioresspvopose to group the nod&sand Z

to a new node representing the vectorial varighleZ) in the model. The intuition behind the
grouping strategy is that the new nadé 2) shall represent some joint featureYofind 7, since

Y and Z contain some equivalent information with respecto All constraints that involve
Y or Z, as shown in Eq.L(4l8), will not be considered in exploring #tructure. Therefore,
the grouping strategy is in fact very conservative, in thessethat we do not speculate on the
reliability of any of the incompatible constraints.

In the digoxin clearance data, the graphical output woulédbeindirected graph as shown
in Fig.[4.4. The output represents only the fact that urine #md clearances are dependent.
Note that a constraint-based approach, in principle, dafurther specify the orientation of
edges between two dependent nodes. Since we intend torgtténp resulting graph causally,
the subsequent question is whether the resulting clusferar@bles are meaningful. In this
real data example, grouping variable “digoxin clearanaad &ariable “creatinine clearance”
is intuitively more meaningful than grouping one of clear@sawith “urine flow”. The marginal
dependence measures, regardless of linear or kernel;limeteaen variable “digoxin clearance”
and variable “creatinine clearance” witnessed the higegtee of mutual dependence in the
sample (see Tab. 3.8).

Another example of non-intersection can be found in ratsghiedata introduced in Sec-
tion[3.4.2. The kernel independence tests between vasiéag, DRUG (including drug C),
WEIGHT Lossshowed that (right half of Tab._3.9)

(SEX L WEIGHTLOSS A (DRUG L WEIGHT LOSS)

and
(SEX 1L WEIGHT Loss|DRUG) A (DRUG L WEIGHT LOSS| SEX) .

To resolve this non-intersection conflict, NodesxSand DRUG should be merged to one node
“(SEX, DRUG)”, which represents a five-dimensional variable. The t@sygraphical represen-
tation of rats’ weight data is shown in F[g. 4.5.

However, clustering of variables based on the symmetry dépendence relations does not
necessarily group the variables with the highest degreaitd@hdependence. As an example, we
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4.2. Conflicts of representing independence relations

MOMS5 | Maternal | Regulates polarity of the EMS blastomere.

MEX3 | Maternal | Specifies the identities of the anterior AB blastomere asdéiscendants.
POP1 | Maternal | Blocks END-1, END-3 activation in mesoderm precursor cells

PAL1 Maternal | Homeodomain protein, Caudal ortholog.

HLH1 | Mesoderm| bHLH transcription factor. Required for proper bodywall sole development
and function.

HND1 | Mesoderm| Hand bHLH transcription factor required for normal viatyiliExpressed in
embryonic mesodermal precursor cells generating (madstigty wall muscles.
PHA4 | Mesoderm| FoxA transcription factor. Regulation of pharynx/foregetelopment.
TBX38 | Mesoderm| T box transcription factor. Notch-mediated mesoderm itidndn descendants
of the ABa blastomere.

HLH25 | Mesoderm| Unknown.

END-1 | Endoderm| GATA transcription factor. Initiates endoderm differexiion.
END-3 | Endoderm| Paralogous to END-1.

ELT-2 | Endoderm| GATA transcription factor. Differentiation of the intesé.
ELT-7 | Endoderm| Paralogous to ELT-2.

Table 4.1.: Genes and groups involved in C. elegans and tiestion.

consider a small gene regulatory network of endoderm of Gaabditis elegans (short: C. ele-
gans)[16]. The time-lapse gene expression data of the emnttyyogenesis of C. elegans consist
of 42 measurements fdi3 genes. Genes were manually selected and prior knowledgeaseas
to group the genes into maternally inherited, mesoderntegland endoderm related. Tab.l4.1
summarizes the genes used in the analysis. The datasestednsf multiple measurements,
taken at pc+6min (3), pc+36min (4), fc+0min (3), fc+23min, (E+44min (3), fc+53min (3),
fc+66min (4), fc+83min (4), fc+101min (3), fc+122min (4§#143min (3) and fc+186min (3).
The term “pc” indicates pseudo-cleavage and “fc” the four stage. The number of measure-
ments at each time point is shown in parenthesis. Each tinmé pmincides with a cell division.
The “fc+186min” is approximately at the 200 cell stage, thedte of the gastrulation. For an
extensive review of early C. Elegans development we refetQd||

Symmetries of independence relations, like non-intersecionflicts, might be often expected
in a gene regulatory network, since different genes coule vary similar behaviors within a
structure. The C. elegans data are real-valued and have desairg of42 (without missing
values). The measurements of genes involved in endoderovensin Fig[4.6. All non-trivial
independence constraints between END-1, END-3, ELT-2 EAfid7 are tested. The only inde-
pendence relations obtained by kernel test are the follpwiconstraints:

(ELT-2 L END-1|END-3), (ELT-2 L ELT-7| END-3) (4.9
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4. From Independence Relations to Causal Structure
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Figure 4.6.: Heatmap of endodermal data of C. elegans dategsites END-1, END-3, ELT-
2, and ELT-7. The gene names and the clustering results dresédving a non-
intersection conflict (see text) are described on the |ld& sf the plot.
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Figure 4.7.: Heatmap of mesodermal data of C. elegans witesggétiLH1, HND1, PHA4,
TBX38, and HLH25. The gene names and the clustering resuésta@uesolving
first a non-chordality conflict and then a non-intersectionftict (see text) are de-
scribed on the left side of the plot.
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4.2. Conflicts of representing independence relations

[Hyy | END-3] ELT-2 | ELT7 || Hxyjenos | ELT-2 | ELT7 |
END-1 | 0.0414 | 0.0149 | 0.0618 || END-1 - =

END-3 - 0.0460 | 0.0689 || END-3 0.0107 | 0.0103
ELT-2 — — 0.0470 || ELT-2 — 0.0141

Table 4.2.: Empirical kernel dependence measure of gerexzdoderm of C. elegans.

| Hyx | HND1 | HLH25 | PHA4 | TBX38 |

HLH1 | 0.0297 | 0.0062 | 0.0280 | 0.0101
HND1 — 0.0412 | 0.1305 | 0.0059
HLH25 — — 0.0314 | 0.0158
PHA4 — — — 0.0113

Table 4.3.: Empirical kernel dependence measures of ganelsed in mesoderm of C. elegans.

and
(END-3 L ELT-2| (END-1,ELT-7)), (END-3 1L ELT-7| (END-1, ELT-2)). (4.10)

Other20 non-trivial constraints exhibit (conditional) dependemetween genes.

The constraints in EqL(4.110) suggest the grouping of geh@&s?Eand ELT-7 to a new node
“(ELT-2,ELT-7)" in the final output. The marginal kernel depdence measures (see Tabl 4.2)
witnessed a similar degree of the mutual dependence betalee@ and ELT-7 and the depen-
dence between END-1 and END-3. However, only ELT-2 and EERare the symmetric feature
with respect to END-3, given END-1. The constraints propseonsider END-1 and END-3
as separate nodes in the final output. Grouping of ELT-2 and/&Ek meaningful from the bio-
logical viewpoint, as some biologists have already donédir tstudies[[105]. Note that, given
END-1, the conditional kernel dependence measure betwe&s2 Bnd ELT-7 is slightly larger
than other conditional measures.

4.2.4. Non-chordality conflicts

Rule (A7) in Fig[4.1 or rule (R3) in Fig. 4.2 describes a caseaf teparate nodes in a faithful
Bayesian network. Situations that are in conflict with thikercan be occasionally found in
real data. As an example, we use the data of mesoderm of Cnel&tfi. Five genes HLH1,
HND1, HLH25, PHA4, and TBX38 are studied in mesoderm. The degaeal-valued and have
a sample size of2 (without missing values). The measurements of genes iadalvmesoderm
is shown in Fig[4]7. The marginal kernel dependence mesdigiveen these five genes are
listed in Tab[4.B.

After testing all possible subsets of four variables, aatioh of the rule (A7) or (R3) is found
for the set of genes HLH1, HND1, HLH25, and PHA4. We obtairezlfollowing dependences
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4. From Independence Relations to Causal Structure

by means of the kernel independence test:
(HLH25 J PHA4|HLH1) A (HLH25 f PHA4|HND1).
At the same time the following independence were acceptetdigernel test:
(HLH25 1. PHA4| (HLH1,HND1)) A (HLH1 1 HND1|(HLH25 PHA4)).

These four constraints exhibit a conflicting situation, d&ese they contradict rule (A7) or rule
(R3). If we take a closer look at the constraints, we will sed they reveal a symmetry in HLH1
and HND1 with respect to the dependence between HLH25 and4dPH\dte that it does not
necessarily imply that the constraints are also symmaeiridliH25 and PHA4 with respect to
the dependence between HLH1 and HND1, as the constraints

(HLH1 J HND1|HLH25) A (HLH1 L HND1|PHA4)

were obtained from real data.

Definition 19 (Non-chordality Conflict) If the constraints
(XLY[Z) N (X LY |Z) A (X LY [(Z,22) A (Z1 L Z,|(X)Y))  (411)
are obtained, a so-called non-chordality is present.

This kind of conflicts can actually be further divided intaeh distinct cases, which can be
treated in different ways. The first case is that the folla\aonstraints are present in addition to
the constraints in Eq_(4.111):

Non-chordality 1:  (Z; L Zy | X) A (Z1 L Z,]Y). (4.12)

That means the constraints are only symmetrig;inz,, and not symmetric itX’, Y. To resolve
this conflicting situation, we propose to grodpand”, to a new node representing the vectorial
variable(Z;, Z,). The constrainX’ L Y | (Z;, Z,) survives after grouping.

Our data example above corresponds exactly to this casegéies HLH1 and HND1 are
suggested to be merged to a new node in the DAG. A ready extjgarfisom biological viewpoint
is that genes HLH1 and HND1 are both involved in the specioabf muscle cell fates, as
opposed to the genes HLH25, PHA4, TBX38.

Other situations are that the constraints contaiffipgnd Z, are indeed symmetric ixX’ and
Y. One caseis

Non-chordality 2:  (Zy L Z2| X) AN (Z1 L Z5|Y), (4.13)
and the other case is

Non-chordality 3: (7, L Zy| X) A (Z1 L Z5|Y), (4.14)
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4.2. Conflicts of representing independence relations

XLY|Z1 X LY |(Z,Z2)

X LY |Zy Zy L Zy|(X,)Y)
(21 L Zo|X) | (L1 L Z2]1X) | (Z1 L 22| X)
(Z1 L Z,|Y) (Z1 L Z>]Y) (Z1 L Z,|Y)
Non-chordality Casel Case 2 Case 3

Lz | @w (2 2

No Assumption e Q @ @
(2 2

<3

Basic Constraints

Additional Constraints

0O @ &8
Assumption # @ @

Table 4.4.: Handling non-chordality conflicts by differeirtategies.

in addition to the constraints in Ed. (4]11). In both casespnopose to merge nodésandY

to a new nod€ X, Y) and mergeZ; and Z, to (7, Z,). Tab.[4.4 summarizes the strategy for
these three cases of non-chordality conflicts. The mainrddga of the grouping strategy is that
it makes no restrictive assumptions. However, as mentignedously, the grouping strategy
is very conservative, since it does not make any statemeént# éhe constraints involved in the
conflict.

If we make Assumptiohl4, the first and the last case of the mamelality conflicts can be re-
solved by preferring the constraint8; 1L 7, | X),(Z; L Z,|Y)eCito (Z, L Z5|(X,Y)) €
C,, because we actually have a non-transitivity conflict inftfet case due to

(Z1 L Zo|Y) N (Z L Zy| (X,Y)),
and two non-transitivity conflicts in the last case due to
(Z1 L Zo| X) N (Zy L Z3|Y) N (27 L Z5| (X,Y)).

X,Y andZ;, Z, are symmetric only in the second case. Without giving pesfee to either of
the constraints of the same order

(X LY |(Z1,%2)) and (Z; L Zy|(X,Y)),

we can only groupX, Y andZ;, Z, together to resolve the conflicts (middle column in Tabl 4.4)
as proposed above. But in the other two cases, under Assur@htiwe achieve more specific
structure (first and last column in Tab. 4.4).
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4. From Independence Relations to Causal Structure

4.3. Constraint-based clustering algorithm

For one thing, we have to cluster variables due to conflicsitgations of constraints. For
the other thing, the kernel test of independence is ableetat tnigh-dimensional variables in
a straightforward way, which makes nodes representingoxiativariables in the DAG possi-
ble. Regardless of the possibility of a meaningful interien of the node construction in the
graph, we first introduce the possible partitions of the $atlaneasured variableg, if a causal
structure oved is known.

Definition 20 (Manipulation-consistent Partition) Let G; be a DAG withm; nodes.; :=
{Y1,...,Y,, }, i.e., apartition of the set of measured variables- { X;,..., Xy}. A (coarse-
grained) partitionLy:={7,, ..., Z,,, } of V with Z; C{Y3, ..., Y,,, } is manipulation-consistent
with £, if there exists a DAG, with my nodes representingZ, ..., Z,,, }, in whichZ; — Z;

(¢ ) are present irg, for all arrows Y, —Y; in G; withY, € Z; andY; € Z;.

The coarse-grainedr{; < m;) structureg, is obtained by grouping nodes {i. If all arrows
in the original DAGG, indeed describe the potential effects of manipulation Bge(1.3) for
manipulation criterion) between variables, all arrowsha toarse-grained structu@e satisfy
the manipulation criterion and could also be interpretadsady.

A node in the causal structure is generally understood astarfthat causally explains the
associations measured over a single variable or a grougiabl@s. The motivation of introduc-
ing factors represented by multiple variables is that m@détomplex phenomena often consist
of hypothetical entities called “unmeasurable factorshickh cannot be directly measured by
some single variable, but might be identifiable by a groupasables that describe different
aspects of this unmeasurable factor. Such factors measutiegctly can play an important role
in understanding and predicting the dynamics of those piena. For instance, in social sci-
ence, questionnaires are designed to target specific thdireasurements, such as “stress”, “job
satisfaction”, and so on.

Silva et al. [144] proposed a formal framework: the so-chfieneralized measurement mod-
els, to represent the unmeasurable factors. They call thetient factors”. Subsequently, Silva
et al. [145] presented a principled way to discover latectiois in linear models. The construc-
tion of latent factors provide also a partition of the set bih@easured variables. Unlike their
approach, we propose to cluster the measured variablegHfieaewpoint of structural learning.
A manipulation-consistent partition of measured varialslerves as an appropriate construction
of nodes in causal structure. The key point here is that ibcanr that a certain partition of vari-
ables makes the construction of faithful Bayesian netwodssible, while the other partition
does not.

To make this apparent, we consider a coarse-grained steugtlas shown in the right plot
of Fig.[4.8. It is obtained by grouping distinct nod8sand Z in a “fine-grained” structur€,
(left plot) into a new node representing vectorial varialie, Z,). A faithful Bayesian network
with respect to the fine-grained structure implies the maieconstrainX’ L Y | (7, Z,), while
a faithful Bayesian network with respect to the coarse-gaistructure requires the relevant
constraintX £ Y | (Z;, Z2). Given a probability distributior, it could occur that the Bayesian
network(Gy, P) is faithful, but(G,, P) not, or the other way around. Handling violations of the
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4.4. Constraint-based orientation algorithm

O
@ @ @D

Figure 4.8.: A coarse-grained structuge (right plot) is obtained by merging distinct nodes
7, and Z, of a fine-grained structurg, (left plot) to a two-dimensional variable
7 = (7, Z,). Both describe consistent manipulation potentials (se€[E8) for
manipulation criterion), however, do not share the sameifeavith respect to the
independence relations betwe¥randY conditional on(7;, Zs).

properties implied by faithful Bayesian networks can helgaisBnd an appropriate partition of
measured variables.

Having the structural learning in mind, we formulate theiaflle partitioning problem: given
a set of variables, partition the variables into clustersl@s) to make a representation of data
by a faithful Bayesian network possible. In many real-worbglecations, variables are reason-
ably pre-specified through experimental design, so thatriti@al clustering of variables, i.e.,
each distinct cluster corresponds to a single variabldready a meaningful initial construction
of nodes. Sometimes, the prior knowledge, i.e., the meamingriables, can help us to con-
struct nodes. Nevertheless, we come up with conflicts inceiyg a faithful Bayesian network
representing the distribution. As showed above, we groujabies by using some symmetric
properties of independence constraints without makingictise assumptions. Fid. 4.9 sum-
marizes the so-called constraint-based clustering proee®ur method utilizes the property of
independence relations of triples, instead of using degrerel measures between pairs of vari-
ables. This differs from the approach taken by standardeiing algorithms and especially from
the recent work by Song et al. [149]. The procedure can baligistarted with the trivial clus-
tering of variables, i.e., each node corresponds to a swaglable. In real-world applications,
prior knowledge, e.g., the meaning of measured variables atso be helpful to determine the
initial clustering of variables. It is obvious that the diersng algorithm converges, because after
each iteration the cardinality &f is increased byt or the number of nodes is decreasediby
The algorithm converges fast, if the graph is sparse, segfully connected triples need to be
checked. The output of the procedure is an appropriatesciogtof variables depicting nodes, in
the sense that there are no non-intersection and no nodalfigrconflicts between constraints
of orders up to some pre-specified integer

4.4. Constraint-based orientation algorithm

The identification ofy-structures is the essential strategy of constraint-bapptbaches. Under
AssumptiorL ##, we use the constraints in Eq.](4.4) to identitructures. This inference rule
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4. From Independence Relations to Causal Structure

Input: A set of N nodes and an integét

Step 1: If a set of four distinct nodeX, Y, Z;, Z, can be found that the condition in EQ.(4.11)|is
satisfied, grou; and Z; to a new variablé 7, Z,) and setN := N —1. If the condition
in Eq. (4.13) or Eq.[{4.14) is additionally satisfied, grokiandY” to a new variablé X, Y")
and setV:= N —1. Repeat step 1 so long as the set of nodes does not change.

Step 2: Fori=0tomin{k, N—3}, if a triple of distinct nodesX, Y, Z and a set of nodesS (not
including X, Y, Z) can be found that the condition in EQ.(4.8) is satisfied, groumd Z to
a new noddY, Z) and setN := N —1. If the set of nodes changes, goto Step 1, otherw
continue.

se

Output: A setof N'€[2, N] nodes.

Figure 4.9.: Constraint-based clustering procedure.

L1

Figure 4.10.: Orientation using only marginal independeetations as shown in EQ. (4]115). The
bi-directed edge in the left plot is traced back to a colliderX; and a collider on
Y5 and represents the conflicting information of orientatibtained byv-structure
identification. If acyclicity is assumed, a structure widlttent common causk is
explanation for the dependence betweégmandY; (right plot).

for v-structures has consequences for the learning of the wiwietsre. For instance, if the
marginal independence constraints

X1 LYo A Xo LY A X LYo A Xi AYViA X L Xo AV LY, (4.15)

are obtained, we infer two-structuresX; — X, « Y, and X, — Y, « Y] due to Eq.[(45).
Graphically, a collider onX, and a collider ort; as exemplified in the left plot of Fig. 4.110.
The bi-directed edge betweéfy andY; represents the conflicting information of orientation ob-
tained byv-structure identification. The resulting structure vielthe assumption of acyclicity.
Making the assumption of acyclicity, both colliders lealre eéxistence of a latent common cause
as the only explanation for the observed dependence betWeandY; (Fig.[4.10, right).
Combining the orientation information obtained by the iefege rule as in Eq[_(4.4) for all
possible tripleg X, Y, Z) and all conditioning set§, we can learn the orientation of the whole
structure. We implement this idea by a voting procedure,a®identified-structureX — 7
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4.5. Robust causal learning algorithm (RCL)

Number of all non-trivial Marginal Independence Hypotheses aecepy Tests

0 1 2 3 0 1 2 3 4 ) 6
VIV /70 XX N
i A6
i}
Patterns o8 nodes Patterns oft nodes

Table 4.5.: Possible patterns 8for 4 nodes when only marginal independence relations are
known. The extension for structures of more tHamodes is straightforward.

Y gives a respective vote t6 — Z andZ < Y. Inconsistent voting results will be represented by
a bi-directed edges. Using this voting procedure, a pa#teibe found to represent all marginal
dependence relations. Tab.14.5 illustrates the resultattems of3 and 4 nodes. A3-node
structure ha$ non-trivial constraints, and of them are marginal. A-node structure ha®t
constraints, and of them are marginal. Surprisingly, in many cases, most&dga be already
oriented by just using marginal independence constrames) though we used oniy% (3-node
structures) and5% (4-node structures) of all non-trivial constraints betweanables. Actually,
we do not need many constraints to infer structures, if timsiraints are consistent. However, the
highly redundant set of all possible constraints could keaghany conflicting situations, which
makes structural learning unreliable. A reasonable assamfike Assumptiori ¥4 is desirable.
That means the constraints of small order should be preferre

We propose a constraint-based orientation procedure amsinoFig.[4.11. This procedure
follows the strategy that the marginal constraints, ilee ¢onstraint clas§,, should first be
considered and represented by the DAG. If no independenabté@ned within the marginal
constraints, we obtain the fully connected and undirectectire. In this situation, constraint
classC; would be taken into account to further detect orientatiohit fails, C»,Cs,...,Cna
could be successively considered, wharéhe number of nodes involved in the fully connected
and undirected structure. Typically, we choose the fullprected undirected gragh of N
nodes as the initial structure. The paramétean be typically set tov —3.

4.5. Robust causal learning algorithm (RCL)

Combining the clustering and orientation procedures, wegse the so-called robust causal
learning (RCL) algorithm as shown in Fig. 4112 to find a faittBalyesian network representing
observed data. The term “robust” refers to the strategywiastart with constraints of lower

orders and construct a structure representing as manypleeléand compatible constraints as
possible. The result of this strategy is expected to be totitis respect to statistical fluctuations
of small samples. The user can directly bound the order dftcaimts that to be considered from

73



4. From Independence Relations to Causal Structure

Input: A fully connected undirected graghof N nodes and an integét
Step 1: For:=0tomin{k, N—3}

1.1 For all triple of distinct nodesX, Y, Z, if a set ofi nodesS (excluding X,Y, Z) can be
found that Eq.[(4]4) is satisfied, remove the edge Y and register one vote t§ — Z and
Y — Z respectively.

1.2 OrientX —Y to X — Y if there is at least one vote for this direction and no vote for the
opposite direction. OrienX —Y to X « Y if there is at least one vote for both directions.

1.3 If G changes, goto Step 1, otherwise continue.

Step 2: If a fully connected undirected proper substructdteof N’ < N nodes can be found in
G, restart this procedure wif of N’ nodes and parametér

Output: A graphg with directed, bi-directed and undirected edges.

Figure 4.11.: Constraint-based orientation procedure.

above by some pre-specified integet N —3. The most general choice bfis V—3.

RCL starts with a fully connected graph. Based on the informdtimm all constraints of class
Co, Step 1.1 learns a partially directed graph throuegtructure identification. After that, Step
1.2 searches for non-intersection conflicts with respetiiéainderlying adjacency structure. If
two nodes are merged to a new node, RCL will be restarted witméeset of fewer nodes,
otherwise, the constraints of claSs will be considered to infer orientation for the remaining
undirected substructures. Having taken all constrainsrdér up tok into account or having
oriented all edges involved in the graph, Step 2 of RCL checksxém-chordality conflicts.
Since Assumptionl4 is made anyway by RCL, only the special caspecified by Eq[(4.13)
should be treated. Step 3 removes unnecessary edges vp#ctrés the topology of the graph
learned by previous steps. For this purpose, we introduesdkcalled relevant constraints with
respect to a given directed Graph with uni-, and bi-direetdgles.

Definition 21 (Relevant Constraints with respect to Directd Graph) A constraintX 1LY | S

is relevant with respect to a directed graptover )V, if the following conditions are satisfied:

(1) X, Y CV are two distinct nodes anfl C V\{X UY } is a set of nodes ig.

(2) The conditioning se$ satisfies the “potential ancestor condition”, which statesattevery
nodeZ in S is potential ancestor ok or Y in G, i.e., there exists at least one directed path from
ZtoXorY.

The motivation is that, ifX andY are connected in a directed graph, only conditioning on
potential ancestors of or Y can make them independent. An edge Y in GG is removed by a
constraintX L Y| S, if the constraint satisfies the potential ancestor coolitin comparison

to the necessary path condition, the potential ancestalitton takes additionally the orientation
of G into account. The number of queries to the independencéeatan be reduced. Since our
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4.5. Robust causal learning algorithm (RCL)

Input: A set of variables and an integer

Step 0: Initialize a set of nodes by the trivial clustering of variables, i.e., every node corre
sponds to a single variable. Initialize a fully connected undirected g¥agfh’V nodes.

Step 1: For:=0to min{k, N -3}

1.1 Run the constraint-based orientation procedure as shown i _Fid. 4.11 raph g and
integer: as input. It returns a patteth

1.2 For all fully connected substructures wish+ i nodes ingG, if a triple of distinct nodes
X,Y, Z and a set of nodesS (excludingX, Y, Z) can be found that the condition in EQ. (4.8)
is satisfied, merge nodés andZ to a new noddY, Z) and restart Step 1 with the new sgt
of N —1 nodes. Otherwise, continue.

Step 2: For all chordality structures of distinct nod&s Y, 71, 25, i.e., X —Z1—-Y —Zo— X, if
conditions in Eq.[(4.11) and Ed.(4]113) are satisfiedXolt, Z;, Z, merge nodeg&; andZ,
to a new nod€ 7, Z,), merge nodeX andY to a new nodé€X,Y) and setN :=N —2. If
the set of nodes is changed, restart Step 0 with the new set of nodasyisthcontinue.

Step 3: Remove the edge between andY, if a set of nodesSxy that satisfies the so-called
“potential ancestor condition” (see Definitibn| 21) can be found suchXhat Y | Sxy .

Step 4: Orient the remaining undirected edges without creating metvuctures and directed cy
cles: if X — Z—Y (no link betweenX andY’), then directZ —Y"; and if X — Y introduces
a directed cycle in the graph, then diré¢t— Y.

Output: A patterng with directed, bi-directed and undirected edges.

Figure 4.12.: Robust causal learning algorithm (RCL).
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4. From Independence Relations to Causal Structure

mixed graphG could contain undirected edges we consider all undireatigeg® as bi-directed
ones to identify potential ancestors. Step 4 orients theam@mg undirected edges under the
assumption that alb-structures are identified by previous steps and the undgrktructure is
acyclic. The output of RCL is a pattern with uni-, bi- and unedied edges. The bi-directed
edges could be traced back to a violation of the assumptiarodiidden-common-causes or
acyclicity.

RCL explores the non-intersection conflicts after resolvioeg-transitivity conflicts. That
means, if a triple that satisfies the condition of both n@msitivity and non-intersection, RCL
will orient the triple to av-structure under Assumptian 4. The rats’ weight data is ammgple
(see discussions in Sectibn 4]12.2 and Sectionl4.2.3). Tipeioof RCL is then the structure as
shown in Fig[4.B, and not that in Fig. 4.5.

Obviously, the computational complexity of RCL depends onrttmber of constraints that
are tested. RCL has to test all non-trivial constraints, if naditional independence can be
obtained (worst-case scenario). The number of indepeed=rtstraints increases exponentially
with respect to the number of nodes. Therefore, RCL is only agatpnally feasible if there
exists a sparse structure representing the data. The maoditiooal independence relations
occur in the low-order constraints, the faster RCL converges.

If there exists a faithful Bayesian network with the trividistering of variables representing
the data, i.e., very node corresponds to a single variable, &@icides with the IC algorithm
and will find it. However, if the constraints obtained fromtalare highly incompatible, the
resulting structure could be less informative due to thatetyy of merging nodes. Note that the
construction of nodes in the final output, i.e., the clusignof variables, is not alway unique, due
to different orders of merging nodes (see Sedtion #.6.4rf@ample).

4.6. Real-world Experiments with RCL

We demonstrate some experiments of real-world data with R@m filifferent scientific fields.

In our experiments, if not explicitly stated otherwise, keenel independence test is used due to
its general applicability. The real-world data are chalieg, because the assumptions we made,
e.g., acyclicity, faithfulness, etc., are not necessdtilfilled. There might exist no faithful
Bayesian network at all to represent the observed data. HoWBCL often generates faithful
structure on an appropriate clusters of variables.

4.6.1. College plans

Sewell et al.[[140] investigated factors that influence thtention of high school students to
attend college. They measured five variableslfoiB18 Wisconsin high school seniors: £%):
male, female; Socio-economic Status (SES): low, lower teidgpper middle, high; Intelligence
Quotient (1Q): low lower middle, upper middle, high; Pa@rEncouragement (PE): low, high;
and College Plans (CP): yes, no. This dataset is alreadysdiedby Spirtes et al. [153] (with
constraint-based PC algorithm) and by Heckerman et _al. (88h the Bayesian score-based
method).
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Figure 4.13.: Stepwise results of RCL (usigtjtest) applied to college plan data.

We ran RCL on this dataset. Because of the large sample size,asidikslihood ratioy?
tests to check the independence constraints[Figl 4. E3rélies the stepwise results of RCL. We
started RCL with testing marginal independence relationsadndined two marginal indepen-
dence constraints, namelg$ I 1Q and X I SES. This leads to an adjacency structure as
shown in the leftmost plot. The variables will not be merggdce no non-intersection or non-
chordality conflicts were detected. The second plot shoesabulting directed graph according
to the orientation procedure described in Fig. 4.11. Atket,tdue to 8x L CP| PE, the edge
between &x and CP is unnecessary and thus removed, as shown in the libtird p

The remaining undirected edge between PE and CP can beeatien®? E— CP by Step 4 of
RCL, otherwise a new-structure SEX- PE«— CP would be created. The edge between 1Q and
SES remains undirected. The final output of RCL (rightmost)moincides with the result of
the constraint-based PC algorithm (see [153] for discas3jdut slightly differs from the result
of the score-based Bayesian approach (see [86] for distis3siadditionaly? tests showed that
all detected unshielded colliders on PE and CP display netramsitivity conflicts. Thus, this
final output is a faithful Bayesian network that perfectlynesents the data. This example shows
that if there indeed exists a faithful Bayesian network wii# trivial clustering of variables, i.e.,
very node in graph corresponds to a single variable, RCL wakksIC and find the faithful
representation.

4.6.2. Egyptian skulls

This dataset [164] consists of four measurements of malgtiagyskulls from five different his-
torical periods ranging from000 B.C. to150 A.D. 30 skulls are measured from each time period,
i.e., 150 cases in total. The data are analyzed to determine if therargrdifferences in the skull
sizes between the time periods and if they show any changbgimie. The researchers theo-
rize that a change in skull size over time is evidence for tierbreeding of the Egyptians with
immigrant populations over the years. The measurementsutifsare MB (maximal breadth),
BH (basibregmatic height), BL (basialveolar length), Nkgal height). The predictor variable
is APPROXIMATE Y EAR (approximate year of skull formation).

RCL converges after testing the marginal constraints, hesd inC,. The output as shown
in Fig.[4.14 represents all marginal constraints, in palkiicthe marginal independence between
some of the measurements, e.g., between MB and BL and beBig¢@amd NH.
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Figure 4.14.: Output of RCL on Egyptian skull data.

The twov-structures, which are identified by marginal constrairsisiot confirmed by con-
ditional dependences. That means, two non-transitivityflaxts are present and resolved by
Assumption #. One possible reason is that the underlyinglalision is indeed not faithful. This
dataset is listed as an example for the software project THY RAntaining the PC algorithm)
on its webpagéttp://www.phil.cmu.edu/projects/tetrad_exampld$e output of RCL is consistent
with the output of PC. We used default parameters of TETRADB4a8d set significance level
a=0.05.

Note that the causal ground truth is actually not quite diednis example. If we distinguish
between the real year (yet unknown) and the estimated yaae¢bon the size variables: MB,
BH, BL and NH) the former should be considered as a cause dditieevariables (given that
the skull size has indeed changed over the years) and tke dattain effect of them. Due to the
fact that the kernel independence test detected margidapeandence between MB, BH, and
between MB and NH, it is not very plausible to assert, basethisrdataset, a really significant
change in skull size over time.

4.6.3. Montana outlook poll

The data contain the outcomes in the Montana Economic GuBadl conducted in May 992,
with accompanying demographics 29 out of 418 poll respondents. After removing records
with missing values, the dataset hB&&3 entries. More information about data can be found
at http://lib.stat.cmu.edu/DASL/Stories/montana.htifhihe Montana poll asked a random sample of
Montana residents whether the respondent feels his/hsopalr financial status is worse, the
same, or better than a year ago, and whether they view the estahomic outlook as better
over the next year. Respondents are classified by age, inqguolig;al orientation, and area of
residence in the state.

The dataset contains the followifigliscrete variables: 8 = 1 meaning undes5s, 2 meaning
35 to 45, 3 meaning55 and over; &x = 1 meaning male2 meaning female; yearlyNiCOME
=1 meaning under ®K, 2 meaning 80 — 35K, 3 meaning over $K; POLITICAL =1 mean-
ing Democrat2 meaning Independent, meaning Republican; REA = 1 meaning Westerr,
meaning Northeaster@,meaning Southeastern MontanaiyENCIAL status =| meaning worse,
2 meaning same, meaning better than a year ago; state economit®oK = 1 meaning better,
2 meaning not better than a year ago. We interpret the valuegemncally, since the difference of

78



4.6. Real-world Experiments with RCL

Figure 4.15.: Stepwise results of RCL on Montana data. Theplettillustrates the structure
representing marginal constraints with a non-intersactionflict. The right plot
illustrates the final output of RCL. The output is a faithful Bayga network repre-
senting the independence relations obtained by the kerdependence test.

values are somewhat meaningful.

We ran kernel independence tests. The left plot of [Eig.]4tidws the adjacency structure
based on marginal constraints. The fully connected trigdt@sANCIAL ,POLITICAL,OUTLOOK)
and (AREA,PoLITICAL,OUTLOOK) are checked for non-intersection conflicts. The following
conditional independence is obtained for the former triple

(OUTLOOK L FINANCIAL | POLITICAL) A (OUTLOOK L POLITICAL | FINANCIAL ).

Therefore, Step 1.2 of RCL mergedNANCIAL and ROLITICAL together to a new node contain-
ing both. Due to

(SEx L AGE) A (SEX L INCOME) A (AGE L INCOME),
and
((FINANCIAL , PoLITicAL ) 1L AREA) A ((FINANCIAL , PoLiTIcAL) £ OuTLoOK) A (AREA L OUTLOOK) ,

we infer twow-structures (see Fig._4.115, right). Batkstructures can be confirmed by the condi-
tional dependences via the kernel independence test

(SEx L AGE|INCOME) A ((PoLITICAL, FINANCIAL) £ AREA|OUTLOOK).

Thus, the output of RCL as shown in the right plot of Fig. 4.15teied a perfect map of data,
i.e., a faithful Bayesian network.

In this example, we obtained the following constraints byangeof the kernel independence
test:
FINANCIAL L AREA (with a p-value of 0.01B (4.16)

and
PoLITicAL £ AREA (with a p-value of 0.504 (4.17)
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Figure 4.16.: Output of RCL on endodermal data of C. elegans fdllyeconnected undirected
graph represents DAGs (3! =6 different orderings o8 nodes).

but
(PoLITiCAL, FINANCIAL ) I AREA (with a p-value of 0.05Y.

It is obvious that the decomposition property (A2) as defimeBig.[4.] is violated, when the
significance level is chosen to Beh5. Nonetheless, the constraints as shown in Eq.{4.16) and
Eq. (4.17) are not required by the resulting structure dueefnition[16, since only indepen-
dence relations between entire nodes, not parts of a noglepasidered. That is why (A2) or
(A3) need not be considered in this thesis. To modify our &emeasures so that the proper-
ties of decomposition (A2) and weak union (A3) are inhesehilfilled is an interesting line of
further research. Note that constraints via our kernelpeddence test always satisfy the prop-
erty of symmetry (Al) due to the design of the kernel measdessribed in Section 2.3 and
Sectior 2.4.

4.6.4. Caenorhabditis elegans

Biological regulatory networks appear to be composed of Isrhaiction-centered regulatory
sub-networks in which most of the regulation is exhibitet®=n a small number of highly
interactive genes, with only limited input from the restloé network. Therefore, it is interesting
to explore the relationships between a small number of gafewever, discovering biological
regulatory networks is challenging, because such apitaittoncern small sample sizes and
noisy data.

In this experiment, we study the small gene regulatory ndtsvof C. elegans again (see
Section[4.2.3 for data). First, we consider the endoderm iel€yans. Having resolved the
non-intersection conflict by merging the genes ELT-2 and-Eldue to Eq.[(4.10) to one node,
we obtained a structure of three nodes without non-tridahgitional) independence relations.
The final output of RCL is then the fully connected undirectedpbras shown in Fid. 4.116
representing the Markov equivalence class of DABs-( different orderings o8 nodes).

The resulting structure generated for the endodermal daRQL is not very informative,
but is consistent with our current understanding of thesoliethese genes. END-1 and END-3
both belong to the GATA family of transcription factors ane ¢he earliest endoderm specific
genes expressed [184]. Evidence points to END-3 beingatetivfirst with END-1 following
shortly after. Both subsequently trigger the expressionldtZand ELT-7, GATA factors them-
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Figure 4.17.: Heatmap of maternal data of C. elegans with gdn@M5, MEX3, POP1,
and PAL1. The gene names and the clustering results due atvires a non-
intersection conflict (see text) are described on the Id# sf the plot.

Causal_ Clustering by te__ 9 - Causal Clustering by tests
via kernel measur L via Mutual Information
iri 11. pirin
47. MART-1
2. WNT5A }

410. STC2
45. MMP-3 —————
3. S100P
9. synuclein —
4 RET-1——
5 10 15 20 25 30
Case No.

Figure 4.18.: Heatmap di0 genes of metastatic melanoma data. The gene names andshe clu
tering results by means of independence tests via kernedumesmand mutual infor-
mation (see text) are showed on the left and the right sideeoplot respectively.
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(POP1,PAL1)

Figure 4.19.: Output of RCL on maternal data of C. elegans.

selves|[105].

Second, we consider another small gene regulatory netwdtk elegans, namely maternal.
The measurements of genes are illustrated in[Figl 4.17. ®teetnon-intersection conflict

(MOMS5 L POP1|PAL1), (MOMS5 L PAL1|POPY,

genes POP1 and PAL1 are merged to a new node in the structdter tihat, no non-trivial
independence relations can be detected between nodes ,fXDR), MOM5 and MEX3. The
output of RCL is a fully connected undirected graph as showngr£&19.

Causal analysis of maternally inherited transcripts isdiffi Cause-and-effect relationships
are hard to identify, since a significant amount of trangsrigas been placed in the egg ma-
ternally. The developing embryo eventually starts expngsts own transcripts, but the initial
amount supplied maternally skews the data so that causigkseésiaecomes difficult. One possi-
bility would be restricting the analysis to the later stggesere the ratio of maternal transcripts
becomes negligible compared to the ones of embryo. Unfatély) selection of data points
does not improve the performance of RCL in this data sample. dgecture that it is due to
the relatively small sample size, since it would remove astidalf the measurements from the
dataset. Although the output of RCL as shown in Eig. 4.19 ladglectionality in the edges, it
resembles the factual knowledge on the genes| [104, 49]: MEegulates levels of PAL-1 and
MOMS5 acts downstream of POP1 and PAL1.

Through these two examples, we can see that, if no indepeadetations can be accepted,
RCL has to test all non-trivial independence constraints eetwnodes and is not able to infer
any direction of edges in the structure. Consequently, RCLheilkomputationally infeasible if
the number of nodes is large.

The last small gene regulatory network of C. elegans is thear&tof mesoderm, which has
already been discussed in Secfion 4.2.4. If we first searaloio-intersection conflicts, we have
to merge genes HND1 and PHA4 to a new node (HND1,PHA4), becaus

(HLH1 1 HND1|PHA4) A (HLH1 L PHA4|HND1).

Within the new set oft nodes, no non-intersection and no non-chordality conftiatsbe found.
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(HLH1, HND1, PHA4) TBX38

Figure 4.20.: Graphical representations of mesodermal @fa€. elegans. If we first search for
non-chordality conflicts and then non-intersection cotsligve will have the left
plot as the output. If we first search for non-intersectionflicts and resolve them,
no non-chordality conflicts can be further detected, thusohtain the output as
shown in the right plot. Different orders of resolving cocif$i can, in practice, lead
to different clustering results of variables.

(HND1, PHA4)

Two marginal independence relations
(HLH1 1 HLH25) A ((HND1,PHA4) 1 TBX38)

and othert marginal dependences between nodes are obtained. Thelagbf Fig.[4.20 is the
graphical representation of data.

On the other side, if we first search for non-chordality cetdlisee Sectidn 4.2.4), the genes
HLH1 and HND1 will be merged to (HLH1,HND1). After that, a namersection conflict can
be further identified within the fully connected nodes (HLHRXD1), PHA4 and HLH25, since

(HLH25 L (HLH1,HND1)| PHA4) A (HLH25 1 PHA4|(HLH1,HND1)).

Therefore, we have to merge (HLH1,HND1) and PHA4 to a new r(btleH1,HND1,PHA4).
Within the new set of3 nodes, we obtained the following constraints by means okérael
independence test

((HLH1,HND1,PHA4)1 TBX38) A ((HLH1,HND1,PHA4)t HLH25) A (TBX38 £ HLH25) ,

which indicates a-structure, i.e., the unshielded collider on HLH25. Thistructure is con-
firmed by the conditional dependence, i.e.,

(HLH1,HND1,PHA4) 1 TBX38|HLH25.

Therefore, the DAG as shown in the left plot of Hig. 4.20 isded faithful with respect to data
by means of kernel independence test.

Summing up, the output in the left plot of Fig. 4120 is obtair®y first searching for non-
chordality and then non-intersection conflicts, while theult in the right plot is obtained by
first searching for non-intersection conflicts. This exaamplakes clear that, in practice, dif-
ferent orders of resolving conflicts could lead to differehistering of variables, and different

83



4. From Independence Relations to Causal Structure

Figure 4.21.: Output of RCL on data of C. elegans.

construction of nodes could lead to different structurestréicture that contains more informa-
tion, in the sense that more edges are directed, is desirable

The mesodermal data proves to be the most complicated tgzanarhis is due to different
cell lineages separating early and showing lineage spegghe expression patterns that become
overlaid in the microarray data. We recommend at this pairdgeparate expression profiles of
genes according to their spatial distribution. Nevertglat is possible to observe fragments
of the pathways in the resulting structure. The structulierstains the coupling of HND1 and
PHAA4, the connection between HLH1 and HND1 and a bi-directethection between HLH25
and HND21 which indicates a probable hidden common causeurrcase most likely MED-
1,2 [104].

For the sake of completeness, we ran RCL on the whole datasetedégans containing all
13 genes as shown in Tadb. 4.1. Prior knowledge was used to gheugenes into maternally
inherited, mesoderm related and endoderm related. Thesnodée structure correspond to
the groups of genes, namelyAVERNAL, MESODERM and ENDODERM. Only one non-trivial
independence relation MERNAL L MESODERM| ENDODERM s detected. The final output of
RCL is shown in Fig.4.21, which excludesiBODERM being the common effect of BEEODERM
and MATERNAL.

From a biological point of view, the result of RCL did not caguihe essential relationships
between the groups of genes. The prior knowledge statesMhatRNAL influences EDO-
DERM and MESODERM The endodermal and mesodermal factors interact with eten. cAc-
tually, this fact can most likely be attributed to the tengdarature of the data. In the beginning
the maternal transcripts are the driving force of the dgualent and are the primary causative
element for endodermal and mesodermal factors but lateneaytstem switches to a more net-
worked state were the gene groups are starting to influerateaher [104]. Further research
concerning the change of causal relationships over timeesled in order to properly deal with
this sort of data, i.e., time series.

The other point is that the factorsAMERNAL, ENDODERM and MESODERMare represented
by a four- or five-dimensional variable. Given the same sarajle, the independence constraints
represented by the graph in Fig. 4.21 are expected to bedéable than those in Fig. 4.117,
Fig.[4.7 and Figl_4l6. For this reason, a structure with n@dpsesented by low-dimensional
variables can be tested more reliably.

The resulting causal structure should never be seen aslsogeefinitive. Especially in bi-
ological systems it is often the case that functionally latesl components show a high degree
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of correlation in their activity, which might induce a comtien in the causal structure. Also the
feedback-driven nature of biological systems does notatdénwith the acyclicity assumption

and thus tends to result in complications in the constranatibthe causal structure. The RCL
algorithm itself does not include information in the reggtstructure to differentiate between
connections that cause or inhibit an event. In the case ofmimaes only representing single
events, this can easily be extracted by a correlation aisatygshe dataset. For nodes contain-
ing multiple variables it is not clear how to recover the tygeelationship between groups of
variables.

4.6.5. Metastatic melanoma

From the practical viewpoint, if more thanvariables are measured, we need an order of fully
connected substructures that are considered for expldrggon-intersection conflicts by Step
1.2 of RCL (Fig[4.1R).

Assumption 5 Let G; and G, be two fully connected substructures in DAG If the weakest
marginal dependence between any two distinct variallleandY; involved inG; is larger than
the weakest marginal dependence between any two distinchiesia, andY; involved ingG,,
then the adjacency structure correspondingjtois more reliable than the adjacency structure
corresponding t@,.

The intuition behind this assumption is that, given someramate measure of dependences,
the stronger the dependence between two variables can [seiradathe more reliable a connec-
tion between the nodes representing the variables can &eadf We propose to first consider
the more reliable adjacency structure correspondindor exploring the conflicts among the
constraints, theg,.

Now, we consider real data from biology, namely metastagtamoma. Even though only
of observed skin cancer incidences are melanoma, it is negile for almosg80% of all deaths
attributed to this type of cancer. Onlyt% of patients with metastatic melanoma survive Jor
years|[114]. It is widely accepted that major risk factorsmaflanoma are genetic predisposition
and exposure to UV light.

We applied the RCL algorithm (with additional Assumption 5)the 31 gene expression
profiles generated in the study of metastatic melandéma [R8festrict the number of genes we
concentrated on a small set likely connecting to a localletgry network. In the expression
profiling study of Bittner et al. [23], WNT5A has been identifiad a gene of interest involved
in melanoma. It was experimentally proved that increadieglével of WNTAS (2) protein can
influence the cell's metastatic potential [173]. Due to iitgplication in the metastatic spread of
melanoma cells, gene WNT5A was chosen in the regulatory mktwo

Methods for choosing the subset 1df genes involved in a small local network that includes
the activity of WNT5A is described in [97]. The network comisithel0 most significant genes
which are narrowed down froB87 genes: pirin (1), WNT5A (2), S100P (3), RET-1 (4), MMP-3
(5), PHO-C (6), MART-1 (7), HADHB (8), synuclein (9), and STCI). Tab[4.6 summarizes
the genes and their function.
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1. | pirin Implied in transcription activation and apoptosis.

2. | WNT5A | Secreted signaling protein.

3. | S100P S100 calcium binding protein P.

4. | RET-1 Reticulon-1 (RTN-1). Predominantly expressed in braisutés

5. | MMP-3 Proteins of the matrix metalloproteinase (MMP) family aredlved in the breakdown of
extracellular matrix.

6. | PHO-C Phospholipase C, Gamma 1 (PLCG1).

7 MART-1 | Antigen that is specific to the melanocyte lineage, foundommral skin, the retina, and
melanocytes (Melan-A).

8. | HADHB | Subunit of the mitochondrial trifunctional protein.

9. | synuclein| May be involved in the regulation of dopamine release antspart.

10. | STC2 Anti-hypocalcemic action on calcium and phosphate honasgst

Table 4.6.: Genes involved in metastatic melanoma datalemdftinction.

The expression data was quantized to a ternary §tate0, 1} indicating reduced, normal and
enhanced expression levels. Quantization smoothes éntooduced by noise and other factors
indirectly influencing measured expression levels. [Fii84isualizes the data of these genes
with three expression levels.

In the first run, we interpret the variables as continuoussara use the empirical kernel
dependence measures (as defined in Defirlition 13 with Gaussiaels) to quantify the degree
of dependence. Fig. 42 illustrates the stepwise restili®Gh on the melanoma data. The
leftmost plot is the underlying adjacency structure indulog marginal constraints. We explore
non-intersection conflicts within fully connected substtues of this adjacency structure. To
resolve conflicts, following reconstruction of nodes areassary:

(2L 1|8 A(2L8]1) = mergeland8to(1,8)
(5L 3|6)A(5L6]3) = merge3and6to(3,6)
(10 L2|7)A(10 L 7]|2) = merge2and?7to(2,7)
((3,6) L 5[10) A ((3,6) L 10|5) = merge 5 and 10 to (5,10)
((5,10) L 9](3,6)) A ((5,10) L (3,6)|9) = merge 9 and (3,6) to (3,6,9)

We obtain a new set df nodes without non-intersection conflicts as shown in theselot
(from left) in Fig.[4.22.

Based on this clustering of variables, we first test margindependence between distinct
clusters of variables, i.e., the nodes in the graph. Theltreguadjacency structure of these
nodes is shown in the second plot of Hig. 4.12. The third phoins the result of inferring-
structures after Step 1.1 of RCL. No non-chordality confli@a be found by Step 2. Step 3
removes the unnecessary edge betw@eé, 9) and(5, 10) due to((3,6,9) L (5,10)|(2,7),4)
with respect to the potential ancestor condition. All edgesthen directed. The final result
is shown in the rightmost plot. The bi-directed edges betw@e7) and (3, 6,9) and between
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T

Figure 4.22.: Stepwise results of RCL (by means of indeperedéssts via kernel measures)
applied to metastatic melanoma data.

(2,7) and(5, 10) could be traced back to latent common causes. Another exdaris that the
underlying model is indeed cyclic.

In the second run, we interpret the variables as categaieed and use the mutual informa-
tion to measure dependences between variables. The magmfudependences measured by
mutual information differs from the magnitude measured &kl methods. In particular, under
AssumptiorLb, the order on the fully connected substrusttirat are considered for exploring
non-intersection conflicts by Step 1.2 of RCL is different.

The leftmost plot of Fig._4.23 is the underlying adjaceneydure induced by marginal con-
straints (via mutual information). In comparison to theredst plot of FigL4.2R (with kernel
measures), the only difference is that tests via mutuatin&ion accept the constraif@ L 8)
with a p-value of0.056, while the test via kernel measure reject the constri@nt. 8) with a
p-value 0f0.044.

We explore non-intersection conflicts within fully connedtsubstructures of this adjacency
structure. To resolve conflicts, following reconstruct@modes are necessary:

B3L2|7)AN(BLT7|2) = merge2and7to(2,7)
(9L (2,7)|10)A (9 L 10|(2,7)) = merge (2,7)and 10 to (2,7,10)
((2,7,10) L 1]8) A ((2,7,10) L 8]1) = merge 1and 8to (1,8)
(5L 3|6)A(bL6]/3) = merge3and6 to(3,6)
(51L.9](3,6)) A(51L(3,6)]9) = merge 9and (3,6) to (3,6,9)

We obtained a set df nodes as shown in the second plot (from left) of Fig. 4.23,cihinly
slightly differs from the clustering as shown in the secolud pf Fig.[4.22 using kernel measures.
The only difference is that the gene STC2 (10) belongs tomiffeclusters.

Step 2 of RCL detects no non-chordality conflicts. Step 3 remdkie unnecessary edge
between(3, 6,9) and(5) due to((3,6,9) L 5] (2,7,10),4) with respect to the potential ancestor
condition. All edges are then directed. The final output of R@lmeans of mutual information
is shown in the rightmost plot of Fig. 4.23.

Interestingly, the clustering results and final graphiastpbats by means of the permutation
tests using mutual information and kernel measures as depea measures are quite similar,
although mutual information interpreted the variablesasgorical ones while kernel measures
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Figure 4.23.: Stepwise results of RCL algorithm (by means dépendence tests via mutual
information) applied to metastatic melanoma data.
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Figure 4.24.: Outputs of PC applied to metastatic melancee d he left plot is the result, if we
consider the underlying domains categorical and use likeli-ratioy? test. The

right plot is the result, if we consider the underlying donsacontinuous and use
Fisher’s Z test. The significance level is chosen t0 106

interpreted them as continuous ones. We conjecture thatie to the ternary domains. More
precisely4 genes, i.e., RET-1 (4), PHO-C (6), MART-1 (7), HADHB (8), hawdy two expres-
sion levels in the31 cases observed (see Hig. 4.18). The similar results achieyelifferent
measures showed that the constraint-based clusteringguoe (Fig[ 4.9) is reasonably robust
with respect to the order of checking conflicts.

Note that the conventional constraint-based PC algoritbes chot handle probable violations
of the faithfulness assumption at all. In conflicting sitaas, the output of PC depends on the
order of checking independence. For comparison, we peddfdC on the metastatic melanoma
data with likelihood-ratioy? and Fisher’s Z test (see Fig. 4124 for outputs). Interebtinge
can observe that the outputs of PC contains the edges betxgables which are clustered to
a node by RCL and the edges between sets of variables whichpaeseated by nodes in the
outputs of RCL are mostly absent.

It is indeed difficult to evaluate the performance of RCL on sadfiological dataset, because
the ground truth is not completely known. Nonetheless, thesal interpretation gained from
the resulting structure can partly be confirmed by prior kieolge of biologists or are consistent
with other studies.

Genes pirin (1) and HADHB (8) are identified as the start pofntausal chain by RCL (see
Fig.[4.22 and Fid. 4.23). The gene pirin (1) is a transcriptaztor and believed to have influence
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on apoptosis |2, 121]. Datta et &l. [45] suggested in theidysto control the level of WNT5A
(2) directly or through pirin (1), since they believe thahtolling the influence of WNT5A (2)
in the regulation can reduce the chance of melanoma metastasFor pirin (1) it is possible
to image a role as a regulatory element of the other nodeisttiicture. Gene HADHB (8)
is part of a mitochondrial protein complex responsible feidation of fatty acids[[120]. The
regulatory role of HADHB (8) is unknown and thus it is possilthat its connections are due to
non-functional dependences.

Gene WNT5A (2) is a secreted signaling protein whose deréguolplays a central role in can-
cer progression [128]. RNAI evidence points towards a cotmeof WNT5A (2) and MART-1
(7) [150].

Gene MMP-3 (5) belongs to a family of secreted proteins thaakdown the protein com-
ponents of the extra cellular matrix. This detachment frbm hatrix allows cancer cells to
migrate and develop metastasis distant from the primarytum is well known that multiple
members of the MMP family are involved in this process| [421]18Gene STC2 (10) plays a
role in the maintenance of the calcium homeostasis. Des&igalof calcium levels is believed
to help cancer cells achieve their anti-apoptotic propray].

The remaining nodes of the structure contain genes explas$eain tissue, i.e., RET-1 (4),
dealing with energy metabolism, i.e., S100P (3), PHO-C46) a dopamine release synuclein
(9). Both RET-1 (4) and synuclein (9) are primarily expressedeural tissue, which makes
the connection between them likely. However, the functioole of RET-1 (4) is yet unknown.
It could be that the causal connections to those genes artodwan-functional correlations in
activity. Alternatively, it is imaginable that the conniect between(2, 7)/(2,7,10) and(3,6,9)
is actually traced back to a hidden common cause (maybe sctiption factor) controlling both
nodes.

In summary, the structure serves as a good example for tbendisative power of the RCL
algorithm. Even on data of small sample size, it is possibkxtract meaningful causal relation-
ships which are kept separate from genes not likely to ppatie in the functional network.
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5. From Magnitude of Dependences to
Causal Structure

The main shortcoming of learning causal structure from peehelence relations is that it cannot
learn anything, if no (conditional) independence can bdiedr Further, a reliable test on inde-
pendence constraints is of utmost importance. It is, howexs guaranteed when the sample
size is small or the conditioning set is large. In this chaptes will propose to make use of
the magnitude of dependences measured by kernels to getiout the causal structure, even
when no conditional independence is present.

5.1. Problems of learning structure via independence
tests

If we had direct access to the true distribution, we wouldagisvmake the correct decision
about the independence in the population. In practice, #ugstbn is made based on sample,
the observed data may not be very representative of the giopuland therefore leads us to an
incorrect decision. As mentioned previously (Tabl 3.1)e Ehrors made by independence tests
can be classified as tygeandIl error. The common way of controlling errors made by a single
hypothesis test is using significance leue(usually5%) to control the typd error. Under a
fixed level of typel error, one tries to keep the tyfieerror level as low as possible. Therefore, it
could happen that typk error cannot be kept to a low level, when tyjperror is controlled to a
pre-specified levek. It is very difficult to handle the trade-off between the levktype I andll
error, which is utmostly important for learning structurerh independence constraints.

In particular, if the sample size is small, statistical$esill be unreliable. Note that the term
“small” is relative and depends on the size of the model, beeaata, even when considered as
“large”, might often be small with respect to the number ahjstates of variables with a large
domain.

As an example, we describe a real dataset, which was useddy fstod products for palata-
bility by Street et al.[[161] (sebttp:/lib.stat.cmu.edu/DASL/Datafiles/tastedat.hforl data). The
experiment involved the effects on palatability of a coasesus fine screen (large “pieces” ver-
sus small “pieces”) and of a low versus high concentratioa iduid component. The dataset
consists ofl6 cases and three variables, i.eGARE total palatability score for 50 consumers:
general Foods employedrgpoint scale from-3 (terrible) to+3 (excellent) withO representing
“average”; LQUID: liquid level (0: “low”, 1: “high”); and SCREEN screen type( “coarse”,1:
“fine”). The sample size of data is5, which is quite small, since we ha28 possible states of
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5.1. Problems of learning structure via independence tests

variables { pointsx 2 liquid levelx 2 screen type).

We ran hypothesis tests of non-trivial independence malatbetween three variables. Tabl 5.1
summarizes the results of tests based on correlation analyd kernel dependence measures.
As seen from the table, tests provided the same set of indepea relations.

Correlation Analysis Kernel Dependence Resampling-based
Independence Hypothesjs Measure| p-Value | Test | Measure| p-Value | Test Multiple Test
Liquid L Screen 0.0000 | 0.596 | Accept|| 0.0000 | 0.601 | Accept Accept
Liquid L Screerj Score 0.0710 | 0.336 | Accept|| 0.0019 | 0.328 | Accept Reject
Liquid 1L Score -0.2475 | 0.365 | Accept| 0.0156 | 0.500 | Accept Reject
Liquid L Score Screen || -0.4093 | 0.133 | Accept| 0.0144 | 0.438 | Accept Reject
Screenl. Score 0.7965 | 0.000 | Reject || 0.1145 | 0.000 | Reject Reject
Screenl Scord Liquid 0.8221 | 0.001 | Reject || 0.0639 | 0.004 | Reject Reject

Table 5.1.: Correlation analysis and kernel independerst@ietaste score data.

In order to see whether the observed sample may be repragemtathe population or not,
we amplify the original sample of siz& by subsamples of siz&7, 24, 32, 48,80, 144. The
subsamples are resampled with replacement from the ofidgta. For each of thé subsample
sizes, we sampleth0 subsamples and calculated the p-value for each of@hesubsamples by
means of the kernel measure. Thus, we obtained a sétigb-values for every independence
hypothesis. The set abh0 p-values is reordered from small to large. Figl 5.1 showsthealled
Q-Q plots (“Q” stands for quantile) of the set of reordei®d p-values with difference colors
for different subsample sizes.

In the case of obvious independence, i.eQUuD . SCREEN (top left plot of Fig.[5.1), the
Q-Q plot of p-values is close to the diagonal line, since thalpes are somewhat uniformly
distributed in[0, 1]. The form of the Q-Q plot of p-values does not significantiambe, as the
size of subsamples increases. In the case of an obvious diEpEsn e.9., SREEN £ SCORE
(top right plot), the Q-Q plot is very close to the lower limghich means that almost all of the
hypotheses om00 subsamples would be rejected. The larger the size of sulbsantipe closer
the Q-Q plot to the lower line, the more likely the dependence

The ambiguous case is more interesting, i.e., the nonfgignt dependence betweenuib
and SORE (top middle plot). As the subsample size increases, morevaond tests will reject
the independence hypothesis, i.e., the Q-Q plot of p-vakaeigs from the diagonal position
to the lower line. Consequently,lQuiD and SSOREwould be dependent, if we could observe
more data points, although the independence test on theargample did not detect significant
dependence. Resampling-based hypothesis tests, e.ga vagampling size8, would revise
the set of constraints. The revised constraints in the tastan of Tab[ 5.1l lead to astructure
between LQuID, SCREENand S ORE, as shown in Fid. 512. Note as aside, a resampling-based
hypothesis test via correlation achieved the same resute@vn in the last column of Tdb. 5.1.

Itis clear that a weak dependence can always be verified gaificant one, if the resampling
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5. From Magnitude of Dependences to Causal Structure

Resample size: - 17 24 32 - 48 - 80 - 144

1 —
Liquid & Screen A ! Liquid & Score ! Screen & Score

p-Value
p—Value

Rank of p—Value 10C

0 Rank of p—-Value 100 0

Liquid & Screen, conditional on Score Liquid & Score, conditional on Screen Screen & Score, conditional on Liquid

p—Value
p—Value
p-Value

- 0 e e L.
0 Rank of p—Value 100 O Rank of p—Value 100 Oo Rank of p—Value 100

Figure 5.1.: Q-Q plot of p-values of a resampling-based éenmdependence test on taste score
data. The upper row shows the tests of unconditional cansdrasing different
sizes of resampling (different colors). The original saengke isl6. The lower row
shows the tests of conditional constraints.

Figure 5.2.: Taste score data represented by a DAG, givandependence constraints obtained
by a resampling-based kernel independence test (last aadfifab[5.1).
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5.2. Identifying colliders via magnitude of dependences

size is large enough. The choice of resampling size acthalhdles the trade-off between type
I andIl error implicitly. Our simulated experiments gave numdreadence of power increase
by such resampling-based hypothesis test (see Sdction GQppendix[CT for the procedure
and some experiments). We believe that the resamplingdldag®thesis test is a better way to
balance the typeandIl error than a direct choice of the level of merely typror, in particular,
if the sample size is extremely small. However, there is yeprnncipled way to choose the
resampling size. Further, such multiple testing is obVipastremely time-consuming.

An alternative way to avoid rejecting too many dependensesdirect use of the magnitude
of dependences measured by kernels for learning causetwstu In the example of taste score
data, we have

Hiquid, Screen< 107 ~0 and Hiquid, screeiiscore = 0.0019 > 0,

which could be interpreted as indicator for an unshielddlides on SCORE, in the spirit of the
criterion as in Eq_4]3. Or, analogous to the condition asqriZ&4 or Eq[45, the magnitude of
dependences

HLiquid,Score: 0.0156 > 0, HScreemScore: 0.1145 > 0, and HLiquid,Screen< 10_30 ~ 0

can also serve as an indicator for an unshielded collider ©oR& Following sections will
systematically elaborate on the question how to use the m@gnof dependences to infer the
causal structure.

5.2. ldentifying colliders via magnitude of dependences

We first describe some criteria that may give evidence of kdeolin the structure. As a start,
we consider an unshielded tripé — 7 — Y (X andY nonadjacent). The identification &f

as an unshielded collider in the structure establish am&abkbasis part of a constraint-based
approach. Under faithfulness assumption, conditioning @hould induce dependence between
X andY, i.e., Z activates the path between them. Only the empty set bloeksath betweeX’
andY. By means of kernel dependence measdEEQ& 0 andHYX|Z >0 strongly indicate that

7 is the common effect of probably independéntY’. This leads to the following criterion.

Criterion 1 Given variablesX, Y, Z, if the ratio Yj}‘(z is very large,Z is a strong candidate for
being a collider on the path betweéhandY'.

Graphically,X — Z andZ <+ Y can be inferred. In this case, variabl&sandY are probably
independent, i.e., an unshielded collideron

Since we believe théAﬁ[YX andﬁy)ﬂz quantify the magnitude of dependences in a reasonable
sense (with an appropriate choice of kernels), we dare toggemfurther and extract hints on
direction in a shielded tripl& — Y — 7 — X, i.e., a fully connected adjacency structure.
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5. From Magnitude of Dependences to Causal Structure

Criterion 2 Given variablesX, Y, Z, if

1/P\HYX Z H/%\IZX Y ﬁYX Z I/P\HZY X
XZ S 22 gpg X2 22
HYX HZX HYX HZY

Y

thenZ is a weak candidate for being a collider on the path betw&eandY’.

Graphically, X — Z andZ < Y can be inferred. In this case, variabl&sandY are probably
dependent, i.e., a shielded collider Bn

We unify Criterior{ 1 for unshielded collider identificationdCriterior{ 2 for shielded collider
identification into a so-calledX-collider condition”.

Definition 22 (A\-Collider Condition) For any triple (X, Y, Z) with the substructur&l —7—Y,
whereX andY may be adjacent or nonadjacent, varialffeis a candidate for being a collider
betweenX andY, if and only if R R

Hyx|z > A Hyx (5.1)

with appropriateA > 0.
If the collider is indeed unshielded, i.&l; ~ 0, one would expect that the inequality holds for

a very large\, say larger than some pre-specified constanin the case of a shielded collider,
A is chosen to be, say,, based on Criterion] 2

Hyxy H .
A2 i= p- max AZXlY, ZY|X with p>1. (5.2)
Hzx  Hzy

A1 should be chosen sufficiently large and it is clear that> A,. In our implementation, we
chose); :=100. Given observed samplg; can be calculated empirically. The parametes
used to avoid the uncertainty of probable sample errorsutrerperiments, we choge=1.2.

To ensure the numerical stability of the scores in Eql (5v8)add a very small regularization
constant to the kernel matrices that are used to compute the $@ogeby

rll)?Tr((Ky b el)(Ry +el)),
whenﬁyx appears in the denominator. In our experiments, we-s&t)—> throughout the thesis.

It is crucial to use the ratio, not the difference, of coraiil and unconditional measure for
the criteria, because the fact that one of the unconditidepéndences is close to zero, i.e., one
of the three ratios is significantly larger than other twagssential for the decision of a collider
structure. Under the faithfulness assumption, one caraligtidentify an unshielded collider
on Z, if marginal constraintsX 1. Y A X X Z AY L Z can be indeed verified, instead of
all non-trivial constraints as shown in the first column obTa.1 (see Sectidn 4.2.2 for more
discussions). This means unconditional meaerg;s ]I-]IZY > ]HIYX ~ (0 would be sufficient to
make the decision for a collider on.
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5.3. Orientation heuristics via collider identification

The situation will be more apparent if mutual informatiomp@ular dependence measure, is
used. For a tripl¢ X, Y, 7), the following equation holds in general [179]:

I(X,Y)-1(X,Y|2) =1(X,2) - I(X, Z|]Y) = L(Y, Z) = I(Y, Z|X) = [(X,Y, Z).

Note that the quantit§(.X, Y, Z), the mutual information among tripleX, Y, ), could be pos-
itive or negative. The difference of unconditional and dtodal mutual information, i.e.,
I(X,Y, Z), reflects a joint property of the triple (see also [132] forrendetails), which can-
not provide any information about the structure among th@msontrast, the three ratios are not
equal to each other, i.e.,

I(X,Y|2) , I(X,Z]Y) LY, Z|X)
I(X,Y) (X, Z) (Y, Z)

This is due to
I(X,Y,2) , UX.,Y.Z) ,LX.,Y,Z)

I(X,Y) 7 (X, Z) 7 Y, Z)
In these ratios, the magnitude of unconditional dependepleg/'s an essential role.

The reason why we use kernel dependence measures, not nmdwadation, is in part the
practical implementation, in particular, on continuousn@ns. In the limit of infinite sam-
pling, HS-norm of the conditional cross-covariance operptovides a general distribution-free
tool to capture dependences. Having chosen a kernel sutliutinions being less smooth
correspond to larger RKHS-norms, large dependence measiltésen indicate correlations
between smooth functions. A finite cut-off value for depermemeasures corresponds to ne-
glecting correlations if they are small or if they occur only complex (not sufficiently smooth)
functions (see Sectidn 2.7 for more discussions), whicteitamly a reasonable indicator for
independence. Criteridn 2 takes the quantitative inforomesibout dependence measured by ker-
nels into account and makes, in fact, some implicit asswmptiia the choice of kernels, on the
prior probability distribution of the transition probaitigs that occur in nature. Only extensive
experiments with real-world data can really decide whetherassumption behind our criteria
provide useful hints or not, because, if the true model ig@wfully connected, all joint prob-
ability distributions can, in principle, be generated. ihie will be very hard to find a reliable
principled way to prefer one of them.

5.3. Orientation heuristics via collider identification

The A-collider condition (Definitio 22) shows that Criteribh 1da@riterion2 can be considered
as two related conditions of increasing strength and cpomas to different degrees of reliability.
It is reasonable to expect that the weaker the assumpten,tie larger the value of, the
fewer collider structures will be erroneously identifiedhi§ suggests that the collider structures
identified by, have priority over those bj,. Note that we do not intend to interpret the ratios
HYX‘Z/HYX, HZX|Y/HZX, andey‘X/sz as scoring functions for the evidence of being a
collider, since only the comparison of the ratios givessom being a collider, not the value of
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5. From Magnitude of Dependences to Causal Structure

Input: An adjacency structurég.
Step 1. Voting procedure for colliders.

1.1 Check for all substructure¥ —Z —Y (X andY may be adjacent or nonadjacent), whether
Z is a candidate for being a collider betwe&nhandY on the basis of Criterionl 1 with a
sufficiently large\;. If yes, directionsX — Z andZ <« Y obtain a vote, respectively.
Based on the voting results, orient edges according to the majority printipfe result is
balanced, leave the edge undirected. The resulting graph is

1.2 The same voting procedure as in Step 1.1 on the basis of Critérion 2wt in Eq.[(5.R).
The resulting graph i§s.

Step 2: Orient the edges i¢ with orientation information fronG;. Then orient the remaining
undirected edges i@ with orientation information frong,.

Output: a graphg with undirected or directed edges.

Figure 5.3.: Orientation procedure A (OPA) by a majorityezot

ratios itself. Such a “twox-scheme” guarantees that an unshielded collider or a eolidth
weakly dependent parents can be first identified by verybigi@riterior1, and prevented from
getting (probably) wrongly re-oriented through the ledgbde Criterion 2.

If we consider a fully-connected adjacency structure pfer{ X, Y, Z) isolated from the whole
network, the)-collider condition can only be justified by hand-waving @argents. However, if
we consider a network with more than three variables, we sarctiterior 1L or criterionl2 for all
triples of measured variables. If Criteribh 1 or Criteridn 2ntifies” as a collider betweeX
andY’, we register this as a vote for orientatioais— Z andY — Z, respectively. After having
checked all possible triples, we infer the orientation afteadge by a majority vote. A similar
voting procedure is proposed in Sectionl4.4. The differéadkat we orient the edges here by
the majority principle. Consequently, the resulting graphtains no bi-directed edges.

Combining the voting procedure with the twescheme, we present an orientation heuristics
without testing independence, called orientation prooedu(short: OPA), as shown in Fig. 5.3.
Actually, OPA assumes that a certain pattern of marginal @mdlitional dependences makes
some of the orderings of a triple more likely. The voting gdere considers this preference for a
particular structure significant only if the evidence pd®d by many distinct triples is consistent.
The detailed pseudocode of OPA can be found in Appendik B.1e Mat the resulting graph of
OPA is not necessarily completely directed, since the gatasults can be balanced.

The main advantage of OPA is that it works even for a fully @wtad adjacency structure.
OPA as a heuristics, however, has the main shortcoming tagd A\ (e.g.,\; used in Step 1.2)
sometimes leads to wrong votes. Hence, the voting majooiiydcbe unreliabld.

1The way that our method makes use of the quantitative infdomabout the strength of dependence has some
analogy to the “monotone faithfulness principle” and BN-&@orithm proposed by Cheng et al. [28]. It states
that blocking a previously active path that connects twoesadecreases the mutual information. Chickering et
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5.4. Simulated experiments with orientation heuristics

To make the orientation more reliable, we propose to inaaeche information about proba-
bly absence of edges, i.e., if the HS-ndimy betweenX andY is smaller than some threshold,
say10~%). A slightly modified version of OPA, called orientation pemlure B (short: OPB), is
proposed in Fid, 5]4. OPB, instead of the majority principléents edges only by a unanimous
vote, i.e., no dissenting votes. In the case of a mixed vaotsglt, i.e., at least one vote for both
directions, we mark the edge with a bi-directed edge. Uitiiceedge depicts no votes for both
directions. The output of OPB is a mixed graph with un-, uand bi-directed edges. Actually,
the output of PC sometimes contains also bi-directed edgesgenm directed cycles (see Fig. 2
in [44]] for example, a so-called “pinwheel” structure). Viaan be interpreted as an indicator for
violation of assumptions. A possible interpretation ofiiriected edges obtained by our voting
procedure will be discussed in Section 5.4.2.

To take the adjacency structure, i.e., absence of edgesadebunt, Step 1 of OPB (Fig._5.4)
infers structure by unshielded collider identification.vithag identified all unshielded colliders,
Step 2 of OPB orients as many of the remaining undirectedsdggossible whenever their
directions follow from the assumption that neither additibunshielded colliders nor directed
cycles exisB For this purpose, orientation rule 1, 2, 3 for obtaining a irmaly oriented pattern
(Fig.[B.1 in AppendiX B.B) can be applied. After that, it coulapipen that some edges remain
undirected. Step 3 of OPB uses the orientation heuristiasag identify shielded colliders,
with respect to the given partially directed graph. The itedgpseudocode of OPB can be found
in AppendixB.2.

5.4. Simulated experiments with orientation heuristics

Some experiments are conducted on simulated data, whickaangled from functional or
logically-linked models. The kernel dependence measuaesnot only be used to infer the
orientation of edges, but also infer the absence or preseinedges by just thresholding the
measure. The output will give hints about how reasonableaisrtagnitude of dependences mea-
sured by kernels. Apart from graphical representatioresdttailed statistics of edges are useful
to give numerical evidence how reliably can the kernel messapecify the set of necessary
arrows.

5.4.1. Simulated data from noisy OR gates

We present experiments with six different OR gates as defméd,. (3.6). “2-Bit-IndDet” and
“3-Bit-IndDet” are deterministic OR gates with and 3 independent input bits, respectively;
“2-Bit-IndPro” and “3-Bit-IndPro” are probabilistic OR gatavith 2 and3 independent inputs;

al. [34] showed, however, that this principle could not gaitg be valid. For networks with many nodes one will
usually find several nodes that violate it. Nonetheless,FENwill be conducted for performance comparison.

2In a mixed graph, a pair of consecutive edges meeting at ax&rbn a path form a collider if both edges have
an arrowhead &, i.e.,— Z «—, < Z <, < Z«—, — Z <. Adirected cycle is a directed path — --- — X on
which every edge is of the form or < and all the edges- have the same orientation.
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5. From Magnitude of Dependences to Causal Structure

Input: An adjacency structurég.
Step 1. Unshielded collider identification.

1.1 Check for all substructureX — 7 —Y, whereX andY are nonadjacent, whethét is a
candidate for being a collider betwe&handY on the basis of Criterion 2. If yes, directions
X —Z andZ <Y obtain a vote, respectively.

1.2 Orient every edge i§ into —, if there is at least one vote for this direction and no vote for
the reverse direction-. If there are votes for both directions, mark the edge bi-directed. If
both directions obtained no votes, leave the edge undirected.

Step 2: The same orientation procedure as shown in Step 3 of IC[(Eig. 1.5).
Step 3: Shielded collider identification.
3.1 The same voting procedure as in Step 1.1 for all substrucireg —Y — X.
3.2 The same orientation procedure as in Step 1.2 for all remaining undireaed.ed

Output: A mixed graphg with un-, uni- and bi-directed edges.

Figure 5.4.: Orientation procedure B (OPB) by a unanimous.vot

whereas the probabilistic OR gates “2-Bit-DepPro” and “3BépPro” were fed witl2 and3
dependent inputs, respectively. The parameters of thedelsare summarized in Tdb. b.2.

To give some intuition of the value of kernel dependence mress we randomly picked out
three samples af00 data points, one for each of the three 2-bit OR gates. As seenTab[5.8,
the ratioH, x,|x,/Hx, x, achieves always the maximum within rows akiglcan be thus iden-
tified as a collider betweeX; and X,. The kernel measures describe exactly the fact that con-
ditioning on the output, the inputs become dependent. Tiesreor OR gates with independent
inputs, i.e., 2-Bit-IndDet and 2-Bit-IndPro, are extremedygle, which indicates an unshielded
collider onX3. In 2-Bit-DepPro, no conditional independence is presanttriterion[2 is still
applicable and indicates a shielded collider’on

We compared OPB with PC, BN-PC and various score-based Bayemithrods (see Ap-
pendiX C.2 for details about these methods), basethon replications of the experiments with
respective200 data points sampled from these six OR gates. In the case of W& Bse cut-off
value10~* for thresholding kernel dependence meadiife and remove the edge betwe&n
andY. The detailed statistics afd00 replications can be found in Tab._C.3 and Tabl]C.4 in
AppendiXC.2. Tal 514 summarizes the resulting graph ofréifgos in the majority case.

3The PC algorithm allows no latent variable, thus its outparmally contains only directed-%” and undirected
“—" edges. FCI, which allows latent common causes, has additipthe “X o— Y™ arrow, meaningY” is not
an ancestor of, i.e., X potentially cause¥” (common cause not ruled out). The undirected edge-Y" in
the output of FCI is often graphically represented B0 Y™ in many literatures. For the sake of simplicity,
we use the notation ofX —Y” throughout this thesis.
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2-Bit-IndDet 2-Bit-IndPro | 2-Bit-DepPro | 3-Bit-IndDet 3-Bit-IndPro | 3-Bit-DepPro

O EOHCOINES @,@ O

3 ) ) GO
X, | P(X1)=06 | P(X1)=06 | P(X1)=06 | P(X1)=06 | P(X))=06 | P(X,)=0.6
Xo | P(X2)=05 | P(X2) =05 | (1—X1)ox | P(X2)=05 | P(Xa) =05 | (1— X1)ox
X3 ORy{X: 2} ORy.2{X1 2} ORp2{Xi12} | P(X3)=04 | P(X3)=04 | ORp2{X12}
Xy - - - OR){X123} | ORy.2{X123} | ORy2{X123}

Table 5.2.: Parameters of models linked Dy3-bit deterministic and probabilistic OR gates.
P(X;) is shorthand forP(X; = 1). ORy{X,_ ;} denotes a deterministic OR gate
with X7, ..., X; as inputs; OR.{X; . ;} denotes the noisy OR gate as in Hq.13.6)
with =0.2. (1—X1)o.; depicts a variable whose value is with probability given
by an inverse ofX; and with probability0.9 by uniform noise.

Hy, x51x, / Hxox, Hiy, x51x, / Hxi x, Hix, x5 / Hxix,
2-Bit-IndDet || 0.0709/0.0377 = 1.8790 | 0.1285/0.0651 = 1.9732 | - 0032l _"—4502.8
2-Bit-IndPro || 0.0605/0.0454 = 1.3316 | 0.0409/0.0350 = 1.1665 | 5000% " '698.49
2-Bit-DepPro|| 0.0656,/0.0311 = 2.1050 | 0.0756,/0.0461 = 1.6411 | 0.0305,/0.0015 = 20.0435

Table 5.3.: Estimated kernel dependence measures of amssalople fron2-bit OR gates (see

Tab.[5.2). In all cases, ratigiX2Xs gchieves the maximum, which is taken as a hint

X1 X2

that X3 is the output,X; and X, are inputs.
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5. From Magnitude of Dependences to Causal Structure

e VNN X
VNN
VIV X
N VRN RN |
o WV NN X
o VNN XS
I i VRN IR N N
IR A A VD <IN
e VNN

Table 5.4.: The underlying true model and outputs generayedifferent algorithms (see Ap-
pendix[C.2 for details about algorithms). The first row ilhasés the generating
models in graphical representation (see Tah. 5.2 for pams)e Rows2 to 9 show
graphical outputs of algorithms or combinations of algoris. Each graph consists
of at most4 nodes, which are represented by circl&s: top left, X5: top right, Xj:
bottom left, X,: bottom right.
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5.4. Simulated experiments with orientation heuristics

As seen from Tal._5.4, both constraint-based and scorettBagesian methods achieved
guite good results in learning 2-bit OR. In learning 3-bit ORe tonstraint-based algorithms
seem often to perform better than score-based Bayesian dsetholearning 2-Bit-DepPro and
3-Bit-DepPro, OPB detected the connection betw&erand X, (Tab.[5.4, row OPB). whereas
PC wrongly removed the edge in both cases (Tab. 5.4, row P@)Pdadetected the dependence
betweenX; and X, correctly, it would not have been able to orient any edge. résalt would
be a fully connected and undirected graph. In contrastpagh all dependences are correctly
captured (actually, no conditional independence is veljiftey thresholding kernel measures,
OPB provides useful hints about orientation in the striect®oth PC and OPB have left edges
undirected in 3-Bit-DepPro. OPB performs slightly betteartiPC in the sense that the former
oriented as many edges as PC, but no edges are wrongly removed.

5.4.2. Simulated data from models with hidden common causes

The issue of hidden common causes is not the main concerisah#sis. Recall that we usually
made the assumption of causal sufficiency, i.e., all the comoauses of measured variables are
measured. Nonetheless, we would like, by means of some aieauéxamples, to explore what
happens when OPB is applied to situations when the caudalienty does not hold.

We study five generating causal structures as shown in thedirsof Tab.[5.5. For some
reason, variabld, contained in each structure, which is a common causg @dndY; or a
common cause of;, Y;, andY3;, cannot be measured. The second row of Tab. 5.5 shows the
voting procedure of OPB in the case tHaits not observed, when the true adjacency structure is
known. the expected outputs of OPB is shown in the third rowadi[5.5.

The latent variabld. in the first two models as shown in column 1 and 2 in Tab. 5.5 eann
be indicated by OPB, since no conflicts will be generated irvtdteng procedure of the collider
identification by leaving. out. In contrast, the latent variablein models as shown in column
3to 5 can be, in principle, identified, because the collidentification causes conflicting orien-
tation information. Note that, if we grou, and X3 in the model in column 4 to one variable,
we would have the same model in column 3. For this reason, wetbenmodel in column 3 in
our simulations and demonstrate experiments with modedslummn 4 and 5. The variables are
linked by OR gates.

We define the first model, graphically presented in row 1 coldhof Tab[5.b, by a 2-Bit-
IndDet OR gate (defined in Tab. 5.2) witki, and L as inputs and’; as output, and a 3-Bit-
IndDet OR gate (defined in Tdb. 5.2) wity, X5, andL as inputs and5 as output. The second
model, graphically presented in row 1 column 5 of Tabl 5.8eined by three 2-Bit-IndPro OR
gate (defined in Tab. 5.2) with and.X; (i=1, 2, 3) as inputs and; as output. We generated0
data points from both models and performed OPB on data witineasuring variablé..

As the statistics of the resulting structures in Tabl 5.6 &alol[5.7 showed, OPB correctly
detected the spurious associations betwgeandY; (i,j = 1,2, 3) in the majority cases and
oriented the edges between them bi-directed. As expettedesult of the model without noise
(76.5% in the first row of Tab[_5]6) is more reliable than that with s®ica. 43% in the first
three rows of Tal. 517). Note that, in the second model (T&h.réw 1 column 5), conditional
independence betweéhandY; is erroneously detected 6 — 27% of the cases (see first three
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5. From Magnitude of Dependences to Causal Structure

O O (S O o o
GS © G F R | A4
Truth o @ ° @ 0 @ 000 O o
O O, O, ©
Voting G0 G 0 @ ° @ @ @
O, | &
G | G | Gl
Result @ @ 0 @ 0 @

Table 5.5.: Five different generating models (first row)tedmng a common causk, which is
not measured. The corresponding skeleton of the observebles is oriented by
the voting procedure of OPB. The second row visualizes thebeurof votes on the
basis of collider identification for each edge. The third igivows the final output of
OPB.

rows of Tab[5.J7). That means, the most errors occur in totdsiy independence measures,
rather than in the orientation step. Although the examplggsst that bi-directed edges in the
output of OPB could be traced back to hidden common causafliatimg voting results do not
automatically indicate hidden variables. For instancejay happen that the underlying model
is indeed cyclic.

5.4.3. Simulated data from Asia network

In this experiment, we apply our criteria to a larger netwarkl focus on the “voting triples”.
We use the Asia network, an expert-designed causal netwmtindagical links, to sample data.
This model was first introduced by Lauritzen et al. [100] wlawdn specified reasonable transi-
tion properties for each variable given its parents. Dueeimninistic relationships between
variables, learning structure from independence comgsaiave various problems (sée [180] for
more details and discussions).

The underlying structure (Fig..5.5) expresses the follginown qualitative medical knowl-
edge. IxsPNOEAmMay be due to tuberculosis (B), LUNG cancer (together OB/LUNG) or
BRONCHITIS, or none of them, or more than one of them. A recent visit 831AAincreases the
chances of tuberculosis, whilev®KING is known to be a risk factor for both lung cancer and
bronchitis. The results of a single chestR&y do not discriminate between lung cancer and
tuberculosis, and neither does the presence or absenceseiNOEA

We fist consider the simpler situation: the true adjacenwcsire is known. We test OPB on
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5.4. Simulated experiments with orientation heuristics

CorrectPattern ¢ e | e — e | e — o | 06— o |0 «— @

Y1 <Y, 3.5 0.6 12.6 6.8 76.5
X —Y 0.0 11.6 79.2 6.6 2.6
Xo— Y 0.0 2.5 87.8 7.4 2.3
X3 —Y 0.0 2.6 90.8 4.8 1.8

X1 Xo 95.3 1.7 1.7 0.9 0.4
X1 X3 95.3 2.0 1.2 1.0 0.5

X1 Y 92.9 0.0 1.8 3.4 1.9
Xy X3 94.5 3.9 1.0 0.6 0.0
Xo Y 94.7 0.1 0.7 3.9 0.6
X3 Y 96.4 0.0 0.7 2.5 0.4

Table 5.6.: OPB is applied to causal models with a hidden comeausd. (Tab[5.5, column 4).
The variables are linked by a 2-Bit and a 3-Bit OR gate (see.text)s a placeholder
for an observed variable. The entries are percentagé3ofreplications having the
considered patterns as output.

CorrectPattern| ¢ e | e — e | e — o | 06— o |0 — o

Vi <Y, 26.6 1.7 13.7 14.5 43.5
Y, < Y; 26.9 2.2 13.4 13.7 43.7
Y, < Y3 27.3 2.2 135 131 43.9
X1 —" 0.0 17.4 72.5 6.8 3.3
Xo— Y 0.0 15.0 74.5 5.5 5.0
X3—Y; 0.0 16.4 74.3 5.4 3.9

X Xp 95.3 1.0 1.4 13 1.0
X X3 94.9 1.6 1.2 1.2 11

X1 Y 97.4 0.0 1.2 0.9 0.5
X1 Y 97.2 0.2 0.6 11 0.9
Xy X3 95.5 1.2 0.9 1.3 1.1
Xo 96.6 0.0 14 11 0.9
Xy Y3 96.2 0.1 1.2 15 1.0
X3 Y 97.0 0.0 13 11 0.6
X3 Y 96.6 0.0 1.2 0.9 13

Table 5.7.: OPB is applied to causal models with a hidden comeausd. (Tab[5.5, column 5).
The variables are linked by three 2-Bit noisy OR gates (s taX is a placeholder
for an observed variable. The entries are percentagégofreplications having the
considered patterns as output.
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5. From Magnitude of Dependences to Causal Structure

Figure 5.5.: Graphical representation of medical knowéety Asia network. Each node has
two possible states representing responses “yes” and ‘Indbtal, the underlying
domain containg® = 256 possible states.

Figure 5.6.: Stepwise results of OPB (Hig.]5.4) with the pkioowledge of the true adjacency
structure (leftmost plot). The middle plot illustrates tiesult after Step 1 of OPB.
The rightmost graph illustrates the result after Step 2 dBCOBtep 3 of OPB cannot
further orient the remaining undirected edges.

the true adjacency structure (Fig.15.6, leftmost). Tab.sh@ws the statistics aftanoo repli-
cations for thell involved “voting triples”, which are required for recoveg the orientation
of the 8 arrows in Fig[5.b. To test the sensitivity of the empiricepdndence measures to
changes in sample size, we conducted the experiments fasatatof a sample size 260 or
400. As seen from Talh. 5.8, the frequency with which one of theahatios achieves the max-
imum is quite robust with respect to the sample size. Extenstatistics of the orientation of
the 8 edges by OPB can be found in Tab.IC.5 in AppendiX C.3. Takingsand\ of different
levels into account, Fig. 5.6 shows the stepwise results PB.CBased on the correct corre-
sponding skeleton (Fig. 8.6, leftmost), step 1 of OPB (Eid) Betected two unshielded colliders
TuB — TUB/LUNG « LUNG and TuB/LUNG — DYSPNOEA« BRONCHITIS (see middle plot
of Fig.[5.6). The undirected edgeuB/LUNG — X-RAY can be further directed by Step 2, since
it is implied by the first detected collider (see rule 1 in Fgl and Fig[B.R in Appendix Bl3).
The three remaining undirected edges (Eigl 5.6, rightnarstlue to the limitations of methods
are based on collider identification. The rightmost plot Batvsuch methods can maximally
achieve.
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5.4. Simulated experiments with orientation heuristics

‘ Sample Size ‘ (TX7 Ty, TZ) ‘

(X,Y,2) (mx,my,mz) Voting Result
(AsIA, TuB, TUB/LUNG) 200 (1.0188,0.7812, 1.2038) | (39.5,0.160.9 no voting
400 (1.0143, 0.7446, 1.1928)| (42.2,0.357.5
(Tus, LUNG, TUB/LUNG) 200 (1.0409, 1.2553, 206.4190) (0.3, 1.7,98.0 TuB — TUB/LUNG
400 (1.0305, 1.2254, 250.4862) (0.1, 0.4,99.5 LUNG — TuB/LUNG
(Tus, TUB/LUNG, X-RAY) 200 (0.7453, 0.0002, 0.2982) | (84.4 3.3,12.3) no voting
400 (0.7414, 0.0005, 0.2584)| (97.2 1.6, 1.2)
(Tus, TUB/LUNG, DYSPNOEA) 200 (0.8132,0.2252, 1.6511)| (0.5, 26.7,72.8 no voting
400 (0.7512, 0.1276, 1.2778)| (0.1,18.981.0
(SMOKING, LUNG, BRONCHITIS) 200 (0.8555, 0.9747,0.8748)| (38.1,58.8 3.1) no voting
400 (0.5286, 0.9918, 0.8560) | (36.3,62.4 1.3)
(SMOKING, LUNG, TUB/LUNG) 200 (1.4851, 0.0117, 0.0335)| (98.2 1.0, 0.8) no voting
400 (1.5176, 0.0054, 0.0273)| (100, 0, 0)
(SMOKING, BRONCHITIS, DYSPNOEA) 200 (0.8134, 0.0908, 0.2650)| (97.3 2.7, 0) no VOting
400 (0.8091, 0.0536, 0.2500)| (100, 0, 0)
(LUNG, TUB/LUNG, X-RAY) 200 (0.0241,4.3x 1076, 0.2595) (2.2,0,97.9 no VOting
400 (0.0267,7.3x107%,0.2492) (0.2,0,99.8
(LUNG, TuB/LUNG, DYSPNOEA) 200 (0.0175, 0.0078, 1.2523)| (0.4, 1.0,98.6 no VOting
400 (0.0248, 0.0039, 1.2235)| (0, 0.2,99.8
(BRONCHITIS, TUB/LUNG, DYSPNOEA) 200 (0.9260, 1.0527, 4.4805)| (1.8,24.5,73.7 | BRONCHITIS — DYSPNOEA
400 (0.9781, 1.0576, 6.6893) | (0.2, 19.480.9 TuB/LUNG — DYSPNOEA
(TuB/LUNG, X-RAY, DYSPNOEA) 200 (0.0640, 0.2373, 1.2188)| (8.2,0.591.3 no VOting
400 (0.0270, 0.2477,1.2165)| (3.6,0,96.4

Table 5.8.: Empirical kernel dependence measures of datergted from Asia network. The

shorthandmy, my or my depicts the median o@];”x

HZX|Y

HYX\Z

Hzx

or By respec-

tively. The shorthand x, ry or rz depicts the percentage of cases where value

HZY\X HZX|Y

Hyx |z

- or

achieves the maximum. All entries are calculated on thesbasi

of 7000 repllcatlons and for a sample size2sf0 or 400. The last column shows the
voting according to Step 1.1 of OPB (Fig. 5.4).

105



5. From Magnitude of Dependences to Causal Structure

X5: BRONCHITIS

Xg:DYSPNOEA

Figure 5.7.: Result of OPA+K2 (K2 with initial ancestral ordeduced by OPA on a complete
adjacency structure) algorithm in graphical represemtafi he detailed statistics of
structures detected by OPA+K2 is collected in Tab] C.6 in AyipeC.3.

Now, let us consider a more challenging situation, i.etjrigour orientation heuristics on a
skeleton with redundant edges. As an extreme case, we teabthplete adjacency structure and
ran OPA (Fig[5.1) to learn orientation without any inforinatabout the adjacency structure.
As seen from Tal._Cl5 in Appendix_C.3, apart from unnecessaggsdhree edges, namely
ASIA — TUB, SMOKING — LUNG and SMOKING — BRONCHITIS, are often wrongly directed
and the otheb arrows can be discovered correctly.

Based on the resulting ancestral order by OPA, we could useg tebhniques to prune unnec-
essary edges, since hypothesis tests have problems dutetmuohéstic relations between vari-
ables. More discussions about these problems of learnirggrsgwork can be found in [180].
Setting an appropriate cut-off value for thresholding kédependence measure is also very dif-
ficult due to the small sample size. For purely discrete (mig@aar, binary) domains, K2 [40] is
a well-known score-based Bayesian approach for this purffcse initial ordering of variables
is given. The power of such score-based Bayesian approaahesffciently take a very large
number of data points into account and make pruning of edgms ate.

Since the output of OPA can contain undirected edges, thestnat order given by the ouput
is sometimes not unique. We start K2 with an initial ancésirder induced by OPA. If the
order induced by OPA is not unigue, we chose one of them ralydorhe so-called OPA+K2
performs well in learning Asia network from sampled data.e Butput (Fig[5.]7) contains no
undirected edges and the missing arc fromi/Ato TuB is probably due to the weak depen-
dency between them in datasets of such small sample sizésou§ih the edges fromM®K-
ING to LUNG and BRONCHITIS have the wrong orientation, the result contains no unnacgss
edges. OPA+K2+OPB (learning adjacency structure by staK2 with the initial ancestral or-
der induced by OPA and then re-orienting the correspondifjecancy structure of the result of
OPA+K2 by OPB) would revise both wrong directed edges intanacted.

Tab.[C.6 in Appendik C]3 summarizes how often an arrow is detiday OPA+K2 afted 000
replications. An extensive comparison of well-known coaisit-based and Bayesian algorithms
with respect to the Asia network is provided by Leray et ade(ELO1] Fig. 2 for experimental
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5.4. Simulated experiments with orientation heuristics

results). We can see that OPA+K2 performs better than K2 gwedbwith other initialization

of causal orders, which indicates that OPA provides quitable causal ordering. Furthermore,
OPA+K2 is competitive with other Bayesian methods and PC. Hmfopnance of PC is unsat-
isfactory in the sense that several edges are completekingisRepeated experiments with a
sample size fron300 to 5000 show that3 —5 from the total8 edges are always missing. This
result is actually traced back to the independence test oAB@ally, with regard to the sample
size, the result obtained by OPA+K2 is better thanlallalgorithms listed in Fig. 2 in [101]
concerning the so-called “editing measurésince our result has an editing measure of merely
3. Most notably, the result of such a hybrid algorithm can bady achieved with datasets of
moderate sample sizes.

The experiments with Asia network showed that OPA is redslgnabust with respect to
redundant edges. On the other hand, the given adjacencywstunfluences the reliability of
the orientation heuristics. A fixed cut-off value for threkting dependence measure does not
work well in a complex network. The combination of learningeatation in the structure by
our orientation heuristics and pruning edges by a scoreebBayesian approach alleviates the
problem.

5.4.4. Simulated data from functional models

In this section, we focus on the quantitative comparison afgimal and conditional dependence
measures on continuous domains. We sampled datasets fravdel as shown in Fig. 5.8X

is sampled from a gamma distributigi{2, 2). Y is a quadratic function oX added with an
independent Gaussian noise:

X 2
Y — )
o (10) + N(0, k)
Variable 7 is a function ofX andY:
Z o cos(mX) + In(]Y|) + N(0,0.01) .

One can imagine that influences” like a “seasonal” cycle, wheredSadds a logarithmic bias.
The mutual dependence betweErandY decreases as> 0 increases. Fig. 5.9 illustrates the
dependence betweéer andZ with the change of; from 103 to 102.

We generated00 data points from functional models withe {103,102, 107!, 1,10, 10?}.
We chose one random sample and computed the empirical mralitross-covariance operators
and the HS norms. We chose different regularization cotstdrom 10~1° to 1 to compute the
measures according to EQ. (2.11) and Kq. (2.12). 5.40alizes the resulting ratios of
dependence measures of this example. We can observe thatrégularizet is not too large,
the ratios are insensitive to the choicecdh [1071°,1072]. Thus, we set regularizer= 1075
throughout this thesis.

Tab.[5.9 summarizes the dependence measures for this exaRgplmost values of, Crite-

4Editing measure [101] is defined as the length of the miniregusnce of operators needed to transform the
original graph into the resulting one. Operators are edgertion, edge-deletion and edge reversal.
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5. From Magnitude of Dependences to Causal Structure

X xG(2,2) Y x 5, (%)2+N(O,H)

Z o cos(mX) 4+ se In(|Y]) + N(0,0.01)

Figure 5.8.: A functional model with shielded collider stture. (s;, s2) takes the values from
{(£1,£1)} and induces both positive and negative dependence. In shefiperi-
ment, we sefs, so) = (+1,+1).
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Figure 5.9.: Toy data sampled from a functional model ofg¢hrentinuous variables (Fig.5.8)
with 6 different parameters. Variable X is the “seasonal” cyclic influences of
variable Z. The smallerx is, the clearer the “seasonal’ effect &f on Z can be
recognized.
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1 1
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Figure 5.10.200 data points sampled from a functional model of three cootiswariables with

differentx. “Line Z” visualizes the values of ratigf‘fﬂ, computed with different
YX N
regularizers: from 10~1° to 1, “Line Y” illustrates the values of rati(%)ﬂ, and
zZX

“Line X” corresponds to the values of rati%#.
zZYy
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5. From Magnitude of Dependences to Causal Structure

K Hzyix / Hzy Hyzxy / Hzx Hyx|z / Hyx
0.001 || 13958x10°% _ () 0004 38863x10° — 0,0007 | 0.0300/0.0674 = 0.4447
0.01 || 3894102 _ 0910 | 0.0004/0.0560 = 0.0077 | 0.0292/0.0671 = 0.4348

0.1 || 0.0075/0.0331 = 0.2258 | 0.0012/0.0276 = 0.0436 | 0.0238/0.0468 = 0.5077

1 | 0.0182/0.0200 = 0.9122 | 0.0020/0.0012 = 1.7367| 0.0072/0.0051 = 1.4014

10 | 0.0186/0.0224 = 0.8326 | 0.0019/0.0025 = 0.7564 | 0.0028/0.0022 = 1.3019
100 || 0.0188/0.0226 = 0.8317 | 0.0018,/0.0025 = 0.7006 | 0.0026,/0.0020 = 1.3238

Table 5.9.: Empirical kernel dependence measures for amglsaof the functional model of

three continuous variables as shown in Eigl %Yﬁ in most cases (excepting=1)
YX
achieves the maximum, which indicatéseing a collider betweeX andY'.

rion[2 identified the correct colliders, expecting the case 1, where the voting for a collider
is obviously not consistent with the generating model. Nb# Hy x (x = 0.01,0.001) or

]I?IZX‘Y (k= 0.001) lies below the pre-specified cut-off valugs* for dependence, so that the
conditional dependence would not be captured.

To demonstrate that the above conclusion is not only basexbime particular sampling, we
replicated our experiment)00 times with datasets of siz&0 sampled from each of th&t
functional models:

y = 31(1%)2 +¢€, and z = cos(mx)+ szIn(|y|) + €.
with different combinations ofs;, s3) € {(+1,+1)} andk € {1072,1072,107%, 1,10, 10?}. The
4 different values of s, s2) induce all combinations of negative and positive correfati 1000
replications (see Tab. 5110 for results) show that our ntethelds the same results for various
combinations of s, s,). We conjecture that the voting for a collider agrees withghaerating
causal structure for most values ofand the majority of the samples. Whenis in a small
interval close tdl, however, we mainly obtain wrong votes.

5.5. Kernel-based causal learning algorithm (KCL)

We have shown so far that our orientation heuristics viadetapendence measures can provide
some good initial information about the orientation in theisture. On the other side, if we can
learn somewhat good adjacency structure, the performanoer mrientation heuristics can be
improved. For this reason, we combine the statistical testdependence with the orientation
heuristics, and propose a kernel-based causal learningtalg (KCL).

Like IC, the KCL algorithm can be broken into two phases: an@alay phase and an orien-
tation phase. In the adjacency phase, a complete undiradjacency structure over all variables
is initially constructed and the edgés— Y are removed if some sétyy C V\{XUY} can be
found such that the constraisf | Y | Sxy can be verified. In search fdfyy, the orienta-
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5.5. Kernel-based causal learning algorithm (KCL)

e

| (s1.52) | Hgyx/Hzy | Hpxy/Hzx | Hyxz/Hyx | % Correct|

0.001 [ (+1,+1) ][ 0.0002 + 0.0001 | 0.0009 + 0.0006 | 0.3387 + 0.0571 | 100%
(—1,+1) || 0.0002 & 0.0001 | 0.0009 & 0.0006 | 0.3387 +0.0572 || 100%
(+1,—1) || 0.0002 & 0.0001 | 0.0023 & 0.0009 | 0.3473 £ 0.0578 || 100%
(—1,—1) || 0.0002 & 0.0001 | 0.0024 £ 0.0009 | 0.3473 +0.0576 || 100%

0.01 [ (+1,+1) [[ 0.0006 + 0.0003 | 0.0040 + 0.0018 | 0.3482 + 0.0582 | 100%
(—1,+1) || 0.0006 & 0.0003 | 0.0040 & 0.0019 | 0.3480 & 0.0586 || 100%
(+1,—1) || 0.0009 & 0.0005 | 0.0034 + 0.0014 | 0.3623 +0.0598 || 100%
(=1,—1) || 0.0009 & 0.0004 | 0.0034 & 0.0015 | 0.3621 + 0.0588 || 100%

0.1 | (+1,+1) [[ 0.1576 + 0.0576 | 0.0285 + 0.0164 | 0.4594 + 0.0755 || 100%
(—1,+1) || 0.1559 & 0.0588 | 0.0283  0.0167 | 0.4603 + 0.0764 || 100%
(+1,—1) || 0.1685 £ 0.0630 | 0.0334 £+ 0.0219 | 0.4916 + 0.0780 || 100%
(—1,—1) || 0.1660 & 0.0635 | 0.0318 & 0.0196 | 0.4889 + 0.0787 || 100%

1 [ (+1,+1) [ 0.9465 +£0.0941 | 1.7120 £ 0.7932 | 1.5100 &= 0.4535 || 42.0%
(—1,+1) || 0.9412 +0.0936 | 1.6951 + 0.7907 | 1.4904 + 0.4027 | 43.1%
(+1,—1) || 0.9546 & 0.0936 | 1.7367 + 0.7764 | 1.5463 +0.4314 || 44.1%
(—1,—1) || 0.9531 £ 0.0943 | 1.7064 £ 0.7728 | 1.5221 + 0.3886 || 46.4%

10 [ (+1,+1) [ 1.0077 £0.0920 | 2.1533 £ 0.8812 | 2.4537 £ 0.9278 || 66.4%
(—1,+1) || 1.0095 +0.0930 | 2.1714 + 0.8729 | 2.4462 +0.9289 | 66.1%
(+1,—1) || 1.0112 £ 0.0952 | 2.1949 + 0.9827 | 2.4753 £ 0.9742 || 65.9%
(—1,—1) || 1.0113 £ 0.0948 | 2.1937 + 1.0127 | 2.4610 + 0.9544 | 65.7%

100 [ (+1,+1) [ 1.0100 £ 0.0924 [ 2.1577 £ 0.8712 | 2.4623 £0.9302 || 66.5%
(—1,+1) || 1.0102 £ 0.0925 | 2.1610 & 0.8649 | 2.4645 + 0.9307 | 66.6%
(+1,—1) || 1.0115 £ 0.0948 | 2.1936 & 0.9999 | 2.4841 +0.9864 | 66.1%
(—1,—1) || 1.0115 £ 0.0948 | 2.1929 + 1.0046 | 2.4862 + 0.9882 || 65.8%

Table 5.10.: Experiments witB00 data

points sampled from each 24 functional

(Fig.[5.8) with6 different x and4 different (sq, s2). Shorthands + ¢” denote

the medianmn and standard deviatiom after 1000 replications. The last column

shows how often (in percentag%x—‘z achieves the maximum, which indicat&s
YX

being a collider betweeX andY'.

models
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5. From Magnitude of Dependences to Causal Structure

tion heuristics OPA presented in FIg. 5.3 is performed torlea auxiliary graph without any
independence decision. We reduce the search spatg,oby the potential ancestor condition
(Definition[21) with respect to the auxiliary graph.

The auxiliary graph is used in the following iterative scleerMe apply the orientation heuris-
tics to an adjacency structure and check the relevant gonuhig subsets according to the poten-
tial ancestor condition with respect to the auxiliary graffrsome conditional independence is
verified by the kernel independence test, the corresporetigg will be removed. Hence, a new
adjacency structure is obtained for the next iteration. ifdr@tive loop with arcs progressively
removed converges if no more edges can be removed. Conshgtietibsence of an edge in
the final output represents the presence of conditionapiedgence, but not vice versa.

Once the adjacency structure over all observed variablebdwn estimated by the first phase,
the orientation phase OPB (Fig._b.4) is begun. The first sfdheorientation is to examine
unshielded triples, i.eX—Z—Y, and consider whether to orient them as an unshielded eddlid
on Z via the voting procedure by a unanimous vote. Once all sushialded triples have been
checked, a series of orientation rules (see[Eid. B.1 in AppdB\d) is applied to orient any edges
whose directions are implied by previous directions. Ifé@re still remaining undirected edges,
we examine all shielded triples and identify the collidef$hem via the voting procedure by a
unanimous vote again. The complete scheme of KCL is showrgiteZL1. Figl 5.1R illustrates
stepwise results of learning the causal structure as showigi[1.1, when KCL is applied.

Due to the potential ancestor condition and the auxiliaapgg learned by OPA, the number
of hypothesis tests in the adjacency phase can be reduoed, @nly these constraints will be
tested, which are consistent with the directed auxiliagpbr The orientation phase (step 2 of
KCL) will terminate in the worst-case scenario (completelestcan) after(g ) calls (evaluating
all triples).

The final output of KCL is represented by three kinds of edges: (tindirected) meaning
no evidence for both directions=” (directed) meaning consistent evidence for one direction
“<"” (bi-directed) meaning evidence for both directions. Thlibected edges in the output
of our KCL indicate conflicting voting results, which might braced back to any violation of
assumptions. The presence of hidden common causes in ghatdel is one possibility of such
violation. Note that a bi-directed edge in a maximal ane¢gfraph [[133] is explicitly used to
represent the presence of a hidden common cause.

Note that, having taken the degree of dependence into atdberorientation of KCL is, on
the one hand, less sensitive to the typerors, because KCL does not use the conditional set
Sxy that is found by hypothesis tests to infer the orientation.tii other hand, due to step 2.4
in the orientation step, KCL is able to provide some orientagven in the complete adjacency
structure (maybe due to a high level of typperror of hypothesis tests).

5.5.1. Some implementation issues of KCL

As discussed in Sectidn 4.2, learning structure from inddpace constraints has many problems
in practice. In particular, as the number of variables iases, the number of possible non-trivial
independence constraints grows exponentially. Only alssealof all possible constraints can
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5.5. Kernel-based causal learning algorithm (KCL)

Input: Data of a set of variables.
Step 1. Learning adjacency structure.

1.1 Test unconditional independence: Initialize G by a complete undirected graph. For
all edges between variablgsandY’, test the unconditional independence hypoth&sis Y
via kernel dependence measures based on data. Remov&edyein G, if the hypothesis
is accepted. The result is a skeleton (an undirected gi&ph)

1.2 Construct auxiliary graph:  Orient skeletor; by OPA (Fig[5.8), providing an auxiliary
graphg.

1.3 Test conditional independence:  Choose an edge between variablesandY . Test the
conditional independence hypothedisl Y | Sxy for all potential subsetS'xy via kernel
dependence measures, subject to the potential ancestor conditionxdizhyagraphg. For
several potential subsefs;y, the constraint withSxy of small cardinality should be first
tested. If the independence is accepted, remove the edge belvardY and change all
directed edges into undirected edges, providing a skelgt¢imen goto step 1.2. Otherwise,
repeat step 1.3 for another edgdiinif all edges are checked, change all directed edges finto
undirected edges, providing a skeletgand continue.

Step 2: Learning orientation in structure by OPB (Hig.15.4).

2.1 Unshielded colliders:  Apply the collider condition of Eq.[(5l1) to a unshielded triple
X—Z-Y . Ifthe collider condition is satisfied for, register one vote fok — Z andZ <Y
respectively. Based on the voting results of all possible triplgs iorient undirected edge
into directed or bi-directed edges by a unanimous vote.

[72)

2.2 Non-colliders:  Orient all substructure¥ — Z—Y (X andY nonadjacent) intdf — 7 —
Y.

2.3 Acyclicity:  Orient all edges{—Y into X — Y, if a directed path fronX to Y exists ing.

2.4 Shielded colliders:  Apply the collider condition to substructu® — 7 —Y (X andY
adjacent) orX — Z —-Y (X andY adjacent). If the collider condition considefsas a
collider, register one vote fok — Z and forZ < Y. Based on the voting results of all
possible triples irfj, orient the remaining undirected edges into directed or bi-directed edges
by a unanimous vote.

Output: A mixed graphg with un-, uni- and bi-directed edges.

Figure 5.11.: Kernel-based causal learning algorithm (KCL)
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5. From Magnitude of Dependences to Causal Structure

Figure 5.12.: Stepwise results of learning the structurshasvn in Fig[ 1.ll, when KCL is ap-
plied.

actually be tested. How to control the potential errors efthtests is essential to the performance
of KCL.

A constraint-based approach, in principle, removes an bdgygeenX andY when some set
Sxy CV\XUY can be found which make¥ andY independent. Thus, an edge is removed
when conditional independence is accepted by at least enede edge is present in the resulting
structure when the conditional independence hypothesmdes X andY are rejected in every
test. A test which wrongly yields a dependence (a typeor) betweenX andY has no impact
on the resulting adjacency structure as long as there i©antgst yielding the absence, while
a typell error does. For this reason, a straightforward implememtatutomatically tends to
remove too many edges, if tyfleerror is not kept to an extremely low level. This phenomenon
can be often observed by outputs of PC/FCI. For this reasoegp the level of typé error made
by independence tests as low as possible is essential teetf@mpance of learning adjacency
structure.

Our dependence measures benefit from the power of kernettzggproaches and can detect
additional dependence in which the data are uncorrelattave some more complex nonlin-
ear dependence that simple correlation does not detect.e¥mywunless the sample sizes are
excessively large, the conditional independence testsmi/ariables conditional on a large set
of other variables are in general not reliable. The numbermirs of any statistical test increases
when the sample is small or the cardinality of the conditignset is large (seé [153], p. 116).
The kernel-based independence test suffers from the sarhkepr, i.e., the dependence measure
tends to be very small when the cardinality of conditioniagis large.

Instead of limiting the the cardinality of the conditioniegt directly, we handle the problem
in an implicit and flexible way: if the differences betweer tbriginal estimatoitl, and the
simulated valueHl,, ..., H,, are too small, e.g., smaller thaé*, the independence hypothesis
will be rejected in favor of dependence. This way, we avoadhbitrariness of setting an upper-
bound on the cardinality of the conditioning set when testionditional independence. When
sample size is small or the conditioning set is large, oueresthdence test will be unreliable and
dependence will be assumed: lack of support for indeperediemalies dependence. Thus, if our
test rejects an independence hypothesis, it does not mattihédata are against independence,
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5.6. Real-world experiments with KCL

but that there is no evidence in the data for it.

Another problem is that a naive search of every conditiorsiegSyy that makesX andY
independent is inefficient (too many tests) and inaccu@ndjtioning on too many variables).
The PC algorithm provides a simple strategy for selecfiRg as follows. The in-degree of the
structure (maximum number of direct parents in graph) cacrhiesen to be bounded from above
by some constant and one begins to test independence wiitioomg sets of small cardinality.
Thus, the PC-style selection is to first takey with small cardinality into account and then the
subsets with larger cardinality, since testing conditioama@ependence with smaller conditioning
set is more reliable. If the underlying model is indeed spdpP< will be efficient.

In addition to the PC-style selection, using the orientatidarmation of the auxiliary graph
learned by OPA, the potential ancestor condition can redlbeesearch space ¢fyxy. The
reduction avoids unnecessary independence tests, whidth lead to a typdl error.

Another critical issue of learning adjacency structurehis order of testing conditional in-
dependence, in particular if conflicting constraints cambiined. One typical example is the
non-intersection conflict (Definitidn 18). As an example,a@@sider the digoxin clearance data,
which are already discussed in Section 4.2.3. The consdraérified by kernel independence
tests in the digoxin clearance data are

(XLY|Z) A (X LZ|Y),

where X: URINE FLow, Y: DIGOXIN CLEARANCE, Z: CREATININE CLEARANCE (see
Tab.[3.8). The resulting adjacency structure depends otheh®& 1 Y |Z or X L Z|Y
is first tested. The PC algorithm does not address this proble

Unlike RCL as shown in Sectidn 4.5, KCL uses the kernel depemdereasures to handle
the conflicting constraints. In agreement with Assumplipwé propose to first test the inde-
pendence of pair€X;, X;) with largerHy, x;, because we are of the opinion that the screening-
off effect induced by conditioning on a set of variables cannhore reliably detected, if the
magnitude of marginal dependence is strong. The weaker Hgnitode of marginal depen-
dences, the less reliable the conditional independente lieshe digoxin clearance data, we
haveHYZ >HYX >]HIZX (see Tal._3]8). The resulting structure would be

URINE FLOW — CREATININE CLEARANCE — DIGOXIN CLEARANCE

stating that digoxin clearance is independent of urine flax@rgcreatinine clearance.

5.6. Real-world experiments with KCL

Itis clear that the assumptions we made, e\g:ollider condition, could be violated in real-world
data. Therefore, our intention was not to seek special Hatarould fit our algorithm, but rather
to analyze how well KCL really performs on various kinds ofaddn particular, KCL is able to
learn structure when no independence relations are prdsamnihe sake of evaluation, we prefer
such data and variables where common sense provides sonwei®ipvior information about
the causality. Since we intend to compare KCL to the conveaticonstraint-based PC/FCI,
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5. From Magnitude of Dependences to Causal Structure

TEMPERATURE TEMPERATURE TEMPERATURE
SURFACE ROUGHNESS SURFACE ROUGHNESS SURFACE ROUGHNESS

Figure 5.13.: Outputs learned by PC (left), FCI (middle), &l (right) from ceramic surface
data.

it suggests itself to examine the datasets, which are |lsseekamples for its software project
TETRAD on its webpage. In addition, we perform the BN-PC alyon, WinMine toolkit for
data onﬁurely categorical domains and the LINGAM algorittemdata on purely continuous
domain

5.6.1. Ceramic surface

The influence on sintered bodies of the variation of nano govedntent on sintered bodies
was investigated by researchers of Research Center Kar|<ganeany. The nano powder was
added to a powder mixture in different rati®&4{— 70%), from which sintered ceramic parts were
fabricated. The ceramic parts were sintered at four diffietemperature level4:300°C, 1350°C,
1400°C and 1450°C. The mixture ratios and temperatures are chosen indepéyndéssing

an optical scanning device, the surface roughness of these ip characterized by roughness
averageR, as well as roughness depf° and 2™, depending on ISO or DIN standardB,,
RS°, R°™ are defined in DIN EN ISO 4287, DIN 4768 (1990) and DIN 4762 @)98espectively.

The dataset contain®) measurements. We know that themb CONTENT and sintering
TEMPERATURE influence the BRFACE ROUGHNESSOf sintered parts and not vice versa. In
our experiments, we used different vectors to characténiz JRFACE ROUGHNESS R,, RY°,
R2", (Ra, RE®), (Ra, R2M), (RE°, R2™), and(Rq, RE%, R2").

In all 7 different vectorial definitions of SRFACE ROUGHNESS KCL identified SIRFACE
RoUGHNESsas the common effect. Remark that this is an obvious advamtalg€L against
PC, since the former can be extended to multidimensional adwma a straightforward way.
The result of PC (Fid. 5.13, left) is less specific and pldedivan KCL (Fig[5.1B, right). In the
case of PC, we interpreted th& ®FACE ROUGHNESSas a one-dimensional variabl&,, R'°
or R?™. All the three constructions yielded the same output (Eig35left).

SSeenttp://www.phil.cmu.edu/projects/tetrad_examples datasets. We used default parameters of TETRAD 4.3.8&and
significance leveb: = 0.05. BN-PC [28] is a constraint-based algorithm using mututdrimation as indepen-
dence measure and implemented in BNT Structure Learninkgigady Leray et all [101], and online available
at http://banquiseasi.insa-rouen.fr/projects/bnt-dlfinMine toolkit [31] is a Bayesian approach using a noreinfative
prior on the structures and online availabletat/research.microsoft.codrhax/winmine/tooldoc.htmLINGAM [L43] is
a recently developed algorithm for learning structuresamiouous domains. We used the version 1.4.2, which
is online available aittp://www.cs.helsinki.filgroup/neuroinf/lingam
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Figure 5.14.: Outputs learned by PC, FCI, BN-PC, and KCL (fromttefight) from Montana
outlook poll data.

5.6.2. Montana outlook poll

We tested KCL on the data of Montana outlook poll, which aready discussed in Section 416.3.
All constraint-based algorithms detected a more or lesfia@imdjacency structure (Fig. 5]14),
since we conjecture that various independence tests ashemnsistent results in purely cate-
gorical domains. Both PC/FCI (Fig._5l14, first and second planfteft) and KCL (Fig[5.14,
rightmost) provided no obviously wrong arrow. VariablesxS AGE, and AREA are in fact not
identified as effects of any other variable, which is in agreet with our prior knowledge. The
result of KCL is more plausible, in the sense that PC/FCI erroskgcexcluded the relation be-
tween AGE and ENANCIAL . Itis noteworthy that the output of KCL some has bi-directddes,
which indicate conflicting orientation information.

Since this dataset contains only categorical variablas,justified to run BN-PC algorithm.
The result (Figl.5.14, third plot from left) has the same esponding skeleton as that of KCL
(Fig.[5.14, rightmost). The arrow from@e to INCOME is correctly detected by BN-PC, whereas
the output of KCL is less specific in the orientation of this ediy contains, however, obviously
wrong arrows from FNANCIAL to AGE. The causal direction from @rLook to FINANCIAL
also seems to be less plausible. We do not speculate on thal clection betweendLITICAL
and AREA. In addition, we ran score-based Bayesian algorithms witledy search or MCMC
and WinMine toolkit on this data. They returned as outputortanately, a trivial graph without
any edges and found no structure in the data.

5.6.3. Egyptian skulls

We perform PC/FCI and KCL on the Egyptian skulls data, which &emady discussed in Sec-
tion [4.6.2. The output of KCL (Fid.5.15, rightmost) is comsig with the output of RCL

(Fig.[4.14). In comparison to the output of PC/FCI, the outduKGL has one edge more
and is completely directed. This experiment confirms oueolzion that KCL/RCL tends to
draw more edges than PC/FCI.

5.6.4. Cheese data

As cheese ages, various chemical processes take placetbanohe the taste of the final prod-
uct. In a study of cheddar cheese from the LaTrobe Valley ofdvia, Australial[13] samples
of cheese were analyzed for their chemical composition a@e wubjected to taste tests. The
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Figure 5.15.: Outputs learned by PC (left), FCI (middle), &L (right) from Egyptian skulls
data.
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Figure 5.16.: Outputs learned by PC (left), FCI (middle), EQ&L (right) from cheese data. Note
that the undirected edges in output of PC and FCI have siglitrent meanings,
although we chose the same representation.

dataset contains concentrations of various chemica$) isamples of mature cheddar cheese
and a subjective measure of taste for each sample. OvexsilEIscores were obtained by com-
bining the scores from several tasters. The variablesTAC, H2S, and lACTIC represent the
concentrations of acetic asid, hydrogen sulfide, and lacid, respectively.

The causal graphs obtained by PC, FCI, and KCL are shown if Hif. $he output of KCL
is the most specific one. The detected causal knowledge Hsatelis only an effect and not a
cause of any other variable is in agreement with the grouwrit.tNote that, although the kernel-
based approach detects no independence, KCL is able to offe sausal information. Due
to our lack of chemical understanding, we do not speculatdemlausibility of the influences
among the various chemicals detected by KCL, i.e., frodEAC and LACTIC to H2S. The
edge between @eTIC and LACTIC cannot be oriented. This example shows that, in spite of the
fully connected skeleton, KCL can learn orientation in threcure by means of the magnitude
of dependences, whereas RCL cannot learn anything from te@émdience relations.

Since all domains in this dataset are real-valued, LINGARbdathm could be applicable.
LINGAM converged with no-error-report and returned a grapthout any edges as output.
Hence, LINGAM provided no information about the causal ctinee. We conjecture that this
might be due to the fact that the statistical Wald tests|[I@2pruning edges in LINGAM may
not be suitable for such a small sample size.
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Figure 5.17.: Outputs learned by PC (left), FCI (middle), &€L (right) from smoking and
cancer data.

5.6.5. Smoking and cancer

The smoking and cancer data [58] contain the numbersieARETTES (hundreds per capita)
sold in43 states in the US and the District of Columbiali960, together with death rates per
hundred thousand population from various forms of canaer,BLADDER cancer, lUNG cancer,
KIDNEY cancer, and EUKEMIA. The fact that Nevada and the District of Columbia are ouwglier
in the distribution of cigarette consumption contributesthe difficulty of the analysis. The
ready explanation for the outliers is that cigarette satesrecreased by tourism (Nevada) and
commuting workers (District of Columbia).

It is generally accepted that the consumption of cigarestascause of various forms of can-
cer, not vice versa. As seen from the right plot in Eig. b.1Z]Kdiscovers GGARETTESas the
common cause of BADDER, LUNG, KIDNEY, and LEUKEMIA, which confirms the common-
sense understanding of the causal influences. The causatidir between (GARETTES and
LEUKEMIA in the output of KCL remains indeterminate. Due to our lack efiical understand-
ing, we do not speculate on the plausibility of the orietatirom LEUKEMIA to other forms
of cancer. Interestingly, KCL contains some bi-directedesdigetween BADDER, LUNG, and
KIDNEY, which might be due to some common hidden causesL@idBER, LUNG, and KiD-
NEY. Obviously, KCL detects more dependences among observebhes and provides thus
a considerably more complex structure than PC/FCI. The autpf?C/FCI (Figl5.1l7, left and
middle) contain significantly fewer edges and is less sprdiii particular, the orientations from
LUNG (by PC) and KDNEY (by PC/FCI) to CGARETTESare obviously wrong.

Although the output of KCL is fully connected, one independkerelation is accepted by the
kernel test:

CIGARETTES L LEUKEMIA | BLADDER, LUNG, KIDNEY ,

if we conducted tests for all possible non-trivial indepemce constraints. The output of RCL
will be a graph with overall undirected edges excepting thenection between IGARETTES
and LEUKEMIA. Due to the auxiliary graph learned by the orientation reties and the potential
ancestor condition, this independence constraint wasestad and thus not considered by KCL.
Consequently, the edge betweercERETTESand LEUKEMIA will not be removed in the final
output of KCL.

Since this dataset contains only purely continuous vaggble ran the LINGAM algorithm.
Like the cheese data in Sectibn 516.4, LINGAM converged witherrors. But, the output of
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LINGAM, a completely unconnected graph, gave again no labtaut the causal structure.

5.6.6. Brain size and IQ

Monozygotic (MZ) twins share numerous physical, psychmaly and pathological traits. In
vivo brain image acquisition and analysis make it possiblddgtermine quantitatively whether
twins share neuroanatomical traits and whether neuroamedb measures correlate with brain
size. Using magnetic resonance imaging and computer-basage analysis techniques, mea-
surements of the BAIN VOLUME (cm?), CORPUSCOLLASUM surface area (cf), CORTICAL
SURFACE area (cm) were obtained in0 pairs of MZ twins. HEAD CIRCUMFERENCE(cm),
body WEIGHT (kg), and full-scale 1Q (intelligence quotient) were alseasured. Tramo et
al. [165] used GNOTYPE (Pair Identifier), BRTH ORDER, and EX (1: Male, 2: Female) as
between-subject factors to examine neuroanatomic sitirelsiin MZ twins and their relation-
ship to head size and 1Q.

If we applied the constraint-based approaches to Brain Sideé@ data, the result of PC/FCI
(Fig.[5.18, left and middle) indicates merely some coriefabetween BRAIN VOLUME, COR-
PUS CoLLASUM and ORTICAL SURFACE, as well as the relation betweere@oTYPE and
SEX. As discussed in Section 5.1, it is difficult to detect sigmifit dependences by statistical
tests in the relatively large network from a sample wéthdata points. Therefore, it is helpful
to amplify the original data and run the so-called resangpbased multiple test to balance the
errors of hypothesis tests. More precisely, we resampléti f@placement) 00 subsamples of
200 data points and conducted the usual kernel test as desanilpégl[3.2 for each subsample.
Then, we obtained a set b0 p-values (one for each subsample) for each independeno#iyp
esis. Instead of the sophisticated procedure as descridgd.[C.1 in Appendik C, we used here
a simplified version of multiple testing via the median of et 0f100 p-values due to computa-
tional feasibility. If the median of the set @00 p-values larger than =0.05, the independence
hypothesis will be accepted, otherwise rejected. By meatlsi®simplified resampling-based
multiple testing, we ran KCL on this dataset.

The result of KCL (Fig[5.118, right) reveals the genetic inflaes on the size and shape of
the human forebrain and its gross morphologic subdivisidree fact that BRTH ORDER and
SEX is not detected as effect of these neuroanatomic measuaksoisonsistent with our prior
knowledge. Due to our lack of medical understanding, we dspeculate on the plausibility of
the causal interpretation of the arrow from 1Q to bodgMYHT and the three bi-directed edges,
which indicate hidden common causes.

In this experiment, the relations amon@BN VOLUME, CORPUSCOLLASUM, CORTICAL
SURFACE are less interesting than the effect of various factors emthAs expected, the result
in [165] indicated a strong similarity of ®AIN VOLUME, CORPUSCOLLASUM, and GORTICAL
SURFACE in MZ twins. These brain measures are tightly correlatedh wite another and with
HEAD CIRCUMFERENCE In order to make the resulting structure more task-orggrite., rep-
resenting causal relationships between more interesdicigris, we cluster the set of measured
variables into groups of variables by prior knowledge, tlee meaning of variables, and learn the
structure among these vectorial variables. Each grouprathlas (called latent factors, see Sec-
tion[4.3 for more discussions) is represented by a single nmothe final output. We performed
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CORPUS COLLASUN BIRTH ORDER
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Figure 5.19.: Outputs learned by KCL from brain size and I deth different clusterings of
variables.

KCL with three different clusterings of variables:

BRAIN = (BRAIN VoLuME, CoRPUSCOLLASUM, CORTICAL SURFACE)
HEAD-BRAIN = (HEAD CIRCUMFERENCE BRAIN VOLUME, CORPUSCOLLASUM, CORTICAL SURFACE)
GENETIC-PRENATAL (= (GENOTYPE, BIRTH ORDER, SEx)

The results based on the first two clusterings (Fig.15.19,defl middle) are positive in the
sense that GNOTYPE, BIRTH ORDER, and X are identified as causes. The output of the
last clustering (Fid.5.19, rightmost) is an undirectedpbraThe undirected structure excludes
collider structures on 6NETIC-PRENATAL, the output indicates the plausible fact that condi-
tioning on GENETIC-PRENATAL makes every pair of the three measurementa bt BRAIN,

IQ, HEAD-BRAIN independent and at least two of these three measuremendgecteffects

of GENETIC-PRENATAL. The obviously false hypothesis thaE@ETIC-PRENATAL could be a
common effect of any pair of them is correctly excluded. Téxample shows that it seems that
an appropriate clustering of variables, i.e., a meaningbuistruction of nodes in the output, is
essential for discovering useful structures represerdatg. Note that PC/FCI and LINGAM
cannot treat the multi-dimensional variables at all.
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Figure 5.20.: Outputs learned by PC (left), FCI (middle), &l (right) from US crime data.

5.6.7. US crime data

The US crime data [167] are crime-related and demograpatissts for47 US states in960.
The data were collected from the FBI's Uniform Crime Report atféogovernment agencies to
determine how the variable crime rate depends on the othiables measured in the study. The
dataset consists dft variable: GRIME rate: the number of offenses reported to policeuUXG
MALE: the number of males of agd—24; STATES: binary indicator variable for Southern states;
EDUCATION: the number of years of schooling for persons of 2ger older; Ex60: 1960 per
capita expenditure on police by state and local governntea,9: 1959 per capita expenditure
on police by state and local governmenpiYNG LABOR: Labor force participation rate p&o00
civilian urban males agét—24; MALE: the number of males p&n00 females; BPULATION:
State population size; BN-WHITE: the number of non-whites; U1: unemployment rate of urban
males of agd4 —24; U2: unemployment rate of urban males of aje-39; ASSETS value

of transferable goods and assets or family incomey@ERTY: the number of families earning
below1/2 the median income.

It is remarkable that the output of PC (Fig._5.20, left) camal bi-directed edges, which
are traced back to the conflicting conditional independenfmemation. PC may fail partially
due to failure of assumptions (e.g., relationships areineat, the true model is cyclic, etc.) or
because the sample is not large enough and some statistialahs are inconsistent. If the
resulting adjacency structure after independence testwisct, bi-directed edges in the output
of PC could also be due to latent common causes. Since PCdeschidden common causes, it
is probably better to consider the result of FCI more justiflédwever, if we wish to find out the
causal relationships between crime rate and other fadtwgesults of PC/FCI (Fig._5.20, left
and middle) are both unsatisfactory, although they prosmae plausible connections between
the expenditure on police and crime rate, some relatiossmpong demographic statistics. The
result of KCL (Fig.[5.20, right) is more complex and does natllyeprovide more evaluable
causal information about crime rate as well, since it corstanany undirected edges.

Regarding the meaning of variables, it is obvious that sonmm@abig@s must be strongly re-
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5.6. Real-world experiments with KCL
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Figure 5.21.: Output learned by KCL from US crime data, giveargknowledge about the vari-
able clustering.

lated. In order to better understand the phenomenon of aiaee we propose to introduce an
appropriate clustering of variables. We reconstruct a dgaphic and geographic factor, called
DEMO-GEOGRAPHIC (comprising PPULATION, NON-WHITE, MALE, YOUNG MALE, and
STATES), a factor called EPENDITURE (containing Ex59 and Ex60), a factor called EPLOY-
MENT (containing YOUNG LABOR, U1, and U2), and a factor WALTH (containing ASSETS
and RPOVERTY). The variable @IME remains unchanged. The output of KCL, in which each
node corresponds to a factor, is shown in Eig.5.21. Thebiari@rIME is reasonably detected as
the effect of distinct factors and factoleEMo-GEOGRAPHICIs not an effect of any other factors.
The result suggests to consider factofFEEOYMENT as a cause of WALTH and EXPENDITURE
and factor WEALTH as a cause of ¥BPENDITURE, which seems to be plausible.

5.6.8. US economy data

One of the interesting fields for our method is learning chredationships from economic data.
We conducted KCL on US economy data from January 1959 to Judg deral Reserve
Systemhttp://www.economagic.corj/ The dataset of siz&9 collects money supply M1, money
supply M2, REAL INCOME (disposable personal incomejdUSTRIAL PRODUCTION, UNEM-
PLOYMENT RATE, OIL PRICE, 90-day treasury bills (90B), 90-day commercial paper eger
rates (90P), spread (difference of 90B and 90P) by the makégroup money supply M1 and
money supply M2 to a 2-dimensional factordMey SuppPLY. The variable NTERESTRATES
consists of 90B, 90P and spread. Fig. 5.22 illustrates theubof KCL based on the clustering
of variables.

Due to the complexity of the US economy, we do not speculatéhercorrectness of the
model found by KCL, since this goes beyond the scope of thisistheNevertheless, it seems
to be plausible that the real economic activity@MEY SUPPLY, REAL INCOME, INDUSTRIAL
PRODUCTION) is considered as a cause of the indicator on the labor méketMPLOYMENT
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5. From Magnitude of Dependences to Causal Structure

>
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UNEMPLOYMENT INTEREST
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Figure 5.22.: Output learned by KCL from US economy data, gmeor knowledge about the
variable clustering.

RATE) and the indicator on the financial marketfERESTRATES). The indicators of real eco-
nomic activity influence the price level of commodity markétL PrRICE). The two undirected
edges exclude the unshielded collider opaAR INCOME, which represents the fact thatbus-
TRIAL PRODUCTIONand MONEY SUPPLY is conditionally independent, givengRL INCOME.

It should be mentioned that the data are actually given itfidira of time series and the result of
KCL did not take into account the temporal aspect of the measent at all.
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6. Discovering Causal Order by
Properties of Conditionals

We have so far showed that independence relations betwe&bles are helpful for casual
inference. If no (conditional) independence relationspaesent, the magnitude of dependences
can be used to infer causal structure. However, both metheeld at least three variables and
are not capable of giving preference to either of the possiblusal hypotheses, if only two
dependent variables are measured. Thus, an additionaémndie rule, which is able to supply
some evidence of the statistical asymmetry between caukeftatt, would be desirable.

6.1. Motivational example

Imagine the situation that only two dependent variabteandY. The approaches which are
based on independence relations or dependence measumef@meithetX — Y nor X « Y
(assuming no confounders). Our intention is to take a clos& ht the dependence, which
is described by the Markov kernels (introduced in Seclidh), l.e., {P(X), P(Y|X)} and
{P(Y), P(X|Y)}, with respect to different causal directions. Having assdirsome plausible
properties of Markov kernels of a natural causal relatignginthe real world, one can indeed
find some evidence of the underlying causal direction.

To motivate our idea we consider a generating model Y, where cause&X is binary and
effectY is real-valued. A convenient assumption about the cormdtidistribution of the effect
given the cause is that it follows a Gaussian distribuf(y.x, o?) with the same variance but
different expectations for each of both values®{Fig.[6.1, left). The marginal distribution of
the effectY” could then be bimodal as shown in the right plot of Eigl 6.1.

A ready explanation of the relation betwe&mandY is thatX shifts the expectation df and
labels different classes af. Having the causal hypothesls — Y in mind, the bimodality of
P(Y') has a very natural explanation. In other words, presentiagdint distribution of( X, Y")
in terms of conditionald P(X), P(Y'|X)} require less information (only the first and second
moments ofX andY’), whereas usingP(Y'), P(X|Y)} more than the first two moments bf
are required. Actually this idea is also a motivation fordsing Gaussian mixture models: if
the distribution of variablé” can be decomposed into a mixture of some Gaussian-digtdbut
variables, it is likely that the decomposition correspotaldifferent ensembles that stem from
different populations.
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6. Discovering Causal Order by Properties of Conditionals

1 , : , 0.6 : : :
N(-1,0.25) N(1,0.25) 0.4 N(-1,0.25) + 0.6 N(1,0.25)
0.3}
P(Y)
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-2 0 2 -2 0 2

Figure 6.1.: An intuitive example for inferring causal ditien via properties of conditional dis-
tributions. The generating model is that a binafyeffects a real-valuet by shift-
ing its expectation. The conditional probabiliti&gY’| X') is Gaussian distributed
(left plot). The corresponding marginal distributiét{Y”) is bi-modal (right plot).

6.2. Plausible Markov kernel assumption

The motivational example in the last section showed thatpeeddgence between two variables
could be interpreted by different models. If one of the madelble to represent the data with
simpler conditionals, one tends to intuitively considas timodel as the underlying causal struc-
ture. To further explain why we expect that the shape of dmdils is more likely to be simple
with respect to the true causal structure, we start with aghbexperiment.

Imagine a classical system whose time evolution is detexchby a Markov chain (first order
Markov process) in discrete tintes Z. SupposeX, is the set of variables describing the system
configuration at time and we assume that the variables at at tind@ectly influence only the
variables at timé—+1, i.e., we exclude instantaneous influence among variaktegwthe same
time step.

Now, we restrict our attention to one step in system changedsn two time stepsandt+1
and rewrite the sets a¥ variablesX; and X, by C:=(C,...,Cy) andE:= (Fy, ..., Ey),
respectively. Fid. 612 illustrates a graphical repred@riavolvingC' and E over two time slices.
The undirected edges indicates spurious dependences arhjondich are generated hy, ;.
Since the time order coincides with the causal order, thenastry between past and future
necessarily corresponds to the asymmetry between caussffanod Hence, the arrows frod;
(“Cause”) toE; (“Effect”), as shown in Figl_612, could be interpreted cdlysa

Given the causal structure as shown in Eigl 6.2, the Markondition implies that, given all

direct cause$C,...,Cy}, effects{ 1, ..., Ex} become stochastically independent, i.e.,
N
P(Ey,...,En|Cy,....Cy) = []PEIC,....Cn). (6.1)

Jj=1
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6.2. Plausible Markov kernel assumption

t+1

Figure 6.2.: Two time layers of a first order Markov stochaptiocess. The first layer represents
the configuration of relevant variables at tirend the second layer the configuration
of them at timet + 1. The value of every variable at timtenfluences the values of
itself and its neighbors at time+ 1. The undirected edges representing spurious
dependences induced by influences at timé.

It is easy to see that the conditionals of backward time ddaollotwv the analogue statement, i.e.,

N

P(Ch,...,Cy|Ey,...,Ex) # [[ P(C)|EL, ... Ex), (6.2)

j=1

otherwise the faithfulness assumption would be violatesing/ the d-separation criterion, it is
apparent that conditioning on any subsef 8§, . . ., Ey } cannot, in a faithful Bayesian network,
make any subsets ¢f”, . .., C'v} mutually independent. The present dependences can only be
canceled out by accident. In other words, if one wishes tersava causal link, then the total
number of links can not decrease.

This difference between forward and backward time can berstood as an asymmetry of
simplicity in parameters of causal models. The hypotheteasal model of forward time, is
featured by a factorization into natural conditionals, ethis not possible for the hypothetical
causal model of backward time. The next question is how toédize such an intuitive simplicity
concept.

Suppose the number of direct parents in the underlying tausdel is bounded from above
by some finite numbek, that means every effedi; is influenced by at most causes. Fig. 612
shows a situation of = 3. Then the conditional probability, which is consistenttwiihe causal
directionC'— E, can be written in an exponential form as

N
P(E|C)=P(Ey,...,Ex|Cy,...,Cx) =exp (> f(E;,Cj,...,Cy))

J

whereC},, ..., C;, arek direct parents of; in graph withj; € {1, ..., N}. Functionf; depends
on at most + 1 variables, i.e.F; and{C;,, ..., C;, }. The other conditional probability, which
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6. Discovering Causal Order by Properties of Conditionals

is opposite to the causal direction, can be calculated as:

N
P(C|E)=P(Cy,....Cx|Ey,....Ey) =exp (> f{(Cj Ej,.... Ej))
J
whereE;,, ..., E;, with j; € {1,..., N} are variables that functiofi depends on. If the gen-
erating model is faithful, we expeét > k. In the structure as shown in Flg. 6.2, we have even
k<k'=N.
Summing upP(E|C) can be represented by functions of lower order (smaller murmotinput
variables) thanP(C|E). A function with lower order is smoother. This idea will betiwalized
by the so-called plausible Markov kernel assumption.

Assumption 6 Let 7, m» be two distinct orders on the set of variablgs= {X,..., Xy}.
Mk, and Mk, denote the corresponding set of Markov kernels (as intredun Sectior_1]1)
with respect tar; and . If 71 is consistent with the ancestral ordering entailed by theannd
lying causal structure oV (called causal order), whereas, is inconsistent, thed/k; is more
plausible than)Mk,, in the sense that the functionsik, are smoother than those k.

In other words, all Markov kernels if/k; describe cause-and-effect relationship and represent
the “physics” of a natural causal mechanism, whereas Makkeorels inMk, are mixtures of
cause-and-effect relations and prior probabilities olsesu We expect that the functionsifik,

is less smooth than those i, . A first attempt is made to justify this assumption from a ther
dynamic viewpoint by D. Janzing and A. Allahverdyan|[9B, AJrelated framework to capture
asymmetry of relationships between variables by means oé8ay networks is presented by
Comley et al.[[37].

The question now is how to evaluate the plausibility of Markernels. In practice, there is a
guite common agreement that the shape of some well-knowsiteen e.g., Gaussian or gamma
distributions, is rather smooth. In contrast, a mixturevad Gaussians, in particular when it is
obviously bimodal, is considered as less smooth. SeCtiisttowed that common sense gives
us in some situations an intuitive idea about which distrdns would be considered natural and
which one might demand an additional explanation as beingxéure of “more natural” and
“smoother” distributions. Nevertheless, quantifying aainparing smoothness of probabilities
from finite data is a non-trivial problem.

6.3. Plausible Markov kernels via low-order interactions

We propose to use the constrained entropy maximizatioresuty) statistical moments of low-
order for evaluating the smoothness of conditional prdtiggs from finite data without estimat-
ing the density directly. More precisely, given a hypotbaticausal ordefr := (X,..., Xy),
we define the set of smoothest Markov kernefs, :={P(X;),..., P(Xn|X1,...,Py_1)} via
entropy maximization subject to the first and second moments

The idea is the following. Given statistical moments, oneeiguired to pick one distribu-
tion from the set of distributions satisfying the given manse A natural choice is to pick the
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6.3. Plausible Markov kernels via low-order interactions

distribution with maximum entropy, which corresponds taostih distributions. If one restricts
the constraints for entropy maximization to only very fewniple” functions, e.g., the first and
second moments, the maximum entropy method aims to takertimest or smoothest distri-
bution, which contains no unwanted non-smooth and comptlexctsire. We refer to Collins

et al. [36] and Dowson et al. [48], who described a matherabframework of the maximum

Shannon entropy approach to assign a probability distabuin the basis of a limited number
of moments.

6.3.1. Smoothest Markov kernel of cause

Suppose caus¥ is a vectorial variableX := (X ..., X™) with possible values € X CIR".
The smoothest Markov kernély is the following (joint) distribution that maximizes theterpy
function’H(X') of X subject to the given first and second moments.

maximize,, H(X):=-> P(z)ln(P(z)) (Entropy of Px)

subjectto  P(x) >0 Vze X (Non-negativity)
>..Plx)=1 (Normalization)
Yo,xP(x)=pn (1st moment)
Yo 2Dz P(x)=ay Vi, j=1,...,n (2nd moment)

Herey denotes the vector of empirical mean ane («;;) the empirical covariance matrix of .
Note that the entropy maximization can also be rewritten asmaimum likelihood estimation
within an exponential family of distributions having polymials of degree two in the exponent.
This is basically the well-known convex duality betweenrepy maximization and maximum
likelihood (see e.gl]6]).

6.3.2. Smoothest Markov kernel of effect given single cause

To determine the smoothest Markov kerdgl x of effectY := (YY), ... Y (™) with its single
causeX := (XM ... X™) we maximize the entropy of the conditional distribution Yof
given X constrained by the mean vector ¥f the within-block covariance of itself and the
cross-covariance df with X. Hence, the smoothest Markov kernel¥ofis the solution of the
following optimization.

maximize-, , H(Y|X):= -3, > P(z) P(y|lz) In(P(y|r)) (Entropy of Py |x)

subject to P(ylx) >0 VY(z,y) e X xY (Non-negativity)
>, Plylr) =1 VzekX (Normalization)
> 2y Yy P(@) Plylz) = p (1st moment)
> 2o, YY) P(x) Pylz) = oy (2nd moment)
> 2o, yW a2 P(x) Pyle) = B (2nd mixed moment)

Vi,j,k=1,....m and [=1,....,n

In this context, the value of caus€ and its distributionPy is given. u € IR™ denotes the
empirical mean ot’, o = (a;;) € R™*™ the empirical within-block covariance of andj =
(Br) € R™*™ the empirical cross-covariance &fandY'.
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6. Discovering Causal Order by Properties of Conditionals

Actually, we need not take account of the non-negativityditbon in the optimization explic-
itly, because the logarithms in the objective function iyfis condition. In the continuous
limit, one could take the limit of the discrete optima. It sidbbe mentioned that, given the ob-
served first and second moments, the optimizatiorgx in general is not necessarily feasible.
An example will be demonstrated in Sectlon 6.4.2.

6.3.3. Smoothest Markov kernel of effect given multiple causes

Our definition of the smoothest Markov kernels can be sttéogivardly generalized to multiple
cause§ Xy,..., X;_1} by treating them formally as one variabfeV; = (X;,..., X,_;) in the
optimization, although they appear in the hypotheticakehstructure as separate nodes.

Joint distributionP(AN;) of all causesX; on setX; (: =1,...,7) is given, e.g., it can be
iteratively calculated by the optimizations described étt®n[6.3.1l and Section 6.8.2. Further,
u; (expectation ofX;) and 3;; (expectation ofX,X;) are known. Then the smoothest Markov
kernel is the conditional probability measure

P(X;|Xq,...,X,1) = P(X;|AN;)
that maximizes the conditional entropy
H(X; Xy, ..., Xj)
subject to the constraints
EX;|=pn and E[X,X;|=p0; Vi<j.

It can be shown that the optimization leads to a distributibtine form

J
P (mj]anj) = exXp <’}/ (anj) -+ 9037]' + x]- ZOZIEZ> (63)

=1

with appropriate Lagrange multipliergan;) andé,. If j=1, AN, is then empty (see e.g., [48]
for unconditional distributions and[9] for conditionalsttibutions). We assig®(z1|an;) =
P(z1) and obtain

P (z1) = exp (7 + Opz1 + 6127) .

Due to the existence of awkward normalization constals:,;), namely one for each—1-
tuple an;, it is typically difficult or impossible to obtain all Lagrage multipliers analytically,
if the value set ofAN, becomes very large or even infinite. Fortunately, the op@tnon is
strictly convex [25], which ensures a unique solution (ifvable) and numerical feasibility for
a finite domain and computational efficiency if the cardityatif the domain is not too large.
Although variables in general might be either continuoudiscrete, for the sake of simplicity,
we henceforth assume that all domains are discrete and. fiRiie a continuous domain, the
only change required under this assumption is a suitabtgatization with a sufficiently small
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6.4. Examples of smoothest Markov kernels

scale. The resulting discrete values are called suppotteaiontinuous domain. A visualization
of the probability measure divided into small enough inswgives a good intuition of the
shape of density on a continuous domain. Note that nometggorical variables af nominal
alternatives can be treated as shown in Egl (3.1).

In summary, given an ancestral order= (X1, ..., Xy) as well as the first and second mo-
ments of variables, the set of the smoothest Markov kernels

]Wkﬂ = {P(Xl),P(XQIXl),...,P(XN|X17...,XN_1)}

can be, in turn, calculated according to the constrainenigdtion problems above.

6.4. Examples of smoothest Markov kernels

To give some intuition of the smoothest Markov kernels wespné some examples. In some
special cases one can solve the optimizations even in adcfosa.

6.4.1. Numerical solution on continuous domain

It is well known that the solution of Eql_(6.3) for continuouariables on an unbounded real-
valued range leads to a Gaussian conditional. But, whenitheegtain restriction on the possible
value of variables, it is not trivial to see which propertiee smoothest Markov kernels would
have. Despite of that, we numerically compute the solutibb@aunded continuous range to give
a bit more intuition about our notion of smoothness.

We divided continuous domains into small enough intervaéoal width. Supposing that
andY have respective suppofs,...,z,} C X and{yy,...,y.} C Y, the smoothest Markov
kernel P(X') in numerical implementation is represented by vectors

Az(az) e R" with a; -— P(X:$Z> € [0,1]

subject toy " ,a;=1. And the smoothest Markov kerngl(Y"| X) in numerical implementation
is given by matrices

BE(bU) € R™™ with bij = P(YIyJ|X:l'Z) € [0,1}

subjecttoy " ,b;; =1 for everyj. This way, we can numerically compute the smoothest Markov
kernel.

Fig.[6.3 visualizes examples of the smoothest Markov kerf?¢X') with the constraint pa-
rameters as listed in Tdb. 6.1, one- ([Eigl 6.3, plot A, B, andr@wtidimensional (Fig._6l3, plot
D, E, and F). Figl_.6]4 visualizes examples of the smoothesk®eakernelsP (Y| X') with the
constraint parameters as shown in Tabl 6.2. We observe datchimposed the pre-specified
constraints of the first two moments, the smoothest Markanede gain indeed a “smooth”
shape. Actually, they are truncated exponential distiomstof order up tQ.
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Figure 6.3.: Examples of the smoothest Markov kerReK') for causeX with a scalar range
(plot A, B, and C) and a two-dimensional range (plot D,E, andTiRge constraints
for first and second moments are given in Tabl 6.1.

006,

C003l

Figure 6.4.: Examples of the smoothest Markov ke@l'| X) of effectY” given causeX. X,Y
are both scalar variables. The constraints for first andrseomoments are given in
Tab.[6.2.
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6.4. Examples of smoothest Markov kernels

PlotsinFigl6.8] A | B [ C | D \ E \ F |
X 0,1 [ [0,1] [ [0,1] | [0,1] x [0, 1] [0,1] x [0,1] [0,1] x [0,1]
0.20 0.20 0.58
X
0.60 | 0.20 | 0.28 ( 060 ) ( 060 ) ( 0,60 )
0.05 0.15 0.06 0.13 0.56 0.40
X
048 1 008 1 0.10 (0.15 0.48) (0.13 0.38> <o.4o o.49>

Table 6.1.: Constraint parameters for plots in Eigl 6X3is assumed to be a scalar variable in

columns A, B, C, and a two-dimensional vector in columns D, ETHe first row
shows the ranges, the second shows the postulated first nsntes last row the
postulated second moments (from top to bottom).

Plotsin Figl6.4| X wX | aX y w o oY | XY
A [0,1] | 0.64 | 0.43 | [0,1] | 0.55 | 0.32 | 0.36
B [0,1] | 0.65 [ 0.55 | [0,1] | 0.45 | 0.35 | 0.38
C [—1,1] | 0.65 | 0.55 | [=1,1] | 0.45 | 0.35 | 0.36

Table 6.2.: Constraint parameters for examples A, B, and Casgrsim Fig.[6.4.X andY are in
all three cases scalars. The first three columns show the xahge ofX, its first and
second moment (from left to right). The next three columreasthe value range of
Y, its first and second moment. The last column shows the meeolsl moment of
X andY'.
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6. Discovering Causal Order by Properties of Conditionals

6.4.2. Analytical solution on hybrid (binary and real-valued) domain

An interesting example is the smoothest Markov kernel orhthid domain, namely binary
(xe{£1}) and real-valued (y € R). In such case, the optimization has a closed-form solution

For hypothetical causal ordeX*— Y, the smoothest Markov kernel of is just the observed
relative frequencies. The smoothest Markov kerri&(¥|X') are Gaussian conditionals with a
single variance and two different expectations. In otherdyohe smoothest Markov kernel
presents a linear shift of the expected values by a multipl& .oWe denote the kernels below
with @ to distinguish from those of the reversed causal order, vlre denoted biR.

Q_1)=p and Qzy)=1-p
QY |z_1) x N (p_1,0°) and  Q(Y|zy) x N (pg1,07) .

For the other hypothetical causal ordéf “» X", the smoothest Markov kernel is a Gaussian
distribution for the continuous causéand a hyperbolic tangent function for the binary effect
X.

RY) o< N (u0p)
1 1 1 1
R(z_1]Y) = 575 tanh(Ay +v) and R(z|Y) = 515 tanh(A\y + v) ,

where), v € IR are chosen such that the constraints are satisfied. Thetiens are provided
in AppendixX'/A.5. Note that the joint measures induced by simegt Markov kernels subject to
different hypothetical causal orders are different, sifocé” — X, causeY” exhibits a unimodal
distribution, whereas for the reversed direction- Y the smoothest Markov kernels can lead to
a bimodal distribution for effect” as its marginal distribution. This agrees with the motwadl
example in Section 6.1.

It is noteworthy that it is possible that there existna in the expressions foR that satisfy
the desired constraints of the first two moments. For exangleX — Y be the generating
model given by Markov kernel®(z1,) = 1 and Q(Y|z11) ox N (s, 0%) with very smallo?,
i.e., the two Gaussians are highly separated. The obseatadehd to the constrainig X | =
E[Y] = 0 andE[X?] = E[Y?] = E[XY] = 1. One can easily check that there is no kernel
P(X]Y) satisfying these constraints. The infeasibility here is thuthe fact that the empirical
distribution of Y (having almost only the values1 as its value set) differs strongly from the
supposed “smoothest” Gaussian distributigif0, 1) for the wrong hypothetical causal model.
A pragmatic way to handle infeasible constraints is theeefo consider them as hints that the
true distribution differs so strongly from the supposed sthest one that the corresponding
causal hypothesis should be rejected. Note that in the daseoddinary variablesX, Y, i.e.,

o? =0, our inference rule will be indifferent for both hypotheticausal order, which we will
show through a more general statement for binary domainedtic316.4.8 later.
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6.4. Examples of smoothest Markov kernels

6.4.3. Analytical solution on binary domain

For binary domains, the meaning of the smoothest Markovetezannot be visualized by a
“smooth” shape. It is another kind of simplicity. Withouts® of generality, we henceforth
assign{0, 1} as the value set of a binary variable. We can further simmystiution of Eq.[(63)

for a binary variableX; and eliminate Lagrange multipliergan;) in Eq. (6.3) to specify the

smoothest Markov kernel in a convenient and elegant formeesive have

j—1

J
1
) :exp(eng—i—xj Z 911’,) = P (ijl | cmj) = 5 <1+tanh()\+z /\zxz)>
=1

i=1

P (X;=1an;)
1-P (X]::l | (l’flj

A:§(90+9j) and )\i:§9i fori=1,....,5-1.

The kernel can be interpreted in the following way. The inflceeof each ancesto; (i < j) on
X, can be characterized by the parameterlf )\; is negative,X; has a repressive effect on the
occurrence off; (independent of the value assignment of the other ancgstbrs is positive,
X, is conducive taX;. Such a unique separation into repressive and conductivables is a
feature of the simplest cause-and-effect relationshipreMoecisely, one has to ask whether the
map

(x1,...,xj21) — P(X;=1|21,...,2j_1)

is simple, since smoothness of the function— P(z;|z1,...,z;_;) does not make sense for a
fixed (z1,...,2,_1) in contrast to a real-valued variable or discrete variaibl@ ¢arge domain.
Note that this simplicity feature of the smoothest Markovnigds makes already sense if two
ancestors are present.

More generally, the simplicity feature of the smoothest kéarkernels can be naturally con-
sidered as part of a hierarchy of exponential models (seg[€]dor an information geometry
approach for exponential hierarchies of unconditionairitistions) as follows. We may repre-
sent every strictly positive Markov kernel of a binary vateX; with ancestorsiN; by

P(X;=1|an;) = %(1 + tanh (fj(anj))>

with the function

Jj—1 Jj—1 Jj—1

filan;) =X+ Z Aiy T + Z AiyipTiy Tig + -+ -+ - + Z Aigoija Tig - Tigy

i1=1 i1,io=1 i1 yeeyij_1=1

since the tanh” function is invertible in the open intervgl-1,1). We defineIC,(j) as the set
of conditional probability distribution® (X ;| AN;) for which all coefficients\ in f; with more
thank indices vanish and shall drop the superscyipthen this will lead to no confusion. We
obtain the hierarchy

’CoC’Clc...Cle_l.

135



6. Discovering Causal Order by Properties of Conditionals

Figure 6.5.: Graphical representation of an OR gate with independent input bits.

One can easily prove that the constrained entropy maximizaefined above leads to terms
in Ky, if the set of constraints is extended by terms up to momepss, X, ... X;, | of orderk.
We therefore consider the above hierarchy as a straighafoindefinition of the complexity of
Markov kernels and observe that the “smoothest” kernel$nak§ which is the first non-trivial
class, since for all kernels i, the variablesAN; do not influenceX; at all.

We defineM;*" as the set of joint measures 0¥, . . ., X,,) for which all Markov kernels
P(xjlan;) are inlcgj). The asymmetry of the sg¥f; with respect to a reordering of variables is
decisive for the applicability of our approach to binary é¢ons. The next subsection elaborates
on this by means of Boolean functions OR/AND as models for eteamg causal mechanism.

6.4.4. ldentifying causal order of OR/AND gates by Markov kernels

The Boolean functions OR/AND are ideal simplified models fomgnalementary causal rela-
tions in real life where an effect depends on several resgesuifficient or necessary conditions.
For instance, a plant grows if a sufficient amount of watghtliand fertilizer is available and it
dies if at least one of these necessary conditions is naffieati

Remarkably, the Markov kernels describing OR/AND gates ath bothe closure of class
K. To see this, we study an OR gate in detail. D&t ..., X,,_; be the binary variables that
correspond to the input bits of an OR gate andthe output (see Fif. 8.5).

The conditional probabilities ak,, can be written as

n—1

P(X,=1|an,):=1-[[(1 - ).

i=1
Defining
n—1
1
P, (X,=1|an,) = 5(1 +tanh(— k+2kai)> ,
i=1

we have

klim Py, (zplan,) = P (x,|an,) ,

i.e., P(X,|AN,) e k™.
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6.4. Examples of smoothest Markov kernels

Suppose the joint distributio® (X1, ..., X,,) is generated by an OR gate when the inputs
Xi,..., X, are randomly chosen according to the uniform distributi@n, P(z;|an;) =1 for

ordering of the variables where the output is not at the enthadtt loss of generality, we choose
the orderXs, ..., X,,, X;. We have

1 forIQZZL'g:...:ZL‘n_l:O
P(X1:1’$2,l’3,...,$n1,Xn:1):{ . (64)
1 otherwise
and
P(X1:1|X2:...:Xn20)20. (6.5)

Note that the evenk,, = 0 and X; = 1 for somei € {2,...,n—1} does not occur and the
corresponding conditional probabilities need not to becsigel. We will show that there is no
Markov kernel in the closure df,,_; that satisfies EqL(6.4). We are particularly interestetién t
Markov kernel ofX; since it depends on—1 variables and is therefore the natural candidate for
being the most complex Markov kernel. We write

1
P(Xlzllq:g,...,xn):5(1+tanh(f(x2,...,xn)),

wheref is an appropriate function. Define a functigrwith n—2 arguments by

flzo,...ixny) = f(z...,Tp1,x,=1) .

If the kernel of Eq.[(6.4) was in the closure 6f,, 3, there existed a sequengewith polyno-
mials of degree:—3 and a corresponding sequengef degreen—3 such thatfk(xg, ey Tpq)
tended to infinity forz =23 =...=x,_1 =0 and to zero otherwise. Elementary linear algebra
arguments show that the space of polynomials of degre& would then contain the element
with

(l‘ " )_ 1 forl'gzl'g:...:l'nflzo
G2 1) =90 otherwise
This is however not true since the unique functiosatisfying these constraints is given by
n—1
g(x%"'axn—l) = H(l _xz) )
=2

which is a polynomial of degree—2. The lower bound on the degree is tight because there is
indeed a sequence of polynomials of degree2 that induce Markov kernels which satisfy the
constraints of Eq[(614) and Eq. (6.5) in the limit. The sewad f;. ). Of functions, given by

n—1

fr (z2, ... xy) :zk(?(mn—l)—l—H(l—xi)),

1=2
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6. Discovering Causal Order by Properties of Conditionals

tends to—oo for z,, =0 and the induced conditional probability satisfies theretbe constraint
in Eq. (6.5). Moreover, the condition of EQ.(6.4) is alsdsfad.

This shows that an OR gate induces a joint measure thaf\i$iwhen considered with respect
to the correct generating causal order. By inverting inpat @mtput one can instantly see that
this is true also for an AND gate. The remarks show thatfort the setM is not invariant with
respect to a reordering of variables and kernels ik; can lead to joint distributions defining
kernels which are iriC,,_» but not inK,,_3. This implies that our inference proposal can in
principle identify the output of an OR/AND gate as the effeatl ds random inputs as causes
whenever the number of inputs is at ledstOf course, the number of data points in the sample
should be large enough to allow a reliable estimation of v jneasure.

This theoretical result is actually not very surprising.eTihtuition behind the result is that
reversing at least one of the arrows in the causal model assind-ig.[6.5 generates dependence
among the inputs, which can only be canceled out by accidEmis dependence can only be
described by sophisticated high-order terms of inputs.s Thiwhy the concatenated entropy
maximization leads to conditionals that, in turn, genedifferent joint measures when different
orders are chosen in the maximization procedure. It will pgaaent later that this difference
among the joint measures is essential for our inference rule

Based on independence relations, the constraint-basedaabpre.g., PC, is also capable of
distinguishing output from inputs, if the inputs of OR/ANDtga are indeed independent. Our
hope is that the evidence of high-order terms (non-smogthne non-simplicity) will survive
when the inputs are dependent in a simple manner, becausesisy OR gates have many of
the properties of linear systems (see [124,[29, 70] for m@eudsions). Although it is hard to
generally justify Assumptionl 6, in the sense that the mgjarfi natural causal relationships have
such properties of simplicity, numerical experiments ioti@[6.8 will show that there are some
real life cases where our assumption appears to be reasonabl

6.5. pIMK causal order discovery algorithm

Having defined the smoothest Markov kernels, we move to theei®f model selection. The
idea is that we evaluate the goodness of fit to finitdata points by means of the joint measures
implied by the corresponding smoothest Markov kernels wegpect to different hypothetical
causal orders. For this purpose, we introduce maximumitiketl and minimum distance esti-
mation to select models.

One possible approach to prefer one of the hypotheticalat@uders is the maximum like-
lihood method. The method assigns an orgldép be causal, if its derived smoothest Markov
kernels lead to a joint measure that has the maximum logHiked scorel, given data. We
briefly describe the case of estimating the causal diretteween only two observed variables
X,Y. The joint measure®) andR induced by the smoothest Markov kernels corresponding
to two hypothetical causal orders are given. Based omtbbserved data points:;, y;), we
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6.5. pIMK causal order discovery algorithm

calculate the respective log-likelihood scores

Ix_y = iln <Q(:1:l,yz)> and ly_x := i:ln (R(xl,yl)>
i=1 =1

and prefer the causal order with larger log-likelihood. Ekeension to more than two hypothet-
ical orders is trivial.

We shall interpret the maximum score merely as showing tlesét of Markov kernels with
respect to that particular causal order seem to be the tlaséise smoothest one. Note that
we do not expect at all that the calculated joint measuresgigoal approximation for the true
probabilities, it is more likely that the joint measures kcball be rejected with high level of
confidence. The task is nonetheless to decide which measaiglgs the best fit.

Another possibility to check which joint measure fits bettethe observed data is the concept
of minimum distance estimate as described by Devroye edd]. [To explain the idea, we first
consider the situation with two distinct resulting joint aseirexQ andR. The set

A= {(x,y) EXx)V: Q(xay) > R(l’,y)}

is defined as the Scheffé set[136] for an ordered pair ofibigtons(Q, R). Moreover,

1 (A) = %Zu((mi,yi)),

wherel 4 denotes the characteristic function of a get Then, u.,,(A) is the observed relative
frequency for the setl aftern observations. By preferring the measure for which the priibab
of A is closer to the observed relative frequency we have a goadoehto prefer the measure
that has the smaller maximum variation distance to the tistaloution. In the selection problem
with two candidates, we say th@wins againsiR when

dx_y = <

D9t (A <D R~ (A)| = dy_x . (6.6)
A A

Our inference rule assigns the causal hypothesis thatspmnels to the so-called “Scheffé tour-
nament” winner as “true”.

For a selection problem withih alternatives?’,, we run a competition, the so-called “Scheffé
tournament”, withk(k — 1)/2 matches among them, one for each ordered pair. For Bach
we total the number of wins and declare the measgtrevith the maximum number of wins the
tournament winner. If there is more than one winner, regeatbmpetition within the winners
so long as no winners can be eliminated any more. In the end;onsider the tournament
winners most plausible, supported by the given datBsahd hence interpret the corresponding
orders, induced by, as causal.

In comparison to the maximum log-likelihood method, theaattage of the minimum distance
method is that it is less sensitive to small deviations betwteue and hypothetical probabilities
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6. Discovering Causal Order by Properties of Conditionals

Input: Ann x N data matrixD with n sample vectors aiV variables{ X}, ..., Xx}.

Step 1 Calculate the mean (the first moment) of each column of @atnd the mean of the
product of each pair of columns (the second moment) dhcluding the product with itself,

Step 2 Compute the smoothest Markov kerné® X (1)), ..., P(Xz(n) [ Xr1)s - - s Xn(v=1))
with respect to each possible hypothetical ordeon {X;, X»,..., Xx}. Calculate the
corresponding joint measure, (X, ..., X ) according to Bayes’ rule as in Hq. 1L.1.

Step 3 Conduct the Scheffé tournament within the resulting joint measures anduirtde orders
7 corresponding to the tournament winners. (Or: Calculate the log-likelisoorks for the
resulting joint measures and find out the ordersith the largest scores.)

Output: An order or a class of orders ¢, ..., Xy }.

Figure 6.6.: pIMK causal order discovery algorithm.

if both measures differ within a region of small probabiliéthough in all our experiments the
estimated causal directions coincide. Because the ditferehthe minimum distance between
the true and wrong causal models are much more significamthiag&of the log-likelihood scores,

we prefer in the following the minimum distance estimatiornite maximum likelihood method.

Now, we summarize the ideas and describe the pIMK causat drsieovery algorithm as shown

in Fig.[6.6, under the plausible Markov kernel (short: plMd§sumption.

6.6. Experiments with data on binary domains

Sectior 6.4 showed some theoretical consequences ahtialsest Markov kernels on binary
domains, which claimed that pIMK is capable of discovering/@ND gates with independent

inputs. Simulated experiments shall explore how robustfbdhaves with regard to noises and
sample sizes.

6.6.1. Simulated noisy OR data

We sampled data of sample sizes ranging frzihto 200 from three 3-bit noisy OR gates as
shown in Tab[5]2 and ran pIMK algorithm to learn the causdedng of the four variables
{X1, Xo, X3, X4}, In this experiment, the output of pIMK i6 orderings of them. The last
variable in the orderings is always the same. The orderintpeffirst three is arbitrary. We
transform the resulting order of variables into a partiglisected graph to make the evaluation
comparable with other algorithms. The graph is fully conedgcsince pIMK is not capable of
removing unnecessary edges.

To evaluate pIMK regarding different samples, we introdtiee following scoring system
for all directions in the structure. Suppose pIMK identifi¥gd as the output. We assign the
probability scorel00% to the directionX; — X, and0% to X; — X, (i € {1, 2,3}). For for the
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6.6. Experiments with data on binary domains

Model 3-Bit-IndDet 3-Bit-IndPro 3-Bit-DepPro
sample Size| 20 | 50 | 100 | 150 | 200 || 20 | 50 | 100 | 150 | 200 || 20 | 50 | 100 | 150 | 200

X1 —Xo 49.1 | 51.5| 523 | 50.4 | 48.3 || 50.4 | 48.0 | 48.7 | 48.4 | 474 || 504 | 494 | 52.1 | 51.2 | 52.8
X1 —Xo 50.9 | 485 | 47.7 | 496 | 51.7 || 49.6 | 52.0 | 51.3 | 51.6 | 52.6 || 49.6 | 50.6 | 47.9 | 48.8 | 47.2

X1 —X3 494 | 51.2 | 525 | 51.2 | 50.8 || 49.7 | 48.3 | 47.1 | 474 | 46.0 || 505 | 49.3 | 51.9 | 55.8 | 61.6
X1—X3 50.6 | 48.8 | 475 | 488 | 49.2 || 50.3 | 51.7 | 529 | 52.6 | 54.0 || 495 | 50.7 | 48.1 | 44.2 | 384

X1 — Xy 69.9 | 858 | 924 | 958 | 974 || 625 | 713 | 765 | 78.2 | 79.0 || 53.6 | 64.2 | 66.4 | 60.5 | 58.3
X1—X4 301|142 | 7.6 4.2 2.6 375 | 28.7| 235 | 21.8| 21.0 | 46.4| 358 | 33.6 | 39.5 | 41.7

Xo— X3 50.7 | 495 | 49.2 | 498 | 51.2 || 49.0 | 50.3 | 48.3 | 489 | 48.6 || 50.1 | 50.1 | 49.7 | 54.6 | 58.8
Xo— X3 49.3 | 505 | 50.8 | 50.2 | 48.8 || 51.0 | 49.7 | 51.7 | 51.1 | 51.4 || 499 | 49.9 | 50.3 | 454 | 41.2

Xo— Xy 699 | 858 | 924 | 958 | 974 || 61.8 | 728 | 77.8 | 79.7 | 81.7 || 53.2 | 64.8 | 64.3 | 59.4 | 55.4
Xo— Xy 301 | 142 | 7.6 4.2 2.6 38.2| 272 | 222 | 20.3 | 183 | 46.8 | 35.2 | 35.7 | 40.6 | 44.6

X3 — Xy 69.9 | 858 | 924 | 958 | 974 || 62.7 | 726 | 795 | 80.8 | 83.1 || 53.2 | 64.8 | 64.6 | 54.7 | 46.7
X3—X4 301 | 142 | 7.6 4.2 2.6 373 | 274 | 205| 169 | 10.0 || 46.8 | 35.2 | 354 | 453 | 53.3

Table 6.3.: Statistics of outputs learned by pIMK on data @ach from noisy 3-bit OR gates
as shown in Tah. 5l2. The entries in the rowsXaf— X, (i = 1,2, 3) show how
often (in percentage, is correctly identified as the output of OR gates. An entry
of 50% indicates an indeterminate edge by pIMK, while a scor&00f% indicates a
deterministic orientation by pIMK.

other directionsX; — X (i, 5 € {1, 2, 3} andi # j), we assign the probability scob®%, since
we do not have any information to prefer some of them. TabsBdvs the average score for all
possible arrows in the fully connected structure aft#0 replications of sampling. A score of
50% indicates an indeterminate edge by pIMK, while a scor&00f% indicates a deterministic
orientation by pIMK.

The larger the sample size, the better the pIMK algorithnfgoered. In comparison to
Tab[C.4 in Appendik C]2, we can see that the performance oflifi€ plgorithm (in the case of
sample size 0200) is competitive with the constraint-based PC algorithm. &imshortcoming
of pIMK is that it is only feasible for a small number of varlab. Otherwise the number of hypo-
thetical causal orders and the dimension of the joint pritibakeector would lead to intractable
computational problems. For this reason, we propose imdlf@xfing to combine the pIMK with
PC to get the advantages of both approaches.

6.6.2. Personal income data

We study the relationships between annual personal incardesarious demographic factors.
The data come from the US current population survey (CPS).dateset is transformed from
CPS 1995 with altogether149, 642 records. The binary version contains entries fo2, 164
persons with age at leas6. The other dataset contains data from C®81 for 13,803 per-
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6. Discovering Causal Order by Properties of Conditionals

Data CPS 1995 CPS 2001
Scheffé Match Distance «1073) Winner Distance «1073) Winner
(Py, Py) dy = 0.2324 < 1.6186 = d P, ds = 0.1530 < 5.1513 = d; P,
Py, Py dy =0.2324 < 1.6183 = ds P, dy = 0.1530 < 5.1417 = dy Py

)

) dy=02324<16189=ds | Py | dy=01530<51715=ds | P,
) dy=14718 <14729=d; | P; | d3y=3.6131<3.6681=d; | Py
)

)

dy=1.2952 < 1.2963 =d5 | P, d3; =1.6253 < 1.6788 =dy | Py
dy = 4.1082 < 4.1092 = d, P, dy = 10.679 < 10.701 = d, P

(
(
(
(
(

Table 6.4.: Results of the Scheffé tournaments on CPS data.

sons, age 16 and over, resident in the Pacific Division ofddhtates. The “Pacific Division”
comprises the states of Alaska, California, Hawaii, Oregomgy Washington. Both datasets
were transcribed by D. Freedman of the Statistics Depaitri&h Berkeley and are available at
http://www.stat.berkeley.edutensus

The variables that we consider includg: SEx (gender),X,: I-STATUS (immigrant status),
X3: E-LEVEL (educational level), and;: INCOME (annual personal income). For our purpose,
variables were transformed into binary ones, which stamdfale or female, whether being
native born in the US or not, whether having more than a Backealegree or less, whether
having an annual income of more thas0$000 or less.

We know that gender can only affect the other variables baaninot be an effect of them.
Furthermore, we assume that income is rather an effect afttiess than a cause even though we
cannot completely exclude causal arrows in the backwagttiom. For both datasets the causal
hypotheses generated by the pIMK algorithm were indeedistems$ with this prior knowledge
and assumptions.

The pIMK algorithm has generatdddifferent joint measure®; withi=1, ..., 4 correspond-
ing to orderings where the variablg,; is at the end. As reported in Tdb. 6.4, in both datasets
(CPS 1995 and 200Q), is the winner of the Scheffé tournaments between pairs okorea.
Although the absolute differences between log-likelihsadres are not very largé), has the
largest score in both datasets. [Figl 6.7 visualizes théhgralstructure corresponding 9. The
undirected edges depict yet unspecified causal relatidresplMK algorithm identified personal
INCOME as the effect in both datasets. It is remarkable that strestwith the variable Sx at
the end have obtained no wins at all (see Tab. 6.5).

6.7. Combining pIMK with constraint-based algorithm

The intention behind the plausible Markov kernel assunmpisonot replacing conventional ap-
proaches that use independence relations. It rather sipoodide additional hints on the ori-
entation of structure. Our inference rule can distinguistween causal structures that generate
the same set of independence constraints, whereas PC isrgfffcthe underlying network is
indeed sparse. To benefit both advantages, we suggest tanmRD and pIMK. A pre-selection

142



6.7. Combining pIMK with constraint-based algorithm

Data | CPS 1995 CPS 2001
SEX as last variable in the ordering 0 0
|I-STATUS as last variable in the ordering 6 12
E-LEVEL as last variable in the ordering 12 6
INCOME as last variable in the ordering 18 18

Table 6.5.: Total wins of the distinguishable classes of causal orders on CPS data by lieéf&c

tournaments.

Figure 6.7.: Graphical representation of output generaygelMK when applied to CPS data.
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Oy
Erevd>Civcons>

Figure 6.8.: Output generated by PC on CPS 2001.

of causal hypotheses through PC reduces the search spasié(pmrderings of variables) for
pIMK. The conventional approach tends to prefer directeghlgs with small numbers of arrows.
The pIMK algorithm can additionally prefer those models vae corresponding Markov ker-
nels are simple.

Now we study the demographic data in Section 6.6.2 again. rétestart with the PC algorithm
(with x? test anda = 0.05). Fig.[6.8 visualizes the result for CPS 2001, which containly
directed edges. The output is in agreement with the outppiMK saying that NCOME is the
effect of the other variables.

The left plot of Fig[6.9 shows the result for CPS 1995. Addisibcorrelations betweeneX
and E-LEVEL and between [-8ATUS and E-LEVEL are observed om CPS 1995. Due to the
additional dependences the resulting graph is more congaepared to CPS 2001 and PC is
incapable of making any statement about the orientatiom@fcausal connection between E-
LEVEL and INCOME. This means that a causal arrow fromcloME to E-LEVEL cannot be
excluded. The pIMK algorithm is here more specific since itgpat states thatNCOME is the
effect of all other variables, i.e., no arrow fromd¢oME to E-LEVEL is allowed.

Note, however, that the pIMK is in other respects less spettiin PC since it cannot distin-
guish (in the case of binary variables) between different structures havingstnae variable at
the end. Recall, for instance, that the results of pIMK (sgel&if) did not show thatex is not
an effect of any other variables, the latter statement ig oohsistent with the class of preferred
causal structures. Combining PC with pIMK we may then oriéet édge from E-EVEL to
INCOME as done in Fig._619, right. This shows that a combination ofalR@ pIMK leads to a
completely determined causal structure, which stateslth@dME is not a cause of any other
variable and &x/1-STATUS is not the effect of any other variable. This is consisterthwaiur
prior knowledge and assumptions.

The examples showed that the conventional PC works quiteamebinary domains. The
improvement of pIMK in this respect is limited. However, ttypical application of pIMK is
inference on hybrid models consisting of both continuous discrete domains, in particular,
pIMK could make inference in case of only two dependent \des
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6.8. Experiments with data on continuous domains

Figure 6.9.: Output generated by PC (left) and by PC+plIMKhiigwhen applied to CPS 1995.

Figure 6.10.: Graphical representation of relation betwage and marriage status (M-Status),
which is confirmed by output of pIMK.

6.8. Experiments with data on continuous domains

In this section, we demonstrate some real-world experigweninfer causal order between only
two dependent variables, a case that cannot be treateddoynigdrom independence relations
or dependence measures.

6.8.1. Demographic data

We study the causal relation between the age of a person atiishearriage status (M-Status).
For this purpose, we use data from CPS 1995 and 2001 againh wahecalready discussed in
Sectior{6.6.2. Only the cases with algieor over are considered.

The variable M-SATUS has the binary value of “never married” or else, while®is an
integer. The observed correlations are strang995 for CPS1995 and0.5238 for CPS2001.
We assume that the age of a person causally determine hiséngage status, not vice versa (see
Fig.[6.10). The outputs of pIMK learned from CP®)5 and CP001 are indeed consistent with
this prior knowledge. As one can see from the Tabl. 6.6, thdikegjhood scores with respect
to the correct causal direction are always larger than théteoreversed one. The conducted
Scheffé tournament also confirmed this result.

Another example we studied was the causal relation betweesna8id annual personaht
COME, based on the CPS data. We assume that the gender of a persany)bifluences his/her
personal income (real-valued), not vice versa (sed Fidl)6The outputs learned by pIMK from
CPS1995 and2001 data are, however, not consistent with this prior knowledgece the con-
ducted Scheffé tournament did not yield the desired resBlis if we took the logarithm of the
continuous values ofNCOME, pIMK preferred the correct causal direction. The log-itkeod
scores provided qualitatively the same results. In ourutation, the untransformed as well as
log-transformed continuous domains are discretized iotmd 5, 000 intervals. The observed
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Log-likelihood scores Distance measure based on Scheffé|set
Data AGE— M-STATUS \ M-STATUS — AGE || AGE— M-STATUS | M-STATUS — AGE
CPS 1995 —5.1374 x 10° —5.1440 x 10° 0.0264 0.0577
CPS 2001| —6.3056 x 10* —6.3145 x 10* 0.0209 0.0537

Table 6.6.: Experimental results for data from the CPS 1982801. Maximum likelihood esti-
mation and Scheffé tournament both prefer the causal ateias shown in Fig. 6.10.

Figure 6.11.: Graphical representation of relation betwgender (sex) and income, which is
confirmed by output of pIMK.

correlation rose frond.2112 to 0.2502 in CPS1995 and from0.2828 to 0.2998 in CPS2001 by
the use of log-transformation.

Tab.[6.6 summarizes the results of the Scheffé tournamesgtdban the original and log-
transformed data. This partially negative result indisdateat more flexible notions of plausible
conditionals are desirable. In other words, the family afdibonals that are considered smooth
should be large enough to contain, e.g., log-normal digiohs but small enough to not contain
mixtures of those.

It should be mentioned hat the concept of plausible Markomédds has also its limitation. Sup-
pose an underlying modé&l — Y with Markov kernelsQ(z.1) =1 andQ(Y|z.1) NV (ps1, 02)
with sufficiently larges?. Such situation is featured by a weak correlation betw&eandY .
The inference rule of pIMK will in fact run into difficultiegynless there are a large number of
data samples to recognize the mixture of distributions. fohewing example shows why this is
not very surprising.

The left plot of Fig[6.1P is the Gaussian mixturé V' (—1,1.5) + 0.5 N (1, 1.5), which cor-
responds to a correlation coefficient of aboltwhen the Gaussian components are labeled by a

with original domain with log-transformed domain

Data SEX — INCOME \ INCOME— SEX || SEX— INCOME \ INCOME— SEX
CPS 1995 0.1047 0.1041 0.0523 0.0535
CPS 2001 0.1567 0.1543 0.0151 0.0156

Table 6.7.: Experimental results for data from the CPS 19952801. Scheffé tournament both
prefer the causal structure as shown in Eig.16.11. The firstdwlumns are results
for the original continuous domain oNEoME and the last two are results with the
log-transformed domain.
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Figure 6.12.: Recognizability of mixture of two Gaussiartrilisitions.

binary variable. The mixture is still unimodal and the shdjfers only slightly from the Gaus-
sian distribution. That is why our inference rule requiragé samples for small correlations.
The plateau in the right plot of Fig._6112 can already be tasea hint for a mixture of ensembles,
although the distribution is also unimodal. The correlattoefficient is aboud.7. This shows
that the bimodal case corresponds to very large correkation

Summing up, as long as the sample size or the underlyinghiison allows us a reliable
identification of mixture, the plausibility of Markov kerlsan such hybrid models might help us
to guess the “true” causal direction. The larger the sampég the stronger the correlation, the
better will our inference rule work.

Furthermore, we should mention the following potentialemiipn against the inference rule
of pIMK. Given an effect variablé” that is in a linear way influenced by a very large number of
causesXy, ..., X,. Then the marginal distribution &f is approximately Gaussian despite our
claim that the distribution of the effect should typicallg less smooth. However, this is a mis-
understanding of our idea since the task is rather to idedtfinant causes. In real life, every
cause is influenced by further causes. If the latter influginedormer such that the contribution
of each single variable is small we would rather considersilygerposition of all these small
influences as background noise and set the influenced am@lihe beginning of the causal
order. According to such a viewpoint, we should prefer J@ga whose marginal distribution
is stable (like, for instance, Gaussians or gamma distdbs} as those that correspond to the
causes, i.e., the variables at the beginning of the caudat.ofo develop a notion of simplicity
that would also consider other stable distributions (afpamh Gaussians) as “extremely smooth”
with state-of-the-art machine learning methods could ber@sting. The next chapter provides a
kernel-based approach.

In principle, LINGAM can also be used for causal inferenceneen only two variables. How-
ever, the current version of LINGAM is yet only applicabledontinuous variables and cannot
handle discrete, vectorial or hybrid domains. Our pIMK aithon can treat them straightfor-
wardly. It should be mentioned that if the observed varisiales in fact multivariate Gaussian-
distributed, neither pIMK nor LINGAM can provide any infoation about causal relationships
among them.

147



6. Discovering Causal Order by Properties of Conditionals

@ TEMPERATURE

Figure 6.13.: Graphical representation of relation betwa&te and temperature, which is con-
firmed by output of pIMK.

Variables DATE: (X,Y) TEMPERATURE(°C)
Value set|| {(z,y)|z? +y%? =1} C R? [-23,25] C R
1st moment (0.0022, —0.0009) 5.7053
0.5019 0.0000
2nd moment ( 0.0000 0.4981 > 84.6079
2nd mixed moment (—3.9702, —1.4548)

Table 6.8.: Value sets and observed statistical momenthéotemperature dataset of Furtwan-
gen.

6.8.2. Temperature data

Another example is an experiment with a meteorological sidtan continuous domains. We
examined the causation between two variables, nametgeRQdates of the year) andEMPER-
ATURE (daily average temperatures). Common sense tells us the¢#senal cycle is a cause of
temperature variation (see Fig. 6.13 for the graphicalasgmtation), not vice versa.

A dataset of daily average temperatures in Furtwangen (Bfackst, Germany) dt5 years
(from Jan. 1, 1979 to Jan. 31, 2004) with 9162 entries wag/aedl The dataset contains also
the temperatures atam, 2 pm and6 pm o’clock every day, as well as the daily maximum and
minimum. Each day begins and ends at 6pm.

Due to the cyclic property of dates of the year, we assign thieaircle, a proper subset of
IR?, to the value set of variableAVE (X, Y) with we€ {(, y)|22+y>=1}. This value set can be
parameterized, for example, by-=cos (2= k) andy =sin (2= k) with k=1, ..., 366 (maximum
days per year). Note that we take the natural representatidata as a priori knowledge. Ac-
tually, a more natural representation of the date would kdigtinguish between leap year and
non-leap years and divide the angle igt® values only for the former case. However, here we
neglected leap years for reasons of convenience.

The first moment of ATE is a two dimensional vector and states the expectatior$ and
Y. The second mixed moment ofalDE is also a two dimensional vector, which defines cross-
covariance betweefiX,Y) and TEMPERATURE The second moment of AJE is a symmetric
matrix, which fixes the within-block covariance ©f, V). Tab[6.8 summarizes all the statistical
features from the data which we need for the entropy maxioizalescribed in Sectidn 6.3.1
and Section 6.3]2.

Using these constraints we computed the plausible Markmekefor both hypothetical causal
directions. Note that in all plots the variablentE is parameterized by the integer Because
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Figure 6.14.: The smoothest Markov kern@$DATE) and Q(TEMPERATUREDATE) for the
hypothetical causal orderA9e — TEMPERATURE
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Figure 6.15.: Joint measuk2 of the smoothest Markov kernels with respect to the causkror
DATE — TEMPERATURE The plot on the left is a 3D illustration of the probability
density; isolines of the density are drawn on the right. Titeeg points on the right
indicate the 9162 observed temperature values within ageai 25 years. The
density above provides a better fit to the data than the defiesithe wrong causal

direction in Fig[6.1F7.
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Figure 6.16.: Smoothest Markov kern®$ TEMPERATURE) andR (DATE|TEMPERATURE) for
the hypothetical causal ordeEMPERATURE— DATE.
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Figure 6.17.: Joint measuf@ of the smoothest Markov kernels with respect to the hypataket
causal order EMPERATURE— DATE. As in Fig.[6.15, the left plot is a 3D plot
of the computed density, the right plot shows its isolined @@ green points are
again the observed temperature values. The elliptic isslimdicate areas of higher
probability even though the observed values do not showesiug in these areas.
Accordingly, the joint density for the true causal direatio Fig.[6.I% provides a
better fit.
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6.8. Experiments with data on continuous domains

of the non-uniform sampling of Bre (there are often only 365 days in the year and in the
real dataset there is one year with more observations fod#lys in January), the plausible
Markov kernel of the cause e in DATE — TEMPERATURE differs slightly from the usu-
ally expected uniform distribution (Fig._6.114, left). Fdret effect variable EMPERATUREIN
DATE — TEMPERATURE the plausible Markov kernel (Fig._6J14, right) has a caodil expec-
tation in a sinusoidal form, which traces back to the cycloperty of the cause ATE, and a
Gaussian-shaped function for every given value af B which is basically due to the fact that
the Gaussian distribution maximizes the entropy givenatsance.

In the case of the other hypothetical causal directi@MPERATURE — DATE, the cause
variable TEMPERATURE has a Gaussian distribution (Fig._6.16, left). For the éffegiable
DATE in TEMPERATURE — DATE, we obtain a strange and non-intuitive shape for its most
plausible Markov kernel (Fig. 6.16, right).

Then we calculated the joint distributions from these plaledMarkov kernels based on both
hypothetical causal directions.

O(DATE, TEMPERATURE) = Q(TEMPERATUREDATE) Q(DATE),
R(DATE, TEMPERATURE) = 7R(DATE|TEMPERATURE) R(TEMPERATURE).

Fig.[6.15 (left) visualizes the resulting joint distriboni @ and Fig[6.117 (left) visualizeR. Our
computation is based on a discretization of one day for thehi® DATE and one degree for
the variable EMPERATURE Fig.[6.15 (right) and Fid. 6.17 (right) display the isoknef both
joint distributions with the observed temperature valué& note thatQ andR have different
numbers of modes and that this qualitative difference betvmoth distributions appeared to be
with respect to changes in the discretization.

Our calculation of the log-likelihood scores of the mostugidle joint distribution@ andR
shows that for given data the “true” causal directioaTB — TEMPERATURE achieves a log-
likelihood score of-8.0900 x 10%, whereas the other direction gets a lower log-likelihooorsc
of —8.1031 x 10*. If we run the Scheffé tournamer®, wins clearly with

dpate_TemperaTure = 0.0156

against

dTemperaTure-Date = 0.0780.
The joint measure of the true causal direction provides tebét for the data than that of the
wrong causal order. It is worth to mention that we repeatedcesperiments also with the mea-
sured temperatures aam,2 pm and6 pm as well as daily maximum and minimum in the place
of the daily average temperature to test the causal hypeth@sir inference rule yielded in all
cases the correct causal direction, as desired.

151



/. Discovering Causal Direction by
Complexity Measure of
Distributions

Causal inference by means of plausible Markov kernels usegrtiperties of conditional distri-
butions. The motivation is that statistic dependences &éetwcause and effect which are gen-
erated by natural causal mechanism should typically led@itople or smooth” expressions
for P(effecticause but will not necessarily generate simple expressiongfiaauséeffect). In
last chapters, we showed a first attempt for evaluating tr@o#mess or simplicity of the true
measure. How to quantify the smoothness and simplicity afralitional distribution in a more
general framework is our main concern. In this chapter, vap@se to measure the complexity
of a distribution by a Hilbert space seminorm of the logamtbf the density. The function is
an element of an RKHS and its seminorm can therefore be conhpytesual kernel methods.
In contrast to common machine learning applications, tbismexity measure plays not only
the role of a regularizer used to avoid overfitting of desoglfinite data points. It is rather
considered as an interesting quantity in its own right sihebould provide hints on the causal
direction. For this purpose, it is essential to choose a ifiefinof complexity measure which is
well-behaved in some respects.

7.1. Defining complexity measure by Hilbert space
seminorms

Before we introduce the complexity measure for conditiorgigities, we define it for uncondi-
tional densities. Let us ignore for the moment the sampbsge and assume that the density
of some random variabl& (probably vectorial) is perfectly known. For the sake ofvamence
and in order to avoid some technical problems, we assumdhbatalue seft’ of X is finite.
Now, we introduce a complexity measure on the space of dessih X’ as follows.

Definition 23 (Complexity of Marginals) Let X’ be a probability spaceX be a random vari-
able on X, and Px a density onX. Furthermore, letH be a Hilbert space of real-valued
functions onY’ containing the set of constant functions. Then we define tmplexity of Py as

C(Py) = min { [l9]

¢ € H with Px(z) = exp(¢(z) — In z¢)}
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7.1. Defining complexity measure by Hilbert space seminorms

with the partition functiorz,:=>"_ exp (¢(z)). Here||.|| denotes a seminorm &t given by

0]l := v/ B(¢, ),

whereB denotes a positive definite (but not necessarily strictlsitpe) bilinear formB : 'H x
H — TR.

In the following, we will use the following terminology: wealt two vectorsv, w € H orthog-
onal if B(v,w)=0. For a subspac¥ we define

Vti={w| B(w,v) =0 Yv € V}.

SinceV andV+ may have non-trivial intersection, we avoid the term “ogbnal complement”.
The term “orthogonal” will always refer to the bilinear forBunless something else is explicitly
stated. An orthogonal projectioR is said to be an projection oni¢* if RHCV+ and Rw =
w—o for somev € V that minimizeg|w—uv||. We have

C(P) = |Q(nP)|?, (7.1)

where( denotes the projection ontio-. This is due td|¢|| = |Q(¢ — z41)|| = ||Q(In P)||. We
show the following lemma.

Lemma 1 (Additivity) LetH; and’H, be spaces of functions oty and &5, respectively. Fur-
thermore, letC; and C; be complexity measures on the densitiest9rand X5, respectively,
defined by the corresponding seminorm&{inandH,. Assume that a complexity measaren

the density ot is based on the seminorm&f:=H;®H. that satisfies the embedding property
la® 1] = ||la]| = ||1®al|, wherel denotes the function taking the constant valueThen we
have the following additivity rule: LeP be defined by a product of densiti&s and P, i.e.,
P(xq1,z9)= P (z1)P>(x2) for all z; andz,. Then the complexity of the product measure satisfies
C(P)=C1(P1)+Co(P).

Proof Let @, @1, Q- denote the projections onto the space of functions orthalgori for the
spacest, H,, H,, respectively. Then we have

lQInA@1+1@h R = [|Qi(nF)@1+1®Qz(n P
= [Qi(nP)|* + [|Q2(In Py)I*,

where the last equality is due to Pythagoras’ theorem adténg into account that the vectors
Q:(In P;) ® 1 and1 ® Q-(In P,) are mutually orthogonal. ]
Now we move to the definition of the complexity of conditiopabbabilities:

Definition 24 (Complexity of Conditionals) Let X and ) be the respective value sets of ran-
dom variablesX andY’, and Px y be a joint density o’ x ). Let Py x be the corresponding
conditional density. We define the complexity’ofx as

C(Pyx) = min { |l9]

¢ € H with Py|x (y|x) = exp(¢(z,y) — In z¢(x))}
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7. Discovering Causal Direction by Complexity Measure of flisttions

with the partition functione () := 3" exp (4(x,y)).

Similarly to the reformulation of Definition 23 in Ed. (7.1he definition of the complexity of a
conditional density can also be given in a more explicit form

C(Pyix) = ||(id ® Q2)(In Py x)|?, (7.2)

where ‘id” denotes the identity map an@, is as in the proof of Lemmia 1. Under the assump-
tions of Definition 24, we have:

Lemma 2 (Consistency)Let X andY be stochastically independent with respect to the joint
densityP, i.e., Py|x = Py. LetC be a complexity measure based on a seminorbd 7+ x QHy
satisfying the embedding property in Lenimha 1. Then we 8&¥% v ) =Cs(Py).

Proof Let ¢ be some function o/’ x Y such thatPy|x (y|z) =exp(o(z, y) —In z4(z)) = Py (y).
We choose an arbitrary valyg and setf(x) := ¢(z, yo) —In Py (yo) andg(y) :=1n Py (y). Then

we havep(z,y)= f(x)+g(y). Thus

Iid ® Q2)(9)[* = [(id @ Q2)(f ® 1+ 1@ g)|* = [Qa2(g)|I*.

Therefore, we conclud€(Py|x ) = Cy(Fy). [

Lemmal2 is essential, if one intends to compare the complekitmarginal densities to that
of conditional densities. The following causal inferencm@ple stands behind such a compar-
ison: having factorized a joint densifyx y into Py x Px and Pxy Py based on both possible
hypothetical causal orders, one calculates the sums ofamplexitiesC(Py|x) +C(Px) and
C(Pxy)+C(Py) with respect to the different hypotheses. The intentioo isansider the sums
as the “total complexity” of the causal mode{s— Y and X <« Y respectively and to prefer the
causal direction that corresponds to the smaller total ¢exitp. For doing so, it is crucial to
makeC'(Py) andC(Py|x) comparable. An essential property of the complexity measuthat
we have

C(Pyix) + C(Px) # C(Pxy) + C(Py)

in the generic case. The following lemma provides some deapderstanding why this is the
case.

Lemma 3 (Relation to Complexity of Partition Function) Under the assumptions of Defini-
tion[24, the following inequalities hold:

C(Pxy) > C(Pyix)+C(Px)+C(R)—2y/C(Px)C(R),
C(Pxy) < C(Pyix)+C(Px)+C(R)+2yC(Px)C(R),

whereR is the following measure o : SetR(x):=c-z;(z) with an appropriate normalization
factor ¢ and the partition functiore;(z) =3, exp(f(z,y)) which is derived fromf := (id®

QQ)(lIl Py|X).
Proof Write
P(ylz) = exp (f(z,y) — In z¢(x))
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7.1. Defining complexity measure by Hilbert space seminorms

wheref satisfies by definitiofid®Q.)(f)= f. Furthermore, we set
P(z) =exp (g(z) — Inz)

with Q1(g) = ¢ and normalization constant We observe thaf is orthogonal to all functions
that depend only om since the latter have the forhiww1 (whereh is an arbitrary function). We
have

InPyy=InPx+InPyx=(—Inz;+¢)®1+f—Inz.
Due to the above remarks we hafel (—Inz;+¢)®1. To compute the complexity aPy y,
we observe

C(Pxy) = |Q(f+(-Inz;+g)®1+Inz(1®1))|?
= If +Qi(=Inz; +g) @ 1.

Since the projected term is still orthogonalft@note that it is a function that depends only:9n
we have

C(Pxy) = IfIIP +1Qi(=zp + g)|* = [ fII* + [Qi(lnzp) + g]|*. (7.3)
By elementary geometry we obtain

1Q1(=Inzp) + g 191 (In 27)[I* + [lg* — 2[1Q1 (In 24) [ 9],
1Q1(=1nzp) + g 191 (In 27) 1% + [lg[1* + 2/1Q1 (In 27) [ [l9] -

Having C'(R) =||Q1(In z;)||?, we finally conclude

C(Pxy) > C(Pyix)+C(Px) + C(R) — 2,/C(Px)C(R),
C(Pxy) < C(Pyix)+C(Px) + C(R) +2/C(Py)C(R) .

>
<

Note that in high dimensional spaces the angle between tetonrgeis typically close t®0
degree. Therefore, itis likely that the vectéys(In z¢) andg in Eq. (Z.3) satisfyB(In z¢, g) = 0.
We then have

In other words, the complexity of the joint density is tygigahe sum of the complexities of
the conditional densities and the complexity of a measufieeld by the partition function. The
basic idea behind our inference rule is that simple causahar@sm may generate conditional
densitiesPyx which are simple up to a rather complékdependent normalization constant,
i.e., the partition function. Note that the joint densityuttbbe complex even wheRy is simple
due to the additional complexity of the partition function.
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7. Discovering Causal Direction by Complexity Measure of flisttions

7.2. Calculation of seminorm using kernel methods

We have shifted the problem of defining the complexity of déssinto the definition of semi-
norms. We will rewrite our definition such that seminorms barcalculated in an implicit way.
With the so-called “kernel trick” different seminorms caa bhosen by simply replacing the
kernel (seel[137, 22]).

Let k1, kot (X x)Y) x (X x)) — IR be positive definite symmetric kernels aatix ) the
probability space under consideration. ¢} for j = 1,2 be the Hilbert spaces given by the
completion of the spans of the functiohg(z, y), .) with the inner product

(ki ((@,9), ), ki (@ 9), ) = ki (2, 9), (2/,9)) - (7.4)

Hilbert spaces defined this way are usually referred to as RiKH®e assume thatl; is a
subspace of{;. The vectorp in Definition[23 and Definition 24 can be approximated by

ZCJ (@5, 95), <ZCJ (@5, 95), k((x,y),)> (7.5)

with appropriate coefficients and points(z;, y;).
We define our seminorm by

o]l := [ B(®)ll7 ,

whereR is the projector onto the subspace orthogonattowith respect to the inner product
in H,. The idea of using such a seminorm is that the sgdageontains simple functions (for
instance polynomials of low degree) that should not coatalto the complexity measure at
all. This corresponds to the use of conditionally positiédimte kernels in semiparametric
models[147, 171]. LePy x be a conditional density, given by

n

Prix(yle) = exp (D0 ki (w51, (2,9))

i=1

+ ZC;Q)kQ((ZEj,yj), (x, y)) —1In zc(:v)> (7.6)

J=1

with the appropriate partition function.(z). The complexityC'(Py|x) is then defined by the

minimum of 37, J kl((:):j,yj), (zj,y;)), i.e., the square of the norm of the shortest

component inH;, see Eq.[m4), over all vectors:= (c{”,.... ¢, ?, ... dP) € R* for

which Eq. (7.6) holds. The vector with coefficierits((z;,y;), (z,y)) and k;Q((:pJ,y]),( )
with 7=1,...,n can be interpreted as the vector of sufficient statisticsiahgonential model.
The framework introduced can also be considered as a mefldmhsity estimation with ker-
nel methods. To make this method tractable in practiceethsr some issues of implementation
to be addressed. The choice of kernglsindk, will be discussed in the next section. Given
andk, described in the next section, our remarks above specifeedtbice of pointgz;, y;) for
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7.3. Estimating densities from finite data with kernels

j=1,...,nin the range. Our experiments show that the seminorm is msitsee against the
choice ofn, if n is not too small and the points;, y;) are somewhat evenly distributed over the
whole range. The results of all our experiments in this obapte based on the choicer&=7

for unconditional (one-dimensional) cases angd 49 for conditional (two-dimensional) cases.
The 7 points for each dimension are chosen equidistantly in peiteeover the whole observed
range. For a binary case=2.

To ensure that the embedding propefty2 1|| = ||la|| = |1 ®a|| is satisfied we proceed as
follows. We choose the kerng| as the product

kl((xjayj)7 (Ijuyy)) = kgg)(xjyxj’) kg)@j?yj’)'

Thus, the corresponding RKHSs have the fotin="Hy' @H) andH;:=H @H] . We choose
the kernelskﬁ?) and kg) and the domaing’ and) such thatHs* and’} contain the constant

functions and normalizeg) and k(yl) such that the constant functiodson X and ) satisfy
11]l3x =1 and||1[y =1, respectively.

To this end, we define the matriky := kg)(;z:j,xj/) and calculate its invers&’y'. Let
c:=(Kx")1 be the vector of coefficients of the constant functiorT his yields the normalization
condition (c|Ky c) = 1, i.e., the sum of all entries ok' are1. The same procedure is also
applied tol#). The seminorm ofi® 1 is given by the Hilbert space norm of its component in
(H¥&HY)*. Let Rx andRy be the orthogonal projections ona )+ and(H3 )+, respectively.
Due to Ry (1) = 0 the relevant component af® 1 is given by Rx(a) ® 1. The Hilbert space
norm of this function is given by Ry (a)||;x which coincides with the seminorm af Similar
arguments apply td®a.

7.3. Estimating densities from finite data with kernels

To calculate the complexity of a density we first use regatatimaximum likelihood estimation
to fit the observed data points using exponential models. eiga framework for applying the
kernel approach to exponential families can be found_in.[28ithout regularizer, the method
works as follows. Introducing the maja X’ x )Y — H; with

w(£7y) = kl(('? ')7 (l’,y))

we define the family of conditional densitid3,(y|z) = exp((¢|¢(x,y)) —Inzs(z)). For N
observed data points;;, y;), the maximum likelihood estimation seleetdy

ng}f{%z (<¢|¢($z,yz)> _ln%(%’))}- (7.7)

=1
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7. Discovering Causal Direction by Complexity Measure of flisttions

In order to avoid overfitting we include a regularizer andhtbétain the expression

Mz

max { £ 7 (01 0)) — o)) — el } (7.8)
The regularizer, the norm itself and not its square (as ggghos our complexity measure), is
in agreement with the choice inl[6]. The authors [of [6] prapés use a value of that is
proportional tol /+/N. In our experiments, we chose= 1/v/N. Note, as an aside, that the
regularized maximum likelihood estimation for uncondi@édb densities can also be interpreted
as maximizing the entropy of the density subject to the etgtiens ofi)( X, Y') coinciding with
the observed means ¢f X, Y) up to an error ot (see [6]).

For the sake of numerical stability, we normalize the obsérgata forX,Y respectively.
The data are linearly transformed such that the patritof the normalized data have the same
percentiles as-3 of a standard normal distribution, respectively. Thus themalized data points
with continuous range will be located mostly in the interfval, 1]. A normalized binary variable
then takes values1. We choose a discretization 6fl to count the relative frequencies and
calculate the sum in optimization. For the experiments ilesd in the next section we use a
sum of the Gaussian kernel

ko ((2,y), (2',y)) = exp < i@y) = @y )

202

i=1

to define the spacK; and a polynomial kernel
~ I <$ 'I/> <y 'y/> 2\ 2
ka,b,d,b((x>y)7<xay)) - ( a +b>< A +b> s

to defineH,. The additional scaling parameters, @, b are used to ensure a numerically stable
training. We choose, b, , b so that the entries df,, s, take the value betweer-1, 1]. Since
the normalized data have the value mostly betweérand 1, we choose: = a = 2 andb =

= % if 2,y are one-dimensional. The formulation of both kernels ferahconditional case is
straightforward. Assuming that the range of random vaesid compact, the spa¢s (induced

by a Gaussian kernel) contains the spagginduced by a polynomial kernel).

The idea behind the choice of kernels is the followingz iindy are one-dimensional, the
second kernel induces a space of functions spanned by themiais 1, z, xy, xv%, y, y?. We
consider these as sufficiently smooth such that they shatldamtribute to the complexity mea-
sure. In particular, we can then obtain Gaussian distobstiwhose expectations and variance
changes linearly with the given variahl. The Gaussian kernel and the polynomial kernel in-
duces, on the one hand, enough flexibility to fit various gl@wal local structure of density.
On the other hand, the density estimated this way is smooti.aRliscussion of smoothing
properties of Gaussian and polynomial kernels we refer18,[147].

Our experience suggest that we have to learn appropriatesalfor the Gaussian kernel by
optimizing Eq. [(Z.8), otherwise we could not obtain reasbméits. Clearly, we cannot directly
compare the complexity values corresponding to kernels diiterent values for. However,
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7.4. Experiments with simulated and real-world data

we may define the complexity by the minimum over all seminosaisared within some given
family of RKHSs. Denoting byH; the Hilbert space given by the kerriglwe may define”' ( P)

by C(P):=inf{C;(P)}, whereC; refers to the complexity measure defined by the seminorm
in H;. In order to ensure additivity with respect to product measun product spaces for the
redefined”’ we need to define a family of spacesh)(/l)®H§2) and optimize over all pair§, 7).

Due to a combinatorial explosion such an optimization willydbe feasible for a small sétand

few tensor components. In the experiments described ingkesection we have therefore used
the samer for the Hilbert spaces fak andY'.

If we run the optimization procedure in EQ. (I7.8) over allbdiit spaces (i.e., all reasonable
valueso) the procedure will choose the vectofrom the Hilbert space that leads to the smallest
norm among all those that yield the same value in the nonlaggad optimization given by
Eq. (Z.T). We shall therefore consider the optimum of EgB)(dver all kernels taken from a
given family as an estimation of the minimal norm of the dgnever all Hilbert spaces under
consideration. Since the optimization problem witlis no longer convex, one should choose
the start value o properly. In our experiments we cho2@) equidistant starting values in the
range(0, %). The value which leads to the maximum of Hq. [7.8) will thertddeen as the start
value of a subsequent optimization via gradient descent.

7.4. Experiments with simulated and real-world data

Some simulated experiments show the intuitive meaning ocomplexity measure, while the
real-world examples show that this complexity measuredbalhelpful for inferring the causal
direction between two variables.

7.4.1. Unconditional densities

We first sampled 000 data points from various unconditional distributions agvemin Fig.[7.1.
The underlying density?; follows a standard normal distributiof,, P;, P, Ps are various mix-
tures of2 Gaussiansps, P;, Py are mixtures of3, 4,5 Gaussians respectively, is a mixture
of a Gaussian and a gamma distributid?, follows a single gamma distribution ard, P
are mixtures o2, 3 gamma distributions respectively. As expected, we seetlieatomplexity
of a single Gaussian & A single gamma distribution has a very small complexityueal The
measure increases as the number of components increasssholds even for the unimodal
miXturePQ, PH, Plg.

Moreover, we examined the smoothness (complexity) of aweald temperature dataset
(Daily average temperatures from 1979 through 2004, Fungern, Germany) wit9162 en-
tries. The estimated density (see Figl 7.2) has a complexkity0265, which suggests that the
density of temperatures is more complex than a single noomgamma distribution. We ob-
serve slightly larger complexity values for a gamma disttitn than for a Gaussian. We leave
the question open whether this property is desirable.
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Figure 7.1.:12 toy data sets sampled by distributiofis . . . , P> (see text). The dots indicate the
observed relative frequencies, the solid lines the estichdénsities. The calculated
complexity values are shown below each plot.
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Figure 7.2.: Daily average temperatures from 1979 throu@d2Furtwangen, Germany. The
dots indicate the observed relative frequencies, the finkd the estimated density.
The calculated complexity value is shown below the plot.

160



7.4. Experiments with simulated and real-world data

P, P Py Py
P(YIX =x1) | N(=1,1) | N(=2,1) | N(=3,1) | N(8,1)
PYIX =) | N(1,4) | N2.4) | NB,4) | G0O,05)

C(Px) 0.0000 0.0000 0.0000 0.0000
C(Pyx) 0.0000 0.0000 0.0000 0.0004
C(Py) 0.1724 0.1332 0.4320 0.1415
C(Pxy) 0.0234 0.0000 0.0000 0.0000

Table 7.1.: Complexity of conditional densities in binarytare models.

7.4.2. Conditional densities

The main motivation behind this complexity measure is toettgy a tool for causal inference
based on observed data by quantifying smoothness of conditdistributions. Intuitively, hav-
ing observed a bimodal distribution after large samplingg aould prefer to interpret the ob-
servation as a mixture of two populations. It is rather implale to assume that a probability
density with such a shape should stem from a homogeneoustistdtensemble. There is a
broad variety of applications where the detection of migsuis crucial for data analysis (see
e.g. [43]54] 112]).
If we define a density on a binary variableand a continuous variablé by

P(y)=05P(y| X =)+ 05P(y| X = 13),

where both conditional®(y| X = x;) are Gaussian, the total complexity of the model- Y

is zero since the kernél, induces such a density. Note that due to our choice of keheel t
complexity of the density of a binary variable is alwaysWe checked on randomly generated
data with1000 points whether this result is also obtained in finite sangpliVe furthermore
confirmed that the modeX — Y was also preferred when the conditioddlY | X = z,) was
the gamma distribution an& (Y| X = z;) was a Gaussian. In a similar way, we defined joint
densities onX andY corresponding to the mixture models, P, Py, Py in Fig.[Z.1 by using

a binary variableX to indicate which one of the two pure ensembles is taken. Dhaptexity
values in Tal.7]1 show that we indeed obtained the expeeseits.

Since the causal inference problem was the motivation ctnstruction of our complexity
measure, its performance with respect to some real-wottl idahe best criterion for judging
whether it seems appropriate or not. We performed expetsneith datasets from the Current
Population Survey (CPS) 2001 (see Section 6.6.2 for datah@nelation between sex (binary
variable) and income (continuous variable) in the US. Stiadl methods show that income and
gender are indeed correlated. Common sense tells us thatmwexctude that the personal
income influences the gender, whereas the reverse causetialir makes sense. We found that
the density of the income marginalized over both gendersoiernomplex than the density for
both genders separately.

First we intended to check to what extent the complexity mesasecognizes mixtures as more
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7. Discovering Causal Direction by Complexity Measure of flisttions

complex. We found
C((PlncomQSex:“male") < C(Pincome) »

and the same foPy,comgsex="temate: NOte that left side of the inequality can also be considesed
the complexity of an unconditional density since we asgigmspecific value to the conditioning
variable.

However, to check the performance of our causal infereniceipte we have to compute the
total complexity of both hypothetical causal directionsitd) one subsample @0% of the data
points from13, 803 entries, we found the following complexity values:

C(PSex) - OOOOO 5 C(Ph’]comQSex) - 04632,

and
C(Plncome) = 0.6725 ) C’<PSe>4Income) = 0-00007

i.e., the sum of the first two values (corresponding to the tausal direction) is indeed smaller
that the sum of the last two.

Using the same dataset, we consider another example whengtiauous variable causally
influences a binary variable. We examine the continuousbbai‘Age” and the binary variable
marriage status (short “M-Status”, it takes the two valteever married” or “married, widowed,
divorced or separated”). A0% subsample leads to the following results:

and
C(PM-StatuQ - O-OOOO’ and C(PAge‘M.Status) - 0.0164 .

The sum of the first two values (corresponding to the truealadisection) is smaller than the
sum of the last two. Our causal inference rule would thenrfélve causal hypothesis that the
age should be a cause of marriage status of a person, noterge. v

We repeated these experiments using different subsamplg®oof the whole dataset. All
subsamples yielded the same result with regarding to baikatdypotheses. However, the
complexity values were slightly different for differentsples. Therefore, we should not overrate
the meaning of the absolute value of the complexity measiiserelevance consists rather in
allowing us to compare complexity values for different cwbrections.

The third example that we tested is a data set of handwrittemenals|[[119] containing PCA
components of the pixel vectors for the symbols “0”-“9”. Wenesidered the symbols “0” and
“1” and interpreted them as the values of a binary randonafséeiX . For each symbol there are
200 instances. We chose a PCA coefficient as a continuous randaoabiest”. We assume that
X is the cause ot because the person first had the intention to write the digiot “0” and
wrote it afterward. Hence the PCA coefficients the effect.

We applied our inference rule to several coefficients. Ttairelation withX attained, among
others, the values = 0.8661, —0.8079, 0.3233, 0.5674, 0.1086, —0.0601, —0.2547. For the
cases with strong correlations we obtained results thag w@nsistent with the ground truth, i.e.,
C(Px)+C(Py|x) <C(Py)+C(Pxy). When the correlation coefficient was3 or smaller, we
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7.4. Experiments with simulated and real-world data

have also observed several failures of the causal infenarieesinceC(Py) andC(Pyx) are
extremely small for these cases. This is because a dengigrdsto recognize as a mixture of
two distributions if they are not sufficiently different.

In summary, experiments with real-world and simulated gataw that mixtures of two sim-
ple distributions like Gaussians and gamma distributioesracognized as more complex than
the corresponding conditional probability given the bynaariable that labels the mixed com-
ponents. Moreover, the complexities of conditionals tlatespond to the true causal direction
were in major cases of our limited examples smaller than tmeptexity of the wrong causal
direction. Note that the information of causal directioas ®e helpful for e.g., feature selec-
tion [81]. It should be stressed that the intuitive relevan€ the absolute value of complexity
should not be overrated.
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8. Summary and Outlook

This thesis coped with the problem of learning causality prghosed two different approaches
that can be served as a basis (independent or combined @ogethautomatically building in-
telligent systems for reasoning under uncertainty. Themtal application of such influence
diagrams (causal structures) is that they can be used toplaesign a strategy of future inter-
ventions or manipulations.

In the spirit of the conventional constraint-based IC altbon, we first proposed two kernel-
based versions of collider identification to learn causalcstire. The so-called RCL algorithm is
based on kernel hypothesis tests of independence, whikoticalled KCL algorithm addition-
ally takes the magnitude of dependences into account. In RE€lprefer constraints with small
conditioning sets and explicitly treat the violations d@risitivity and intersection properties of
a faithful Bayesian network. RCL is particularly suitable featning spare networks. In KCL,
we restrict the number of potential conditioning sets fa thdependence test by learning an
auxiliary graph via kernel dependence measures. In oumaphr Typel error of hypothesis
tests and its impact on learning the adjacency structurdoedeept at a low level. The impact
of the potential typd error on learning causal directions is alleviated by usheymagnitude
of dependences measured by kernels. RCL and KCL takes nonitgladonships into account
and refines the IC algorithm in a computationally tractabés\@nd provides unifying methods
for learning causal structure over different kinds of (efaghrid) domains. Various experiments
showed that our methods are reliable in case of small sarigge. s

In association with this work, several open problems haenlseiggested for further research.
First, regarding the issue of measuring dependence, Fukuetial. [63] recently defined the
kernel dependence measure with other normalization whigkesithe measure asymptotically
independent of the choice of kernels. It is an intriguingediion to explore the possibility of
improving the performance of structural learning via thisasure, although there are still some
numerical problems in the implementation. Moreover, mutnf@rmation is the most popular
dependence measure that is able to capture nonlineaoredbips. Thus, it is natural to ask the
guestion how it relates to the kernel measure. A first resoligd by Gretton et al. [75] showed
that the HS-norntllyy approximates the mutual informati@fX, Y') to first order near indepen-
dence. A recent paper of Fukumizu et al.|[63] gave some itsiigiio the connection between
mutual information and his normalized kernel measure. e g these works, a general relation
between kernel measure and mutual information is not eskedul yet.

In respect of statistical tests, a more efficient test siegisrather than generating null distri-
bution by random permutations, could be useful. In thisddiom, Gretton et al.[[74] recently
made a first attempt for the tests in unconditional cases. fidgient and reliable test statistics
for conditional cases would be desirable.

One of the main challenges of constraint-based approashesepresent independence rela-
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tions verified by some statistical testin a simple and roimast e.g., a faithful Bayesian network.
In order to make such faithful representation possible, @e@sed in RCL a strategy of variable
clustering to handle conflicting information among thedatrens. Various real-world experi-

ments showed that an appropriate clustering of variablégligful for constructing a causally
meaningful structure. It raises an interesting question twevaluate the clustering from the
point of view of causal relationships. Silva et al. [145] didme work in a linear framework

in this direction. Our constraint-based clustering aldpon, which is causal-structure-oriented,
provides an entirely different approach to deal with thebpem of causal clustering. Nonethe-
less, the causal clustering is still a not well-studied pgoh) although clustering itself is very
active research field in machine learning.

As seen from various experiments with simulated data, caim$tbased approaches outper-
formed currently popular score-based Bayesian approachesiny of our examples. Never-
theless, a Bayesian approach in principle has some advantagfeour RCL or KCL does not
have. For instance, a Bayesian approach can straightfdgnambrporate prior knowledge. A
Bayesian approach can be efficiently implemented and is walhble with respect to the sample
size. A related work of detecting collider candidates via gd3#&n scoring function is done by
Steck [157]. Bayesian scoring function can also be used &ctlgtdependence [107, 109]. In
addition, a Bayesian approach can in principle be applieddoching over a number of different
latent variable models within Markov equivalent classes].[8 herefore, modifying RCL/KCL
to incorporate prior knowledge (combining with experinadigiata or using temporal information
of time series) is a useful direction of further research.réeliable identification of colliders
via a well-justified scoring function based on kernel deggg measure would be interesting.
A more ambitious goal is to explore the theoretical posgjbibr discovering latent variables or
even learning ancestral graphs [133] in a kernel-based way.

Another practical issue of further work is to make RCL/KCL etiad for learning on a huge
network or from a huge dataset. Some techniques of estighBitBinorm by randomly selecting
or sampling a subset of Gram matrix entriels [1, 50] to measalependence in a huge dataset
are discussed by Jugelka et al.|[94]. Unfortunately, it omes provides unsatisfactory results,
particularly in the case of close-to-independence (seEff®£xperiments).

Beyond independence, the last two chapters of this thesis with the problem of causal
inference when there are no independence relations argel@tee., a fully connected adjacency
structure. In particular, if only two dependent variables measured, approaches based on
independence relations or dependence measures will fail.n@del-based approach assumes
that the conditionals that are consistent with the corraagsal order should be of a smooth shape
or simple, since such conditionals describe indeed theeptesatural causal mechanism. The
so-called plausible Markov kernel assumption.

Our first attempt to capture the plausibility of conditiortétributions is to introduce the
smoothest Markov kernel by maximizing the conditional epyrsubject to the observed first and
second moments. The intuition behind this attempt is to dedisimple cause-effect interaction
that is “as linear as possible”. The “most linear” effect tie binary variable is therefore to
generate the desired correlation such that the conditidisaiibution has maximal uncertainty.
This way, we captured the potential “simplest” influence agthe variables considered by the
smoothest Markov kernels.
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8. Summary and Outlook

Experiments with simulated and real-world data indicatext the so-called pIMK algorithm
can provide useful hints on the causal direction withoungigndependence relations and depen-
dence measures. In other words, pIMK provided a tool to sel@gsal hypotheses which are
Markov equivalent and thus indistinguishable by a constraased approach. Unfortunately,
pIMK is only computationally efficient for domains of smalrclinality, because the method
took the domain information directly into account. For #eésasons, we proposed to use a
constraint-based approach, e.g., PC, for preselectingthgpeal causal graphs and then apply
pIMK to small subsets of variables for directing remaininglirected edges.

The essential shortcoming of the concept of the smoothestdv&ernel is the fact that such
this simplicity criterion for conditional distributions) general, depends on the representation of
data (expecting for binary domains). To represent, for etantates of the year on a unit circle
requires an intuitive understanding about what represientaf the data is natural. Likewise, the
shape of the distribution of a real-valued variable couldtenged by using logarithmic scaling
of the data. An important pre-decision is the choice of thestMioatural” scaling. Our hope is
that for a large causal network criteria on the simplicityMdrkov kernels could be developed
that are not too sensitive under such rescaling operati®ih@ng as they are in some sense not
too unreasonable.

Nevertheless, this notion of simplicity that uses entro@aximization subject to the two mo-
ments should rather be considered as a first attempt instelae vght one. In order to establish
a more general framework to construct complexity measwesdnditional probabilities, we
proposed a kernel method to estimate the complexity ofildigtons from finite sampling. The
complexity measure is based on an RKHS seminorm of logarithtimeodistribution. Since the
optimization of Eq.[(7.8) requires calculating the pastitiunction, the method presented is com-
putationally rather expensive. Evaluating conditionaithweneral continuous domains or with
more than two random variables seems (from the current eetigp) to be feasible only after a
coarse discretization. In spite of this shortcoming, expents showed this complexity measure
could provide hints on the causal direction between onlyvamables where a constraint-based
approach fails. Moreover, kernel methods seem to be quxibligefor designing better complex-
ity measures for further research.

In summary, this thesis focused on two aspects of learningatdy from statistical data:
learning by independence constraints and learning by ptiep@f conditional distributions. The
respective assumptions took in these two approaches #rifaess assumption and plausibility
of Markov kernels. Actually, both assumptions can be relaia some kind of simplicity prin-
ciple on Markov kernels of the desirable structure. Théfalhess requires simplicity (roughly
speaking, minimum links) in the structure, which means #@th Markov kernels depends on
minimum number of variables, while the plausibility recpsirthat each link represents a simple
Markov kernel.

Although the experimental results obtained so far seene quitmising, we do not intent to
claim that these principles (in particular the specific defin of plausible Markov kernels which
allow a space of functions spanned by certain simple moriejnig universally valid, since
we do not expect that all real-life causal relationshipsagisvexhibit such property. Different
applications may require different dependence and coripleeasure. A final judgment on the
performance of these inference rules actually requiresge laumber of real-world examples.
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Nevertheless, we are of the opinion that kernel methodsigeay promising tool for designing
appropriate dependences or complexity measures.

Note that, in most experiments in this thesis, we used tlog gniowledge to judge the quality
of structures. Actually, evaluating the output of a strugklearning algorithm in respect of the
causal interpretation still remains an open problem. Iihweald applications, the final judgment
lies in the usability of the causal structure for designimmgiventions or manipulations.
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A. Appendix

A.1l. Denseness of RKHS given by Gaussian RBF
kernels

Lemma 4 The RKHSH,, given by the Gaussian RBF kerriel defined in Eq.[(Z2]2) is dense in
L?(P) for any probability measuré@ onIR™.

Proof For notational simplicity, the proof is given only fet = 1. The extension to the general
case is trivial (se€ [63], Theorem 2). First we show that thecfionz — eV=% (v € R) is
approximated by a function iH,, with respect to thé.,(P)-norm in an arbitrary accuracy.

Let f be a function inL?(IR) and its Fourier transform bf(«). Because it is known [69] that
the condition

/\f(u)|2eg2"2 du < 00

implies f € 'H,, we see that the function — e 37" eV lwr ¢ H, for 7 > o/+/2 and any
w € IR. From the bounded convergence theorem, we have

Ep, [‘ex/jlwx _ eﬁwxe—%%ﬁf} S0 (r—o0).

Thus, it suffices to show that any functigne L?(P) can be arbitrarily approximated ib?( P)
by a function in the linear hull of the clags~v~1* | w € IR}.

Let f be an arbitrary function id?(P). We can assumé is continuously differentiable with
a compact support, because those functions are detigé). Lete >0 be an arbitrary positive
constant and\/ = sup, .k | f(z)|. Take an interval—A, A] with a positive number so that
it contains the support of and P([—A, A]) > 1—¢/4M?. By the standard theory of Fourier
inversion (see [130], Theorein8), we know that the series of periodic functions

fN(g;) — Z cneﬂf;1 nx

n=—N

converges uniformly tgf(z) on [— A, A] asN goes to infinity, where,, is given by the Fourier
coefficient
/=1

I 1
cn:ﬁ/Af(x)e A ",

It follows that| f(x) — fn(z)|? <€/2 on[—A, A] for sufficiently largeN, and the periodicity of




A. Appendix

fn(z) ensures
sup|fN (M ++/¢/2)* < 2M?*.

We obtainEp [| f — fv]?] < €, which completes the proof. |

A.2. Proof of Theorem 2[]

The conditional covariance operator can be considered pes@as case of a conditional cross-
covariance operator (see Definitionl 11), whEnequalsY. Furthermore, the operataiyy |z
captures the expectation of the conditional variance ohdam variable. This is shown in the
following theorem, proved by [62].

Theorem 7 Under Assumption]2 we have
(9,8vv|z 9>Hy =E; [Varyz [¢9(Y)|Z]]
forall g € Hy.

Based on this property of the conditional covariance operatattempt to prove Theorem 2,
an analogous expression for conditional cross-covariapeeatoryyx|z (X does not equal’).

First, we use the polar identity to compute the conditiomats-covariance operator in terms
of the conditional covariance operator. L@, k,) and (Hz,kz) be respective RKHSs on
measurable spac&sandZz, (U, Z) arandom vector olfxZ, andX |z a conditional covariance
operator. Thus, due to the polarization identity and Thedlewe have

<§72UU|Zf>Hu = 1<<( + 1), Svuiz 9+f> ((g— ), Svvi2(5 - f)>)

= JFz [Varuz (G + H©)1Z] = Variz [(6 - H0)I 2]

= 1B (Varuys[(0)12] + 2Cov[F(U), 5(0)1 7] + Varey[(F (1)1 2]
— (VarZ(3(0)] 2] = 20ov[ (1), §(U)|Z) + Varu£[(f()12]) |

= 1y [Cov [f),50)2]]

for arbitrary functionsf, § € Hy,.
Now we set := (X, Y') and define the kernel by a direct sum of reproducing kern8ls137]:

ku(uv u/) = kM((xv y)? (1:/7 y,)) = kX(xv x/) + ]fy(g/, yl)

The RKHS corresponding to this kernel is spanned by functigns, -) depending only on:
and functionsky (y, -) that only depend op. In a straightforward way, we may consider this
space as a space of functions with the dom#ir ), i.e., the domain ot/. For f € Hx and



A.3. Proof of Theorerl4

g € Hy, we observe thaf := f®0 andj:=0@® ¢ are elements ift{;;, where0 denotes the zero
function. We may write

Bz [Cov[£(X),9()|Z]| = Bz [Cov [F(U),3(0)|2]] = (3, oz e,
Using Eq.[(2.4), it is easy to check that

(G0, Sovf)rm, = (9. Svx
(9, Zvzh)ry, = (9, Zvzh)n,
<h> EZU]?>HZ = <h> zZXf>7‘fZ )

for any f, g € Hy andh € Hz. Due to the representation of conditional cross-covasapera-
tors in Eq. [(2.6) and Eq.(2.7), we have therefore

(@, Svv12f ), = (9, Syvxi1zf )y
In summary, we conclude
(9, Zvx|zf)ry = Ez [Cov [f(X), g(Y)[Z]] ,

which completes the proof of Theorérn 2. |

A.3. Proof of Theorem 4[]

It is sufficient to prove that we have
(4, EYX|Zf>Hy®Hz = (4, (Bvx @ Ty) f>Hy®Hz ’

forall f € Hy®Hz andj e Hy@Hz of the formf:= f®h, andg:= g h,y. Ty is defined by
Eqg. (2.8). Recall that for two RKHSH » andHz on X and Z, respectively, the tensor product
Hr®Hz is the RKHS onX x Z with the positive definite kernély @k z [10]. The same applies
to Hy®Hz. We find

(@) Syxz (FOM) s = Bz|Cov[f(X)n(2), g(V)hs(2) | Z)]

= Bz |Cov[f(X).9(¥)] m(Z)he(2)|
Cov[f(X),9(Y)] Ez[hi(Z)ha(Z)]
= {9, Zvx )y (B2, Tz Iy,

The first equality uses the definition 6f andY as well as the facts that € Hy, g € Hy,
hi, hs € Hz. The second equality useés I (X, Y") and that for every specific given value &f
the variable$, (Z) andh,(Z) reduce to constants. The second statement of this theotkenvso
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then directly from the definitions df¥yx [[fs and|[Zy | [[fis- |

A.4. Proof of Theorem 6[|

The following proof is based on the similar idea to the praddiemma 7 and Lemma 10 in [62].
However, we cannot directly use their convergence proofsedihe latter refer to the convergence
of traces of conditional covariance operators and we haghdw convergence of traces of the
squares of the conditional cross-covariance operatorgseder, our dependence measure uses
an appropriate renormalization.

First of all, according to the definition of the renormalipatfactor 5 in Eq. (2.8) and its
estimator3y” in Eq. (Z.10), Hoeffding’s inequality [91] implies that

185 — 82| = O,(n"1/?). (A.1)

Furthermore, we have

2
HEYX\ZHHS HEYX\ZHHS

- <HEYX\ZHHS HZYX|ZHHS> (HZYX|ZHHS+ HZYX\ZHHS> : (A.2)

If we could show that the first term converges to zero as inroijé«—'n~1/2), then the second
term is consequently boundedrn Thus, it remains merely to proof the convergence of the first
term. Due to the triangle inequality, it is clear that

[Zvxizlls = BVl < [19vx1z = SVl

Using the definitions in EqL(2.6) and EQ. (2.11)0fx, andEYXlZ, respectively, the right-hand
side is bounded from above by

_ s -1 _ 3(n) §(n) 153(n

HZYX ZYX + szz(ZZZ—FEI) EZX ZYZ(ZZZ+€I) by

s Pl

The first summand converges to zero as in odgm~'/?) (see [60], Lemma 5). The second
term has the form
-1 1 p-lA
HAB C - A(n)B(n)C(n)“Hs (A-3)

if we use the shorthandd := >y, B := Y37 + eI, C := Y ;x, andﬁ(n), E(n), @(n) for the
respective estimators fromdata points.
Due to the triangle inequality, the term in EQ._(A.3) is theubded from above by

/\

(A~ B BlClnllys + 4GB — B Cllys + 4B~ Cnlllys- (Ad)

The first and the third term converge to zero at speed /2, because of the fact that,,, —
Allus =0, (n=12), ||C(ny) — Cllus = Op(n~'/?) and the spectra aB/,,, and B are both bounded
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from below bye. Note that(j*(n) is uniformly bounded im: since the operators themselves
converge even in HS-norm. It remains therefore to analyeetimvergence of the second term
in Eq. (A.4). We have

[A(B™ = B))Cllys = [AB™A(B'2B)B = DBC] |y
[AB ([ B2 || BB B2 — 1|

(n)
= B2 B2l 1B BB — s, (AS)

IN

(n)

where the last equality follows from the fact that the spectof E@;/QBE_I/Q coincides with

(n)
that ofBl/QB(;Ll)BW. Since we have the bounds

B0 = [+ e en2vx | < 1

and
[AB™2|| = |[VysSYa(Sas +e) V2| < 1,

the second term in_(Al5) is then bounded from above by

1B ?BB,* — 1|y = [|By/*(B— Bw)B)”

IBIB = B

(o s

IN

)HHS' (A.6)

Using the upper bound™ for the spectrum of?(‘nl), the last term of EqL(AI6) is bounded from
above by

B = Bo s

Due to||B—§(n) |as = O,(n~1/%) we have shown that the left-hand side of Eq. {A.2) converges
to zero as in orde®, (e 1n"1/2).

Let us summarize the results above to study the convergéri&é",ﬁz.

’HYX|Z HYXIZ‘

i

IS0

A e

) — Bal + 02| IS5 s — [Zvxizls| - (A7)

IN

Due to Eq. [(A1), the first term of Eq.(A.7) is of ordéx,(n~/?) and the second term con-
verges in probability at the rate 6f,(c"'n~'/2). In summary, we have a convergence speed of
O, (¢'n~1/2) in probability, which completes the first part of our proof.

For the other part of Theorelm 6, we show tli%ij))ﬂz converges tdyx|z in HS-norm for
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e— 0. We have

(€)
EYX\Z - 2YX|ZHHS

= B = S (S0 + o) S Vs .

= Z;/)Q/VYZ( (ZZZ + E[ VZle/Q H
= Tr(Z;/?(VXZ (6<2ZZ + 6[) )szEnyyz (G(ZZZ + EI) )‘/YZXEU2 )
= Tl”(\/E(ZZZ + 6[)_1/2V2y2yy‘/yz€(zzz + eI)‘IVZXZXXVXZ\/E(EZZ + 6])_1/2)

The last equality follows from the fact thdi(B*7T' B) =Tr(7'BB*) for any positive trace class
operator]” and bounded operatas.

With a complete orthogonal systefw; }.-, for Hz subject toX¢; = \;¢; with eigenvalues
A; >0, the equation above can be rephrased as follows:

Z (9i,Ve(Xzz +el)” Y2y Sy Vv 2 Ve(Ez7 + €) 1/2¢]>Hz

1,7=1

<¢j, €(Xzz +el)” 12 VoxExxVxzVe(Szz + €l) 1/2¢Z>H

VZYZYYVYZ¢J> <¢j7 VZXEXXVXZ¢Z'>HZ (AS)

The absolute value of each summand in Eq.(A.8) is boundexd &tmove by

(60, Vay Svy Ve 26y, (03, VaxSxx Viczdidyg, |

which does not depend enand due to the Cauchy-Schwartz inequality the infinite suthede
terms

I

Z ’ (i, VZYEYYvYZ¢j>HZ (&5, VZXEXXVXZ¢i>HZ

ij=1
is bounded from above by

0o 1/2 s 1/2
(Z <¢z‘, VZYEYYVYZ¢]'>$—{Z> (Z <¢j7 VZXEXXVXZQSiﬁ.[Z) )

i,j=1 i,j=1

which is finite becaus&’;yYyvy Vyz and V;x X x xVxz are Hilbert-Schmidt. Thus, from the
dominated convergence theorem, the limit- 0 commutes with the infinite sum in Eq._(A.8).
Since each summand of péir j) in Eq. (A.8) converges to zero fer— 0, the HS-norm between

Vi



A.5. Plausible Markov kernels between binary and real-e@hariable
%{% 2 andXyxz converges to zero far— 0. This results in

H s — Hyxiz| = 1820 1955 s — ISzl = 0 (e = 0),

which completes the proof of Theorérn 6. |

A.5. Plausible Markov kernels between binary and
real-valued variable

Here we derive the plausible Markov kernels of the causdigiween a binary variabl& with
xe{—1,+1} and a real-valued variablé with y € IR. For the sake of simplicity, we denate
for the cases{ = +1. Assuming a hypothetical causal directidn— Y, the plausible Markov
kernel Q(X) is determined only through the constraint of its first mome#ht Note that the
second moment aX is the constant. Defining

1
Qry) = 5(1 + 1) =:q,

we have .
Q) = 5(1 —ut)=1-gq.

To determine the plausible Markov kern@(Y'| X') we maximize the entropy functioch
HY[X) =qH(Y|z41) + (1 — q) H(Y[2-1) (A.9)

subject to the constraints

gEn+(1—¢E = p" (A.10)
B —(1-qE, = g% (A.11)
¢ (B41)*+ (1—¢q) (EL)*+qVary +(1—¢)Var, = o (A.12)

HereY is the first moment ot’, 5% the second mixed moment &f andY’, o the second
moment ofY". These values are knowh..; denote the expectations of the conditional variable
(Y|x+1) andVary, the variances ofY |z ), respectively. These values are yet to be determined.
However,E.; can be uniquely determined from EQ. (Al.10) and Eq. (A.11):

. _ WY pXY

+1 1+’uX 9
Y _ aXY

B, - =07
1—pX
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Therefore only one more constraint remains to be satisfied:
qVary, + (1 — q) Var_; =: o* (A.13)
where

0 = 8" (¢ (Ex)’+(1—q) (E_1)?)

_ ﬁY - (MY+ﬁXY)2 - (MY _6XY)2
21+ p¥) 2(1 = p¥)

Here o2 can be calculated directly from all known values. The maxation of the function
in Eq. (A.9) with satisfying the constraint in Eq. (Al13) abusly has the unique solution that
Q(Yl|xy1) andQ(Y |x_,) are both Gaussian:

Q(Y'I_H) X N(E+1,V€LI‘+1) and Q(Y|ZL’_1> X N(E_l,Var_l) .

Otherwise it would be inconsistent with the well known fdeitta normal distribution maximizes
the entropy for given expectation and variance. The maxenabpy ofQ(Y|X) of Eq. (A.9) in
such case can be formulated as follows:

1—gq

HY|X) = %m (2me) + gln (Vary,) + In (Var_,) (A.14)

since the entropies of both Gaussian distributionsidre(2weVar,,) and 1 In (2reVar_,) re-
spectively. Substituting Eql_(A.IL3) into Eq. (Al14), to amle the maximum the first-order
derivative must vanish and the second-order derivativelghme negative, so that we obtain

Var,; = Var_; = o?
which meang{ (Y| X') achieves its maximum if and only if

Q(Y|z_1) x N (p_1,0°) and Q(Y|zy) x N (pg1,07) .

The Markov kernelsR(Y') andR(X|Y') for the other causal directioX — Y can also be
determined analytically. Firstly, it is known that for fixédst (4*") and second moment{), the
Gaussian distributiol (1Y, oY — (1¥)?) maximizes the differential entropy of the real-valued
variableY". To determineéR (X |Y') we maximize the entropy function

H(X]Y) = —/(R(mlly) In (R(z41ly)) + Rlz-1ly) n(R(z_1ly))) R(y) dy
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A.5. Plausible Markov kernels between binary and real-e@hariable

subject to the constraints

R(zly) + R(zaly) = 1 VyeR (A.15)
/ (R(zaly) — R(zly) Ry)dy = p* (A.16)
/ y (R(zly) — R(zly) Riy)dy = 55 (A17)
/ (R(zaly) + R(z_aly)) Rw)dy = o =1 (A.18)

Here X and o are the known first and second momentsXof Eq. [A.I8) holds trivially.
Through the substitution of Eq._(AIL5) in Ed. (Al16) and EAI{) only the following two
constraints remain:

[ Rl =D Ry = (A.19)
/ y (QR(zaly) — 1) Ry)dy = 5% (A.20)

By introducing two positive Lagrange multipliepsand v the solution ofR(X|Y') must be of
the form

6—(Ay+l/) 1 1

R(x_1ly) = S e — 3 3 tanh(A\y + v),
6/\y—l—u 1 1

R<x+1|y) = 6)\y+1/ + 6—(>\y+ll) = § + 5 tanh<)\y + V) .

Together with Eq.[(A.19) and Ed._(A.RO) the unknowkhsnd i should satisfy the following
eguations system

/tanh()\y+u)72(y)dy = u~
[ vty + Ry =

whereR (y) oc N (1Y, o¥ — (p¥')?). Solving this nonlinear system, we will be able to determine
A andy, and therefor&R (X |Y') for every givenu® and XY,

In summary, we obtain a closed-form solution for the caosabetween a binary and a real-
valued variable. For one causal directi&n— Y, we have plausible Markov kernels in the form
of

(1— %) and Q(xy) = % (14 p%)

1
2
QY |z_1) x N (p_1,0%)  and  Q(Y|zy1) ox N (pg1,07)
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where

B uy — XY _ ©Y 4 gxY

. } ) . (My+ﬁxy)2 (MY_ﬁXY)Q
-1 1— X +1 1

and o°=a" — -
+ pX 2(1+4p¥) 2(1—p*)

For the other causal directian— X, the plausible Markov kernels have the form
RY) x N (uy, ¥ — (uy)2)

1 1 1 1
R(x_1ly) = 573 tanh(Ay +v) and  R(zi1]y) = 5135 tanh(A\y + v) .

Having computed these plausible Markov kernels, the cparding joint distributions

Q(X,Y) = 9Y|X)9(X) (with respect to causal directioXi — Y)
R(X,)Y) = RX|Y)R(Y) (with respect to causal directian— X)

can be calculated. The question is whet@srould equalR under certain conditions, because if
the equation@ = R holds, the causal directionX(— Y andY — X) can no longer be distin-
guished from one another, based on our “principle of pldediarkov kernels”. However, one
may verify that whenever there exists correlation betw&eandY’, our method with most plau-
sible Markov kernels leads always to different joint distitions. This is because the marginal
distribution of Y based on the causal directidgh— Y is a convex sum of two Gaussian distri-
butions which have different expected values for non-\angs correlation betweeX andY'.
This distribution cannot coincide with the marginal distriion of Y based the causal direction
Y — X since the latter is Gauss distributed.



B. Appendix

B.1. Pseudocode of Orientation Procedure A

Given a adjacency structuk,,..., the main procedurgixOrientation is applied to all possible
distinct triples( X, X;, X.) from variablesX;, ..., Xy. If edgesX,—X. and X .—X, are present
N Ginpur, the proceduré&ixOrientation focuses on the undirected subgrafh— X.— X, (X,
and X, possibly adjacent) and calls the procedBreposeCollider to test whetherX, can be
accepted as a candidate for being a common effeéf,ohnd X,. This is done on the basis of
Criteriald and2 in turn.

The essential data structure during the subroutines atialpadirected graphs oV nodes,
stored asV x N-matrices. An undirected edg€, — X, is represented by an entry “1” at the
positions(a, b) and(b, a) of the representing matrix. A directed ed§g — X, corresponds to a
negative entry at positiofu, b) and a “0” at(b, a). “0” at both positionga, b) and(b, ) indicates
the absence of the edge betweEp and X;,. During the voting procedure it is decreased or
increased byt, depending on whether the current vote agrees or disagidethe current value
at the corresponding position of the matrix. The negatieerguantifies the current evidence for
one direction. If “0” is reached during counting, the ergré the positionsa, b) and(b, a) are
both resetto “1”, i.e., there is again no evidence for eitfiéoth directions. The given adjacency
structureg;,,,,.. is stored in the matrix\/,. If one intends to incorporate prior causal knowledge
such as temporal ordering/, can be used to store it. However, the following proceduresine
to be slightly modified. The matriX/; represents voting according to assumptientl, 2. After
all these votes are counted, the main procedure performsridetation. First, the arrows are
directed using the votes i/, then the votes id/, are used to direct the remaining edges if the
majority principle leads to a definite direction. This résuh a (partially) directed grapf, .spu:-

The procedur&raph2Matrix encodes the graph into a matrix, where the entry of a negative
integer indicates a directed edge, the entry “1” indicatesiiadirected edge and the entry “0”
indicates an absence of an edge. The inverse procédatrex2Graph is straightforward and
thus omitted.

B.1.1. Procedure FixOrientation

Input: An undirected grapg;,,.. with edges—;
Output: A (partially) directed grap8ou:p.: With edges—, —.
(1) Initialize My, M,, M, := Graph2MatriXG,pu:) -
Il Initialize My 1,2 with the input skeleton. My will remain unaffected. M 2 will count the votes.

(2)for a,b,c=1to N

Xi
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/I Check for all possible distinct ordered triples (Xq, X3, X.) taken from X1, ..., Xy whether they represent colliders.
if MO(XG, XC) =1 andMO (Xb, XC) =1 /1 For all substructures X, — X.— X3 in M.
thenfor i = 1,2
Criterion:=¢;
M, := ProposeCollide(Criterion, M;, CandidateX, — X.— X}) ;
/l Update M; by adding a vote for X, — X. and X. «— X}, respectively,
II'if Criterion ¢ considers X as a collider candidate
endfor;
endif;
endfor.
(3) for i,j =1toN I Given the skeleton in My, use the voting results in M 5 in turn to direct all edges with

/I unbalanced results. M; has priority over M. Store these orientations in M.

CaSEZMO(i,j) = 1landM; (Z,]) < -1 I1'if My contains X; — X; and M; contains X; — X ;.
setMy(i,j) := —1 andMy(j,) := 0; Il Direct X; — X in Mo.
CaSGZMO(i,j) =1 andMQ(z',j) < -1 I1'if My contains X; — X; and M> contains X; — X;.
SetM()(i,j) =1 andMO(j, Z) =0, /I Direct X; — X in Mp.
endfor.
(4) goutput = MatriXZGraphMO). /I Decode the resulting matrix My into graph Goutput @s output.

B.1.2. Procedure ProposeCollider

Input: (i) A matrix M;, with integer entries< 1 representing a partially directed graph;
(i) A substuctureX,— X.— X;
(iii) An integeri = 1, 2 determining which of the criteria is taken.
Output: matrix)M,,, with integer entries< 1 representing a (partially) directed graph .
(2) Initialize M,,; := M;,, and ProposeAcceptedfalse .
(2) Case: Criterion=1 /I Collider test by the X-collider condition with a very large A=100.
computeh, := Hx, v,|x./Hx,x, ;
if h. > 100 then ProposeAcceptedtrue , endif;
Case: Criterion= 2 /I Collider test by the \-collider condition with a smaller .
computeh, := Hx, x,x./Hx, x, b = Hx, x.1x,/Hx, x.r ha := Hx, x.1x./Hx, x. ;
if h. > max{hy, h,} then ProposeAcceptedtmue , endif;

(3) if ProposeAccepted Il A vote for X, — X and X;, — X, respectively.
fori=a,b
Case: M, (i, C) =1 andMout(c, Z) =1 I1'f Moyt contains the undirected edges X, , — Xe.
setMyui(i,c) := —1 and My (c,i) :=0; 1 Orient X, ,— X..

Case:M,,; (i, C) < -—land Mout(Q 2) =0 /I New vote coincides with orientation stored in Mou:.
setM,(i,¢) := My (i, c) — 1;
/I Leave the orientation untouched and increase counter for X; — X by —1.
Case:M,yu(i,c) = 0 and My, (c,i) < —1
/I New vote is opposite to the current orientation stored in Myq.

SetMout(C, Z) = Mout(ca Z) +1;

Xii
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/I Leave the orientation untouched and decrease counter for X. — X, ; by —1.
Case:M,;(i,¢) = 0 and M, (c, i) = —1
II'lf Mo+ contains the opposite orientation X. — X, ; with a counter of —1.
setMi(i,¢) := 1 and My (c,i) :==1;  //Resetto an undirected edge X, , — Xe.
endfor;
endif.

B.1.3. Procedure Graph2Matrix

Input: An undirected or (partially) directed graghof X1, ..., Xy with edges—, —;
Output: AnN x N matrix M with entries “-1”, “0”, and “1”;

(1) Initialize M(Z,]) =0,4,75=1,...,N. /I Start with a matrix of all-over zero.
(2)fori,j=1t0 N
CaseX;—X;, setM(i,j):=1, /l Undirected edge.
Case.X; HXJ' , SetM(i,j) = —1, Il Directed edge.
endfor.

B.2. Pseudocode of Orientation Procedure B

In analogy to orientation procedure A in Appenflix B.1, thegadured=ixOrientation* , Pro-
poseCollider* andGraph2Matrix* of orientation procedure B are designed to infer the orien-
tation for the final output by a unanimous vote. The resulgngph contains— meaning the
direction is supported by a unanimous vote meaning no votes are obtained for both direc-
tions, and— meaning at least one vote is obtained for both directions.civeluct the voting
procedureProposeCollider* for all substructuresy, — X.— X}, whereX, and X, are nonad-
jacenﬂ The final voting results are stored M and the binary matriX. memorizes whether
an orientationX; — X; ever obtained a vote or not. Based on the information fidnand L,

the main procedurEixOrientation* performs the orientation. The procediatrix2Graph*
decodes orientation information from the mattikand L into a mixed graph with un-, uni- and
bi-directed edges.

B.2.1. Procedure FixOrientation*

Input: An undirected grapg;,,.. with edges—;

Output: A (partially) directed grap8ousp.: With edges—, —, <.

(1) Initialize My, M := Graph2MatriXG ) . Initialize L as zero matrix.
/I Initialize My, M with the input skeleton. Mg will remain unaffected. M will count the votes.

(2)for a,b,c =1t0 N

/I Check for all possible distinct triples (X4, X3, X.) taken from X, ..., X n whether they represent colliders.

1The extension of the procedures for identifying unshieldektiders to shielded colliders is straightforward and
thus omitted. We just need to apply procedures to shieldiglésrX ,— X .— X, whereX, and X, are adjacent,
instead of unshielded triples.
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it Mo(X,, X.) =1, Mo(X,, X.) = 1 andMy(X,, X;) = 0
/I My contains the subgraph X, — X.— X}, where X, and X, are nonadjacent.
/1'If the procedure is applied to fully connected triples, the condition My (X, X;) = 1 should be used.
(M, L) := ProposeCollidert) , CandidateX,— X.—X,, L);
/I Update M by adding the votes for the arrows X, — X. and X. «— X}, identified by ProposeCollider*.
/I L memorizes whether a vote was ever given to a direction or not.
endif;
endfor.
(3)fori,j=1t0 N
/I Given the skeleton My, use the voting information from M and L to direct edges in M.
Case:My(i,j) = 1, Mo(j,1) =1, M(i,j) < —1, L(i,j) = 1andL(j,i) =0
/I My contains X; — X ;, M contains X; — X, The opposite orientation X; + X ; obtained no votes.
setMy(i,j) := —1, My(j,7) :=0; /I Direct X; — X in Mo.
Case:My(i,j) =1, My(j,7) =1, L(i,j) = 1andL(j,i) = 1
/I My contains X; — X, both directions X; — X; and X; «+— X; obtained at least one vote.
setMy(i,j) := —1, My(j,7) := —1; /I Direct X; — X in Mo.
endfor.
(4) goutput = MatriXZGraph*(MO). /I Decode the resulting matrix My into graph Goutput @s output.

B.2.2. Procedure ProposeCollider*

Input: (i) A matrix M;,, with integer entries< 1 representing a partially directed graph;
(i) A triple (X,, X., Xp);
(i) A matrix L with entries 0” and “1” indicating whether an orientation obtained
at least one vote.
Output: matrixM,,; with integer entries< 1 representing a (partially) directed graph .
(2) Initialize M,,; := M;,, and ProposeAcceptedfalse .
(2) Computeh. := Hx, x,|x. /Hx, x,, b := Hx, x,x,/Hx,x., ha = Hx, x,|x,/Hx, x, ;
if h. > max{hy, h,} then ProposeAcceptedirue , endif; /i Collider test.
(3) if ProposeAccepted Il A vote for X, — X. and X;, — X, respectively.
fori=a,b
Case:M,,; (i, C) =1 andMout(c, Z) =1 I1'f Moy contains the undirected edges X, , — Xe.
setM,(i,c) := —1 and My (c,i) :=0; 1 Orient X, , — Xe.
Case: M, (i,¢) < —landMyy(c,i) =0
/I New vote coincides with orientation stored in Mq,¢.
setMyui(i, ¢) := Moy (i, c) — 1;
/I Leave the orientation untouched and increase counter for X; — X. by —1.
Case:M,(i,¢) = 0and M, (c, i) < —1
/I New vote is opposite to the current orientation stored in Moqt.
setM,u(c, 1) := Myy(e,i) + 1;
/' Leave the orientation untouched and decrease counter for X. — X, ; by —1.

Case:M,(i,¢c) = 0and My, (c,i) = —1
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II'lf Mo+ contains the opposite orientation X. — X, ; with a counter of —1.
setM, . (ZI7 C) =1 andMout(c, Z) =1; I Reset to an undirected edge X, , — Xe.
endfor;
endif.

B.2.3. Procedure Matrix2Graph*

Input: An N x N matrix M with entries “-1",“ 0", and “1”;

Output: A (partially) directed grap@i of X, ..., Xy with edges—, —, «;
(1) Initialize a graphg with no edges.

(2)fori,j=1t0 N

Case:M(i,j) = 1,andM(j,i) =1, setX;,—X,ingG; /I Undirected edge.
Case:M(i,j) = 1,andM (j,i) =0, setX;— X, ingG; /I Directed edge.
Case:M(i,j) = —1,andM(j,i) = —1, setX; < X,ingG; /I Bi-directed edge.

endfor.

B.3. Orientation Rules to Make Graphs Maximally
Oriented

A partially directed graph is given. The orientation of theem graph is limited tas-structures.
Under the assumption that there are no additiorsttuctures and directed cycles in the structure,
rules as shown in Fig. B.1 (see [125], p. 51) are sufficient t&arthe given partially directed
graph maximally oriented, in the sense that all edges tleat@nmon to the Markov equivalence
class are oriented. Fig. B.2 visualizes these three rules.

Input: A graphG with directed (limited ta-structures) or undirected edges.

While no more edges can be oriented:

Rule 1: For each uncoupled meetidg— Z—Y (X andY nonadjacent), orie#—Y into Z — Y.
Rule 2: ForeachX —Y suchthatX —Z —Y, orientX—-Y into X —Y.

Rule 3: For each uncoupled meetirig — X — 7> (Z; and Z; nonadjacent) such thaf; — Y,
Zo—Y,X-Y, orientX-Y intoX—Y

Output: A graphG with directed or undirected edges.

Figure B.1.: Orientation rules to make a given partially diegl (limited tov-structures) graph
maximally oriented, under the assumption that there aredddgianal v-structures
and directed cycles in the structure.
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.\ /. l&}} \. /. .\7’ [ ] lRLi‘i .\—b./ [ ] .{I;. M .:;—.

Figure B.2.: A partially directed (limited to-structures) graph is given. We assume that there
are no additionab-structures and directed cycles in the structure. The plegsribe
three substructures, which can be further oriented by taiem rules 1, 2, and 3 as
shown in Fig[B.1L).
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C.1. Numerical evidence of power increase of multiple
testing

A procedure of multiple testing on a set of associated hygs#hk is proposed by Benjamini et
al. [19]: the so-called adaptive procedure of FDR contradabon independent test statistics. In
our setting, we have a set of subsamples resampled from the original sample. An indepen-
dence hypothesis is tested on each subsample and provieesfars p-values. It is clear that
the m p-values are highly dependent. To relax the preconditiomdépendent test statistics,
Benjiamini et al. proposed in [21] a general correction faébo dependent test statistics. How-
ever, our experiments showed that this modification is &tdl conservative for our purpose of
structural learning. For this reason, we employ permutaigchniques to conduct the indepen-
dence test. The whole multiple independence testing ptoedad summarized in Fig. Q.1 with a
pre-specified parameter. In our experiments, we chose=100. Step 1 runs a multiple test on
the original sample. Step 2 runs multiple tests on shufflegpéas byk random permutations. If
some FDRy < 0.5 can be found, Step 3 rejects the independence hypothesspitedure is
extremely time-consuming, but it increases the power ch@issical test.

To give some intuition how the resampling-based multipsting procedure works, we con-
sider an example. A datasetidf0, 000 data points is sampled from an OR gate with neis€).3
(see Figl.3.16 and Ed.(3.6) for the definition of OR gates)rasdmplel00 subsamples of size
100 from the original100, 000 data points. Note that the subsamples are nearly indepeafien
each other because v60 < 100, 000. Fig.[C.2 illustrates the Q-Q plots of p-values given by
testingX I Y (left plot) andX f Y | Z (right plot). Here we used the likelihood ratig test.

The red dots in plots are the p-valqég) <...< pﬁ%)o for 100 subsamples. The lines of various

colors present the p-valueéi) <...< pgio)o of 10 shuffled data samples. Our test states that,
having accepted an FDR of up @, if one can always reject more hypotheses in the original
sample than any of the shuffled samples, the independenothagis should be rejected. Graph-
ically, if, in the subfield, the p-value line of original d&@d dots in the plots) is more strongly
right-skewed than those of shuffled data (lines of variodsreadn the plots), the independence
hypothesis should be rejected, otherwise accepted. IiER).the left plot suggests accepting
independence, while the right plot suggests rejectingpaddence.

To give some numerical evidence of power increase of maltgsting, we show experiments
with 1000 artificial datasets sampled by noisy OR gates. The sameafatase used in Sec-
tion[3.3.4 for experiments with single testing. Here, wdaep a single ? test by the resampling-
based multipley? tests. The subsamples are obtained by resampling withceplent §-fold
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Input: An independence hypothesis | Y | Z and a data sampleX, Y, Z).

Step 1 Resamplen subsamples from the original sample. For each subsample, conduct the in-
dependence hypothesis test and record the p-value. Sort the reseltiofjp-values in an

increasing order, i.epgo) gpgo) <...< pSP.

Step 2 Permute the original data randomly to simulate data under independencyucC&tep 1
for simulated datasets and obtain a setrop-values. Repeat step 2 fbrtimes (we chose
k=10) and obtairk sets of p-valuepgl) <... gpﬁi), - p§k> <... Sp%).

Step 3 For a given FDRy, conduct the adaptive procedure as described in [19] p. 71, dnd ca
culate the number of rejectior*éo),rél), e ,rék) for the sets of p-valuepgo), e 7p7(72),
pg”,...,p;?, pgk),...,p,(ﬁ), respectively. If there is some € (0,0.5) that rgo) >
max{rél), o mék)}, reject the independence hypothesis, otherwise accept the independe
hypothesis.

Output: Accepting or rejectingd L Y | Z.

Figure C.1.: Resampling-based multiple independence hgpsthiest with random permuta-
tions.

p—Value
p—Value
o o
N o

0 20 40 60 80 100 0 20 40 60 80 100
Rank of p—Value Rank of p—Value

Figure C.2.: Multiple statistical independence hypoth&ssss are conducted on noisy OR data.

The plots are Q-Q plots of the set of p-values obtained byipleltesting. Red dots

visualizes reordered p-values of original data. Lines afouss colors represents

reordered p-values of simulated data under independenicg. I€fit plot indicates
X 1 Y and the right plot indicate¥ f Y | Z.
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Accepting X LY
Original Sample Size| 20 50 100 150 200
x2 Test Single | Multiple | Single | Multiple | Single | Multiple | Single | Multiple | Single | Multiple
r=20 94.5 90.8 94.9 92.1 93.9 92.0 94.7 92.8 95.7 93.3
r=0.1 92.7 90.0 93.8 92.3 94.2 92.4 93.7 91.0 95.3 92.9
r=0.2 93.7 89.4 95.2 92.4 94.8 92.4 94.8 91.5 95.8 94.5
r=0.3 93.4 89.5 94.2 91.7 93.8 90.6 96.0 93.3 94.2 91.7
Noisy OR Rejecting X LY |Z
r=20 25.2 71.2 94.4 100 100 100 100 100 100 100
r=20.1 23.6 54.1 57.0 72.6 87.5 92.8 96.6 97.9 99.2 99.7
r=0.2 15.4 40.2 23.6 38.3 42.2 58.3 61.6 61.5 70.9 81.0
r=0.3 11.5 29.8 11.4 20.8 13.8 23.7 16.9 27.7 22.1 35.7

Table C.1.: Numerical comparison of a singlétest is replaced by resampling-based multiple
x? tests on discrete domains. The multiple tests use the sytbsaime of5-fold of
the original sample size. The generating models are noisg&@es withd different
noise levels=0,0.1,0.2,0.3 as shown in Fid. 3.16 and E@. (B.6). The entries show
how often (in percentage) the constraiatl Y or X X Y | Z is verified afterl000
replications.

the original sample size) from the original sample.

The results of experiments with the test on discrete domains show that a multiple test
makes slightly more typé errors (upper half of Talh. G.1), but significantly less typerrors
than a single test (lower half of Tdb. C.1). The improvementast impressive at small samples
with less noise. When a single test is conducted, a stricrabot type I error is achieved at
the cost of an increase of tyfleerror. In contrast, a multiple test benefits from the reashrte
assume a bit more risk of makigerrors and can keep the tyfieerror to a lower level.

To show the power of a multiple test on continuous domainsapgy the single, multiple
kernel test of independence to the Meander data (sed _FigoBthe generating model). A
multiple kernel test can further significantly improve trerformance of a single kernel test, in
the sense that typeerror is strongly reduced without an increase of tiiparor (Tab[C.R). Itis
noteworthy that the resampling process on continuous dwmaight be more natural, if some
noises on the original data points were incorporated.

Based on results of the simulation, we expect that the maltggting procedure offers greater
power than a single test and can keep both tygoad1l error to a relatively low and well-balanced
level. Unfortunately, this procedure is extremely timexso@ming in practice.
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C. Appendix

Kernel Test Single | Multiple
Rejecting X L Y 99.9 100
Accepting X LY |Z | 34.8 99.2

Table C.2.: Numerical comparison of single and multiple kémdependence tests on continu-
ous domains (see Fig. 8.7 for the generating model). Théesrghow how often (in
percentage) the constraift £ Y or X L Y| Z is verified afterl000 replications.

C.2. Comparison of learning algorithms on categorical
domains

Apart from the constraint-based PC [153] and BN-PC [28] athor there are other algorithms
that could be used for causal learning, particularly on lgutiscrete domains. One large class is
score-based Bayesian approaches proposed and descrilg&d B¢ [39, 118, 176]. It should be
emphasized that algorithms for finding Bayesian networksat@ecessarily developed for the
purpose of modeling causal relationships. The goal is afterely to represent the dependence
by simple structures.

The methods that we have tested are: conventional PC, infanmidoeory-based BN-PC,
Bayesian approaches using BDe (Bayesian Dirichlet equivateetric via exhaustive search,
Greedy Search/Hill-climbing [32], and MCMC (Markov Chain MerCarlo) [89]. We study here
networks containing onlg—4 variables, which cause the search space of DAGs to be rdagona
small. Exhaustive search is then tractable, allowing themgdation of the posterior probability
for all the DAGs. Consequently the global optimum can be deitezd. Other search methods do
not guarantee to find the global optimum but are much moreefticThe well-known K2[[40]
can actually not be used to find the causal structure, sing@tei causal ordering of variables
must already be given. K2 is then only able to decide whicbvesrcan be dropped without
violating the Markov condition. Heckerman et al. [85] prepd to apply the maximum weight
spanning tree algorithm (MWST) [35] to initialize K2. We c#ll*MWST+K2"”. Note that
an initial order can also optionally be specified for greedsrsh. We call this combination
“MWST+Greedy Search”. All these methods are summarized amgdeimented by Murphy,
Leray and Franco&. respectively.

Since most of these algorithms are limited to discrete dosjave restrict our comparison
to datasets (sample si280) generated by 2/3-bits deterministic/noisy OR gates (sd¢e[3.2
for parameters). Tab._ (.3 and Tab.IC.4 collect the statisfistractures detected by all afore-
mentioned algorithms aftei000 replications. The entries are percentages of detectedbarcs
tween two variablesX;, X;) within rows. For(X;, X;), “e e” depicts the absence of an edge
betweenX; and X;; “e —e” depicts a present but undirected edge between thems;s” and
“e«—e” denote “X,— X" and “X;«—X,", respectively.

The BayesNet Toolbox and the BNT Structure Learning Packagenline available attp:/bnt.sourceforge.né@nd
http://banquiseasi.insa-rouen.fr/projects/bnt-slp
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C.3. Statistics of experiments with Asia Network

2-Bit-IndDet 2-Bit-IndPro 2-Bit-DepPro
L] L] *—e *—e *—e L] L] *—e *—e o—e L] L] *—e *—e o—e
100 0 0 0 100 0 0 0 0 100 0 0
True MOdeI 0 100 0 0 0 100 0 0 0 100 0 0
0 100 0 0 0 100 0 0 0 100 0 0
L] L] *—e o—e *o—e L] L] *—e o—e *o—e L] L] *—e *—e *o—e
OPB 96.7 0.2 0 3.1 96.7 0 0.4 2.9 12.6 0.1 0 87.3
0 99.7 0 0.3 0 95.2 0.4 4.4 0 98.1 0 1.9
0 99.7 0.2 0.1 0 95.2 0.2 4.8 0 98.1 0.1 1.8
L] L] *—e o—e *—e L] L] *—e o—e *e—e L] L] *—e o—e *e—e
PC 93.9 0 0 6.1 96.5 0 0 3.5 96.8 0 0 3.2
0 93.9 0 6.1 0 94.1 0 5.9 0 94.2 0 5.8
0 93.9 0 6.1 0 94.1 0 5.9 0 94.2 0 5.8
L] L] *—e o —e *—e L] L] *—e o—e *—e L] L] *—e o —e *—e
BN_PC 93.7 0 6.3 0 96.3 0 3.7 0 72.0 0.1 27.9 0
0 93.7 6.3 0 0 82.2 17.8 0 0.1 71.4 28.5 0
0 93.7 6.3 0 0 82.2 17.8 0 0 71.4 28.6 0
e o *—e *—e e—e e o *—e *—e e—e e o *—e *—e o—e
I 98.5 0.4 0.5 0.6 99.3 0.1 0.2 0.4 99.4 0.1 0.2 0.3
EXhaUSUVe SearCh 0 99.2 0.2 0.6 0 89.0 6.8 4.2 0 88.9 6.5 4.6
0 99.1 0.2 0.7 0 91.7 3.5 4.8 0 91.0 4.3 4.7
e o *—e *o—e o—e e o *—e *—e o—e e o *—e *—e o—e
69.1 16.2 14.7 0 815 10.4 8.1 0 80.6 10.6 8.8 0
Greedy SearCh 0 83.1 16.9 0 0 68.4 31.6 0 0 66.5 31.5 0
0 82.7 17.3 0 0 70.0 30.0 0 0 68.1 31.9 0
e o *—e *o—e o—e e o *—e *o—e o—e e o *—e *—e o—e
97.2 2.5 0.3 0 98.7 1.3 0 0 98.9 1.1 0 0
MWST+Greedy Searcr 0 99.0 1.0 0 0 94.6 5.4 0 0 94.1 5.9 0
0 97.9 2.1 0 0 89.4 10.6 0 0 88.2 11.8 0
L] L] *—e o—e *o—e L] L] *—e *—e o—e L] L] *—e *—e *o—e
MWST+K2 0 100 0 0 39.7 60.3 0 0 40.6 59.4 0 0
0 100 0 0 0 100 0 0 0 100 0 0
0 0 100 0 0 0 100 0 0 0 100 0
L] L] *—e o —e o—e L] L] *—e *—e o—e L] L] *—e o—e o—e
MCMC 69.1 16.2 14.7 0 77.9 11.3 10.8 0 774 11.1 10.5 0
0 83.1 16.9 0 0 75.9 24.1 0 0 75.0 25.0 0
0 82.7 17.3 0 0 74.1 25.9 0 0 74.4 25.6 0

Table C.3.: The underlying true model: 2-bit OR gates (first, reee Tabl_512 for parameters)

and the structures generated by different algorithms (foww®). 200 data points are
sampled from each model. The entries are percentagedofreplications having

the considered patternse(* ¢”: no edge; ‘e —
“e<—e”: a directed edge) as output.

¢’ an undirected edge;e*—e” Or

C.3. Statistics of experiments with Asia Network

For the sake of notational convenience, we dendie ASIA, X,: TuB, X3: SMOKING, X4:
LUNG, X5: BRONCHITIS, X4: TUB/LUNG, X7: X-RAY, Xg: DYSPNOEAIn the following two
tables. Tabl_CI5 summarizes how often an arrow is detectedRB &ter1000 replications,
given the true skeleton (Fig._5.6, leftmost). Tab.]C.6 sunmearhow often an arrow is detected
by OPA+K2 (K2 with a initial causal order detected by OPAraft000 replications.
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C. Appendix

3-Bit-IndDet 3-Bit-IndPro 3-Bit-DepPro
L] L] *—e *—e0 *o—e L] L] *—e *—e0 *o—e L] L] *—e o—0 *o—e
100 0 0 0 100 0 0 0 0 100 0 0
100 0 0 0 100 0 0 0 0 100 0 0
True Model 0 100 0 0 0 100 0 0 0 100 0 0
100 0 0 0 100 0 0 0 0 100 0 0
0 100 0 0 0 100 0 0 0 100 0 0
0 100 0 0 0 100 0 0 0 100 0 0
L] L] *—e *—e *o—e L] L] *—e *—e *o—e L] L] *—e *—e *o—e
740 8.0 2.8 152 718 5.0 9.7 135 1.1 2.2 2.7 840
768 8.2 2.7 123 743 4.9 124 8.4 1.5 513 19.4 27.8
OPB 0 986 0.5 0.9 0.1 910 7.1 1.8 1.1 472 254  26.3
768 4.7 3.9 14.6 719 4.8 11.5 11.8 1.5 670 10.1 21.4
0 9%6.0 3.0 1.0 0 938 4.4 1.8 0.2 625 126 24.7
0 948 3.9 1.3 0 9.4 1.2 2.4 02 1.8 24 956
L] L] *—e *—e *o—e L] L] *—e *—e *o—e L] L] *—e *—e *o—e
98.5 0 0 1.5 9.8 0.5 0 2.7 69.8 12.2 5.9 12.1
98.1 0 0 1.9 985 0.2 0 1.3 29.3 472 6.9 16.6
PC 0 100 0 0 3.7 962 0 0.1 18.7 558 6.0 19.5
97.4 0 0 2.6 971 0.1 0 2.8 204 549 105 14.2
0 100 0 0 0.9 990 0.1 0 7.9 617 10.5 19.9
0 99.8 0.2 0 0.3 995 0.2 0 54 11.5 23.3 59.8
L] L] *—e *—e *o—e L] L] *—e *—e *o—e L] L] *—e *—e *o—e
975 04 2.1 0 %9 0.7 24 0 716 9.9 185 0
978 0.6 1.6 0 970 0.3 2.7 0 28.5 23.8 47.7 0
BN-PC 0 742  25.8 0 0.6 31.3 681 0 20.2 27.0 528 0
9%6.8 0.7 2.5 0 976 0.2 2.2 0 19.3  29.4 513 0
0 659 34.1 0 0.8 39.8 59.4 0 81 324 595 0
0 48.7 513 0 0 47.2 528 0 4.9 12.6 825 0
L] L] *—e *—e *o—e L] L] *—e *—e *o—e L] L] *—e *—e *o—e
993 0.1 0.2 04 988 0.2 05 0.5 746 107 11.2 3.5
. 99.2 0 0.2 0.6 99.4 0.5 0.1 0 35.6  49.8 10.3 4.3
Exhaustive Search 0 100 0 0 2.8 495 40.0 7.7 24.3 622 8.6 4.9
988 0.5 04 0.3 987 0.5 07 0.1 34.3 540 85 3.2
0 100 0 0 0.9 605 30.3 8.3 14.3 693 10.7 5.7
0 100 0 0 0.4 61.1 30.6 7.9 11.8 30.2 46.5 11.5
L] L] *—e *—e *o—e L] L] *—e *—e *o—e L] L] *—e *—e *o—e
901 4.4 55 0 975 1.3 1.2 0 25.3 36.0 387 0
931 2.7 4.2 0 974 1.8 0.8 0 509 17.2  31.9 0
Greedy Search 0 752 24.8 0 2.5 324 651 0 33.7  26.2 401 0
931 3.1 3.8 0 956 2.0 2.4 0 449 19.5 35.6 0
0 69.0 31.0 0 1.0 42.4 56.6 0 25.8 25.8 48.4 0
0 64.5 35.5 0 0.5 47.2 52.3 0 1.3 41.2 57.5 0
L] L] *—e *—e *o—e L] L] *—e *—e *o—e L] L] *—e *—e *o—e
974 2.5 0.1 0 987 0.9 0.4 0 43.8 464 9.8 0
97.7 2.0 0.3 0 993 0.5 0.2 0 50.5 37.5 12.0 0
MWST+Greedy Search o ea 56 o 25 685 200 0 33.9 501 160 0
94.8 2.5 2.7 0 91.7 4.0 4.3 0 44.8 24.2 31.0 0
0 829 17.1 0 0.9 24.5 74.6 0 25.6 39.8 34.6 0
0 78.1 21.9 0 0.5 32.2 67.3 0 1.1 41.8 57.1 0
L] L] *—e *—e *o—e L] L] *—e *—e *o—e L] L] *—e *—e *o—e
34.1  65.9 0 0 9.4 3.6 0 0 9.8 902 0 0
66.3 33.7 0 0 959 4.1 0 0 44.6 554 0 0
MWST+K2 0 100 0 0 3.0 970 16.0 0 26.1 739 16.0 0
34.9 0.1 65.0 0 92.4 0.1 7.5 0 38.0 0.1 61.9 0
0 0 100 0 0.9 0.7 984 0 174 0.2 824 0
0 0 100 0 0.5 0.2  99.3 0 0 41.6 584 0
L] L] *—e *—e *o—e L] L] *—e *—e *o—e L] L] *—e *—e *o—e
868 6.2 7.0 0 91.7 3.4 4.9 0 374 29.8 328 0
86.0 6.7 7.3 0 90.8 3.5 5.7 0 31.5 42.7 25.8 0
MCMC 0 99.6 0.4 0 5.8 43.8 50.4 0 22.9 46.6 30.5 0
86.7 6.0 7.3 0 895 54 5.1 0 31.8 426  25.6 0
0 993 0.7 0 1.9 48.8 493 0 13.7 521  34.2 0
0 994 0.6 0 0.7 513 48.0 0 9.8 386 516 0

Table C.4.: The underlying true model: 3-bit OR gates (first,reee Tab_5]2 for parameters)
and the structures generated by different algorithms (&twe9). 200 data points are
sampled from each model. The entries are percentag&®)ofreplications having
the considered patternse(* ¢”: no edge; ‘e —e”: an undirected edge;e*— " Or
“e<—e”: a directed edge) as output.
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C.3. Statistics of experiments with Asia Network

The orientation procedure A (OPA as in Hig.]5.3) is applied to the fully caredeskeleton.
Variable Pair (X1,X2) | (X2,Xe) | (X3,X4) | (X3,X5) | (Xa,X6) | (X5,Xs) | (Xe,X7) | (X6, Xs)
Correct Orientation e—e o—e o—e o—e o—e o—e o—e o—e
o—e 16.4 95.8 6.6 20.2 94.3 88.7 75.5 95.5
o—e 65.0 2.0 72.2 56.4 0.7 5.7 13.9 3.7
o—e 18.6 2.2 21.2 23.4 5.0 5.6 10.6 0.8
The orientation procedure B (OPB as in Kig.]5.4) is applied to the true skeleton
o—e 0.2 97.7 15.7 0.4 97.2 7.7 93.6 92.6
o—e 0.1 0.1 29.3 44.6 0.6 16.6 4.2 6.5
e—e 99.7 2.2 55.0 55.0 2.2 57 2.2 0.9

Table C.5.: Statistics of arcs detected by OPA and OPB.data points are sampled from the
Asia network. The entries are percentages0of) replications having the considered
patterns (¢ e”: no edge; ‘e —e”: an undirected edge;e“—e” Or “ e«—e”: a directed
edge) as output.
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C. Appendix

Variable Pair | (X1, X2) | (X1, X3) | (X1,X4) | (X1,X5) | (X1, X6) | (X1,X7) | (X1, X3)
Correct Pattern  e—e o o o o o o o o o o o o
o o 81.0 94.9 97.1 89.2 96.9 954 97.6
o—e 12.4 3.8 1.9 6.9 2.8 4.3 2.3
o—e 6.6 1.3 1.0 3.9 0.3 0.3 0.1
o—oe 0 0 0 0 0 0 0
Variable Pair | (X3, X3) | (Xo,Xa) | (X2,X5) | (X2,X6) | (X2, X7) | (X2,Xs) | (X3,X4)
Correct Patternp o e o o o o *—e o o o o *—e
o o 96.7 92.8 90.1 0 78.4 94.1 23.3
*—e 2.7 4.8 9.1 99.1 19.2 57 4.7
o—e 0.6 2.4 0.8 0.9 2.4 0.2 72.0
o—eo 0 0 0 0 0 0 0
Variable Pair | (x3,X5) | (Xs3,X¢) | (X3,X7) | (X3,Xs) | (X4,X5) | (X4,X6) | (Xa,X7)
Correct Pattern e—e o o o o o o o o —e o o
o o 3.5 85.4 99.1 94.4 93.2 0 76.1
*—e 26.2 0.1 0 2.5 6.0 98.7 19.5
o—e 70.3 14.5 0.9 3.1 0.8 1.3 4.4
o—eo 0 0 0 0 0 0 0
Variable Pair | (x4, Xs) | (X5,X6) | (Xs5,X7) | (X5,Xs) | (X6, X7) | (X6, Xs) | (X7,Xs)
Correct Pattern e e e o o o o—e o—e o—e o o
o o 80.6 98.0 99.0 0 20.3 30.2 98.0
o—e 18.5 0 0.4 92.0 77.5 69.8 2.0
o—e 0.9 2.0 0.6 8.0 2.2 0 0
o—o 0 0 0 0 0 0 0

Table C.6.: Statistics of detected arrows by OPA+KR)0 data points are sampled from the
Asia network. The entries are percentagesiof) replications having the considered
patterns (¢ e”: N0 edge; ‘e—e”: an undirected edgeje“—~e” Or “ e«—e”: a directed
edge) as output.
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