
A. Pras and M. van Sinderen (Eds.): EUNICE 2007, LNCS 4606, pp. 1–8, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Identity as a Service –
Towards a Service-Oriented

Identity Management Architecture

Christian Emig, Frank Brandt, Sebastian Kreuzer, and Sebastian Abeck

Cooperation & Management, Universität Karlsruhe (TH), 76128 Karlsruhe
{emig, brandt, kreuzer, abeck}@cm-tm.uka.de

Abstract. Service-oriented architecture (SOA) will form the basis of future
information systems. Web services are a promising way to implement SOA
enabling the loose coupling of functionality at service interfaces. The focus in
SOA changes from traditional software systems to reusable, business-relevant
services. Considering the cross-cutting concern of identity management (IdM),
it is still an open issue how to construct an SOA-aware IdM architecture
enabling “identity as a service” and how to loosely couple the IdM services
with SOA’s core concern part. In this paper we present a blueprint for a service-
oriented identity management architecture featuring interoperability by
applying existing standards. Our solution has been tested and evaluated in an
implementation case study.

1 Introduction

1.1 Background on Web Service-Oriented Architecture

Currently most enterprises try to align their business processes with the supporting IT
by migrating to service-oriented architecture (SOA). Web service technologies are
commonly recognized as a promising way for the implementation of SOA; in the
following, we focus on web service-oriented architectures (WSOA). With the mutual
consent to use WSDL (Web Services Description Language, [1]) for the definition of
service interfaces and SOAP (Simple Object Access Protocol, [2]) as the
communication protocol, the cornerstone for interoperability is set. Bottom-up
approaches start with existing applications and wrap their business functionality to
web services. Integration can then be done by composing web services of
heterogeneous software systems using process execution languages like BPEL
(Business Process Execution Language). Top-down approaches focus business
processes and their mapping to composite and basic web services. This allows
business analysts to perform “programming-in-the-large”, the system-independent
orchestration of business-related (web) services along business processes [3].

1.2 Motivation for Identity Management in Web Service-Oriented Architecture

Besides the development of WSOA’s core concern part there are several cross-cutting
concerns that have to be addressed: a central one is to enable security, especially

2 C. Emig et al.

access control. Access control consists of authentication and authorization
verification. Looking at the mass and complexity of the existing and upcoming
standards in the web service security area like WS-Security, SAML, XACML or the
Liberty Alliance’s stack proposal it is comprehensible to see software developers
often neglect the web service security part. Additionally, state-of-the-art IdM suites
are just being prepared for WSOA [4]. As well, current application servers often do
not yet support a necessary combination of relevant IdM standards to enable
sophisticated access control. This is why as of today existing web services in most
cases have little or no security features. Complications even increase when composing
several web services which provide functionality from different underlying
applications – workarounds like using the applications’ built-in IdM are not
applicable any more; an overall IdM architecture for WSOA is needed – enabling
“identity as a service”.

1.3 Contributions and Structuring of This Paper

The contributions of this paper are:

1. The design of a service-oriented identity management architecture, specified at
service interfaces, the implementing components as well as the employed data
repositories. The prerequisite is to respect WSOA-specifics like the loose coupling
and the existence of basic and composite web services.

2. The alignment of the proposed architecture to existing and promising standards
with the goal to enable interoperability.

The paper is organized as follows: section 2 introduces the architecture of WSOA
and derives the requirements for appropriate IdM services building the bridging point
between WSOA’s core concerns and the IdM architecture. In section 3 we propose
the design of a service-oriented identity management architecture and motivate how
to gain interoperability. In section 4 we present our implementation experience.
Section 5 treats the related work. A conclusion and an outlook on future work in this
area close the body of the paper.

2 Web Service-Oriented Architecture and Requirements for
Identity Management

The basic WSOA “layering” consists of existing applications at the bottom layer that
are wrapped to web services, typically using application servers. Web services can be
composed at an integration layer using BPEL. Web portals are used to integrate the
(human) users using existing web technology like web browsers. The aforementioned
further layers are put on top of the existing applications. Among others, this allows
flexible service reuse in different business processes. This common core of WSOA
can be found in many publications [5, 6, 7, 8]. It is important to notice that the web
service architecture does not imply strict layering. Web services can be accessed
either directly or via one or many intermediaries like BPEL engines. From WSOA’s

 Identity as a Service – Towards a Service-Oriented Identity Management Architecture 3

viewpoint the service interface of a BPEL-composed web service is not
distinguishable from a basic one as they are both described using WSDL.

Before putting (web) service-oriented architectures to fly, there are fundamental
questions to be answered: how is access control to be handled in this highly
distributed and service-oriented environment? Slicing down existing applications to
business related services, the internal IdM structures of the legacy systems are cut off.
The alignment of the different system-specific IdM access control models and
techniques with the goal to a local handling inside the applications complicates the
integrated view on identity management. This is why the development of a WSOA-
wide IdM architecture is favored. Being WSOA-aware itself, this infrastructure is
meant to expose its functionality at service interfaces decoupling core concerns from
IdM, especially access control. Following the paradigm of loose coupling and
separation of concerns, the IdM part of WSOA’s core concern services should be
reduced to the bare minimum [9].

3 Design of a Service-Oriented Identity Management Architecture

From WSOA’s perspective, the complexity of the IdM architecture is encapsulated at
a set of service interfaces which should not have business domain-specific
characteristics. The central goal of the IdM architecture is to verify authorization for
service usage at runtime by enabling access control. Access control is based on two
prerequisites: first, an authentication process checking any possible credentials has to
be passed. This can be done once with validity for a series of subsequent accesses
(relates to a single sign-on approach) or on every access – which is not favored in
WSOA as there is usually a significant amount of services to be invoked. User
authentication can be initiated at WSOA’s portal layer for instance. Second, an
authorization verification process is needed which checks if permission has been
granted for the authenticated subject to invoke a WSOA service. The functionality of
both (i.e. authentication and authorization verification) should be encapsulated at
service interfaces featuring “identity as a service” for both basic and composite
services. This implies that they simply hand over relevant data to the IdM services for
calculation of access control.

Policy
Decision
Point

Token
Repository
Token
Repository

Policy
Store
Policy
Store

Security
Token
Service

User/
Service/Policy
Administration

User
Directory
User
Directory
User
Directory

Service
Registry
Service
Registry

Authorization Authentication Administration

WSDL/SOAP

Business
Logic

Interfaces

Data

Fig. 1. Blueprint of a WSOA-aware IdM Architecture

4 C. Emig et al.

In figure 1, we present the design of our web service-aware IdM architecture. There
are three types of elements that are of interest: first, the IdM services towards WSOA’s
core concern part and towards administration. Second, the service implementing
components and last but not least the data which the components operate on. In the
following, we use this structuring to describe the design of our IdM architecture.

3.1 Interface Layer

Access control is based on authentication and implies authorization verification which
typically are separate processes. Nowadays, access control is typically handled inside
the system boundary of an application. In WSOA, the traditional application
boundaries are put aside. Instead, web services are addressed exposing applications’
core concerns. Following the concepts of “identity as a service”, they import all
functionality needed for access control using external service invocations.

Authentication is handled at the respective web service interface providing
different operations to verify different types of credentials like username / password-
based authentication, certificate-based authentication and so on. To enable single
sign-on and to enhance privacy, a security token (establishing a session context) with
WSOA-wide validity and the possibility for time-limitation is issued on successful
authentication. User authentication can be initiated at WSOA’s portal layer before
accessing protected web services.

Authorization verification is based on an access control model. We have introduced
an access control metamodel for web service-oriented architecture in [10] enhancing
[11] and [12]. In short, for access control it is relevant to know which user is trying to
access which web service operation and what the submitted invocations parameters are,
as web services are defined at a high granularity. For the identification of the web
service operation, they are all assigned a unique identifier. If a web service operation
needs access control, it invokes the authorization verification service sending its
identifier, the user’s security token and the parameter the user had handed over. Using
its internal policy data, the authorization verification service calculates a Boolean value
which is returned and enables the web service to either proceed or stop operations.

The third interface of our IdM architecture is an administrative one. It is used to
maintain the data as described later. It does not necessarily imply WSDL/SOAP, as
administration is often done by humans.

3.2 Business Logic and Data Layer

The component implementing the authentication service is the Security Token Service.
It takes user’s identifier and corresponding credentials and does the verification. To
protect users’ privacy, we suggest issuing temporary security tokens on successful
authentication. They are used as opaque handles towards user’s identity which is
thereby hidden to the core concern web services. Authentication is based on User
Directories. Here the users, defined by their identifiers, credentials (e.g. passwords or
certificates) along with their attributes are stored. The tuples of security token, user
identifier and time limitation of the token are stored at the Token Repository.

Authorization verification is implemented at the Policy Decision Point. It takes the
object identifier of the calling core concern operation, the user’s security token and

 Identity as a Service – Towards a Service-Oriented Identity Management Architecture 5

the operation’s parameters and evaluates them using the corresponding access control
policy which is deployed in the Policy Store. Here the information according to our
WSOA access control metamodel is stored.

Besides identity management, there are further cross-cutting services like the
WSOA’s service registry. It is important to notice that it is implicitly linked to IdM:
the Service Registry is used to store web services’ descriptions whereas in the Policy
Store the related policies are put. These two data repositories are linked using the web
service operations’ object identifiers that are assigned at deployment time. Thinking
of relational databases, this identifier is analogous to foreign keys in WSOA’s Service
Registry and as a primary key in the Policy Store.

3.3 Enabling Interoperability

A major reason for the adoption of web-service oriented architecture is the
interoperability which allows best of breed approaches with an easy integration of
business functionality. WSDL [1] and SOAP [2] build the cornerstone for
interoperability in WSOA, but the same challenges have to be fulfilled at the cross-
cutting identity management architecture. We describe the authentication and
authorization verification web service interfaces using WSDL and we apply SOAP
communication with WS-Security-based message encryption between core concern
web services and the IdM architecture [13]. After successful authentication, a SAML-
conforming token (Security Assertion Markup Language, [14]) is issued to the user.
The user is enabled to use his existing technology like his favored web browser as this
token is mapped to a session cookie which is passed between the user’s web browser
and the web portal. At the portal this session cookie is mapped to a SAML token
which is then piggybacked during all WSOA communication. As of now, there is a
high interoperability problem if the security token of the user is sent in the SOAP
header; this is why we put it in the SOAP body. The token in SOAP header is only
used for point to point message encryption between participating web services. For
the Policy Enforcement Point at the core concern part we use the design pattern
Secure Service Agent as described in [15]. It handles the communication with the
Authorization Service by sending the web service operation’s identification, the user’s
SAML security token and the operation’s parameters. We suggest using a relational
database for the Token Repository and an LDAP-based User Directory where all users
along with their attributes are stored. The Policy Decision Point applies a XACML
component (eXtensible Access Control Markup Language, [16]) to verify
authorization against XACML policies which are deployed at the Policy Store, in
XACML contexts preferably using XML files. For WSOA’s Service Registry, we
suggest applying UDDI [17].

In figure 2 we depict on the left hand side the process of authentication and its
involved parties using UML 2.0 sequence diagrams. Notice the gap between the Portal
and the Security Token Service on the left hand and the Policy Enforcement Point and
the Policy Decision Point on the right hand is the (virtual) border between WSOA’s
core concern part and the IdM architecture. Issuing security tokens and thereby
establishing a session context enables the WSOA for single sign-on capabilities. On the
right hand side the authorization verification process is depicted. The Policy
Enforcement Point is a Secure Service Agent deployed once at every application server.

6 C. Emig et al.

Authentication Authorization Verification

get session
information

deny
access

User
Policy

Decision
Point

Token
Repository

User
Directory

Web Service
Operation

access

(1)
forward
request

(2)

get policy
(7)

(4)

(10)

error
message

grant
access

Policy
Enforcement

Point

Policy
Store

(3)

authorization
verification

request

get user attributes
(6)

validate session (5)

alt [token is valid]

evaluate access
control decision

(8)
[authorization

successful]

[authorization
failed]

alt
response

(9)
response

authentication

return error
code

User
Security
Token
Service

User
Directory

Token
RepositoryPortal

login

(1)
authentication

request

(2)

create new session
(4)

altalt

(3)

[authentication successful]

(6) [authentication
successful]

[authentication
failed]

alt

error
message

return SAML
token

redirect

create SAML token (5)

Fig. 2. Authentication and Authorization Verification Processes

4 Implementation Experience

We implemented the Security Token Service based on OpenSAML 1.1 [18]. The
Policy Decision Point uses Sun's XACML 1.2 implementation [19]. Both components
are realized as Enterprise Java Beans (EJB). To be deployable as web services, we
used stateless session beans. The web service communication between core concern
web services and the IdM services is encrypted using WS-Security [13]. Recognizing
that application servers often do not support outbound encryption using the
requester’s key (JBoss, Oracle), we switched to BEA WebLogic 9.2 [20] which
supports this necessary feature. The XACML policies are stored as XML files. To
increase the performance, in a future release the policies will be stored in a relational
database. The User Directory is realized using OpenLDAP 2.3. The Token Repository
is stored in a relational database table using MySQL 5.0. We use SuSE Linux 10.1 as
the operating system.

5 Related Work

There are several papers that address the core concern part of WSOA like the
development of web services and their composition neglecting the aspect of access
control, like [21, 22, 23]. They admit the necessity of identity management though
they do not delve into it. On the other hand there are papers which explicitly address
access control, but there they mostly focus on the implementation experience of a
specific standard like XACML or SAML [24, 25, 26]. Additionally they lack the
integrated view on the IdM architecture by focusing on either authentication or
authorization and thereby do not support the concept of “identity as a service”.

6 Conclusion and Further Work

In this paper we presented a blueprint for a service-oriented identity management
architecture for web service environments. An authentication service issuing security

 Identity as a Service – Towards a Service-Oriented Identity Management Architecture 7

tokens enables the web services for single sign-on. Our authorization verification
service enables separation of concerns – the core concern web services apply access
control via this loosely-coupled service. We have done a prototypical implementation
securing our existing web services which we have summarized.

Our next steps are to consider a conjoint and model-driven development of web
services with their associated access policies. Starting from computation-independent
models at the business process level, they can be derived to platform-independent
models and transformed to platform-specific models (i.e. IdM architecture-specific)
which are effective calculable policies.

References

1. W3C: Web Services Description Language (WSDL) 1.1 (March 2001), http://
www.w3.org/TR/wsdl

2. W3C: Simple Object Access Protocol (SOAP) 1.1 (May 2000), http://www.w3.org/
TR/soap

3. Emig, C., Weisser, J., Abeck, S.: Development of SOA-Based Software Systems – an
Evolutionary Programming Approach. In: IEEE Conference on Internet and Web
Applications and Services ICIW’06, Guadeloupe / French Caribbean (February 2006)

4. Neuenschwander, M.: Enterprise Identity Management Market 2006–2007. Burton Group
Identity and Privacy Strategies (November 2006)

5. Arsanjani, A.: Service-Oriented Modeling and Architecture, IBM developer works (2004)
6. Newcomer, E., Lomow, G.: Understanding SOA with Web Services. Addison Wesley

Professional, Reading (December 2004)
7. Object Management Group (OMG): The OMG and Service Oriented Architecture,

http://www.omg.org/attachments/pdf/OMG-and-the-SOA.pdf
8. Humm, B., Voss, M., Hess, A.: Rules for high-quality service-oriented Architectures (in

German). Informatik Spektrum 29(6) (December 2006)
9. Burton Group: Directory Landscape – Directory Products evolve towards Identity

Services, Version 1.0 (November 2004)
10. Emig, C., Brandt, F., Abeck, S., Biermann, J., Klarl, H.: An Access Control Metamodel for

Web Service-Oriented Architecture (submitted for publication)
11. Yuan, E., Tong, J.: Attribute Based Access Control (ABAC) for Web Services. In: IEEE

International Conference on Web Services (ICWS 2005), Orlando / Florida (July 2005)
12. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed NIST

standard for role-based access control. ACM Transactions on Information and System
Security (TISSEC) 4(3), 224–274 (2001)

13. Nadalin, A., Kaler, C., Monzillo, R., Hallam-Baker, P. (eds.): Web Services Security (WS-
Security) Version 1.1 (February 2006)

14. OASIS Security Assertion Markup Language (SAML) 2.0 (2005), http://www.oasis-
open.org/specs/index.php#samlv2.0

15. Emig, C., Schandua, H., Abeck, S.: SOA-aware Authorization Control. In: International
Conference Software Engineering Advances ICSEA’06, Tahiti / French Polynesia
(November 2006)

16. OASIS: eXtensible Access Control Markup Language (XACML) 2.0, http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml

17. OASIS: Universal Description, Discovery and Integration (UDDI) 3.0.2 (February 2005),
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3

8 C. Emig et al.

18. OpenSAML - an Open Source Security Assertion Markup Language implementation:
Project Homepage, http://www.opensaml.org

19. Sun’s XACML Implementation: Project Homepage, http://sunxacml.sourceforge.net
20. BEA WebLogic Server® 9.2: Product Homepage, http://www.bea.com/framework.jsp?

CNT=index.htm&FP=/content/products/weblogic/server/
21. Bosworth, A.: Developing Web Services. In: 17th International Conference on Data

Engineering (2001)
22. Grønmo, R., Skogan, D., Solheim, I., Oldevik, J.: Model-driven Web Services

Development. In: IEEE International Conference on e-Technology, e-Commerce and e-
Service (2004)

23. Pasley, J.: How BPEL and SOA Are Changing Web Services Development. IEEE Internet
Computing 9(3), 60–67 (2005)

24. Namli, T., Dogac, A.: Using SAML and XACML for Web Service Security & Privacy.
Middle East Technical University, Ankary / Turkey (2007)

25. Tao, H.: A XACML-based Access Control Model for Web Service. In: IEEE Conference
on Wireless Communications, Networking and Mobile Computing (2005)

26. Peng, Y., Wu, Q.: Secure Communication and Access Control for Web Services Container.
In: 5th International Conference on Grid and Cooperative Computing (2006)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

