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Preface 
Failure of cracked components is governed by the stresses in the vicinity of 
the crack tip. The singular stress contribution is characterised by the stress 
intensity factor K, the first regular stress term is represented by the so-called 
T-stress. Sufficient information about the stress state is available, if these two 
parameters are known.  

While stress intensity factor solutions are reported in handbooks for many 
crack geometries and loading cases, T-stress solutions are available only for a 
small number of test specimens and simple loading cases as for instance pure 
tension and bending.  

One of the most frequently applied methods for the computation of stress in-
tensity factors and T-stress even under highly complicated loading is the 
Green’s function or weight function method. These procedures are explained 
in detail and are extensively applied. 

The computations quoted in this booklet were performed since 1997 when the 
book on “Weight functions and stress intensity factors” by T. Fett and D. Munz 
appeared. The results are compiled in form of figures, tables, and approximate 
relations. 

The author has to thank his colleagues Gabriele Rizzi (Forschungszentrum 
Karlsruhe, IMF) for supplementary Finite Element computations and Michael 
Politzky (Forschungszentrum Karlsruhe, IKET) for his support in the field of 
computer application. 

Universität Karlsruhe 

 Karlsruhe, April 2008                    Theo Fett  
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PART A 

THE STRESS FIELD NEAR A CRACK 

Fracture behaviour of cracked structures is dominated mainly by the near-tip stress field. In 
linear-elastic fracture mechanics interest is focussed mostly on stress intensity factors which 
describe the singular stress field ahead of a crack tip and govern fracture of a specimen when 
a critical stress intensity factor is reached. The usefulness of crack tip parameters representing 
the singular stress field was shown very early by numerous investigations. Nevertheless, there 
is experimental evidence that also the stress contributions acting over a longer distance from 
the crack tip may affect fracture mechanics properties. The constant stress contribution (first 
“higher-order” term of the Williams stress expansion, denoted as the T-stress term) is the next 
important parameter. Sufficient information about the stress state is available, if the stress 
intensity factor and the T-stress are known. In special cases, it may be advantageous to know 
also higher coefficients of the stress series expansion. This is desirable e.g. for the computa-
tion of stresses over a somewhat wider distance from a crack tip. For this purpose, additional 
higher-order terms are necessary. 

While stress intensity factor solutions are reported in handbooks for many crack types and 
loading cases, T-stress terms and higher-order stress solutions are available only for a small 
number of fracture mechanics test specimens and simple loading cases as for instance pure 
tension and bending.  

In real applications the stresses in a component can be highly non-linear. A method which 
allows stress intensity factors and T-stresses for such complicated loading cases to be deter-
mined is the Green’s function or weight function method. In part A the stress intensity factors, 
and T-stresses are defined and the weight function methods are explained in detail.  
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A1 
Stresses in a cracked body  
A1.1 Airy stress function 
The complete stress state in a cracked body is known, if a related stress function is known. In 
most cases, the Airy stress function Φ is an appropriate tool, which results as the solution of 

    0=∆∆Φ   ,     as Φ+Φ=Φ  (A1.1.1) 

For a cracked body a series representation for Φ was given by Williams [A1.1]. The solutions 
of (A1.1.1) are of the type 

 }sin,)2sin(,cos,)2cos({ 2222 λϕϕλλϕϕλ λλλλ ++++ ++=Φ rrrr  (A1.1.2) 

written in polar coordinates r, ϕ with the crack tip as the origin. The symmetric part of the 
Airy stress function, Φs, reads for a crack with surfaces free of tractions (with values λ multi-
ple of ½)  
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In this representation, the coefficients αn, βn, and γn are proportional to the applied loading 
and contain a length in their dimension. For traction free crack faces it holds γn=-βn. In order 
to obtain dimensionless coefficients it is sometimes of advantage to normalise the crack-tip 
distance r on either the component width W, r→r/W resulting in 
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or on the crack length a, r→r/a with 
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where σ* is a characteristic stress. The geometric data are explained in Fig. A1.1. In the fol-
lowing the formulation according to (A1.1.4) will be used predominantly.  

 
Fig. A1.1 Geometrical data of a crack in a component. 

The tangential, radial and shear stresses result from the stress function by 
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In the symmetric case, the stress components are given by 
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The coefficients αn, An, nA~ , βn, Bn, and nB~  are simply related by 
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In all mode-I considerations the symmetric part has to be used exclusively. For pure mode-II 
loadings the anti-symmetric part must be applied. The anti-symmetric part Φa reads, e.g. 
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A1.2  Stress intensity factor  
The stress intensity factor K is a measure of the singular stress term occurring near the tip of a 
crack and defined by 
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with r and ϕ according to Fig. A1.1. The angular functions are for mode I: 
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and for mode II: 

  f xx = ⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥sin sin sinϕ ϕ ϕ

2
2

2
3
2

 (A1.2.3a) 

  f yy = ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

sin cos cosϕ ϕ ϕ
2 2

3
2

 (A1.2.3b) 

  ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=

2
3cos

2
sin1

2
cos ϕϕϕ

xyf  (A1.2.3c) 



 

 6

The stress intensity factors KI and KII are expressed as 

  )/(* II WaFaK πσ=  (A1.2.4a) 

  )/(* IIII WaFaK πτ=  (A1.2.4b) 

where a is the crack length, W is the width of the component, and σ*, τ* are characteristic 
stresses in the component, e.g. the outer fibre stress in a bending bar. FI and FII are functions 
of the ratio of crack length to specimen width as well as of the type of load applied.  

In terms of the coefficients αn, An, nA~ , the stress intensity factor KI reads 

   aAWAK πσπσπα 18~*18*18 000I ===  (A1.2.5) 

and the geometric function FI  

    18~/18/18
* 00
0

I AAaF === α
σ
α

 (A1.2.6) 

with the relative crack depth α = a/W.  

 
Fig. A1.2 Edge crack in a non-symmetric component under normal and shear stresses. 

Mode-I stress intensity factors are not necessarily caused by normal stresses. Also shear 
stresses can be responsible for mode-I stress intensity factors. For demonstration purposes a 
crack in a non-symmetric plate is given in Fig. A1.2. Under a pure crack-face pressure σn, a 
stress intensity factor of 

 aFK n πσ )1(
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and a mode-II contribution of 
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are generated. Under constant shear stress τ acting in the crack face direction, two stress in-
tensity factors occur 

 aFK πτ )2(
I

)2(
I =  (A1.2.11) 

 aFK πτ )2(
II

)2(
II =  (A1.2.12) 

Only in the case of a crack normal to the surface and located in a symmetric component do 
the stress intensity factors )1(

IIK  and )2(
IK  disappear. 

A1.3 T-stress term for traction free crack faces 
The first higher-order stress term (n=0) is given by the dependency r0 (i.e. the stress compo-
nent is independent on the distance from the crack tip) with the coefficients β0, B0, and 0

~B . 
From relations (A1.1.7-A1.1.9) it results for the case of loading by remote stresses 
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By the general stress transformation from polar to Cartesian coordinates (rotated by an arbi-
trary angle γ) according to 

 γγτγσγσσ ϕϕ cossin2sincos 22
rrxx −+=  (A1.3.4) 

 γγτγσγσσ ϕϕ cossin2cossin 22
rryy ++=  (A1.3.5) 

 )sin(coscossin)( 22 γγτγγσστ ϕϕ −+−= rrxy  (A1.3.6) 

and identifying γ with π+ϕ, it yields 
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 00, =yyσ  (A1.3.8) 

 00, =xyτ  (A1.3.9) 

Since for remote stresses the constant stress components τxy,0=τyx,0 and σyy,0 disappear (trac-
tion free crack faces), the stress tensor reads 
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where T is the so-called "T-stress".  
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The T-stress in the different stress function representations is  

      000
~*4*44 BBT σσβ −=−=−=  . (A1.3.11) 

Leevers and Radon [A1.2] proposed a dimensionless representation of T by the stress biaxial-
ity ratio β, defined as 

    
F

T
K

aT
*I σ

πβ ==  (A1.3.12) 

Different methods were applied in the past to compute the T-stress term for fracture mecha-
nics standard test specimens. Regarding one-dimensional cracks, Leevers and Radon [A1.2] 
carried out a numerical analysis based on a variational method. Kfouri [A1.3] applied the 
Eshelby technique. Sham [A1.4, A1.5] developed a second-order weight function based on a 
work-conjugate integral and evaluated it for the straight edge notched (SEN) specimen using 
the FE method. In [A1.6, A1.7] a Green's function for T-stresses was determined on the basis 
of boundary collocation results. Wang and Parks [A1.8] extended the T-stress evaluation to 
two-dimensional surface cracks using the line-spring method. A compilation of results from 
literature was given by Sherry et al. [A1.9]. 

Most of the T-stress solutions derived by the author were obtained with the boundary collo-
cation method (BCM) and Green's function technique. Therefore, these methods shall be de-
scribed in more detail in Section A2.2. The boundary collocation method can provide a large 
number of coefficients of a Williams expansion of the stress function. Therefore, additional 
coefficients are reported in some cases. 

A1.4 T-stress in case of crack faces loaded by tractions 
From eq.(A1.3.10) it can be concluded that  

• the T-stress is identical with the constant x-stress term, T=σxx,0, or 

• the T-stress is identical with the first coefficient of the regular part of the Williams 
expansion, namely, T= −4β0 (or −4σ*B0, −4σ* 0

~B ).  

It has to be emphasized that these two definitions of the T-stress are equivalent only in the 
case of crack faces free of tractions (e.g. Fig. A1.3a), the case for which the Williams expan-
sion was derived [A1.1]. However, in practical problems also traction loaded crack faces are 
of interest. Examples are for instance:  

• Cracks in walls of tubes under internal gas or liquid pressure, 
• crack bridging stresses due to crack-face interactions in coarse grained ceramics (Fig. 

A1.3b). 

In this context the question has to be answered what the appropriate definition of T-stress in 
such cases is. In the following considerations the modifications in the Airy stress function are 
addressed.  
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A1.4.1 The Airy stress function  
The stress state of a component containing a crack can be described in terms of the Airy stress 
function Φ that results by solving the bi-harmonic equation (A1.1.1) with the solutions 
(A1.1.2). 
The symmetric Airy stress function for a crack with surfaces free of shear tractions  reads 
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The tangential stresses σϕ result from (A1.1.6) yielding 
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A1.4.2 Crack surfaces free of tractions 
The case of a crack with traction free surfaces requires that σϕ=0 for ϕ=π. This condition is 
automatically fulfilled for the first sum of (A1.4.2). From the second sum  

 nn βγ −=  (A1.4.3) 

is obtained. This yields the well-known Williams stress function [A1.1]  
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from which the radial stresses result as 
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The constant stress term related to n=0 is 

 )2cos1(2 00, ϕβσ +−=r  (A1.4.6) 

and the constant x-stress results by setting ϕ=π as 
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 00, 4βσ −=xx  (A1.4.7) 

This relation is one possibility to define the T-stress, namely by 

 04β−=T  (A1.4.8) 

 
Fig. A1.3 a) A crack with traction free surfaces loaded by externally applied tractions σ0, b) crack, 

loaded by crack-face tractions p(r). 

A1.4.3 Cracks loaded by crack-face tractions 
Next, the case of cracks with loaded surfaces is considered. A crack-face pressure distribution 
along the crack faces p(r) is assumed to be described by the power series expansion 

 )(......)( 2
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n
n σ−=+++++=  (A1.4.9) 

with positive p for pressure on the crack. In order to satisfy these traction boundary conditions 
it is sufficient to consider the part of the Airy stress function containing integer exponents 
exclusively. By adjusting the terms with same exponent of rn in eqs.(A1.4.2) and (A1.4.9), we 
obtain 

 nnn pnnnn −=++++ ]cos)2cos()[1)(2( πγπβ  (A1.4.10) 

This allows eliminating the coefficient γn 
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From (A1.4.12), the tangential stresses 
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the radial stresses 
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and the shear stresses 
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result. Equations (A1.4.12) to (A1.4.15) are appropriate for the application of the boundary 
collocation procedure to problems with crack-face loading. 
The constant stress terms related to n=0 for crack-face loading are given by 
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For traction free crack faces the T-stress could be defined equivalently by the total constant x-
stress σxx,0, eq. (A1.4.7), or by the coefficient β0 of the Williams expansion, eq.(A1.4.8). In 
the case of crack-face loading, these two possibilities of defining the T-stress result in differ-
ent values of T. In order to distinguish the two attempts, the T-stresses are indicated as T(1) 
and T(2). Similar to eq. (A1.4.8) we still can identify again T with the Williams coefficient β0 
resulting in 

 0
)1( 4β−=T  (A1.4.8a) 

On the other hand one can define T via the total constant x-stress, i.e. 
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 000,
)2( 4 pT xx −−== βσ  (A1.4.17) 

as for instance done in [A1.10]. The different definitions of T-stress are not a physical prob-
lem because the x-stress as the physically relevant quantity is the same in both cases.  

A1.5 T-stress under crack loading by residual stresses  
The T-stress term is the first regular stress term in the Williams series expansion [A1.1]. As 
outlined in Section A1.3, the Cartesian components of the first regular term of traction-free 
crack faces are 
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yyyy += ϕ
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with the angular functions fxx and fyy that are identical for ϕ=0, namely, fxx= fyy=1. Due to the 
r-independence of the T-term in eq.(A1.5.1), it is often used to represent the stress at the 
crack faces over a wide crack-tip distance. This is correct for e.g. an internal through-the-
thickness crack in an infinite body under tension for which σx=T holds along the whole crack. 
Unfortunately, this is not a general result. Especially in the case of residual stresses this as-
sumption is misleading as will be shown in the following considerations.    
Let us now consider a more complicated loading case. In a limited zone of a component a 
residual stress field may occur (Fig. A1.4a). Such a stress field may be created by a local 
martensitic phase transformation in zirconia ceramics due to the high stresses near a crack tip. 
Another possibility is the development of an ion exchange layer at the crack surfaces of soda-
lime glass which is in contact with water or humid air. The volumetric expansion in these 
zones might be εvol. The two relevant stress components generated in this zone are denoted by 
σres,x and σres,y. 

 
Fig. A1.4 Residual stresses caused in crack-tip zones by a volumetric expansion strain εvol, a) zone of 

finite length s, b) limit case of an infinitely long zone. 
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The x-stresses in such a volumetric expansion zone at y=0 are superimposed by the residual 
stresses σres,x, σres,y and the contributions by the stress intensity factor and the T-stress.  

Let us consider a phase transformation zone at the crack surfaces as shown in Fig. A1.4a. The 
T-stress of this configuration was obtained from a finite element study. For this purpose, the 
transformation strains were replaced by thermal strains. The related volume strain εvol is then 
given for a temperature increase ∆Θ in the zone  

 ∆Θ≅ αε 3vol  (A1.5.3) 

with the thermal expansion coefficient α.  
The x-stresses in an infinitely long layer is under plane strain or generalized plane strain con-
ditions 

 
ν

ε
σ

−
−=

13
1 Evol

x  (A1.5.4) 

Computations were carried out with ABAQUS Version 6.2, providing the individual stress 
intensity factors KI and KII as well as the T-stress. For this purpose, ABAQUS employs an 
interaction integral according to Shih and Asaro [A1.11]. This quantity was used in [A1.12]. 
For an infinitely long zone of s→∞, Fig. A1.4b, the T-stress evaluation in [A1.12] yields  

 
ν

ε
−

−≅
16

1 E
T vol  (A1.5.5) 

where εvol is the volume strain, E is Young’s modulus, and ν Poisson’s ratio. For the negative 
sign in (A1.5.5) see the remark in Section C22.4. 

 
Fig. A1.5 a) Finite element results of x-stresses for an expansive zone along the free surface in the 

crack wake according to Fig. A1.4b, b) detail near x/b=0. 
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Figure A1.5 shows the x-stress component for y=0 from finite element computations. At x=0, 
the total x-stress is roughly 

 
ν

ε
σ

−
−≈

= 1
136.0

0

Evol
xx  (A1.5.6) 

as indicated in Fig. A1.5b, and reaches a value of -1/3 εvolE/(1-ν) for x/b<<1 as becomes ob-
vious from Fig. A1.5a and would be expected from eq.(A1.5.4). It is obvious that the stress 
value T is hardly representative for the x-stresses in the crack wake. 
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A2 
Methods for the determination of K and T  
Numerous methods are described in literature for the determination of stress intensity factors 
and T-stress. Analytical and semi-analytical approaches are applicable mostly in the case of 
special geometries and simple loading cases as for instance internally cracked infinite and 
edge-cracked semi-infinite bodies under remote tractions. As an example, the analytical 
procedure reported by Wigglesworth [A2.1] may be briefly addressed. 

For cracks in finite components, numerical procedures have to be used predominantly. For 
this purpose a few of the available methods may be mentioned, namely 

• Finite element methods with evaluation of K and T from the stresses or by the 
evaluation of energy integrals,  

• Boundary element procedure,  

• Boundary collocation method 

In the K-T-compendium (Section C) some results are given which were obtained with 
ABAQUS [A2.2] Versions 6.2 and 6.3 which provide stress intensity factors KI, KII, and T 
directly. For the analysis of T, ABAQUS employs an interaction integral according to Shih 
and Asaro [A2.3].  
Most of the numerical data were obtained by application of the Boundary collocation 
procedure. Since this method also provides the next higher-order stress terms it is described in 
Section A2.2. 

A2.1 Analytical method by Wigglesworth 
Very early, Wigglesworth [A2.1] derived an analytical solution for the edge-cracked half-
space under a constant crack-face pressure p (Fig. A2.1a) or, equivalently, by a remote 
tension σ∞. The procedure enables to determine the coefficients of a series expansion of the 
stress distribution (here denoted as nA  and nB ). Unfortunately, the Wigglesworth analysis is 
somewhat fallen in oblivion. One reason might be the iterative procedure necessary for the 
evaluation. 
As the main result Wigglesworth [A2.1] showed that the coefficients nA  and nB  could be 
obtained from the asymptotic expansion of a function q(m) for large integer numbers m, 
where q(m) is defined by 
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and the function ψ(v)  

  ψ π( ) log[ / ( )]v v v= −1 1 2 1
2cosech2  (A2.1.3) 

The asymptotic expansion of log h(m) reads  
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where   α
π

ψn
n d=

∞

∫
1 2

0

v v v( )  (A2.1.5) 

The function h(m) can now be expressed by using (A2.1.4) as 

  ...)//exp()( 3
10 +−= mmmh αα  (A2.1.6) 

with the asymptotic expansion 

  h m m m m( ) / / / ...→ + + + +1 1 2
2

3
3β β β  (A2.1.7) 

The coefficients are interrelated by 

  β α β α β α α1 0 2 0
2

3 0
3

12 3= = = −, / !, / ! , etc. (A2.1.8) 

with the αn known from (A2.1.5). 

 
Fig. A2.1 Edge-cracked semi-infinite body, a) crack loaded by an internal pressure p, b) crack loaded 

by remote y-tractions σ0. 
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The first coefficients αn and βn, obtained by application of Mathematica 3.0 [A2.4], are 
compiled in Table A2.1. 

Table A2.1 Coefficients αn and βn according to eqs.(A2.1.5) and (A2.1.8) 

n αn βn 
0 0.1594228254 1 
1 0.1157911013 0.1594228254 
2 0.3171665716 0.0127078186 
3 1.7462768020 -0.1151157958 
4 15.774232536 -0.0184328297 
5 210.33303560 0.31569597745 
6 3874.8986328 0.05718920898 
7 94197.687783 -1.7411806856 
8 2.9202579843×106 -0.3148221728 
9 1.1243271×108 15.745940668 

The coefficients nA  are then iteratively given by 
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 (A2.1.9) 

with h(1)≅1.12152, identical with the geometric function F for the stress intensity factor of 
the edge-cracked semi-infinite body, and the coefficients 
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 (A2.1.10) 

A similar procedure is described in [A2.1] for the coefficients nB . Compared with the stress 
coefficients in (A1.1.5), which are slightly different from those defined by Wigglesworth, it 
holds (after dropping the tilde symbol) 

  FAAhA nnn 8)1(8 ==  (A2.1.11) 

  FBnBnhB nnn 11 )1(8)1)(1(8 ++ +=+=  (A2.1.2) 

The Wigglesworth procedure was carried out for 150 coefficients by using Mathematica 
Version 3.0. In Table A2.2, the first coefficients for An and Bn are compiled. It results for the 
geometric function of the stress intensity factor of an edge crack in a semi-infinite body under 
remote tension 
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  ...31215222552.1=F  (A2.1.13) 

The coefficient B0, representing the T-stress according to eq.(A1.3.11) is 

  ...131491901.00 =B  (A2.1.14) 

and, consequently  

  ∞∞ −=−= σσ 5259676026.04 0BT  (A2.1.15) 

It should be mentioned, that a very similar value of -0.526 was already reported in literature 
[A2.5, A2.6]. In [A2.7], this value was given with an increased accuracy by −4B0= −0.52596 

±0.00003.  

Table A2.2 Coefficients An and Bn according to eqs.(A2.1.6) and (A2.1.9). 

n nn
nn A

F 2/1
2/31 2)1( −

++−  4(-1)n (n+1) Bn 

0 1 0.5259676026 
1 -0.143718116 -0.384982976 
2 0.0199655992 -0.214309639 
3 0.0196651671 -0.086876065 
4 0.0118558588 -0.0142437609 
5 0.0062538226 0.0193802356 
6 0.0029935128 0.0305459991 
7 0.0012562099 0.0306628565 
8 0.0003899590 0.0263270316 
9 -9.7144×10-6 0.0208939094 
10 -0.0001717008 0.0158426721 
11 -0.0002189425 0.0116784377 
12 -0.0002148644 0.0084544707 
13 -0.0001908770 0.0060469457 
14 -0.0001617433 0.0042866037 
15 -0.0001338496 0.0030144163 
16 -0.0001095285 0.0021000215 
17 -0.0000892583 0.0014436503 
18 -0.0000727470 0.0009718567 
19 -0.0000594446 0.0006317771 
20 -0.0000487713 0.0003858288 

The total constant x-stress is for loading by remote tractions σ∞ 

  Txx =0,σ  (A2.1.16) 

and in the case of the constant crack-face pressure p 
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  pTxx +=0,σ  (A2.1.17) 

The reason for these different values is explained in Section A1.4. 

A2.2 Boundary collocation procedure8910 

A2.2.1 Boundary conditions 
A simple possibility to determine the coefficients An and Bn is the application of the boundary 
collocation method [A2.8-A2.10]. For practical application of eq.(A1.1.3), which is used to 
determine An and Bn, the infinite series for the Airy stress function Φ must be truncated after 
the Nth term, for which an adequate value must be chosen. The still unknown coefficients are 
determined by fitting the stresses and displacements to the specified boundary conditions. The 
stresses result from the relations A1.1.6. 

Stresses firstly derived by Williams [A2.11] are given in eqs.(A1.1.7-A1.1.9). The 
displacements in radial and tangential direction, u and v, respectively, read 
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 (ν = Poisson's ratio), from which the Cartesian components ux and uy result as 

    ux = −u vcos sinϕ ϕ  (A2.2.3a) 

    uy = +u vsin cosϕ ϕ  (A2.2.3b) 

In the special case of an internally cracked circular disk of radius R (Fig. A2.2), the stresses at 
the boundaries are 

    σ τ ϕn r= = 0  (A2.2.4) 

along the quarter circle. Along the perpendicular symmetry line, the boundary conditions are: 
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    u u
yx
x= → =const. ∂

∂
0  (A2.2.5) 

    τ xy = 0  (A2.2.6) 

 
Fig. A2.2 Node selection and boundary conditions for an internally cracked disk. 

About 100 coefficients for eq.(A1.1.3) were determined from 600-800 stress and 
displacement equations at 400 nodes along the outer contour (symbolised by the circles in 
Fig. A2.2). For a selected number of (N+1) collocation points, the related stress components 
(or displacements) are computed, and a system of 2(N+1) equations allows to determine up to 
2(N+1) coefficients. The computation expenditure can be reduced by the selection of a clearly 
larger number of edge points and by subsequently solving the then over determined system of 
equations using a least-squares routine. 
In the case of the edge-cracked rectangular plate of width W and height 2H (Fig. A2.3), the 
stresses at the border are  

   σ τx xy x= = =0 0 0, for  (A2.2.7a) 

   σ σ τy xy y H= = =*, 0 for  (A2.2.7b) 

   σ τx xy x W= = =0 0, for  (A2.2.7c) 

and in the case of the double-edge-cracked plate (Fig. A2.4), it holds 

   σ τx xy x= = =0 0 0, for  (A2.2.8a) 

   σ σ τy xy y H= = =*, 0 for  (A2.2.8b) 

σn τrϕ ux 

τxy 

R
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∂
∂

τu
y

x Wx
xy= = =0 0, for  (A2.2.8c) 

 

Fig. A2.3 Collocation points for the edge-cracked rectangular plate. 

 
Fig. A2.4 Double-edge-cracked plate a) geometric data, b) half-specimen with symmetry boundary 

conditions. 

A2.2.2 Boundary collocation procedure for point forces 

The treatment of point forces at the crack face in case of a finite body shall be illustrated in 
the following sections for a circular disk with an internal crack loaded by a couple of forces at 
x = y = 0. In order to describe the crack-face loading by concentrated forces, we superimpose 
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two loading cases. First, the singular crack-face loading is modelled by the centrally loaded 
crack in an infinite body described by the Westergaard stress function 

    Z Pa
z z a

=
−π

1
2 2

 (A2.2.9) 

The stresses resulting from this stress function disappear at infinite distances from the crack 
only. In the finite body the stress-free boundary condition consequently is not fulfilled. To 
nullify the traction at the outer boundaries, stresses resulting from the Airy stress function, 
eq.(A1.1.3), are added, which do not superimpose additional stresses at the crack faces. The 
basic principle used for such calculations, the principle of superposition, shall be illustrated in 
more detail in Section A2.3. 

 
Fig. A2.5 Coordinate system for the application of the Westergaard stress function to a finite 

component. 

The stresses caused by Z are 

 σ x Z y Z= −Re Im '  (A2.2.10a) 

 σ y Z y Z= +Re Im '  (A2.2.10b) 

 τ xy y Z= − Re '  (A2.2.10c) 

with  

 Z dZ
dz

Pa z a
z z a

'
( ) /= = −

−
−π

2 2 2

2 2 2 3 2  (A2.2.11) 

For practical use it is of advantage to introduce the coordinates shown in Fig. A2.5. The fol-
lowing geometric relations hold 

 )exp(,)exp(,)exp( 2211 ϕϕϕ irazirazirz =+=−=  (A2.2.12) 
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 xyyxr /tan,22 =+= ϕ  (A2.2.13) 

 r x a y y x a1
2 2

1= − + = −( ) , tan / ( )ϕ  (A2.2.14) 

 r x a y y x a2
2 2

2= + + = +( ) , tan / ( )ϕ  (A2.2.15) 
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The stress function Z does not provide any T-stress term. Nevertheless, the equilibrium 
traction at the circumference acts as a normal external load and may produce a T-stress. 
Radial and tangential stress components along the contour of the disk are plotted in Fig. A2.6 
for a crack with a/R = 0.4. 

 
Fig. A2.6 Normal and shear tractions created by the stress function eq.(A2.2.9) along the fictitious 
disk contour (for ϕ see Fig. A2.5), σ* = P/(πRt), t = thickness.  
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A2.3 Principle of superposition 
The procedure necessary for the computations addressed in Section A2.2 is illustrated below. 
Disk geometry may be chosen. Figure A2.7 explains the principle of superposition for the 
case of T-stresses. Part a) shows a crack in an infinite body, loaded by a couple of forces P. 
The T-stress in this case is denoted as T0. First, we compute the normal and shear stresses 
along a contour (dashed circle) which corresponds to the finite disk. We cut out the disk along 
this contour and apply normal and shear traction at the free boundary, which are identical to 
the stresses computed before (Fig. A2.7b). 

 

 

Fig. A2.7 Illustration of the principle of superposition to compute T-stresses for single forces. 
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The disk loaded by the combination of single forces and boundary traction exhibits the same 
T-term T0. Next, we consider the situation b) to be the superposition of the two loading cases 
shown in part c), namely, the cracked disk loaded by the couple of forces (with T-stress 
T−∆T) and a cracked disk loaded by the boundary traction, having the T-term ∆T. As 
represented by part d), the T-term of the cracked disk is the difference T=T0−∆T. If the sign of 
the boundary traction is changed, the equivalent relation is given by part e). 
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A3 
Weight function technique 
A3.1 Weight function  
Most numerical methods require a separate calculation of the stress intensity factor for each 
given stress distribution and each crack length. The weight function procedure developed by 
Bückner [A3.1] simplifies the determination of stress intensity factors. If the weight function 
is known for a crack in a component, the stress intensity factor can be obtained by multiplying 
this function by the stress distribution and integrating it along the crack length. The weight 
function does not depend on the special stress distribution, but only on the geometry of the 
component. 

The method is considered below for the case of an edge crack. If σn(x) is the normal stress 
distribution in the uncracked component along the prospective crack line of an edge crack, the 
stress intensity factors are given by [A3.2] 
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They define the weight functions h11 and h21. For shear stresses τxy acting at the crack faces it 
results 
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defining the weight functions h12 and h22. Under a combined crack-face loading, the stress in-
tensity factors can be superimposed, which results in 
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or in matrix form 
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The weight function h(x,a) can be interpreted as the Green's function for a stress intensity 
factor problem. This means that the weight function is identical to the stress intensity factor 
caused by a pairs of forces P and Q acting at the points x = x' and x''. We express the single 
forces by stress distributions 

  σ δ τ δ( ) ( ' ); ( ) ( ' ' )x P
B

x x x Q
B

x x= − = −  (A3.1.7) 

δ=Dirac delta function, B=thickness. Inserting the stress distributions into eq.(A3.1.3) yields 
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and in the same way from eq.(A3.1.4) 
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In most practical applications the weight functions h12 and h21 disappear. In such cases we 
drop the superscripts and write simply 
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A3.2  Determination of weight functions 
The general procedures for the determination of weight functions are described below for the 
weight function component hI(=h11). The relation of Rice [A3.3] allows to determine the 
weight function from the crack opening displacement vr(x,a) under any arbitrarily chosen 
loading and the corresponding stress intensity factor KIr(a) according to 
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(E' = E for plane stress and E' = E/(1-ν2) for plane strain conditions), where the subscript r 
stands for the reference loading case. It is convenient to use σr(x) = σ0 = constant for the 
reference stress distribution. 
One possibility to derive the weight function with eq.(A3.2.1) is the evaluation of numerically 
determined crack opening profiles which may be obtained by BCM computations. By 
applying the BCM procedure to a couple of cracks with slightly different lengths a and a+da, 
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a large number of coefficients An and Bn are obtained. Then, eq.(A2.2.3b) provides the related 
couple of crack opening displacements v(a) and v(a+da) from which the derivative in 
eq.(A3.2.1) can be obtained. In order to minimise the numerical effort, approximate methods 
are often used in literature. 

A3.2.1  Petroski-Achenbach procedure 
As a consequence of the Williams stress function [A3.4], the crack opening displacement can 
be expressed as [A3.2] 
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By introducing eq.(A3.2.2) into eq.(A3.2.1), we obtain 
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with C-1=dC-1/dα=0 and α=a/W. According to a proposal of Petroski and Achenbach [A3.5], 
the series expansion (A3.2.4) may be truncated after the term with n = 2. The unknown 
coefficient C2 can be determined from the energy balance equation  
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The basic idea of Petroski and Achenbach was modified and additional conditions were intro-
duced, for instance, the disappearing second and third derivatives of the crack opening dis-
placement at the crack mouth [A3.6] 
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which provided additional coefficients. For details see references [A3.7] and [A3.2]. 

A3.2.2  Adjustment of weight functions to reference stress intensity factors 

A minor disadvantage of the Petroski-Achenbach procedure (Section A3.2.1) is that 
numerical integrations are necessary to evaluate the integral over K2 in eq.(A3.2.5). A direct 
determination of the weight function coefficients is possible by adjusting the weight function 
to reference stress intensity factors. As can be seen from eq.(A3.2.4), a representation of the 
weight function by the power series expansion [A3.8, A3.9] 
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is possible. A number of conditions allow determining the coefficients Dn. If a number of m 
reference loading cases with the stress distributions σr,i(x) are known, the weight function 
must satisfy a number of m conditions 
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In eq.(A3.2.8) σ*r,i denotes a characteristic value of the stress distribution σr,i(x). Additional 
coefficients can be derived from the conditions (A3.2.6). By use of (A3.2.1), they result in 

 ∂
∂

∂
∂

∂
∂

2

2

2

2

h u
x

E
K a xr

=
'  (A3.2.9) 

 ∂
∂

∂
∂

∂
∂

3

3

3

3

h u
x

E
K a xr

=
'  (A3.2.10) 
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Finally, the conditions (A3.2.6) read 

 ∂
∂

∂
∂

2

2
0

3

3
0

0 0h h
x xx x= =

= =,  (A3.2.12) 

A3.2.3 Most general case 

The procedure for the determination of weight function coefficients by adjusting to reference 
stress intensity factors may also be applied to the most general case of mixed-mode problems 
as addressed in Section A3.1. As outlined in [A3.2], the series expansions for the four weight 
functions read 
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From the stress intensity factors for the two reference loading cases shown in Fig. A3.1 and 
e.g. from the disappearing second and third derivatives for h11 and h22 at x = 0, a sufficient 
number of coefficients were determined in [A3.10, A3.11] for eqs.(A3.2.13a-d). 

 
Fig. A3.1 Reference loading cases (constant normal traction and constant shear traction along the 

crack faces) for an edge-cracked bimaterial joint. 

 

Fig. A3.2 Reference loading cases (constant normal traction and constant shear traction) for an 
internal crack. 
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In the case of an internal crack (see Fig. A3.2), the weight function contributions for 
symmetric loading, σ(x) = σ(-x), τ(x) = τ(-x), can be expressed for point A by 
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and for point B 
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where for the coefficients B ≠ A in general. 

A3.2.4 Numerical evaluation of weight function integrals 

The integration of the weight function may lead to numerical problems, since the value of h 
tends to infinity for x→a. Therefore, it is recommended to split the integral and to apply the 
mean value theorem to the right hand term of 
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with ε << a, where the first integral up to a−ε can be evaluated numerically (e.g. by use of 
Simpson's rule) and the second one by analytical integration. Having in mind that for ε→0 all 
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terms of the weight function can be neglected compared with the singular term, we obtain e.g. 
for the weight function of the type of eq.(A3.2.27) 
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A4 
Green's function for T-stress 1234567 

A4.1 Green's function for symmetric crack problems  
As a consequence of the principle of superposition, stress fields for different loadings can be 
added up in the case of single loadings acting simultaneously. This leads to an integration 
representation of the loading parameters. The method was applied very early to the singular 
stress field and for the computation of the related stress intensity factor by Bückner. Similarly 
to stress intensity factors [A4.1], the T-stress contribution can be expressed by an integral 
[4.2-4.8] 
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where the integration has to be performed using the stress field σy in the uncracked body (Fig. 
A4.1a). The stress contributions are weighted by a weight function t as a function of the 
location x where the stress σy acts.  
If in the uncracked body a σx stress component already exists at the location of the tip of the 
prospective crack, the total T-value is obtained by adding this stress contribution, i.e. 
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For loading by a crack-face pressure distribution p(x), the T-stress results from  
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(see e.g. [4.7]) since there are no stresses in the uncracked body, i.e. σx|x=a=σy|x=a=0. 
The Green's function t can be interpreted as the T-term for a pair of single forces P acting at 
the crack face at the location x=x0 (Fig. A4.1b). This can be shown easily for the single forces 
represented by a singular pressure distribution 

    )()( 0xx
B
Pxp −= δ  (A4.1.4) 

where δ is the Dirac delta function and B the thickness of the plate (often chosen to be B = 1). 
By introducing this stress distribution into eq.(4.1.3), we obtain 
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i.e. the weight function term t(x0,a) is the Green's function for the T-stress term. 

 
Fig. A4.1 Crack loaded by a) continuously distributed normal traction σy (present in the uncracked 

body), b) by a pair of concentrated forces. 

A4.2 Set-up of Green's function 
A4.2.1 Type of the Green's function  
Following the analysis of Sham (eq.(32) in [4.3]), the T-stress contribution given by the in-
tegrals in (A4.1.1-A4.1.3) can be expressed as 
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for a crack face loading (extending over the upper and lower crack surfaces) with tractions X 
and Y acting in x- and y- directions, respectively.  
The relevant displacements in the surroundings of a crack read (see Section A2.2.2) 
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In the following considerations, we are exclusively interested in tractions Y(s) normally to the 
crack surface. Therefore, we set X(s)=0.   
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The crack face displacements (ϕ=±π) result as 
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From (A4.2.1), we can conclude easily that 
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The Green’s or weight function is the T-stress caused by a point force P at location x for the 
2-dimensional specimen or a line load in thickness direction P/B (in the 3-dimensional case) 
with 

 )'()( xxPxy −= δσ   (A4.2.6) 

(δ=Dirac delta function). It results from inserting (A4.2.6) into (A4.2.5) using the well-known 
properties of δ 

 ),'(),'( axaxt rv∝   (A4.2.7) 

and, with (A4.2.4), a power series expansion for the Green’s function 
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A4.2.2 Determination of the coefficient C0  9 
In principle, the total Green’s function can be determined for instance from finite element 
computations by application of pairs of concentrated forces P on the crack faces. The results 
can be fitted to t(x,a) by use of a sufficient number of terms (1-x/a)n+1/2 in eq.(A4.2.8) [A4.6-
A4.10]. Whereas a polynomial with a restricted number of terms is an appropriate Green’s 
function representation for cracks loaded by tractions over the whole crack length, the use of 
a more accurate near-tip solution may be of advantage for theoretical considerations. 
Unfortunately, the accuracy of T-stresses from concentrated forces decreases for a very small 
crack-tip distance. For the evaluation of t at (a-x)→0, it is of advantage to determine the T-
stress under constant crack-face tractions distributed over the near-tip region. 
The first coefficients C0 were determined in [A4.10] for several crack geometries. Crack 
elements very close to the tip were loaded with a constant crack face pressure p0. The results 
were determined for a large number of contours and are plotted in Fig. A4.2a versus the 
contour number. The plateau values are plotted in Fig. A4.2b as a function of the size d of the 
loaded crack surface. From this plot and Fig. A4.2c, one obtains for the DCB specimen 

 2/3
0 )/(747.0/ HdpT =   (A4.2.9) 

and for the edge crack in a large plate (Fig. A4.2d) 
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All these results allow the first coefficient of the power series representation to be determined. 
It results  
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Fig. A4.2 Constant stress term for near-tip loading by a constant pressure p0, a) results for a DCB 

specimen versus number of contours, b) plateau values of Fig. A4.2a versus size of the loading region, 
c) results for DCB specimens with different heights H, d) results for a small crack of a=1 in a large 

body of H=12.5 and W=25. 

When comparing the coefficients of the d3/2 dependency of (A4.2.9) and (A4.2.10) with 
(A4.2.11), we obtain for the DCB specimen 
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and for the edge crack in the half-space 

 3.00 =C  (A4.2.12b) 

In the case of the finite CT specimen, the coefficient C0 depends on the relative crack length 
a/W as shown in Fig. A4.3a. Figure A4.3b shows the results for the edge-cracked bar often 
used for bending tests.  
The coefficient C0 of the standard CT specimen can be approximated for 0.3 ≤ a/W ≤ 0.7 as 

 WaC /,)45.11532.89981.09626.0( 2/332
0 =+−+≅ ααααα  (A4.2.12c) 

and of the edge-cracked bar for 0.2≤a/W≤0.6 as 

 32
0 286.6896.20951.0308.0 ααα +−−≅C  (A4.2.12d) 

 
Fig. A4.3 Coefficient C0: a) Results of the standard CT specimen, b) results of edge-cracked bars. 

A4.3 Adjustment to reference T-stress solutions 
A4.3.1 General procedure 
From the considerations made in the preceding Section, it was found that the Green’s function 
for the T-stress can be expressed in the form 
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The determination of the first N coefficients is simply possible if T-stress solutions for special 
loading cases, so-called reference loading cases, are available. Similar to the direct 
adjustment method (DAM), applied in [A4.6] for the determination of weight functions for 
stress intensity factors (see also Section A3.2.2), the coefficients Cν for Green’s functions of 
T-stresses may be determined. 
A number of µ reference loading cases is assumed with the stress distributions σi(x) acting in 
the uncracked body normally the prospective crack plane. The Green’s functions must fulfil a 
number of µ conditions 

  µσσσν
ν ...1,)()/1( ,,
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a
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Equation (A4.3.2) leads to a system of µ linear equations. Its solution provides a number of µ 
coefficients.  

A4.3.2 Single-term approximation  
This procedure may be demonstrated for the case of an edge crack in a rectangular plate of 
width W and height 2H. For a long plate of H/W=6, the tensile and bending solutions, Tt and 
Tb, obtained by Sham [A4.3], are given for some relative crack lengths, α=a/W, by the data of 
Table A4.1. The T-stress under tension is scaled with the remote tensile stress σt and the 
bending solution with the outer fibre bending stress σb. 

Table A4.1 T-stress solutions for an edge-cracked plate under tension and bending loading (H/W=6) 
[A4.3]. 

α Tt/σt Tb/σb 
0 -0.526 -0.526 

0.2 -0.5919 -0.2407 
0.3 -0.6143 -0.0824 
0.4 -0.5853 0.1159 
0.5 -0.4314 0.3911 
0.6 0.0278 0.8275 
0.7 1.3332 1.6609 
0.8 5.9755 3.9115 

First, it is assumed, that only the tensile reference solution Tt might be available. Introducing 
this solution into (A4.3.2) gives with σx=0  
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The approximation for the Green’s function  

  axCt a /10
1 −=  (A4.3.4) 
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is plotted as the dashed curves in Fig. A4.4a for deep cracks and in Fig. A4.4b for the limit 
case α=0 which represents the edge-cracked half-space. Finite element results are entered as 
the circles. For the deep cracks, the weight function data were taken from [A4.3]. The results 
for the edge-cracked half-space are given in [A4.11]. 
Comparison of the numerical data with the results of eqs.(A4.3.3) and (A4.3.4) shows that the 
agreement is very poor. 

 
Fig. A4.4 Approximate Green’s functions (dashed curves) obtained by direct adjustment to only one 

reference loading case (tensile load); dashed curve: single-term representation by eq.(A4.3.4), symbols 
in a) results from [A4.3], in b) finite element results from [A4.11]. 

A4.3.3 Approximation with two terms 
As a second loading case, bending is considered. In this case it holds σx=0 and  

  )/21( Wxby −=σσ  (A4.3.5) 

This second loading case allows for deriving an improved Green’s function  
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The coefficients follow as 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−= α

σσ
α

α
107)47(

16
15

0
b

b

t

t TTC  (A4.3.7a) 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−−= α

σσ
α

α
65)45(

16
35

1
b

b

t

t TTC  (A4.3.7b) 

that results in  
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The Green’s functions according to eq.(A4.3.6) are shown in Fig. A4.5 as the solid curves. 
For the edge-cracked half-space the bending loading case is not applicable since it is identical 
with the tensile case. Therefore, increasing deviations have to be expected for decreasing 
relative crack depths. 

 

 
Fig. A4.5 Comparison of the approximate two-term Green's functions (A4.3.6) with results from 

[A4.3]. 
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If, for instance, the T-stresses for constant stress, Tt, and for a pair of point forces P acting at 
the crack mouth, TP, are available with 

 )(, 21 x
B
P

t δσσσ ==  (A4.3.8) 

(B=thickness) the coefficients result as 
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A4.3.4 Approximate Green’s functions with integer exponents 
If only a single reference loading case is available, the determination of the Green's function 
makes some problems. A set-up according to eq.(A4.3.4) cannot be recommended for this 
case. From the numerical Green’s functions for deep edge cracks, Fig. A4.5a, it can be seen 
that the square-root-shaped part near x/a=1 is very small and the curves are nearly linear. 
Therefore, a simpler linear set-up for approximate Green’s function was proposed in [A4.6] 
by 

 )/1(0
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or in a more general representation [A4.12] 

 1

0

1 )/1( +

=

−= ∑ ν

ν
ν axEt

N

a  (A4.3.11) 

It should be mentioned that such a set-up has no deeper theoretical basis; nevertheless the 
good numerical results seem to justify its application. If we restrict the expansion to the first 
term, we obtain the unknown coefficient E0  
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Let us assume the T-term Tt of an edge-cracked plate under pure tension σt to be known. 
Introducing this constant stress into eq.(A4.3.10) yields  
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and the coefficient E0 results trivially as 
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Knowledge of additional reference solutions for T allows further coefficients to be deter-
mined. 
Figure A4.6 gives a comparison of the FE-results of Sham [A4.3] with the straight-line 
approximation according to eq.(A4.3.9). The agreement is good especially for deep cracks of 
a/W>0.6 as becomes obvious from Fig. A4.6a. 
In order to improve this type of Green's function, the next regular term may be added. Con-
sequently, the Green's function expansion reads for edge cracks 
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The determination of the two coefficients E0 and E1 is possible, if T-stress solutions for two 
different reference loading cases are available. If, for instance, the T-stresses for constant 
stress, Tt, and for a pair of point forces P acting at the crack mouth, TP, are available with 
reference stresses according to (A4.3.8), the coefficients result as 

  p
t

t T
P
aBT

E 2160 −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

σ
 (A4.3.16a) 

  p
t

t T
P
aBT

E 3161 +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

σ
 (A4.3.16b) 

 
0 0.2 0.4 0.6 0.8 1

0 

5 

10 

15 

20 

x/a 

a/W 

0.8 

0.7 

0.6 

t×W a)

0 0.2 0.4 0.6 0.8 1 
0

1

2

3

4

x/a

a/W=0.6 

0.5

b) t×W



 45

 
Fig. A4.6 Comparison of the approximate linear single-term Green's functions, eq.(A4.3.10) with FE 

results from Sham [A4.3]. 

A4.3.5 Symmetrically loaded internal crack 
The derivation of an approximate Green's function for internal cracks is similar to those of 
edge cracks. Due to the symmetry at x = 0, the general set-up must be modified. Improved 
descriptions, symmetric with respect to x = 0, are 
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with the first approximations 
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In this case, the coefficients C0 and E0 result from the pure tension case as 
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The two-term representations  
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yield for a concentrated force in the crack centre (x=0) as the second loading case with 
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(Note: the force is different from that of eq.(A4.3.8) by a factor of 1/2 since the total 
symmetric load P belongs only half to the crack part along the positive x-axis) the coefficients  
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A4.4 Modified Green’s functions for non-symmetric crack problems 
A4.4.1 Extended set-up 
Relation (A4.1.2) used so far is restricted to symmetric crack problems, for instance, an edge 
crack normal to the free surface of a rectangular plate. In the case of more complicated crack 
and component geometries (e.g. oblique edge cracks, Fig. A4.7a, and kink cracks, Fig. A4.7b) 
and loading cases including shear stresses, the T-stress can be computed from [A4.8] 
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similar to stress intensity factors [A4.6]. 
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The weight functions t(1) and t(2) are the T-terms for a pair of single forces P and Q acting 
normal and parallel to the crack face at the location x=x’. This can be shown easily for the 
case of single forces represented by delta-shaped stress distributions 
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xy −=−= δτδσ  (A4.4.2) 

where δ is the Dirac delta function and B the thickness of the plate (often chosen to be B = 1). 
By inserting these stress distributions into eq.(A4.4.1), it is obtained that 
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i.e. the weight function terms t(1) and t(2) are the Green's functions for the T-stress term. The 
Green’s functions t(1) and t(2) can be expressed by power series expansions 
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with unknown coefficients which have to be determined e.g. by fitting numerically obtained 
results. For practical applications, the infinite series have to be truncated after the Nth term. 

 
Fig. A4.7 Non-symmetric crack problems, a) oblique edge crack, b) semi-infinite kinked  crack in an 

infinite body, reference crack of length a. 

A4.4.2 Numerical results 
Finite element results of the T-stress for the semi-infinite crack with a kink, Fig. A4.7b, are 
shown in Fig. A4.8. The data, normalized on the concentrated normal (P) and shear forces 
(Q), are identical with the Green’s function. The T-stress data were fitted in the Green’s 
function representation according to  
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for N terms with the coefficients compiled in Tables A4.1 and A4.2.  

 
Fig. A4.8 Green’s functions for the T-stress of kinked cracks. 

Table A4.2 Coefficients for eq.(A4.4.5) as obtained under normal forces P. 

ϕ )1(
1D  )1(

2D  )1(
3D  )1(

4D  

15° -0.002 0.0191 -0.0459 0.0386 
30° 0. 0.0327 -0.0368 0.0447 
45° 0.017 0.1526 -0.2973 0.2259 
60° 0.0437 0.1408 -0.2466 0.2534 
90° 0.1326 0.1823 0.0436 0.2063 

Table A4.3 Coefficients for eq.(A4.4.5) as obtained under shear forces Q. 

ϕ )2(
1D  )2(

2D  )2(
3D  )2(

4D  

15° 0. -0.2126 0.3384 -0.2026
30° -0.0516 -0.0776 0.1414 -0.1507
45° -0.0732 -0.2411 0.4552 -0.3645
60° -0.1294 -0.1842 0.2507 -0.2464
90° -0.2873 -0.1696 -0.1486 0.0501 
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A5 
Perturbation method 
Many stress intensity factor solutions are available in literature for the cases of straight 
cracks. Computation of stress intensity factors for deviating crack shapes are seldomly 
reported. For the treatment of such a fracture mechanics problem we can use the so-called 
perturbation theory, well-known in physics, especially in astronomy and atomic physics. 
Perturbation theory comprises mathematical methods to find an approximate solution for a 
problem which cannot be solved exactly with a sufficient effort. The iterative procedure starts 
with the exact solution of the unperturbed problem and a disturbance that has to be small. 
In the fracture mechanics problem of a slightly curved or kinked crack, the disturbance is the 
small deviation between the crack of interest and an undisturbed crack, for which the exact 
solution of the stress field is known. In this sense, “small disturbance” means that for the 
disturbed crack the deviations normal to the straight crack and also the slopes within the 
disturbance have to be small, but not necessarily the length of the disturbance. 

A5.1 Cracks in infinite bodies 
An analysis of straight cracks with small perturbations was presented by Goldstein and 
Salganik [A5.1] and Cotterell and Rice [A5.2]. They computed the mixed-mode stress 
intensity factors and crack paths under restrictions of a first-order analysis  

 aydxdy <<<< ,1/  (A5.1.1) 

(for x, y, and a, see Fig. A5.1). These procedures were originally derived for internal cracks in 
an infinite body. Recently, a simpler approach was presented by means of the weight function 
method [A5.3, A5.4]. It was shown in [A5.4] that this procedure can be extended to cover 
crack configurations in finite bodies.  
Cotterell and Rice [A5.2] computed the mixed-mode stress intensity factors for slightly 
curved or kinked semi-infinite cracks in an infinite body. A crack for which the stress 
intensity factor solution is known is considered as the unperturbed crack. This may be a 
straight crack of length a0 (Fig. A5.1a), loaded by remote y-tractions. For this crack, the stress 
field in the vicinity of the crack is the sum of the singular stresses and the constant stress 
term, the so-called T-stress (stress field symbolised by the hatched zone in Fig. A5.1b). The 
perturbed crack is assumed to be again a straight crack of length a0, but now having a kink of 
length l at the end, Fig. A5.1c. This perturbed crack is embedded in the stress field caused by 
the unperturbed crack (Fig. A5.1d). The mixed-mode stress intensity factors KI and KII for the 
perturbed crack can be computed by use of the weight function method. It should be 
mentioned that the unperturbed crack has not necessarily to be a straight crack. The only 
advantages of the straight crack are the availability of exact stress intensity factor and weight 
function solutions, necessary for the numerical evaluation.  
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Fig. A5.1 Procedure proposed by Cotterell and Rice [A5.2] (schematic): a) unperturbed crack loaded 
by remote tractions, b) stress field around the unperturbed crack (perturbed crack removed), c) crack 
with a kink of length l at the tip, d) perturbed crack embedded in the stress field caused by the 
unperturbed crack. 

A5.2 Perturbation procedure for finite cracks in semi-infinite bodies 
A5.2.1 Basic relations 
For demonstrating the procedure, a straight edge crack of length a in a half-space is 
considered that is loaded by a remote y-stress (Fig. A5.2a). Figure A5.2b represents the same 
crack with a small perturbation behind the crack tip x2<a. For the computation of stress 
intensity factors, the small disturbance of the crack is considered to be loaded by the stress 
field existing in the vicinity of the unperturbed crack of Fig. A5.2a.  
The stress intensity factor solutions KI0 and KII0 of the straight undisturbed crack in Fig. A5.2a 
are  

 aFK y πσ ∞=I0  (A5.2.1) 

with the geometric function F, and, trivially  
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 0II0 =K  (A5.2.2) 

 

 

 
Fig. A5.2 Perturbation in the wake of the crack excluding the tip: a) straight edge crack, b) crack with 

a small perturbation between x1 and x2<a, c) geometric data of the perturbation (y-coordinate 
exaggerated; origin of the y-axis always in height of the crack tip). 

The first order terms of stress intensity factors of the slightly perturbed crack are given by  
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The stresses ∆σηη and ∆τξη are the stress fields in the vicinity of the unperturbed crack. They 
act in the ξη-plane along the prospective perturbation and do not fulfil the traction-free 
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boundary conditions at the curved crack. The stress fields yield stress intensity factors which 
can be calculated in first order by means of the mode-I and mode-II weight functions h11 and 
h22 for the unperturbed straight crack with h11=h22 for the semi-infinite body.  
The normal stresses near a straight edge crack are of second order in y, i.e. ∆σηη∝y2 and, 
therefore, ∆σηη cannot create a KI contribution in first order. Consequently, the evaluation of 
(A5.2.3) considering only first-order terms in y, yields  

 aFKK y πσ ∞== I0
)1(

I  (A5.2.5) 

i.e. the mode-I stress intensity factor is unaffected by the perturbation.  
If in addition remote stresses ∞

xσ  and ∞
xyτ  exist, the additional mode-II stress intensity factors 

in first order are 

  ∫∞−=
a

x dxxyhK
0

22
)2(

II )('σ  (A5.2.6) 

and  

  aFK xy πτ ∞=)3(
II  (A5.2.7) 

In the special case of a perturbation ending directly at the crack tip, x2=a, the perturbation can 
exhibit a certain slope y’(a) as indicated in Fig. A5.3 by the dash-dotted straight line. The 
perturbed crack and the unperturbed one constitute a kink at x=a defining the angle ω by 
tan(y)=y’=ω.  

 
Fig. A5.3 Crack perturbation ending at the crack tip, x2=a. 

It was shown by Cotterell and Rice [A5.2] that the mode-II stress intensity factor for such a 
crack is 
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For the evaluation of the stress intensity factor KII by use of eq.( A5.2.4), we first have to 
determine the stress field in the vicinity of the straight crack. The shear stress ∆τξη results 
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from the usual transformation of the radial stress σr and the shear τrθ (for the origin of the 
coordinates r, θ, see Fig. A5.2a) according to 

 θθξη τασαατααστ rrrr +−→−+−=∆ )sin(coscossin 22  (A5.2.10) 

where α is the angle between the ξ and r-coordinates.  
The angles α and γ in Fig. A5.2c are 
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With the abbreviations  
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it holds for τrθ 
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By summing up all the stress intensity factor terms )(i
IIK  we obtain the total KII as 
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A5.2.2 Numerical data 
The stresses in the vicinity of the normal edge crack in the half-space were computed with the 
analytical procedure proposed by Wigglesworth [A5.5]. For this purpose the first 100 terms of 
the stress series expansions were determined in [A5.6]. The stresses series were determined 
by the evaluation of the first 100 terms of the Williams stress expansion. The normalised 
stresses, expressed by (A5.2.13), were found to be  
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)/4exp(32627.0)/2exp(1177.0)/exp(1551.02 axaxaxR κκκ −+−+−−=  (A5.2.19) 

with κ=17.173 and the coefficients dn compiled in Table A5.1. 
It should be noted that the first coefficient d0 of Table A5.1 represents the so-called T-stress, 
namely, 

 ∞∞ −== yy dT σσ 5259676026.00  (A5.2.20) 

Additional values of dn can be found in the third column of Table A2.2.  

The geometric function F was found in Section A2.1 to be 

 ...31215222552.1=F  (A5.2.21) 

Evaluation of the integral in (A5.2.15) needs the weight function solution. The computations 
in [A5.4] were performed with the weight function proposed in [A5.7], namely  
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with c0=0.58852, c1=0.031854, c2=0.463397, c3=0.227211, c4=-0.828528, c5=0.351383. 

A5.3 Applications 
A5.3.1 Computation of KII for a slant edge crack  
In this section, it will be demonstrated that the mode-II stress intensity factor of the slant 
crack with a small angle β (Fig. A5.4) can be computed from the stress intensity factor of a 
normal edge crack. The slant crack is considered as the perturbed crack with x1=0 and x2=a. 
Having in mind that the slant crack is characterized by a constant slope 

 β==
−
− )(')()( xy

xa
xyay   (A5.3.1) 

the first term in the second integral of eq.(A5.2.15) disappears. For loading by remote y-
tractions, it results with y(a)=0 
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The numerical evaluation of (A5.3.2) yields 
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which is in good agreement with finite element results of [A5.8] expressed by  

  )(692.0 3
II ββ OF +≅  (A5.3.4) 

 
Fig. A5.4 The slant edge crack as the perturbed crack with the kink edge crack normal to the surface 

and disappearing kink length as the unperturbed crack.  

Table A5.1 Coefficients dn for eqs.(A5.2.16) and (A5.2.18). 

d0= −0.525968 d5= −0.0193802 d10= −0.0158427 
d1=0.384983 d6= −0.030546 d11= −0.0116784 
d2=0.21431 d7= −0.0306629 d12= −0.00845447 
d3=0.0868761 d8= −0.026327 d13= −0.00604695 
d4=0.0142438 d9= −0.0208939 d14= −0.0042866 

A5.3.2 Mode-II stress intensity factor for a kink crack with finite kink length 
A kink crack with finite kink length is represented as a perturbed crack (Fig. A5.5a). The 
first-order results obtained with eq.(A5.2.15) are plotted in Fig. A5.5b as the curve. Finite 
element results are entered as the squares and circles. The diamond square represents the limit 
case FII/β=1.1215/2 for c/a→0 by Cotterell and Rice [A5.2]. A good agreement is obvious.  
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Fig. A5.5 Kink crack as the perturbed crack, a) geometric data, b) results from eq.(A5.2.15) (curve), 
finite element (FE) computations (squares and circles), and limit case from [A5.2] (diamond square). 
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PART B1234 

EFFECTS OF THE T-STRESS IN BRITTLE MATERIALS 

In fracture mechanics interest is focussed mostly on stress intensity factors which describe the 
singular stress field ahead of a crack tip and govern fracture of a specimen when a critical 
stress intensity factor is reached. The influence of T on the fracture mechanics behaviour of 
metals was already mentioned in Section A. Since the author is predominantly working on 
ceramics and glass, some examples from this field of work will be addressed below. 

The T-stress term must have an influence on several fracture mechanics features. Well-known 
from literature are the effects on 

• Path stability [B1-B4]: Local path stability during crack propagation is often discussed 
in terms of the T-stress [B1]. This aspect shall be discussed here in detail for ceramic 
materials. 

• Size of phase transformation zones [B5]: In materials undergoing stress-induced phase 
transformations (e.g. transformation-toughened ceramics), the size of phase 
transformation zones at the crack tip is larger under positive than under compressive 
T-stress. Consequently, a steeper R-curve has to be expected for positive than for 
compressive T-stress. 

• Size of micro-cracking zones [B5]: A very similar effect has to be expected for micro-
cracking zones in polycrystalline ceramics as well as for domain switching zones in 
piezoelectric materials. 

In particular, effects occurring in the crack wake are affected predominantly by the T-term, 
because the singular stress field caused by the stress intensity factor disappears near the crack 
faces.  

• As an example, the effect of T on crack-face interactions in coarse-grained ceramics is 
addressed [B6]. 
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B1 
T-stress and path stability 

B1.1 Local path stability12345 

The question of crack path stability and instability is important for understanding crack 
propagation. Most of experimental investigations and numerical computations in this field 
were carried out on materials exhibiting plasticity effects [B1.1] or on interface problems 
[B1.2, B1.3].  
Local path stability during crack propagation is often discussed in terms of the T-stress 
[B1.4]. This aspect shall be addressed here for ceramics [B1.5]. 
Cotterell and Rice [B1.4] investigated the behaviour of the path of an originally straight crack 
in an infinite body under mode I loading. They applied a perturbation method to obtain the 
stress intensity factors of a slightly curved or kinked crack and used the solution to examine 
the directional stability of a straight crack after a disturbance.  
Figure B1.1 illustrates a crack kinking situation. A straight crack of initial length a0 is consid-
ered. By application of a disturbing KII stress intensity factor, the crack kinks and grows out 
of the initial straight plane by an angle of Θ0 (Fig. B1.1a). The disturbing mode-II loading 
may be caused e.g. by a small unavoidable misalignment of the loading arrangement. For 
small KII-values, KII<<KI, the kink angle is 
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where KI(a0) and KII(a0) are the stress intensity factors for the initial crack of length a0, i.e. for  
the crack situation before kinking. 

 
Fig. B1.1 a) Geometrical data of a crack growing under mode-I loading (vertical arrows) with a 

superimposed small mode-II disturbance (horizontal arrows), b) general influence of the T-stress after 
crack kinking.  
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Cotterell and Rice [B1.4] analyzed the crack development for an isotropic material after kink-
ing on the basis of the condition of local symmetry, i.e. on the requirement of a disappearing 
mode-II stress intensity factor at the tip of the actual (grown) crack, KII=0. The total mode-II 
stress intensity factor KII was given in [B1.4] by the integral equation  
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valid for small crack extensions a-a0<<a, small deviations from the initial crack plane, y, and 
small derivatives y’<<1 of the crack trajectory. From the condition KII(a)=0, the solution of 
(B1.1.2) was derived as 
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with the initial biaxiality ratio β [B1.6]  
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Although eq.(B1.1.3) is a solution for short crack extensions only, this relation allows to dis-
cuss the effect of local path stability. 
Discussions in literature [B1.7, B1.8] deal also with global path stability after a longer crack 
extension, i.e. with the general validity of the T-stress criterion, its application to finite 
cracks, and loading by non-homogeneous tractions. 

B1.1.1 Path stability prediction for ceramics test specimens 
The most important conclusion of [B1.4] is illustrated in Fig. B1.1b, namely, increasing de-
viation from the prescribed kink angle for β>0 and decreasing deviations for β<0.  
From eq.(B1.1.3), it has to be expected that crack path stability is only guaranteed for β<0. In 
nearly all fracture mechanics test specimens, however, the T-stress and, consequently, the 
biaxiality ratio β are positive, at least in the commonly used range of crack lengths [B1.5]. 
In Fig. B1.2a the biaxiality ratios are plotted for the compact tension (CT) specimen, the 4-
point bending specimen, and the opposite roller test [B1.9]. The solutions for the double 
cleavage drilled compression (DCDC) specimen and the double cantilever beam (DCB) 
specimen are plotted in Fig. B1.2b and Fig. B1.2c, respectively. Most of the specimens show 
positive biaxiality ratios. There are two exceptions for standard test specimens, namely, small 
cracks in bending bars with a relative crack length a/W<0.35 (specimen width W) and the 
DCDC specimen that shows strongly negative β in the whole range of possible crack lengths.  
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In different crack-containing specimens, the path stability may differ strongly even at the 
same biaxiality ratio β. This may be illustrated for the cases of a CT specimen and a crack in a 
bar loaded by opposite cylinders (β≈0.6).  
Figure B1.3 shows the deviations of the crack from the linear propagation direction under the 
angle Θ0 that is prescribed by the disturbing mode-II loading contribution. The results for a 
crack in a bar under opposite cylinder loading at two crack lengths a0 are shown by the solid 
curves. Results for the CT specimen are given by the dashed curve. The curves are plotted for 
maximum crack extensions of 1/3 of the initial crack length, having in mind that eq.(B1.1.3) 
is valid for small extensions exclusively. 

 
Fig. B1.2 a) Biaxiality ratio for 4-point bending test, CT specimen, and opposite roller test; b) for the 

DCDC specimen (2H=specimen height, R=hole radius), c) for the DCB specimen. 

 
Fig. B1.3 a) Opposite roller fracture toughness tests, b) deviation of the crack path from the straight-
line behaviour for a crack of length a0=1 mm and 2.5 mm in an opposite roller toughness test and in a 
CT specimen of typical crack length of a0=15 mm; curves plotted for maximum crack extensions of 

1/3 of the initial crack length.  
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For a better understanding of the effect of the parameters β and a0, the series expansion of 
eq.(B1.1.1) may be considered  

 )()(2
3
8)( 0

2/3
00

0
00 aaOaa

a
aay −+−Θ+Θ−= β

π
 (B1.1.5) 

It becomes obvious that the effect of the T-stress is proportional to β/√a0. At the same biaxial-
ity ratio β, short cracks are significantly more sensitive to path instabilities than long cracks.  
In Table B1.1 the parameter β/√a0 is compiled for several test specimens and crack lengths. 
The best path stability is found for the DCDC specimen with negative values for β/√a0. In 
principle, all specimens with positive β and, consequently, positive β/√a0 are path-unstable. 
The instability effect is small for the CT specimen and also for the edge-cracked bending bar 
with a short crack. Problems in path stability, however, have to be expected for deep cracks in 
bending bars, DCB specimens, and edge-cracked bars under opposite cylinder loading.  
In literature, innumerable experimental results on R-curves are reported. In contrast to the 
expectation from eq.(B1.1.3), however, no crack-path instability worth mentioning was de-
tected. This is not astonishing for DCDC tests, CT tests, and bending bars with short cracks 
because of their negative or only moderately positive parameter β/√a0 (Table B1.1). Stein-
brech et al. [B1.10], for example, measured R-curves on coarse-grained alumina in bending 
up to relative crack lengths of about a/W=0.9, where strong path instability has to be ex-
pected. 
The same holds for tests with opposite roller loading and DCB tests [B1.5], although only 
positive biaxiality ratios are involved in these tests. 

Table B1.1 Ranking of path stability for different test specimens with typical crack lengths. 
Test Crack length a0 Biaxiality ratio β Path instability parameter 

β/√a0   (mm-1/2) 
DCDC (R=0.5 mm) 2 mm 

4 mm 
-12 
-24 

-8.5 
-12 

CT (W=30 mm) 15 mm 0.6 0.155 
Bending (W= 4mm) 1 mm 

2 mm 
3.5 mm 

-0.14 
0.26 
1.05 

-0.14 
0.18 
0.56 

DCB (H=12.5 mm) 30 mm 2.85 0.52 
Opposite cylinder load-

ing  
(W= 4mm) 

1 mm 
2.5 mm 

0.67 
1.7 

0.67 
1.07 

B1.1.2 Influence of bridging-induced mode-II R-curve on path stability 
In [B1.5], the surprising effect of path stability under positive T-stresses was interpreted as a 
consequence of the crack resistance curve. 
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For coarse-grained materials, a mode-I shielding stress intensity factor term KI,sh exists that 
shields the crack tip partially from the applied loads. This term is caused by crack bridging in 
the wake of a growing crack. It has to be expected that crack-face interactions will also affect 
crack extension under pure or superimposed mode-II loading. 
The interlocking of the two opposite crack faces must result in shear tractions which suppress 
the shear displacements in the crack-tip region which would be caused by the externally ap-
plied mode-II loading. These shear bridging tractions, τbr, are illustrated in Fig. B1.4 together 
with the mode-I bridging tractions σbr. 
In [B1.5] it was outlined that the shear tractions generated under small mode-II load contribu-
tions can result in a disappearing effective crack-tip stress intensity factor KII,tip.  
The mode-II shielding stress intensity factor can be computed from the distribution of the 
shear tractions over the crack. It holds by use of the mode-II weight function hII 

 ∫=
a

a
sh dxxhxK

0

)()( IIII, τ  (B1.1.6) 

 
Fig. B1.4 Crack grown from a notch, a) geometrical data, loading, and shielding against shear defor-

mation by bridging interactions, b) modelling of crack-face interactions by friction under loading with 
bridging stresses. 

The actual mode-II crack tip stress intensity factor KII,tip then results from  
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It governs the local stability of crack paths. Crack paths are stable for any disturbing KII-
contribution that fulfils the upper part of eq.(B1.1.7).  

If the value KII,tip does not disappear, the crack must kink by an angle of Θ out of the initial 
crack plane and will propagate then under KI,tip=KI0 and KII,tip=0. For small values of KII,tip/KI0, 
the crack kink angle Θ can be expressed by a modified form of eq.(B1.1.1) 
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B1.2 Global path stability 
In the first-order approximation by Cotterell and Rice [B1.4] the special case of local stability 
(or instability) was considered for small crack extensions.  
A simple procedure was proposed in [B1.11] that allows computing the stress intensity factors 
for slightly curved and kinked cracks even at large crack extensions. If a body is loaded by 
remote stresses ∞

yσ , ∞
xσ , and ∞

xyτ , the mode-II stress intensity factor reads (see Section A5) 
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with the geometric function F=1.1215, the mode-II weight function hII, and the functions f1 
and f2 given by eqs.(A5.2.16)-(A5.2.19). 
Here, the case of an edge-cracked semi-infinite body may be considered with the initial crack 
of length a0 oriented in the x-direction (Fig. B1.5). 

 
Fig. B1.5 Crack in a semi-infinite body. 

Equation (B1.2.1) can be applied for the computation of crack paths y=f(x) by setting KII=0. 
This relation is not restricted to small crack extensions as is required for (B1.1.2). The only 
remaining conditions for the validity of the first-order analysis are the assumptions of small 
values of y<<a and y’<<1. The influence of the free surface at x=0 is considered by the geo-
metric function F and the weight function hII for the edge-cracked half-space. 

As an example of application, the edge-cracked half-space under remote stresses in x and y 
direction (Fig. B1.6a) was analyzed in [B1.11]. As the disturbance a pair of forces P at the 
crack mouth was chosen. The curved edge crack paths in Fig. B1.6b were calculated from 
KII=0.  
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In Fig. B1.6b, the crack paths calculated by solving the integro-differential equation (B1.2.1) 
are compared with the results from FE simulation in [B1.8, B1.11]. A very good agreement of 
both methods can be concluded. The maximum differences between the two solutions are 
0.9% at a/a0=3 and ∞∞

yx σσ / =0.8.  

 
Fig. B1.6 a) Biaxially stressed half-space with a disturbance force P, b) crack paths of the original 
edge crack after disturbance by P, solid lines: numerical integration of the first-order integro-
differential equation (B1.2.1), hollow circles: Finite element simulation.  

 

References B1: 
                                                 
B1.1 Tvergaard, V., Hutchinson, J.W., Effect of T-stress on mode I crack growth resistance in a duc-
tile solid, Int. J. of Solids and Structures 31(1994), 823-833 
B1.2 He, M.Y., Hutchinson, J.W., Kinking of a crack out of an interface, J. Appl. Mech. 56(1989), 
270-278. 
B1.3 He, M.Y. Bartlett, A., Evans, A.G., Hutchinson, J.W., Kinking of a crack out of an interface: 
Role of in-plane stress, J. Am. Ceram. Soc. 74(1991), 767-771. 
B1.4 Cotterell, B., Rice, J.R., Slightly curved or kinked cracks, Int. J. Fract., 16(1980), 155-169. 
B1.5 T. Fett, G. Rizzi, D. Munz, M. Hoffmann, R. Oberacker, S. Wagner, Bridging interactions in 
ceramics and consequences on crack path stability, Journal of the Ceramic Society of Japan, 
114(2006), 1038-1043. 
B1.6 Leevers, P.S., Radon, J.C., Inherent stress biaxiality in various fracture specimen geometries, Int. 
J. Fract. 19(1982), 311-325. 
B1.7 Melin, S., The influence of the T-stress on the directional stability of cracks, Int. J. Fract. 
(2002)114, 259-265. 
B1.8 Pham, V.-B., Bahr, H.-A., Bahr, U., Fett, T., Balke, H., Prediction of crack paths and the prob-
lem of directional stability, Int. J. Fract. 141(2006), 513-534. 
B1.9 Fett, T., Munz, D., Thun, A toughness test device with opposite roller loading, Engng. Fract. 
Mech., Vol. 68, pp. 29-38 (2001). 

 y 
Θ0 a0

y 

x 
σ∞ x σ∞

x

σ∞ y 

σ∞ y 

P 

P 
a0 

1 1.5 2 2.5 3
0

1

2

3

4

a/a0 

0.8 

0.6 

0

-1

x

y

σ
σ

∞

∞ =  
a) b) 



 

 68

                                                                                                                                                         
B1.10 Steinbrech, R., Reichl, A., Schaarwächter, W., R-curve behaviour of long cracks in alumina, J. 
Am. Ceram. Soc.. 73(1990), 2009–2015. 
B1.11 Fett , T., Rizzi, G., Bahr , H.-A., Bahr, U., Pham, V.-B., Herbert Balke, H., A general weight 
function approach to compute mode-II stress intensity factors and crack paths for slightly curved or 
kinked cracks in finite bodies, Engng. Fract. Mech. 75(2008), 2246-2259. 



 

 69

B2 
Effect of T-stress on phase transformation zones 
B2.1 Phase transformation in zirconia ceramics 
Due to the singular stress field near a crack tip in transformation-toughened zirconia, the ma-
terial undergoes a stress-induced martensitic transformation and the tetragonal phase changes 
to the monoclinic phase (t- to m-ZrO2). This transformation occurs when the characteristic 
local stress σchar reaches a critical value σchar,c 

 ccharchar ,σσ =  (B2.1.1) 

The result is a crack-tip transformation zone. Several stress criteria for the onset of phase 
transformation were applied in literature. 

In one of the earliest attempts [B2.1], it was assumed that volume strains of the phase trans-
formation only are playing a part in the transformation criterion, because the transformation 
shear strains are nearly annihilated by twinning. Since volume strains are proportional to the 
hydrostatic stress σhyd, a hydrostatic transformation criterion was proposed [B2.1] 

 chydzyxhyd ,3
1 )( σσσσσ =++=  (B2.1.2) 

In compressive experiments over a wide range of multiaxial stress states, it was found that 
also the shear strains have to be included in the transformation criterion [B2.2, B2.3]. This 
was done by adding a von-Mises stress contribution σVM to the hydrostatic term [B2.2, B2.3] 

 1
,,

=+
cVM

VM

chyd

hyd

σ
σ

σ
σ

 (B2.1.3) 

and later backed by theoretical considerations [B2.4].  

In addition, other criteria were used, such as for instance the maximum normal stress criterion 

 c,11 σσ =  (B2.1.4) 

in which σ1 indicates the first principal stress. 
In this Chapter let us concentrate on the simple model of the hydrostatic stress criterion. For 
the special case of small-scale transformation conditions (transformation zone size negligible 
compared to crack size and component dimensions), McMeeking and Evans [B2.1] and Budi-
ansky et al. [B2.5] computed the transformation zone, neglecting the perturbation of the stress 
field due to transformations.  



 

 70

B2.2 Phase transformation zone and R-curve in presence of T-stress 
B2.2.1 Phase transformation zone 
To the knowledge of the author, the first theoretical study of the effect of T-stress on phase 
transformation zones was published by Giannakopoulos and Olsson [B2.6]. This investigation 
is the basis of the following considerations. 
In the presence of a T-stress contribution, the hydrostatic stress near the tip of the crack under 
plane strain conditions reads  
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From (B2.1.2) and (B2.2.1), the shape r(ϕ) of the phase transformation zone for plane strain 
results as 
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with the height ω of the zone 
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 (for r, ϕ, and ω see Fig. B2.1). Figure B2.1a illustrates the transformation zone for a non-
extending crack, Fig. B2.1b the shape after a crack extension of ∆a. Due to the martensitic 
transformation, a volumetric expansion strain of about 4.5% occurs. These strains cause ten-
sile stresses at a certain distance ahead of the crack tip and compressive stresses along the 
length ∆a at the crack line. The compressive stresses lead to a shielding stress intensity factor 
which has to be overcome during crack propagation, i.e. the applied stress intensity factor 
must be increased to maintain stable crack growth. 
In later, more complicated numerical studies (e.g. [B2.7]) the influence of shear stresses and 
strains on the transformation criterion and on the zone calculation also was taken into consid-
eration. 

 

Fig. B2.1 a) Phase transformation zone ahead of a crack tip, b) zone after crack extension. 
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B2.2.2 Influence of T on the R-curve 
McMeeking and Evans [B2.1] computed the crack resistance curve under small-scale trans-
formation conditions assuming weak transformations. This means that the singular stresses 
caused by the stress intensity factor only are considered, whereas the stresses caused by the 
phase transformations were neglected. From the analysis in [B2.1], the surface tractions result 
in a shielding stress intensity factor Ksh 

 SpK dsh hn ⋅= ∫Γ
 (B2.2.4) 

where Γ is the contour line of the transformation zone and dS is a line length increment. The 
vector h represents the weight function h = (hy, hx)T with the components hy and hx. In the spe-
cial case of a pure dilatational transformation, the surface tractions are given by the normal 
pressure p defined by 
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where εT is the volumetric phase transformation strain, f the volume fracture of transformed 
material, and ν Poisson's ratio.  
In Fig. B2.2 the shielding (residual) stress intensity factor for the case T=0, denoted as Ksh,0, is 
plotted for the phase transformation zone shown in Fig. B2.1b. The shielding stress intensity 
factor tends asymptotically to a value of  0.22. 

 
Fig. B2.2 Normalised shielding stress intensity factor K0,sh in the absence of a T-term computed with 
the method proposed by McMeeking and Evans [B2.1]. 

As a consequence of (B2.2.4), it may be concluded that the shielding stress intensity factor 
Ksh must be proportional to the square root of the zone height 

 ω∝shK  (B2.2.6) 

with the factor of proportionality depending on the zone length ∆a, the elastic constants E and 
ν, and the transformation strain εT. 

In the presence of a T-stress, the shielding stress intensity factor is 
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Introducing the biaxiality ratio β results in 
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with the dimensionless parameter 

 
chydW

K

,

I0

3
1

σ
νλ +

=  (B2.2.9) 

Figure B2.3 shows the shielding stress intensity factor for an edge-cracked bending bar under 
weak transformation conditions. 
For very small initial cracks with a/W→0, the quantity β√(a/W) tends to −∞ and, conse-
quently, the zone height tends to zero, i.e. the shielding stress intensity factor disappears. In 
the case of long cracks with a/W→1, the zone height tends to +∞, since β→+∞. 
At least for an extreme relative crack length of a/W→1, the conditions of small-scale behav-
iour and weak transformation assumed are violated, because not only the zone height must be 
small compared to the crack (ω<<a) but also to the crack ligament ω<<(W-a). This is indi-
cated by the dashed parts of the curves in Fig. B2.3. 

 
Fig. B2.3 Influence of the T-stress on the shielding stress intensity factor (bending). 

The preceding results are approximations, because rather rigid restrictions had to be chosen to 
allow for a simple analysis. For a more exact derivation, the following points have to be con-
sidered by the analysis: 

• The phase transformation causes a stress field that has to be added to the singular 
stresses. This requires an iterative procedure.  
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• Instead of the near-tip weight function, the weight function for the finite test specimen 
has to be used in (B2.2.4). 

• The transformation zones cause an additional T-stress-term of about  
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(see Section C22 and [B2.8]). 
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B3 
Effect of T-stress on micro-cracking zones 
B3.1 Micro-cracking zones 
In a poly-crystalline material, e. g. ceramics, the high stresses ahead of a crack result in the 
fracture of favourably oriented grain boundaries (Fig. B3.1). This micro-cracking at grain 
boundaries is caused by internal and superimposed externally applied stresses. The internal 
stresses are a consequence of thermal expansion mismatch in differently oriented grains. Dif-
ferent stress criteria for micro-cracking were used in literature.  
In this section we will use a critical value of the first invariant of the stress tensor (hydrostatic 
stress), as proposed by Evans and Faber [B3.1], and to a minor extent an effective stress used 
in the study of Charalambides and McMeeking [B3.2]. 

 
Fig. B3.1 Broken grain boundaries in a region ahead of a crack tip defining the micro-cracking zone. 

B3.1.1 Stress criteria for micro-cracking 
In [B3.1] the shape and size of the micro-crack zone is assumed to be governed by the condi-
tion of a critical value of the hydrostatic stress being responsible for cracking, i.e.  
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In eq.(B3.1.1), σr and σϕ are the stress components in polar coordinates and σz is the stress in 
thickness direction. It holds for σz 
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where ν is Poisson’s ratio.  

In [B3.2] the cracking condition is expressed by an effective stress 

 eff,ceff σσ =  (B3.1.3) 
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with σeff defined by the principal stresses σ1, σ2, σ3 
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The principal stresses are given by the three σ solutions of  
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B3.1.2 Micro-cracking ahead of a crack 

The stresses ahead of a mode-I loaded crack are 
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with the origin of the polar coordinates r and ϕ located at the crack tip. The higher-order 
stress terms O(r1/2) may be neglected in the following considerations.  
It is not the aim of this Section to compute the “true” zone size and shape, but rather to show 
the principal influence of the constant stress term on the zone size and its consequence on the 
crack tip toughness. In order to simplify the analysis, two assumptions will be made: 

I. The crack length a and the ligament W-a (W=specimen width) are assumed to be large 
compared to the length of the micro-cracking zone 

II. The case of “weak micro-cracking” is considered, i.e. the near-tip stress field is assumed 
to be unaffected by the micro-cracks. This behaviour is similar to the case of “weak 
transformation” zones at the tip of ceramics undergoing phase transformations under high 
stresses, where the effect of volume change during transformation is ignored [B3.3].  

B3.1.3 Size and shape of the micro-cracking zone 
The hydrostatic stress near the tip of the crack under plane strain conditions reads 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= + T

r
K

hyd )2/cos(
2

2 I
3

1 ϕ
π

σ ν  (B3.1.7) 

This case allows for an analysis that is identical to that of the phase transformation zones in 
zirconia (see Section B2). The zone contour resulting from condition (B3.1.1) is given by 
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The shape of this zone is plotted in Fig. B3.2 for several values of T. The results for the two 
criteria are very similar. Therefore, the hydrostatic stress criterion will be applied exclusively 
in the further numerical analyses. 

 
Fig. B3.2 Micro-cracking zones for the two cracking criteria. 

Below, the influence of T-stress will be discussed for the case of an edge-cracked bending 
bar. The biaxiality ratio β [B3.4] for such a crack of length a is given by [B3.5] 
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and plotted in Fig. B3.3 versus the relative crack length a/W. 

 
Fig. B3.3 Biaxiality ratio β for an edge-cracked bending bar (4-point bending). 
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B3.2 R-curve for a hydrostatic stress criterion 
According to the analyses of McMeeking and Evans [B3.3] and Giannakopoulos and Olsson 
[B3.6], the shielding stress intensity factor under weak and small-scale micro-cracking (in 
presence of a T-stress term) is given by 
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where K0,sh denotes the shielding stress intensity factor for the case of T=0. Introducing the 
biaxiality ratio β results in 
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with the dimensionless parameter 
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For negative T and β, i.e. for relative crack lengths a/W<0.37, the micro-cracking zone size rc 
decreases. Consequently, the shielding stress intensity factor is reduced as indicated in Fig. 
B3.3. In case of longer cracks with a/W≥036, the inverse effect occurs. For details, see Sec-
tion B2.2.2. 
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B4 
T-stress and crack-face bridging 
B4.1 T-stress contribution generated by crack-face bridging 
For coarse-grained ceramic materials, a shielding stress intensity factor term exists, that 
shields the crack tip partially from the applied loads. This term is often caused by crack bridg-
ing in the wake of a growing crack.  
In cases of materials without a crack resistance curve (R-curve), the externally applied load 
exclusively is responsible for the stress intensity factor KI and the T-stress. In ceramics with 
R-curve effects caused by crack-face bridging, an additional crack loading by the bridging 
stresses will occur. In this case, the question arises: What are the T-term and the biaxiality 
ratio in the presence of bridging stresses? 
The T-stress term caused by the externally applied mechanical load is denoted here as Tappl. In 
a material with an R-curve effect due to bridging stresses σbr(x)<0 acting in the crack wake 
(Fig. B4.1), a T-stress portion Tbr is created that can be computed by the Green’s function (or 
weight function) technique. For bridging stresses disappearing at x=a, it results 

 0,)(),(
0

<= ∫ br

a

brbr dxxaxtT σσ  (B4.1.1) 

 
Fig. B4.1 Bridging stresses in the wake of a crack grown from a notch of depth a0. 

The Green’s function t in (B4.1.1) can be approximated by a two-term expression [B4.1, 
B4.2] (see also Section A4.3.3). For the edge-cracked rectangular bar of width W, a three-
term Green’s function was determined in [B4.1] as  
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with the coefficients C0 and C1 expressed by 

2

5432

0 )1(8
)3932.0283.20544.10012.28706.13889.0(15

α
ααααα

−
−+−−+−

=C  (B4.1.3) 

a 
x 

σbr(x) a0 



 

 80

2

5432

1 )1(8
)3932.00864.21845.11180.21127.25487.0(35

α
ααααα

−
+−++−

=C  (B4.1.4) 

(α=a/W). Apart from the T-stress term Tbr, also the bridging stress intensity factor, Kbr, can be 
calculated from the bridging stresses. It holds  

 ∫=
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brbr dxxaxhK
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)(),( σ  (B4.1.5) 

with the weight function h(x,a), which is available in literature for most crack types (see Part 
A).  
The total T-stress term, Ttotal, really present in the near-tip region is given by the sum of the 
applied and the bridging contributions, i.e. by  

 brappltotal TTT +=  (B4.1.6) 

If Kappl denotes the stress intensity factor caused by the externally applied load, the total stress 
intensity factor Ktotal representing the singular stresses near the crack tip is given by 

 brappltotal KKK +=  (B4.1.7) 

On the basis of the externally applied load, the (applied) biaxiality ratio βappl is given as  
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The real (total) biaxiality ratio can be written as 
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Consequently, βtotal is different from βappl , and path stability for cracks in materials with 
bridging effects must deviate from path stability for materials without a bridging behaviour. 
Since the total stress intensity factor during stable crack extension equals the crack-tip tough-
ness, Ktotal=KI0, eq.(B4.1.9) may be expressed as 
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Computation of Tbr for a sintered reaction-bonded silicon nitride 
As an example of application, let us consider a result from literature. In [B4.3] the R-curve of 
a commercial, sintered reaction-bonded silicon nitride (SRBSN) was studied. A narrow notch 
was introduced in a bending bar by using the razor blade procedure [B4.4, B4.5). The notch 
was extended in a stiff loading device. After stable crack extension, crack opening displace-
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ment (COD) measurements were carried out under load. From these results, bridging stresses 
were derived [B4.3]. 
Figure B4.2 shows the bridging stress distribution in the crack wake, σbr(a-x). From this, Tbr 
results by inserting the stress distribution into eq.(B4.1.5) and βtotal from eq.(B4.1.9).  
The biaxiality ratio βappl caused by the applied bending load can be expressed as  
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appl  (B4.1.11) 

In Fig. B4.3a the applied and the total biaxiality ratios are plotted versus the relative crack 
length a/W. The main effect of an R-curve behaviour on the biaxiality ratio is represented by 
the ratio Kappl/KI0>1. The steepness of the function βtotal=f(a/W) is strongly increased com-
pared to the function βappl=f(a/W). The direct influence of the bridging tractions on the T-
stress is of minor importance, as shown by the difference of the circles and squares in Fig. 
B4.3b. The region of negative biaxiality ratios is slightly extended from 0 ≤ a/W ≤ 0.34 to 0 ≤ 

a/W ≤ 0.36 by the contribution of bridging tractions. Roughly, it can be concluded that in the 
region of βappl<0 (for the edge-cracked bending bar at a/W<0.34) the effective biaxiality ratio 
becomes stronger negative and crack path stability is promoted. In the region with βappl>0, an 
increased crack path instability has to be expected. 
Based on these results, eq.(B4.1.10) can be approximated by 

 
0IK

Kappl
appltotal ββ ≅  (B4.1.12) 

From the considerations made above, path stability can be concluded for a slightly extended 
range of crack lengths.  

 
Fig. B4.2 Bridging stress distribution in the wake of a crack in sintered reaction-bonded silicon nitride 

[B4.3] after ∆a=0.52 mm crack extension. 
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Fig. B4.3 a) Applied biaxiality ratio for an edge-cracked bending bar (solid curve) and total biaxiality 
ratios for the two bending results from [B4.3] (circles), b) contribution of the ratio Kappl/KI0 and of the 

bridging stresses. 

B4.2 Bridging stress contribution caused by the T-stress term 
In the bridging model by Mai and Lawn [B4.6], tractions are transmitted between the upper 
and lower crack faces by friction. Large grains with the lattice orientation different from the 
surrounding matrix undergo local residual stresses by thermal mismatch. Figure B4.4 shows 
the simple case of a large grain with the thermal expansion coefficients α1 in the c-axis direc-
tion and α2 normal to the c-axis. The “matrix” in which this grain is embedded is assumed to 
have average material parameters, for instance an average expansion coefficient of α  ap-
proximated as 
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Fig. B4.4 A single anisotropic grain embedded in a matrix of average material parameters (dash-dotted 

line: prospective crack plane). 
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As an approximation the different elastic constants in the different lattice directions are ne-
glected and assumed to be sufficiently identical with the average values. 
After cooling down from the sintering temperature, the temperature change ∆T gives rise for 
thermal strains in the grain with respect to the matrix  

 )( 1
)(

1 ααε −∆−=∆ Tth  (B4.2.2) 

 )( 2
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2 ααε −∆−=∆ Tth  (B4.2.3) 

The thermal stresses caused by these strains are 
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with a coefficient C depending on Poisson’s ratio ν. Generally, the quantity C is in the range 
of 1<C<1/(1-2ν) depending on the specially chosen boundary conditions (plane strain, gener-
alized plane strain, plane stress). If α1>α2, it results α1>α  and α2<α . Consequently, we 
have different stress signs in the two lattice directions with tension in 1-direction and com-
pression in 2-direction. In the case of Al2O3 it is α1-α2≅0.55×10-6/°, E=360 GPa, and ∆T= -
1000°. For an average value of C=1.5, the typical mismatch stress is )th(

1σ ≅130 MPa, )th(
2σ ≅ -

65 MPa, i.e. stresses in the order of about |σ(th)|≈ 100 MPa result. The mismatch stresses will 
decrease when a crack passes in the vicinity creating a new free surface. Whereas the stress 
component normal on the new surface disappears completely, the stress parallel to the crack 
face is slightly reduced. 
In Fig. B4.5, a large grain is shown, acting as a crack bridging event. For reasons of simplici-
ty, a 2-dimensional bridging contact may be assumed (L/D→∞). The x-component of the 
thermal mismatch tractions is indicated. During crack-face separation resulting in an increas-
ing displacement, δ, a friction stress σfr occurs which is proportional to the x-stress compo-
nent.  

 
Fig. B4.5 Crack surface interactions due to a local frictional bridging event. 
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The loads transferred by crack face interactions are localized at single grains. They can be 
modelled in a more homogeneous way by so-called bridging stresses σbr which average the 
localized interactions over a large number of grains. If )(th

xσ  denotes the x-stress component 
due to thermal mismatch, the bridging stress σbr can be expressed by 

 )1(
xbr µσσ ≅  (B4.2.6) 

defining an effective friction coefficient µ.  
In the preceding considerations the x-stress clamping the large grains was assumed to be gen-
erated by thermal mismatch exclusively. A second source for the occurrence of an x-stress 
component is the existence of a non-disappearing T-stress [B4.7]. Whereas the influence of 
thermal mismatch is an intrinsic effect independent on the special test specimen, the influence 
of the T-stress reflects an influence of the chosen specimen. Since T can be negative and posi-
tive, the bridging stresses can be increased and decreased by this stress term. Frictional bridg-
ing is possible only if the total x-stress component is negative resulting in “clamping” effects. 
Therefore, only those bridging events are of importance. 
If σ0,br denotes the bridging stresses in the absence of a T-stress term, the bridging stresses in 
presence of T result simply from (B4.2.6) as 
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By use of the biaxiality ratio β this reads 
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Having in mind that during stable crack extension the crack-tip stress intensity factor must 
equal the so-called crack-tip toughness KI0, it follows 
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The bridging stresses shield the crack tip from the external loads. The related bridging stress 
intensity factor Kbr can be computed from the distribution of the bridging stresses along the 
crack wake by use of the weight function technique. 
Figure B4.6a shows the geometric data of the most commonly used bending test specimen 
and Fig. B4.1 illustrates the bridging stress distribution (here for the case of a bar with an ini-
tial notch of depth a0). 
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with the bridging stress intensity factor K0,br at T=0. In Fig. B4.6a, the biaxiality ratio for a 4-
point bending bar is plotted. The bridging stress intensity factor is represented by the ratio 
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Kbr/K0,br in Fig. B4.7a. While for long cracks, 0.2<a/W<0.8, the influence of the T-stress is 
moderate with Kbr/K0,br ≅ 1±0.2, it becomes significant in the case of very short cracks (size 
comparable with natural cracks), Fig. B4.7b. 
Finally, the crack resistance curve (“R-curve”) results as 
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with K0,br<0.  
In early investigations on R-curve behaviour of ceramics it was often assumed that the R-
curve would be a material specific property. In the actual literature there is common agree-
ment that the bridging stresses are the real material specific quantity. The influence of the T-
stress again gives rise for an influence of the specially chosen test specimens on bridging 
properties. Having this in mind we have to consider the bridging stress relation for T=0 as the 
true material property.  

 
Fig. B4.6 a) Geometry of a bending bar, b) biaxiality ratio for 4-point bending tests. 

 
Fig. B4.7 a) Influence of the T-stress on the bridging stress intensity factor, b) details for small cracks. 
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In this context, it must be confessed that there were no systematic experimental investigations 
so far to establish proof of a T-stress effect. 
The R-curve effects mentioned before for crack bridging by large grains should be also rele-
vant for crack bridging by fibres or by whiskers in reinforced ceramics. Measurements on 
such model materials might simplify the experimental evidence. 
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PART C 

COMPENDIUM OF STRESS INTENSITY FACTOR 
AND T-STRESS SOLUTIONS 

The content of this section is divided in the following items 

1) Cracks in infinite bodies 

 Section C1 (Internal crack) 

2) Cracks in the semi-infinite body (half-space) 

 Section C2 (straight, oblique, and kink edge crack) 

3) Semi-infinite cracks 

 Sections C3 (kink crack) and C4 (fork crack) 

4) Cracks in finite bodies 

 Internally cracked components: Sections C5 and C6 

 Edge-cracked components: Sections C7 to C10 

 Double-edge-cracked components: Sections C11 and C12 

5) Fracture mechanics test specimens 

6) Miscellaneous crack problems 
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C1 
Crack in an infinite body 
C1.1 Couples of forces 
The T-stress term resulting from a couple of symmetric point forces (see Fig. C1.1) can be 
derived from the Westergaard stress function [C1.1], which for this special case reads 
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The real part of eq.(C1.1.1) gives the x-stress component for y = 0 
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Its singular part 
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provides the well-known stress intensity factor solution  
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Then, the regular stress term reads 
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and for the T-stress term it results 
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Fig. C1.1 Crack in an infinite body loaded by symmetric couples of forces. 

C1.2 Constant crack-face loading 
In the case of a constant crack-face pressure p = const. (Fig. C1.2a), the stress function reads 
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resulting in the x-stress of 
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Fig. C1.2 Crack in an infinite body under a) constant crack-face pressure, b) remote tension. 

The stress intensity factor results from eq.(C1.2.2) as 

 apK π=I  (C1.2.3) 
and the T-stress term as 
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C1.3 Remote tension 
In the case of the crack under the remote tensile stress σ∞, Fig. C1.2b, the stress function 
reads 
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yielding the x-stress of 
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with the stress intensity factor resulting as 

 aK πσ∞=I  (C1.2.7) 
and the T-stress term as 

   ∞−= σT   . (C1.2.8) 
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C2 
Crack in a semi-infinite body 
C2.1 Edge crack normal to the surface123 

The stress intensity factor of an edge-cracked semi-infinite body (Fig. C2.1) is under the re-
mote stress σ = σ∞ is (see Section A2.1) 

 aFK πσ∞=  (C2.1.1) 
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The weight function can be described by 
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An approximate representation of h was given in [C2.1] with the coefficients  

 D0 = 0.58852,   D1 = 0.031854,   D2 = 0.463397 

 D3 = 0.227211,   D4 = −0.828528,  D5 = 0.351383 

On the basis of the Wigglesworth analysis [C2.2], the crack opening displacements v can be 
determined and the weight function h results simply from the Rice [C2.3] equation 
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A weight function was given in [C2.1] determined from the first 12 coefficients of [C2.2] to-
gether with an extended solution with coefficients up to n=22. By application of Mathematica 
[C2.4] one can easily increase the accuracy of these coefficients [C2.5]. In Table C2.1 the 
first coefficients are compiled. 
The T-stress and the biaxiality ratio β are 

 ∞−= σ5259676026.0T  (C2.1.5) 

 46897652.0−=β  (C2.1.6) 

The Green's function for T-stresses reads 



 

 94

 ∫+−=
==

a

axyaxx dxxaxtT
0

)(),( σσσ  (C2.1.7) 

with 

 ∑
∞

=

−−=
1

2/)12(1 )/1(
n

n
na axCt  (C2.1.8) 

An approximate solution for t is 

 ])/1(733.0)/1(087.0)/1(345.0[ 2/52/32/11 axaxaxt a −+−+−=  (C2.1.9) 

or with reduced accuracy (see Fig. A4.6d) by the linear relation 
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 Table C2.1 Coefficients Dn for eq.(C2.1.3). 

n Dn n Dn n Dn 
0 0.568846 10 -0.00177336 20 0.00017319 
1 0.243546 11 -0.00077382 21 0.00014924 
2 0.077759 12 -0.00021180 22 0.00012834 
3 0.0083769 13 0.00008136 23 0.00011041 
4 -0.014199 14 0.00021773 24 0.00009516 
5 -0.0173687 15 0.00026719 25 0.00008223 
6 -0.0140855 16 0.00027134 26 0.00007127 
7 -0.00970142 17 0.00025389 27 0.00006197 
8 -0.00603396 18 0.00022780 28 0.000054065 
9 -0.00344057 19 0.00019983   

 
Fig. C2.1 Edge crack in a semi-infinite body loaded by remote y-stresses σ0. 
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C2.2 Oblique crack in the half-space 
A slant edge crack in a semi-infinite body under an angle ϕ to the x-axis is illustrated in Fig. 
C2.2. This crack is loaded either by pairs of normal forces P or shear forces Q at a distance of 
x from the crack mouth (Fig. C2.2a) or constant tractions (Fig. C2.2b) in ξ and y direction, σξ 
and σy.  

 
Fig. C2.2 Oblique edge crack in a half space, a) loaded with concentrated forces acting on the crack 

faces, b) loaded by constant tractions.  

C2.2.1 Stress intensity factors and weight functions 
As outlined in Section A3.1, the stress intensity factors under a combined crack-face loading 
can be superimposed resulting in 

  ∫ +=
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The subscripts of the weight functions indicate the type of the resulting stress intensity factor, 
the superscripts are related to the type of the tractions. In relations (C2.2.1) and (C2.2.2), the 
stress σn is the stress normal to the crack and τ is the shear stress acting in the crack plane. 
The weight function contributions can be expressed by power series expansions as shown in 
[C2.1] 
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The coefficients of the weight functions can be obtained from the stress intensity factors for 
pairs of normal or shear forces, Fig. C2.2a, as described by eq(A3.1.7-A3.1.9) [C6].  
The finite element results for concentrated normal and shear forces were fitted according to 
eq.(C2.2.3) using terms with n=1 and 2, exclusively. The coefficients are compiled in Table 
C2.2. At small angles of ϕ≤30°, the mixed weight functions can be approximated by 

 ( )ϕ
π

2/3
12 )/1(411.0/1942.02 axax

a
h −−−−≅  (C2.2.5) 

 ( )ϕ
π

2/3
21 )/1(2501.1/1689.02 axax

a
h −+−−≅  (C2.2.6) 

with ϕ in radian. 

 

 
Fig. C2.3 Weight functions from stress intensity factors for pairs of concentrated forces, a) and b) for 

normal forces P, c) and d) for shear Q. 
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Table C2.2 Coefficients for approximate weight functions of stress intensity factors, eq.(C2.2.3). 

ϕ (°) )11(
1D  )11(

2D  )12(
1D  )12(

2D  )21(
1D  )21(

2D  )22(
1D  )22(

2D  
0 0.568 0.283 0 0 0 0 0.568 0.283 
15 0.678 0.306 -0.233 0.094 -0.179 -0.351 0.607 0.276 
30 1.051 0.413 -0.500 0.222 -0.399 -0.807 0.756 0.210 
45 1.880 0.679 -0.846 0.421 -0.737 -1.576 1.061 0.022 
60 3.787 1.600 -1.383 0.783 -1.461 -3.308 1.727 -0.253 
75 10.32 6.574 -2.557 1.702 -4.270 -10.03 3.600 -1.382 

 

C2.2.2 T-stress and Green’s functions 
For the most general case, the integral representation must read  

 
axxaxyxy
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Green’s functions t(1) and t(2) can be determined as the T-term for a pair of concentrated forces 
P and Q acting normal and parallel to the crack face. They can be expressed by  
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∞

=

−−=
1

2/)12()1(1)1( )/1(
n

n
na axCt   (C2.2.8) 
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Finite element results are shown in Fig. C2.4.From the T-stresses for the concentrated forces 
P and Q, the Green’s functions were obtained. A 3-terms fit of the data with respect to 
eqs.(C2.2.8) and (C2.2.9) yields the coefficients compiled in Table C2.3.  

 
Fig. C2.4 Green’s functions for T-stress under concentrated forces P and Q. 
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Table C2.3 Coefficients for weight functions of T-stress, eqs.(C2.2.8) and (C2.2.9). 

ϕ 
(°) 

)1(
1C  )1(

2C  )(C 1
3  )2(

1C  )2(
2C  )(C 2

3  

0 0.345 0.087 0.733 0 0 0 
15 0.346 0.279 0.701 -0.185 -0.413 0.277 
30 0.381 0.956 0.582 -0.446 -0.861 0.613 
45 0.461 2.882 0.085 -0.911 -1.422 1.126 

C2.2.3 Stress intensity factor for remote stresses 
By applying of the weight functions given before, the stress intensity factors and the T-stress 
term were computed for a remote stress in η-direction, ση, and for a constant stress in ξ-
direction, σξ. The normal and shear tractions to be used in eqs.(C2.2.1), (C2.2.2), and (C2.2.7) 
are  

 ϕσϕσσ ξ
22 cossin yn +=  (C2.2.10) 

 ϕϕσστ ξ cossin)( −= y  (C2.2.11) 

Figure C2.5 shows the geometric functions for the stress intensity factors defined by 

 aFKaFK πσπσ IIIIII , ==  (C2.2.12) 

In Fig. C2.5 the squares represent results obtained with the weight function method. The cir-
cles indicate FE results. 

 
Fig. C2.5 Mixed-mode stress intensity factors and T stress; a) constant stresses in ξ-direction, b) re-

mote stresses in η-direction. Squares: Weight function method, circles: Finite element results.  
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  )(6905.0 3
II ϕϕ OF +=  (C2.2.14) 

resulting in the stress intensity factor ratio 

 ϕ6156.0
I

II

I

II ≅=
F
F

K
K   (C2.2.15) 

with ϕ in radian. 

C2.3 Kink edge crack 
The edge crack with a kink is illustrated in Fig. C2.6. Stress intensity factors and T-stress 
were computed for constant stresses in y- and x- direction and for a constant pressure p on the 
crack faces [C2.7]. The results are compiled in Tables C2.4-C2.6 and Fig. C2.7. The results of 
Table C2.6 also reflect the well-known feature that the fracture mechanics parameters for 
crack-face pressure are identical with the sum of parameters under σx=σy loading.  

 
Fig. C2.6 Kinked edge crack. 

 
Fig. C2.7 Stress intensity factors for c1/a=0.9 under loading in x and y- direction. 
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Fig. C2.8 T-stress for c1/a=0.9 under loading in x and y- direction. 

Table C2.4 Stress intensity factors and T-stress under constant x-stresses from [C2.7]. 

c1/a c2/a ϕ (°) πσ aK xI /  πσ aK xII /  xT σ/  

  0 0 0 1 
0 1 15 0.0928 -0.296 0.9545 
0 1 30 0.400 -0.613 0.9026 
0 1 45 1.056 -1.036 1.169 
0.9 0.1 15 0.0203 -0.0742 0.8732 
0.9 0.1 30 0.0810 -0.1380 0.5284 
0.9 0.1 45 0.1838 -0.1831 0.0636 
0.95 0.05 15 0.0140 -0.0519 0.8730 
0.95 0.05 30 0.0559 -0.0964 0.5284 
0.95 0.05 45 0.1258 -0.1273 0.0628 
0.97 0.03 15 0.0108 -0.0401 0.8731 
0.97 0.03 30 0.0428 -0.0744 0.5288 
0.97 0.03 45 0.0961 -0.0980 0.0643 
1 0 15 0 0  
1 0 30 0 0  
1 0 45 0 0  

In order to check the accuracy, the finite element results were compared with the highly pre-
cise results of Noda and Oda [C2.8] obtained by using the body force method. In Table C2.7, 
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the results from [C2.7] are compared with those of [C2.8] for c1/a=0.1 and loading in y-
direction. Maximum deviations are less than 0.25%.  

Table C2.5 Stress intensity factors and T-stress under remote y-stresses. 

c1/a c2/a ϕ (°) πσ aK y/I  πσ aK y/II  yT σ/  

  0 1.1215 0 -0.526 
0 1 15 1.088 0.177 -0.526 
0 1 30 0.989 0.329 -0.411 
0 1 45 0.838 0.434 -0.1013 
0.9 0.1 15 1.087 0.1696 -0.3805 
0.9 0.1 30 0.989 0.3172 0.0002 
0.9 0.1 45 0.838 0.4255 0.4985 
0.95 0.05 15 1.061 0.1625 -0.3506 
0.95 0.05 30 0.967 0.304 0.1132 
0.95 0.05 45 0.824 0.4044 0.6999 
0.97 0.03 15 1.050 0.159 -0.4415 
0.97 0.03 30 0.960 0.294 0.2309 
0.97 0.03 45 0.820 0.3918 0.9231 
1 0 15 1.093 0.1437  
1 0 30 1.011 0.2695  
1 0 45 0.887 0.3626  

Table C2.6 Stress intensity factors and T-stress under constant internal pressure p. 

c1/a c2/a ϕ (°) πapK /I  πapK /II  pT /  

  0 1.1215 0 0.474 
0 1 15 1.179 -0.119 0.544 
0 1 30 1.387 -0.285 0.804 
0 1 45 1.893 -0.602 1.484 
0.9 0.1 15 1.108 0.0951 0.4926 
0.9 0.1 30 1.070 0.1792 0.5309 
0.9 0.1 45 1.022 0.2424 0.5616 
0.95 0.05 15 1.075 0.1086 0.5226 
0.95 0.05 30 1.023 0.2045 0.6418 
0.95 0.05 45 0.950 0.2771 0.7630 
1 0 15 1.093 0.1437  
1 0 30 1.011 0.2695  
1 0 45 0.887 0.3626  
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Table C2.7 Comparison of stress intensity factors from [C2.7] with data of Noda and Oda [C2.8] for 
c2/a=0.1. 

ϕ (°) πσ aK y/I  
[C2.7] 

πσ aK y/II  
[C2.7] 

πσ aK y/I  
[C2.8] 

πσ aK y/II  
[C2.8] 

15 1.087 0.1693 1.087 0.170 
30 0.989 0.3172 0.990 0.317 
45 0.839 0.4255 0.841 0.426 

 
Fig. C2.9 Influence of kink length and angle on the mode-II stress intensity factor for σ=σy. 

In Fig. C2.9 the mode-II stress intensity factors for remote stress in y-direction are plotted as 
a function of the sine of the angle ϕ and the square root of the parameter c2/a. Figure C2.10 
represents the data for constant stress in x-direction and Fig. C2.11 for constant crack-face 
pressure p. The values for c2/a=0 in Fig. C2.9 were obtained from the limit case of a small 
kink crack ahead of a semi-infinite crack in an infinite body that is loaded by a mode-I contri-
bution, exclusively [C2.9].  
For small angles ϕ and c2<<a, the data shown in Figs. C2.9-C2.11 can be expressed by the 
following approximations: 
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a
c

ap
K 2

2
32II sin399.0)2/(cos)2/sin(1215.1 ϕϕϕ

π
−≅   (C2.3.3) 

 
Fig. C2.10 Influence of kink length and angle on the mode-II stress intensity factor for σ=σx. 

 
Fig. C2.11 Influence of kink length and angle on the mode-II stress intensity factor at crack-face pres-

sure p. 
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C3 
Semi-infinite kink crack 
C3.1 Stress intensity factors and weight functions 
C3.1.1 Approximate stress intensity factors from the Cotterell and Rice analysis 
During spontaneous failure or during subcritical crack growth under mixed-mode loading, an 
abrupt change of the initial crack plane occurs. The behaviour of such kinked cracks was dis-
cussed early in terms of the crack-tip stress field by Lawn and Wilshaw [C3.1] and in terms of 
estimated stress intensity factors and T-stress by Cotterell and Rice [C3.2].  

 
Fig. C3.1 Kink crack with kink length l, and kink angle ϕ, loaded by point forces P and Q. 

A straight crack of length a0 is shown in Fig. C3.1. A kink of length l with a sudden change 
of the original crack direction by an angle ϕ is assumed at its end. Following the analysis by 
Cotterell and Rice [C3.2], the local mixed-mode stress intensity factors KI(l) and KII(l) repre-
senting the singular stresses ahead of the kink can be computed from the singular stress field 
produced ahead of the original (unkinked) crack. Taking into consideration the singular stress 
term and the first regular term, the near-tip stress field caused by the original crack of length a 
can be described by 
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with the distance r from the tip of the original crack and the angular functions 
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 )2/(cos)2/sin( 2
21 ϕϕ=g  (C3.1.5) 

 ))2/(sin31)(2/cos( 2
22 ϕϕ −=g  (C3.1.6) 

In (C3.1.1) and (C3.1.2) KI(a0) and KII(a0) are the stress intensity factors of the original (un-
kinked) crack. By considering these stresses on the projective plane of the kink as the stresses 
in the “uncracked component” and regarding the kink of length l as the “crack”, the weight 
function procedure provides the stress intensity factors KI(l) and KII(l) related to the tip of the 
kink. 
This technique was applied by Cotterell and Rice [C3.2] for the case of the simplified asymp-
totic weight function  

 
r

hh
π
2

2211 ==   . (C3.1.7) 

ignoring mixed weight function terms, i.e. for h12=h21=0.  
In this approximation, the stress intensity factors at the tip of the kink can be written as 

  ll TbgaKgaKK 1120II110II )()()( ++=  (C3.1.8) 

  ll TbgaKgaKK 2220II210III )()()( ++=  (C3.1.9) 

with the angular functions 
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=b   (C3.1.10) 

 ϕϕ
π

cossin8
2 −=b   (C3.1.11) 

Highly accurate stress intensity factors for kinked cracks were reported by Bilby et al. [C3.3], 
Hayashi and Nemath-Nasser [C3.4], Lo [C3.5], and Isida and Nishino [C3.6]. These results 
showed deviations from eqs.(C3.1.8) and (C3.1.9), especially for the terms with g21 and g22.  

C3.1.2 Weight function procedure including higher-order weight function terms 
The stress intensity factors K(l) for the kinked cracks were computed in [C3.7] by the weight 
function method as 
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with the weight functions h(r,l) as defined in [C3.8] 
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The stress intensity factors at the tip of the kink can be written as 
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with the coefficients 
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(Γ=Gamma function). The application of these improved relations of course needs knowledge 
of the coefficients )(ij

nD . A number of coefficients were reported in [C3.7].  
For this purpose, finite element computations were performed for point forces P and Q at the 
kink at variable distance r/l from the tip of the kink crack (Fig. C3.1). Figure C3.2 shows the 
so obtained weight functions as the symbols. 
The coefficients )(ij

nD  were determined by application of a fit procedure. They are compiled 
in Tables C3.1 and C3.2.  

Table C3.1 Coefficients for the weight functions h11 and h22. 

β )11(
1D  )11(

2D  )11(
3D  )22(

1D  )22(
2D  )22(

3D  
30° 0.002757 0.001539 -0.000088 0.03657 0.00724 0.01350 
60° 0.045588 0.026197 -0.004604 0.13621 0.04521 0.02746 
90° 0.236603 0.167142 -0.059586 0.28997 0.18191 -0.04287 
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Table C3.2 Coefficients for the mixed weight function terms h12 and h21. 

β )12(
1D  )12(

2D  )12(
3D  )21(

1D  )21(
2D  )21(

3D  
30° -0.00893 -0.00347 0.001890 -0.009522 -0.00222 -0.00714 
60° -0.06765 -0.02787 0.021586 -0.07466 -0.01029 -0.06851 
90° -0.21696 -0.07370 0.084911 -0.22917 -0.11355 -0.18260 

 

 
Fig. C3.2 Approximate weight functions eqs.(C3.1.22-C3.1.25) (curves) compared with finite element 

results (circles: data from [C3.7], squares: unpublished finite element results). 

Approximate weight functions can be sufficiently expressed by use of the first series terms 
exclusively as given by eqs.(C3.1.8) and (C3.1.9). The next higher approximation is 
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2
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 ( )2/3)12(
2

)12(
112 )/1(/12

ll
l

rDrDh −+−=
π

 (C3.1.25) 

The coefficients )(ij
nD  are functions of the kink angle exclusively and can be fitted from data 

reported in [C3.7] as 

 2)22(
1

4)11(
1 1562.0,05135.0 ϕϕ ≅≅ DD  

 3)21(
2

3)21(
1 08449.0,04523.0 ϕϕ −≅−≅ DD  (C3.1.26) 

 8)12(
2

3)12(
1 000705.0,064.0 ϕϕ ≅−≅ DD  

with ϕ to be inserted in radian. These weight function approximations are shown in Fig. C3.2 
as the solid curves together with the numerical results from [C3.7] (circles) and additional 
finite element results (squares).  

C3.1.3 Computation of the coefficients Cij 

Using the weight functions, the mixed-mode stress intensity factors KI(l) and KII(l) were 
determined. From eqs.(C3.1.18-C3.1.21), the coefficients C11, C12, C21, and C22 were 
obtained. Table C3.3 shows these coefficients for different kink angles. These data are 
introduced in Fig. C3.3 as circles. An excellent agreement with the numerical results from 
literature is evident. These results indicate that the higher-order weight function terms 
missing in [C3.2] are responsible for the differences between the Cotterell-Rice 
approximation and the exact solution. 
For 0≤ϕ≤90° the dashed curves in Fig. C3.3 can be described by the simple relation of  

 )(sin,)(sin 5
42

6
1

22222
13

3
1

1212 ϕϕ +≅−≅ gCgC   (C3.1.27) 

A more increased accuracy can be reached by use of the solutions reported in [C3.9]. 

Table C3.3 Coefficients for the stress intensity factors KI(l) and KII(l). 

ϕ C11 C22 C21 C21 
0° 1 0 1 0 
30° 0.901708 -0.72983 0.24052 0.79694 
60° 0.655697 -1.16820 0.36946 0.30721 
90° 0.372209 -1.19417 0.34845 -0.19696 
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Fig. C3.3 Stress intensity factor for a kink crack, as obtained from the weight function (circles) and 
compared with the approximation by Cotterell and Rice [C3.2] (solid curves). Dashed curves: repre-

sentation by eq.(C3.1.27). 

C3.1.4 Stress intensity factors caused by the T-stress 
Knowledge of the weight function allows to compute the stress intensity factor contributions 
caused by the T-stress term, T, the first regular stress term. By use of the normal and shear 
stress components  

 ϕϕτϕσ ϕ cossin,sin 2 TT rn −==  (C3.1.28) 

the stress intensity factors result from (C3.1.12) and (C3.1.13) as 

 llll TbKTbK 2II1I )(,)( ==   (C3.1.29) 

with the coefficients defined by 
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Neglecting all coefficients with n>0 leads to the approximations reported by Cotterell and 
Rice [C3.2] 

 ϕ
π

2
1 sin8
≅b   (C3.1.32) 

 ϕϕ
π

cossin8
2 −≅b   (C3.1.33) 

Evaluation of eqs.( C3.1.30) and (C3.1.31) yields the coefficients b1 and b2 compiled in the 
second and third columns of Table C3.4. Columns 4 and 5 contain data as taken from a dia-
gram in [C3.10] (where b1 and b2 are computed for a negative kink direction, i.e. for -ϕ) and 
columns 6 and 7 present the approximate solution according to eqs.(C3.1.32) and (C3.1.33). 
Taking into account the limited accuracy for extracting the data from the plot in [C3.10], 
agreement of these data with the results from (C3.1.30) and (C3.1.31) is good.  

Table C3.4 Coefficients for the stress intensity factors KI(l) and KII(l) due to the T-stress, eq. 
(C3.1.29). 

ϕ b1 b2 b1 b2 b1 b2 
30° 0.402 -0.704 0.46 -0.70 0.399 -0.691 
60° 1.238 -0.737 1.30 -0.73 1.197 -0.691 
90° 1.761 -0.200 1.80 -0.17 1.596 0 

 

C3.2 T-stress and Green’s function 
A kink crack ahead of a semi-infinite crack was modelled in [C3.11] by a crack of length 
a=450×l in a plate of height 900×l and width 900×l. The T-stresses for concentrated forces 
(see Fig. C3.1) are plotted in Fig. C3.4. The data were fitted according to  

 ∑
=

−−=
N

n

n
n rDt

1

2/)12()1(1)1( )/1( ll  ,  ∑
=

−−=
N

n

n
n rDt

1

2/)12()2(1)2( )/1( ll   (C3.2.1) 

for N=5 and 6  terms with the coefficients compiled in Tables C3.5 and C3.6.  

Table C3.5 Coefficients for eq.(C3.2.1) as obtained under normal forces P (forked crack under sym-
metrical load). 

ϕ )1(
1D  )1(

2D  )1(
3D  )1(

4D  )1(
5D  

30° 0.1096 -0.5694 -4.4385 7.9583 -3.5310 
45° -0.0662 -0.1610 -1.177 1.0680 -0.0130 
60° -0.057 -0.190 0.3400 -0.9839 0.7213 
90° 0.0982 0.2950 -0.5274 1.1234 -0.4927 
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Table C3.6 Coefficients for eq.(C3.2.1) as obtained under shear forces Q (forked crack under symmet-
rical load). 

ϕ )2(
1D  )2(

2D  )2(
3D  )2(

4D  )2(
5D  )2(

6D  
15° -0.1355 -6.5790 45.026 -89.694 75.588 -23.430 
30° -0.1301 -1.3333 3.9832 -2.8202 0.4441 - 
45° -0.2310 -0.0820 -1.0491 2.4794 -1.2822 - 
60° -0.2877 -0.1457 -0.2574 0.2991 0.0004 - 
90° -0.3821 -0.2418 -0.0300 -0.2447 0.1720 - 

Considering the conditions of symmetry and anti-symmetry, a fit procedure for N=3 terms 
yields the coefficients of 

 4)1(2)1()1( ϕϕ nnn BAD +=  (C3.2.2) 

 3)2()2()2( ϕϕ nnn BAD +=  (C3.2.3) 

with the numbers )()( , i
n

i
n BA  compiled in Table C3.7 (for ϕ in radian). 

Table C3.7 Coefficients for eqs.(C3.2.2) and (C3.2.3). 

n )1(
nA  )1(

nB  )2(
nA  )2(

nB  

1 0.0742 -0.00462 -0.1223 -0.02335 
2 -0.1277 0.0531 0.1144 -0.0995 
3 0.1763 -0.00651 -0.2288 0.07505 

 
Fig. C3.4 Green’s functions for the T-stress of kinked cracks. 
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C4 
Semi-infinite fork cracks 
C4.1 Stress intensity factors and weight functions 
Forked cracks occur for instance in thermal shock problems at the moment of crack arrest 
after an extended phase of spontaneous crack extension. This is the case in the centre region 
of thermally shocked circular disks. Also in fatigue experiments on metals branching takes 
place (see e.g. [C4.1]). Such a crack is illustrated in Fig. C4.1a together with the initially 
straight crack of length a0 present at the moment before forking. Highly precise stress inten-
sity factor solutions are available for the special case of remote tractions (e.g. [C4.2, C4.3]). 
For locally varying stress distributions along the kink (e.g. in presence of crack bridging ef-
fects), stress intensity factor computation needs knowledge of the weight function. The fol-
lowing sections provide FE solutions. 

C4.1.1 Loading on one branch 
Figure C4.1 illustrates the case of the upper branch loaded by pairs of concentrated forces. 
The weight functions under normal forces P are plotted in Fig. C4.2 for point A. The “asymp-
totic solution” entered as the dashed curve is given by 

  
)(

2
,11 r

h asympt −
=

lπ
 (C4.1.1) 

The weight function for point B on the lower branch is shown in Fig. C4.3. 

Loading the upper branch by a pair of shear forces yields the weight functions of Fig. C4.4 for 
point A. The weight functions for point B are given in Fig. C4.5. 

          
Fig. C4.1 a) Geometrical data of a semi-infinite forked crack in an infinite body, b) reference crack of 

length a0. 
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Fig. C4.2 Weight functions for a fork crack under loading by a normal force P on the upper branch, 

stress intensity factor also for the upper branch (A). 

 
Fig. C4.3 Weight functions for a fork crack under loading by a normal force P on the upper branch, 

stress intensity factor for the lower branch (B). 
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Fig. C4.4 Weight functions for a fork crack under shear loading by a shear force Q on the upper 

branch, stress intensity factor also for the upper branch (A). 

 
Fig. C4.5 Weight functions for a fork crack under shear loading by a shear force Q on the upper 

branch, stress intensity factor for the lower branch (B). 

C4.1.2 Loading on both branches 
The weight functions for symmetric loading are shown in Fig. C4.6 for normal forces P and in 
Fig. C4.7 for shear forces Q. These results can also be obtained by adding and subtracting the 
weight functions of Figs. C4.2-C4.5. From the results of Figs. C4.6 and C4.7, the coefficients 
for the weight function representations  
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with  0,1 )21(
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)11(
0 ==== DDDD  (C4.1.2) 

can be determined (see also [C4.4] and Section A3). 

Table 4.1 Coefficients for a 4-terms weight function h11 (symmetric loading). 

ϕ )11(
1D  )11(

2D  )11(
3D  )11(

4D  

15° -2.3693 5.7222 -5.6661 2.0038 
30° -0.6906 -0.1901 1.7514 -1.0583 
45° -0.1869 -0.4855 1.1566 -0.5172 
60° 0.0353 -0.1374 0.3450 -0.1126 
90° 0.3750 0.0358 0.3053 -0.1736 

 
Fig. C4.6 Weight functions for a fork crack under normal force P on both branches. 

Table 4.2 Coefficients for a 4-terms weight function h22 (symmetric loading) 

ϕ )22(
1D  )22(

2D  )22(
3D  )22(

4D  

15° -0.0691 3.5919 -4.5084 1.8392 
30° -0.0351 0.3243 0.5140 -0.4062
45° -0.0078 -0.3362 0.9521 -0.3929
60° -0.0224 0.0093 -0.0012 0.1653 
90° 0.2168 0.0563 0.1441 -0.1389
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Fig. C4.7 Weight functions for a fork crack under symmetrical shear loading on both branches. 

Table 4.3 Coefficients for a 5-terms weight function h21 (symmetric loading) 

ϕ )21(
1D  )21(

2D  )21(
3D  )21(

4D  )21(
5D  

15° -0.2243 -4.3809 11.2858 -10.8232 3.6477 
30° -0.3036 -1.3556 1.7585 -0.6234 - 
45° -0.3139 -0.3497 -0.1272 0.2778 - 
60° -0.2638 -0.1313 -0.2522 0.1469 - 
90° -0.2529 -0.0022 -0.4668 0.1785 - 

Table 4.4 Coefficients for a 5-terms weight function h12 (symmetric loading) 

ϕ )12(
1D  )12(

2D  )12(
3D  )12(

4D  )12(
5D  

15° -0.3233 4.4178 -10.0998 9.1825 -2.9823 
30° -0.4122 1.0553 -0.8749 0.1926 - 
45° -0.3215 0.0754 0.4026 -0.2933 - 
60° -0.2551 -0.0593 0.2103 -0.0796 - 
90° -0.2401 0.0052 -0.1085 0.1181 - 

 

C4.2 T-stress and Green’s function 
T-stress results for symmetrically loaded forked cracks are represented in Fig. C4.8. The data 
plotted refer to the upper part of the crack (i.e. for point A). Under P-load, the T-stress in the 
lower crack part (point B) is identical with the results at A. Under Q-load, the T-stress at 
point B has the same value as at point A, but an opposite sign. The coefficients for the 
Green’s function representation according to eq.(A4.4.1) and 
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are compiled in Tables C4.5 and C4.6 up to N=5 and 6. 
In Fig. C4.9, the T-stresses are shown for the case of the upper crack part only being loaded. 
Also in this case the symmetric loading case can be obtained by superposition of these results.  

 
Fig. C4.8 Green’s functions for the T-stress of symmetrically loaded forked cracks.  

Table C4.5 Coefficients for eq.(C4.2.1) as obtained under normal forces P (symmetrical load). 

ϕ )1(
1D  )1(

2D  )1(
3D  )1(

4D  )1(
5D  

30° 0.1096 -0.5694 -4.4385 7.9583 -3.5310
45° -0.0662 -0.1610 -1.177 1.0680 -0.0130
60° -0.057 -0.190 0.3400 -0.9839 0.7213 
90° 0.0982 0.2950 -0.5274 1.1234 -0.4927

 

Table C4.6 Coefficients for eq.(C4.2.1) as obtained under shear forces Q (symmetrical load). 

ϕ )2(
1D  )2(

2D  )2(
3D  )2(

4D  )2(
5D  )2(

6D  
15° -0.1355 -6.5790 45.026 -89.694 75.588 -23.430 
30° -0.1301 -1.3333 3.9832 -2.8202 0.4441 - 
45° -0.2310 -0.0820 -1.0491 2.4794 -1.2822 - 
60° -0.2877 -0.1457 -0.2574 0.2991 0.0004 - 
90° -0.3821 -0.2418 -0.0300 -0.2447 0.1720 - 
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Fig. C4.9 Green’s functions for the T-stress of non-symmetrically loaded forked cracks. 
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C5 
Circular disk with internal crack 
C5.1 Disk under constant radial load 
The circular disk with a symmetrical internal crack is shown in Fig C5.1. This configuration 
under constant circumferential traction  has been analysed with the boundary collocation 
method (BCM). 

 
Fig. C5.1   Circular disk with internal crack under constant normal traction at the circumference. 

The stress intensity factor solution is given by [C5.1] 

 F K
an

= =
− + − + −

−σ π
α α α α α

α
1 0 5 16873 2 671 32027 18935

1

2 3 4 5. . . . .
. (C5.1.1) 

with α=a/R. Figure C5.2a shows the BCM results as the circles and the relation (C5.1.1) as 
the curve (se also Table C5.1). 
The T-stress is plotted in Fig. C5.2. The BCM results are introduced by the circles. The curve 
can be approximated by 
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αααασ
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The T-values compiled in Table C5.1 were extrapolated to α = 1. Within the numerical accu-
racy of extrapolation, the limit values are 
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and for the biaxiality ratio 

 lim
α

β α
→

− ≅
1

1 1
2

 (C5.1.4) 

 
Fig. C5.2  T-stress for an internal crack in a circular disk. 

Table C5.1  T-stress, stress intensity factor, and biaxiality ratio for an internally cracked circular disk 
with constant tensile traction at the circumference (values for α = 1 extrapolated).  

α = a/R F·(1-α)1/2 T/σ·(1-α) β·(1-α)1/2

0 1.000 0.000 0.00 
0.1 0.965 -0.019 -0.020 
0.2 0.951 -0.064 -0.067 
0.3 0.951 -0.120 -0.126 
0.4 0.962 -0.176 -0.183 
0.5 0.979 -0.228 -0.233 
0.6 0.998 -0.275 -0.275 
0.7 1.011 -0.315 -0.311 
0.8 1.004 -0.352 -0.351 
0.9 0.953 -0.385 -0.404 
1.0 0.8255 -0.413 -0.50 
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Figure C5.3 represents the displacement at the crack centre x = 0 for constant normal tractions 
σn in the form of 

 δ σ
α α

λ α α=
−

=
2 1 1

1
a
E

a Rn

'
ln ( ) , /  (C5.1.5) 

The open circles result from boundary collocation computations and the solid curve is the 
result obtained by application of the procedure proposed by Paris (see e.g. Appendix B in 
Tada’s handbook [C5.2]). The solid circles are analytical values resulting from limit case con-
siderations. The dashed curve in Fig. C5.3 is the solution for the endless parallel strip with an 
internal crack, as reported by Tada [C5.2]. 

 
Fig. C5.3 Crack opening displacements for the internally cracked disk according to eq.(C5.1.5) (open 
circles: BCM results, solid curve: procedure proposed by Paris). Dashed line: data for an internally 
cracked endless strip [C5.2]. 
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C5.2 Disk partially loaded by normal traction at the circumference 
A partially loaded disk is shown in Fig. C5.4a. Constant normal tractions σn are applied at the 
circumference within an angle of 2γ. 

 
Fig. C5.4  a) Partially loaded disk, b) diametrical loading by a couple of forces (disk thickness: B). 

The total force in y-direction results from 

 ∫
γ

γσ=γγσ=
0

sin2''cos2 RBdRBP nny  (C5.2.1) 

The geometric function F, defined by 

 )/(*I RaFaK πσ=  , (C5.2.2) 

is plotted in Fig. C5.5, with the characteristic stress σ* defined as 345 

   
RB
Py

π
=σ*  . (C5.2.3) 

From the limit case γ→0, the solutions for concentrated forces (see Fig. C5.4b) are obtained 
as represented in Fig. C5.6. Comparison with the results from literature [C5.3-C5.5] reveals 
good agreement of stress intensity factors. The solution given by Tada et al. [C5.2] (dashed 
curve in Fig. C5.6) deviates by about 20% near a/R = 0.8. The results obtained here can be 
expressed by 
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with α=a/R and σ* given by eq.(C5.2.3). 

 
Fig. C5.5 Stress intensity factors for a circular disk, partially loaded over an angle of 2γ (see Fig. 
C5.4a). 

 
Fig. C5.6 Stress intensity factor and T-stress for a circular disk loaded diametrically by concentrated 
forces (Fig. C5.4b). Comparison of stress intensity factors; solid squares: partially distributed stresses 
with an angle of γ = π/16, circles: results by Atkinson et al. [C5.3] and Awaji and Sato [C5.4], open 
squares: results obtained with the weight function technique [C5.5], dashed line: solution proposed by 
Tada et al.[C5.2]. 
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The x-stress term T is shown in Fig. C5.7. From the limit case γ → 0, the solutions for concen-
trated forces (see Fig. C5.4b) are obtained as represented in Fig. C5.8. 

 
Fig. C5.7 T-stress for a circular disk partially loaded over an angle of 2γ (see Fig. C5.4a). 

 
Fig. C5.8 T-stress for a circular disk loaded diametrically by concentrated forces (Fig. C5.4b). T-stress 
results including partially distributed stresses with an angle of γ = π/16 (squares) and exact limit cases 

for α = 0. 
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The T-stress can be fitted by 

 
T

σ
α α α α α
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 (C5.2.5) 

In this case, the limit value is (at least in very good approximation) 
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C5.3 Central point forces acting on the crack face 
A centrally cracked circular disk loaded by a couple of forces at the crack centre is shown in 
Fig. C5.9. The corresponding stress intensity factor and T-stress were calculated by boundary 
collocation computations. 

 
Fig. C5.9 Circular disk with a couple of forces acting on the crack faces. 

The stress intensity factor for central point forces is  

 PF
a

PK
π

=I  (C5.3.1) 

with the geometric function being 

  FP =
− + − + −
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α

 

Figure C5.10 gives a comparison of the BCM results with results obtained by Tada et al. 
[C5.2] using an asymptotic extrapolation technique. Maximum differences are in the order of 
about 10%. 
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The T-stress data obtained with the BCM method are plotted in Fig. C5.11 by the squares. 
Together with the limit value, eq.(C5.2.6), the numerically found T-values were fitted by the 
polynomial of 
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1
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 (C5.3.2) 

This relation is introduced into Fig. C5.11 as the solid line.  

 
Fig. C5.10  a) Geometric function for a couple of forces P at the crack centre. Solid curve: [C5.6], 
dashed curve: [C5.2].  

 
Fig. C5.11 T-stress for an internally cracked circular disk with a couple of forces acting in the crack 
centre on the crack faces [C5.7]. Symbols: numerical results, solid line: fitting curve. 
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Mode-I weight function [C5.1] for symmetrical loading σ(x) = σ(-x): 
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A two-terms Green's function for the T-stress term reads  

 2/322
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with 
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or in the form 
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With the Green's function, the stress intensity factor for the diametrical tension specimen (Fig. 
C5.4b) was computed by using the stress distribution  
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The result is plotted in Fig. C5.12. It becomes obvious that in this approximation small devia-
tions between BCM and Green’s function results are visible for large α only. 
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Fig. C5.12  T-stresses for an internally cracked circular disk loaded by a couple of diametric forces at 
the free boundary (see Fig. C5.4b). Results from 2-terms Green's functions (symbols) compared with 
results from boundary collocation (BCM) computations (curve represents eq.(C5.2.5)). 
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C5.4 Mode-II loading 
Figure C5.13 shows the crack-face loading by a constant shear stress τ and a pair of concen-
trated tangential forces Q. 

 
Fig. C5.13  Internal radial crack loaded by shear traction, a) constant shear stress τ, b) pair of concen-
trated shear forces Q. 

The stress intensity factor under constant shear traction τ is [C5.5]  
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with α = a/R. 
The stress intensity factor for a point load Q (line load over plate thickness B) in the crack 
centre  is [C5.5] 
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A mode-II weight function for symmetric loading τ(x) = τ(-x) is [C5.5] 
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C5.5 Brazilian disk with internal crack 
The mixed-mode loading situation for a disk under diametrically applied concentrated forces 
is shown in Fig. C5.14. The angle between crack plane and loading line deviates from Θ=90°. 
This configuration is called Brazilian disk test. 

 
Fig. C5.14 Diametrical compression test with internal crack (disk thickness: B). 

The mixed-mode stress intensity factors KI, KII and related geometric functions FI, FII read 
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with the characteristic stress σ* defined by  
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(identical with the maximum tensile stress in the centre of the disk). 

The tangential, radial, and shear stress components (σϕ, σr, and τrϕ) in an uncracked Brazilian 
disk were given by Erdlac (quoted in [C5.3]) as 
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with ρ=r/R. T-stresses and geometric functions are given in Figs. C5.15-C5.17 and in Tables 
C5.2-C5.4. 

 
Fig. C5.15 Geometric functions for mode-II and mode-I stress intensity factors at several angles Θ. 
Curves: obtained with weight functions [C5.5]; solid squares: Atkinson et al. [C5.3]; open squares: 

Sato and Kawamata [C5.8]. 

 
Fig. C5.16 Geometric functions for a/R=0.5 as a function of the angle Θ. Curves: obtained with the 
weight function procedure; squares: results from Atkinson et al. [C5.3] and Awaji and Sato [C5.4]. 
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Fig. C5.17 T-stress for the Brazilian disk as a function of the angle Θ. 

Table C5.2 T-stress T(1-a/R)/σ* for the Brazilian disk test. 

a/R Θ=0° 15° 30° 45° 60° 75° 90° 
0 -4.000 -3.464 -2.000 0.000 2.000 3.464 4.000 
0.1 -3.656 -3.136 -1.745 0.091 1.855 3.104 3.552 
0.2 -3.398 -2.829 -1.396 0.312 1.773 2.711 3.029 
0.3 -3.197 -2.515 -0.969 0.581 1.684 2.294 2.485 
0.4 -3.033 -2.1623 -0.491 0.813 1.543 1.882 1.980 
0.5 -2.895 -1.732 -0.013 0.936 1.344 1.508 1.552 
0.6 -2.775 -1.182 0.370 0.919 1.115 1.200 1.223 
0.7 -2.668 -0.505 0.557 0.795 0.903 0.971 0.970 
0.8 -2.574 0.119 0.518 0.642 0.741 0.815 0.820 

Table C5.3 Geometric function FII for the Brazilian disk tests. 

a/R Θ=0° 15° 30° 45° 60° 75° 90° 
0 0. 1.000 1.732 2.000 1.732 1.000 0. 
0.1 0. 1.023 1.758 2.010 1.724 0.988 0. 
0.2 0. 1.092 1.835 2.036 1.698 0.955 0. 
0.3 0. 1.214 1.957 2.069 1.656 0.907 0. 
0.4 0. 1.400 2.116 2.097 1.603 0.856 0. 
0.5 0. 1.670 2.299 2.119 1.554 0.813 0. 
0.6 0. 2.053 2.491 2.146 1.530 0.792 0. 
0.7 0. 2.578 2.697 2.220 1.564 0.808 0. 
0.8 0. 3.260 3.009 2.441 1.720 0.889 0. 
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Table C5.4 Geometric function FI for the Brazilian disk tests.  

a/R Θ=0° 15° 30° 45° 60° 75° 90° 
0 1.000 0.732 0 -1.000 -2.000 -2.732 -3.000 
0.1 1.017 0.737 -0.020 -1.037 -2.033 -2.750 -3.016 
0.2 1.063 0.746 -0.084 -1.141 -2.120 -2.793 -3.031 
0.3 1.137 0.752 -0.200 -1.308 -2.248 -2.854 -3.062 
0.4 1.241 0.742 -0.379 -1.527 -2.406 -2.940 -3.118 
0.5 1.384 0.693 -0.635 -1.789 -2.594 -3.065 -3.220 
0.6 1.578 0.562 -0.973 -2.083 -2.819 -3.250 -3.393 
0.7 1.846 0.263 -1.381 -2.413 -3.108 -3.525 -3.665 
0.8 2.244 -0.302 -1.843 -2.824 -3.530 -3.965 -4.112 
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C5.6 Mixed boundary conditions 
C5.6.1 Constant radial displacement and zero shear traction 
The internally cracked circular disk under constant radial displacement and disappearing 
shear tractions along the circumference is illustrated in Fig. C5.18.  

 
Fig. C5.18 Boundary conditions un = const., τRω = 0.  

 
Fig. C5.19 Geometric function F according to eq.(C5.6.1) 

The stress intensity factor for the loading case of un = const, τRω = 0 is defined by 

 
R
EuRaFaK n=σνπσ= *,),/(*  (C5.6.1) 

where E is Young’s modulus and ν Poisson’s ratio. 
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The geometric function F is plotted versus a/R and ν in  Fig. C5.19. For the special case of ν 

= 0.25 and α ≤ 0.7 a fit relation reads 

 642
3
4 987.1200.3154.2 ααα −+−≅F  (C5.6.2) 

The T-stress normalised to the stress σ* is represented in Fig. C5.20. The higher-order coeffi-
cients A1 and B1, see eq.(A1.1.4), are compiled in Tables C5.5 and C5.6 

 
Fig. C5.20 T-stress as a function of crack size and Poisson's ratio. 

For ν = 0.25 and α = a/R ≤ 0.7 we find 

 432 6495.0685.2597.2*/ ααασ +−≅T  (C5.6.3) 

Table C5.5 Coefficient A1 according to eq.(A1.1.4). 

 ν=0 0.1 0.2 0.3 0.4 

a/R=0.15 -0.1255 -0.1393 -0.1565 -0.1784 -0.2073 
0.2 -0.1060 -0.1175 -0.1317 -0.1497 -0.1734 
0.3 -0.0826 -0.0911 -0.1016 -0.1147 -0.1316 
0.4 -0.0692 -0.0757 -0.0836 -0.0933 -0.1056 
0.5 -0.0624 -0.0674 -0.0734 -0.0807 -0.0897 
0.6 -0.0617 -0.0656 -0.0702 -0.0758 -0.0825 
0.7 -0.0689 -0.0722 -0.0760 -0.0805 -0.0858 
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Table C5.6 Coefficient B1 according to eq.(A1.1.4) 

 ν=0 0.1 0.2 0.3 0.4 

a/R=0.15 0.0018 0.0019 0.0020 0.0020 0.0022 
0.2 0.0036 0.0035 0.0034 0.0033 0.0031 
0.3 0.0105 0.0101 0.0097 0.0093 0.0089 
0.4 0.0211 0.0202 0.0193 0.0184 0.0174 
0.5 0.0346 0.0330 0.0313 0.0296 0.0277 
0.6 0.0506 0.0480 0.0453 0.0424 0.0392 
0.7 0.0704 0.0665 0.0624 0.0579 0.0531 

 
Fig. C5.21 Crack opening displacement δ at x = 0 (for δ and x see Fig. C5.3) as a function of Poisson's 
ratio. 

The crack opening displacements at x = 0, represented as 

 δ σ λ α α= =
2a

E
a R*

'
( ) , /  (C5.6.4) 

with σ* defined in (C5.6.1), are shown in Fig. C5.21. 
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C5.6.2 Constant radial traction and zero tangential displacements 
The internally cracked circular disk under constant radial traction σn and zero tangential dis-
placements along the circumference is illustrated in Fig. C5.22.  

 
Fig. C5.22 Boundary conditions σn = const, vω = 0. 

The stress intensity factor for the loading case of σn = constant, vω = 0 is represented by 
eq.(C5.6.1) with now σn instead of σ*. The related geometric function is shown in Fig. 
C5.23a. For ν = 0.25 and a/R ≤ 0.7 an approximation is given by 

 RaF /,0754.23161.68905.38162.01 5432 =+−++≅ ααααα  (C5.6.5) 

The T-stress is represented in Fig. C5.23b. A fit relation is 

 5432 9212.700.167055.77379.0/ αααασ −+−−≅nT  (C5.6.6) 

Only a minor influence of ν on F and T/σn is visible in Fig. C5.23. From the additionally in-
troduced results for the boundary conditions of τRω = 0 instead of vω = 0 (see dashed curves), 
we find an influence of the different tangential boundary conditions only, if α > 0.4. 
The higher-order coefficients A1 and B1 are compiled in Table C5.7 for ν = 0.25. 

Table C5.7 Coefficients A1 and B1 for ν = 0.25 according to eq.(A1.1.4). 

a/R A1 B1 

0.2 -0.1166 -0.0100 
0.3 -0.0974 -0.0403 
0.4 -0.0800 -0.0959 
0.5 -0.0548 -0.1917 
0.6 -0.0103 -0.3472 
0.7 0.0706 -0.5967 

σn=const. 
vω=0 

R
ω 
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Fig. C5.23 Geometric function and T-stress under the boundary conditions of σn = const., vω = 0 

(dashed curves: stress boundary conditions σn = const., τRω = 0). 

C5.7 Full displacement boundary conditions 
The internally cracked circular disk under constant radial displacement un and zero tangential 
displacement vω is shown in Fig. C5.24. The stress intensity factor solution expressed by the 
geometric function F (see eq.(C5.6.1)) is represented in Fig. C5.25a. The T-stress term is 
shown in Fig. C5.25b. 
For ν = 0.25 the results are approximated by 

 RaF /,4003.19988.00487.25727.2 5432
3
4 =−++−≅ ααααα  (C5.7.1) 

 432 826.3628.5271.3*/ ααασ +−≅T  (C5.7.2) 

The higher order coefficients A1 and B1 are compiled in Tables C5.8 and C5.9. 

 
Fig. C5.24 Boundary conditions un = const., vω = 0.  
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Fig. C5.25 Geometric function and T-stress under the boundary conditions of un = const., vω = 0. 

Table C5.8 Coefficient A1 according to eq.(A1.1.4). 

 ν=0 0.2 0.3 0.4 

a/R=0.2 -0.106 -0.132 -0.150 -0.174
0.3 -0.082 -0.102 -0.116 -0.133
0.4 -0.067 -0.084 -0.096 -0.110
0.5 -0.057 -0.073 -0.083 -0.095
0.6 -0.049 -0.064 -0.074 -0.085
0.7 -0.041 -0.057 -0.067 -0.079

Table C5.9 Coefficient B1 according to eq.(A1.1.4). 

 ν=0 0.2 0.3 0.4 

a/R=0.2 0.003 0.006 0.007 0.010 
0.3 0.008 0.014 0.018 0.023 
0.4 0.013 0.023 0.030 0.040 
0.5 0.012 0.028 0.039 0.052 
0.6 0.000 0.021 0.036 0.053 
0.7 -0.040 -0.009 0.010 0.033 
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C5.8 Partially loaded disks 
C5.8.1 Stress boundary conditions 
The case of different stress boundary conditions over parts of the circumference is dealt with 
in Section C5.2. Results for the stress intensity factor K are expressed by the geometric func-
tion F according to  

 K aF a Rn= σ π γ( , / )   (C5.8.1) 

and represented in Fig. C5.26. 
The T-stresses are illustrated in Fig. C5.27 as a function of the loading angle γ and crack size 
a/R. In Tables C5.10 and C5.11 the next higher-order coefficients of the stress function, 
eq.(A1.1.4), are given. 

 
Fig. C5.26 Geometric function F according to eq.(C5.6.1). 

 
Fig. C5.27 T-stress as a function of crack size and loading angle γ. 
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Table C5.10 Coefficients A1 and B1 according to eq.(A1.1.4) for γ = 45°. 

 A1 B1 

a/R=0.2 -0.115 -0.1659
0.3 -0.0766 -0.2554
0.4 -0.0393 -0.3977
0.5 0.0056 -0.5672
0.6 0.0598 -0.7338
0.7 0.1344 -0.9290

Table C5.11 Coefficients A1 and B1 according to eq.(A1.1.4) for γ = 90°. 

 A1 B1 

a/R = 0.2 -0.117 -0.0116
0.3 -0.0979 -0.0359
0.4 -0.0828 -0.0796
0.5 -0.0640 -0.1465
0.6 -0.0346 -0.2473
0.7 0.0179 -0.4107

C5.8.2 Mixed boundary conditions in the loading region 
An internally cracked circular disk with constant radial displacements un over the angle 2γ 
and zero normal traction σn acting on the remaining part of the surface is shown in Fig. C5.28. 
In this loading case, the shear traction along the circumference is chosen to be τRω = 0. 

 
Fig. C5.28 Partially loaded, internally cracked disk under mixed boundary conditions: constant radial 
displacement over the angle 2γ, zero normal traction over the remaining part, zero shear traction along 
the whole circumference.  
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The stress intensity factor for the loading case of un = constant, τRω = 0 is defined by 

 
R
EuRaFaK n=σγνπσ= *,),,/(*  (C5.8.2) 

(E= Young's modulus, F = geometric function). Results of boundary collocation computations 
are represented in Fig. C5.29 for a Poisson's ratio of ν = 0.25 and several loading angles γ. 
The influence of the Poisson's ratio is shown in Fig. C5.30. The T-stress is represented in Fig. 
C5.31. 

 
Fig. C5.29 Geometric function F, eq.(C5.8.2), as a function of crack size and loading angle. 
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Fig. C5.30 Influence of Poisson's ratio ν on the geometric function F. 

 
Fig. C5.31 T-stress as a function of crack size, Poisson's ratio, and loading angle γ. 

C5.8.3 Displacement boundary conditions in the loading region 
The internally cracked circular disk with constant radial displacements un, zero tangential dis-
placements vω over the angle 2γ, and traction-free surfaces elsewhere is shown in Fig. C5.32. 
The geometric function according to eq.(C5.8.2) is plotted in Fig. C5.33 as a function of γ, 
a/R, and ν. The T-stress is shown in Fig. C5.34. 

In Fig. C5.35, the geometric function and the T-stresses are plotted for the two boundary con-
ditions in the loading region: un = constant, vω =0 (solid curves) and un = constant, τRω = 0 
(dashed curves). Only very small differences can be detected. 
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Fig. C5.32 Partially loaded, internally cracked disk under mixed boundary conditions: constant radial 
and zero tangential displacements over the angle 2γ, zero traction elsewhere. 

 

 
Fig. C5.33 Influence of Poisson's ratio ν on the geometric function F. 
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Fig. C5.34 T-stress as a function of crack size, Poisson's ratio, and loading angle γ. 

 
Fig. C5.35 Influence of a tangential boundary condition in the loading range on F and T-stress. Solid 

curve un=const., vω=0; dashed curve: un=const., τRω=0. 
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C6 
Rectangular plate with an internal crack 
C6.1 Stress conditions at the plate ends 
The geometric data of the rectangular plate with an internal crack are illustrated in Fig. C6.1. 
At the ends of the plate constant tractions σ act. Data for the stress intensity factor  

  aFK πσ=I ,  F F a W= −' / /1  (C6.1.1) 

from boundary collocation are represented by Fig. C6.2 and Table C6.1. 

 
Fig. C6.1  Rectangular plate with a central internal crack (geometric data). 

Table C6.1 Normalised geometric function F ' for tension. 

 H/W=1.5 1.25 1.00 0.75 0.5 0.35 
α=0 1.00 1.00 1.00 1.00 1.00 1.00 
0.2 0.916 0.924 0.940 0.977 1.051 1.182 
0.3 0.888 0.905 0.940 1.008 1.147 1.373 
0.4 0.869 0.890 0.942 1.053 1.262 1.562 
0.5 0.851 0.877 0.943 1.099 1.391 1.742 
0.6 0.827 0.856 0.937 1.130 1.533 1.938 
0.7 0.816 0.826 0.914 1.125 1.668 2.197 
0.8 0.814 0.818 0.840 1.088 1.689 2.41 
1.0 0.826 0.826 0.826 0.826 0.826 0.826 
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Fig. C6.2 Stress intensity factor for tensile loading. 

T-stress results from BCM-computations are shown in Fig. C6.3a and Table C6.2 for different 
height-to-width ratios.  

Table C6.2  T-stress term normalised according to T (1-α)/σ for  
different crack and plate geometries.  

α = a/W H/W=0.35 0.50 0.75 1.00 1.25 

0 -1.0 -1.0 -1.0 -1.0 -1.0 
0.1 -0.97 -0.96 -0.92 -0.91 -0.9 
0.2 -0.95 -0.92 -0.88 -0.85 -0.83 
0.3 -0.766 -0.855 -0.85 -0.809 -0.777
0.4 -0.455 -0.745 -0.805 -0.756 -0.716
0.5 -0.110 -0.616 -0.738 -0.692 -0.656
0.6 0.145 -0.502 -0.647 -0.620 -0.596
0.7 0.215 -0.400 -0.543 -0.55 -0.53 
0.8 0.13 -0.291 -0.45 -0.46 -0.47 
0.9 -0.10 -0.25 -0.38 -0.41- -0.43 
1.0 -0.413 -0.413 -0.413 -0.413 -0.413
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Fig. C6.3  Internal crack in a rectangular plate under tension, a) T-stress, b) biaxiality ratio. 

The biaxiality ratio, as defined by eq.(A1.3.12), is plotted in Fig. C6.3b and additionally given 
in Table C6.3. 
For a long plate (H/W > 1.5) and α=a/W<0.8, the biaxiality ratio β can be approximated by 

    β α
α

≅ −
−

−
1 0 5

1
.

 (C6.1.2) 

For the evaluation of arbitrarily distributed stresses in the uncracked plate (e.g. thermal 
stresses) application of the Green's function procedure is recommended. An approximate 
computation of T is possible by use of the T-solution for tension, exclusively. This 
approximation reads 

   
axxaxy

a

yt dxxaxT
a

T
==

+−−+≅ ∫ σσσσ )()/1()/1(
2
3

0

22
0   (C6.1.3) 

with Tt given by the data in Table C6.2. The related stress intensity factor (necessary for the 
computation of the biaxiality ratio β) can be calculated by using the weight function 
procedure. A rough approximation of the weight function reads 

   ⎥⎦

⎤
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⎡ −−+
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 (C6.1.4) 
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with the geometric function F for constant stress as given in Table C6.1. Coefficients for a 
weight function representation according to 

  |/|,)1(1
1

12 2/3
10 axDD

a
h =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+−+

−
= ρρρ

ρπ
 (C6.1.5) 

are compiled in Tables C6.4 and C6.5. 

Table C6.3  Biaxiality ratio normalised by β (1-α)1/2 for different crack and plate geometries.  

a/W H/W=0.35 0.50 0.75 1.00 1.25 

0 -1.0 -1.0 -1.0 -1.0 -1.0 
0.1 -0.93 -0.95 -0.955 -0.955 -0.95 
0.2 -0.801 -0.872 -0.90 -0.91 -0.905 
0.3 -0.558 -0.746 -0.843 -0.860 -0.858 
0.4 -0.291 -0.591 -0.764 -0.803 -0.805 
0.5 -0.063 -0.443 -0.672 -0.734 -0.749 
0.6 0.075 -0.328 -0.573 -0.661 -0.693 
0.7 0.098 -0.241 -0.483 -0.598 -0.645 
0.8 0.055 -0.173 -0.418 -0.54 -0.59 
0.9 -0.1 -0.2 -0.41 0.5 -0.54 
1.0 -0.5 -0.5 -0.5 -0.5 -0.5 

Table C6.4 Coefficient D0. 

H/W 1.00 0.5 0.35 

α=0 0.165 0.165 0.165 

0.1 0.210 0.395 0.395 

0.2 0.366 0.813 1.071 

0.3 0.600 1.362 1.89 

0.4 0.897 2.038 2.78 

0.5 1.264 2.879 3.85 

0.6 1.699 3.879 5.29 

0.7 2.095 4.804 6.85 

0.8 2.75 6.173 9.17 
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Table C6.5 Coefficient D1. 

H/W 1.00 0.5 0.35 

α=0 0.278 0.278 0.278

0.1 0.263 0.260 0.195

0.2 0.227 0.171 0.555

0.3 0.239 0.343 0.963

0.4 0.259 0.651 1.57 

0.5 0.300 1.127 2.27 

0.6 0.397 1.996 3.20 

0.7 0.775 3.906 5.85 

0.8 0.848 5.686 9.65 

The Williams coefficients A1, B1, A2, and B2, as defined by eq.(A1.1.4), are entered in Tables 
C6.6-C6.9. 

Table C6.6  Coefficient A1 for different crack and plate geometries. 

a/W H/W=0.35 0.50 0.75 1.00 1.25 

0.2 -0.0651 -0.0817 -0.0837 -0.0824 -0.0817 

0.3 0.0117 -0.0508 -0.0674 -0.0685 -0.0686 

0.4 0.1223 -0.0074 -0.0493 -0.0575 -0.0603 

0.5 0.2665 0.0557 -0.022 -0.0452 -0.0549 

0.6 0.4560 0.1584 0.0216 -0.0300 -0.0485 

0.7 0.7797 0.3607 0.0893 -0.0133 -0.1178 

0.8 0.7242 0.7987 0.1645 -0.3734 -0.2886 

Table C6.7  Coefficient B1 for different crack and plate geometries. 

α = a/W H/W=0.35 0.50 0.75 1.00 1.25 

0.2 -0.2608 -0.0792 -0.0180 -0.0064 -0.0019 

0.3 -0.5306 -0.1920 -0.0527 -0.0197 -0.0053 

0.4 -0.7606 -0.3129 -0.1065 -0.0409 -0.0089 

0.5 -0.9124 -0.4263 -0.1787 -0.0655 -0.0086 

0.6 -0.9652 -0.5736 -0.2694 -0.0812 -0.0041 

0.7 -1.096 -0.9091 -0.3629 -0.0555 0.333 

0.8 -1.429 -1.709 -0.3075 1.154 0.8425 
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Table C6.8  Coefficient A2. 

a/W H/W=0.50 0.75 1.25 

0.2 0.1977 0.136 0.113 

0.3 0.2126 0.118 0.070 

0.4 0.2372 0.139 0.057 

0.5 0.2797 0.188 0.057 

0.6 0.4367 0.278 0.079 

0.65 0.6322 0.352 0.119 

0.7 0.9848 0.462 -0.079

0.8 2.748 0.911 -0.463

Table C6.9  Coefficient B2. 

a/W H/W=0.50 0.75 1.25 

0.2 -0.06174 -0.023 -0.003
0.3 0.0133 -0.032 -0.005
0.4 0.1697 -0.031 -0.003
0.5 0.3255 -0.032 0.000 
0.6 0.3194 -0.063 -0.004
0.65 0.1475 -0.104 -0.022
0.7 -0.2523 -0.190 0.025 
0.8 -2.747 -0.816 0.092 
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C6.2 Mixed boundary conditions at the ends 
A rectangular plate with an internal crack is loaded by application of a constant displacement 
v but disappearing shear stress (Fig. C6.4). The geometric function for K, T-stress, and higher 
coefficients A1 and B1 are given in Tables C6.10-C6.16. The characteristic stress σ0 is defined 
by the constant plate end displacements v as 

 σ 0 =
v
H

E   (C6.2.1) 

(E= Young's modulus). 

 

Fig. C6.4 Internally cracked plate with mixed boundary conditions at the ends. 

Table C6.10 Geometric function F for stress intensity factor solution. 

a/W H/W=0.25 0.50 0.75 1.00 1.25 

0.00 1.00 1.00 1.00 1.00 1.00 

0.25 0.570 0.790 0.889 0.937 0.959 

0.3 0.518 0.735 0.852 0.913 0.944 

0.4 0.446 0.642 0.778 0.860 0.907 

0.5 0.399 0.573 0.737 0.805 0.865 

0.6 0.364 0.523 0.652 0.751 0.823 

0.7 0.338 0.485 0.603 0.702 0.778 

0.8 0.319 0.455 0.562 0.667 - 
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Table C6.11 T-stress data T/σ0. 

a/W H/W=0.25 0.50 0.75 1.00 1.25 

0.00 -1.00 -1.00 -1.00 -1.00 -1.00 

0.25 -0.606 -0.756 -0.869 -0.932 -0.964 

0.3 -0.596 -0.707 -0.832 -0.910 -0.952 

0.4 -0.592 -0.646 -0.770 -0.869 -0.928 

0.5 -0.592 -0.626 -0.737 -0.840 -0.912 

0.6 -0.594 -0.637 -0.734 -0.833 -0.913 

0.7 -0.600 -0.674 -0.760 -0.857 -0.965 

0.8 -0.635 -0.740 -0.831 -0.98 - 

Table C6.12 Biaxiality ratio β. 

a/W H/W=0.25 0.50 0.75 1.00 1.25 

0.00 -1.00 -1.00 -1.00 -1.00 -1.00 

0.25 -1.064 -0.957 -0.977 -0.995 -1.005 

0.3 -1.151 -0.962 -0.976 -0.997 -1.008 

0.4 -1.327 -1.007 -0.990 -1.010 -1.022 

0.5 -1.485 -1.093 -1.037 -1.044 -1.054 

0.6 -1.630 -1.219 -1.125 -1.110 -1.109 

0.7 -1.777 -1.389 -1.260 -1.220 -1.240 

0.8 -1.993 -1.627 -1.477 -1.474 - 

Table C6.13 Coefficient A1 for the internally cracked plate. 

a/W H/W=0.25 0.50 0.75 1.00 1.25 

0.25 -0.0734 -0.0624 -0.0648 -0.0668 -0.0682 

0.3 -0.0735 -0.0575 -0.0581 -0.0599 -0.0614 

0.4 -0.0740 -0.0533 -0.0499 -0.0503 -0.0515 

0.5 -0.0742 -0.0527 -0.0457 -0.0439 -0.0448 

0.6 -0.0743 -0.0532 -0.0430 -0.0393 -0.0396 

0.7 -0.0748 -0.0528 -0.0398 -0.0349 -0.0416 

0.8 -0.0758 -0.0488 -0.0348 -0.0392  
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Table C6.14 Coefficient B1 for the internally cracked plate. 

a/W H/W=0.25 0.50 0.75 1.00 1.25 

0.25 0.2239 0.0514 0.0167 0.0071 0.0038 

0.3 0.2384 0.0699 0.0258 0.0116 0.0063 

0.4 0.2454 0.1005 0.0466 0.0232 0.0140 

0.5 0.2457 0.1220 0.0675 0.0374 0.0261 

0.6 0.2468 0.1385 0.0853 0.0542 0.0428 

0.7 0.2544 0.1524 0.1001 0.0721 0.0873 

0.8 0.2822 0.1634 0.1222 0.1262  

Table C6.15 Coefficient A2 for the internally cracked plate. 

a/W H/W=0.25 0.50 0.75 1.00 1.25 

0.25 -0.087 0.025 0.057 0.068 0.072 

0.3 -0.092 0.000 0.035 0.048 0.053 

0.4 -0.090 -0.024 0.009 0.026 0.033 

0.5 -0.089 -0.032 0.000 0.018 0.024 

0.6 -0.089 -0.030 0.004 0.021 0.028 

0.7 -0.092 -0.011 0.029 0.049 0.037 

0.8 -0.079 0.059 0.109 0.125  

Table C6.16 Coefficient B2 for the internally cracked plate. 

a/W H/W=0.25 0.50 0.75 1.00 1.25 

0.25 -0.035 0.038 0.018 0.008 0.004 

0.3 -0.077 0.032 0.020 0.010 0.006 

0.4 -0.104 0.014 0.020 0.011 0.008 

0.5 -0.106 0.000 0.011 0.007 0.007 

0.6 -0.101 -0.011 -0.009 -0.006 -0.002 

0.7 -0.084 -0.042 -0.052 -0.061 -0.033 

0.8 -0.072 -0.159 -0.188 -0.276  



 

 160

C6.3 Displacement boundary conditions at the ends  
If free deformation in x-direction is suppressed, u=0, pure displacement boundary conditions 
are fulfilled (Fig. C6.5). The geometric function, T-stress, and higher coefficients A1 and B1 
are given in Tables C6.17-C6.31. The characteristic stress σ0 is again defined by eq.(C6.2.1). 

 

Fig. C6.5 Internally cracked plate with pure displacement conditions at the ends.  

Table C6.17 T-stress T/σ0 for H/W = 0.25. 

a/W ν=0 0.1 0.2 0.3 0.4 
0 -1.000     
0.3 -0.612 -0.567 -0.527 -0.492 -0.462 
0.4 -0.600 -0.563 -0.533 -0.509 -0.491 
0.5 -0.598 -0.568 -0.545 -0.529 -0.520 
0.6 -0.602 -0.578 -0.561 -0.551 -0.549 

Table C6.18 Geometric function F for H/W = 0.25. 

a/W ν = 0 0.1 0.2 0.3 0.4 
0 1.000     
0.3 0.518 0.519 0.527 0.541 0.561 
0.4 0.447 0.449 0.456 0.467 0.483 
0.5 0.399 0.402 0.408 0.417 0.430 
0.6 0.365 0.367 0.372 0.380 0.391 
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Table C6.19 Biaxiality ratio β for H/W = 0.25. 

a/W ν = 0 0.1 0.2 0.3 0.4 
0 -1.000     
0.3 -1.182 -1.090 -1.000 -0.992 -0.825
0.4 -1.343 -1.253 -1.169 -1.090 -1.016
0.5 -1.499 -1.413 -1.336 -1.268 -1.210
0.6 -1.651 -1.575 -1.508 -1.451 -1.404

Table C6.20 Coefficient A1 for H/W = 0.25. 

a/W ν=0 0.1 0.2 0.3 0.4 
0.3 -0.0757 -0.0777 -0.0813 -0.0865 -0.0932 
0.4 -0.0759 -0.0780 -0.0816 -0.0866 -0.0931 
0.5 -0.0761 -0.0783 -0.0817 -0.0864 -0.0924 
0.6 -0.0767 -0.0787 -0.0817 -0.0857 -0.0908 

Table C6.21 Coefficient B1 for H/W = 0.25. 

a/W ν=0 0.1 0.2 0.3 0.4 
0.3 0.2287 0.2302 0.2380 0.2520 0.2723 
0.4 0.2376 0.2386 0.2455 0.2582 0.2768 
0.5 0.2411 0.2444 0.2530 0.2668 0.2858 
0.6 0.2451 0.2575 0.2740 0.2945 0.319 

Table C6.22 T-stress T/σ0 for H/W = 0.50. 

a/W ν=0 0.1 0.2 0.3 0.4 
0 -1.000     
0.3 -0.729 -0.697 -0.673 -0.657 -0.648
0.4 -0.675 -0.656 -0.643 -0.636 -0.634
0.5 -0.660 -0.650 -0.645 -0.645 -0.651
0.6 -0.667 -0.665 -0.666 -0.671 -0.679
0.7 -0.697 -0.698 -0.701 -0.707 -0.715

Table C6.23 Geometric function F for H/W = 0.50. 

a/W ν = 0 0.1 0.2 0.3 0.4 
0 1.000     
0.3 0.731 0.735 0.745 0.762 0.786 
0.4 0.640 0.642 0.649 0.661 0.677 
0.5 0.572 0.574 0.579 0.587 0.599 
0.6 0.522 0.523 0.527 0.533 0.541 
0.7 0.484 0.485 0.487 0.490 0.495 
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Table C6.24 Biaxiality ratio β for H/W = 0.50. 

a/W ν = 0 0.1 0.2 0.3 0.4 
0 -1.000     
0.3 -0.998 -0.949 -0.904 -0.863 -0.825
0.4 -1.056 -1.022 -0.991 -0.963 -0.937
0.5 -1.152 -1.132 -1.114 -1.099 -1.087
0.6 -1.278 -1.269 -1.263 -1.259 -1.257
0.7 -1.440 -1.439 -1.439 -1.440 -1.443

Table C6.25 Coefficient A1 for H/W = 0.50. 

a/W ν=0 0.1 0.2 0.3 0.4 
0.3 -0.0586 -0.0597 -0.0614 -0.0637 -0.0665
0.4 -0.0548 -0.0561 -0.0579 -0.0601 -0.0628
0.5 -0.0541 -0.0554 -0.0571 -0.0591 -0.0614
0.6 -0.0542 -0.0552 -0.0565 -0.0580 -0.0597
0.7 -0.0540 -0.0543 -0.0549 -0.0557 -0.0567

Table C6.26 Coefficient B1 for H/W = 0.50. 

a/W ν=0 0.1 0.2 0.3 0.4 
0.3 0.0717 0.0806 0.0904 0.1012 0.1129
0.4 0.1000 0.1089 0.1190 0.1303 0.1429
0.5 0.1172 0.1257 0.1348 0.1446 0.1550
0.6 0.1309 0.1370 0.1433 0.1499 0.1569
0.7 0.1499 0.1489 0.1492 0.1509 0.1540

Table C6.27 T-stress T/σ0 for H/W = 1.0. 

a/W ν=0 0.1 0.2 0.3 0.4 
0 -1.000     
0.3 -0.910 -0.911 -0.918 -0.930 -0.947
0.4 -0.871 -0.870 -0.873 -0.880 -0.892
0.5 -0.845 -0.842 -0.843 -0.847 -0.855
0.6 -0.842 -0.838 -0.837 -0.838 -0.842
0.7 -0.872 -0.867 -0.864 -0.863 -0.865
0.8 -0.958 -0.960 -0.963 -0.967 -0.973
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Table C6.28 Geometric function F for H/W = 1.0. 

a/W ν = 0 0.1 0.2 0.3 0.4 
0 1.000     
0.3 0.905 0.915 0.929 0.948 0.971 
0.4 0.851 0.857 0.866 0.879 0.895 
0.5 0.795 0.798 0.803 0.811 0.822 
0.6 0.744 0.744 0.746 0.750 0.757 
0.7 0.699 0.698 0.698 0.700 0.703 
0.8 0.666 0.665 0.665 0.667 0.669 

Table C6.29 Biaxiality ratio β for H/W = 1.0. 

a/W ν = 0 0.1 0.2 0.3 0.4 
0 -1.000     
0.3 -1.006 -0.996 -0.988 -0.981 -0.975
0.4 -1.024 -1.015 -1.008 -1.002 -0.997
0.5 -1.063 -1.056 -1.050 -1.045 -1.040
0.6 -1.132 -1.127 -1.122 -1.117 -1.113
0.7 -1.247 -1.242 -1.238 -1.234 -1.231
0.8 -1.440 -1.444 -1.448 -1.451 -1.454

Table C6.30 Coefficient A1 for H/W = 1.0. 

a/W ν=0 0.1 0.2 0.3 0.4 
0.3 -0.0599 -0.0602 -0.0608 -0.0616 -0.0626 
0.4 -0.0507 -0.0506 -0.0507 -0.0510 -0.0514 
0.5 -0.0451 -0.0447 -0.0445 -0.0444 -0.0444 
0.6 -0.0416 -0.0410 -0.0405 -0.0401 -0.0398 
0.7 -0.0388 -0.0380 -0.0374 -0.0369 -0.0365 
0.8 -0.0329 -0.0338 -0.0346 -0.0353 -0.0359 

Table C6.31 Coefficient B1 for H/W =1.0. 

a/W ν=0 0.1 0.2 0.3 0.4 
0.3 0.0123 0.0127 0.0127 0.0124 0.0118 
0.4 0.0245 0.0248 0.0248 0.0245 0.0238 
0.5 0.0402 0.0399 0.0395 0.0389 0.0381 
0.6 0.0594 0.0583 0.0572 0.0561 0.0549 
0.7 0.0842 0.0817 0.0797 0.0781 0.0770 
0.8 0.1202 0.1227 0.1252 0.1278 0.1304 
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C6.4 Sub-surface cracks 
A sub-surface crack is shown in Fig. C6.6. A stress intensity factor solution for constant 
crack-face loading σ0 was proposed by Isida [C1] for the region of a/(d+a) = α < 0.9 as  

 F C F CA n
n

n
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n
n

n

n= + = + −
= =

∑ ∑1 1 1
2
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Values of the weight function for the sub-surface cracks are shown in Fig. C6.6. The 
integration has to be performed according to 
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A simple solution (for not too high ratios a/d) was proposed in [C6.2] 
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(ρ=ξ/a) where FA and FB are the geometric functions for the sub-surface crack having a 
constant crack surface loading σ = σ0 = constant, see (C6.4.1). 
This approximate solution is indicated by the curves in Fig. C6.6. Results of Aliabadi et al. 
[C6.3] are entered as squares. The data from the weight function procedure are shown by the 
circles. Deviations between the numerical results and the approximation (C6.4.3, C6.4.4) are 
less than 1% in this case. 
In Fig. C6.7 the deviations between the weight function for the sub-surface crack and the 
weight function for the crack in an infinite body 

 
ρ
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±
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are plotted. In (C6.4.5), the upper signs are related to location A, the lower ones to location B. 
The differences between the numerical results (circles) and the approximate solution, 
eq.(C6.4.4) (curves), clearly indicate the occurrence of an antisymmetric term. 
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Fig. C6.6 a) Subsurface crack, b) curves: Fett and Munz [C6.2] and eqs.(C6.4.3, C6.4.4)), circles 
[C6.4], squares: Aliabadi et al.[C6.3]. Normalisation: h' = h πa . 

In order to improve the approximate weight function, the next term of the weight function is 
considered by  
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As can be seen from these relations, the next correction term is antisymmetric with respect to 
ρ = 0 (see Fig. C6.7). The numerical results can be described well by eqs.(C6.4.6,C6.4.7) up to 
α = 0.7 (a/d = 2.3) with maximum deviations of less than 3%. The coefficients CA and CB 
obtained by curve fitting are 

 CA ≅ 1492 4.676. α   ,    CB ≅ 0 221 3 433. .α ,  α = +a a d/ ( ) . (C6.4.8) 
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Fig. C6.7 Deviation of the (normalized) weight function for the sub-surface crack, h', from the weight 
function solution for a crack in an infinite body h'∞ (circles: numerical results, dashed curves: 
eqs.(C6.4.3, C6.4.4), continuous curves: eqs.(C6.4.6, C6.4.7)). 

C6.5 Transverse loading 
An edge-cracked plate under transverse traction σx is illustrated in Fig. C6.8. Under this 
loading, the stress intensity factor may be defined by 

 K F ax= σ π  (C6.5.1) 

The geometric function F is plotted in Fig. C6.9 for several values of a/W, H/W, and d/W. 
Figure C6.10 represents the T-stresses. 

 

Fig. C6.8 Internally cracked plate with transverse loading. 
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Fig. C6.9 Geometric function F according to eq.(C6.5.1). 
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Fig. C6.10  T-stresses represented as T/σx. 
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C7 
Edge-cracked circular disk 
Edge-cracked circular disks are often used as fracture mechanics test specimens. Examples 
are the RCT specimen and a modification of the Brazilian disk test. Figure C7.1 shows the 
geometric data. 

 
Fig. C7.1 Geometric data of an edge-cracked circular disk. 

C7.1 Circumferentially loaded disk (traction boundary conditions) 
A circular disk is loaded by constant normal tractions σn along the circumference (for loading 
see Fig. C7.2) 

 0,const =τ=σ ωRn  (C7.1.1) 

 
Fig. C7.2 Edge-cracked circular disk under pure stress boundary conditions. 
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The stress intensity factor solution for this loading case is 
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For a single-edge-cracked disk a weight function is given in [C7.1] as 
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with ρ=x/a and the coefficients of 
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In this case, it holds [C7.1] 
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The biaxiality ratio is given by 
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Figure C7.3a shows the Green’s function for several crack depths. For a/D≤0.6, it can be 
expressed by 
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with the coefficients  
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In Fig. C7.3b a common curve unique curve approximates all data. As a consequence of Fig. 
C3.7b, an approximation can be given by 
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Fig. C7.3 Green's function for the edge-cracked disk: a) Results for several relative crack depths, b) 

results of a) in a normalized representation. 

A rough estimation of the Green’s function can be derived from the reference solution 
eq.(C7.1.6) as 
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This relation is introduced in Fig. C7.4a as the dashed straight line. In this rough 
approximation, the T-stress reads 
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The Green’s function at the crack mouth, x=0, is plotted in Fig. C7.4b. The straight-line fit of 
the data points is 
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Fig. C7.4 Green's function for the edge-cracked disk: a) Results of Fig. C7.3b fitted by a straight line 

relation according to eq.(C7.1.11), b) Green's function at the crack mouth (x/a=0). 

Further coefficients of the Williams stress function [C7.2] are 
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For special applications also crack opening displacements δ at the crack mouth x = 0 are of 
interest. Figure C7.5 represents the displacements under constant normal traction σn in the 
form of 
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The results of boundary collocation computations are represented by the circles. From a least-
squares fit, one obtains  

 αλ 526.0454.1 +≅  (C7.1.20) 

The dashed curve in Fig. C7.5 is the solution for the single edge-cracked endless parallel strip 
as reported by Tada [C7.3]. 

 
Fig. C7.5 Crack-mouth displacements (x = 0) according to eq.(C7.1.19); circles: edge-cracked disk, 
dashed curve: results for the single edge-cracked endless parallel strip, reported by Tada [C7.3]. 

 
Fig. C7.6 Geometric function for loading of the crack faces by constant shear traction. 

The stress intensity factor for mode-II loading by constant shear traction τ0 is  

x 

a 

σn 

2δ 

0 0.2 0.4 0.6 0.8 1 

1 

1.5 

2 

α 

λ 

a 
x 

τ0

D 

0 0.2 0.4 0.6 0.8 1 

1 

1.5 

2 

α 

FII 



 

 174

 aFK πτ II0II =  (C7.1.21) 

The related geometric function FII is plotted in Fig. C7.6. A fit relation for α = a/D ≤0.8 is 
given by  
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A mode-II weight function is 
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with the coefficients compiled in Table C7.1, which can be interpolated by cubic splines. 
For a/D ≤ 0.8 the coefficients are approximated as 
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Higher-order coefficients for the antisymmetric stress function, eq.(A1.1.12), are compiled in 
Table C7.2. 

Table C7.1 Coefficients for the mode-II weight function eq.(C7.1.23). 

a/D D0 D1 D2 
0.1 0.4981 0.6931 -0.305 
0.2 0.6228 0.6853 -0.296 
0.25 0.7069 0.6856 -0.290 
0.3 0.8032 0.6896 -0.284 
0.35 0.9118 0.6965 -0.278 
0.4 1.034 0.7044 -0.272 
0.45 1.172 0.7096 -0.264 
0.5 1.332 0.7064 -0.253 
0.55 1.523 0.6861 -0.236 
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0.6 1.759 0.6352 -0.210 
0.65 2.062 0.5321 -0.169 
0.7 2.470 0.3394 -0.103 
0.75 3.052 -0.013 0.006 
0.8 3.944 -0.674 0.198 

Table C7.2 Higher-order coefficients for mode-II loading according to eq.(A1.1.12). 

a/D 0B̂  1Â  1B̂  

0.2 0.175 0.217 -0.832 
0.3 0.164 0.144 -0.441 
0.4 0.178 0.089 -0.276 
0.5 0.215 0.039 -0.159 
0.6 0.294 -0.018 0.000 
0.7 0.471 -0.094 0.412 
0.8 0.981 -0.229 2.231 
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C7.2 Diametrically loaded disk 

A disk of unit thickness is considered, which is diametrically loaded by a pair of tensile forces 
P (Fig. C7.7). The forces may act perpendicularly to the crack plane. In this case, the stresses 
are given by 

 1
])1(1[

4
* 22 −

ξ−+
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σ
σ y  (C7.2.1) 
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with 2/,/ DRRx ==ξ  

as illustrated in Fig. C7.7. 

 
Fig. C7.7 Diametrically loaded circular disk. 

The stress intensity factor results from application of eq.(A3.1.10a) with the weight function 
of eq.(C7.1.3) and the T-term from eq.(C7.1.8) 
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The geometric function of the stress intensity factor, defined as  

  
BR
PaFK

π
σπσ == *,*I  (C7.2.4)  

is plotted in Fig. C7.9a as the curve. This curve may be approximated by  
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with α=a/D. 
A simplified approximation represented by the straight dashed lines is 
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The biaxiality ratio is plotted as the solid curve in Fig. C7.9b and compiled in Table C7.3. 
Application of the simple set-up eq.(C7.1.13) results in the dashed curve. A very good 
agreement of the two solutions is visible. This is an indication of an adequate description of 
the Green's function by the set-up of eq.(C7.1.11) using one regular term only. 
In addition to the Green's function computations, the biaxiality ratios were determined 
directly using the boundary collocation method (BCM). The results are entered as circles. An 
excellent agreement is found between the BCM results and those obtained from the Green's 
function representation.  
The result of Fig. C7.9b can be described by 
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 (C7.2.7) 

 
Fig. C7.8 Stresses along the x-axis in a diametrically loaded disk. 
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Fig. C7.9 Edge-cracked circular disk diametrically loaded by a pair of forces; a) geometric function 
for the stress intensity factor, b) Biaxiality ratio, solid line: eqs.(C7.1.8) and (C7.1.9), dashed line: 

single-term approximation (C7.1.13), circles: BCM results. 

Table C7.3  T-stress and biaxiality ratio for diametrical point forces. 

a/D T(1-a/D)2 β(1-a/D)1/2

0 0 -1.236 
0.1 -0.365 -1.220 
0.2 -0.735 -1.139 
0.3 -0.975 -0.965 
0.4 -0.921 -0.688 
0.5 -0.532 -0.336 
0.6 0.003 0.002 
0.7 0.431 0.246 
0.8 0.655 0.373 
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C7.3 Radially loaded disk under mixed boundary conditions 

Edge-cracked circular disks under mixed boundary conditions are shown in Fig. C7.10. In 
Fig. C7.10a the load is given by constant radial tractions σn at the circumference with 
disappearing tangential displacements. In Fig. C7.10b a constant radial displacement u and 
disappearing shear along the circumference are prescribed. 

 
Fig. C7.10 Edge-cracked disk under mixed boundary conditions; a) constant normal traction, 
disappearing circumferential displacements, b) constant radial displacement, disappearing shear 
traction at the surface.  

C7.3.1  Case   un = constant, τRω=0 
With the characteristic stress  

 
R
Eun=σ*  (C7.3.1) 

the stress intensity factor is  

 ),/(*I νπσ DaFaK =  (C7.3.2) 

The geometric function F is plotted in Fig. C7.11a for several Poisson's ratios. For the special 
value of ν = 0.25 the results are fitted as 

 5432
3
4 69.7209.15635.107157.20953.0 ααααα −+−++≅F  (C7.3.3) 

(with α = a/D). Using a modified geometric function of the form 

 F F* ( )= −1 ν  (C7.3.4) 

a coincidence of the curves becomes visible at a/D→0 (see Fig. C7.11b). 
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The T-stresses are shown in Fig. C7.12. An approximation for ν = 0.25 and α = a/D ≤ 0.75 is 

 5432 623.41904.76744.40137.3*/ αααασ +−+−≅T  (C7.3.5) 

For ν = 0.25 a 3-terms weight function is given by 
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with the coefficients compiled in Table C7.4. 

The higher-order coefficients of eq.(A1.1.4) are compiled in Tables C7.5 and C7.6. 

Table C7.4 Coefficients for the mode-I weight function eq.(C7.3.6). 

a/D D0 D1 D2 

0 -0.1380 1.0932 -0.4278 
0.1 0.3626 1.0805 -0.3919 
0.2 0.6191 1.3460 -0.4279 
0.3 0.3251 1.5681 -0.4920 
0.4 -0.4503 1.6524 -0.5605 
0.5 -1.3284 1.4336 -0.5753 
0.6 -1.1857 -0.6181 -0.1554 
0.7 1.1930 -6.5147 1.1825 

 
Fig. C7.11  Stress intensity factor for the boundary conditions of un = constant, τRω = 0. For F see 
eq.(C7.3.2) and for F* eq.(C7.3.4). 
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Fig. C7.12 T-stress for the boundary conditions of un = const., τRω = 0. 

Table C7.5 Coefficient A1 according to eq.(A1.1.4). 

a/D ν=0 0.2 0.4 

0.1 -0.0983 -0.1209 -0.158 
0.2 -0.0389 -0.0450 -0.0546 
0.3 0.0189 0.0239 0.0305 
0.4 0.0721 0.0802 0.0901 
0.5 0.1035 0.110 0.1166 
0.6 0.1113 0.1153 0.1196 
0.7 0.1036 0.1072 0.1108 
0.8 0.0879 0.0920 0.0960 

Table C7.6 Coefficient B1 according to eq.(A1.1.4). 

a/D ν=0 0.2 0.4 

0.1 0   
0.2 0 0  
0.3 0 0  
0.4 0.001 0 0 
0.5 0.007 0.006 0.005 
0.6 0.017 0.013 0.010 
0.7 0.030 0.024 0.017 
0.8 0.047 0.037 0.027 
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Figure C7.13 represents the crack opening displacements δ (for δ see Fig. C7.5) under 
constant radial displacements and disappearing shear traction at the circumference as 

 δ σ λ=
2a

E
a D*

'
( / )  (C7.3.7) 

with σ* given by eq.(C7.3.1). 

 
Fig. C7.13 Crack-mouth displacement represented by eq.(C7.3.7). Boundary conditions: un = const.,  
τRω = 0. 

C7.3.2  Case   σn = constant, vω = 0 

In this case, the stress intensity factor is  

 ),/(I νπσ DaFaK n=  (C7.3.8) 

The geometric function is plotted in Fig. C7.14a for several values of ν. Figure C7.14b 
represents the T-stress.  

For the special value of ν = 0.25 the geometric function is fitted for α ≤0.75 as 

 32 4497.07739.02603.06163.0 ααα −++≅F  (C7.3.9) 

For ν = 0.25 a 3-terms weight function is given by eq.(C7.3.6) with the coefficients compiled 
in Table C7.7. 
The higher-order coefficients A1 and B1 of eq.(A1.1.4) are listed in Tables C7.8 and C7.9. 
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Table C7.7 Coefficients for the mode-I weight function eq.(C7.3.6). 

a/D D0 D1 D2 
0 -2.004 2.3359 -.801 
0.1 -1.8374 2.2169 -.766 
0.2 -1.6113 2.0637 -.720 
0.3 -1.3594 1.9233 -.675 
0.4 -1.1044 1.8252 -.639 
0.5 -0.8624 1.7833 -.614 
0.6 -0.6434 1.8003 -.603 
0.7 -0.454 1.8723 -.605 
0.8 -0.300 1.9927 -.619 

 
Fig. C7.14 Geometric function for the stress intensity factor K and T-stress under the boundary 

conditions of σn = const., vω = 0. 

Table C7.8 Coefficient A1 according to eq.(A1.1.4). 

a/D ν=0 0.2 0.4 

0.1 -0.176 -0.176 -0.176 
0.2 -0.124 -0.123 -0.122 
0.3 -0.100 -0.099 -0.098 
0.4 -0.080 -0.080 -0.080 
0.5 -0.058 -0.059 -0.061 
0.6 -0.029 -0.031 -0.034 
0.7 0.018 0.013 0.009 
0.8 0.100 0.096 0.088 
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Table C7.9 Coefficient B1 according to eq.(A1.1.4). 

a/D ν=0 0.2 0.4 

0.1 0.047 0.040 0.024 
0.2 -0.059 -0.067 -0.078 
0.3 -0.087 -0.092 -0.095 
0.4 -0.130 -0.130 -0.129 
0.5 -0.191 -0.186 -0.181 
0.6 -0.281 -0.270 -0.260 
0.7 -0.420 -0.405 -0.392 
0.8 -0.664 -0.657 -0.626 
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C7.4 Disk under displacement boundary conditions 
An edge-cracked circular disk under pure displacement boundary conditions is shown in Fig. 
C7.15. In this case a constant radial displacement and disappearing tangential displacements 
are prescribed. 

 
Fig. C7.15 Edge-cracked disk under pure displacement boundary conditions: constant radial 
displacement, disappearing tangential displacements.  

Case:   un = constant, vω=0 
With the characteristic stress value given by eq.(C7.3.1), the stress intensity factor is  

 ),/(*I νπσ DaFaK =  (C7.4.1) 

The geometric functions F and F* according to eq.(C7.3.4) are plotted in Fig. C7.16 for 
several Poisson's ratios. The T-stresses are shown in Fig. C7.17. 

 
Fig. C7.16 Geometric functions for the boundary conditions of un = const., vω = 0. For F see 
eq.(C7.4.1), for F* eq.(C7.3.4). 
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For the special value of ν = 0.25 the results are fitted as 

 DaF /,2192.0175.0814.0 2 =−−≅ ααα  (C7.4.2) 

and the related T-stress (for 0.1 ≤ a/D ≤ 0.8) by 

 32 448.11934.15568.00388.0*/ ααασ +−+≅T  (C7.4.3) 

For ν = 0.25 a 3-terms weight function is given by eq.(C7.3.6) with the coefficients compiled 
in Table C7.10. 

Table C7.10 Coefficients for the mode-I weight function eq.(C7.3.6). 

a/D D0 D1 D2 

0 -2.0340 2.3560 -0.8068
0.1 -2.1094 2.4119 -0.8230
0.2 -2.2105 2.4972 -0.8468
0.3 -2.3398 2.6175 -0.8795
0.4 -2.5015 2.7814 -0.9230
0.5 -2.7020 3.0014 -0.9804
0.6 -2.9501 3.2955 -1.0558
0.7 -3.2593 3.6902 -1.1553
0.8 -3.6498 4.2264 -1.2886

Higher-order coefficients of eq.(A1.1.4) are compiled in Tables C7.11 and C7.12. 

 
Fig. C7.17 T-stress for the boundary conditions of un = constant, vω = 0. 
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Table C7.11 Coefficient A1 according to eq.(A1.1.4). 

a/D ν=0 0.2 0.4 
0.1 -0.171 -0.213 -0.283
0.2 -0.120 -0.149 -0.197
0.3 -0.097 -0.120 -0.157
0.4 -0.083 -0.102 -0.133
0.5 -0.073 -0.090 -0.115
0.6 -0.064 -0.080 -0.102
0.7 -0.057 -0.071 -0.091
0.8 -0.047 -0.062 -0.082

Table C7.12 Coefficient B1 according to eq.(A1.1.4). 

a/D ν=0 0.2 0.4 
0.1 0.257 0.248 0.260 
0.2 0.136 0.142 0.159 
0.3 0.099 0.107 0.125 
0.4 0.082 0.090 0.108 
0.5 0.071 0.080 0.098 
0.6 0.061 0.073 0.092 
0.7 0.048 0.063 0.085 
0.8 0.014 0.037 0.067 
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C7.5 Brazilian disk (edge-cracked) 
The diametric compression test carried out on an edge-cracked circular plate of diameter 
D=2R is illustrated in Fig. C7.18. This arrangement is called Brazilian disk test. 

 
Fig. C7.18 Brazilian disk test with edge-cracked disk. 

The tangential, radial, and shear stress components (σϕ, σr, and τrϕ) in an uncracked Brazilian 
disk were given by Erdlac (quoted in [C7.4]) as 
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Using eq.(C7.1.8), the T-stress has been determined. The T-stress term, evaluated for several 
relative crack depths a/W and several angles Θ, is compiled in Table C7.13.  
The mode-I stress intensity factor KI (necessary for the computation of the biaxiality ratio) is 
compiled in Table C7.14 and plotted in Fig. C7.19a in form of the geometric function F 
which in this case is defined as  
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The biaxiality ratio β is compiled in Table C7.15 and plotted in Fig. C7.19b. In both 
representations the values of β are given in the normalized form β(1-a/D)1/2. 

 
Fig. C7.19  Brazilian disk test with an edge-cracked disk: a) Geometric function for the mode-I stress 

intensity factor, b) biaxiality ratio β(1-a/D)1/2. 

Table  C7.13  T-stress T/σ* for the Brazilian disk test (σ*=P/(πBR)). 

a/D Θ = π/16 π/8 π/4 3π/8 7π/16 π/2 
0 0.000 0.000 0.000 0.000 0.000 0.000 

0.05 1.89 1.079 0.379 0.229 0.204 0.197 
0.1 -1.93 1.12 0.769 0.516 0.468 0.454 
0.15 -4.53 0.00 1.032 0.846 0.792 0.775 
0.2 -5.45 -1.42 1.045 1.185 1.165 1.157 
0.25 -5.66 -2.56 0.777 1.488 1.561 1.581 
0.3 -5.65 -3.34 0.296 1.699 1.936 2.009 
0.35 -5.59 -3.85 -0.285 1.773 2.226 2.375 
0.4 -5.57 -4.22 -0.864 1.689 2.360 2.591 
0.45 -5.59 -4.49 -1.388 1.435 2.263 2.557 
0.5 -5.70 -4.75 -1.846 0.993 1.862 2.174 
0.55 -5.90 -5.00 -2.272 0.315 1.09 1.358 
0.6 -6.20 -5.33 -2.751 -0.70 -0.16 0.028 
0.65 -6.55 -5.60 -3.450 -2.24 -2.03 -1.941 
0.7 -7.1 -6.04 -4.600 -4.58 -4.72 -4.825 
0.75 -7.9 -6.8 -6.946 -87.37 -8.9 -9.290 
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Table  C7.14  Geometric function F×(1-a/D)3/2 for the Brazilian disk test. 

a/D Θ=π/8 π/4 3π/8 π/2 
0 0 0 0 0 

0.05 -0.905 -0.283 -0.168 -0.144
0.1 -1.495 -0.565 -0.348 -0.300
0.2 -1.568 -1.003 -0.723 -0.650
0.3 -1.221 -1.182 -1.063 -1.015
0.4 -0.958 -1.200 -1.316 -1.346
0.5 -0.795 -1.186 -1.477 -1.584
0.6 -0.702 -1.192 -1.570 -1.709
0.65 -0.675 -1.204 -1.597 -1.738
0.7 -0.660 -1.217 -1.613 -1.753
0.75 -0.655 -1.230 -1.622 -1.759

Table  C7.15  Biaxiality ratio β(1-a/D)1/2 for the Brazilian disk test. 

a/D Θ = π/16 π/8 π/4 3π/8 7π/16 π/2 
0 -1.228 -1.228 -1.228 -1.228 -1.228 -1.228 

0.05 -0.62 -1.072 -1.206 -1.227 -1.224 -1.225 
0.1 0.535 -0.60 -1.097 -1.198 -1.214 -1.212 
0.15 1.43 0.006 -0.910 -1.137 -1.176 -1.187 
0.2 1.98 0.590 -0.662 -1.046 -1.116 -1.138 
0.25 2.30 1.040 -0.384 -0.924 -1.031 -1.064 
0.3 2.46 1.345 -0.117 -0.779 -0.920 -0.965 
0.35 2.53 1.519 0.106 -0.620 -0.785 -0.838 
0.4 2.52 1.586 0.265 -0.459 -0.632 -0.688 
0.45 2.47 1.570 0.357 -0.305 -0.465 -0.517 
0.5 2.38 1.492 0.393 -0.165 -0.293 -0.337 
0.55 2.25 1.367 0.390 -0.039 -0.132 -0.160 
0.6 2.09 1.208 0.369 0.073 0.017 0.00 
0.65 1.87 1.016 0.347 0.172 0.146 0.138 
0.7 1.63 0.827 0.338 0.256 0.248 0.246 
0.75 1.36 0.65 0.348 0.324 0.323 0.323 

1 0.423 0.423 0.423 0.423 0.423 0.423 
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C7.6 Edge-cracked disk with thermal stresses 
In a thermally loaded circular disk the stresses in the absence of a crack consist of the circum-
ferential stress component σϕ and of the radial stress distribution σr. The two stress com-
ponents can be computed from the temperature distribution Θ(r) with r = R-x (see e.g. [C7.5]) 
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with the thermal expansion coefficient αT. The temperature distributions may often be repre-
sented by 
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with the maximum temperature occurring in the centre of the disk (r = 0). In this case, the 
related stresses are given by 
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For the special case of Θ=0 at the circumference it must hold  

 )1( 24 +−= BB  (C7.6.6) 

with the stresses 
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As an example of application, the coefficient B2 may be chosen to be B2=-2. Figure C7.20a 
shows the temperature distribution. The related stresses are given in Fig. C7.20b.  

 
Fig. C7.20 a) Temperature distribution and b) stresses in a thermally heated disk (for B2= -2). 

The stress intensity factor can be computed with the weight function for the edge-cracked 
disk. The resulting K is given in Fig. C7.21a in normalized form. The T-stress computed by 
use of the 3-terms Green's function (C7.1.8, C7.1.9) is represented in Fig. C7.21b as the solid 
curve. The 3-terms Green's function with averaged coefficients, eq.(C7.1.10) is shown by the 
dash-dotted line.  
The approximate T-stress solution obtained by using the single-term Green's function 
eq.(C7.1.13) reads 
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and for the specially chosen value of B2=-2 
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This solution is introduced in Fig. C7.21b as the dashed curve. 

The biaxiality ratio β, as defined by eq.(A1.3.12), is plotted in Fig. C7.21c. Very high β-
values occur for a/D > 0.5. The main reason is the very small stress intensity factor, which 
disappears at approximately a/D = 0.75. 
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Fig. C7.21 a) Stress intensity factor and b) T-stress for a disk under thermal loading (solid curve: 
eqs.(C7.1.8, C7.1.9), dashed curve: single-term approximation (C7.1.11), dash dotted: approximation 
(C7.1.10)), c) biaxiality ratio. 
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C8 
Single-edge-cracked rectangular plates 
C8.1 Rectangular plate under pure tension 
The edge-cracked rectangular plate under constant tensile loading is shown in Fig. C8.1. 

 
Fig. C8.1 Edge-cracked plate under tensile load. 

The stress intensity factor solution for this case is given by 

  K aFt= σ π  (C8.1.1) 

with the geometric function compiled in Table C8.1. 

A 2-terms weight function for the edge-cracked plate reads [C8.1] 
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with the coefficients of Tables C8.2 and C8.3. The T-stress is plotted in Fig. C8.2 and 
compiled in Table C8.4. In Fig. C8.2 the biaxiality ratios for H/W = 0.5 and 1.0 are compared 
with a solution by Leevers and Radon [C8.2] available for these geometries. The agreement is 
very good. 
Figure C8.3 shows the biaxiality ratio β (see also Table C8.5). 
For a long plate (H/W = 1.5) the stress intensity factor is given by [C8.1] 
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with α=a/W. The T-stress is described by 
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In this case, the biaxiality ratio reads  

 β α α α α α
α

=
− + + + − +

−
0 469 01456 13394 0 4369 21025 10726
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2 3 4 5. . . . . .
 (C8.1.5) 

 
Fig. C8.2  T-stress under tensile loading. 

 
Fig. C8.3 Biaxiality ratios β: a) data from Table C8.5 (circles) compared with data reported by 
Leevers and Radon [C8.2] (squares), b) influence of the specimen height. 
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Table C8.1 Geometric function for tension Ft·(1-a/W)3/2. 

 H/W=1.5 1.25 1.00 0.75 0.5 0.4 0.3 0.25 
α=0 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215
0.1 1.0170 1.0172 1.0174 1.0182 1.0352 1.0649 1.1455 1.2431
0.2 0.9800 0.9799 0.9798 0.9877 1.0649 1.1625 1.3619 1.5358
0.3 0.9722 0.9723 0.9729 0.9840 1.0821 1.2134 1.4892 1.7225
0.4 0.9813 0.9813 0.9819 0.9915 1.0819 1.2106 1.5061 1.7819
0.5 0.9985 0.9986 0.9989 1.0055 1.0649 1.1667 1.4298 1.7013
0.6 1.0203 1.0203 1.0204 1.0221 1.0496 1.1073 1.2898 1.5061
0.7 1.0440 1.0441 1.0441 1.0442 1.0522 1.0691 1.1498 1.2685
0.8 1.0683 1.0683 1.0683 1.0690 1.0691 1.0734 1.0861 1.1201
1.0 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215

Table C8.2 Coefficient D0(1-a/W)3/2 for the weight function (C8.1.2). 

a/W H/W=1.5 1.25 1.00 0.75 0.5 0.4 
0.2 1.001 1.001 1.003 1.010 1.249 1.347 
0.3 1.298 1.302 1.326 1.317 1.539 1.816 
0.4 1.581 1.581 1.598 1.616 1.836 2.036 
0.5 1.827 1.829 1.835 1.859 1.973 2.122 
0.6 1.996 1.996 1.998 2.001 2.060 2.110 
0.7 2.070 2.071 2.071 2.079 2.104 2.094 
0.8 2.015 2.015 2.017 2.054 2.064 2.094 

Table C8.3 Coefficient D1(1- a/W)3/2  for the weight function (C8.1.2). 

a/W H/W=1.5 1.25 1.00 0.75 0.5 0.4 

0.2 0.1963 0.200 0.2100 0.2245 0.300 0.634 
0.3 0.3072 0.301 0.2641 0.3422 0.460 0.784 
0.4 0.4909 0.4909 0.4661 0.4887 0.624 0.970 
0.5 0.7329 0.7300 0.7213 0.7183 0.857 1.170 
0.6 1.074 1.074 1.072 1.077 1.186 1.368 
0.7 1.526 1.525 1.525 1.513 1.516 1.629 
0.8 2.128 2.128 2.128 2.066 2.050 2.018 



 

 198

Table  C8.4  T-stress for a plate under tension T/σ·(1-a/W)2. 

a/W H/W=1.5 1.00 0.75 0.50 0.40 0.30 0.25 
0 -0.526 -0.526 -0.526 -0.526 -0.526 -0.526 -0.526 

0.1 -0.452 -0.452 -0.452 -0.444 -0.432 -0.416 -0.400 
0.2 -0.374 -0.376 -0.373 -0.334 -0.270 -0.084 0.143 
0.3 -0.299 -0.298 -0.282 -0.148 0.030 0.449 0.890 
0.4 -0.208 -0.205 -0.175 0.040 0.310 0.912 1.526 
0.5 -0.106 -0.102 -0.070 0.167 0.473 1.165 1.858 
0.6 0.006 0.008 0.032 0.220 0.490 1.142 1.812 
0.7 0.122 0.123 0.134 0.234 0.404 0.869 1.387 
0.8 0.232 0.234 0.240 0.268 0.324 0.524 0.760 
0.9 0.352 0.353 0.356 0.364 0.372 0.376 0.380 
1.0 0.474 0.474 0.474 0.474 0.474 0.474 0.474 

Table  C8.5  Biaxiality ratio β(1-a/W)1/2 . 

a/W H/W=1.5 1.00 0.75 0.50 0.40 0.30 0.25 
0 -0.469 -0.469 -0.469 -0.469 -0.469 -0.469 -0.469 

0.1 -0.444 -0.444 -0.444 -0.429 -0.406 -0.363 -0.322 
0.2 -0.382 -0.384 -0.377 -0.314 -0.232 -0.062 0.093 
0.3 -0.308 -0.306 -0.287 -0.137 0.025 0.302 0.517 
0.4 -0.212 -0.209 -0.176 0.037 0.256 0.606 0.856 
0.5 -0.106 -0.102 -0.070 0.157 0.405 0.815 1.092 
0.6 0.006 0.008 0.031 0.210 0.443 0.885 1.203 
0.7 0.117 0.118 0.128 0.222 0.378 0.756 1.093 
0.8 0.217 0.219 0.225 0.251 0.302 0.482 0.679 
1.0 0.423 0.423 0.423 0.423 0.423 0.423 0.423 

 
Tables C8.6 and C8.7 represent some values for the coefficients A1 and B1 of the Williams 
series expansion. The next higher-order terms are compiled in Tables C8.8 and C8.9.For long 
plates (H/W ≥ 1.5) the coefficients A1 and B1 can be approximated by 
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Table C8.6 Coefficients A1 for tension. 

 H/W=1.00 0.75 0.5 0.4 0.3 0.25 
α=0.2 -0.0459 -0.0440 -0.0251 0.0061 0.0907  

0.3 -0.0140 -0.0084 0.0436 0.1219 0.3205 0.5414 
0.4 0.0438 0.0537 0.1431 0.2782 0.6248 1.011 
0.5 0.1655 0.1770 0.2933 0.4836 1.0043 1.595 
0.6 0.4513 0.4606 0.5774 0.8001 1.477 2.294 
0.7 1.254 1.257 1.335 1.5314 2.240 3.195 
0.8 3.768 4.284 4.346 4.440 4.81  

Table C8.7 Coefficients B1 for tension. 

 H/W=1 0.75 0.5 0.4 0.3 0.25 
α=0.2 0.2473 0.2379 0.1574 0.0561 -0.1510  

0.3 0.1453 0.1223 -0.0188 -0.1640 -0.4022 -0.5714 
0.4 0.0551 0.0328 -0.1050 -0.2557 -0.4886 -0.5957 
0.5 -0.0807 -0.0815 -0.1247 -0.2257 -0.4073 -0.4062 
0.6 -0.3932 -0.3563 -0.1838 -0.0893 -0.0277 0.1377 
0.7 -1.383 -1.313 -0.821 -0.2534 0.7099 1.446 
0.8 -5.22 -5.90 -5.26 -4.04 0.866  

Table C8.8 Coefficients A2 for tension. 

 H/W=1 0.5 0.25 

α=0.3 0.0111 0.0328 -0.7476
0.4 0.0888 -0.0130 -1.8675
0.5 0.2546 -0.0451 -3.4075
0.6 0.7246 0.1850 -5.415 
0.7 2.4535 1.7412 -7.471 
0.8 10.61 11.55  

Table C8.9 Coefficients B2 for tension. 

 H/W=1 0.5 0.25 

α=0.3 -0.2882 -0.0631 3.368 
0.4 -0.2302 0.2938 5.898 
0.5 -0.3278 0.5297 8.845 
0.6 -0.8237 0.3264 12.513
0.7 -3.088 -1.981 16.688
0.8 -16.39 -18.47  
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C8.2 Rectangular plate under bending load 
The plate under pure bending stresses 

  )/21()( Wxx b −= σσ   ,  (C8.2.1) 

is shown in Fig. C8.4. The stress intensity factor is given by 

           bb FaK πσ=  (C8.2.2) 

with the geometric function F compiled in Table C8.10. 

 
Fig.C8.4 Edge-cracked plate under bending load. 

Table C8.10 Geometric function for bending Fb·(1-a/W)3/2. 

a/W H/W=1.5 1.25 1.00 0.75 0.5 0.4 

0 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 

0.2 0.7561 0.7561 0.7562 0.7628 0.8279 0.9130 

0.3 0.6583 0.6583 0.6589 0.6677 0.7444 0.8475 

0.4 0.5861 0.5861 0.5865 0.5930 0.6567 0.7505 

0.5 0.5293 0.5293 0.5296 0.5332 0.5717 0.6388 

0.6 0.4842 0.4842 0.4842 0.4852 0.5022 0.5367 

0.7 0.4481 0.4479 0.4478 0.4478 0.4514 0.4621 

0.8 0.4203 0.4188 0.4191 0.4185 0.4180 0.4185 

1.0 0.374 0.374 0.374 0.374 0.374 0.374 
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Table  C8.11  T-stress for a plate under bending T/σb·(1-a/W)2. 

a/W H/W=1.5 0.75 0.50 0.40 0.30 0.25 

0 -0.526 -0.526 -0.526 -0.526 -0.526 -0.526 
0.2 -0.150 -0.148 -0.114 -0.061 0.099 0.292 
0.3 -0.039 -0.024 0.080 0.222 0.559 0.920 
0.4 0.044 0.067 0.224 0.424 0.873 1.333 
0.5 0.099 0.124 0.283 0.493 0.964 1.439 
0.6 0.133 0.150 0.269 0.438 0.840 1.251 
0.7 0.151 0.158 0.217 0.314 0.574 0.857 
0.8 0.158 0.158 0.174 0.204 0.302 0.426 
0.9 0.140 0.142 0.150 0.162 0.169 0.186 
1.0 0.113 0.113 0.113 0.113 0.113 0.113 

For a long plate (H/W ≥ 1.5) the stress intensity factor is [C8.1] 

 ⎥⎦
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The T-stress can be expressed by 
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with the bending stress  σb defined in eq.(C8.2.1). For other H/W see Table C8.11. 
The biaxiality ratio for a long plate (H/W = 1.5) is approximated by 
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(for other H/W see Table C8.12). Higher-order coefficients of the Williams stress function for 
bending are compiled in Tables C8.13 and C8.14. 
For long plates (H/W=1.5) the coefficients A1 and B1 can be approximated by 
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Figure C8.5 shows the T-stresses. In Fig. C8.6a, the biaxiality ratios for bending are 
compared with those for tension. 
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In Fig. C8.6b the biaxiality ratios for H/W = 1.5 are compared with a solution from literature 
[C8.3]. It should be noted that the results given by Sham [C8.3] were determined for a very 
long plate of H/W = 6. Nevertheless, this solution (squares) is very close to the BCM results of 
Table C8.12 (curve: interpolated by application of cubic splines). This excellent agreement 
indicates that the plates are represented by the limit case of an "infinitely long plate" in both 
cases. 

 
Fig. C8.5  T-stress under bending loading. 

 
Fig. C8.6 a) Biaxiality ratio of an edge-cracked plate or bar under tension and bending, b) biaxiality 
ratio β (Table C8.12, curve) compared with data reported by Sham [C8.3] (squares) for bending. 
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Table C8.12 Biaxiality ratio for bending β·(1-a/W)1/2. 

a/W H/W=1.5 0.75 0.5 0.4 
0 -0.469 -0.469 -0.469 -0.469

0.2 -0.198 -0.194 -0.138 -0.067
0.3 -0.059 -0.036 0.107 0.262 
0.4 0.075 0.113 0.341 0.565 
0.5 0.187 0.233 0.495 0.772 
0.6 0.275 0.309 0.536 0.816 
0.7 0.337 0.353 0.481 0.679 
0.8 0.376 0.378 0.416 0.487 
1.0 0.423 0.423 0.423 0.423 

Table C8.13 Coefficient A1 for bending. 

a/W H/W=1.5 1.25 1.00 0.75 0.5 0.4 
0.2 0.024 0.024 0.024 0.025 0.0419 0.067 
0.3 0.065 0.065 0.065 0.0696 0.1104 0.1722 
0.4 0.116 0.118 0.1185 0.1257 0.1906 0.2887 
0.5 0.201 0.201 0.2023 0.2104 0.2885 0.4148 
0.6 0.362 0.362 0.3623 0.3684 0.4409 0.5751 
0.7 0.746 0.744 0.744 0.747 0.792 0.900 
0.8 2.059 2.051 2.045 2.043 2.049 2.09 

Table C8.14 Coefficient B1 for bending. 

a/W H/W=1.5 1.25 1.00 0.75 0.5 0.4 

0.2   -0.035 -0.04 -0.103 -0.188 

0.3 -0.1216 -0.127 -0.123 -0.141 -0.251 -0.363 

0.4 -0.1944 -0.1958 -0.197 -0.213 -0.310 -0.408 

0.5 -0.2884 -0.2872 -0.289 -0.289 -0.308 -0.348 

0.6 -0.4666 -0.467 -0.464 -0.440 -0.315 -0.213 

0.7 -0.96 -0.951 -0.950 -0.907 -0.598 -0.230 

0.8 -3.07 -3.03 -3.00 -2.94 -2.52 -1.84 
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C8.3 Weight and Green's functions for plates of arbitrary height 
The two loading cases of tension and bending allow for deriving a weight function for stress 
intensity factor computations according to eq.(A3.1.10a) as outlined in Section A3.2.2 (see 
also [C8.1], Chapter 3). For a 3 terms set-up 
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the additional crack-mouth condition d2h/dx2=0 at x=0 (see [C8.1]) can be used. Then the 
coefficients read 
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where the geometric functions from Tables C8.1 and C8.10 can be used. Since the 
coefficients D0-D1 contain differences between tensile and bending solutions (which are 
identical for a/W→0), the application of (C8.3.2-C8.3.4) is recommended for a/W>0.2. Figure 
C8.7a shows the weight function h for a relative crack depth of a/W=0.5 for a long and a short 
plate. The Green’s functions for T-stress are given in Fig. C8.7b. It is clearly visible that the 
effect of the specimen height is more pronounced for the Green’s function t. 

 
Fig. C8.7 Influence of the plate height H on a) the weight function h, b) the Green’s function t. 
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The tension and bending solutions also allow for deriving a Green’s function for T-stress 
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According to eqs.(A4.3.6) and (A4.3.7), the coefficients follow as 
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with the T-stresses Tt for tension and Tb for bending as obtained from Tables C8.4 and C8.11.  

In the special case of the long plate with H/W≥1.5, it holds 
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A Green's function approximation with integer exponents can be given by 
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with the coefficients E0 and E1 compiled in Tables C8.15 and C8.16. 

Table  C8.15  Coefficient E0/a·for the Green's function, eq.(C8.3.10). 

a/W H/W=1.5 0.75 0.50 0.40 0.30 

0.2 2.531 2.02 2.53 4.78 8.16 
0.3 1.456 1.31 4.00 6.53 11.74 
0.4 1.290 1.79 4.93 8.33 15.13 
0.5 1.728 2.25 5.71 9.46 18.67 
0.6 3.167 3.42 6.04 10.21 21.60 
0.7 6.204 6.42 8.05 11.73 23.31 
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Table  C8.16  Coefficient E1/a for the Green's function, eq.(C8.3.10). 

a/W H/W=1.5 0.75 0.50 0.40 0.30 

0.2 2.438 3.234 3.37 1.50 0.80 
0.3 1.714 2.286 0.980 0.82 1.55 
0.4 1.417 1.167 0.925 1.46 3.81 
0.5 0.864 1.152 1.44 3.17 5.95 
0.6 0.437 0.875 2.81 5.00 8.28 
0.7 0.789 1.034 3.35 5.93 10.71
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C8.4 Transverse loading 
An edge-cracked plate under transverse tractions σx is illustrated in Fig. C8.8. Under this 
loading, the stress intensity factor is defined by 

 K F ax= σ π  (C8.4.1) 

The geometric function F is plotted in Fig. C8.9 for several values of a/W, H/W, and d/W. 
Figure C8.10 represents the T-stresses. For the long plate (H/W ≥ 1.3) the data are compiled in 
Tables C8.17 and C8.18. The limit cases for F are: F = 0 for d/H = 0 and d/H = 1. For T it 
holds: T = 0 for d/H = 0 and T/σx = 1 for d/H = 1. 

 
Fig. C8.8 Edge-cracked plate under transverse traction. 

Table C8.17  Geometric function F for stress intensity factor representation eq.(C8.4.1). 

a/W d/W=0.05 0.1 0.2 0.4 0.6 0.8 

0.2 0.0852 0.1488 0.2162 0.1911 0.1048 0.0461 

0.3 0.0549 0.0950 0.1394 0.1300 0.0750 0.0341 

0.4 0.0441 0.0734 0.1005 0.0870 0.0493 0.0221 

0.5 0.0399 0.0631 0.0775 0.0560 0.0286 0.0118 

0.6 0.0385 0.0568 0.0600 0.0307 0.0138 0.0043 

0.7 0.0381 0.0504 0.0422 0.0147 0.0034 0.0000 

0.8 0.0381 0.0410 0.0206 0.0033 -0.0009 -0.0013 
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Table C8.18  T-stress represented as T/σx. 

a/W d/W=0.05 0.1 0.2 0.4 0.6 0.8 

0.2 0.4561 0.7713 1.0695 1.0888 1.0549 1.0242 

0.3 0.3425 0.6158 0.9670 1.1540 1.1173 1.0630 

0.4 0.2871 0.5332 0.8960 1.1750 1.1574 1.0907 

0.5 0.2693 0.5072 0.8725 1.1797 1.1717 1.1011 

0.6 0.2828 0.5317 0.9003 1.1866 1.1568 1.0920 

0.7 0.3345 0.6161 0.9786 1.1627 1.1233 1.0661 

0.8 0.4498 0.7805 1.0903 1.1157 1.0663 1.0326 

 

 
Fig. C8.9 Geometric function F according to eq.(C8.4.1). 
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Fig. C8.10  T-stresses represented as T/σx. 
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C8.5 Shear loading on crack surfaces 
An edge-cracked plate with crack faces loaded by constant shear stresses is illustrated by Fig. 
C8.11. The stress intensity factors KII are compiled in Fig. C8.12 and Table C8.19 in the form 
of the geometric function FII according to  

 aFK πτ IIII =  (C8.5.1) 

 
Fig. C8.11 Edge-cracked plate under shear loading. 

 
Fig. C8.12 Geometric function FII for the edge-cracked plate under shear loading. 

A representation of FII is given for H/W ≥ 1.25 by 
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Approximate relations for any H/W are reported in [C8.1]. 
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Table C8.19 Geometric function FII√(1-α) according to eq.(C8.5.1). 

a/W H/W=1.25 1.00 0.75 0.5 0.25 0.15 
0 1.1216 1.1216 1.1216 1.1216 1.1216 1.1216 

0.2 1.007 1.008 1.011 1.027 1.146 1.348 
0.3 0.955 0.958 0.964 0.983 1.215 1.475 
0.4 0.912 0.913 0.926 0.993 1.252 1.539 
0.5 0.876 0.878 0.893 0.969 1.246 1.549 
0.6 0.851 0.852 0.864 0.932 1.202 1.502 
0.7 0.834 0.835 0.842 0.885 1.112 1.395 
0.8 0.826 0.826 0.828 0.843 0.978 1.212 

A weight function hII is given by 
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with the coefficients D0 and D1 compiled in Tables C8.20 and C8.21. 

Table C8.20 Coefficients for the weight function eq.(C8.5.3) at H/W≥1.25. 

α D0 D1 

0 0.672 0.109 
0.1 0.674 0.108 
0.2 0.699 0.095 
0.3 0.774 0.058 
0.4 0.932 -0.018
0.5 1.219 -0.151
0.6 1.703 -0.372
0.7 2.535 -0.768

Table C8.21 Coefficients for the weight function eq.(C8.5.3) at H/W=0.5. 

α D0 D1 

0 0.672 0.110 
0.1 0.683 0.102 
0.2 0.783 0.074 
0.3 0.966 0.077 
0.4 1.165 0.178 
0.5 1.389 0.299 
0.6 1.741 0.277 
0.7 2.469 -0.149
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C9 
Partially loaded rectangular plate 
C9.1 Stress intensity factor solution 
An edge-cracked rectangular plate with constant stresses acting on a part of the plate ends is 
illustrated in Fig. C9.1. 

 

Fig. C9.1 Partially loaded edge-cracked rectangular plate. 

The geometric function of the stress intensity factor defined by 

  aFK πσ *I =  (C9.1.1) 

is compiled in Tables C9.1-C9.4 for several geometries [C9.1]. 

Table  C9.1  Geometric function F for H/W=1.25. 

a/W d/W=0 0.25 0.5 0.75 1.0 
0.3 0 1.049 1.643 1.859 1.637
0.4 0 1.245 1.990 2.318 2.103
0.5 0 1.546 2.538 2.968 2.825
0.6 0 2.054 3.472 4.080 4.034
0.7 0 3.138 5.274 6.191 6.327
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Table  C9.2  Geometric function F for H/W=1.00. 

a/W d/W=0 0.25 0.5 0.75 1.0 
0.3 0 1.056 1.668 1.871 1.656
0.4 0 1.280 2.009 2.296 2.112
0.5 0 1.568 2.599 2.982 2.824
0.6 0 2.139 3.483 4.101 4.035
0.7 0 3.207 5.229 6.280 6.353

Table  C9.3  Geometric function F for H/W=0.75. 

a/W d/W=0 0.25 0.5 0.75 1.0 
0.3 0 1.100 1.697 1.864 1.681
0.4 0 1.302 2.038 2.295 2.135
0.5 0 1.614 2.612 3.012 2.842
0.6 0 2.129 3.435 4.099 4.043
0.7 0 3.174 5.209 6.284 6.357

Table  C9.4  Geometric function F for H/W=0.50. 

a/W d/W=0 0.25 0.5 0.75 1.0 
0.3 0 1.296 1.862 1.961 1.847
0.4 0 1.479 2.242 2.422 2.323
0.5 0 1.676 2.752 3.126 3.007
0.6 0 2.193 3.575 4.249 4.146
0.7 0 3.190 5.240 6.307 6.386

An example of application of this loading case may be demonstrated for a plate with H/W = 

1.25 loaded by a couple of point forces P at several locations d/W, as illustrated in Fig. C9.2. 
First, we determine the stress intensity factors for two values d1 and d2 with d1 = d−ε and d2 = 

d+ε (ε « d) by interpolation of the tabulated results applying cubic splines. The normal force P 
is given by 
  BddP )(* 12 −σ=  (C9.1.2) 

(B = thickness). The stress intensity factor for this case is 
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(K1=K(x=d1), K2=K(x=d2)) and in case of d1, d2 → d (ε → 0) 
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Results for KP are given in Fig. C9.3. 

 
Fig. C9.2 Computation of stress intensity factors in plates loaded by a couple of point forces. 

 
Fig. C9.3 Stress intensity factor caused by a couple of forces acting at location d (H/W = 1.25). 
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C9.2 T-stress solution 
The T-stress terms Td and the biaxiality ratios for a constant stress over a distance d (Fig. 
C9.1) are entered into Tables C9.5-C9.12. 
Due to the non-homogeneous traction at the plate ends, a stress component σx will be 
generated along the crack line in the uncracked component already.  

Table  C9.5  T-stress Td/σ* for H/W=1.25. 

a/W d/W=0 0.25 0.5 0.75 1.0 

0.3 0 -0.196 -0.362 -0.501 -0.608
0.4 0 -0.072 -0.197 -0.372 -0.577
0.5 0 0.123 0.092 -0.102 -0.419
0.6 0 0.461 0.660 0.468 0.040 
0.7 0 1.199 1.90 1.806 1.337 

Table  C9.6  T-stress Td/σ* for H/W=1.00. 

a/W d/W=0 0.25 0.5 0.75 1.0 

0.3 0 -0.174 -0.360 -0.515 -0.606
0.4 0 -0.042 -0.193 -0.383 -0.570
0.5 0 0.157 0.117 -0.118 -0.409
0.6 0 0.522 0.680 0.474 0.051 
0.7 0 1.329 1.959 1.917 1.366 

Table  C9.7  T-stress Td/σ* for H/W=0.75. 

a/W d/W=0 0.25 0.5 0.75 1.0 

0.3 0 -0.094 -0.333 -0.524 -0.571
0.4 0 0.098 -0.115 -0.369 -0.485
0.5 0 0.348 0.251 -0.039 -0.277
0.6 0 0.703 0.808 0.560 0.199 
0.7 0 1.456 2.052 2.011 1.485 
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Table  C9.8  T-stress Td/σ* for H/W=0.50. 

a/W d/W=0 0.25 0.5 0.75 1.0 

0.3 0 0.257 -0.119 -0.317 -0.299 
0.4 0 0.722 0.457 0.136 0.110 
0.5 0 1.157 1.195 0.783 0.666 
0.6 0 1.614 2.007 1.668 1.372 
0.7 0 2.250 3.174 3.007 2.593 

Table  C9.9  Biaxiality ratio β(1-a/W)1/2 for H/W=1.25. 

a/W d/W=0.25 0.5 0.75 1.0 

0.3 -0.156 -0.184 -0.225 -0.311
0.4 -0.045 -0.077 -0.124 -0.213
0.5 0.056 0.026 -0.024 -0.105
0.6 0.142 0.122 0.073 0.006 
0.7 0.209 0.213 0.160 0.116 

Table  C9.10  Biaxiality ratio β(1-a/W)1/2 for H/W=1.00.  

a/W d/W=0.25 0.5 0.75 1.0 

0.3 -0.138 -0.181 -0.230 -0.306
0.4 -0.026 -0.074 -0.129 -0.209
0.5 0.071 0.032 -0.028 -0.102
0.6 0.154 0.124 0.073 0.008 
0.7 0.227 0.205 0.167 0.118 

Table  C9.11  Biaxiality ratio β(1-a/W)1/2 for H/W=0.75. 

a/W d/W=0.25 0.5 0.75 1.0 

0.3 -0.071 -0.164 -0.235 -0.284
0.4 0.059 -0.044 -0.125 -0.176
0.5 0.153 0.068 -0.009 -0.069
0.6 0.209 0.149 0.086 0.031 
0.7 0.251 0.216 0.175 0.128 
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Table  C9.12  Biaxiality ratio β(1-a/W)1/2 for H/W=0.50. 

a/W d/W=0.25 0.5 0.75 1.0 

0.3 0.166 -0.054 -0.135 -0.136
0.4 0.378 0.158 0.043 0.037 
0.5 0.488 0.329 0.177 0.157 
0.6 0.466 0.355 0.248 0.209 
0.7 0.386 0.332 0.261 0.222 

An example of application of this loading case may be demonstrated for a plate with H/W = 

1.25 loaded by a couple of point forces P at several locations d/W, as illustrated in Fig. C9.2a. 
The evaluation of the related T-stress term is explained in Fig. C9.2b. 
The T-stress for this case is [C9.2] 
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and for the case of d1, d2 → d (ε → 0) 
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In Fig. C9.4 the T-stresses are plotted as a function of the relative crack length a/W. 

 
Fig. C9.4 T-stress caused by a couple of forces acting at location d (H/W = 1.25). 
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The results compiled in Tables C9.5-C9.8 can be used to compute the T-stress for any given 
distribution of normal traction σn at the ends of the plate 
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0
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. (C9.2.3) 

If a smooth distribution of normal traction acts at the ends of the plate it is of advantage to 
rewrite also eq.(C9.2.3) and apply integration by parts. This leads to 
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d . (C9.2.4) 

As an example, the T-stress for bending was computed from eq.(C9.2.4). The results for two 
values of H/W are shown in Fig. C9.5 (circles) together with the data of Table C8.11 (curves), 
which were obtained directly from BCM computations. The agreement is good. 

 
Fig. C9.5 Comparison of bending results obtained with eq.(C9.2.4) (circles) and BCM results 

(curves). 
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C10 
Edge-cracked plate under mixed boundary 
conditions 
C10.1 Mixed boundary conditions at the ends 
The single-edge-cracked plate under displacement-controlled loading is shown in Fig. C10.1. 
In Fig. C10.1a the plate is extended in y-direction by a constant displacement v. Under plane 
stress conditions, the related stress in the uncracked plate is 

    σ 0 =
v
H

E  (C10.1.1) 

(E = Young's modulus). As second condition, disappearing shear traction at the ends of the 
plate may be prescribed, leading to a mixed boundary problem. The equivalent description of 
the crack problem is shown in Fig. C10.1b, where the crack faces are loaded by σ0 and y-
displacements at the ends of the plate are suppressed (v = 0). The rollers ensure free 
deformation in x direction. 

 
Fig. C10.1 Edge-cracked plate under displacement boundary conditions, a) loading by constant 
displacements v at the plate ends, b) equivalent crack face loading resulting from the superposition 
principle. 

Results for the stress intensity factors are illustrated in Fig. C10.2a in the form of the 
geometric function F with σ* = σ0. Boundary collocation results are entered as circles. For 
H/W ≤ 0.5 a simple representation of the results is given by [C10.1, C10.2] 

y 

2H 

τ=0 v=const 

a 

x 

a) 

W 

2H 

τ=0 v=0 

x 

b) 

σ0 

a 



 

 222

   F H
a

a
H

=
⎛

⎝
⎜

⎞

⎠
⎟ =

π
π γγ

γ

tanh . , ./1 11215 2 2  (C10.1.2) 

This solution is indicated by the curves in Fig. C10.2a. Figure C10.2b illustrates the T-stress 
normalised to σ0. In the case of H/W = 0.25, the T-stress is nearly constant within the range of 
0.4 ≤ a/W ≤ 0.7. In order to allow interpolations, Tables C10.1 and C10.2 provide single values 
for F and T. The biaxiality ratio is compiled in Table C10.3 and higher stress function 
coefficients are given in Tables C10.4-C10.7. 

 
Fig. C10.2 Results of BCM computations; a) stress intensity factor, expressed by F (symbols: BCM 
results, curves: eq.(C10.1.2)), b) T-stress (symbols as in a)). 

 
Fig. C10.3 Comparison of solutions for constant normal traction and constant displacements at the 
plate ends; a) geometric function for stress intensity factor, b) T-stress. 
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Figure C10.3 gives a comparison of the stress intensity factor and T-stress solutions for the 
stress conditions of (σy = σ0, τxy = 0 at y = H) and the results obtained with the displacement 
condition (v = const., τxy = 0 at y = H) at H/W = 0.25 and H/W = 0.5. 
Strong deviations of the results are obvious from Fig. C10.3. Whereas the geometric functions 
F for the stress boundary conditions increase monotonically with increasing a/W, the 
geometric function for the displacement boundary conditions decreases with a/W. This result 
illustrates that application of correct boundary conditions is necessary to compute the fracture 
mechanics parameters for a given crack problem. 

As a second displacement condition, the case of prescribed bending displacements 

    v = −⎛
⎝⎜

⎞
⎠⎟

σ 0 1 2H
E

x
W

 (C10.1.3) 

is considered with the outer fibre tensile stress σ0 in the uncracked plate. The results obtained 
for this type of loading are compiled in Tables C10.8 to C10.10. Higher order coefficients of 
the Williams stress function are entered into Tables C10.11 and C10.12. 

Table C10.1 Geometric function F if the stress intensity factor solution at v=const. 

a/W H/W=0.25 0.50 0.75 1.00 1.25 
0.00 1.1215 1.1215 1.1215 1.1215 1.1215 
0.25 0.558 0.794 0.938 1.030 1.094 
0.3 0.510 0.726 0.883 0.992 1.071 
0.4 0.445 0.627 0.782 0.909 1.012 
0.5 0.399 0.561 0.701 0.826 0.937 
0.6 0.364 0.515 0.638 0.750 0.855 
0.7 0.338 0.481 0.588 0.684 0.774 
0.8 0.318 0.453 0.548 0.629 0.704 

Table C10.2 T-stress data T/σ0 at v=const. 

a/W H/W=0.25 0.50 0.75 1.00 1.25 
0.00 -0.526 -0.526 -0.526 -0.526 -0.526 
0.25 -0.536 -0.448 -0.467 -0.490 -0.509 
0.3 -0.564 -0.460 -0.462 -0.484 -0.503 
0.4 -0.587 -0.505 -0.481 -0.490 -0.498 
0.5 -0.592 -0.555 -0.530 -0.525 -0.521 
0.6 -0.594 -0.606 -0.596 -0.583 -0.567 
0.7 -0.600 -0.662 -0.674 -0.661 -0.641 
0.8 -0.634 -0.735 -0.774 -0.776 -0.768 
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Table C10. 3 Biaxiality ratio β for v=const. 

a/W H/W=0.25 0.50 0.75 1.00 1.25 
0.00 -0.469 -0.469 -0.469 -0.469 -0.469 
0.25 -0.961 -0.564 -0.498 -0.476 -0.465 
0.3 -1.106 -0.634 -0.523 -0.488 -0.470 
0.4 -1.319 -0.805 -0.615 -0.539 -0.492 
0.5 -1.484 -0.989 -0.756 -0.636 -0.556 
0.6 -1.632 -1.177 -0.934 -0.777 -0.663 
0.7 -1.775 -1.376 -1.146 -0.966 -0.828 
0.8 -1.994 -1.623 -1.412 -1.234 -1.091 

Table C10.4 Coefficient A1 for v=const. 

a/W H/W=0.25 0.50 1.00 
0.3 -0.0737 -0.0459 -0.0356
0.4 -0.0744 -0.0489 -0.0296
0.5 -0.0744 -0.0517 -0.0264
0.6 -0.0744 -0.0532 -0.0235
0.7 -0.0748 -0.0532 -0.0186
0.8 -0.0760 -0.050 -0.0098

Table C10.5 Coefficient B1 for v=const. 

a/W H/W=0.25 0.50 1.00 
0.3 0.2775 0.1945 0.1669
0.4 0.2523 0.1752 0.1450
0.5 0.2464 0.1630 0.1364
0.6 0.2468 0.1589 0.1281
0.7 0.2544 0.1613 0.1156
0.8 0.2834 0.1664 0.1024

Table C10.6 Coefficient A2 for v=const.  

a/W H/W=0.25 0.50 1.00 
0.3 -0.1052 -0.0785 -0.0356
0.4 -0.0900 -0.0610 -0.0340
0.5 -0.0886 -0.0468 -0.0166
0.6 -0.0895 -0.0343 0.0123 
0.7 -0.0919 -0.0111 0.0649 
0.8 -0.0806 0.0590 0.192 



 

 225

Table C10.7 Coefficient B2 for v=const.  

a/W H/W=0.25 0.50 1.00 
0.3 -0.1880 -0.1082 -0.1501
0.4 -0.1282 -0.0685 -0.0758
0.5 -0.1091 -0.0498 -0.0635
0.6 -0.1017 -0.0394 -0.0870
0.7 -0.0836 -0.0577 -0.153 
0.8 -0.0736 -0.1636 -0.380 

Table C10.8 Geometric function F for bending displacements, eq.(C10.1.3). 

a/W H/W=0.25 0.50 0.75 1.00 1.25 
0.00 1.1215 1.1215 1.1215 1.1215 1.1215 
0.2 0.431 0.639 0.740 0.798 0.829 
0.3 0.250 0.412 0.531 0.614 0.677 
0.4 0.129 0.238 0.344 0.432 0.503 
0.5 0.035 0.102 0.186 0.262 0.330 
0.6 -0.041 -0.008 0.050 0.109 0.164 
0.7 -0.105 -0.103 -0.070 -0.032 0.007 
0.8 -0.162 -0.188 -0.183 -0.168 -0.148 

Table C10.9 T-stress data T/σ0 for bending displacements. 

a/W H/W=0.25 0.50 0.75 1.00 1.25 
0.00 -0.526 -0.526 -0.526 -0.526 -0.526 
0.2 -0.165 -0.121 -0.146 -0.165 -0.182 
0.3 -0.072 0.033 0.033 0.016 0.003 
0.4 0.040 0.161 0.184 0.176 0.171 
0.5 0.158 0.282 0.318 0.323 0.326 
0.6 0.276 0.402 0.446 0.462 0.476 
0.7 0.396 0.525 0.580 0.608 0.631 
0.8 0.525 0.662 0.741 0.790 0.828 
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Table C10.10 Biaxiality ratio β for bending displacements. 

a/W H/W=0.25 0.50 0.75 1.00 1.25 
0.00 -0.469 -0.469 -0.469 -0.469 -0.469 
0.2 -0.383 -0.189 -0.197 -0.207 -0.219 
0.3 -0.288 0.080 0.062 0.026 0.004 
0.4 0.310 0.676 0.535 0.407 0.340 
0.5 4.514 2.765 1.710 1.233 0.988 
0.6 -6.732 -0.020 8.92 4.238 2.902 
0.7 -3.771 -5.097 -8.285 -1.906 90.14 
0.8 -3.241 -3.521 -4.050 -4.702 -5.590 

Table C10.11 Coefficient A1 for bending displacements. 

a/W H/W=0.25 0.50 1.00 
0.3 0.0170 0.0406 0.0487
0.4 0.0318 0.0534 0.0674
0.5 0.0466 0.0647 0.0822
0.6 0.0615 0.0757 0.0959
0.7 0.0764 0.0870 0.1107
0.8 0.0917 0.0997 0.1304

Table C10.12 Coefficient B1 for bending displacements. 

a/W H/W=0.25 0.50 1.00 
0.3 -0.0206 -0.0843 -0.1074
0.4 -0.0768 -0.1107 -0.1344
0.5 -0.1264 -0.1318 -0.1512
0.6 -0.1754 -0.1518 -0.1681
0.7 -0.2255 -0.1759 -0.1960
0.8 -0.2849 -0.2177 -0.2560

A weight function for the crack problem illustrated in Fig. C10.1 was given in [C10.2] as 

  h
a

C x an
n

n

=
−

+ −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=−

=
∑2 1

1
1 1 2

1

4

π ρ
ρ ρ( ) , //  (C10.1.4) 

with the coefficients Cn compiled in Table C10.13. In order to allow wide range interpolations 
of the weight function it is of advantage to know the solution for the limit case H/W→0 which 
may be approximated by [C10.1] 
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Table C10.13  Coefficients for the weight function representation of eq.(C10.1.4). 

H/W  a/W=0.3 0.4 0.5 0.6 0.7 0.8 
0.25 C1 -1.6924 -2.3107 -2.9654 -3.6544 -4.3576 -50441 
 C2 0.4181 1.1296 2.3576 4.15225 6.4217 9.0209 
 C3 0.8616 1.0018 0.4213 -1.1047 -3.5700 -6.7893 
 C4 -0.7010 -0.9450 -0.9149 -0.4561 0.4673 1.7795 
0.50 C1 -0.7560 -1.0480 -1.3366 -1.5870 -1.8665 -2.2770 
 C2 0.0813 0.0515 0.1397 0.3347 0.3478 0.0345 
 C3 0.5542 0.6190 0.6893 0.7303 1.3338 3.0820 
 C4 -0.3818 -0.4584 -0.5345 -0.6192 -0.9558 -1.7863 
1.00 C1 0.1158 -0.1735 -0.4305 -0.6369 -0.7176 -0.5953 
 C2 0.1943 0.1825 0.1079 -0.0455 -0.4514 -1.3617 
 C3 0.4413 0.4832 0.5914 0.7634 1.1138 1.8879 
 C4 -0.3196 -0.3369 -0.3962 -0.4931 -0.6423 -0.9200 
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C10.2 Pure displacement conditions at the plate ends 
In the loading situation illustrated in Fig. C10.4 the displacements u are also kept constant. 
Since a rigid body motion has no influence on the stresses, we restrict the considerations to 
the case u = 0. The characteristic stress is chosen as 

 σ 0 =
v
H

E  (C10.2.1) 

Geometric functions F for stress intensity factors defined by 

 aFK πσ 0=   (C10.2.2) 

are represented in Tables C10.14-C10.16. An impression of the influence of the Poisson's 
ratio on the geometric function is given in Fig. C10.5. 
T-stress solutions for several Poisson's ratios ν are compiled in Tables C10.17-C10.19. 

 
Fig. C10.4 Edge crack under pure displacement boundary conditions. 

 
Fig. C10.5 Influence of Poisson's ratio ν on the geometric function F in eq.(C10.2.2). 
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The higher-order stress coefficients A1 and B1 (see eq.(A1.1.4)) are compiled in Tables 
C10.20-C10.25. 

Table C10.14 Geometric function for H/W = 0.25. 

a/W ν=0 0.1 0.2 0.3 0.4 
0 1.1215     
0.3 0.512 0.516 0.524 0.537 0.555 
0.4 0.444 0.447 0.455 0.466 0.482 
0.5 0.398 0.401 0.407 0.417 0.430 
0.6 0.364 0.367 0.372 0.380 0.390 
0.7 0.338 0.341 0.345 0.351 0.358 
0.8 0.318 0.320 0.322 0.326 0.330 

Table C10.15 Geometric function for H/W = 0.5. 

a/W ν = 0 0.1 0.2 0.3 0.4 
0 1.1215     
0.3 0.727 0.730 0.736 0.744 0.754 
0.4 0.630 0.636 0.643 0.652 0.664 
0.5 0.563 0.568 0.575 0.584 0.595 
0.6 0.516 0.520 0.525 0.532 0.540 
0.7 0.480 0.482 0.485 0.490 0.496 
0.8 0.451 0.452 0.453 0.455 0.458 

Table C10.16 Geometric function for H/W = 1.0. 

a/W ν = 0 0.1 0.2 0.3 0.4 
0 1.1215     
0.3 0.993 0.994 0.996 1.000 1.005 
0.4 0.909 0.911 0.914 0.918 0.924 
0.5 0.827 0.828 0.831 0.835 0.840 
0.6 0.751 0.752 0.754 0.757 0.762 
0.7 0.684 0.685 0.686 0.688 0.692 
0.8 0.629 0.629 0.630 0.632 0.635 

Table C10.17 T/σ0 for H/W = 0.25. 

a/W ν=0 0.1 0.2 0.3 0.4 
0 -0.526     
0.3 -0.547 -0.522 -0.506 -0.498 -0.499 
0.4 -0.577 -0.547 -0.525 -0.511 -0.505 
0.5 -0.590 -0.563 -0.544 -0.533 -0.529 
0.6 -0.599 -0.579 -0.568 -0.565 -0.570 
0.7 -0.614 -0.607 -0.605 -0.608 -0.616 
0.8 -0.651 -0.653 -0.659 -0.669 -0.682 
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Table C10.18 T/σ0 for H/W = 0.5. 

a/W ν = 0 0.1 0.2 0.3 0.4 
0 -0.526     
0.3 -0.468 -0.479 -0.494 -0.513 -0.535
0.4 -0.509 -0.518 -0.531 -0.549 -0.571
0.5 -0.557 -0.564 -0.575 -0.591 -0.611
0.6 -0.608 -0.614 -0.623 -0.635 -0.651
0.7 -0.664 -0.668 -0.674 -0.684 -0.696
0.8 -0.740 -0.740 -0.742 -0.747 -0.754

Table C10.19 T/σ0 for H/W = 1.0. 

a/W ν = 0 0.1 0.2 0.3 0.4 
0 -0.526     
0.3 -0.484 -0.488 -0.494 -0.501 -0.510
0.4 -0.492 -0.497 -0.504 -0.512 -0.521
0.5 -0.526 -0.531 -0.538 -0.546 -0.555
0.6 -0.583 -0.587 -0.592 -0.599 -0.607
0.7 -0.661 -0.664 -0.668 -0.673 -0.678
0.8 -0.776 -0.776 -0.779 -0.784 -0.791

Table C10.20 Coefficient A1 for H/W = 0.25. 

a/W ν=0 0.1 0.2 0.3 0.4 
0.3 -0.0752 -0.0775 -0.0815 -0.0871 -0.0944
0.4 -0.0761 -0.0782 -0.0817 -0.0868 -0.0933
0.5 -0.0762 -0.0783 -0.0817 -0.0863 -0.0922
0.6 -0.0763 -0.0785 -0.0817 -0.0859 -0.0911
0.7 -0.0767 -0.0787 -0.0815 -0.0850 -0.0891
0.8 -0.0771 -0.0784 -0.0799 -0.0818 -0.0839

Table C10.21 Coefficient A1 for H/W = 0.5. 

a/W ν = 0 0.1 0.2 0.3 0.4 
0.3 -0.0489 -0.0518 -0.0551 -0.0589 -0.0632
0.4 -0.0509 -0.0531 -0.0558 -0.0589 -0.0625
0.5 -0.0528 -0.0544 -0.0564 -0.0588 -0.0616
0.6 -0.0538 -0.0549 -0.0562 -0.0578 -0.0596
0.7 -0.0536 -0.0539 -0.0545 -0.0552 -0.0562
0.8 -0.0506 -0.0503 -0.0501 -0.0500 -0.0501
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Table C10.22 Coefficient A1 for H/W = 1.0. 
a/W ν = 0 0.1 0.2 0.3 0.4 
0.3 -0.0356 -0.0363 -0.0370 -0.0378 -0.0387 
0.4 -0.0298 -0.0302 -0.0310 -0.0321 -0.0326 
0.5 -0.0265 -0.0269 -0.0274 -0.0280 -0.0286 
0.6 -0.0234 -0.0236 -0.0239 -0.0243 -0.0248 
0.7 -0.0188 -0.0189 -0.0190 -0.0192 -0.0195 
0.8 -0.0106 -0.0105 -0.0106 -0.0108 -0.0112 

Table C10.23 Coefficient B1 for H/W = 0.25. 
a/W ν=0 0.1 0.2 0.3 0.4 
0.3 0.2742 0.2626 0.2559 0.2542 0.2574 
0.4 0.2532 0.2494 0.2506 0.2568 0.2679 
0.5 0.2466 0.2489 0.2561 0.2682 0.2852 
0.6 0.2472 0.2555 0.2672 0.2822 0.3006 
0.7 0.2552 0.2673 0.2815 0.2978 0.3163 
0.8 0.2778 0.2868 0.2951 0.3027 0.3095 

Table C10.24 Coefficient B1 for H/W = 0.5. 
a/W ν = 0 0.1 0.2 0.3 0.4 
0.3 0.1936 0.1953 0.1993 0.2056 0.2141 
0.4 0.1744 0.1759 0.1790 0.1837 0.1899 
0.5 0.1647 0.1672 0.1706 0.1749 0.1801 
0.6 0.1611 0.1635 0.1663 0.1695 0.1731 
0.7 0.1628 0.1632 0.1637 0.1643 0.1649 
0.8 0.1726 0.1699 0.1672 0.1645 0.1619 

Table C10.25 Coefficient B1 for H/W = 1.0. 
a/W ν = 0 0.1 0.2 0.3 0.4 
0.3 0.1684 0.1713 0.1743 0.1775 0.1809 
0.4 0.1455 0.1468 0.1486 0.1509 0.1536 
0.5 0.1363 0.1363 0.1367 0.1375 0.1386 
0.6 0.1280 0.1271 0.1265 0.1263 0.1264 
0.7 0.1171 0.1155 0.1144 0.1138 0.1136 
0.8 0.1058 0.1066 0.1073 0.1078 0.1081 
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C11 

Double-edge-cracked circular disk 
The double-edge-cracked circular disk is shown in Fig. C11.1. Different traction and displace-
ment boundary conditions will be considered in the following sections. 

 
Fig. C11.1 Double-edge-notched disk. 

C11.1 Traction boundary conditions 
The pure traction loading by σn = constant and τRω = 0 is illustrated in Fig. C11.2.  

 
Fig. C11.2 Double-edge-cracked disk under traction boundary conditions σn =const., τRω=0. 

The geometric function F for the stress intensity factor is 

 RaaFK n /, == απσ  (C11.1.1) 
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as shown in Fig. C11.3 and approximated by 

 
α

αααα
−

+−−+
≅

1
1776.11411.17959.02746.01215.1 432

F  (C11.1.2) 

In contrast to the single-edge-cracked disk, the relative crack length here is defined by α = a/R 
(R = D/2). 

 
Fig. C11.3 Geometric function F for the double-edge-cracked disk. 

The weight function for the double-edge cracked disk under traction boundary conditions 
reads 
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with the coefficients of 
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α
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=
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2D  (C11.1.6) 

The T-stress under loading by constant normal traction σn along the circumference is shown 
in Fig. C11.4 together with the biaxiality ratio β.  
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The T-stress can be expressed by 

 
α

αααα
σ −

+−−+
=

1
486.0385.0857.0282.0474.0 8642

n

T
 (C11.1.7) 

the biaxiality ratio by 

 
α

ααααβ
−

+−++
=

1
81.1679.3301.1145.0423.0 8642

 (C11.1.8) 

 
Fig. C11.4 T-stress and biaxiality ratio of the double-edge-cracked circular disk under circumferential 
normal traction. 

 
Fig. C11.5 Double-edge-notched disk; a) Green’s function from finite element computations, b) nor-

malized representation. 
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From the data of Fig. C11.5b, the average Green’s function results as  

 ])/1(473.0)/1(347.0/13.0[
)/1(

1 2/52/3 axaxax
Raa

t −+−+−
−

≅  (C11.9) 

For the Green's function under symmetrical loading the same approximate set-up is chosen as 
used for single-edge-cracked components. It reads 

 )/1(0
1 axEt a −=     (C11.1.10) 

with the parameter E0 entered into Table C11.1 and fitted for α ≤ 0.8 by the polynomial of 

 
α

αααα
−

+−−+
=

1
972.0770.0714.1564.0948.0 8642

0E  (C11.1.11) 

Table C11.1 T-stress, biaxiality ratio, and coefficient for the Green's function. 
Loading: Constant circumferential normal traction, zero shear traction. 

α T/σn β E0 

0 0.474 0.423 0.9481
0.2 0.599 0.472 1.199 
0.3 0.702 0.528 1.405 
0.4 0.829 0.604 1.658 
0.5 0.977 0.698 1.954 
0.6 1.136 0.795 2.273 
0.7 1.290 0.865 2.580 
0.8 1.425 0.873 2.850 

The higher order coefficients A1 and B1 according to eq.(A1.1.4) are compiled in Table C11.2. 

Table C11.2 Coefficients A1 and B1 according to eq.(A1.1.4). 

a/R A1 B1 

0.2 -0.039 0.472 
0.3 -0.012 0.285 
0.4 0.008 0.170 
0.5 0.021 0.085 
0.6 0.023 0.022 
0.7 0.007 -0.016 
0.8 -0.051 -0.025 
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Figure C11.5 represents the displacements under constant normal traction σn in the form of 

 Ra
E
a n /,)(

1
1ln1

'
2

=ααλ
α−α

σ
=δ  (C11.1.12) 

The results of boundary collocation computations are represented by the circles. From a least-
squares fit we obtain the representation of 

           λ α α α α α= + + − + −1454 0 3893 5 0022 195054 236198 10 32332 3 4 5. . . . . .  (C11.1.13) 

The dashed curve in Fig. C11.6 is the solution for the double-edge-cracked endless parallel 
strip as reported by Tada [C11.1]. 

 
Fig. C11.6 Crack mouth displacements (x = 0) according to eq.(C11.1.12); circles: Double-edge-

cracked disk, dashed curve: Results for the double-edge-cracked endless parallel strip, as reported in 
[C11.1]. 

The double-edge-cracked disk under constant shear traction τ0 on the crack faces is illustrated 
in Fig. C11.7 together with the stress intensity factor solution represented by 

 RaFFaFK /1', IIIIII0II −== πτ  (C11.1.14) 

The data of Fig. C11.7 can be expressed by 

 RaF /,
1

3584.05007.02185.05608.01215.1 432
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−
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αααα  (C11.1.15) 

In addition, Fig. C11.7 contains the mode-II stress intensity factor solution for the double-
edge-cracked endless strip [1] as the dashed curve. Only small deviations from this solution 
are visible in the region of 0.3 < a/R < 0.7. An approximate weight function can be derived 
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from eq. (C11.1.15) by application of the extended Petroski-Achenbach procedure (see e.g. 
[C11.2]). 
The coefficients for a representation 
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= ρρρρ

ρπ
(C11.1.16) 

are given by 
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Fig. C11.7 Double-edge-cracked disk under constant shear traction on the crack faces; dashed curve: 
Solution for the double edge-cracked endless strip (see e.g. [C11.1]). 
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C11.2 Mixed boundary conditions 

Figure C11.8 shows the case of constant normal traction σn and disappearing tangential dis-
placements vω along the circumference. The stress intensity factor described by  

 aRaFK n πνσ= )/,(  (C11.2.1) 

and the T-stress are plotted in Fig. C11.9. In this loading case the T-stresses are very small. 
The higher order terms A1 and B1 of eq.(A1.1.4) are compiled in Tables C11.3 and C11.4. 

 
Fig. C11.8 Mixed boundary conditions σn=const., vω=0. 

 
Fig. C11.9 Geometric function F and T-stress as functions of ν and a/R. 

For ν = 0.25 and α = a/R ≤ 0.75 the geometric function can be approximated by 

 F = + − +0 59 0 462 1171 11972 3. . . .α α α  (C11.2.2) 
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and the related T-stress at α ≤ 0.75 by 

 T / * . . . . .σ α α α α α= + − + −0127 5 024 18 468 26 0173 1379782 3 4 5 6  (C11.2.3) 

A weight function for ν =0.25 is given in the form of eq.(C11.1.3) with the coefficients com-
piled in Table C11.5. 

Table C11.3 Coefficient A1 according to eq.(A1.1.4). 

 ν=0 0.2 0.4 

a/R=0.2 -0.172 -0.172 -0.171
0.3 -0.137 -0.137 -0.137
0.4 -0.119 -0.118 -0.118
0.5 -0.108 -0.107 -0.107
0.6 -0.104 -0.103 -0.102
0.7 -0.108 -0.107 -0.107
0.8 -0.127 -0.127 -0.126

Table C11.4 Coefficient B1 according to eq.(A1.1.42). 

 ν=0 0.2 0.25 0.4 

a/R=0.2 0.011 0.009 -0.008 -0.014
0.3 -0.035 -0.041 -0.043 -0.048
0.4 -0.038 -0.045 -0.046 -0.051
0.5 -0.039 -0.047 -0.049 -0.053
0.6 -0.038 -0.045 -0.047 -0.051
0.7 -0.029 -0.034 -0.035 -0.039
0.8 -0.017 -0.022 -0.023 -0.026

Table C11.5 Coefficients for the weight function according to eq.(C11.1.3) at ν = 0.25. 

a/R D0 D1 D2 

0 -2.1306 2.4203 -0.8261 
0.1 -1.9737 2.3346 -0.7985 
0.2 -1.9052 2.3238 -0.7918 
0.3 -1.8619 2.3044 -0.7850 
0.4 -1.7853 2.2064 -0.7603 
0.5 -1.6213 1.9680 -0.7017 
0.6 -1.3276 1.5511 -0.5987 
0.7 -0.8859 0.9657 -0.4522 
0.75 -0.6128 0.6308 -0.3670 
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Figure C11.10 shows the case of constant radial displacements un and disappearing shear trac-
tions τRω. The stress intensity factor is given by  

 
R
EuaRaFK n=σπνσ= *,)/,(*  (C11.2.4) 

The geometric function F is plotted in Fig. C11.11a. In the form of 

 F F* ( )= −1 ν  (C11.2.5) 

the results (which now coincide for a/R = 0) are shown in Fig. C11.11b. 
For ν = 0.25 the geometric function F in the region of a/R ≤ 0.8 can be approximated by 

 5432
3
4 1736.76804.176637.1265527.08251.0 ααααα −+−++≅F  (C11.2.6) 

and the T-term by 

 65432 7657.65897.208847.23812.119611.0*/ ααααασ −+−+−≅T  (C11.2.7) 

 
Fig. C11.10  Mixed boundary conditions un =const., τRω=0. 

 
Fig. C11.11 Geometric function according to eq.(C11.2.4). 
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Fig. C11.12 T-stress term under the conditions of un =const., τRω=0. 

Values of the higher order coefficients A1 and B1 of eq.(A1.1.4) are compiled in Tables C11.6 
and C11.8. 

Table C11.6 Coefficient A1 according to eq.(A1.1.4). 

a/R ν=0 0.2 0.25 0.4 

0.2 -0.094 -0.116 -0.122 -0.149 
0.3 -0.064 -0.075 -0.079 -0.094 
0.4 -0.041 -0.047 -0.049 -0.055 
0.5 -0.025 -0.027 -0.028 -0.030 
0.6 -0.016 -0.016 -0.016 -0.017 
0.7 -0.015 -0.015 -0.015 -0.016 
0.8 -0.027 -0.030 -0.030 -0.033 

Table C11.7 Coefficient B1 according to eq.(A1.1.4). 

a/R ν=0 0.2 0.4 

0.2 0.003 0.002 0.001 
0.3 0.007 0.006 0.004 
0.4 0.010 0.008 0.007 
0.5 0.011 0.009 0.008 
0.6 0.010 0.008 0.007 
0.7 0.007 0.006 0.004 
0.8 0.003 0.003 0.002 
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A weight function for ν = 0.25 is given in the form of eq.(C11.1.3) with the coefficients com-
piled in Table C11.8. 

Table C11.8 Coefficients for the weight function according to eq.(C11.1.3) at ν = 0.25. 

a/R D0 D1 D2 

0 -0.1384 1.0933 -0.4279 
0.1 0.0604 1.0713 -0.4102 
0.2 0.1270 1.1218 -0.4159 
0.3 0.0186 1.2145 -0.4417 
0.4 -0.2367 1.3033 -0.4764 
0.5 -0.5643 1.3301 -0.5036 
0.6 -0.8484 1.1932 -0.4952 
0.7 -0.9663 0.7742 -0.4193 
0.8 -0.9132 0.1456 -0.2900 

Figure C11.13 represents the crack opening displacements δ (for δ see Fig. C11.6) under con-
stant radial displacements and disappearing shear traction at the circumference in the form of 

 δ σ λ=
2a

E
a R*

'
( / )  (C11.2.8) 

with σ* given by eq.(C11.2.4). 

 
Fig. C11.13 Crack mouth displacement represented by eq.(C11.2.8). Boundary conditions: un = const., 
τRω = 0. 
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C11.3 Displacement boundary conditions 
The case of pure displacement boundary conditions is illustrated in Fig. C11.14. Under these 
boundary conditions, the geometric functions F for the stress intensity factor defined by 
eq.(C11.2.4) result as shown in Fig. C11.15a. The T-stress term is given in Fig. C11.15b. 

 
Fig. C11.14 Displacement boundary conditions un =const., vω=0. 

For ν = 0.25 the geometric function F in the range of a/R ≤ 0.8 can be approximated by 

 202799.01267.0824.0 αα +−≅F  (C11.3.1) 

and the T-stress in the range 0.2 ≤ a/R ≤ 0.8 by 

 432 5331.02251.01016.0175.00496.0*/ αααασ +−−+≅T  (C11.3.2) 

 
Fig. C11.15 Geometric function F and T-stress as functions of ν and a/R. 
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Higher-order stress coefficients are compiled in Tables C11.9 and C11.10. 

Table C11.9 Coefficient A1 according to eq.(A1.1.4). 

a/R ν=0 0.2 0.25 0.4 

0.2 -0.170 -0.212 -0.226 -0.282 
0.3 -0.138 -0.172 -0.183 -0.228 
0.4 -0.119 -0.148 -0.158 -0.195 
0.5 -0.106 -0.132 -0.140 -0.172 
0.6 -0.096 -0.119 -0.126 -0.154 
0.7 -0.090 -0.111 -0.117 -0.142 
0.8 -0.090 -0.110 -0.117 -0.140 

Table C11.10 Coefficient B1 according to eq.(A1.1.4). 

a/R ν=0 0.2 0.25 0.4 

0.2 0.239 0.237 0.232 0.23 
0.3 0.167 0.171 0.174 0.188 
0.4 0.130 0.138 0.141 0.156 
0.5 0.106 0.114 0.117 0.133 
0.6 0.085 0.093 0.096 0.110 
0.7 0.065 0.072 0.074 0.085 
0.8 0.043 0.048 0.050 0.056 

A weight function for ν = 0.25 is given in the form of eq.(C11.1.3) with the coefficients com-
piled in Table C11.11. 

Table C11.11 Coefficients for the weight function according to eq.(C11.1.3) for ν = 0.25. 

a/R D0 D1 D2 

0 -1.9974 2.3316 -0.7995 
0.1 -2.0420 2.3613 -0.8084 
0.2 -2.0850 2.3898 -0.8170 
0.3 -2.1258 2.4166 -0.8250 
0.4 -2.1642 2.4414 -0.8326 
0.5 -2.2002 2.4640 -0.8395 
0.6 -2.2336 2.4842 -0.8457 
0.7 -2.2643 2.5017 -0.8513 
0.8 -2.2922 2.5164 -0.8561 
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C11.4 Double-edge-cracked Brazilian disk 
The Brazilian disk test with a double-edge-cracked circular disk is illustrated by Fig. C11.16. 

 
Fig. C11.16 Brazilian disk test with double-edge-cracked specimen. 

For the computation of the biaxiality ratio, the mode-I stress intensity factor is necessary. 
Stress intensity factors KI computed with the weight function, eqs.(C11.1.3)-(C11.1.6), and 
expressed by the geometric function F are presented in Table C11.12. The geometric function 
F is defined by 

 )/(*,*I RBPaFK πσπσ ==  (C11.4.1) 

Table  C11.12  Stress intensity factors represented by the geometric function F for the Brazilian disk. 

α = a/R Θ = π/32 π/16 π/8 π/4 3π/8 7π/16 π/2 

0 0 0 0 0 0 0 0 

0.1 -6.188 -2.952 -0.970 -0.304 -0.180 -0.160 -0.154 

0.2 -4.104 -3.311 -1.709 -0.648 -0.399 -0.357 -0.344 

0.3 -2.728 -2.680 -1.989 -0.987 -0.652 -0.590 -0.571 

0.4 -1.901 -2.044 -1.927 -1.274 -0.927 -0.854 -0.832 

0.5 -1.343 -1.541 -1.713 -1.479 -1.212 -1.145 -1.127 

0.6 -0.934 -1.153 -1.469 -1.607 -1.500 -1.459 -1.445 

0.7 -0.614 -0.855 -1.263 -1.705 -1.809 -1.817 -1.817 

Using the Green's function and the stress distribution given by eqs.(7.5.1) and (7.5.2), the T-
stress was computed. Table C11.13 contains the data for several angles Θ (see Fig. C11.16).  
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The biaxiality ratio resulting from the T- and the KI-solution is plotted in Fig. C11.17 for sev-
eral values of the angle Θ. 

Table  C11.13  T-stress T/σ* for the Brazilian disk test (σ*=P/(πRB)). 

a/R Θ = π/32 π/16 π/8 π/4 3π/8 7π/16 π/2 

0 0 0 0 0 0 0 0 
0.1 -3.04 1.88 1.074 0.378 0.228 0.204 0.196 
0.2 -8.85 -1.96 1.105 0.763 0.513 0.465 0.450 
0.3 -8.75 -4.62 -0.051 1.013 0.835 0.783 0.765 
0.4 -8.00 -5.60 -1.516 1.001 1.159 1.141 1.132 
0.5 -7.40 -5.90 -2.726 0.688 1.430 1.508 1.527 
0.6 -7.01 -6.02 -3.611 0.126 1.577 1.824 1.896 
0.7 -6.43 -5.84 -4.11 -0.50 1.61 2.07 2.22 

 
Fig. C11.17 Biaxiality ratio for the double-edge-notched Brazilian disk. 
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C12 
Double-edge-cracked rectangular plate 
C12.1 Double-edge-cracked plate under traction boundary conditions 
A double-edge-cracked rectangular plate under pure tensile loading is shown in Fig. C12.1. 
Stress intensity factors defined by  

 2/1
I )/1(', WaFFaFK −== πσ  (C12.1.1) 

are compiled in Table C12.1. A weight function for symmetric loading is given by  

 h
a

D D x a=
−

+ − + −
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⎝
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⎞

⎠
⎟⎟ =

2 1
1

1 10 1
3 2

π ρ
ρ ρ ρ( ) , //  (C12.1.2) 

with the coefficients D0, D1 listed in Tables C12.2 and C12.3. T-stresses are compiled in Ta-
ble C12.4. 

 
Fig. C12.1  Double-edge-cracked rectangular plate 

For a long plate (H/W  = 1.5) the T-stress term and biaxiality ratio β may be approximated by 

 
α−

α−α+α+−
=

σ 1
1256.01844.04672.0526.0 32T

 (C12.1.3) 
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2W 
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2H 
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α−

α−α+α+−
=β

1
00986.035646.014067.0469.0 32

 (C12.1.4) 

and for the quadratic plate (H/W = 1) by 

 T / . . . . .σ α α α α= − + − + −0 526 01804 2 7241 9 5966 6 38832 3 4  (C12.1.5) 

 β α α α α= − + − + −0 469 01229 12256 6 0628 4 49832 3 4. . . . .  (C12.1.6) 

The biaxiality ratios β are given in Table C12.5. 

Table C12.1  Geometric function FI', eq.(C12.1.1). 

a/W L/W=1.5 1.25 1.0 0.75 0.50 0.35 
0 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 
0.3 0.94 0.96 1.029 1.18 1.496 1.891 
0.4 0.8891 0.9197 0.9946 1.1926 1.646 2.196 
0.5 0.8389 0.8659 0.9427 1.1537 1.719 2.437 
0.6 0.7900 0.8135 0.8760 1.0597 1.6529 2.535 
0.7 0.7420 0.7492 0.8029 0.9297 1.4142 2.46 
1.0 0.6366 0.6366 0.6366 0.6366 0.6366 0.6366 

Table C12.2 Coefficient D0 for eq.(C12.1.2).  

a/W L/W=0.35 0.50 0.75 1.00 1.50 
0 0.585 0.584 0.584 0.584 0.584 
0.3 3.75 2.43 1.403 0.932 0.614 
0.4 4.91 3.26 1.777 1.085 0.720 
0.5 6.46 3.93 2.004 1.252 0.879 
0.6 8.14 4.29 2.12 1.478 1.160 
0.7 9.62 4.05 2.33 1.88 1.494 

Table C12.3 Coefficient D1 for eq.(C12.1.2). 

a/W L/W=0.35 0.50 0.75 1.00 1.50 
0 0.256 0.256 0.256 0.256 0.256 
0.3 1.303 0.953 0.552 0.302 0.216 
0.4 2.56 1.48 0.624 0.335 0.178 
0.5 3.37 2.05 0.739 0.325 0.134 
0.6 3.71 2.43 0.787 0.243 0.01 
0.7 3.95 2.83 0.557 0.024 0.034 
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In Fig. C12. 2 results of Table C12.5 are compared with data from literature (Kfouri [C12.1]). 
Differences of less than 0.01 were found, i.e. an excellent agreement can be stated. Further 
coefficients of the Williams stress function, eq.(A1.1.4), are listed in Tables C12.6 - C12.9. 

 
Fig. C12. 2 Comparison with data available from literature. Circles: Table C12.5, squares: Kfouri 
[C12.1]. 

Table  C12.4  T-stress T/σ of the double-edge-cracked plate in tension. 

α = a/W H/W=1.5 1.25 1.00 0.75 0.50 0.35 
0.0 -0.526 -0.526 -0.526 -0.526 -0.526 -0.526 
0.1 -0.530 -0.530 -0.530    
0.2 -0.532 -0.528 -0.527    
0.3 -0.532 -0.520 -0.512 -0.473 -0.257 0.293 
0.4 -0.528 -0.504 -0.440 -0.282 0.256 1.546 
0.5 -0.522 -0.464 -0.316 0.045 1.058 3.135 
0.6 -0.510 -0.409 -0.153 0.483 2.202 5.24 
0.7 -0.4932 -0.32 0.023 0.969 3.68 8.13 

Table  C12.5  Biaxiality ratio β of the double-edge-cracked plate in tension. 

α = a/W H/W=1.5 1.25 1.00 0.75 0.50 0.35 
0.0 -0.469 -0.469 -0.469 -0.469 -0.469 -0.469 
0.1 -0.475 -0.470 -0.464    
0.2 -0.476 -0.465 -0.451    
0.3 -0.472 -0.453 -0.416 -0.336 -0.144 0.174 
0.4 -0.460 -0.425 -0.343 -0.183 0.120 0.545 
0.5 -0.440 -0.379 -0.237 0.028 0.435 0.910 
0.6 -0.408 -0.318 -0.110 0.288 0.842 1.307 
0.7 -0.364 -0.228 0.016 0.571 1.424 1.903 

0 0.2 0.4 0.6 0.8
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Table  C12.6  Coefficient A1 of the double-edge-cracked plate in tension. 

a/W H/W=1.5 1.25 1.00 0.75 0.50 

0.3 -0.045 -0.043 -0.0362 -0.0192 0.0441 
0.4 -0.0416 -0.0371 -0.0237 0.0147 0.1395 
0.5 -0.0414 -0.0339 -0.0118 0.0522 0.2591 
0.6 -0.0454 -0.0277 -0.0053 0.0840 0.3936 
0.7 -0.0591 -0.0457 -0.0110 0.0956 0.5074 

Table  C12.7  Coefficient B1 of the double-edge-cracked plate in tension. 

a/W H/W=1.5 1.25 1.00 0.75 0.50 

0.3 0.1555 0.148 0.1208 0.0771 -0.0509 
0.4 0.1086 0.0911 0.0489 -0.0382 -0.1991 
0.5 0.0759 0.0505 -0.0099 -0.1384 -0.3478 
0.6 0.0515 0.0014 -0.0496 -0.2157 -0.5472 
0.7 0.0356 0.0039 -0.0671 -0.2510 -0.7722 

Table  C12.8  Coefficient A2. 

a/W 0.25 0.50 1.00 

0.3 0.541 0.0447 -0.0173
0.4 -1.867 0.007 0.0026 
0.5 -3.24 -0.061 0.0023 
0.6 -4.43 -0.158 -0.022 
0.7 -5.54 -0.372 -0.083 

Table  C12.9  Coefficient B2. 

a/W 0.25 0.50 1.00 

0.3 3.37 -0.096 -0.244
0.4 5.90 0.203 -0.142
0.5 8.50 0.390 -0.075
0.6 10.48 0.497 -0.017
0.7 11.45 0.661 0.036 
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C12.2 Mixed boundary conditions at the ends 
The double-edge-cracked plate under mixed boundary conditions is shown in Fig. C12.3. Re-
sults for stress intensity factors (expressed by the geometric function F according to 
eq.(C12.1.1)) are illustrated in Fig. C12.4a and compiled in Table C12.10. Also in this case, 
the curves introduced are described by eq.(C12.2.1). The numerical data are represented well 
up to H/W = 0.5 by 

 F H
a

a
H

=
⎛

⎝
⎜

⎞

⎠
⎟ =

π
π γγ

γ

tanh . , ./1 11215 2 2   (C12.2.1) 

with a maximum deviation of less than 3%. For the characteristic stress σ=σ0 it holds  

 σ 0 =
v
H

E  (C12.2.2) 

Figure C12.4b and Table C12.11 represent the T-stress. Values for β are compiled in Table 
C12.12. Higher order coefficients A1, B1, A2, and B2 according to eq.(A1.1.4) are given in Ta-
bles C12.13 - C12.16. 

 
Fig. C12.3 Double-edge-cracked plate under mixed boundary conditions. 

Table C12.10 Geometric function F for the double-edge-cracked plate. 

a/W H/W=0.25 0.50 0.75 1.00 1.25 
0.00 1.1215 1.1215 1.1215 1.1215 1.1215 
0.3 0.5104 0.726 0.868 0.940 0.976 
0.4 0.4446 0.625 0.764 0.853 0.905 
0.5 0.3987 0.557 0.680 0.772 0.834 
0.6 0.3641 0.508 0.614 0.703 0.772 
0.7 0.337 0.468 0.563 0.648 0.722 
0.8 0.314 0.480 0.527 0.612 0.693 

2W 

a 
2H

  

x 

a a 

v 
τxy=0 
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Table C12.11 T-stress data T/σ0 for the double-edge-cracked plate. 

a/W H/W=0.25 0.50 0.75 1.00 1.25 

0.00 -0.526 -0.526 -0.526 -0.526 -0.526 
0.3 -0.5632 -0.456 -0.443 -0.455 -0.471 
0.4 -0.5872 -0.494 -0.434 -0.423 -0.433 
0.5 -0.5919 -0.530 -0.437 -0.396 -0.396 
0.6 -0.5922 -0.546 -0.436 -0.369 -0.359 
0.7 -0.5903 -0.534 -0.417 -0.336 -0.315 
0.8 -0.5740 -0.480 -0.370 -0.290 -0.290 

 

 
Fig. C12.4 Results of BCM computations for the double-edge-cracked plate; a) stress intensity factor 
expressed by the geometric function F (symbols: BCM results, curves: Eq.(C12.2.1)), b) T-stress 
(symbols as in a)). 

Table C12.12 Biaxiality ratio β for the double-edge-cracked plate. 

a/W H/W=0.25 0.50 0.75 1.00 1.25 

0.0 -0.469 -0.469 -0.469 -0.469 -0.469 

0.3 -1.103 -0.628 -0.510 -0.484 -0.483 

0.4 -1.321 -0.790 -0.568 -0.496 -0.478 

0.5 -1.485 -0.952 -0.643 -0.513 -0.475 

0.6 -1.626 -1.075 -0.710 -0.525 -0.465 

0.7 -1.752 -1.141 -0.741 -0.519 -0.436 

0.8 -1.828 -1.00 -0.702 -0.474 -0.418 
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Table C12.13 Coefficient A1 for the double-edge-cracked plate. 

a/W H/W=0.25 0.50 0.75 1.00 1.25 
0.3 -0.0737 -0.0457 -0.0387 -0.0386 -0.0397 
0.4 -0.0744 -0.0490 -0.0364 -0.0335 -0.0342 
0.5 -0.0743 -0.0504 -0.0366 -0.0314 -0.0315 
0.6 -0.0742 -0.0509 -0.0372 -0.0313 -0.0311 
0.7 -0.0740 -0.0501 -0.0383 -0.0334 -0.0337 
0.8 -0.0726 -0.0495 -0.0424 -0.0409 -0.0433 

Table C12.14 Coefficient B1 for the double-edge-cracked plate. 

a/W H/W=0.25 0.50 0.75 1.00 1.25 
0.3 0.2776 0.1913 0.1543 0.1426 0.1368 
0.4 0.2522 0.172 0.1245 0.1021 0.0960 
0.5 0.2461 0.1470 0.1044 0.0772 0.0676 
0.6 0.2449 0.1266 0.0841 0.0573 0.0465 
0.7 0.2420 0.1027 0.0610 0.0394 0.0303 
0.8 0.2220 0.0697 0.0371 0.0236 0.0200 

Table C12.15 Coefficient A2. 

a/W H/W=0.25 0.50 1.00 
0.3  -0.0773 -0.0416
0.4 -0.0899 -0.0600 -0.0291
0.5 -0.0885 -0.0432 -0.0242
0.6 -0.0884 -0.0326 -0.0233
0.7 -0.0866 -0.0264 -0.0312
0.8 -0.0766 -0.0362 -0.0694

Table C12.16 Coefficient B2. 

a/W H/W=0.25 0.50 1.00 

0.3 -0.188 -0.113 -0.159
0.4 -0.128 -0.09 -0.088
0.5 -0.110 -0.067 -0.058
0.6 -0.108 -0.065 -0.047
0.7 -0.117 -0.074 -0.041
0.8 -0.176 -0.091 -0.032
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C12.3 Displacement boundary conditions at the ends 
The geometric function F, the T-stress, and the higher-order coefficients A1 and B1 of the dou-
ble-edge-cracked rectangular plate under pure displacement conditions at the plate ends (see 
Fig. C12.5) are given in Tables C12.17-C12.30 (for σ0 see eq.(C12.2.2)). 

 
Fig. C12.5 Double-edge-cracked plate under pure displacement boundary conditions. 

Table C12.17 Geometric function F for H/W = 0.25. 

a/W ν = 0 0.1 0.2 0.3 0.4 
0 1.1215     
0.3 0.5119 0.5156 0.5243 0.5381 0.557 
0.4 0.4443 0.4471 0.4549 0.4677 0.4854 
0.5 0.3982 0.4003 0.4071 0.4185 0.4346 
0.6 0.3637 0.3656 0.3717 0.3821 0.3967 
0.7 0.3365 0.3384 0.3441 0.3536 0.3670 
0.8 0.3137 0.3159 0.3214 0.3301 0.3420 

Table C12.18 T-stress T/σ0 for H/W = 0.25. 

a/W ν=0 0.1 0.2 0.3 0.4 
0 -0.526     
0.3 -0.5460 -0.5152 -0.4915 -0.4749 -0.4654 
0.4 -0.5744 -0.5337 -0.4997 -0.4724 -0.4517 
0.5 -0.5845 -0.5404 -0.5024 -0.4705 -0.4448 
0.6 -0.5856 -0.5412 -0.5030 -0.4709 -0.4449 
0.7 -0.5794 -0.5375 -0.5021 -0.4732 -0.4507 
0.8 -0.5578 -0.5232 -0.4953 -0.4741 -0.4596 
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x

a a
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u=0
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Table C12.19 Coefficient A1 for H/W = 0.25. 

a/W ν = 0 0.1 0.2 0.3 0.4 
0.3 -0.0752 -0.0774 -0.0816 -0.0879 -0.0960 
0.4 -0.0760 -0.0778 -0.0816 -0.0873 -0.0950 
0.5 -0.0760 -0.0778 -0.0815 -0.0872 -0.0948 
0.6 -0.0759 -0.0778 -0.0815 -0.0871 -0.0947 
0.7 -0.0757 -0.0777 -0.0815 -0.0871 -0.0944 
0.8 -0.0747 -0.0770 -0.0809 -0.0863 -0.0932 

Table C12.20 Coefficient B1 for H/W = 0.25. 

a/W ν=0 0.1 0.2 0.3 0.4 
0.3 0.2737 0.2568 0.2442 0.2359 0.2318 
0.4 0.2518 0.2412 0.2355 0.2347 0.2387 
0.5 0.2432 0.2354 0.2331 0.2361 0.2446 
0.6 0.2388 0.2327 0.2322 0.2374 0.2483 
0.7 0.2330 0.2292 0.2311 0.2386 0.2517 
0.8 0.2149 0.2156 0.2214 0.2324 0.2485 

Table C12.21 Geometric function F for H/W = 0.5. 

a/W ν = 0 0.1 0.2 0.3 0.4 
0 1.1215     
0.3 0.722 0.722 0.725 0.732 0.742 
0.4 0.625 0.629 0.637 0.649 0.666 
0.5 0.558 0.563 0.573 0.587 0.605 
0.6 0.509 0.515 0.524 0.538 0.555 
0.7 0.469 0.475 0.484 0.496 0.512 
0.8 0.437 0.441 0.449 0.460 0.474 

Table C12.22 T-stress T/σ0 for H/W = 0.5. 

a/W ν = 0 0.1 0.2 0.3 0.4 
0 -0.526     
0.3 -0.456 -0.458 -0.466 -0.481 -0.502 
0.4 -0.479 -0.472 -0.473 -0.481 -0.496 
0.5 -0.502 -0.488 -0.481 -0.482 -0.491 
0.6 -0.512 -0.494 -0.483 -0.480 -0.485 
0.7 -0.500 -0.482 -0.472 -0.496 -0.473 
0.8 -0.455 -0.441 -0.433 -0.460 -0.436 
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Table C12.23 Coefficient A1 for H/W = 0.50. 

a/W ν = 0 0.1 0.2 0.3 0.4 
0.3 -0.0439 -0.0529 -0.0578 -0.0638 -0.0711 
0.4 -0.0506 -0.0534 -0.0574 -0.0626 -0.0690 
0.5 -0.0519 -0.0541 -0.0575 -0.0620 -0.0676 
0.6 -0.0523 -0.0542 -0.0572 -0.0613 -0.0664 
0.7 -0.0518 -0.0539 -0.0564 -0.060 -0.0646 
0.8 -0.0515 -0.0532 -0.0556 -0.0587 -0.0624 

Table C12.24 Coefficient B1 for H/W = 0.50. 

a/W ν=0 0.1 0.2 0.3 0.4 
0.3 0.1808 0.1726 0.1678 0.1664 0.1683 
0.4 0.1550 0.1460 0.1398 0.1364 0.1357 
0.5 0.1368 0.1302 0.1261 0.1245 0.1254 
0.6 0.1207 0.1173 0.1162 0.1174 0.1210 
0.7 0.1012 0.1007 0.1022 0.1058 0.1114 
0.8 0.0716 0.0727 0.0753 0.0793 0.0847 

Table C12.25 Geometric function F for H/W = 1.0. 

a/W ν = 0 0.1 0.2 0.3 0.4 

0 1.1215     
0.3 0.925 0.918 0.913 0.911 0.912 
0.4 0.841 0.839 0.840 0.844 0.851 
0.5 0.767 0.769 0.774 0.781 0.791 
0.6 0.703 0.708 0.715 0.724 0.736 
0.7 0.653 0.658 0.666 0.676 0.688 
0.8 0.619 0.627 0.634 0.642 0.649 

Table C12.26 T-stress T/σ0 for H/W = 1.0. 

a/W ν = 0 0.1 0.2 0.3 0.4 
0 -0.526     
0.3 -0.460 -0.473 -0.486 -0.498 -0.509 
0.4 -0.434 -0.446 -0.460 -0.477 -0.497 
0.5 -0.411 -0.425 -0.441 -0.460 -0.482 
0.6 -0.385 -0.399 -0.416 -0.436 -0.459 
0.7 -0.351 -0.364 -0.379 -0.398 -0.419 
0.8 -0.302 -0.316 -0.329 -0.342 -0.354 
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Table C12.27 Coefficient A1 for H/W = 1.0. 

a/W ν = 0 0.1 0.2 0.3 0.4 
0.3 -0.0409 -0.0433 -0.0459 -0.0488 -0.0520 
0.4 -0.0371 -0.0395 -0.0422 -0.0452 -0.0484 
0.5 -0.0354 -0.0377 -0.0403 -0.0432 -0.0463 
0.6 -0.0351 -0.0371 -0.0395 -0.0422 -0.0452 
0.7 -0.0367 -0.0384 -0.0404 -0.0426 -0.0451 
0.8 -0.0433 -0.0452 -0.0469 -0.0483 -0.0493 

Table C12.28 Coefficient B1 for H/W = 1.0. 

a/W ν=0 0.1 0.2 0.3 0.4 
0.3 0.1456 0.1477 0.1521 0.1589 0.1681 
0.4 0.1047 0.1082 0.1128 0.1185 0.1252 
0.5 0.0783 0.0806 0.0840 0.0883 0.0937 
0.6 0.0575 0.0592 0.0616 0.0647 0.0686 
0.7 0.0391 0.0402 0.0418 0.0439 0.0465 
0.8 0.0239 0.0245 0.0252 0.0259 0.0266 

Table C12.29 Geometric function F for H/W = 1.25. 

a/W ν = 0 0.2 0.4 

0 1.1215   
0.3 0.964 0.954 0.958 
0.4 0.895 0.894 0.904 
0.5 0.829 0.833 0.847 
0.6 0.770 0.779 0.795 
0.7 0.724 0.733 0.752 

Table C12.30 T-stress T/σ0 for H/W = 1.25. 

a/W ν = 0 0.2 0.4 

0 -0.526   
0.3 -0.477 -0.490 -0.509 
0.4 -0.442 -0.462 -0.488 
0.5 -0.411 -0.436 -0.465 
0.6 -0.377 -0.404 -0.432 
0.7 -0.338 -0.356 -0.399 
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C12.4 Transverse loading 
A double-edge-cracked plate under transverse traction σx is illustrated in Fig. C12.6. Under 
this loading, the stress intensity factor is defined by 

 K F ax= σ π  (C12.4.1) 

The geometric function F is plotted in Fig. C12.7 for several values of a/W, H/W, and d/W. 
Figure C12.8 represents the T-stresses. 

 
Fig. C12.6 Double-edge-cracked plate under transverse loading. 
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Fig. C12.7 Geometric function F according to eq.(C12.4.1). 
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Fig. C12.8 T-stress represented as T/σx.  

Reference C12 
                                                 
[C12.1] Kfouri, A.P., Some evaluations of the elastic T-term using Eshelby's method, Int. J. Fract. 
30(1986), 301-315. 
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C13 
Edge-cracked bar in 3-point bending 
C13.1 Symmetric loading 
An edge-cracked bending bar loaded by a concentrated force P is shown in Fig. C13.1. Under 
symmetric loading (crack and force P on the symmetry line y=0), only mode-I stress intensity 
factors KI occur. These stress intensity factors are expressed by the geometric function which 
are defined as 

 2/3
II20I0I )/1/(',3, WaFF

BW
PLaFK −=== σπσ  (C13.1.1) 

The geometric function is given in Table C13.1. 
The T-stresses for the 3-point bending test were computed by application of the Green's 
function method using an expansion with two terms. T is entered into Table C13.2 and the 
related biaxiality ratios are compiled into Table C13.3 and plotted in Fig. C13.2. 

 
Fig. C13.1 3-point bending test. 

Table  C13.1  Geometric function F(1-a/W)3/2. 

a/W L/W=10 5 4 3 2.5 2 
0.1 0.8964 0.8849 0.8791 0.8694 0.8616 0.8504 
0.2 0.7493 0.7381 0.7325 0.7231 0.7156 0.7046 
0.3 0.6485 0.6387 0.6337 0.6255 0.6188 0.6091 
0.4 0.5774 0.5690 0.5651 0.5582 0.5527 0.5447 
0.5 0.5242 0.5177 0.5145 0.5091 0.5048 0.4985 
0.6 0.4816 0.4770 0.4744 0.4704 0.4672 0.4626 
0.7 0.4458 0.4430 0.4408 0.4381 0.4359 0.4328 
0.8 0.4154 0.4140 0.4124 0.4108 0.4094 0.4076 

a 

P

W 

2L 

thickness: B 

x 

y 
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Table  C13.2  T-stress in the form of T /σ*(1-a/W)2. 

a/W L/W=10 5 4 3 2.5 2 
0 -0.526 -0.526 -0.526 -0.526 -0.526 -0.526 

0.1 -0.291 -0.292 -0.291 -0.290 -0.289 -0.288 
0.2 -0.150 -0.149 -0.149 -0.149 -0.149 -0.149 
0.3 -0.044 -0.049 -0.054 -0.056 -0.058 -0.063 
0.4 0.035 0.026 0.022 0.014 0.008 -0.001 
0.5 0.088 0.077 0.071 0.061 0.054 0.044 
0.6 0.122 0.111 0.105 0.096 0.088 0.077 
0.7 0.141 0.132 0.127 0.119 0.113 0.103 
0.8 0.143 0.137 0.132 0.125 0.120 0.112 
0.9 0.132 0.128 0.126 0.122 0.119 0.115 
1 0.113 0.113 0.113 0.113 0.113 0.113 

Table  C13.3  Biaxiality ratio in the form of β(1-a/W)1/2 . 

 a/W L/W=10 5 4 3 2.5 2 
0 -0.469 -0.469 -0.469 -0.469 -0.469 -0.469 

0.1 -0.325 -0.330 -0.331 -0.334 -0.335 -0.339 
0.2 -0.200 -0.202 -0.203 -0.206 -0.208 -0.211 
0.3 -0.068 -0.077 -0.085 -0.090 -0.094 -0.103 
0.4 0.061 0.046 0.039 0.025 0.014 -0.002 
0.5 0.168 0.149 0.138 0.120 0.107 0.088 
0.6 0.253 0.233 0.221 0.204 0.188 0.166 
0.7 0.316 0.298 0.288 0.272 0.259 0.238 
0.8 0.344 0.331 0.320 0.304 0.293 0.259 
0.9 0.332 0.327 0.321 0.314 0.309 0.301 
1 0.302 0.302 0.302 0.302 0.302 0.302 

 
Fig. C13.2 Biaxiality ratio β for edge-cracked 3-point bending specimens with different ratios L/W. 
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C13.2 Misalignment in loading and crack location 
If the loading application point or the crack location are out of the symmetry plane, the stress 
distribution also reveals shear stresses in the uncracked body at the location of the crack. 
Based on the normal stresses σx and the shear stresses τxy , the stress intensity factors for 
bending tests with edge cracks can be determined by application of the weight function 
technique [C13.1]. Figure C13.3 shows the relevant geometric data. The mixed-mode stress 
intensity factors are represented in Tables C13.4-C13.25 in terms of the geometric function 
FI, eq.(C13.1.1), and the FII by  

 aFK πσ II0II =  (C13.2.1) 

 
Fig. C13.3 Edge-cracked bar under 3-point loading. 

The mode-I stress intensity factors for L/W=2.5 and 5 are shown in Fig. C13.4 and the mode-
II solutions in Fig. C13.5. 

 
Fig. C13.4 Geometric function F 'I as a function of eccentricity and crack depth. 
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Fig. C13.5 Geometric function F 
II as a function of eccentricity and crack depth. 

For the crack depth a/W = 0.5 the influences of the misalignments e/W and d/W are illustrated 
in normalised form. In Fig. C13.6a the geometric functions F'I are plotted versus e/W-d/W, i.e. 
versus the relative distance between the crack and the inner load application point. The data 
points obtained for different L/W ratios are nearly symmetrical to the axis e/W-d/W = 0. In Fig. 
C13.6b the data points of Fig. C13.6a are plotted in the form of 

  F F f e W d W
L We W d W e W d W' ' / /

// / / /− − =− =
−⎛

⎝⎜
⎞
⎠⎟0 . (C13.2.2) 

In this representation all data points can be represented by the same curve. The function f in 
eq.(C13.2.2) can be approximated by  
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The geometric function F' can be written as 

  F e W d W F e W d W
L We W d W' ( / / ) ' . ( / / )
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Fig. C13.6 Influence of e/W and d/W on the mode-I geometric function in normalised representation. 

Table C13.4  Geometric function F'I for d/W=0, L/W=2.0. 

e/W a/W=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

0.000 0.8500 0.7043 0.6089 0.5445 0.4984 0.4625 0.4327 0.4075

0.025 0.8495 0.7040 0.6086 0.5442 0.4980 0.4620 0.4321 0.4067

0.040 0.8488 0.7033 0.6080 0.5436 0.4974 0.4614 0.4313 0.4056

0.100 0.8425 0.6982 0.6033 0.5389 0.4924 0.4557 0.4246 0.3971

0.300 0.7882 0.6536 0.5632 0.5003 0.4536 0.4157 0.3832 0.3553

0.500 0.7013 0.5827 0.5014 0.4439 0.4009 0.3663 0.3373 0.3131

1.000 0.4624 0.3860 0.3327 0.2946 0.2661 0.2434 0.2245 0.2087

-0.025 0.8495 0.7040 0.6086 0.5442 0.4980 0.4620 0.4321 0.4067

-0.040 0.8488 0.7033 0.6080 0.5436 0.4974 0.4614 0.4313 0.4056

-0.100 0.8425 0.6982 0.6033 0.5389 0.4924 0.4557 0.4246 0.3971

-0.300 0.7882 0.6536 0.5632 0.5003 0.4536 0.4157 0.3832 0.3553

-0.500 0.7013 0.5827 0.5014 0.4439 0.4009 0.3663 0.3373 0.3131

-1.000 0.4624 0.3860 0.3327 0.2946 0.2661 0.2434 0.2245 0.2087
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Table C13.5  Geometric function FII for d/W=0, L/W=2.0. 

e/W a/W=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
0.000 0 0 0 0 0 0 0 0 
0.025 -0.0027 -0.0048 -0.0067 -0.0086 -0.0110 -0.0147 -0.0213 -0.0366
0.040 -0.0043 -0.0077 -0.0107 -0.0137 -0.0176 -0.0233 -0.0337 -0.0573
0.100 -0.0105 -0.0188 -0.0261 -0.0335 -0.0425 -0.0556 -0.0777 -0.1212
0.300 -0.0267 -0.0477 -0.0653 -0.0816 -0.0984 -0.1177 -0.1416 -0.1733
0.500 -0.0336 -0.0603 -0.0818 -0.0999 -0.1159 -0.1314 -0.1488 -0.1739
1.000 -0.0314 -0.0578 -0.0798 -0.0980 -0.1137 -0.1287 -0.1460 -0.1719
-0.025 0.0027 0.0048 0.0067 0.0086 0.0110 0.0147 0.0213 0.0366 
-0.040 0.0043 0.0077 0.0107 0.0137 0.0176 0.0233 0.0337 0.0573 
-0.100 0.0105 0.0188 0.0261 0.0335 0.0425 0.0556 0.0777 0.1212 
-0.300 0.0267 0.0477 0.0653 0.0816 0.0984 0.1177 0.1416 0.1733 
-0.500 0.0336 0.0603 0.0818 0.0999 0.1159 0.1314 0.1488 0.1739 
-1.000 0.0314 0.0578 0.0798 0.0980 0.1137 0.1287 0.1460 0.1719 

Table C13.6  Geometric function F'I for d/W=0.00, L/W=2.5. 

e/W a/W=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
0.000 0.8617 0.7156 0.6189 0.5528 0.5048 0.4673 0.4359 0.4095
0.025 0.8613 0.7153 0.6186 0.5525 0.5045 0.4669 0.4355 0.4089
0.040 0.8607 0.7148 0.6181 0.5520 0.5040 0.4664 0.4348 0.4079
0.100 0.8557 0.7107 0.6143 0.5483 0.5000 0.4619 0.4295 0.4011
0.300 0.8123 0.6750 0.5822 0.5174 0.4690 0.4299 0.3964 0.3677
-0.025 0.8613 0.7153 0.6186 0.5525 0.5045 0.4669 0.4355 0.4089
-0.040 0.8607 0.7148 0.6181 0.5520 0.5040 0.4664 0.4348 0.4079
-0.100 0.8557 0.7107 0.6143 0.5483 0.5000 0.4619 0.4295 0.4011
-0.300 0.8123 0.6750 0.5822 0.5174 0.4690 0.4299 0.3964 0.3677

Table C13.7  Geometric function FII for d/W=0, L/W=2.5. 

e/W a/W=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
0.000 0 0 0 0 0 0 0 0 
0.025 -0.0022 -0.0038 -0.0053 -0.0069 -0.0088 -0.0117 -0.0170 -0.0293
0.040 -0.0034 -0.0061 -0.0085 -0.0110 -0.0141 -0.0187 -0.0270 -0.0458
0.100 -0.0084 -0.0151 -0.0209 -0.0268 -0.0340 -0.0445 -0.0621 -0.0970
0.300 -0.0214 -0.0382 -0.0523 -0.0653 -0.0788 -0.0942 -0.1133 -0.1387
-0.025 0.0022 0.0038 0.0053 0.0069 0.0088 0.0117 0.0170 0.0293 
-0.040 0.0034 0.0061 0.0085 0.0110 0.0141 0.0187 0.0270 0.0458 
-0.100 0.0084 0.0151 0.0209 0.0268 0.0340 0.0445 0.0621 0.0970 
-0.300 0.0214 0.0382 0.0523 0.0653 0.0788 0.0942 0.1133 0.1387 
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Table C13.8  Geometric function F'I for d/W=0, L/W=5.0. 

e/W a/W=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
0.000 0.8848 0.7381 0.6387 0.5692 0.5177 0.4768 0.4425 0.4134
0.025 0.8846 0.7379 0.6385 0.5690 0.5176 0.4767 0.4423 0.4131
0.040 0.8844 0.7377 0.6383 0.5688 0.5174 0.4764 0.4419 0.4126
0.100 0.8819 0.7356 0.6364 0.5669 0.5154 0.4742 0.4393 0.4092
0.300 0.8602 0.7178 0.6203 0.5515 0.4998 0.4582 0.4227 0.3925
-0.025 0.8846 0.7379 0.6385 0.5690 0.5176 0.4767 0.4423 0.4131
-0.040 0.8844 0.7377 0.6383 0.5688 0.5174 0.4764 0.4419 0.4126
-0.100 0.8819 0.7356 0.6364 0.5669 0.5154 0.4742 0.4393 0.4092
-0.300 0.8602 0.7178 0.6203 0.5515 0.4998 0.4582 0.4227 0.3925

Table C13.9  Geometric function FII for d/W=0, L/W=5.0. 

e/W a/W=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
0.000 0 0 0 0 0 0 0 0 
0.025 -0.0011 -0.0019 -0.0027 -0.0035 -0.0044 -0.0059 -0.0085 -0.0146
0.040 -0.0017 -0.0031 -0.0043 -0.0055 -0.0070 -0.0093 -0.0135 -0.0229
0.100 -0.0042 -0.0075 -0.0104 -0.0134 -0.0170 -0.0222 -0.0311 -0.0485
0.300 -0.0107 -0.0191 -0.0262 -0.0327 -0.0394 -0.0471 -0.0567 -0.0693
-0.025 0.0011 0.0019 0.0027 0.0035 0.0044 0.0059 0.0085 0.0146 
-0.040 0.0017 0.0031 0.0043 0.0055 0.0070 0.0093 0.0135 0.0229 
-0.100 0.0042 0.0075 0.0104 0.0134 0.0170 0.0222 0.0311 0.0485 
-0.300 0.0107 0.0191 0.0262 0.0327 0.0394 0.0471 0.0567 0.0693 

Reference C13 

                                                 
[C13.1] Baratta, F.I., Fett, T., The effect of load and crack misalignment on stress intensity factors for 
bend-type fracture toughness specimens, J of Testing and Evaluation, 28(2000), 96-102. 
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C14 
Four-point bending test with edge-cracked bars 
The 4-point bending test on an edge-cracked bar is shown in Fig. C14.1 for the most general 
case with misalignments in the load application and in the crack location. Both influences 
were studied in [C14.1]. The case of an offset e in the crack location is addressed here 
exclusively. 
The mixed-mode stress intensity factors are given by 

  2/3
III0I )/1/(', WaFFaFK −== πσ  (C14.1) 

and  aFK πσ II0II =  (C14.2) 

with the bending stress  

  
BW

dLP
20

)(6 −
=σ  (C14.3) 

Results are compiled in Tables C14.1-C14.4. 

 
Fig. C14.1 Four-point bending test with edge-cracked specimen. 

Table C14.1  Geometric function F'I for d/W=1.25, L/W=2.5 (for e/W<0 the same geometric function 
F'I results as in case of e/W>0). 

e/W a/W=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
0.000 0.9096 0.7617 0.6592 0.5860 0.5308 0.4864 0.4490 0.4173
0.125 0.9100 0.7620 0.6594 0.5861 0.5309 0.4865 0.4490 0.4173
0.250 0.9113 0.7628 0.6599 0.5864 0.5310 0.4865 0.4490 0.4173
0.500 0.9169 0.7663 0.6620 0.5876 0.5317 0.4868 0.4491 0.4173
0.800 0.9247 0.7703 0.6644 0.5895 0.5332 0.4879 0.4496 0.4175
1.000 0.9173 0.7628 0.6585 0.5857 0.5316 0.4879 0.4504 0.4180
1.250 0.8633 0.7168 0.6196 0.5532 0.5050 0.4673 0.4359 0.4095
1.500 0.7425 0.6152 0.5294 0.4699 0.4260 0.3908 0.3606 0.3345
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Table C14.2  Geometric function FII for d/W=1.25, L/W=2.5 (for e/W<0 the geometric function is the 
same, but with a changed sign). 

e/W a/W=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
0.000 0 0 0 0 0 0 0 0 
0.125 0.0005 0.0008 0.0009 0.0009 0.0007 0.0005 0.0003 0.0001 
0.250 0.0011 0.0017 0.0019 0.0018 0.0015 0.0011 0.0006 0.0002 
0.500 0.0023 0.0035 0.0039 0.0037 0.0033 0.0025 0.0016 0.0007 
0.800 0.0010 0.0005 -0.0002 -0.0003 0.0003 0.0013 0.0021 0.0019 
1.000 -0.0063 -0.0125 -0.0174 -0.0199 -0.0195 -0.0158 -0.0088 -0.0008
1.250 -0.0245 -0.0451 -0.0624 -0.0770 -0.0897 -0.1021 -0.1163 -0.1374
1.500 -0.0415 -0.0760 -0.1057 -0.1325 -0.1588 -0.1876 -0.2234 -0.2737

Table C14.3  Geometric function F'I for d/W=2.50, L/W=5.0. 

e/W a/W=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
0.000 0.9080 0.7605 0.6584 0.5856 0.5307 0.4864 0.4490 0.4173 
0.125 0.9080 0.7605 0.6584 0.5856 0.5307 0.4864 0.4490 0.4173 
0.250 0.9080 0.7605 0.6584 0.5856 0.5307 0.4864 0.4490 0.4173 
0.500 0.9080 0.7605 0.6584 0.5856 0.5307 0.4864 0.4490 0.4173 
1.000 0.9081 0.7606 0.6585 0.5856 0.5307 0.4864 0.4490 0.4173 
1.250 0.9084 0.7608 0.6586 0.5857 0.5307 0.4864 0.4490 0.4173 
1.500 0.9097 0.7617 0.6591 0.5860 0.5308 0.4865 0.4491 0.4173 
2.000 0.9161 0.7654 0.6614 0.5875 0.5318 0.4870 0.4493 0.4174 

Table C14.4  Geometric function FII for d/W=2.500, L/W=5.0. 

e/W a/W=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.125 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.250 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
1.000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 
1.250 0.0002 0.0003 0.0004 0.0004 0.0003 0.0002 0.0001 0.0000 
1.500 0.0006 0.0009 0.0011 0.0010 0.0008 0.0006 0.0003 0.0001 
2.000 0.0009 0.0010 0.0009 0.0008 0.0010 0.0012 0.0012 0.0008 

Reference C14 
                                                 
[C14.1] Baratta, F.I., Fett, T., The effect of load and crack misalignment on stress intensity factors for 
bend-type fracture toughness specimens, J. of Testing and Evaluation, 28(2000), 96-102. 
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C15  
DCDC test specimen 12,3,4,5 

C15.1  Symmetric specimen with a central hole 
The “double cleavage drilled compression” (DCDC) specimen is a rectangular bar with a 
circular hole in the centre (Fig. C15.1) [C15.1]. The specimen is loaded by compressive 
tractions p at the ends. It is used for the determination of crack growth behaviour of brittle 
materials [C15.2-C15.5].  

 
Fig. C15.1 Standard DCDC specimen. 

Stress intensity factor solutions for the DCDC specimen are available in literature. The stress 
intensity factor of the symmetric test specimen, b/R=0, was determined by He et al. [C15.2], 
who proposed  
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(see also [C15.6]). This relation is shown by the dashed curves in Fig. 2.1a.  

Based on the finite element results of Fig. C15.2a (circles), the geometric function for the 
stress intensity factors was fitted as (see [C15.7], C15.8)  
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This relation is plotted in Fig. C15.2a as the solid curves.  

The T-stress is shown in Fig. C15.2b. It can be expressed by [C15.8] 
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Fig. C15.2 a) Geometric function for the stress intensity factor (symbols: finite element results, solid 
curves: fit relation eq.(C15.1.2), dashed curves: eq.(C15.1.1) from [C15.2], b) T-stress (symbols: finite 
element results, solid curves: fit relation eq.(C15.1.3). 

 
Fig. C15.3 Biaxiality ratio obtained from the results of Figs. C15.2a and C15.2b; a) symbols: finite 
element results [C15.7], solid curves: based on data fit relation eq.(C15.1.2), dashed curves: 
eq.(C15.1.1), from [C15.2], b) simplified straight-line fit according to eq.(C15.1.5). 

The biaxiality ratio β according to Leevers and Radon [C15.9] 
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is plotted in Fig. C15.3a. The symbols represent the finite element results. The dashed curves 
were computed from eq.(C15.1.1) and eq.(C15.1.3), the solid curves from eq.(C15.1.2) and 
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eq.(C15.1.3). For the mostly chosen geometry H/R=4, the biaxiality ratio may be expressed 
for 2≤a/R≤7 by a simple straight-line approximation 

 
R
a3−=β  (C15.1.5) 

as introduced in Fig. C15.3b. 

C15.2 Asymmetric specimen with hole offset 
For mixed-mode crack loading, the asymmetric DCDC specimen was applied [C15.3]. This 
specimen with an offset of the hole is shown in Fig. C15.4 (see [C15.6]). 

 
Fig. C15.4 DCDC specimen with hole offset for mixed-mode tests. 

The mode-I stress intensity factors, Fig. C15.5a, were fitted for a/R≥4 [C15.7] according to 
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with the coefficients 

 2
0 )/(2716.0|/|2706.03703.0 RbRbc −−−=  (C15.2.1b) 

 2
1 )/(0140.0|/|1864.01163.1 RbRbc −+=  (C15.2.1c) 
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For the commonly used geometry H/R=4 and small misalignments |b|/R≤0.2, it holds 
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Mode-II stress intensity factors are given in Fig. C15.5b and C15.5c in the form of the mixed-
mode ratio KII/KI. 
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Fig. C15.5 a) Mixed-mode stress intensity factors, b) mode mixity, c) mode mixity at a/R=10 [C15.8].  

Figure C15.6a represents the T-stress results, and in Fig. C15.6b the biaxiality ratio β is 
plotted. Since β is strongly negative, growing cracks must exhibit a very high path stability 
[C15.10,C15.11,C15.12].  
The data of Fig. C15.6a were fitted for a/R≥4 by the equation of 
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with the coefficients  
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 2
1 )/(0222.0|/|3575.01801.1 RbRbf +−=  (C15.2.3c) 

 2
2 )/(0039.0|/|1061.02003.0 RbRbf −+=  (C15.2.3d) 

 2
3 )/(0827.0|/|3471.02397.0 RbRbf −−−=  (C15.2.3e) 

 
Fig. C15.6 a) T-stress of an asymmetric DCDC specimen, b) biaxiality ratio β. 

C15.3 Weight functions 
Weight functions were determined in [C15.8] by finite element computations. Figure C15.7 
shows stress intensity factors for pairs of concentrated normal forces P and shear forces Q 
acting symmetrically on the faces of the crack at distance x. These stress intensity factors are 
identical with the weight functions. It becomes obvious that for shear loading the total weight 
function differs only slightly from the limit cases represented by the singular term (dashed 
curves).  
The stress intensity factors of Fig. C15.7 were fitted by the relation 
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The coefficients for several crack lengths are compiled in Table C15.1. Values of intermediate 
lengths can be obtained by parabolic interpolation. Table C15.2 presents the coefficients for 
the case of “one-side loading” as illustrated in Fig. C15.8. 
Stress intensity factors for antisymmetrically applied shear forces (Fig. C15.9) are given in 
Table C15.3. 
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Fig. C15.7 a) Symmetric loading by point forces acting on the crack, b) stress intensity factors for 

pairs of normal stresses, c) stress intensity factor for shear forces. 

Table C15.1 Coefficients for the weight function representation (C15.3.1) under symmetric loading. 

Crack length a/R Mode )I(
1D  )I(

2D  

2 I 1.465 0.208 
4 I 3.379 0.591 
6 I 5.561 1.184 
8 I 8.222 1.482 

Crack length a/R Mode )II(
1D  )II(

2D  

2 II 0.1460 0.1843 
4 II 0.5687 -0.3493
6 II 1.266 -1.132 
8 II 2.034 -2.020 
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The coefficients in Table C15.1 for mode-I were fitted by 
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and for mode-II by 
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Fig. C15.8 One-side loading by point forces acting on the crack. 

Table C15.2 Coefficients for the weight function representation (C15.3.1) under one-side loading. 

Crack length a/R Mode )(
1

ID  )(
2

ID  

2 I 0.6988 -0.0445
4 I 2.242 -0.379 
6 I 4.226 -0.8553
8 I 6.740 -1.816 

Crack length a/R Mode )(
1

IID  )(
2

IID  

2 II 0.4529 0.1358 
4 II 1.0752 -0.1948
6 II 1.8564 -0.7194
8 II 2.704 -1.413 
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Fig. C15.9 Antisymmetric shear loading. 

Table C15.3 Coefficients for the weight function representation (C15.3.1) under anti-symmetric shear 
loading.  

Crack length a/R Mode )(
1

IID  )(
2

IID  

2 II 0.7594 0.0879 
4 II 1.600 -0.0674
6 II 2.449 -0.3095
8 II 3.373 -0.8041

C15.4  Eccentricity of loading 
A possibility of misalignment is an offset yP between the externally applied force P and the 
symmetry axis of the specimen (see Fig. C15.10). This eccentricity gives rise to a moment  

 Pb yPM ×=   (C15.4.1) 

and bending stresses in the specimen. Whereas for small yP/H the mode-I stress intensity 
factor is hardly affected, a mode-II stress intensity factor contribution is created, as shown in 
Fig. C15.11 for H/R=4 in normalised form. This effect does not only occur for point forces. 
Also in the case of a non-symetrically distributed load, a moment results as 
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Fig. C15.10 DCDC specimen under eccentric loading. 
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Fig. C15.11 Mode-II stress intensity factor caused by a misalignment yP of the externally applied load 

P. 

C15.5 Non-symmetrically extending cracks 
Cracks may be generated during loading which are not exactly symmetric with different 
lengths a0 and a1. At the longer crack, the stress intensity factor is reduced. Finite element 
results for such different cracks are shown in Fig. C15.12 as the squares. 

 
Fig. C15.12 Influence of non-symmetric cracks on the mode-I stress intensity factor. 
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A fit of these data yields 

 )1(13.0)()(
0

1
01 −−≅ a

aaFaF  (C15.5.1) 

where F(a0) is the geometric function for two cracks with identical length of a0, given for 
instance by eqs.(C15.1.1) or (C15.1.2). 
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C16 
Compact tensile (CT) specimen1234 

C16.1 Rectangular CT specimen 
Several analyses of the CT specimen (see Fig. C16.1) are available in literature [C16.1-
C16.4]. Under slightly modified boundary conditions, rather strong differences were found 
especially for short crack lengths. 

  
Fig. C16.1 Compact tension specimen. 

A stress intensity factor solution for the standard CT specimens was proposed by Newman 
[C16.5] and Srawley [C16.6] 
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with α=a/W.  
A weight function was proposed in [C16.7] for 0.2 ≤ α ≤ 0.8 by the polynomial of 

 h
a x a

D x anm
m n=

− −
− + − +∑2 1

1 1
1 1

3 2
3 2 1

π α
α α

/ ( )
[( ) ( / ) ]

/
/  (C16.1.2) 

with the coefficients listed in Table C16.1. 
Literature results for the biaxiality ratio β  
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proposed by Leevers and Radon [C16.2] are entered in Fig. C16.2a. Figure C162b compiles 
own FE results (solid symbols) and data from Knesl and Bednar [C16.8] (open symbols) for 
the ASTM E399 standard specimen together with the limit case α → 1 taken from Tables 
C8.5 and C8.12. The curve plotted in Fig. C16.2b can be described by 

         
α

αααααβ
−

−+−+−
≅

1
6886.6695.29446.43665.26572.67702.0 5432

 (C16.1.4) 

Table C16.1  Coefficients Dnm for eq.(C16.1.2) 

m n=0 1 2 3 4 

0 2.673 -8.604 20.621 -14.635 0.477 
1 -3.557 24.973 -53.398 50.707 -11.837
2 1.230 -8.411 16.957 -12.157 -0.940 
3 -0.157 0.954 -1.284 -0.393 1.655 

The T-stress term results from eqs.(C16.1.1), (C16.1.3), and (C16.1.4). In this context, it has 
to be noted that the results in Fig. C16.2a were not derived for the standard CT specimen with 
large holes. In reference [C16.2], the T-stress was determined by applying of shear tractions 
along the loading line and by application of point forces in the centres of fictitious holes. In 
Fig. C16.2b the test specimen according to ASTM E399 was modelled with point forces to be 
active at the contact points. Based on these results, it is recommended to use cracks with 
α>0.25. 

 
Fig. C16.2 a) Biaxiality ratio of the CT specimen from literature; curve: eq.(C16.1.4), squares: 
Leevers and Radon [C16.2], circles: Cotterell [C16.3], diamond squares: Kfouri [C16.1], b) biaxiality 
ratio for a standard CT specimen loaded by point forces: full symbols: FE results, open symbols: 
Knesl and Bednar [C16.8], triangle: limit case from Tables C8.5 and C8.12. 
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C16.2   Round-CT specimen 
The RCT specimen is identical with the single-edge-cracked circular disk, if the load appli-
cation holes are neglected. Figure C16.3 shows this fracture mechanics test specimen. 

 
Fig. C16.3 Geometric data of the RCT specimen. 

The stress intensity factor solution was derived by Newman [C16.9] as 
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valid for α≥0.2. This stress intensity factor solution deviates by less than 6% from the solu-
tion for the rectangular CT specimen addressed in Section C16.1. 
The biaxiality ratio can be approximated by  
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 (C16.2.2) 

This relation is plotted in Fig. C16.4 together with eq.(C16.1.2) for the CT specimen.  

The weight function can be expressed for 0.2 ≤ α ≤ 0.8 by the polynomial [C16.10] of 
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with the coefficients listed in Table C16.2. 
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Fig. C16.4 Comparison of biaxiality ratios for the CT and RCT specimens. 

Table C16.2  Coefficients Dnm for eq.(C16.2.3) 

n m=0 1 2 3 4 
0 2.826 -5.865 0.8007 -0.2584 0.6856 
1 -10.948 48.095 -3.839 1.280 -6.734 
2 35.278 -143.789 6.684 -5.248 25.188 
3 -41.438 196.012 -4.836 11.435 -40.140 
4 15.191 -92.787 -0.7274 -7.328 22.047 
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C17  
Double Cantilever Beam 
The Double-Cantilever-Beam (DCB) specimen is shown in Fig. C17.1. A line load P/B 
(B= specimen thickness, here chosen as B=1) is applied in distance (a-x) from the crack 
tip. 

 
Fig. C17.1 Double Cantilever Beam specimen under crack-face loading by line load P. 

 
Fig. C17.2 a) Weight function for stress intensity factors, b) Green’s function for T-stress (W>6d). 

The weight function is given in [C17.1] as 
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and introduced in Fig. C17.2a as the curve. Its agreement with the FE results is excellent. The 
stress intensity factor for the specimen loaded at the crack mouth x=0 results from eq.(C17.1) 
as 
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The T-stress results are shown in Fig. C17.2b. The asymptotic solution for (a-x)/d>1 can be 
expressed by 
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This relation is represented by the dashed line. A relation for any (a-x)/d reads 
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represented by the (solid curve). 
Figure C17.3 shows the biaxiality ratio as the curve. An approximation from [C17.1] for 
0.1<d/a<0.6  
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β
 (C17.5) 

is entered as the dash-dotted line. 

 
Fig. C17.3 Biaxiality ratio. 
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C18 
Cracked bars under opposed forces 
C18.1 Stresses by a single pair of concentrated opposite line forces 
Figure C18.1 shows an edge-cracked parallel strip under loading by a pair of opposite concen-
trated forces at the distance x from an edge crack. 

 
Fig. C18.1 Edge-cracked plate loaded by a single pair of opposite forces. 

The stresses in the strip of width W = 2H and thickness B under the loading of opposite con-
centrated line forces P have been computed by Filon [C18.1]. With the geometric data shown 
in Fig. C18.1 the stresses can be expressed by 
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The geometric functions for the mode-I and mode-II stress intensity factors, here denoted as 
YI and YII, are defined by 

 WYK II *σ=  (C18.1.4a) 

 WYK IIII *σ=  (C18.1.4b) 
with the characteristic stress 
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Figures C18.2 and C18.3 show the results which are also compiled in Tables C18.1 and C18.2 
[C18.2]. 

 
Fig. C18.2 Geometric function Y according to eq.(C18.1.4a) for 2-point loading. 

Table C18.1 Mode-I stress intensity factors represented by the geometric function YI, eq.(C18.1.4a). 

a/W x/W=0.1 0.2 0.3 0.4 0.5 
0.1 -0.2718 0.0123 0.097 0.1096 0.0970 
0.2 -0.2324 -0.0654 0.0415 0.0830 0.0872 
0.3 -0.1717 -0.0596 0.020 0.0591 0.0687 
0.4 -0.1375 -0.0329 0.025 0.0503 0.0549 
0.5 -0.1142 -0.0033 0.039 0.0490 0.0449 
0.6 -0.0879 0.0273 0.051 0.0457 0.0343 
0.7 -0.047 0.055 0.052 0.0323 0.0205 
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Table C18.2 Mode-II stress intensity factors represented by the geometric function YII, eq.(C18.1.4b). 

a/W x/W=0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5 
0.1 1.433 0.660 0.296 0.134 0.0556 0.0147 -0.021 -0.031 
0.2 1.340 0.920 0.634 0.392 0.226 0.117 0.0005 -0.044 
0.3 1.185 0.942 0.712 0.506 0.337 0.205 0.0396 -0.037 
0.4 1.083 0.876 0.686 0.510 0.358 0.232 0.0598 -0.028 
0.5 1.029 0.814 0.625 0.459 0.318 0.205 0.0511 -0.027 
0.6 1.012 0.754 0.542 0.371 0.238 0.140 0.0214 -0.032 
0.7 1.020 0.673 0.418 0.242 0.128 0.0568 -0.012 -0.034 

 
Fig. C18.3 Geometric function YII according to eq.(C18.1.4b). 

T-stresses were computed in [C18.3]. Normalised values T/σ* are given in Table C18.3.  

Table  C18.3 T/σ* for the edge-cracked strip under a pair of opposite concentrated forces.  

a/W x/W = 0.1 0.2 0.5 0.7 1 1.5 
0.2 -1.24 -0.292 0.0522 0.0356 0.013 0.001 
0.3 -1.22 -0.585 0.0532 0.0693 0.032 0.003 
0.4 -1.14 -0.695 0.0330 0.0879 0.045 0.004 
0.5 -1.11 -0.724 0.0219 0.0930 0.050 0.05 
0.6 -1.14 -0.701 0.0325 0.0884 0.045 0.004 
0.7 -1.23 -0.594 0.0590 0.0733 0.033 0.003 

In Fig. C18.4, the biaxiality ratio β is given by the ratio of T-stress and stress intensity factor 
according to 
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IK
aT πβ =   (C18.1.6) 

The curve in Fig. C18.4 can be described by 

 β α α α α
α

=
− + + − +

−
0 469 18589 34 527 133477 127 994

1

2 3 4. . . . .  (C18.1.7) 

 

 
Fig. C18.4 Biaxiality ratio β for c/W = 1. 

C18.2 Stresses and stress intensity factors for two pairs of forces 
Superposition of the results obtained for one pair of concentrated forces (Section C18.1) al-
lows computing the loading problem illustrated in Fig. C18.5.  
In the uncracked bar we obtain for the symmetry line (x = 0) 
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The stress σx is plotted in Fig. C18.6, normalised to the characteristic stress 
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Fig. C18.5 Controlled fracture test device with load application via four symmetrical rollers.  

The stress intensity factors for the edge-cracked specimen were computed from the stresses in 
the uncracked specimen by use of the weight function (Section C8.3). The geometric function 
for the mode-I stress intensity factor, YI, is defined by 

 WYK II *σ= . (C18.2.3) 

and plotted in Fig. C18.7 [C18.2] as a function of a/W with d/W as a parameter. It is also en-
tered into Table C18.4. 

 
Fig. C18.6 Axial stresses σx along the symmetry line x = 0 in the absence of the crack. 
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Fig. C18.7 Geometric function YI according to eq.(C18.2.3) for 4-point loading. 

Table C18.4 Stress intensity factors for 4-point loading, represented by the geometric function YI, 
eq.(C18.2.3). 

 d/W 
a/W 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 
0.05 -0.26 0.171 0.2234 0.2066 0.1686 0.1279 0.0916 0.0624 
0.1 -0.537 0.034 0.1997 0.2196 0.1942 0.1538 0.1136 0.0792 
0.15 -0.531 -0.034 0.1346 0.1971 0.1903 0.1578 0.1199 0.0854 
0.2 -0.458 -0.077 0.0836 0.1660 0.1746 0.1510 0.1176 0.0853 
0.25 -0.389 -0.1331 0.0526 0.1384 0.1556 0.1389 0.1103 0.0811 
0.3  -0.117 0.0403 0.1186 0.1377 0.1250 0.1003 0.0743 
0.35  -0.0915 0.0414 0.1068 0.1224 0.1110 0.0891 0.0660 
0.4   0.0506 0.1011 0.1101 0.0977 0.0774 0.0569 
0.45   0.0641 0.0991 0.0998 0.0850 0.0658 0.0419 
0.5   0.0791 0.0984 0.0902 0.0727 0.0542 0.0382 
0.55   0.0931 0.0968 0.0804 0.0606 0.0431 0.0291 
0.6   0.1041 0.0924 0.0693 0.0483 0.0322 0.0207 
0.65   0.1094 0.0838 0.0564 0.0359 0.0221 0.0131 
0.7   0.1064 0.0703 0.0422 0.0239 0.0132 0.0068 

For the special case of d/W = 1, YI is fitted for α = a/W ≤ 0.6 by 

 YI = − + + −0 905 3358 3857 14425 38731 2 3 2 5 2 7 2 9 2. . . . ./ / / / /α α α α α  (C18.2.4) 

T-stresses were computed in [C18.3]. The normalised T-stresses T/σ* are given in Table 
C18.5. The biaxiality ratio β is identical with that for a single pair of opposite forces (see Fig. 
C18.4) and can be described for d/W = 1 by 
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 β α α α α
α

=
− + + − +

−
0 469 18589 34 527 133477 127 994

1

2 3 4. . . . .  (C18.2.5) 

i.e. by the same relation as given in eq.(C18.1.7). 

Table  C18.5  T-stress T/σ* for the edge-cracked strip under two pairs of opposite forces, Fig.C18.5. 

a/W d/W = 0.2 0.4 1 1.4 2 3 
0.2 -2.48 -0.584 0.1044 0.0713 0.026 0.002 
0.3 -2.44 -1.169 0.1064 0.1386 0.063 0.006 
0.4 -2.28 -1.390 0.0660 0.1758 0.090 0.008 
0.5 -2.22 -1.448 0.0438 0.1859 0.100 0.010 
0.6 -2.28 -1.401 0.0650 0.1768 0.090 0.008 
0.7 -2.47 -1.188 0.1804 0.1466 0.066 0.006 

C18.3 Double-edge-cracked bars 
In this section the mode-I stress intensity factors are reported for a double-edge-cracked bar 
under 4-roller loading [C18.2]. The specimen and the load application are illustrated in Fig. 
C18.8. 
The stress intensity factor is plotted in Fig. C18.9 and compiled for a number of crack depths 
in Table C18.6. Since in case of double-edge-cracked bars, H = W/2 is the characteristic width 
dimension for normalising the crack length a (i.e. a is limited by a < H), KI is defined by  

 HYK II *σ=  (C18.3.1) 

with σ* defined by eq.(C18.1.5). 

  
Fig. C18.8 Double-edge-cracked bar loaded by two pairs of opposite forces. 
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Fig. C18.9 Geometric function YI according to eq.(C18.3.1) for different roller distances. 

Table C18.6 Geometric function YI according to eq.(C18.3.1). 

a/W d/W=0.2 0.4 0.6 0.8 1.0 
0.05 -0.016 0.258 0.267 0.230 0.182 
0.1 -0.374 0.218 0.302 0.280 0.229 
0.15 -0.627 0.121 0.285 0.291 0.248 
0.2  0.017 0.244 0.281 0.250 
0.3  -0.132 0.144 0.229 0.226 
0.4  -0.185 0.061 0.165 0.184 
0.5  -0.177 0.009 0.109 0.138 
0.6  -0.140 -0.015 0.065 0.095 
0.7  -0.095 -0.020 0.035 0.059 
0.8  -0.054 -0.015 0.016 0.031 

 
References C18 
                                                 
[C18.1] Filon, L.N.G., On an approximate solution for the bending of a beam of rectangular cross-
section under any system of load, with special reference to points of concentrated or discontinuous 
loading, Phil. Trans., A, 201(1903), 63-155. 
[C18.2] Fett, T., Munz, D., Thun, A toughness test device with opposite roller loading, Engng. Fract. 
Mech. 68(2001), 29-38 
[C18.3] Fett, T., T-stresses in rectangular plates and circular disks, Engng. Fract. Mech. 60(1998), 
631-652. 

0 0.2 0.4 0.6 0.8 

-0.6 

-0.4 

-0.2 

0 

0.2 

d/W=0.2 

0.4 

0.6 

0.8 

YI 

1 

a/H



 

 299

C19 
Cracks ahead of notches 
C19.1 Stress intensity factor  
Many test specimens contain narrow notches which are introduced in order to simulate a 
starter crack. A specimen containing a slender edge notch of depth a0 with the notch root the 
radius R is considered (Fig. C19.1). A small crack of length l is assumed to occur directly at 
the notch root.  

 
Fig. C19.1 A small crack emanating from the root of a notch. 

In the absence of a crack, the stresses near the notch root are given by 
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(for ξ see Fig. C19.1) as shown by Creager and Paris [C19.1]. The quantity K(a0) is the stress 
intensity factor of a crack having the same length a0 as the notch under identical external load 

 K a F a a( ) * ( )0 0 0= σ π  (C19.1.3) 

with the characteristic stress σ* (e.g. remote tensile stress, outer fibre bending stress) and the 
geometric function F. The stresses resulting from eqs.(C19.1.1) and (C19.1.2) are plotted in 
Fig. C19.2. The solid parts of the curves represent the region (0 ≤ ξ ≤ R/2) where higher-order 
terms in the stress approximation are negligible.  
For cracks ahead of slender notches the stress intensity factor can be represented as [C19.2] 

R
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 )/243.2tanh(* RKK l≅   (C19.1.4) 

with the stress intensity factor K* formally computed for a fictitious crack of total length a0+l 
according to 

 )()(** 00 ll ++= aaFK πσ  (C19.1.5) 

 
Fig. C19.2 Stresses ahead of a slender notch in bending computed according to Creager and Paris 
[C19.1] for a0/W = 0.5 and R/W = 0.025; W=width of the bending bar. 

C19.2 T-stress  
In Fig. C19.3 the T-stress for bending is plotted versus a/W for several notch depths a0. The 
"long-crack solution" given by eq.(C8.2.4) is introduced as the solid curve. This curve 
represents the T-stress for an edge crack of the total length a = a0+l. 
Results obtained under tensile loading are plotted in Fig. C19.4. In this case, the characteristic 
stress is identical with the remote tensile stress σ* = σ0. In this representation the solid line is 
described by eq.(C8.1.4). 
For the limit case l/R→0 the T-stress can be determined from the solution for a crack in a 
semi-infinite plate under a tensile stress σmax as occurring directly at the notch root 

 σ σmax * ( )= 2 0
0F a a

R
 (C19.2.1) 

Directly at the free surface (ξ = 0) it holds σx = 0. It can be concluded 
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 (C19.2.3) 

and, consequently, 

 
T F a a

R
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0
01052

σ *
. ( )= −  (C19.2.4) 

It becomes obvious from eq.(C19.2.4) that for slender notches very strong compressive T-
stresses occur in the limit case l/R → 0. The limit values T0 for tension and bending (location 
indicated by the arrows in Figs. C19.3 and C19.4) are compiled in Table C19.1. 
An approximate description for the T-stress is given by 

 4/33/4
maxmax )/5(tanh)526.0*(526.0 RTT lσσ ++−≈   (C19.2.5) 

 4/33/4
00 )/5(tanh)*( RTTTT l−+≈   (C19.2.6) 

where T* is the T-stress term for the “long-crack solution”, i.e. the T-stress for a crack of total 
length a=l+a0 according to eqs. (C8.1.4) and (C8.2.4). 
The T-stress approximation by eq.(C19.2.6) is plotted in Fig. C19.5 for bending together with 
the data of Fig. C19.3.  

Table C19.1 Limit values for the T-stress term (l/R → 0), R/W=0.025. 

a/W T0/σ* (bending) T0/σ* (tension) 
0.3 -4.11 -6.05 
0.4 -5.28 -8.91 
0.5 -7.01 -13.31 
0.6 -9.86 -20.74 

 
Fig. C19.3 T-stress for a small crack ahead of a slender notch in bending, computed with the 
Boundary Collocation Method for R/W = 0.025. Solid line: Long-crack solution.  
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Fig. C19.4 T-stress for a small crack ahead of a slender notch in tension, computed with the Boundary 
Collocation Method for R/W = 0.025. Solid line: Long-crack solution. 

 

 
Fig. C19.5 Comparison of the approximation eq.(C19.2.6) with the results of Fig. C19.3, R/W=0.025. 

Figure C19.6 shows the influence of the crack length l on the T-stress for a bending bar of 
width W=4mm and two different notch root radii. From this diagram, it can be concluded that 
the first few micrometers of crack extension from a notch are automatically stable, since T<0 
over about a-a0=6-12 µm for notch radii of R=10 and 20 µm [C19.3]. The crack lengths lstable 
for which path stability occurs even at a/W>0.35 can be roughly expressed as  

 Raastablestable 6.00 ≈−=l   (C19.2.7) 

For a/W<0.35, the condition T<0 is trivially fulfilled, since the “long-crack solution” T(a) is 
negative in this case, see Fig. C19.5.  
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Fig. C19.6 T-stress for small cracks [C19.3] ahead of a narrow notch (bending). 
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C20 
Array of edge cracks 
Figure C20.1 shows an array of periodical edge cracks. BCM computations were performed 
for an element of periodicity. The boundary conditions are given by a constant displacements 
v (defining the characteristic stress σ) and disappearing shear stresses along the symmetry 
lines (dash-dotted lines), i.e. 

    v = = = ±
σ τ
E

d y dxy'
; /

2
0 2for  (C20.1) 

(E' = E for plane stress and E' = E/(1-ν2) for plane strain, E = Young's modulus, ν = Poisson's 
ratio) as illustrated in Fig. C20.2. The coefficient B0 is shown in Fig. C20.3a as a function of 
the ratio d/a for different relative crack lengths a/W. The result can be summarised as 

    5.1/,148.00 ≤= adB  (C20.2) 

 
Fig. C20.1 Periodical edge cracks in an endless strip. 

The coefficient A0 is plotted in Fig. C20.3b in the normalised form of 

    dWAA /6* 00 π=  (C20.3) 

For all values of  a/W investigated it was found 

    002.0000.1*0 ±=A  (C20.4) 

a 

W 

d



 

 306

resulting in the stress intensity factor solution of 

    2/I dK σ=  (C20.5) 

(see e.g. [C20.1]). The T-stress term is  

    σ592.04 0 −=−= BT  (C20.6) 

and the biaxiality ratio β according to eq.(A1.3.12) results as 

    β = −1484. /a d  (C20.7) 

 
Fig. C20.2 Boundary conditions representing an endless strip with periodical cracks. 

 
Fig. C20.3 a) Influence of the geometric data on the first regular term of the Williams stress function 
B0, b) Coefficient A0 in the normalisation dWAA /6* 00 π= . 
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C21 
Special problems 
C21.1 The first derivative of the weight function  
For the application of the Petroski-Achenbach procedure (Section A3.2.1) and the direct 
adjustment method (Section A3.2.2) disappearing second and third derivatives of the crack 
displacement field and the weight function allowed determining higher-order coefficients. As 
a further condition, a disappearing first derivative of the crack opening displacements at the 
crack mouth was proposed [C21.1]  

 0
0

=
∂
∂

=xx
h  (C21.1.1) 

The validity of this condition can be proved for edge-cracked semi-infinite bodies [C21.2] 
and infinitely long double-edge cracked plates [C21.3]. In this Section, the second possibility 
is addressed. 

C21.1.1 Double edge-cracked strip of infinite length 
In order to compute the first derivative of the weight function for the double-edge-cracked 
strip, first this specimen is loaded by pairs of forces P acting directly at the crack faces (Fig. 
C21.1). 

 
Fig. C21.1 a) Double-edge-cracked plate, b) symmetry conditions (shaded areas: surface tractions 
which reproduce the stress state of the internal cracks for the same load, see Fig. C21.2). 

The specimen is assumed to be cut out of an infinite array of collinear cracks in an infinite 
body (see Fig. C21.2), which are also loaded by concentrated forces at the crack faces. The 
cutting lines are the dash-dotted lines of Fig. C21.2. The total stress state in such a structure 
can be derived from the Westergaard stress function (see e.g. [C21.4]) 
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with the geometric data a, b, and W as illustrated in Fig. C21.2. The complex variable z is 
given by z=x+iy with the origin of x, y in the crack centre. 
The σx-stresses are given by  

 Φ−Φ=σ
dz
dybyxx ImRe),,(  (C21.1.3) 

The tractions, which have to be applied at the surface x=0 of the double-edge-cracked plate to 
satisfy the displacement conditions in the case of the internal crack are 

 ),,0( byxappl σ−=σ  (C21.1.4) 

These surface tractions (illustrated schematically by the shaded areas in Fig. C21.1) are re-
sponsible for a stress intensity factor contribution ∆KI which can be expressed by the weight 
function formulation 

 ∫
∞

=∆
0

,I ),(),,0( dyyahbyK DExxσ  (C21.1.5) 

where hx,DE is the weight function for surface tractions acting in x-direction. The subscript DE 
stands for “Double Edge”. On the other hand, the stress intensity factor caused by the free 
surface condition can be expressed by 

 ∫ =−=−=∆
a

yINTyDEyINTDE dxxyxahxahKKK
0

,,,I,II ),0()],(),([ σ  (C21.1.6) 

with the crack surface tractions σy acting normal to the crack and the subscript INT denoting 
the “Internal Crack”. The crack-face weight functions are hy,DE for the double-edge crack and 
hy,INT for the internal crack. 

 
Fig. C21.2 Array of collinear cracks loaded by point forces. 
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The stress distribution of a pair of forces ±P acting on the crack surface at x = b is expressed 
in terms of the Dirac δ function as 

 )()( bxPxy −δ=σ  (C21.1.7) 

(assuming the plate thickness B=1). Introducing this into eq.(C21.1.6) gives 

 ),(),( ,,I baPhbaPhK INTyDEy −=∆  (C21.1.8) 

and, finally, 

 ∫
∞

σ+=
0

,,, ),(),,0(1),( dyyahby
P

hbah DExxINTyDEy  (C21.1.9) 

We are now interested in the first derivative of the weight function directly at the free surface. 
Since the weight function for the internal crack is symmetric at the crack centre,  
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we find 
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From eq.(C21.13.2) we can see that the Westergaard stress function is symmetric with respect 
to the real variable b. This is the case because b occurs in the terms of 

 )/(sin),/cos( 2 WbWb ππ  

only. Consequently, it holds ∂Φ/∂b = 0 and we obtain for the derivatives 
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From eq.(C21.1.11) it results 
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 (C21.1.13) 

i.e. the first derivative of the crack-face weight function of an infinitely long double-edge-
cracked strip must disappear at the crack mouth. 

C21.1.2 Finite edge-cracked plate 
It has to be emphasized that the condition (C21.1.1) is fulfilled only for special problems. In 
most crack problems, eq.(21.1.1) is invalid. This can be shown for the case of a single edge-
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cracked strip of infinite length. Figure C21.3a shows the well-established weight function 
derived by Kaya and Erdoan [C21.5]. A monotonically increasing non-disappearing slope at 
x/a=0 is clearly visible. Figure C21.3b represents the first derivative of h at x=0 as a function 
of the relative crack length a/W. The first derivative h’ vanishes only for a/W=0, i.e. for the 
edge crack in the half space.  

 
Fig. C21.3 a) Weight function solution by Kaya and Erdogan [C21.5], b) first derivative of the weight 

function. 

C21.2 Limit values for stress intensity factor and T-stress  
Limit case a/W=0 
The limit values of stress intensity factor and T-stress can be computed according to the 
analysis made by Wigglesworth [C21.6]. The exact value of the geometric function F for the 
semi-infinite body under constant crack-face pressure p is given by 
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resulting in [C21.7] 
  ...31215222552.1=F  (C21.2.2) 

The T-stress under remote tensile loading σ reads (see Section A2) 

  ∞∞ −=−= σσ 5259676026.04 0BT  (C21.2.3) 

and the x-stress under constant crack-face pressure (for the difference see section A1.4) 

  ppTxx 4740324.00, =+=σ  (C21.2.4) 

Limit case a/W=1 
The limit case a/W = 1 can be analytically evaluated for the double-edge-cracked plate. This 
may be done here for the two cracks loaded by a constant crack-face pressure p over the re-

0 0.2 0.4 0.6 0.8 1
1 

2 

3 

4 

5 

6 

7 
h√a 

x/a 

a/W=0.5 

0.4 

0.3 

0.2 
0.1

0 

0 0.1 0.2 0.3 0.4 0.5 

0

a/W

a)

-1

-2

-3

b) 

x/a=0 

  dh 
d(x/a) √a



 

 311

gion c ≤ x ≤ b. With the geometric data of Fig. C21.4 the Westergaard stress function [C21.4] 
reads  
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Fig. C21.4 Double-edge-cracked infinite body. 

The real part of Z gives the x-stress component at y = 0 
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which for (b/c)2 >> 1 simplifies as 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ π
−

−
−

π
=σ

= 2
2

22

22

0 xc
cbp

yx  (C21.2.7) 

The singular stress term is 
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and, consequently, the regular part of (C21.2.7) is given by 
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Neglecting the constant term –p and rearranging yields 
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and in the limit for x→c  
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Finally, it results by introducing the crack length a = b-c and extending 2b over the whole 
specimen width 
 0)1(lim)/1(lim

1
=α−=−

→α→
TbaT

ba
 (C21.2.12) 

This result allows extrapolating the data compiled in Table C11.1 and C12.4. In Fig. C21.5 
the product T(1-α) is plotted for the double-edge-cracked circular disk under constant normal 
stresses along the circumference (solid circles) and the double-edge-cracked plate with H/W ≥ 

1.5 (open circles). The value given by (C21.2.12) allows extrapolating the data to α→1.  

 
Fig. C21.5 Data compiled in Tables C11.1 and C12.4 (circles) and limit value from (C21.2.12) 

(square). 
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C22 
Zones with volume change at crack surfaces 
C22.1 Green’s functions for a zone in the crack wake 
In many cases local strains occur near the crack surfaces. An example is shown in Fig. C22.1 
where only the region behind the crack tip is affected. 

 
Fig. C22.1 Crack with a crack face zone undergoing volumetric strains. 

Such strains in the crack surface region can be generated for instance by a volume reduction 
or expansion due to diffusion effects. In the special case of glass, there is experimental evi-
dence [C22.1] for a thin hydration layer at the crack surfaces in which an ion exchange 
occurs.  

C22.1.1 Mode-I stress intensity factor  

McMeeking and Evans [C22.2] developed a procedure for the computation of mode-I stress 
intensity factors. The mode-I contribution results from a contour integral  

 ∫Γ ⋅= SpK dI hn  (C22.1.1) 

with the normal vector n on the zone contour and the normal pressure p defined by 
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where E is Young’s modulus, ν Poisson's ratio, and ε the volumetric strain. Γ is the contour 
line of the zone and dS is a line length increment. The vector h represents the weight function 
hI = (hI,y, hI,x)T with the components hI,y and hI,x [C22.2] 
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In these relations r and θ are the polar coordinates with the origin at the crack tip (see Fig. 
C22.1). Using the Gauss theorem, eq.(C22.1.1) can be rewritten [C22.2] as 

 dydxpK
A

I∫=
)(

I divh   (C22.1.4) 

where A is the area in the x-y plane (extending above and below the crack plane).  
For a numerical evaluation of the stress intensity factor KI, the total zone can be divided in 
parts of simple geometry as shown in Fig. C22.2. 
It may be of advantage to carry out the integration over y from the crack surface to the zone 
height b. For the case of a zone located symmetrically above and below the crack (dA= 

−2b×dx=2b×ds, see insert in Fig. C22.3a), 
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with the function gI shown in Fig. C22.3a.  
The finite element method was used to determine K. A volume strain was introduced by a 
thermal expansion due to a localised temperature change. The temperature inside the zone 
segment b×∆s was chosen to be Θ= 1°, whereas zero temperature was prescribed in the re-
maining structure. 

The results are given in Fig. C22.3a. The asymptotic behaviour of KI is given by the two 
straight lines. An interpolation of these asymptotes, for example, is given by 
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can be derived by a single integration for any arbitrarily varying zone height b(s).  

 
Fig. C22.2 Composition of zones by superposition of the zone part ahead the crack tip and zone parts 

in the crack wake. 
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C22.1.2 Mode-II stress intensity factor  
 In the case of a volume strain zone which is not developed symmetrically to the crack plane, 
also a mode-II stress intensity factor must result. The mode-II weight functions can be ob-
tained from the near-tip displacement field for mode-II loading and the Rice equation [C22.3] 
which relates the weight function to the change of displacement for a virtual crack extension, 
the result being 
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The mode-II stress intensity factor KII for a zone segment of length ds lying on one side of the 
crack is plotted in Fig. C22.3b, where now gII is defined by 
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The asymptotes of gII are introduced in Fig. C22.3b as the straight lines. An interpolation for 
the full range of s/b is  

 2/3
2
21II )/(15

1
bs

g
+

≅  (C22.1.10) 

The corresponding mode-I stress intensity factor for this non-symmetric zone is half of the 
stress intensity factor computed for the symmetric case (see Fig. C22.3a). 

C22.1.3 T-stress  
The T-stress results are shown in Fig. C22.3c. An approximate interpolation relation for the 
Green’s function is given by 

 2
8
75

1

)/(1
1

bs
gT +

−≅  (C22.1.11) 

resulting in the T-stress  
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A layer of constant height b (extending from s0>0 to s=s1 and excluding the crack tip), Fig. 
C22.2b, causes the T-stress 
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Fig. C22.3 a) Green’s function gI as the stress intensity factor for a symmetric strip-shaped zone of 

height b and width ds, b) mode-II stress intensity factor contribution for a single zone located on one 
side of the crack exclusively, c) T-stress for a symmetric zone. 

C22.2 Semi-circular crack tip zone  
For the semi-circular zone ahead of the crack tip (Fig. C22.2c), the stress intensity factor   
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and the T-stress term 
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were obtained. 

C22.3 Zone of constant height 
C22.3.1 Mode-I stress intensity factor  
This special case of a zone of constant height can be treated simply by the direct evaluation of 
eq.(C22.1.1). Numerical evaluation of the integral expression yields  
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for a constant strain ε in the crack wake (case Fig. C22.2b). The coefficient CI can be written 
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In the case of a zone as shown in Fig. C22.2a, the stress intensity factor of eq.(C22.2.1) must 
be added.  

C22.3.2 Mode-II stress intensity factor  
As an example, the mode-II stress intensity factor KII is computed for the case of a zone of 
constant height b at the upper side of the crack extending from s = 0 to s = s1 (Fig. C22.2b).  
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The coefficient CII reads 
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C22.3.3 T-stress  
The T-stress for the fully developed zone (see Fig. C22.2a) with a layer length of s=s1 (the 
crack tip excluded) results from (C22.1.13) and (C22.2.2) as 
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For Fig. C22.2a with s1/b→∞ the FE-evaluation resulted in  
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C22.3.4 Re-starting arrested crack  
An arrested crack in glass generates an ion exchange layer as illustrated in the upper part of 
Fig. C22.4a. After an increase of the externally applied stress intensity factor, the crack may 
grow rapidly without a significant further exchange layer generation. The crack extension is 
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shown in the lower part Fig.C22.4a. The stress intensity factor and the T-stress are repre-
sented in Figs. C22.4b and C22.4c. When the crack leaves the initial zone, the T-stress 
changes sign. 

b 

∆aa) 

0 0.5 1 1.5
0 

0.1 

0.2 

0.3 

b)

∆a/b

-KI(1-ν) 
ε E√b c)  T(1-ν)

ε E

0 0.5 1 1.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

∆a/b  
Fig. C22.4 a) Crack growth in the initial zone, b) mode-I stress intensity factor, c) T-stress. 
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Fig. C22.5 Mixed-mode stress intensity factors caused by a misalignment of the crack within the 
layer, a) stress intensity factor KI, b) stress intensity factor KII, c) T-stress. 

C22.3.5 Non-symmetrically aligned crack  
Figure C22.5a shows a crack with a misalignment ∆y with respect to the symmetry axis. Such 
cases may occur for ion exchange layers in glass due to statistical thickness fluctuations. In 
Fig. C22.5a, the mode-I stress intensity factor KI is plotted. Figures C22.5b and C22.5c repre-
sent KII and T.  
For small values of ∆y/b, the initial-straight line behaviour of KII may be expressed as 

  bE
b
yK

ν
ε
−

∆
≅

1150
7

II  (C22.3.5) 

KII(1-ν) 

∆y/b

ε E√b 

0 0.5 1 1.5 2 2.5 3 
0 

0.02

0.04

0.06 

0.1 



 319

C22.4 Variable layer height  
The height of an ion exchange layer in glass under a constant crack growth rate (Fig. C22.6a) 
is  

 sb α=  (C22.4.1) 

giving rise to the fracture mechanics parameters 
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(with the crack tip excluded).  

In the case of a zone developed at one crack face exclusively (Fig. 22.6b), 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−
= 2/3

4/3
1

II 7
101ln

45
4

1 α
α

ν
ε sEK   (C22.4.4) 

 
Fig. C22.6 Square-root shaped volume strain regions as occurring for cracks in glass growing at 

constant rate. 

REMARK: 
In Ref.[C22.4] the T-stresses for expanding zones were computed replacing the general strain 
by a thermal expansion. For this purpose the authors of [C22.4] used the FE-programs 
ABAQUS Version 6.2 and 6.4. 
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In the newer ABAQUS versions, starting with 6.5-6 the T-stress evaluation for identical input 
files then showed a change in the sign keeping the absolute values the same.  

In this context it should be mentioned that ABAQUS detected an error in the T-stress program 
and corrected it in March 2005 (see error message v63_4854 by the bugadmin, March 17, 
2005). This change results in a step-shaped variation of T by an amount of δT 
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−=
13

1 ET   

depending on the condition whether the crack tip is included or excluded in the volume un-
dergoing volumetric expansion. For this fact see also Section A1.4 and eq.(A1.4.17) and Sec-
tion E1 in [C22.5]. 

FE-results obtained with older ABAQUS versions have therefore to be corrected. This may 
have been done in this section for the erroneous results reported in [C22.4]. Since the sign of 
T-stresses is very important for path stability considerations, these inconsistencies and the 
necessary changes should be taken into account in the assessment of problems dealing with 
thermal stresses. 
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C23 
Tetrahedron-shaped cracks 
C23.1 Complete tetrahedron 
A tetrahedron-shaped crack in a plate of thickness B is shown in Fig. C23.1. By finite element 
computations, the Green’s functions were determined for mixed-mode stress intensity factors 
and T-stress. Therefore, point forces P normal to the crack and Q in crack direction were ap-
plied. 

 
Fig. C23.1 Tetrahedron-shaped crack with normal and tangential point forces. 

Under a combined crack-face loading, the stress intensity factors generally read 
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Fig. C23.2 Mixed-mode weight functions for tetrahedron-shaped cracks. 

Table C23.1  Coefficients for weight functions eqs.(C23.1.3)-(C23.1.6) (computed with ν=0.25). 

 A B C 
ξ<0 )1(

IA =-1.125 )1(
IB =0.6402 )1(

IC =-0.1228 
ξ>0 )1(

IA =-0.041 )1(
IB =0.0385 )1(

IC =0 
ξ<0 )1(

IIA =1.8822 )1(
IIB =-1.2319 )1(

IIC =0.2347 
ξ>0 )1(

IIA =0 )1(
IIB =0 )1(

IIC =0 
ξ<0 )2(

IA =-0.1879 )2(
IB =-0.2416 )2(

IC =0.0773 
ξ>0 )2(

IA =0 )2(
IB =0 )2(

IC =0 
ξ<0 )2(

IIA =-1.900 )2(
IIB =1.8151 )2(

IIC =-0.4950 
ξ>0 )2(
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IIB =0.5885 )2(
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The mixed-mode stress intensity factors are shown in Fig. C23.2 and the T-stress in Fig. 
C23.3. The coefficients for eqs.(C23.1.3)-(C23.1.6) are compiled in Table C23.1. In all cases 
of ξ<0, the data correspond to load on the upper crack part (as illustrated for Q in Fig. C23.1). 
For the lower crack part, the symmetry of KI and T and the anti-symmetry of KII have to be 
taken into account. 

 
Fig. C23.3 T-stress for tetrahedron-shaped cracks. 

C23.2 Incomplete tetrahedron 
Figure C23.4 shows a modification of the tetrahedron-shaped crack with one crack part miss-
ing. The stress intensity factors are shown in Fig. C23.5 

 
Fig. C23.4 Two cracks of equal length under an angle of 120°. 
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Fig. C23.5 Stress intensity factors for an incomplete tetrahedron-shaped crack. 
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C24 
An example for kinked cracks in a finite body  
C24.1 DCDC specimen with kinks at both cracks 
The stress intensity factors of kinked cracks in the DCDC specimen (Fig. C24.1, for straight 
cracks see Section C15) were determined for H/R=4 and a/R=4 by finite element compu-
tations. The results are shown in Fig. C24.2 by the symbols as a function of the kink length l 
and the kink angle ϕ. 

 
Fig. C24.1 DCDC specimen with symmetrically kinked cracks. 

 
Fig. C24.2 Mixed-mode stress intensity factors for a kinked crack (Fig. C24.1). Geometry: a/R=4, 

H/R=4.  
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C24.2 DCDC specimen with a kink at one of the cracks 
A kink at only one side is illustrated in Fig. C24.3. Figures C24.4a and C24.4b show the 
mixed-mode stress intensity factors for a kink angle of ϕ=5° and the geometric parameters 
a/R=4 and H/R=4. The kink is located at point (A) and the stress intensity factors are 
evaluated for the crack tip at location (B). The mode-I stress intensity factor at (B) is hardly 
affected by the kink. The mode-II stress intensity factor is roughly proportional to the kink 
length l. 

 
Fig. C24.3 DCDC specimen with a kink at point (A). 

Figures C24.4c and C24.4d show the influence of the kink angle ϕ [C24.1]. The mode-II 
stress intensity factor KII at point (B) is proportional to the kink angle. From the results of Fig. 
C24.5 it holds 

 ϕ2
)(,II )/( aK B l∝  (C24.7) 

The geometric functions for the stress intensity factors at the kink (i.e. at location (A)) are 
represented in Fig. C24.5. Figures C24.5a and C24.5b show the mixed-mode stress intensity 
factors for the crack tip located at point (A) The mode-I stress intensity factor is also hardly 
affected by the kink. In contrast to point (B), the mode-II stress intensity factor is roughly 
proportional to the square root of the kink length. Figures C24.5c and C24.5d show the 
influence of the kink angle ϕ.  
The influence of the kink angle can be shown by using the solutions obtained for the semi-
infinite crack in an infinite body according to Cotterell and Rice [C24.2]. 
Under pure mode-I loading, the stress intensity factors for the kink, KI, and KII, can be 
expressed roughly by the stress intensity factor for the original (straight) crack, kI, using the 
simple expressions of 

  l111II bTgkK +=  (C24.1) 

  l221III bTgkK +=  (C24.2) 

with the angular functions 
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and the coefficients b1 and b2 given by 

 β
π

2
1 sin8
=b   (C24.5) 

 ββ
π

cossin8
2 −=b   (C24.6) 

 

 
Fig. C24.4 Mixed-mode stress intensity factors at point (B) for a kink located at point (A); a), b) 

influence of the kink length, c), d) influence of the kink angle, (F according to eq.(2.2)). 

The agreement of these asymptotic results with the finite element data of Fig. C24.5a is very 
good. The strong influence of the kink length in form of the √l dependency is an effect of the 
strongly negative T-stress term (Section C15). 
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The near-tip solutions of the mode-II stress intensity factor KII at point (A) valid for l/a→0 
result from eqs.(C24. 2), (C24. 4) and (C24. 6) as 

 )cossin/8( 210,I)(,II ϕϕβ
π

agFF A l−=  (C24.8) 

with the mode-I stress intensity factor FI,0 in the absence of the kink. This asymptotic result is 
entered in Fig. C24.5a as the solid curve. It is in sufficient agreement with the FE results 
(circles).  

 

 
Fig. C24.5 Mixed-mode stress intensity factors at point (A) for a kink located at point (A); a), b) 

influence of the kink length (symbols: FE results, curves: cumputed from eqs.(C24.1)-(C24.6)), c), 
d) influence of the kink angle, (F according to eq.(C15.1.1)). 

The mode-I stress intensity factor is obtained for l/a→0 

FII 

ϕ=5° 

ϕ=5° 

FI 

l/a l/a
0 0.05 0.1 0.15

0 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0 0.05 0.1 0.15 0

0.1

0.2

0.3

0.4

0.5

a/R=4, H/R=4 a/R=4 H/R=4 

a) b) 

(A) (A) 

l/a=0.1 

ϕ   (°) ϕ   (°) 

l/a=0.1

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

H/R=4

0 2 4 6 8 10 0

0.1

0.2

0.3

0.4

0.5

FII 

a/R=4

a/R=4

H/R=4

c) d) 

(A) (A) 

FI 



 329

 )sin/8( 2
110,I)(,I ϕβ

π
agFF A l+=  (C24.9) 

as shown in Fig. C24.5b by the solid curve.  

The solid curve in Fig. C24.5b deviates very early from the FE results. The reason for this 
behaviour is the decrease of the mode-I stress intensity factor with the total crack length. This 
becomes obvious by replacing the crack length a by the total length a+lcosϕ, i.e. 

 ⎟
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R

aFF A
ϕcos

0,I)(,I
l  (C24.10) 

The result of this estimation is entered in Fig. C24.5b as the dashed line. The agreement with 
the FE results is slightly better. The remaining disagreement is caused by the fact, that a crack 
at one side of the hole of length a is present and at the opposite location a crack of length 
a+lcosϕ has to be considered. By using eq.(C15.5.1), which now reads 
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0I
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the dash-dotted line in Fig. C24.5b results. It is in best agreement with the FE data. 
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PART D 

2-DIMENSIONAL CRACKS 

Stress intensity factor solutions in handbooks are mostly reported for plane stress or plane 
strain conditions, with the thickness dimension not entering the solution. The plane stress 
condition assumes an infinitely thin specimen, for instance an extremely thin sheet with a 
disappearing stress component in thickness direction, σz=0. The plane strain condition is 
given by an infinitely thick plate or by a disappearing strain in the thickness direction, εz=0. 
Although the crack always is a 2-dimensional object of dimension “length×length”, these two 
problems are commonly referred as a 1-dimensional crack.  
If the full test specimen is modelled without simplifying the boundary conditions of plane 
stress or plane strain, the related crack is referred to as a 2-dimensional one and the fracture 
mechanics problem as a 3-dimensional problem. In this case, plane strain dominates in the 
bulk of a specimen and plane stress occurs in the surface regions.  
In contrast to the constant fracture mechanics parameters in the case of a 1-dimensional crack, 
these parameters must vary over the thickness.  
A second, somewhat different definition of a 2-dimensional crack is a crack the shape of 
which is not exclusively defined by the crack length. This is true for a crack in a trapezoidal 
bar. Here, the angle of the trapeze is a second parameter for the description of the crack. In 
the example of Section D4, both definitions of the 2-dimensional crack are applicable simul-
taneously. 
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D1 
Cone cracks  
Under spherical contact loading, cone cracks can be initiated in brittle materials (see Fig. 
D1.1). Figure D1.1a shows a sphere in contact with the plane surface of a semi-infinite body. 
Under increasing load, a cone crack develops (Fig. D1.1b). Geometric data are given in Fig. 
D1.1c with the complicated parts near the contact ignored. It should be noted that in 
indentation fracture mechanics it is usual to denote the crack length by c instead of a. 

 

 
Fig. D1.1 a) Crack generation by a spherical indenter, b) cone crack, c) simplified geometry, d) 
couples of normal and shear line loads for the determination of the weight functions. 

The stress intensity factors K of cracks can be computed by the weight function method as 
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where σn are the stresses in the uncracked body normal to the prospective crack plane and τrϕ 
the shear stresses in this plane. The stresses below the Hertzian contact, needed in eqs.(D1.1) 
and (D1.2), can be taken from the analysis of Huber [D1.1].  
Taking into account the cone shape of the crack with the circumference increasing with 
increasing r, an appropriate set up of the weight functions is 
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with  0,1 )21(
0

)12(
0

)22(
0

)11(
0 ==== DDDD  (D1.4) 

In order to determine the weight function, finite element computations were performed. The 
computations were performed for couples of line forces P and Q along the cone circum-
ference for variable relative distances r/c from the crack tip, Fig. D1.1d (for details, see 
[D1.2]).  
Figure D1.2 shows the weight functions obtained from the normal forces P (Fig. D1.2a) and 
from the shear forces Q (Fig. D1.2b) as the circles. It is of importance that mixed-mode stress 
intensity factor terms occur even under pure normal or pure shear force. From the FE results, 
the coefficients )(ij

nD  were determined for ν=0.2 and 0.3 by application of a fit procedure. 
They are compiled in Tables D1.1 to D1.4.  
There is a rather small influence of Poisson’s ratio ν on the weight function components, as 
obvious from Fig. D1.3, where the weight functions are plotted as functions of ν.  
In order to obtain the full weight function solution in the range of 15≤ϕ≤30°, the data of 
Tables D1.1 to D1.4 may be interpolated with respect to b/c, ν, and ϕ. For a more simplified 
practical use, the coefficients were approximated as 
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with the coefficients A0-A5 compiled in Tables D1.5 and D1.6 for ν=0.2 and ν=0.3. For other 
ν values the weight function coefficients D may be computed from 
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Fig. D1.2 Weight functions for b/c=0.1, 0.2, and 0.3 and several cone angles, a) results obtained under 

normal force P, b) under shear force Q. 
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Fig. D1.3 Influence of Poisson’s ratio ν on weight functions for b/c=0.2 and ϕ=15°. 

Table D1.1 Coefficients of the weight function h11. 

ϕ b/c )11(
1D  )11(

2D  )11(
3D  )11(

1D  )11(
2D  )11(

3D  
  ν=0.2     ν=0.3   

0.1 6.619 9.990 -11.762 6.558 10.589 -12.776 
0.2 6.876 9.811 -10.282 6.843 10.301 -10.971 

15° 

0.3 7.115 9.642 -8.936 7.107 10.041 -9.354 
0.1 3.035 4.196 -5.438 2.971 4.463 -5.962 
0.2 3.215 4.175 -4.902 3.170 4.403 -5.294 

22.5° 

0.3 3.385 4.138 -4.371 3.359 4.327 -4.640 
0.1 1.322 2.024 -2.798 1.235 2.188 -3.127 
0.2 1.461 2.073 -2.640 1.391 2.217 -2.905 

30° 

0.3 1.595 2.098 -2.445 1.540 2.221 -2.646 
 

Table D1.2 Coefficients of the weight function h22. 

ϕ b/c )12(
1D  )12(

2D  )12(
3D  )12(

1D  )12(
2D  )12(

3D  
  ν=0.2     ν=0.3   

0.1 2.8468 -.6314 -.7125 2.9871 -.3460 -.9470 
0.2 2.9530 -.7080 -.5530 3.0857 -.4384 -.7727 

15° 

0.3 3.0349 -.7481 -.4694 3.1606 -.4964 -.6749 
0.1 1.4316 .6574 -1.1476 1.5717 .8672 -1.3347 
0.2 1.5367 .5997 -1.0457 1.6692 .7978 -1.2197 

22.5° 

0.3 1.6204 .5662 -.9887 1.7460 .7505 -1.1503 
0.1 .7130 .9232 -.9420 .8587 1.0914 -1.1098 
0.2 .8127 .9024 -.9204 .9503 1.0601 -1.0735 

30° 

0.3 .8948 .8889 -.9092 1.0250 1.0358 -1.0503 
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Table D1.3 Coefficients of the weight function h21. 

ϕ b/c )21(
1D  )21(

2D  )21(
3D  )21(

1D  )21(
2D  )21(

3D  
  ν=0.2     ν=0.3   

0.1 -2.684 -18.200 9.410 -2.7593 -18.5636 8.8931 
0.2 -2.750 -17.680 8.144 -2.8254 -17.9514 7.5379 

15° 

0.3 -2.798 -17.332 7.280 -2.8698 -17.5575 6.6635 
0.1 -1.654 -8.686 4.318 -1.7606 -8.9094 4.1169 
0.2 -1.673 -8.495 3.729 -1.7746 -8.6650 3.4623 

22.5° 

0.3 -1.690 -8.352 3.293 -1.7851 -8.4935 3.0023 
0.1 -1.239 -4.841 2.299 -1.3693 -4.9709 2.2173 
0.2 -1.235 -4.743 1.953 -1.3567 -4.8435 1.8217 

30° 

0.3 -1.235 -4.664 1.680 -1.3480 -4.7482 1.5254 
 

Table D1.4 Coefficients of the weight function h12. 

ϕ b/c )12(
1D  )12(

2D  )12(
3D  )12(

1D  )12(
2D  )12(

3D  
  ν=0.2     ν=0.3   

0.1 -2.990 3.952 -2.002 -2.9743 3.9767 -1.7737 
0.2 -2.973 3.847 -1.891 -2.9563 3.8605 -1.6732 

15° 

0.3 -2.961 3.770 -1.834 -2.9443 3.7756 -1.6281 
0.1 -2.052 1.888 -.613 -2.0142 1.9440 -.4819 
0.2 -2.042 1.893 -.628 -2.0052 1.9404 -.4994 

22.5° 

0.3 -2.034 1.894 -.647 -1.9990 1.9338 -.5242 
0.1 -1.583 1.002 -.043 -1.5091 1.0672 .0271 
0.2 -1.563 1.017 -.083 -1.4941 1.0764 -.0100 

30° 

0.3 -1.548 1.026 -.117 -1.4835 1.0796 -.0447 
 

Table D1.5 Coefficients for eq.(D1.5), ν=0.2. 

n (ij) A1 A2 A3 A4 A5 A6 
1 (11) 18.909 -1.081 .0163 4.970 -.212 .0031 
2 (11) 33.132 -2.024 .0329 -7.017 .457 -.0070 
3 (11) -40.096 2.355 -.0373 47.411 -2.916 .0465 
1 (22) 7.689 -.422 .0062 .823 .0128 -.0003 
2 (22) -6.249 .516 -.0092 -.366 -.0354 .0014 
3 (22) 1.958 -.273 .0059 1.429 .0138 -.0019 
1 (21) -6.409 .332 -.0053 -1.922 .115 -.0017 
2 (21) -55.653 3.249 -.0519 15.347 -.986 .0168 
3 (21) 31.798 -1.879 .0302 -32.190 1.902 -.0311 
1 (12) -6.330 .286 -.0043 .660 -.0525 .0012 
2 (12) 12.113 -.706 .0112 -5.314 .4066 -.0075 
3 (12) -7.723 .496 -.0079 5.306 -.4064 .0072 
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Table D1.6 Coefficients for eq.(D1.5), ν=0.3. 

n (ij) A1 A2 A3 A4 A5 A6 
1 (11) 18.739 -1.072 .0161 5.551 -.2404 .0035 
2 (11) 35.404 -2.165 .0353 -10.505 .6799 -.0108 
3 (11) -43.896 2.575 -.0408 57.016 -3.5007 .0560 
1 (22) -6.393 .324 -.0052 -2.014 .1242 -.0018 
2 (22) -56.571 3.289 -.0524 16.889 -1.0552 .0176 
3 (22) 30.073 -1.768 .0284 -32.684 1.8973 -.0308 
1 (21) 7.858 -.424 .0063 .724 .0155 -.0004 
2 (21) -5.679 .494 -.0089 -.683 -.0228 .0012 
3 (21) 1.520 -.257 .0056 1.678 .0036 -.0017 
1 (12) -6.322 .284 -.0041 .675 -.0517 .0011 
2 (12) 12.021 -.695 .0110 -5.439 .4078 -.0075 
3 (12) -7.160 .469 -.0076 4.985 -.3894 .0070 
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D2 
Inclusion with an annullar crack 
D2.1 The ring-shaped crack123456 

Ceramic components can fail by unstable propagation of microscopic flaws as pores, cracks, 
inclusions, or other material inhomogeneities which are present due to manufacturing. 
Description of failure due to internal elliptical cracks or semi-elliptical surface cracks is well 
established. The same holds for pores.  
In the case of inclusions, failure generally is modelled by failure of an assumed annular crack 
extending around the inhomogeneity. Reference solutions for special loading cases are given 
in literature [D2.1-D2.6].  

D2.1.1 Weight functions for the ring-shaped crack 
A ring-shaped crack of inner radius R and crack size a in a homogeneous infinite body is 
shown in Fig. D2.1a. The two crack tips are denoted as (A) and (B). 

 
Fig. D2.1 Ring-shaped crack, a) geometry, b) reference loading case (constant stress). 

Stress intensity factor solutions for the ring-shaped crack in an infinite body loaded by 
constant stress normal to the crack plane (Fig. D2.1b) were compiled by Rosenfelder [D2.1].  
For an arbitrarily given stress distribution σ(x) in the uncracked body normal to the crack 
plane, the related stress intensity factors can be computed from  
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The weight function solutions for the ring-shaped crack were determined in [D2.7] as  
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Figure D2.2 shows these results for variable values of a/R. It becomes obvious that the influ-
ence of the relative crack size is much stronger for location (B) than location (A). 

 
Fig. D2.2 a) Weight function for location (A), b) for location (B).  

D2.1.2 Ring crack under constant load 
For the reference load σ=σ0=const., stress intensity factors were computed by Nied and 
Erdogan [D2.2] and Tada et al. [D2.3]. The data of Nied and Erdogan [D2.2] were fitted by 
Rosenfelder [D2.1, D2.7] as 
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with α=a/R. Figure D2.3 shows these stress intensity factor solutions as curves. 

0 0.2 0.4 0.6 0.8 1
0 

1 

2 

a/R=0 

h(A)√a 

1

2 

8

4 

a) 

0 0.2 0.4 0.6 0.8 1 0

1

2

3

4

5

a/R=0
1
2

4

x/a 

8

x/a 

b) h(B)√a 



 341

The results obtained with the weight functions (D2.1.3) and (D2.1.4) are shown by the circles. 
There is an excellent agreement between the weight function results and those of Nied and 
Erdogan.  
In the 1985 edition of Tada’s handbook [D2.3], closed-form expressions are given by 
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both shown in Fig. D2.3 as curves. 

 
Fig. D2.3 Stress intensity factor solutions for a ring-shaped crack under constant stress. 

A comparison of stress intensity factor relations for location (A) shows an excellent agree-
ment of all solutions for a/R>2. The agreement of solutions (D2.1.5), (D2.1.7), and the weight 
function results is excellent for any a/R. 
An analytical evaluation of the weight function integrals with eqs.(D2.1.3) and (D2.1.4) is 
possible only in special cases. Under constant stress, the integration yields 
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D2.1.3 Weight function approximations from reference loading cases 
The weight functions eqs.(D2.1.3) and (D2.1.4) are expected to be highly accurate. A disad-
vantage is the rather complicated structure of the relations. For evaluations with a reduced 
degree of approximation, simplified expressions may be of advantage. Such weight functions 
can be derived easily by adjusting h to simple reference stress intensity factor solutions 
[D2.4].  
If the weight functions are approximated by  
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the stress intensity factors for constant stress σ result as 
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Coefficients D(A) and D(B) can be obtained from the solution of Tada [D2.3], eqs.(D2.1.7) and 
(D2.1.8), used as the reference solutions  
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Application of eqs.(D2.1.5) and (D2.1.6) results in 
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Figure D2.4 represents the approximate weight functions computed with (D2.1.14) and 
(D2.1.15).  

 
Fig. D2.4 Weight function approximations using (D2.1.14) and (D2.1.15) for the outer (a) and the 

inner crack tip (b). 
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D2.2 Spherical inclusion with an annular crack 
Figure D2.5 shows a spherical inclusion of radius R with an annular crack of size a. The 
elastic parameters for the inclusion are Ei and νi and for the matrix Em and νm. 

 
Fig. D2.5 Spherical inclusion with an annular crack. 

D2.2.1 Stress intensity factor due to thermal stresses 
D2.2.1.1 Stress intensity factor at the outer crack tip 
The weight function derived for a ring-shaped crack in a homogeneous body was used to 
estimate the stress intensity factor at the outer crack tip (A) for thermal stresses caused by 
different thermal expansion coefficients of inclusion and matrix, αi and αm. At the inner crack 
tip (B), where the crack terminates the inclusion, a square-root shaped stress distribution does 
no longer appear in general. Hence, no stress intensity factor can be determined there. An 
exception is the special case of identical elastic parameters for the matrix and the inclusion. 
With the thermal stresses σn normal to the crack plane 
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the thermal stress intensity factor Kth at (A) can be obtained using the weight function 
(D2.1.3). The results are shown in Fig. D2.6 as the thick solid curves.  
The approximate weight functions according to (D2.1.10) allow for simple analytical 
solutions. For the weight function coefficients given by (D2.1.14) and (D2.1.16), it results 
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In Fig. D2.6, these solutions are entered as the dashed and dash-dotted curves. Within the 
thickness of the curves, all these solutions coincide.  

(A)(B)

a

x

R



 345

 
Fig. D2.6  Stress intensity factor at the outer crack tip caused by thermal stresses: (solid curve: 

eq.(D2.1.3), dashed: eq.(D2.2.3), dash-dotted: eq.(D2.2.4)). 

D2.2.1.2 Stress intensity factor at the inner crack tip 
In the special case of identical elastic constants E and ν for the inclusion and the matrix, a 
stress intensity factor also occurs at the inner crack tip. The solution computed with the 
weight function (D2.1.4) is plotted in Fig. D2.7 as the solid curve. 

 
Fig. D2.7 Stress intensity factor at the inner crack tip for the case of the same elastic constants in the 

inclusion and matrix (solid curve: eq.(D2.1.3), dashed: eq.(D2.2.5), dash-dotted: eq.(D2.2.6)). 

The approximate weight function with (D2.1.15) gives the stress intensity factor relation for 
this location 
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and is shown in Fig. D2.7 as the dashed curve. The weight function coefficient (D2.1.17) 
results in 
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as shown in Fig. D2.7 by the dash-dotted curve. 

D2.2.1.3 Comparison with stress intensity factor solutions from literature 
Stress intensity factor results from literature were compiled by Rosenfelder [D2.1]. A simple 
estimation procedure was proposed by Baratta [D2.5]. This estimation is identical with the 
solution for constant crack-face loading with the stress taken at location x=a, i.e. 
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Since the thermal stress value at x=a is the lowest one that appears on the crack face, this 
solution underestimates the true stress intensity factor (Fig. D2.8).  
A solution from Ito [D2.6] resulting from finite element computations reads for identical 
elastic properties of matrix and inclusion 
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Fig. D2.8 Stress intensity factor for the inclusion with annular crack for thermal stresses. 
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Whereas stress intensity factors for remote stresses increase continuously with increasing 
crack size, stress intensity factors under thermal stresses exhibit a maximum at a/R≅0.28, as 
can be seen from the representation in Fig. D2.9. 

 
Fig. D2.9 Comparison of stress intensity factors for loading by remote tension (dashed curve) and 

thermal stresses (solid curve). 

D2.2.2 Stress intensity factor for remote tension 
Under a remote tensile stress σ∞, the tangential stresses at the equator of the sphere (normal to 
the prospective crack plane) are in the matrix 
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with the material parameters [D2.8] 
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Also in this case the subscript “i” stands for inclusion and “m” for matrix. By using the 
approximate weight function with coefficient (D2.1.16), integration gives the solution 
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In Fig. D2.10, the numerical solution obtained with eq.(D2.1.3) (solid curve) is compared 
with the approximation (D2.2.12) (dashed curve) and the rough approximation derived by 
Baratta [D2.5]  
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and displayed by the dash-dotted curve. Whereas deviations between (D2.2.12) and the 
numerical solution are hardly visible, the estimation of Baratta deviates slightly. 

 
Fig. D2.10 Stress intensity factors for a spherical inclusion with an annular crack. Comparison of the 

numerical solution obtained with the weight function (D2.1.3) and the closed-form expressions 
eqs.(D2.2.12) and (D2.2.13). 

D2.3 Spherical inhomogeneities 
D2.3.1 Continous variation of material parameters 
In many cases an inclusion or a pore may not be described sufficiently by a sphere with a 
sharp radius having sectional constant material parameters. For instance local agglomerations 
or density fluctuations in a material will result in more “diffuse inhomogeneities”. This is for 
instance the case for glass with regions of higher density in a matrix of mean density. 
Computations on stresses and stress intensity factors were carried out in [D2.7] for the radial 
distribution of the differences of thermal expansion coefficient α 
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where E0 is the value in the centre and E∞ far away from the inhomogeneity. The variation of 
ν was neglected and a fixed value of ν=0.25 used. 
The dependencies (D2.3.1) and (D2.3.2) are plotted in Fig. D2.11 for several values of 2n. 
The higher the number n, the steeper is the transition from the inhomogeneity to the matrix. 
The sphere with sharp transition is given by the limt n→∞.  

 
Fig. D2.11 Distribution of mismatch of thermal expansion coefficient and Young’s modulus according 

to eqs.(D2.3.1) and (D2.3.2).  

Following the analysis by Timoshenko and Goodier (Section 132 in [D2.9]) the problem of 
simultaneously changing thermal expansion mismatch ∆α and Young’s modulus E can be 
solved. Having in mind that for a constant temperature change ∆T≠f(r) the elastic strains εel 
are given by the local differences in the expansion coefficient, it results from Hooke’s law  
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With the total strains εr and εt replaced by the radial displacements u according to 
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the stress components read 
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Introducing these stress components into the radial equilibrium condition 
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yields a somewhat lengthly ordinary differential equation for u(r) with the highest derivative 
d2u/r2.  

D2.3.2.2 Determination of stresses for some examples 
In the following considerations, the special value of 2n=2 is used for the thermal expansion 
mismatch.  
From the solution of eq.(D2.3.8), the radial displacements u were determined. They are shown 
in Fig. D2.12a. From u the strains are obtained via eqs.(D2.3.5). Inserting εt and εr in (D2.3.6) 
and (D2.3.7) gives the stress components. Here, the tangential stresses are of special interest. 
They are plotted in Fig. D2.12b in the normalisation according to  
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The maximum tangential stresses are shown in Fig. D2.13a as a function of the ratio of the 
Young’s moduli in the centre of the inhomogeneity, E0, and the bulk material, E∞.  
The maximum tensile stresses for 2n=2 are by a factor of about 10 smaller than those obtained 
from the model of a sharp transition of material properties from the inclusion to the bulk 
material (represented by the dash-dotted curve in Fig D2.13a). 

 
Fig. D2.12 a) Displacements u(r) in normalised representaton for different ratio of Young’s moduli, b) 

tangential stresses in normalised representaton (D2.3.9) for different ratios E0/E∞. 
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The maximum tangential tensile stresses for 2n=2 can be expressed for 0.2< E0/E∞ ≤5 by 
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The square in Fig. D3.13a represents the maximum tangential stress for 2n=4 and E0/E∞=1. 
Also this comparison shows clearly the stress reducing effect of a continuous change of 
material properties. Figure D2.13b shows the influence of the Young’s moduli on the stress 
intensity factor at the outer crack tip of an annular crack, K(A).The location of the inner crack 
tip is chosen to be at r=R. In Fig. D2.13b, K is represented by the geometric function F 
according to 
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Fig. D2.13 a) Comparison of maximum tangential stresses for different values of 2n, b) influence of 
Young’s moduli on the geometric function according to eq.(D2.3.11) for the outer tip of an annular 

crack. 
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D3 
Bending bar with trapezoidal cross section 
Fracture toughness measurements on ceramic materials are mostly carried out with edge-
cracked rectangular bars under bending loading. For special purposes the rectangular standard 
geometry has to be replaced by a trapezoidal cross section.  

There are different reasons for the need of non-rectangular specimens:  

• In the case of injection moulded specimens slant side faces simplify demoulding. 
Fracture tests without an additional specimen finishing are possible if the stress intensity 
factor solution would be known. 

• A geometry with a strongly reduced thickness in the tensile zone of a bending bar is 
necessary to allow extremely sharp notches to be introduced by use of the focused ion 
beam method with tenable expenditure [D3.1].  

The outer fibre tensile stress for a bending bar with trapezoidal cross section (Fig. D3.1) is  

 222 4
212

bBbB
bB

W
M b

bend ++
+

=σ  (D3.1) 

where Mb is the bending moment applied and W, B, and b describing the geometry of the 
cross section (Fig. D3.1). 
The stress intensity factors can be expressed via the geometric function F by 

 aFK bend πσ=  (D3.2) 

with the crack depth a. Two cross-sections were studied in [D3.1] as illustrated in Fig. D3.1:  

 
Fig. D3.1 4-point bending test with two different trapezoidal bars. 
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Specimen I: The geometry for this specimen is B/W=3/4, b/B≤0.2, ϕ≈17-20°. The ratio B/W 
was chosen to be ¾ since standard test bars have commonly cross sections of 3mm×4mm. In 
Fig. D3.2a, the geometric function is shown as a function of the location along the crack tip. 
The maximum stress intensity factor is found in the crack centre where plane strain conditions 
are fulfilled. Near the side surfaces the stress intensity factor decreases significantly. The 
maximum stress intensity factor is plotted in Fig. D3.2b versus the geometric parameters b/B 
and a/W.  
The geometric function for the maximum stress intensity factor occurring at the symmetry 
axis tends to Fmax≅1.135 for a/W→0 (dashed curve parts in Fig. D3.2b). This value is only 1% 
higher than the 2-d solution of an edge-cracked half-space. 

 
Fig. D3.2 Stress intensity factor along the crack front for specimen I (dash-dotted horizontal line: 

geometric function for the edge-cracked half-space, F=1.12155), b) geometric function for maximum 
stress intensity factors occurring at the crack centre. 

Specimen II: The geometry is defined as B/W=3.8, b/B=0.7, ϕ≈30°.The geometric functions 
for stress intensity factors, eq.(D3.2), occurring in the specimen centre (x=0) are shown in 
Fig. D3.3a as circles together with 2-d results for an edge-cracked rectangular bar. 
For α=a/W→0, the well-known limit case of an edge-cracked half-space is fulfilled in the 
centre region of the crack. It must hold for loading by σbend, eq.(D3.1), F=F0, where F0 is the 
geometric function for the edge-cracked rectangular bending bar as available in handbooks 
(see e.g. [D3.2]). This limit case is introduced in Fig. D3.3a as the upper dashed curve. 
For a/W→1, the limit case of the “deep crack” is approached. The stress intensity factor must 
coincide with that of an edge-cracked rectangular beam of thickness B for the same bending 
moment Mb and the bending stress σ=6 Mb/(BW2). This limit solution, F1, is introduced in Fig. 
D3.3a as the lower dashed curve. For F1 it holds 
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The FE-results for specimen II can be fitted by 

 2
1

2
0 )1( αα FFF +−≅   ,   Wa /=α  (D3.4) 

Having in mind the accuracy of handbook solutions in the order of about 1% and the expected 
accuracy of 1-2% of the FE results, one can conclude, that for α<0.4 the maximum stress 
intensity factors are sufficiently represented by the 2-d results. An extension of this 
approximate relation to specimen I is not recommended since in this case the length b and B 
and, consequently, the limit curves are too different. 
Figure D3.3b shows the variation of local stress intensity factor with the distance from the 
symmetry line. A decrease of the stress intensity factor is obvious at the side surfaces. In the 
outer surface layer the validity of stress intensity factor data is doubtful since the singularity 
behaviour must change there.  

 
Fig. D3.3 Specimen II: a) Geometric function for the stress intensity factor at the centre, b) Geometric 

function for the stress intensity factors along the crack front (b/B=1.44, W/b=3/8). 
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D4  
Three-dimensional analysis of the DCDC specimen 
In Section C15, the DCDC specimen was described as a 2-dimensional specimen with a pair 
of 1-dimensional cracks. Here, some results of a 3-dimensional analysis [D4.1] are addressed. 
Special attention is drawn to the side-surface displacements. Figure D4.1 shows the geometry 
of the DCDC specimen. In contrast to Section C15, the origin of the x-axis is now at the crack 
tip. 

 
Fig. D4.1 Standard DCDC specimen (side view). 

D4.1 Straight crack 
D4.1.1 Stress intensity factor and T-stress 
In Fig. D4.2, the distributions of the stress intensity factor KI and the T-stress are shown as 
functions of the thickness coordinate z with origin in the specimen centre.  

 
Fig. D4.2 a) Variation of the stress intensity factor along the front of a straight crack (symbols: FE 
results, dash-dotted line: 1-d stress intensity factor solution, dashed circles: region of disappearing 

square-root singularity) b) variation of T-stress.  
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In Fig. D4.2a, the change of the stress intensity factor along the straight crack front is shown. 
A very strong variation of the geometric function F defined by 

 RFpK π=   (D4.1.1) 

is visible. F decreases to a value of less than 50% of that in the centre. The data near the 
surfaces cannot be expressed as stress intensity factors because the singularity behaviour 
changes. Whereas in the bulk a singularity exponent of 0.5 occurs, at the surface this value 
changes to 0.54 for a Poisson’s ratio of ν=0.25. Consequently, singular stresses can no longer 
be expressed by K. 
The result for the 1-d crack (dash-dotted line in Fig. D4.2a) is roughly identical with the 
average of the local values.  
Figure D4.2b shows the T-stress over the cross-section. The variation of this fracture 
mechanics parameter is small compared to that of the stress intensity factor. 

D4.1.2 Strains in thickness direction 
As a further parameter representing the stress state at the crack tip, the strain εzz parallel to the 
crack tip line was computed.  
Figure D4.3a shows εzz over the thickness B at several distances x/W from the crack tip. It can 
be concluded that nearly over the whole thickness of the specimen the z-strains are identical. 
Only the near-surface strains show a dependency on x. 
Figure D4.3b shows details near the side surface, z/B=-0.5. The arrows indicate the distance 
from the surface (∆zd) where the deviations from the common curve for εzz are ∆εzz=0.002. In 
Fig. D4.3c, these depths from the surface are plotted versus the distance from the crack tip.  

 
Fig. D4.3 a) z-strains over the cross-section at several distances from the crack tip, b) detail near z/B=-
0.5 (arrows: first deviation from the common curve), c) depth of first deviation versus distance from 

the crack tip.  
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D4.2 Influence of a curved crack front 
In experiments on glass, a curved crack front can be found (Fig. D4.4). This is a consequence 
of the reduced stress intensity factors in the surface region (see Fig. D4.2a), resulting in a 
reduced crack growth.  
Figure D4.5a shows the crack approximated by straight segments. The outer crack part inter-
sects the free surface under an angle of ϕ (ϕ=90° corresponds to the straight crack). The next 
deeper part was modelled as a straight line with an intermediate angle of (ϕ+90°)/2. The 
geometric function of the local stress intensity factor is plotted in Fig. D4.5b for ϕ=90°, 60°, 
and 45°. 

 
Fig. D4.4 DCDC specimen (top view) with a curved crack front (ϕ= crack terminating angle). 

      
Fig. D4.5 a) Curved crack front approximated by straight segments, b) stress intensity factor along the 

crack front (dashed circles: doubtful data since singularity exponent deviates from ½). 

D4.3 Side-surface displacements near the crack tip 
For the finite element computation, a crack in the DCDC specimen, Fig. D4.4, was modeled 
with a/R = 4, H/W = 0.1, and R/H = 0.25. The specimen thickness, B, was chosen as B/W = 0.2, 
resulting in a square cross section. Poisson ratio was assumed as ν = 0.25.  
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The uz displacements at the free surface are shown in Fig. D4.6a. For angles of 45°, 60°, and 
90°, the same displacement behavior was found in greater distances from the tip (Fig. D4.6a) 
Figure D4.6b gives a log-log plot of the differences with respect to the value at x = 0, ∆uz = 
uz(x)-uz(0), for x > 0. 
In Fig. D4.6c, the differences in displacements, ∆uz, are plotted for a smaller distance from 
the crack tip. In this representation, significant differences in ∆uz are obvious. The variation 
of uz becomes more pronounced for a decreasing angle, ϕ.  
Figure D4.7 illustrates the differences in displacements along the y - axis, i.e. for x = 0. Fig 
D4.7a shows a systematic shift in the curves with the angle, φ. The curves also show an 
increase of the slopes with increasing terminating angle φ.  

 

 
Fig. D4.6 a) uz displacements along the x-axis obtained for ϕ=90°, 60°, and 45°; b) log-log represent-
tation of ∆uz for x > 0, c) details for shorter crack tip distances.  
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Fig. D4.7 a) Log-log representation of the differences in displacements, ∆uz = uz(y) - uz(0), along x = 0 
obtained for ϕ = 90°, 60°, and 45°; b) details for small distances y. 

AFM-scans across cracks are often used for the determination of the COD of cracks under 
mechanical load. Such measurements are affected not only by the crack opening, but also by 
pure elastic surface displacements uz outside of the crack.  
The displacements for ϕ = 45, 60°, and x < 0 found along the line y = 0, ∆uz(x,0), are shown in 
Fig. D4.8. Along this line the near-tip displacements show a nearly linear slope, i.e., 
∆uz(x,0) ~ -x.  

 
Fig. D4.8 Displacements uz in the crack wake (x<0) along the x-axis. 

Cross sections in several distances from the tip are represented in Fig. D4.9a for a crack ter-
minating angle of ϕ = 45° and in D4.9b for an angle of 60°.  
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Fig. D4.9 Displacement profiles in the crack wake along section lines x = constant; a) results for ϕ = 

45°, b) for ϕ = 60°. 
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