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Preface 
 
Stakeholders in the electricity sector in many countries are facing challenges 

due to market liberalisation, climate policy and the promotion of renewable energy 

sources. The interaction between markets and environmental policy instruments is 

an issue of increasing importance. A promising approach for the scientific analysis 

of these developments is the field of agent-based simulation. Agent-based compu-

tational economics is a relatively young research paradigm that offers methods for 

simulating energy markets. A growing number of researchers have developed 

agent-based models to simulate the development of energy markets in the light of 

the above mentioned challenges. 

The inspiration for organizing the first European workshop on Energy Market 

Modelling using Agent-Based Computational Economics (1. EMMACE work-

shop) came from the PowerACE project (www.powerace.com). In this project, the 

following project partners carried out an agent-based simulation of the German 

power market:  

- the Fraunhofer Institute for Systems and Innovation Research (ISI) in 

Karlsruhe (Competence Center Energy Policy and Energy Systems),  

- the Chair of E-Business and E-Government, University of Mannheim, and 

- the Institute for Industrial Production (IIP), working group “energy system 

analysis and environment”, Universität Karlsruhe (TH). 

As an associated partner the Chair of Energy Economics, Brandenburg Univer-

sity of Technology Cottbus was involved in the project. 

Within the project it became evident that agent-based simulation models were 

becoming increasingly popular amongst electricity market modellers. This devel-

opment can be explained by the additional opportunities this modelling paradigm 

provides for the analysis of economic systems when compared to more traditional 

equilibrium or optimisation models. Aspects like learning effects in repeated in-

teractions, asymmetric information, imperfect competition, or strategic interaction 

and collusion can be included in a more realistic way in agent-based models.  

As the field of energy market modelling with agent-based computational eco-

nomics is very heterogeneous, the objective of the workshop was to bring together 

the different modellers and to learn about the potential of this valuable modelling 

approach in different fields of the energy market.  



 

 

This book contains a compilation of several papers and research projects in the 

field of energy market modelling using agent-based computational economics 

which were presented at the first EMMACE-workshop.  

As the organizers of the workshop and editors of these proceedings, we were 

delighted with the good attendance, which is reflected in the internationality and 

interdisciplinarity of the participants and the scope of the contributed papers. We 

are pleased to be able to make a contribution, which may foster the exchange of 

scientific approaches and their practical application in the field of agent-based 

computational economics. We would like to thank all the authors and the partici-

pants of the workshop.  

It is a pleasant duty to express our sincere gratitude to the Excellence Initiative 

of the German Research Foundation (DFG), which financed the Young Investiga-

tor Group (YIG) of Dr. D. Möst and the first EMMACE-workshop. Furthermore, 

we are grateful to the VolkswagenStiftung and especially Professor Hagen Hof, 

who financed the PowerACE-project. Without the financial support provided by 

the VolkswagenStiftung in their programme for funding researchers in the inter-

disciplinary field of environmental research, such an interdisciplinary and vision-

ary project would not have been possible.  

 

Karlsruhe, March 2008 

The editors 
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Agent-based modeling of oligopolistic 
competition in the German electricity market 

Anke Weidlich, Daniel Veit 

Chair of Business Administration and Information Systems –  
E-Business and E-Government – University of Mannheim 

Schloss, 68131 Mannheim 
{weidlich,veit}@uni-mannheim.de 

Summary. This paper reports results from an agent-based simulation model that 
comprises a day-ahead electricity market, a market for positive minute reserve and 
a carbon exchange for CO2 emission allowances. Agents apply reinforcement 
learning and optimize trading strategies over the two electricity markets. Simu-
lated results are closely similar to empirically observed prices at the German 
power markets in 2006. This makes the model applicable for analyzing different 
market designs in order to derive evidence for policy advice. 
 
Keywords: agent-based modelling, oligopolistic competition, reinforcement 
learning, interrelated markets 

1 Introduction 

Several interrelated markets play a role in the electricity sector. From a short-
term (daily) trading perspective, markets for day-ahead scheduling and for real-
time dispatch or balancing energy, as well as auxiliary markets e.g. for CO2 emis-
sion allowances are most prominent. Some participants have the potential to exert 
market power in several of these markets, given the oligopolistic structure of pre-
sent-day electricity systems. These factors make electricity market modelling very 
complex. The agent-based (AB) modelling methodology offers great flexibility of 
specifying complex scenarios and may be a valuable tool for market analysis and 
design in the electricity sector. AB simulation models can be used as fully control-
lable virtual laboratories for testing economic design alternatives in order to de-
termine the market designs that perform best in an environment of selfish agents 
[Tesfatsion 2006]. This approach follows the postulation formulated by [Roth 
2002] that markets should be designed using engineering tools, such as experi-
mentation and computation.  

Several agent-based approaches for wholesale electricity market modelling 
have been described in the literature, e.g. [Bower, Bunn 2001], [Nicolaisen, Pet-
rov, Tesfatsion 2001], [Bagnall, Smith 2005], or [Sun, Tesfatsion 2007]. The con-
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tribution at hand presents a model of the German electricity sector that aims at 
contributing to the challenge of analyzing market interrelations in the electricity 
sector and may serve as a tool for engineering power markets. 

2 The Model 

The simulation model presented here comprises three markets: a day-ahead 
electricity market, a market for balancing power at which positive minute reserve 
is traded, and an exchange for CO2 emission allowance trading. Market partici-
pants are modelled as adaptive software agents who develop trading strategies 
through reinforcement learning (here Q-learning). The agents face the problem of 
trading on these interrelated markets. A more detailed description of the simula-
tion model is provided in [Weidlich, Veit 2008a].  

Markets are interrelated only through the agents’ trading strategies. When 
searching for profit maximizing bidding actions, agents consider opportunity 
costs, i.e. foregone profits that they could have realized on the other markets. 
Through this procedure they coordinate the bids they submit on all three simulated 
markets. The strategies that agents can choose from on the considered markets are 
described in Section 2.1, and the data input for the simulations presented here is 
specified in Section 2.2. 

2.1 Markets and the Agents’ Strategies 

Agents act strategically both on the day-ahead market (DAM) and on the mar-
ket for minute reserve (balancing power market, BPM). Besides, they place price-
independent bids on the market for CO2 emission allowances with the volume cor-
responding to their daily allowance need (buying bids) or surplus (selling bids). 

The demand side of the day-ahead market is represented as a fixed price-
insensitive load. Data of the hourly system’s total load is used for representing 
electricity demand. In the short-term, the assumption of a fixed load is realistic, 
because electricity consumers usually do not have any price information at short 
notice that would allow them to adapt their consumption to the price signals. As 
the questions treated here focus on short-term market dynamics, fixed price-
insensitive load is a valid assumption. 

Agents learn to submit profit-maximizing price-volume bids on both the day-
ahead electricity market and on the balancing power market. As reinforcement 
learning is used for representing the agents’ search for the optimal bidding strate-
gies, the set of possible bids must be specified in advance. The definition of the 
domain of possible bids is a sensitive task and should be calibrated so that real-
world prices are reproduced as closely as possible. As a bid on the day-ahead 
market contains an offer quantity and a price at which this quantity is offered, the 
action domain on the day-ahead market comprises the two dimensions of prices 
and volumes. In the present model, agents can submit bid quantities expressed as a 
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fraction β of their available capacity; possible fractions are set between 0 and 100 
% in 20% steps; bid prices are set to the range from 0 to 100 EUR/MWh in 5 
EUR/MWh steps. The resulting action domain is specified as follows: 

 

DAM DAM DAMM [p , ] [{0,0},{0,0.2},...,{100,1.0}]= β =  (1) 

 

On the market for positive minute reserve (balancing power market), a prede-
fined quantity of positive minute reserve is procured. Six equally long bidding 
blocs of four hours length are differentiated for every trading day: from 0 to 4 am, 

from 4 to 8 am, and so forth. The tendered balancing capacity quantity 
BPM

kQ  is 

equal for every bidding bloc k. 
The domain of possible actions on the balancing power market contains the two 

dimensions capacity price (cap) – the price for holding capacity in reserve over 
the whole bidding period – and energy price, i.e. the price a generator is paid for 
produced minute reserve in case his plant is actually deployed for regulating pur-
poses. Possible prices range from 0 to 200 EUR/MW in 21 discrete steps for the 
capacity price and from 0 to 100 EUR/MWh in five steps for the energy price. 
This leads to the following action domain: 
 

BPM BPM,cap BPM,energyM [p , p ] [{0,0},{0,25},...,{200,100}]= =  (2) 

 
Agents learn strategies separately for the day-ahead and for the balancing 

power market. In the implementation, they have individual instances of the learn-
ing algorithm for each of the two markets. Moreover, strategies for each bidding 
bloc on the balancing power market and for each hour on the day-ahead market 
are learned separately. 

For some types of power plants, the possible actions an agent can take differ 
from the action domains presented in Formulas (1) and (2). Nuclear power plants 
and lignite-fired power plants, for instance, do not allow short-term load changes, 
but have to be kept at a relatively constant or slow-changing power rating. There-
fore, it is not realistic to assume that these power plants are deployed for strategic 
bidding of hourly power delivery on the day-ahead market. Output from these 
power plant types are, thus, bid at their respective marginal generating costs. Fur-
thermore, it is assumed that weather forecasts are not yet precise enough for pre-
dicting the output power of wind energy converters in every hour of the following 
day. Consequently, electricity from wind energy can not be bid strategically at the 
day-ahead market. For taking into account the electricity amount produced by 
wind turbines, the installed wind energy capacity of the basic scenario year (2006) 
is multiplied with yearly average full load hours for estimating the capacity that is 
available in every hour. This quantity is bid into the day-ahead market at a bid 
price equal to the marginal cost. 

Only few power plant types are suitable for delivering minute reserve. These 
have to allow fast changes in load and must be ready to be fully activated within 
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15 minutes. In the simulation model developed here, only gas-fired power plants 
and hydro-power plants are assumed capable of delivering minute reserve; for 
simplicity, no distinction is made between gas turbines or combined-cycle power 
plants. Power output from all other plants can consequently only be bid on the 
day-ahead market, and opportunity costs from the balancing power market are not 
considered for these plants. 

The CO2 emission allowance market is modelled as a sealed bid double-auction 
that is cleared at the end of each trading day. Each agent submits one daily bid on 
the allowance market, representing its allowance requirement or surplus for the 
specific day, which is calculated for the whole portfolio of power plants it owns. 

All generator agents that own fossil fuel fired power plants are initially en-
dowed with a certain amount of CO2 allowances. The initial allocation of allow-
ances is calculated according to a grandfathering rule, i.e. based on past emissions 
for each single power plant. The sectors outside the electricity industry that are 
covered by the emissions trading scheme submit a fixed supply and demand every 
day. As little is known about CO2 mitigation costs of these sectors – and conse-
quently about their valuation for certificates – their supply and demand is cali-
brated so that average prices that arise endogenously during the simulation 
roughly correspond to observed prices in the real-world carbon exchanges.  

It is assumed that all agents seek to even up their open positions every day. 
This entails that agents who sell electricity also make sure to have enough allow-
ances for the carbon dioxide emissions associated to their generation output. 
Speculation is not considered in this model. The agents’ daily trading quantities 
are calculated on the basis of initial endowments and of trading success on the cur-
rent trading day. The amount of carbon dioxide emitted during electricity genera-
tion is determined by the electricity amounts sold at the day-ahead market and by 
deployed minute reserve. The quantities are multiplied with the emission factor of 
the specific plant, quantifying the CO2 emissions associated with every MWh of 
power output generated from that plant. 

The remaining allowance budget that an agent has at its disposal at time at a 
certain trading day is divided by the remaining days for which the allowances 
were issued, in order to calculate a daily budget. This budget is subtracted from 
the allowance quantity needed for power generation, thus resulting in the bid 
quantity that an agent submits to the market operator. In consequence, if an 
agent’s budget for the current day is larger than its need for allowances, its bid 
quantity becomes negative, which corresponds to a selling bid. It is assumed that 
the market for CO2 allowances is fully competitive, and the industries outside the 
electricity sector determine the market price. Generator agents submit price-
independent bids, i.e. they are price-takers on the allowance market. 

Agents do not act strategically on the market for CO2 emission allowances – 
they do not develop bidding strategies through reinforcement learning. However, 
the costs incurred from allowance prices influence trading strategies on the elec-
tricity markets, as specified in the following section. 

While optimizing their supply bids, agents consider opportunity costs that they 
could have achieved on the other market if they had sold their capacity there. 
Prices for carbon dioxide emission allowances are also included into the rein-
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forcement as opportunity costs. A generator would always have the opportunity to 
solely sell certificates, thereby realizing a profit. Consequently, he aims at attain-
ing a profit equal to or higher that that which he could have achieved through sell-
ing allowances 

2.2 Data Input 

The simulation model is run with data that approximates the German electric-
ity sector. The system’s total electricity demand has been taken from 2006 load 
data published by the Union for the Co-Ordination of Transmission of Electricity 
(UCTE). Hourly UCTE demand data is published for every third Wednesday of 
the month. The simulation results represent these days of each month of 2006. 

Input data of the power generation mix roughly corresponds to German real-
world characteristics. The power plant portfolio is represented in an aggregate 
way. The four dominant players in the market (E.ON AG, RWE Power AG, Vat-
tenfall Europe AG and EnBW Kraftwerke AG) are represented in more detail, and 
further players are introduced so that the overall installed capacity and the propor-
tions of different power plant technologies (coal-fired, gas-fired, hydro etc.) are 
properly represented. Within the power plant portfolio of one generator, all plants 
using the same fuel or technology are subsumed under one generating unit, and 
average efficiencies are assumed for these units. 

3 Simulation Results 

Through simulation runs with the described data input, it should be verified if 
simulated prices on the day-ahead and on the balancing power market resemble 
those observed at the real-world markets in Germany (Section 3.1). Furthermore, 
the impact of emissions trading is analyzed in order to assure that it corresponds to 
the real-world characteristics (Section 3.2).  

3.1 Reproducing Daily Courses of Prices 

For the purpose of validating the developed model against real-world data, 
those days for which the system’s total load is known from UCTE data are simu-
lated and resulting prices are compared to EEX and balancing power market 
prices. As the real-world markets may show extraordinary prices on the specific 
simulated day, additional average daily courses of prices over all workdays of the 
same month are calculated and compared to the simulation outcomes. Figures 1-5 
display simulation results for runs with Q-learning (simulations ran over 7,300 it-
erations; the outcome of one run is the average market price over the last 365 it-
erations. Results are averaged over ten simulation runs with different random 
number seeds at each run).  
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Fig. 1. Simulated and real-world prices on the day-ahead market, September 2006 

 

Fig. 2. Simulated and real-world prices on the day-ahead market, January 2006 

The continuous lines plot the simulation outcome for the third Wednesdays of 
every month; the dashed lines plot the empirically observed prices of the same 
days, and the dotted lines represent average prices over all workdays of the spe-
cific months. Figures 1 and 2 display hourly results on the day-ahead market, 
where empirically observed prices correspond to prices for hourly contracts fixed 
in the daily spot auction operated by the European Energy Exchange AG (Ger-
many’s main power exchange). 
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Fig. 3. Simulated and real-world prices on the balancing power market, September 2006 

 

Fig. 4. Simulated and real-world prices on the balancing power market, January 2006 

Figures 3 and 4 show results from the simulated balancing power market and 
the empirically observed prices are averaged over the prices published by the four 
balancing market operators. 

The simulated prices observed on the day-ahead market and on the balancing 
power market stem from the same simulation run and are a consequence of agents 
bidding on these two markets (and in addition on the market for CO2 emission al-
lowances) and optimizing their strategies in face of these market interrelations. 

Simulation results for this basic scenario reveal that real-world prices can be 
reproduced remarkably well for spring, summer and fall months. In winter 
months, however, simulated prices deviate more strongly from empirically ob-
served prices. In these months of high system load, agents may have more leeway 
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for strategic bidding than has been assumed in the model presented here. More-
over, power plant availability due to maintenance or other planned outages have 
not been considered here. Although maintenance is mainly carried out during 
summertime, even small outages may already have a large effect on electricity 
prices in times when the demand-supply ratio is tight – i.e. during the winter – 
which may be a reason for the differences between simulation results and real-
world electricity prices. 

The demand, i.e. the tendered quantity on the balancing power market, is equal 
for all bidding blocs. This market is cleared first, and the day-ahead market is op-
erated subsequently. As the available supply capacity and the demand quantity in 
the balancing power market is the same in every hour, differences in prices be-
tween the bidding blocs can only result from the inclusion of opportunity costs in 
the agent’s reasoning. The simulation outcome on the balancing power market 
shows characteristic daily courses of prices, in which capacity prices in bidding 
blocs 3 and 4 – and 5 in winter months – are considerably higher than those in the 
nocturnal bidding blocs. Similar characteristics can be observed in the real-world 
balancing power markets in Germany, although the high prices in the fifth bidding 
bloc that occur in most winter months can not be reproduced by the simulation 
model. It is remarkable that the rather low capacity prices in some summer months 
can be reproduced by the simulation although the possible bid prices that range up 
to 200 EUR/MWh would theoretically allow much higher prices to occur. This re-
sult strengthens confidence in the model validity. 

Variability between different runs (i.e. runs with different random number 
seeds) is very low for simulations with Q-learning. The standard deviation for the 
resulting prices of the ten repetitions ranges between 0.2 and 2.3 EUR/MWh for 
different hours on the day-ahead electricity market and between 0.05 and 3.9 
EUR/MW for bidding blocks on the balancing power market. With these low vari-
ances, one single simulation run already delivers meaningful and reliable results. 

In the simulation model, prices are mainly influenced by the demand level, as 
the principal difference of market conditions in the hours of the considered months 
is the system’s total load. Power plant availability is considered to be constant 
over the year. This is a simplification which might be altered in future model de-
velopment. In reality, maintenance of power plants is scheduled discontinuously 
over the year; around 2% of the total installed generating capacity is off due to 
maintenance during winter months, and around 10% during summer months 
[VDN 2004]. In those simulated hours in which day-ahead electricity prices devi-
ate considerably from real-world prices, power plant availability may be an impor-
tant reason. Besides maintenance, an even more important factor in this context is 
the available renewable energy production. In the simulation model, renewable 
energy availability is also assumed to be constant, whereas in reality, water levels 
of hydroelectric installations and electricity generation from wind energy varies 
considerably throughout the year and during the day. The high prices in July 2006, 
which can not be replicated by the simulation model, are also explicable by re-
duced power plant availability. During the very hot summer in Germany in 2006, 
it occured that the maximum admissible temperature for rivers was reached and 
the cooling water flow for thermal power plants had to be reduced as a conse-
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quence. Additional drought in many European regions reduced hydro energy 
availability [EGL 2006]. The combination of these factors, which were not repre-
sented in the simulation model, made power prices rise considerably above usual 
levels in July and, to a lower extent, August 2006. 

3.2 Impact of Emissions Trading on Electricity Prices 

The data presented in the preceding section corresponds to simulations in which 
emission allowance trading was integrated – just like in the real-world market of 
the corresponding time frame. In further simulation runs, it is tested how emis-
sions trading affects prices on the electricity markets. For this purpose, scenarios 
without CO2 emissions trading are run and compared to the reference scenario re-
sults. The outcome of this comparison is depicted in Figure 5 for the day-ahead 
electricity market. In order to facilitate the graphical inspection of simulation re-
sults, Figure 5 contains resulting prices for all simulated hours of the day-ahead 
market, i.e. for all 12*24 observations. As prices on the electricity market are 
strongly influenced by the system’s total load (= demand), simulated prices are 
sorted by load quantities in the corresponding hours. System load is plotted at the 
second ordinate of the diagrams.  

 

 

   Fig. 5. Impact of CO2 emissions trading on day-ahead electricity prices 

It can be shown that a large fraction of opportunity costs resulting from the 
possibility of selling CO2 emission allowances is successfully passed over to elec-
tricity market bids, which ultimately raises prices at the day-ahead market and also 
at the balancing power market. Because of different emission and competition 
situations in the single hours, the absolute increase in electricity prices is not con-
stant across the simulated hours and bidding blocks. 

In hours of low demand, the introduction of emissions trading has hardly any 
effect on day-ahead electricity prices, because only few power plants that incur 
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high CO2 emissions are deployed, and supply side competition is strong. In con-
trast, the difference in prices is considerable in high demand hours, in which many 
CO2 intensive power plants are running and competition is weak, so agents can 
successfully pass over additional opportunity costs to their bid prices. Over a large 
range of intermediate demand situations, deviations between the scenarios with 
and without emissions trading fluctuate to some extent. The intuition behind this 
result is that these hours with similar demand situations belong to different 
months, and CO2 prices differ across months. Hours with very high demand all be-
long to the winter months in which demand is high and consequently many fossil 
fuel power plants are operated, resulting in (evenly) higher CO2 allowance prices. 
This is also illustrated by the green curves that plots prices for CO2 allowances in 
Figure %. 

As a consequence, it can be concluded that emissions trading considerably in-
fluences electricity prices and that it is the main cause for differences in prices re-
sulting for hours with similar demand situations; this is true on both the day-ahead 
and the balancing power market. Yearly average prices are 13.3 % higher for sce-
narios with emissions trading on the day-ahead market, and 56.8 % higher on the 
balancing power market. 

4 Conclusions 

In this contribution, an agent-based simulation model representing the core 
features of the German electricity market is presented. The model comprises a 
day-ahead market for hourly electricity delivery contracts, a procurement market 
for positive minute reserve and a market for CO2 emission allowances. Simulated 
prices from this model are remarkably close to those observed in reality for many 
months of the year 2006, both on the day-ahead market (compared to EEX prices) 
and on the balancing power market (compared to the balancing power markets op-
erated in the German electricity sector). Besides, the effect of CO2 emissions trad-
ing on simulated prices is comparable to that observed in the real market, i.e. a 
large proportion of opportunity costs are successfully passed on to electricity bids, 
which ultimately raises electricity prices. 

The presented model can be used to analyze a variety of possible market struc-
tures and market mechanisms with the aim of finding good market designs that 
take into account market interrelations and other aspects of real-world electricity 
markets. Analyses of this kind have been conducted by the authors, and additional 
scenarios are currently developed. For example, the impact of the tendered minute 
reserve quantity on day-ahead and balancing power market prices is studied in 
[Weidlich, Veit 2008a] and a variation of the settlement rule as well as the impact 
of several divestiture scenarios are analysed in [Weidlich, Veit 2008b]. Results 
from these simulations demonstrate the usefulness of the agent-based simulation 
model presented here. 
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The hungarian elctrical energy sector - an agent-
based model 

 

Szabolcs Szekeres 
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Summary. This paper provides a brief description of an agent based model built 
for the Hungarian electrical energy sector in 2005.  The paper describes the back-
ground of the sector, the rationale for building the model, and its principal results.  
The paper presents the structure of a model, its outputs, the agents modeled, the 
method of solving the model, and discusses the problems of convergence encoun-
tered.  It describes the computational platform used and presents conclusions re-
garding the benefits of the approach taken. 
Keywords: agent-based modeling, electrical energy sector, discontinuities, con-
vergence. 

1. Introduction 

The objective of this paper is to present an agent based model of the Hungarian 
electrical energy sector, built in 2005.  The paper starts by showing the structure 
of the Hungarian electrical energy sector, the objectives of the model and the prin-
cipal results derived from it.  It then describes the way the model was built, using 
agents to represent production and consumption of electrical energy.  It describes 
how the behavior of the agents was defined, which prices were modeled, and 
shows a flow chart of the model.  Next convergence problems in the numerical es-
timation of the model are discussed, and the solution of the problems is presented.  
An explanation is given about the type of discontinuities observed in curves that 
describe the behavior of market participants.  How such discontinuities were 
treated is also discussed.  Finally the computational platform on which the model 
was implemented is described.  The conclusion presents the advantages of the ap-
proach taken. 
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2. Description of the model 

2.1. The Hungarian Electrical Energy Sector 

The Hungarian electrical energy sector was characterized in 2004 by an appar-
ent consumption of 37.1 billion kWh of electrical energy.  Of these 7.5 billion 
kWh correspond to nets imports. 

In 1993 the bulk of the Hungarian electrical energy sector was privatized.  All 
the energy distribution companies were privatized, as well as a good number of 
power plants.  All of the power plants that were sold by the State at the time re-
ceived power purchase agreements (PPA), guaranteeing them a long term market 
at regulated prices. 

2.2. Objectives of the model 

The model described here is the second of a family of models that was created 
for the purpose of analyzing alternative electrical energy market liberalization 
scenarios.  The scenarios essentially varied in the extent and speed at which con-
sumers could become eligible to buy energy in a free market.  One of the objec-
tives of the model was to determine the impact of alternative policies on stranded 
costs, and to make a cost benefit comparison of the alternative liberalization sce-
narios. 

2.3. Description of the model structure 

The model was structured to take into account the following: 
§ 28 power plants or power plant categories plus imports of energy. 
§ 4 consumer categories, plus exports of energy. 
§ 16 registered power purchase agreements. 
§ Statutory power purchases applicable to certain classes of small power 

plants. 
§ A yearly load duration curve distinguishing 24 periods of 365 hours each. 
§ A time horizon of 10 years. 
§ 2 prices (energy price and spinning reserve price). 

2.4. Principal results 

As the objective of this paper is to explain the structure and the method of 
building an agent based model, the results obtained are not presented in any kind 
of detail.  To provide the reader with a feel for the degree of detail of the model's 
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output, however, some of the principal results will be shown in the following sec-
tions. 
 

2.4.1. Energy production 

The energy production results provided by the model resulted from the detailed 
simulation of load dispatch in each segment of the load duration curves of the 
years within the time horizon. The load duration curve for the year was split in 24 
time periods of 365 hours. 
 
For each such time period (called a cell in the model), a full optimization and solu-
tion of the model was performed, building complete results for each of the agents 
that make up the model.  Thus detailed production data became available as a re-
sult for each power plant.  The following table is the partial view of the results ob-
tained (not all cells and plants are shown). 
 
 

 
Table 1. Load of selected plants in selected cells. 

2.4.2. Energy consumption 

Similarly, consumption of energy by consumer category was computed for 
each time period or cell.  The following graph shows the shifting consumption pat-
tern that was predicted by the model as a result of a particular liberalization scena-
rio being adopted.  The results shown are aggregate consumption for each of the 
years modeled for each consumer category.  The drastic shift depicted here re-
flects the shifting of consumers from the captive market to the liberalized market.  
In the scenario of this graph all consumers eventually go to the liberalized market.  
Other scenarios made different assumptions about timing and extent of the shift. 
 

 Loads in MW in load duration curve segments
Power plant name 1 2 3 4 5 6 7 8 9

  Paks 1728 1728 1728 1728 1728 1728 1728 1728 1696 

  Dunam. II 229 212 206 202 198 195 192 189 186 

  Tisza II 255 236 229 224 220 217 213 210 206 

  Mátra III-V 526 526 522 522 522 517 517 515 515 

  Csepel GT 306 283 275 269 264 260 256 251 248 

  Újpest 107 73 63 54 53 52 51 50 50 

  Dunam. GT2 240 189 183 179 176 174 171 168 165 

  Kelenföld GT 136 117 114 111 109 108 106 104 102 

  KISPEST_GT 107 107 107 75 73 72 71 70 69 

  Borsodi I-IV 44 41 40 39 38 38 37 36 36 

  PÉCS_3 13 12 12 12 11 11 11 11 11 

  PÉCS_4 34 0 0 0 0 0 0 0 0 

  OROSZL1_2 34 19 19 18 18 18 17 17 17 

  OROSZL3_4 61 57 55 54 53 52 51 50 50 
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Table 2. Evolution of consumption in GWh under a selected scenario. 

2.4.3. Prices 

For each cell the model also computed prices both for energy and for reserve 
capacity. The energy prices computed by the model then translated into energy 
prices for each consumer category on the basis of fixed margins established for 
each.  Average prices for different consumer categories are shown in the following 
chart, which reflects the changing composition of eligibility and, as a result, a 
changing weighted average consumer price. 
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Fig 2. Prices in a selected scenario. 

2.4.4. Financial statements of power plants 

Given that the model is able to compute the energy produced by each power 
plant, and can calculate its variable costs and revenues, it became possible to pro-
duce pro-forma financial statements of each of the power plants by adding other 
known elements of the financial statements.  This allowed for the construction of 
predicted financial indicators for all power plants modeled, for each of the libera-
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lization scenarios.  This became an important negotiating tool when discussing the 
choice of liberalization scenarios with the industry. 

2.4.5. Monte Carlo simulations 

Monte Carlo simulations of the model were conducted choosing key input pa-
rameters to receive probability distributions.  Among these were some structural 
coefficients, such as demand equations constants, and forecasts of fuel prices.  As 
a result of these simulations it was possible to compute probability distributions 
for key output variables.  Two such results are illustrated in the following charts, 
which provide confidence intervals for the price of energy, at the level of power 
plants, and for the volume of consumption. 
 

years years

Fig 3. Confidence intervals for consumption and prices in a selected scenario. 

3. Agent Based Modeling 

3.1. Why agent based modeling 

As stated earlier, this was the second of a family of two models.  The first one 
was conventionally built.  It assumed the dispatch of load to power plants in merit 
order sequence, subject to the constraints imposed by statutory energy purchases 
and by the obligations imposed by the power purchase agreements.  The model 
grew to be extremely complex and difficult to follow and to audit, because of the 
many conditions that needed to be met.  For this reason, when a request came to 
make some non-trivial changes to the model, it was decided that rather than 
change the original model, a new one would be built because it was estimated that 
the likelihood of making mistakes in a very complex code was unacceptably high.  
The possible alternatives were to set up a mixed integer programming approach 
that would be able to deal with all the constraints imposed by the power purchase 
agreements, or to use agent based modeling. 

Agent based modeling was chosen for two reasons.  It seemed the easiest and 
fastest route, as programming it appeared to be a simple task, and also it provided 
an easy method of dropping the assumption of strict merit order dispatch.  Using 
agent based modeling, each power plant is allowed to produce the energy that 
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maximizes its profits at all times.  So the whole concept of merit order disappears.  
Instead, the model builds supply curves for each plant.  Each power plant enters the 

aggregate system supply curve not sequentially, but to a large extent in parallel.  This ap-
pears to be a more reasonable way of modeling the behavior of a liberalized market. 

3.2. Definition of agents 

The following agents were defined: 
§ 5 consumer categories, 
§ 28 power plants (or categories of power plants) 
§ imports and exports of energy 
§ demand for spinning reserve capacity 

 

The modeling of the two most important agents will be described in the following 
sections. 

3.2.1. Consumers 

The demand by consumers was modeled for each consumer category in the 
form of demand function of the following form, which relates demand (D) to pric-
es (P) and GDP. 
 

ln Dt = a + b ln Pt + c ln GDPt + d ln Dt-1 

 
This formulation allows for the specification of short and long term price elas-

ticities, but requires an exogenous forecast of GDP for the model to run.  This de-
mand function is defined for annual energy consumption.  The model assumed 
that for all sources of demand the proportion demanded in all cells of the load du-
ration curve would be constant. 

3.2.2. Power plants 

We assumed that power plants would maximize profits by choosing the quanti-
ty of energy to deliver when faced with the set of energy and spinning reserve 
prices.  This effectively means choosing the value of a single variable, namely 
energy to be delivered, with spinning reserve capacity to be offered being equal to 
the difference between total capacity of the plan and the amount of energy offered. 

In computing the profits only variable costs of generation were considered, 
over the technically feasible output range.  The average cost across this range was 
defined by a quadratic equation.  A number of such equations were defined for 
different power plant technologies, and the equations were calibrated so that they 
would match the statutorily recognized unit cost of the plan for the yearly average 
volume of energy output. 
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Additionally, an availability schedule was defined for each plant for the same time 
periods that defined the load duration curve, so that effective capacity for each cell 
of the load duration curve was given for each plant. 

The profit to be maximized is simply the revenue minus the cost computed by 
reference to the average cost curve.  The maximization was achieved by a simple 
search algorithm that tried alternative values for delivered energy until it found the 
one yielding maximum profit under current prices. 

Constraints of minimum or maximum energy generation, imposed by the mod-
el on each power plant, were implemented by assigning a very large cost value to 
the output ranges not allowed by the constraint.  This ensured that the optimization 
routine would not choose any such values, or, in other words, that it would only 
choose output values consistent with the constraints imposed. 

3.3. Model flow chart 

The model finds equilibrium prices for energy and spinning reserve, and de-
rives many other prices from these, through the use of constant marks-up.  The 
model flowchart is shown on the following diagram.  The first point of processing 
is the optimization of power plant output.  This is done by a simple maximizing 
routine that searches over the technically feasible output range for each plant and 
finds the optimal energy and spinning reserve supply for a determined set of ener-
gy and spinning reserve capacity prices.  This routine is called by an energy 
supply equilibrium finding routine which also queries the demand functions of 
consumers to find out the quantity of energy demanded at a particular price.  We 
found it expeditious to separately find the equilibrium price of reserve capacity 
first, and having found that to find the equilibrium energy price.  This is what the 
flow chart actually shows.  The diagram also shows that export and import prices 
act as additional sources of supply and demand.  The equilibrium is found sepa-
rately for each of the 25 cells of the load duration curve for each of the 10 years of 
the model's time horizon. 
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Fig 4. Model flow chart 
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4. Convergence 

4.1. Convergence problems 

The problem of maximizing profits for the power plants was very simple, giv-
en that it involves one decision variable.  We used the simplest algorithm possible.  
We divided the feasible output range of the each plant into 10 segments and ex-
amined each segment to see which will yield the greatest profit, and then repli-
cated the analysis restricting the search to that segment.  By recursively doing this 
a number of times, the desired tolerance threshold was reached and the solution 
found. 

Finding the equilibrium prices of energy and spinning reserve simultaneously 
effectively means finding a solution in a two dimensional space, however when at-
tempting to do that we ran into convergence problems.  The likely reason for this 
was the presence of discontinuities, which were only discovered later in attempt-
ing to solve the convergence problems.  In analyzing what the solution would look 

like, we developed the charts shown below1.  It can be seen that the presence of 
flat surfaces may easily mislead a numerical solver. 
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1 The analysis in this model was done separately for each 365 hour cell.  It was convenient to express 

energy as MW during 365 hours, rather than as GWh, as it simplified the calculations (a given figure 

for load in the cell would automatically also give the value of the energy produced).  For final re-

porting the unit of energy was converted to GWh. 
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Fig 5. Supply of  energy and reserve capacity under considerations of energy and reserve 

prices. 

 

4.2. Convergence solutions 

To be able to solve for the equilibrium prices, we searched for a solution se-
quentially, rather than seeking a simultaneous solution involving two variables.  
First, for a given energy price the equilibrium reserve capacity was found.  It was 
in doing this that the problem of discontinuities was discovered, which will be 
treated below separately.  By treating the discontinuities and solving the ensuing 
problems, an equilibrium price and quantity of spinning reserve would always be 

found regardless of the price2.  This solution was then passed on to the search for 
energy prices.  Thus, the search for energy prices was always based on the use of 
equilibrium spinning reserve prices.  Consequently, when an energy price equili-
brium was found, this was also automatically a globally optimal solution, provid-
ing simultaneous equilibrium for the two prices.  Of course, the optimization of 
the objective functions of each agent defined had also been achieved in this 
process. 

Again a very simple algorithm was used for searching for optimal prices.  The 
likely price range was divided in to 10 segments and the last segment displaying 
excess demand was noted, as was the first one displaying excess supply.  These 
two then defined the range over which the procedure was repeated until the de-
sired tolerance was reached. 
 

                                                           
2 The demand for spinning reserve was assumed to be a constant fraction of en-

ergy demand. 
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In this search, discontinuities were also found, and a way to deal with discontinui-
ties of different kinds was programmed in.  Having taken care of this, solutions of 
the model were always found without any difficulty. 

4.3. Discontinuities 

Three different kinds of discontinuities were discovered, that had to be treated 
to reliably find the solution to the model.  The first discontinuity shown in the fol-
lowing graph arises if at a certain price generation capacity is exhausted and a per-
ceptible price increase is necessary before the next available power plant can come 
into the market.  This kind of discontinuity is more frequent with the classical me-
rit order type scheduling, coupled with the assumption of constant costs, than in 
this model, because with the overlapping supply curves 
 

p p
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q q

q

Supply Demand

Supply

 
Fig 6. Supply and demand curves illustrating discontinuities. 

 
 

it is less likely to be a problem.  We did not generate reports on the frequency 
of this occurrence, however.  It should be noted that this discontinuity would not 
cause a problem for the type of search algorithm that we used, because it simply 
means that the supply curve becomes vertical for a bit and there is no problem in 
finding the intersection of that vertical bit with any demand curve. 

The next type of discontinuity, however, does pose a problem, which requires 
special treatment.  This type of discontinuity appeared all the time in our model.  
It has to do with the shift in demand caused by the possibility of exports (inciden-
tally a similar discontinuity could also appear in the supply curve because of the 
possibility of imports).  Whenever either supply or demand curves become hori-
zontal, algorithms that search for an optimal price will be thrown into disarray.  
This is why conventional numerical methods would have difficulties dealing with 
this problem.  However, our simple minded search algorithms could easily detect 
the presence of such horizontal segments, either on the supply or demand curves, 
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and take appropriate action.  The appropriate action is the establishment of quotas.  
Having done that, the equilibrium is always assured. 

The final type of discontinuity appeared in the calculation of the spinning re-
serve price.  No supply would be forthcoming at price 0, but at a very small price 
a large jump would occur, yielding a straight horizontal line as the supply curve, 
for a significant segment.  The price mechanism is unable to adjust supply to de-
mand in such cases and again this is were we programmed a system of quotas that 
would assure an equilibrium. 

4.4. Detailed analysis of the equilibrium found 

In trying to solve these problems we found it useful to generate special kind of 
debugging output that would allow us to examine the full supply and demand 
curve for a selected cell.  Normally in the course of the simulations, only such 
prices are computed as required for the search of a solution.  However for these 
cells we made a systematic sweep of the price space to generate full demand and 
supply curves, and plotted the results.  These graphs proved to be extremely useful 
in identifying problems.  Whenever the graphs did not show that the equilibrium 
price and quantity were at the intersection of the supply and demand curves, we 
knew that some problem had occurred, and we would look for it until we found it.  
By this device it was possible to audit the model in a very thorough way, enhanc-
ing its credibility. 
 

 
Fig 7. Energy market equilibrium. 

 

 
Fig 8. Reserve market equilibrium 
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5. Model implementation 

The model was implemented on personal computers running Microsoft Win-
dows.  We used Excel for data input/output and job control.  A considerable 
amount of Visual Basic programming was involved in making this user friendly 
and for allowing Excel to govern the running of the model. 

The actual model calculation, meaning the search for equilibrium prices, and 
the optimization of the agent's behavior, was performed using FORTRAN language 
executables.  Communication between the Excel and FORTRAN modules was done 
through text files. 

The running time for the model to compute the 10 year's time horizon was of 
the order of 15 minutes.  When Monte Carlo simulation had to be run, this was 
done under the control of a Monte Carlo simulation program, also written in 
FORTRAN.  To make the run times acceptable, the program was able to handle 
simultaneously up to 10 copies of the model, allowing up to 10 PCs to do the cal-
culations necessary for a full set of Monte Carlo simulations. 

6.  Conclusions 

The main advantages we found in the use of Agent Based Modeling approach 
was the simplicity and the maintainability of the code.  Having learned the lesson 
of how to deal with discontinuities the programming of a model of this complexity 
is very simple and straight-forward. 

More important, perhaps is, the potential that Agent Based Modeling has for 
simulating more complex agent behavior.  This model has not gone any further 
solving a standard load allocation problem (and has withstood calibration tests 
with other more elaborate models).  But it provides a framework on which more 
complex behavioral patterns could be explored, such as the exercising of market 
power through strategic production decisions. 

In the future we plan to expand this model to consider several geographical re-
gions.  The Hungarian model described in this paper had no spatial dimension.  It 
assumed that all production and consumption occurs at a single point in space.  
We now plan to model energy flows through transmission networks to be able to 
create a model that would be of European scope.  This will permit predicting the 
effects of transmission capacity increases. 

In addition, we plan to add the cost of CO2 emission rights to the operating 
cost of power plants, and explicitly model oligopolistic behavior by enterprises 
owning sufficient generating capacity to make exercising market power possible. 
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Summary. In this paper we present the agent-based simulation model PowerACE 
and its application on the impact of emission allocation schemes on power plant 
investments. We define several emission allocation methods and different gas and 
emission price paths to analyze the effect on the structure of the energy system, 
development of electricity prices and CO2 emissions. 
Keywords: agent-based modelling, investment planning, liberalized electricity 
markets, spot market  

1 Introduction 

The German electricity sector has undergone considerable changes throughout 
the past few years. Main developments are the liberalisation of electricity markets 
and the European CO2 emissions trading scheme that started in 2005. Under these 
circumstances electricity generating companies have to deal with new uncertain-
ties like high volatile electricity and CO2 certificate prices. The phase-out of nuc-
lear power plants in Germany until 2020 and the fact that many coal and gas fired 
power plants will reach the end of their technical lifetime in the next years leads to 
a high investment need for new power plants. The design of allocation schemes 
has a considerable impact on investment decisions of new power plants. In this 
paper, we present an integrated agent-based simulation model coupling long-term 
investment decisions with a short-term spot market. The model is based on Ger-
man electricity market data and is used to analyse different policies.  

2 Methodology 

Traditional energy system models are often based on a central optimization rou-
tine [Enzensberger 2003]. Although working quite well in regulated electricity 
markets, it is not clear whether these models are adequate to simulate liberalised 
markets with higher price risks, uncertainties and possibly different strategies of 
the market players. A promising and novel approach for the scientific analysis of 
dynamic systems is the field of agent-based simulation [Tesfatsion 2006]. Market 
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players like electricity generating companies or operators of renewable energy 
plants are modelled as one ore more software units called agents. The behaviour of 
these agents can be specified freely. 

The developed simulation platform PowerACE simulates the most important 
players within the German electricity sector as one or more computational agents 
representing consumers, utilities, renewable agents, grid operators, government 
agents, and market operators. For a detailed description of the model the reader is 
referred to [Genoese et al. 2007a]. 

2.1 Model overview 

This version of the PowerACE model includes a spot and a forward market for 
electricity, a market for balancing power and a (non-dynamic) market for CO2 
emssions. There is an interrelation between spot and balancing market: capacities 
which have not been sold on the spot market are bid on the balancing markets. The 
auction of the balancing power market always takes place after the spot market.  
The aim of this paper is to analyse the impact of emission allocation schemes on 
the future development of power plant investments, electricity prices and emis-
sions. An overview of the entire model and the main agents involved in the simu-
lation is given in Fig. 6, where the markets, the agents and the relevant data and 
information flows are shown.  

 

Fig. 6: Model overview 
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In general the simulation platform can be categorized in four modules dealing 
with markets, electricity demand, utilities, and renewable electricity generation. 
Agents participating at the spot market have to submit bids as a set of a price vol-
ume pair. This leads to a general formulation of a spot bid, which for every agent i 
in hour h is defined as in equation 1 

{ }, , ,1 , ,1 , , , ,
, , , ,

spot spot spot spot spot

i h i h i h i h S i h S
bid p q p q=       K   (1) 

where p is a price, q indicates a quantity and S the number of elements (price 
volume pairs) of the set. The market operator collects and sorts all spot bids in or-
der of increasing price and determines the market clearing price for every hour of 
a day. Supply and demand are matched by adding up all volumes until zero is 
crossed. The volumes of the supply bids are negative. The market clearing price is 
set by the last bid necessary to satisfy demand. The traded volume is determined 
as the sum of all demand bids which are satisfied at the market clearing price. The 
market clearing price can be formulated as follows in equation 2: 

{ }*

h , ,
min 0

k h k h
p p q= ≤∑   (2) 

and the traded volume, which results from this market clearing price is com-
puted according to equation 3 
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 index of market clearing price in hour h (index of marginal bid) 

 qh
*   

traded volume at market clearing price 

The resulting market clearing prices on the different markets are given back as 
24h-sets to the agents, which prepare the bidding procedure for the following day. 
This is repeated until the end of the simulation period is reached. The planning ho-
rizon in the simulation can be specified freely and is set from 2000 to 2030 in this 
simulation. Every year is separated in 8760 hours. The forward market works in 
the same way, the only difference is that only power plants which will be in opera-
tion five years later are bid. 

2.2 Bidding procedures 

Electricity supply is simulated by the agents Generator and Seller. Generators 
provide a daily actualised list of available power plants. Plants are characterised 
with all relevant techno-economic parameters such as capacity, costs, availability, 
technology, and fuel. Availability of power plants is determined by drawing out of 
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a set of uniform distributed random numbers. As a consequence, the available ca-
pacity of a power plant is computed as follows in equation 4: 

max
,

0

k i

i

P r a
P

otherwise

<
=




  (4) 

 
Pi   available capacity of power plant j 

Cmax = Cnet − Cres   maximal capacity of power plant j (net capacity minus al-

ready reserved capacity for other markets) 

rk    uniform distributed random variable 

aj    average availability of plant j 

The list of available plants is sorted according to the variable costs of the power 
plants. The variable costs of a power plant j consist of fuel costs, other variable 
costs, and costs for CO2 emission allowances and are defined in equation 5 
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i i
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η η
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where 
  

pfuel, i  fuel price of power plant i 

ηi  efficiency of power plant i  

cothervar  other variable costs 

EFinput,i   input emission factor of power plant i 

pallowance, d  allowance price of day d 

pf  the pass-through percentage for emission permits 

Based on this information provided by the generators the traders can sell elec-
tricity generated by their power plants on the spot market. Thereby the agents can 
bid in several modes, which have to be specified in the simulation settings. If the 
bidders bid simply variable costs, the bid for every plant j in every hour h consists 
of the tuple as defined in equation 6: 

[ ]{ }
, var, ,

,
i h i h i

bid c P=  (6) 

This bidding behaviour leads to underestimations of peak prices and overesti-
mation of base prices. A more complex bidding behaviour results from the consid-
eration of restart costs and start-up costs of the power plant.  

In this case base load power plants (nuclear and lignite capacities) and peak 
load power plants (gas and oil fired units) are distinguished. In case of coal fired 
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power plants one can differentiate between running and not running plants, taking 
into account restart or start-up costs respectively. The bid can be formulated as 
follows in equation 7: 

[ ]{ }
, ,

,
i h i h i

bid p P=  (7) 

where the bid price pj,h for power plant j in hour h is defined as in equation 8: 
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cvar  variable costs, as defined in Equation 5 

cs, i   start-up cost of power plant i 

tu  number of continuous unscheduled hours per day 

ts  number of continuous scheduled hours per day 

ph  predicted price for hour h 

M   set of all operation-ready power plants  

⊂B M   M set of base load power plants 

⊂P M   M set of peak load power plants 

To calculate both start-up and restart costs a price forecast has to be made to 
share these costs on the uninterrupted time intervals (which can be both unsche-
duled and scheduled). The price forecast is realised as the intersection between the 
merit order curve and the forecasted remaining system load. Other more sophisti-
cated forecast algorithms can be integrated. As previously mentioned, in this mod-
el version forecast errors are not considered. The only uncertainty taken into con-
sideration is the availability of power plants. The bidders do not know if any and 
in particular which power plants are not running; instead they assume an average 
availability factor and multiply this factor by the net capacity. 

The predicted price is compared to the variable costs of the units. In case of 
peak load power plants it is assumed that a power plant can run if the variable 
costs (as defined in equation 5) are lower than the predicted price, otherwise the 
profit margin is not positive. The start-up costs as defined in table 1 are allocated 
on the bid price depending on the number of uninterrupted hours in which the 
plant is supposed to run. Fig. 7 shows an example. In the left part of the figure the 
variable costs of a peak load power plant (i.e. gas turbine) are below the predicted 
market price for a period of three hours, so the start-up costs shown in table 1 are 
distributed over three hours and added to the bid price. In all other hours the pre-
dicted price is too low, so the plant isn’t supposed to run. The case of restart costs 
and base load power plants, which are characterised by lower short time variable 
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costs, is illustrated in the right side of Fig. 7. If the predicted market price is lower 
than the variable costs (as it is in hour 3 and 4 in the figure), the bid prices is re-
duced by the start-up costs, distributed over two hours, to avoid a shut-down of the 
plant and consequent restart. The price forecast obviously has an impact on the 
bidding behaviour of the agents and thus there is an impact on model results, too. 

 
Fig. 7: Calculation of start-up and restart costs 

 
Technology Nuclear coal lignite combined  cycle gas turbine 

Start-up costs[€/MW] 
per start-up 

11 
 

31 33 21 21 

Table 1: Technology-specific start-up costs (based on [IIP 2006], [Bagemihl 2002]) 

Applying this bidding behaviour, a good correlation of 0.72 for the electricity 
prices at the EEX in year 2001 can be observed ([Sensfuß and Genoese 2006]). 
For 2004 and 2005 a similar fitness can be observed (correlation 0.71 and 0.63 re-
spectively) For nuclear fired power plants the bid price is set to zero, because if 
these plants are shut down, a restart permission from the inspecting authority is 
needed.  

A further extension of the bidding behaviour is the introduction of mark-ups 
based on capital costs of the units. Depending on the expected scarcity of available 
capacity and remaining system load (demand minus renewable generation), the 
bid price pi,h is increased in adding the following mark-up-factor defined in equa-
tion 9: 
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 sf = 

thermal

capacity reserveFactor

restload

⋅    scarcity factor 

fi     fraction 

b0     lower barrier 
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bi     barrier 

bu     upper barrier 

cf     fixed costs 

These mark-ups can only be realised if there is enough scarcity and market 
power potential. Assuming perfect competition, the electricity spot market price 
should always equal short-time variable costs. In this case, capacity costs of a unit 
can not be earned - a typical situation in electricity markets with overcapacities. 
The mark-up’s are needed to earn the capital costs and are consistent with peak-
load pricing theory (see [Möst 2006], [Oren 2000], [Oren 2003]). If no capacity  

market exists (as in Germany), price spikes can be seen as necessary investment 
incentive (also cp. to [Stoft 2002], [Boiteux 1964]).  For this simulation mark-up 
values from [Grobbel 1999], are taken, which are illustrated in the following fig-
ure 7. The static values for the barriers and the fractions of equation 9 used for this 
simulation are shown in table 2. The reserveFactor is set to 0.95. It ensures that a 
part of the system is used as reserve and thus cannot be operated.  

 
b0 b1 b2 b3 B4 bu f1 f2 f3 f4 f5 

2 
 

1.8 1.2 1.1 1 0.95 0.016  0.08  0.1 0.25  0.5 

Table 2: barriers (left) and fractions (right) used for the mark-up factor  

This static mark-up can be varied into a dynamic mark-up using a reinforce-
ment learning algorithm. In this case the fixed costs shares are increased or de-
creased, depending on the success of the implemented strategies. This feature is 
deactivated in these simulation runs to avoid overlapping effects with the analysis 
carried out in this paper. 

The demand bidders are assumed to be price takers with completely inelastic 
demand. So their bids are set to  

{ }, , max ,0, , ,spot spot spot spot

i h i h i hbid d p d   =     (10) 

where 

,

spot

i h
d demand at spot market of demand agent i in hour h=   

max

spot
p maximum spot market price=  

According to the Renewable Energy Sources Law renewable electricity has a ga-
ranteed feed-in, so the bid is set to a price of 0 with the respective volume: 

{ }, ,0,i h i hbid v =    (11) 

vi,h = volume of renewable agent i in hour h 

In this way renewable feed-in reduces the demand which has to be covered by 
conventional power plants. 
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2.3 Investment Decisions 

In the long-term perspective investment decisions of the Investment Planner are 
most important. Under the new environment in liberalised power markets, power 
plants are only built if enough profit can be earned. The profits mainly depend on 
electricity prices. Furthermore, the design of the National Allocation Plans3 can 
imply significant incentives for investments in new power plants, thereby possibly 
favouring particular technologies. 

To determine the return on investment of power plants, forecasts both of elec-
tricity and certificate prices have to be made, also actual electricity prices have to 
be taken into account. In the model, results of the daily auctions as well as the 
forward prices are reported yearly to the agent InvestmentPlanner. After the com-
putation of the net present value of each plant type, plants of the most profitable 
power plant type are built if additional capacities are needed from the agent’s per-
spective.  

So the decision of the agent InvestmentPlanner (in the simulation seven In-

vestmentPlanner agents are modelled) are based on the results of the spot and 
forward markets. The investment decisions and the bidding procedures are 
strongly interrelated. If electricity prices, which result from the bidding proce-
dures, are too low, there is no investment incentive and thus no power plants are 
built.  This can result to insufficient capacity and consequently to rising electricity 
prices, which induces necessary investment. 

It is assumed that a power plant is operated only if market prices are at least as 
high as its variable costs. The whole contribution margin, graphically the area be-
tween market price duration curve and the variable costs (where the price is above 
the costs) is needed to cover the capital costs.  

At the end of a year the model endogenous market results (spot and forward 
market prices as duration-lines) of the past year are available for this agent. 
Therewith the agent creates a long-term price-curve. These price-curves are sorted 
and the possible profit is calculated for every investment option. The profits of 
every technology option i for every year a are calculated as follows: 

 

CO2

t ,a i , f i ,v

i ,a t ,a i , f i ,k i ,v

t p c c 0

db p c c c
∀ − − >

= − − −∑  (12) 

where 

pt   price in hour t 

ci,f   fuel costs in €/MWh 

ci,kd   costs for certificates in €/MWh 

ci,v   other variable costs 

                                                           
3 National Allocation Plans (NAP) are schemes which regulate the assignment of emission 

certificates of both existing and new plants 



Impact of emission allocation schemes on power plant investments      37

 

To represent the National Allocation Plan, the value of free of charge allocated 
emission allowances are considered as a grant which reduces the investment sum.  

According to the first draft of the second German National Allocation plan 
[BMU 2006] lignite, coal and gas-steam power plants get emission allowances for 
144 years for 7500 hours per year as necessary, at least 365 g/kWh, at most 750 
g/kWh produced electricity. The value of the freely allocated emission allowances 
is computed as follows: 

( )
freeAlloc

a ,i

estfullLoadHrs ,i i cert ,a

0,a t T
invAdd

T max 365,min( EmissFactor ,750 ) p ,otherwise

> +
= 

⋅ ⋅

(13) 

with 

invAdda,i value of the freely allocated emission allowances in year a for 

plant i 

TestfullLoadHrs,i estimated full Load Hours of power plant i 

TfreeAlloc period of free Allocation 

EmissFactor emission factor for power plant i 

pcert,a predicted CO2 price for year a 

Tplanned,a planned operating hours in year a 

The long-term price-curve is generated on the basis of the market-duration-line 
for a total of 20 years. For every year of this price-curve the profit margin plus the 
investment grant is calculated. The profit margin for the first five years is based on 
spot market prices and in the last 15 years on the forward market prices. 

The net present value of each available technology option is calculated accord-
ing to equation 14: 

( ) −

=

= − + + ⋅ +∑
n

t

0 ,i 0 ,i a ,i a ,i

t 1

C I db invAdd (1 j )

  (14) 

where 

C0,i  net present value for option i 

I0,i  investment sum 

n payback period 

j  interest rate 

The parameters n and i can be set in a configuration file, the standard values are 
i=9% and n=40 years. Based on these calculations, only the power plant with the 

                                                           
4 According to the draft of the National Allocation Plan (NAP) which has been submitted to 

the EU in 2006 [BMU 2006]. In the latest NAP version a free allocation is guaranteed 

only until 2012 [BMU 2007].  
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highest net present value can be built. Additionally, every agent determines if a 
capacity gap in his own power plant portfolio will arise in the next five years to 
estimate the number of the needed power plants. 

( )+= −t t 5

i i igap max capacity capacity ,0   (15) 

If the total capacity of the own power plant portfolio decreases, exactly this 
amount is built using the previous determined technology. If the prices are too low 
resulting in a negative net present value, no power plant is built. 

capacityOptioni
0capacityOption

i net

gap
C 0

quantity P

0 otherwise

 
> 

=  



   (16) 

where  

{ }x n n xmin := ∈ ≥   �  is defined as the ceil-function 

 
Because usually the computed gap divided through the net capacity of a power 

plant option is not an integer, the ceil-function is introduced to assure an integer 
value and to avoid insufficient capacity5. These capacity requirements arise, be-
cause power plants, which have reached the end of the physical lifetime (40-45 
years), are removed automatically in the model.  

A lifetime-extension of power plants is not considered. Nuclear power plants 
are dismantled according to the nuclear energy moratorium [Pfaffenberger, W. and 
Hille, M. 04]. If too many power plants are built, the forward price declines and 
less power plants are built in the future. So the system oscillates around the equili-
brium. 

Generally, the agents have the same technology options. The only exception are 
lignite fired power plants which are only available for the agents of the players 
RWE and Vattenfall Europe. Other options are coal fired power plants, gas and 
steam power plants and gas turbines (cp. [Enzensberger 2003]). Additionally it is 
possible to define completely individual technology options. 

2.4 Data input and model characteristics 

The described PowerACE model is programmed in JAVA. For the simulation 
environment Repast-libraries [REPAST 2006] are used. The scenarios and settings 
are controlled by XML-data files. The necessary data for electricity demand, re-
newables and electricity exchange is stored in several relational databases and 
read via the JDBC/ODBC interface. Various models are linked to the PowerACE-

                                                           
5 This is one possible strategy. Determine the right capacity from an agent’s perspective is a 

challenging task. It is planned to test other strategies and their impact on market results in 

future work. 
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simulation platform to generate this data. The ISI Load Model and the Leap De-
mand Scenario provide load profiles (based on [UCTE 2004], [VDEW 2000]) and 
a long term development of the electricity demand. The ISI Wind model (see also 
[Sensfuß et al 2003]; [Klobasa and Ragwitz 2005]) generate these data for photo-
voltaic and wind energy based on extensive meteorological data and assumptions 
on the regional distribution of wind turbines. The European energy system model 
PERSEUS-hydro provides load profiles of electricity imports and exports. 

With the model approach the spot market is simulated until 2030. Therefore, a 
database with all relevant power plants in Germany (approx. 1000) is used with 
technical, economical and ecological parameters. The simulation of the complete 
period needs approx. 30 minutes on a Pentium 4 with 2 GHz. 

3 Scenarios and Results 

3.1 General assumptions and scenario definition 

In this section, the computed scenario and the results of the simulations runs are 
presented. We defined five different emission trading and allocation scenarios: 

 
S1 No emission trading (NoETS) 
S2 Allocation according NAP 1: new units get a free allocation for 14 years, 

this is modelled as an investment grant according to section 2 
S3 Allocation according NAP 2: new units get a free allocation only until 

2012, after 2012 an auction is considered. The investment grant is smaller 
compared to scenario 2  

S4 Benchmark: every unit gets a free allocation according an equal bench-
mark (365g/kWh), other settings as in S3 

S5 Auctioning: all units have to buy the required emission certificates at a 
given price 

 
Furthermore three different emission permit and two different gas price paths 

are assumed, which are shown in Fig. 8. In the low CO2 price scenario the price 
remains constant at 10€/t. In the medium price senario the price range is between 
15 and 20€/t and in the high price scenario the price raises until 25€/t. The high 
gas price path reaches 25 €/MWh, and the low gas price remains constant at about 
15€/MWh.  
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Fig. 8: Forecasted price paths for CO2-permits and gas (based on: [Deutch et al 

2003, Enzensberger 2003]) 

3.2 Development of the energy system and new installed capacities 

In the following selected results of the simulation runs will be discussed. First 
two scenarios (S2 and S5) with equal price assumptions are shown to illustrate the 
impact of the allocation rules. Fig. 9 shows the development of the installed ca-
pacities of the electricity system in the scenario auctioning (S5) with high gas and 
certificate prices. According to the nuclear phase out agreement, the nuclear elec-
tricity production declines until the year 2020, this is equal for each scenario run. 
The results show a growing share of natural gas, the share of lignite and coal fired 
power plants declines. The main reason is that lower emission intensive power 
plant technologies are favoured as the expenditures for emission permits are deci-
sion relevant. Looking at Fig. 10, which shows the high price scenarios, too, but 
with the allocation scenario S2, a completely different energy system with mainly 
coal fired power plants, evolves.  
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Fig. 9: Development of the electricity system, S5, high gas and CO2-prices 
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Fig. 10: Development of the electricity system, S2, high gas and CO2-price 

We can state that the emission allocation scheme has a significant influence on 
the development of the electricity system. In the final period the energy system 
consists of about 70% gas, 20% lignite and 10% coal (cp. to Fig. 9 (scenario S5)). 
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 In scenario S2 (cp. to Fig. 10) we have about 32% gas, 32% lignite, and 35% 
coal. Here the nuclear power plants are mainly replaced by coal and lignite fired 
power plants. The share of gas remains more or less constant over the whole pe-
riod. In the scenario 5 nuclear power plants are mainly replaced by combined cy-
cle power plants. As the capacity of renewable energy sources remains equal in 
every scenario they are not shown in this figure. Thereby the largest capacities are 
onshore wind turbines up to 26 GW in 2030, and offshore wind parks reaching a 
capacity of about 20 GW in 2030.  

In the following new installed capacities in the different scenarios are com-
pared. Fig. 11 shows every scenario in the price combinations (low gas price, low 
CO2 price), (high gas, high CO2 price), and (high gas, low CO2 price). It can be 
observed that the price paths have an impact on the investment decisions, too. 
Taking S5 (auction) with low gas and CO2 price (right block of Fig. 11), the do-
minant technology is the combined cycle power plant (natural gas). But if CO2 
prices are low and gas prices are high (middle block of Fig. 11), the results change 
dramatically despite the same allocation method (auctioning, S5) is used. 
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Fig. 11: New installed capacities, scenario comparison (own visialisation) 

If we have high gas and CO2 prices, coal and lignite technologies are preferred. 
In the scenarios 3, 4, and 5 the share of coal and lignite is higher when CO2 prices 
are low and gas prices are high. In this case, the expenditures for emission permits 
are lower for emission intensive technologies. For scenario 2 the investment grant 
is smaller, so the share of gas fired power plants is higher. 

As conclusion we can say that the preferred option of auctioning is gas and 
steam power plants. Furthermore, in the case of S2 (old NAP) and S1 (NOETS) 
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carbon intensive technologies are favored. The gas and certificate prices can re-
duce the impact of the design of the emission allocation plans. 

3.3 Development of electricity prices and emissions 

After the discussion of new installed capacities, the electricity prices will be 
discussed. As described in the previous chapter, the installed technologies differ in 
the various scenarios and cause different electricity prices and different emissions. 

Fig. 12 shows the yearly average prices of scenario 1, 2, 3, and 5. The bench-
mark scenario is not shown because the results are between the 3rd and 5th scena-
rio. Prices for the permits and natural gas follow the highest path. We see that the 
introduction of emission trading leads to higher electricity prices in every consi-
dered allocation scenario. The highest electricity prices can be observed in the 
auctioning scenario followed by scenario 3 and scenario 2. Due to the higher in-
vestment grant emission intensive power plants are preferred which have, espe-
cially in the case of high gas prices, lower production costs and e.g. thus lead to 
moderate increases of electricity prices. The spread between the auctioning and 
the NoETS scenario is in average 68%. However it has to be said that there is no 
feedback loop to the permit price if emission reduction is low. The price elasticity 
is assumed to be very low; an increase in permit price if emission reduction is low 
is likely to happen.  
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Fig. 12: Electricity prices, high price paths 

Fig. 13 shows the development of the yearly average electricity prices for the 
low price paths.  The spread of the auctioning and the NoETS scenario is much 
smaller compared to the high price scenarios (in average: 33%). Due to lower gas 
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and certificate prices also electricity prices are lower. In general the chosen alloca-
tion scheme has less impact on electricity prices. 

The emissions of the whole simulation period are shown in Fig. 14 for every 
scenario. On the x-axis the gas and permit price combinations are shown. Thereby 
l-l means “low gas price – low permit price” (m-medium, h-high). Decreasing 
emissions for every scenario compared to the NoETS scenario can be observed. 
The highest reduction is realized in the scenario “auctioning” if certificate prices 
are high and gas prices are low – in this case gas fired power plants are preferred 
and provide a less emission intensive electricity production. In this case the max-
imum reduction is about 20%. The smallest emission reduction can be observed 
when the highest investment grant is given. The actual allocation method (S3) ap-
proximates the Auctioning scenario, because after 2012 an auctioning of the emis-
sion rights is assumed. 
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Fig. 13: Electricity prices, low price paths 

Emissions also decrease from S1 to S5 with decreasing investment grant. With 
high gas and low emission prices the decrease is relatively small, wheras with low 
gas and high emission prices the decrease is much sronger. If there is no emission 
trading, the emission reduction with low gas prices is very slight below the case of 
high gas prices. 
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Fig. 14: Total emissions for all allocation and gas/CO2 price scenarios 

4 Conclusions 

In this paper, we presented the agent-based simulation model PowerACE and 
its application on the German electricity market for the analyses of the impact of 
the design of emission allocation plans on power plant investments. Therefore five 
different possible allocation schemes with six gas and CO2 price combinations are 
defined. In general an increase of electricity prices can be observed through the in-
troduction of an emission trading. The highest price increase occurs in the case of 
auctioning where also the highest emission reduction appears (up to 20% with low 
gas prices). We show that the design of the emission allocation scheme has a sig-
nificant influence on power plant investments, electricity prices, CO2 emissions. 
Furthermore, gas and CO2 prices can reduce the effect. 

Further research includes the extension towards a European model. Modelling 
the interregional power and emission permits exchange could increase the model’s 
accuracy. As already mentioned, the permit price is unlikely to remain constant if 
the demand of permits rises. Elastic certificate prices will also be integrated in the 
next steps. Additional CO2 and gas price scenarios will also be defined as well as 
different strategies the capacity extension of each investment planner agent. 
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Abstract. EMSIM – Energy Market SIMulator – aims to derive a deeper under-
standing of the bidding behaviour at the EEX. The impact of changes in market 
design and individual strategies on the submitted bid and ask orders and thus on 
the market clearing prices can be analyzed. As suggested by the observed EEX bid 
and ask price curves, the process of pricing and bidding is not only driven by mar-
ginal cost considerations of the market participants. The interconnection between 
OTC contracts, Intra-day trading, futures and forwards as well as speculative trad-
ing positions should be considered when analyzing EEX prices. A web-based ex-
ample is available at http://ensys.fk3.tu-berlin.de/emsim/. Please feel free to have 
your own EMSIM-test run and do not hesitate to send comments and questions on 
methodology, configuration, strategy settings, model design, usability and layout 
etc. to the author. 
Key words: meta model; price curves; bidding strategies; agent based modelling  

 
 
1 Introduction and Targets 
 

Imagine you and five of your fellow researchers want to compare EEX elec-
tricity spot price models and power plant dispatch algorithms each of you has de-
veloped recently. Imagine further that you have a software that can simulate the 
outcome of different market participant behaviour onto historical market clearing 
prices using a realistic German power plant portfolio, power plant outages, real 
EEX bid and ask curves, fuel prices, fixed cost, cross border electricity flow, EEG 
wind power turn over by grid operating companies as well as EEX Open Interest. 
Assume there are no restrictions on the strategy space for each power plant unit at 
the EEX daily auctions and an imaginary OTC market at a hourly resolution. 

Then each of you gets assigned a proportion of the available power plant port-
folio. 

 

• You decide to calculate your asks based on fundamental data like operat-
ing cost and annuity of investment cost. 
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• The first fellow researcher applies his state-of-the-art finance model to 
calculate price/volume tuples for his power plants. 

• Your second colleague prefers technical analysis – you do not know how 
he calculates price/volume tuples for his power plants from that – but you 
do not care anyway as long as your strategies perform better. 

• The third colleague uses some statistically derived correlation equations 
for the optimal plant operation. 

• The fourth colleague applies his power plants using schedules pre-
calculated by optimization and mighty solvers. 

• The last researcher assumes exactly what his opponents are doing and 
takes this assumptions into account when running his own fancy, game 
theory based, model. 

 
What kind of model do you have at the end? Correct, an agent-based model 

where every agents applies different methods and functions for calculating his 
bidding strategies. 

The generic Agent-based model EMSIM - Energy Market SIMulator (4) -was 
developed in order to enable researchers to investigate, characterize and analyze 
the relationship between underlying market mechanism and resulting bidding de-
cisions of market participants for the German spot market at the EEX. 

The following EMSIM targets were set: 
 

agent based approach: Simulate individual behaviour and strategies on hourly 
resolution. 
fundamental data: Use available fundamental data for realistic and individual 
bidding strategy calculation by agents. 
flexibility: Keep market structure and strategy calculation as flexible as necessary 
to adopt to various scenarios, market settings and simulation targets. 
divide and conquer: Enable data access by standard software tools, separate data 
pre-processing, simulation and post-processing into independent, exchangeable 
tools. 

 
Besides explaining the internal EMSIM methods for notation and calculation 

of bidding strategies, this paper intends to shows how real price curves can be tar-
geted and used inside agent based models. 

EEX price curves became public available in April 2006. They suggest that bid 
and ask submission at EEX not necessarily follow marginal cost theory.  
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Fig.1 OMEL price curve             Fig.2 EEX price curve 

 
 

In (1)and (2) the characteristics of the observed EEX price curves were out-
lined and possible explanations were analyzed. Figure 1 and 2 show typical price 
curves for OMEL and EEX. These randomly chosen curves indicate that different 
market designs lead to different bidding behaviour and thus structurally distinct 
price curves. 
 
 

2 Methods 
 

EMSIM relies heavily on SQL databases and underlying data structures which en-
sures defined external data input, easy external observation of exchanged data be-
tween agents and well formed output of interim values and results. Re- searchers 
can thus visualize, analyze and adjust settings and model outcome – even if a 
simulation run is not finished – directly by any software implementing ODBC-
MySQL connections or alternatively via direct import of .csv files. Figure 3 shows 
the general setup and illustrates how EMSIM meets the flexibility requirement 
outlined in section 1. 

In order to minimize the difficulties in interpreting results and transferring 
conclusions into the real market, real fundamental data are used wherever possi-
ble. This includes for example: 

 

• German power plant portfolio including ownership of power plant oper-
ating 

• companies and mapping of owning shares to major companies 

• outages of power plant blocks 

• cross border flow from and into the German grid wind production and 
forecast published by the four German transport   grid operators 

• fuel and CO2 prices 

• power plant investment cost 
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EMSIM itself is implemented in Java using ABLE – the Agent Building and 
Learning Environment by IBM-Alphaworks (3). ABLE supplies a framework 

 

 
 
          Fig. 3. EMSIM structure 
 
for intelligent software agents including multi threading, logging, messaging 

and various methods for learning – such as neural nets, decision tree, self-
organizing maps – as well as several methods for decision making. 

Demand and supply is modelled as generic demand and supply facilities. A 
demand or supply facility could be a single power plant block, a slice of a power 
plant block, a contract etc. The advantage of this method will become eminent in 
section 2.6, when the easy integration of cross border electricity flows as a single 
pseudo plant with specific pre-calculated strategies is demonstrated. 

 
Time is processed as unix time which measures seconds since 1st of January 

1970 UTC. The smallest resolution of the model can thus be one second. Cur-
rently EMSIM calculates on basis of hourly EEX products so any variable can 
have a maximal frequency of one hour. Naturally, market participants bidding 
strategies and calculations are also bound to the hourly resolution. Due to the un-
derlying unix time, EMSIM can be easily adopted to markets where other time pe-
riods for the traded products, e.g. half-hourly, are used. 

During initialization of an EMSIM run all power plants, the owner structure 
and all prices etc. are read from the databases. The model will set up it- self dy-
namically according to the supplied data. This includes for instance the total num-
ber of agents, agent specific data like facility assets as well as supply/demand fa-
cility specific settings such as pre-calculated strategies and dynamic strategy 
calculator pre-sets. 
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2.1 program flow 
 
EMSIM consist of an independent agents running on independent threads, 

communicating through Java EventMessages and exchanging data via SQL tables. 
A static instance of the SimulatorObject is the central, controlling agent. Figure 
2.1 illustrates the role of the SimulatorObject. 
The internal simulation time is set by the Simulator object. Other agents receive 
this EventMessage and start processing their own tasks for this time step. After 
finishing all task for one simulation day, agents report that they have successfully 
completed all task. If all agents send the ”tasks completed“ EventMessage, the 
Simulator initiates the next day and notifies all other agents. 

As a further example of the internal structures figure 2.1 and 2.1 show a 
simplified sequence diagram for a company and a companies strategy department 
respectively. Every company agents features a power plant dispatch department, a 
strategy department and a trading department. These three objects are use to oper-
ate the plants, calculate strategies and submit bids to the available markets. The 
strategy department for instance checks for every supply/demand facility in pos-
session the available capacity, as it is also depicted in figure 2.1. Whether a power 
plant is out of order or not can be set externally or calculated depending on a reli-
ability rate [0..1]. 

As explained later in section 2.2 there are various strategies that need to be 
calculated by using specific strategy calculators. Alternatively strategies can be set 
using external software tools via direct input into the appropriate SQL tables. 

 
 

2.2 strategies and strategy calculators 
 

Every company agent needs to compute a strategy St = {a..g}, consisting of 7 
numbers [0..1] for each time step and every demand/supply facility in possession. 
The strategies represent the following decisions: 

• bid/ask volume EEX 

• otc volume 

• hold back volume 

• marginal cost 

• fixed cost 

• CO2 cost 

• premium 
 
 
 
 
 
 
 



54      Rocco Melzian 

 

 

 
 

 
Fig. 4. EMSIM sequence diagrams: program, company, strategy department 
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Table 1 
Example default EMSIM strategy set St; 80:20 OTC:EEX split; no capacity hold-
back; full cost; no strategic premium added. 

 
 
Using strategy St the price and volume for the EEX bid/ask is computed. An 

overview of the strategies [a..g] is given in table 2.2. Equation 1 to 4 displays the 
calculation of the price submitted to the EEX and the offered volumes to the EEX 
and the OTC market. 

 

Veex =a ·  Pel,avail        (1) 
Votc =b ·  Pel,avail       (2) 
Vback =c ·  Pel,avail       (3) 
Peex =d ·  Cvar + e ·  Cfix + f ·  Cco2 + g ·  Cpremium   (4) 

 
 

If an agent finds a pre-calculated strategy value for [a..g] for a specific time 
step and a certain demand/supply facility in the database this value will be used. 
Otherwise the agent uses the assigned strategy calculator for the current time step. 
Strategies are demand/supply facility specific. Strategy calculator assignments can 
be changed on a hourly basis. Only time steps where the assigned strategy calcula-
tor type changes need to be stored. 

The following strategy calculators have been implemented so far: 
 
default use default strategy; as located in strategy definition table 
lastKnown use last known strategy value; enabling externally calculated strate-
gies to be denoted on change only. 
randomGuess change strategy value randomly 
enforcedMoverSingleSupplyFacility keep strategy changing direction (in-
crease/decrease) if profit of single unit increased 
enforcedMoverSupplyFacilityFleet keep strategy changing direction (in-
crease/decrease) if profit of power plant fleet increased 
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2.3 calculation of fixed and marginal cost 
 

Marginal cost are calculated dynamically depending on the current fuel and 
CO2 price. Prices can change hourly if set up so by the researcher. 

Absolute fixed cost can be calculated either as annuity of the total investment 
cost or by using amortization. The time horizon for annuity and amortization can 
be defined fuel specific. 

Relative fixed cost are calculated depending on the expected full load hours in 
relation to the absolute expected fixed cost that has not been earned so far. 

Internal adjustment of the fix cost parameters by the agents can be scheduled 
daily, weekly, monthly, quarterly or yearly. 
 
 
2.4 open interest integration 
 

Market participants at EEX have the option to physically close Open Interest. 
These capacities are placed as unlimited orders by the EEX. EMSIM provides the 
opportunity to include measured EEX base load open interests as well as peak 
load open interests to an selectable proportion. 
 

 
2.5 eeg load turn over 
 

EEG production – especially wind power – is integrated into the market via 
”profile turn over“ to all end customer suppliers. Turn over is currently done by 
the Grid-operating companies quarterly as a monthly base load. The difference of 
the day-ahead wind power forecast to the EEG capacities previously assigned to 
the end-customer suppliers is submitted as unlimited bids or ask by the grid oper-
ating company to the EEX. These mechanism is fully implemented in EMSIM, the 
proportion is freely adjustable. 
 
 
2.6 cross border flow 
 

Cross border electricity flows from and into the German grid can have a major 
impact on the merit order. EMSIM supplies a simple mechanism to include such 
entities into the simulation. 

• Create pseudo power plant with a capacity of the maximum cross border 
electricity flow. 

• Calculate the corresponding unlimited EEX volume strategies to meet the 
actual hourly cross border flow. 

• Run simulation. 
 

 
For instance, if someone creates a pseudo cross-border power plant with a ca-

pacity of 10.000MWel and the cross border flow for a certain hour is 1000MWel, 
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and you expect that 50% of this capacity is placed at a price of 0 Euro/MWh, the 
strategy St would need to be set to: 
 
eex volume 0.05   
otc volume 0.0 
hold back 0.0 
fuel cost 0.0 
CO2 cost 0.0 
fix cost 0.0 
premium 0.0 

 
 

2.7 website for free trials 
 

EMSIM is developed within the PhD thesis of the author. The EMSIM source 
code will be available under GNU public licence after publication. As explained 
earlier, one conceptual advantage of EMSIM is the strict separation of data pre-
processing (any tool), simulation (EMSIM) and data-post processing (any tool). 

We will successively demonstrate the capabilities of EMSIM on a public web 
platform for two reasons: 

 

• To enable researchers to test EMSIM and the underlying ideas without 
going trough the hassle of collecting all necessary data, setting up serv-
ers, installing software and modifying configurations files. 

• To encourage comments and suggestions by external experts in order to 
increase methodology, usability, documentation etc. of EMSIM and the 
shown web interface. 

 
Currently the web interface supplies the following opportunities, options and 

data: 
 
Bids optionally real EEX bids or real EEX market clearing volume 
Asks optionally real EEX asks 
PowerPlantFleet exclude power plants by name 
FuelType exclude power plants by fuel type 
Companies exclude companies by name 
Outages optionally use power plant outages as published by UCTE 
WindTurnOver optionally as unlimited ask 
OpenInterest optionally as unlimited ask 
CrossBoarderFlow optionally as unlimited ask 
TotalDemand vertical grid load Germany + wind production 
OTCDemand TotalDemand - EEX market clearing volume 
PseudoWindPowerPlant used for simulating EEX price changes when selling 
wind power directly at the EEX. 
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3 Results 
 

The last section will show some example results. The following general set-
tings were used for the first example illustrated in figure 5 and 6. 
 

• EEX-bids: real 

• EEX-asks: simulated, entire power plant fleet 

• Strategies: static, S = {0.2, 0.0, 0.8, 1.0, 1.0, 1.0, 0.0} 

• Including: outages, wind turn over, open interest, cross border flows 
 

The ask curve is fairly constant over time and only influenced by outages and 
fuel prices. The agents do not apply different EEX-OTC splitting strategies for 
weekdays and weekends. Figure 5 suggests that there are demand driven and sup-
ply driven days. During weekdays the characteristics of the market clearing price 
is modelled very well though the market clearing volumes differs significantly. 
The mcp seems to be thus depending mainly on the bids. EEX prices at weekends 
seem to be ask driven. 

The real EEX ask curve is much steeper, indicating much more unlimited asks 
than submitted during the simulation. By increasing the proportion of open inter-
est, wind turn over or cross border flow the two asks curves could be fitted. Some-
one could also adjust the price strategies of operating agents to close the gap. 
 

Another type of graphical EMSIM output are merit order curves. Figure 8 
shows an example. The total demand is modelled as sum of vertical grid load and 
wind production. Here a researcher could compare e.g. the real EEX mcp to the 
price resulting from marginal cost asks in an ISO driven market regime. 

The last output example shows the influence of a single wind power plant with 
opportunity cost of 90 Euro/MWh onto the market clearing price. This simulation 
was done by using real bid and ask curves and excluding all fuel types except 
from wind. These types of simulations are also done very easily using EMSIM. 
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 Fig. 5. Demand driven pricing is well covered whereas supply driven times  with 
low demand is not well covered 

 
 

 
Fig. 6. mcv simulation vs. rea 
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Fig.7. EMSIM price curves. Power plants are using a static, full cost strategy (see 
table 1), therefore the marginal cost graph is not continuous. The simulated price 
curves are less steeper than the real ones. Demand is modelled by observed EEX 
demand bids. 

 
 

Fig. 8. Cross border flows and wind production shift the merit order horizontally, 
but not necessarily into the same direction. Due to missing real total demand 
data,the demand approximation by adding vertical grid load and wind production 
might be misleading. 
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Fig. 9. Example of fuel specific price curves for a power plant portfolio only con-
sisting of one hard coal and one gas fired plant. Usage of the EMSIM ”modula-
tion-Factor“ disburdens the modeller from adapting power plant capacities of 
pseudo portfolios to the real market values. 

 
Fig. 10. Example of a single pseudo 16GW wind power plant placed at the EEX-
using real bids and asks. The submitted production capacity depends on the differ-
ence between day-ahead wind forecast and EEG wind turn-over by grid operating-
companies. EMSIM enables researcher to investigate the impact of additional bids 
and ask onto historical prices curves.  
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Summary This paper presents the agent-based simulation platform PowerACE as 
support tool for the analysis of the impact of renewable electricity generation on 
the electricity market and the CO2 market. The price effects of renewable electric-
ity generation on these markets are discussed in an analytical way. As an impor-
tant background for a more comprehensive analysis of theses effects the impact of 
renewable electricity generation on the CO2 emissions of the German electricity 
sector is analyzed with the help of the developed simulation platform. 
Keywords: agent-based modelling, renewable electricity generation, CO2 emis-
sions 
 

1 Introduction 

The electricity generation by renewable energy sources in Germany has been 
growing considerably throughout the past years. The growing renewable electric-
ity generation has an increasing impact on the electricity sector. Since grid opera-
tors in Germany are obliged to purchase renewable electricity generation the utili-
sation of the conventional power plant portfolio is reduced. This has an impact on 
market prices and CO2 emissions. Thereby it has to be taken into account that the 
situation is very complex. Important parameters such as demand, renewable elec-
tricity generation and the availability of conventional power plants vary on hourly 
level or even shorter timescales. Therefore it is obvious that an analysis of the in-
teraction of renewable generation with the electricity and the CO2 market calls for 
a model based approach. After a short discussion of these structural effects of re-
newable electricity generation the developed agent-based simulation platform is 
described. In chapter 4 the calibration and simulation procedure for the developed 
model is described. In chapter 5 some exemplary results are presented which 
demonstrate the capability of the developed model. A complete analysis of the ef-
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fects of renewable electricity generation is beyond the scope of this paper. In the 
last chapter some conclusions are drawn.  

2 Important effects of renewable electricity generation 

This paper describes two important market interactions of renewable electricity 
generation. The merit-order effect and the price effect of renewable electricity 
generation on the CO2 market. Besides the actual value of renewable electricity 
generation an important aspect is the impact on the market price itself. A graphical 
overview of the discussed effect for a single hour of renewable electricity genera-
tion is given in Fig. 1. It is assumed that the electricity demand is inelastic in the 
short-term perspective of a day-ahead market. Since the electricity generated by 
renewable energy sources has to be bought by supply companies in advance, the 
remaining demand load that has to be purchased on the electricity markets is re-
duced correspondingly. Therefore, the guaranteed feed-in of electricity generated 
by renewable energy sources has the effect of a reduced electricity demand. In the 
diagram the German merit-order curve is depicted as a line. As long as this supply 
curve has a positive slope, the reduced demand on the markets leads to lower 
prices. As this effect shifts market prices along the German merit-order of power 
plants, this effect is called the "merit-order effect" in this paper.  
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Fig. 15. Structural representation of the merit-order effect 
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Another important aspect of renewable electricity generation is the impact on 
the CO2 market. This effect is a result of the CO2 savings caused by renewable 
electricity generation. The CO2 savings are achieved because renewable electricity 
generation replaces electricity generated by fossil fired power plants. The electric-
ity generation by renewable energy sources reduces the demand on the market for 
European CO2 emission allowances [EUA]. As long as the supply curve has a 
positive slope, this reduction in demand leads to a reduction of CO2 prices. The 
actual price effect depends on the amount of CO2 savings created by renewable 
energy sources and the slope of the supply and the demand curve. An overview of 
the discussed effect is given in Fig. 2. The value of the CO2 savings on the CO2 

market can be approximately estimated by multiplying the volume of the savings 
with the average market price of the corresponding year. The reduction of prices 
on the CO2 market creates savings for all sectors that take part in the European 
emission trading system. In case of free allocation of emission rights this effect 
also leads to a reduction of profits as the value of the freely allocated emission 
rights is reduced. As the scope of this paper is limited to the analysis of the impact 
of renewable electricity generation on the electricity sector, the present analysis 
also focuses on the impact of the created CO2 savings on the electricity sector. 
Since the CO2 price is part of the variable cost of power plants a lower market 
price on the CO2 market leads to lower variable cost of fossil fuel fired power 
plants. This effect shifts the supply curve on the electricity market downward. 
Since the CO2 price has a stronger impact on the CO2 intensive power plants, the 
slope of the supply curve also changes. An overview of the discussed effects is 
given in Fig. 3. The downward shift of the supply curve leads to a reduction of the 
electricity price from P1 to P2. Since this price reduction reduces the market price 
for the entire demand traded in the given hour, an effect similar to the merit-order 
effect is created. The described effect is also discussed in the literature (Rathmann, 
2007, Walz, 2005). 
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Fig. 2 Impact of renewable electricity generation of CO2 prices 
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3 Model description  

In order to analyze the effects that are discussed in the previous chapters a 
simulation model is required which has a sound basis in terms of fundamental data 
and representation of the techno-economic situation of real world markets. The 
PowerACE is simulation platform is developed for this purpose. The PowerACE 
simulation platform simulates important players within the electricity sector as 
computational agents. Among these are agents representing consumers, utilities, 
renewable agents, grid operators, government agents and market operators. Some 
players like utilities are modelled using several computational agents representing 
different functions within the company like trading or generation. The current ver-
sion of the PowerACE model incorporates a spot market for electricity, a market 
for balancing power and a market for CO2-emssions. Since the goal of this paper 
is to analyse the impact of renewable electricity generation on spot market prices 
all other markets are deactivated for the simulation runs. An overview of the entire 
model and the main agents involved in the simulation is given in Figure 2. In gen-
eral the simulation platform can be categorized in four modules dealing with: 
markets, electricity demand, utilities and renewable electricity generation.  
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Fig. 4 Structure of the PowerACE simulation platform 
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The realistic simulation of the impact of renewable electricity generation on 

spot market prices requires extensive data. Therefore a central part of the simula-
tion is to provide realistic data on electricity demand, renewable electricity genera-
tion and the stock of power plants in Germany. The agents’ fundamental decisions 
are based on this data. An adequate dataset for the PowerACE simulation platform 
is provided by soft-links to various models. The ISI Load Model and the LEAP 
model provide load profiles and a long term development of the electricity de-
mand. Since the central goal of this paper is the analysis of renewable electricity 
generation the provision of adequate load profiles for renewable electricity genera-
tion is crucial. The ISI-PV (Sensfuß, 2003) and ISI Wind model (see also (Sensfuß 
et al., 2003); (Klobasa, Ragwitz, 2005b) generate these data for photovoltaic and 
wind energy on the basis of extensive meteorological data and assumptions on the 
regional distribution of wind turbines. The PERSEUS model Möst et al., 2005) 
can be used to provide a scenario for the future development of the German power 
plant portfolio and to calculate load profiles of electricity imports and exports. 
Additional information on the support of renewable electricity generation and dif-
ferent sectors of electricity demand is stored in databases. Among these are infor-
mation on company size, household size and household equipment levels in terms 
of electric appliances.  

On the demand side the consumer agents representing the sectors household, 
industry, transport and service negotiate contracts with the supplier-agents repre-
senting the sales department of utilities. In the given version of the model the sup-
plier-agents purchase the entire electricity required by their consumers on the spot 
market. Thereby the supplier-agents are modelled as price takers.  

Electricity supply is simulated by Generator-agents and Supply-Trader-agents. 
Generators get a daily updated list of power plants which is based on a detailed 
power plant database containing the most important parameters of more than 1200 
power plants (capacity, costs, availability, technology, fuel). Generator agents 
check the availability of their power plants. The availability of power plants is de-
termined by a uniform distributed random generator. Based on this information 
provided by the generators the traders can sell electricity generated by their power 
plants on the spot market.  

Renewable electricity generation plays a growing role in the German electricity 
sector. According to the Renewable Energy Sources Act (Bundesministerium für 
Umwelt, Naturschutz und Reaktorsicherheit [BMU], 2004) the electricity gener-
ated from renewable energy sources has to be bought by grid operators at guaran-
teed feed-in tariffs. The renewable electricity is brought into the market by selling 
month-ahead base load blocks based on a prognosis of renewable electricity gen-
eration which is sold to supplier-agents at the price of the feed-in tariffs. On a day-
ahead basis a new prognosis of renewable electricity generation is calculated and 
the differences between the sold base-load block and the new day ahead hourly 
prognosis is traded on the spot market (E.ON, 2005). This task is carried out by 
the Gridoperator-Trader in the PowerACE simulation. In order to decrease the 
complexity of the market analysis envisaged in this paper the prognosis error of 
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the projection of renewable electricity generation is set to zero, which means that 
the day-ahead prognosis matches the actual generation. Future analysis will take 
typical forecast errors into account.  
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Legend: 
Variables  Unit Indices 
e = CO2-emission factor [t CO2/MWh] f = Fuel 
G = Set of base load power plants [None] h = Hour 
M = Set of all operation-ready power plants [None] i = Plant  
o = Variable operation and maintenance cost [Euro/MWh]    

P = Set of peak load power plants [None]    
p = Price [Euro/MWh]    
s = Start-up cost of plant  [Euro]    
z = CO2 price [Euro/t]    
η = Efficiency  [%]    
σ = Number of scheduled hours per day [Hour]    
υ = Number of unscheduled hours per day [Hour]    
φ = Predicted price of spot market [Euro/MWh]    

ζ = CO2 price integration factor  [None]    
 

Formula 1 Calculation of the bid price for power plants (see also Sensfuß, Genoese, 2006) 

4 Calibration and evaluation of the developed model 

Since the developed simulation platform is used provide quantitative results it 
is important have a thorough calibration and validation procedure. The central task 
of the developed simulation platform is the simulation of spot market prices in 
Germany. Therefore it seems to be important to compare the results of the devel-
oped model to market prices on the German spot market EEX. This seems to be 
even more important if the enormous number of input data is taken into account 
which needs to be validated. Due to the availability of detailed data on renewable 
energy the years 2005 and 2006 have been selected for a detailed comparison of 
the market results. In 2005 and 2006 the complexity of the sector is increased due 
to the beginning of the European Emission Trading System. 
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The introduction of the European emission trading system creates the CO2 
prices as a new input factor for the calculation of electricity prices. Since the 
emission permits have been allocated for free by the national allocation plan in 
Germany, an important question is how much of the CO2 price is integrated into 
the calculation of the bid price. In order to determine the likely CO2 price factors 
for the different power plants a case study has been carried out in cooperation with 
the University Karlsruhe. A detailed description can be found in Genoese et al. 
(Genoese et al., 2007). In the case study the CO2 price factors are varied for each 
fuel until the ordered market curve and the correlation shows the best fit to the real 
market prices on the German spot market. The result is that it is assumed that the 
CO2 price is integrated to 100 % into the calculation of the bid price of gas fired 
plants. In case of hard coal and lignite fired plants the factor reaches only 85 % 
and 70 %. This result is somewhat surprising since economic theory would expect 
that the price of every production factor is integrated to 100 % into the calculation 
of the bid price. A possible explanation for the lower price factors could be the al-
location rule of grandfathering with ex post judgement where certificates which 
have not been used by a plant have to be given back at the end of the trading pe-
riod. Ca. 15 % of the allocated emissions are subject to this rule. Another reason 
could be long-term take or pay contracts for fuels which could prevent a lower 
utilization of existing plants. The results of the comparison for the year 2005 are 
similar to those of the years presented above. Due to the higher price level the fil-
ter is set to 120 Euro/MWh. As a consequence of the increasing number of hours 
with very high prices this filter excludes 159 hours from the analysis. The correla-
tion of the filtered time series reaches 0.64. Again peak prices are generally higher 
in the real world market.  

A similar calibration procedure is carried out for the year 2006. The resulting 
CO2 price factors for gas and hard coal reach 100 % for the year 2005. Exceptions 
are lignite fired plants. The best results can be reached for a CO2 pricing factor of 
20 %. This result cannot be explained easily. One possibility could be that compa-
nies want to keep the utilization of lignite plants on a high level for strategic rea-
sons. Another reason could be caused by the fact that companies owning lignite 
power plants also own the related mines. Since lignite can hardly be transported 
for long distances due to its low energy content, lignite power plants and lignite 
mines are perhaps considered as one planning unit. In this case the total fuel cost 
of lignite power plants are no longer considered as variable cost, but as fixed cost 
since the mines are designed for a given output level. In a recent study it is stated 
that only ca 30 % of the fuel cost for lignite are variable mining costs 
(Energiewirtschaftliches Institut an der Universität zu Köln (EWI), Energy Envi-
ronment Forecast Analysis (EEFA) GmbH, 2007). As a consequence the utiliza-
tion of lignite power plants is likely to react only to a very limited extent to mod-
erate CO2 emission prices. This is an aspect which could heavily affect possible 
emission reduction strategies in Germany since lignite fired plants are character-
ized by the highest CO2 emissions.  
Furthermore electricity imports based on foreign nuclear or hydro plants could 
have some influence on the prices in times of low electricity demand which could 
have an impact on the calibration of the model. A closer analysis of this issue 
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would require a European simulation model. The comparison of the key indicators 
shows a correlation of 0.64 for the year 2006 if a filter of prices above 125 
Euro/MWh is applied, which excludes 147 hours with very high prices from the 
further analysis. Volatility and market prices have increased again beyond a level 
that can be explained by the model. An overview of the key indicators is given in 
the following figure. 
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Important indicators for the year 2005 

2005 EEX (Filter 120) PowerACE  (Filter 120)
Ø price (€/MWh) 43.52 37.73
Min. price (€/MWh) 0.00 0.00
Max. price(€/MWh) 119.98 86.90
Standard deviation 17.61 9.76
Net production (TWh) 557.88 555.49
Pearson Correlation 0.64  

Comparison June 2006 
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Comparison of ordered prices (Filter) 2006 
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Important indicators for the year 2006 

2006 EEX (Filter 125) PowerACE  (Filter 125)
Ø price (€/MWh) 48.31 39.46
Min. price (€/MWh) 0.00 7.17
Max. price (€/MWh) 123.60 86.41
Standard deviation 22.04 13.33
Net production (TWh) 559.08 556.76
Pearson Correlation 0.64  

Fig. 5 Comparison of simulation and real spot market prices (data provided by EEX) 

 



72      Frank Sensfuß, Mario Ragwitz 

 

5 Results 

The calculation of the merit-order effect and the CO2 prices effect is a complex 
task requiring a thorough analysis which is not possible within this paper. How-
ever the first important task for these analyses is to analyze the impact of renew-
able electricity generation on the power plant operation. The central basis for 
analyses regarding the CO2 price effect of renewable electricity generation is the 
estimation of the CO2 savings caused by renewable electricity generation. In order 
to determine the impact of renewable electricity generation on the CO2 emissions 
in the German electricity sector the calibrated model is used to simulate the elec-
tricity market for the years 2004, 2005, and 2006. Similar to the analysis of market 
prices presented in the previous section simulations are carried out for each year. 
The model calculates the CO2 emissions of each running power plant according to 
Formula 2: 

;
ev

h i i

fh,i
⋅

⋅
=∑∑

η
α  

Legend: 
Variables Unit Indices 
e = CO2-emission factor [t CO2/MWh] f = Fuel 
v = Hourly electricity generation of plant [MWh] h = Hour 
α = Annual CO2 emissions [t] i = Plant 
η = Efficiency  [%]    

  

Formula 2 Calculation of the annual CO2 emissions in PowerACE  

The resulting time series is calculated as average of the simulation runs in or-
der to level out variations caused by the random variables used to simulate power 
plant outages. In a second step the same procedure is applied to 50 simulation runs 
without renewable electricity production supported by the feed-in tariff. Since the 
development of large hydro plants has not yet been affected by the renewable sup-
port scheme, electricity production of large hydro plants is taken into account in 
both simulation settings. The resulting CO2 emissions are compared for both time 
series. An overview of the simulation results is given in Fig. 6. 

Since PowerACE does not account for the additional CO2 emissions caused by 
partial load operation of conventional power plants due to renewable electricity 
generation an adjustment of the results is necessary. Based on an existing review 
of different approaches to the calculation of CO2 savings (Klobasa, Ragwitz, 
2005a, a reduction factor of 10 % is assumed which is the highest value of the 
compared studies. The results of the corrected CO2 savings are presented in Table 
1. Based on this comparison it can be stated that the CO2 savings calculated within 
this thesis represent a conservative calculation of the CO2 savings by renewable 
electricity generation. 
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Fig. 6 Simulated annual CO2 emissions of the German electricity sector 

 

Table 1 Corrected CO2 savings by renewable electricity generation 

Category Year 

Excl. 

EEG 

Incl. 

EEG 

Partial 

load        

reduction 

Corrected 

savings 

Renewable 

Generation 

Mt Mt % Mt TWh 

CO2 

emissions 2004 347.2 311.3 10 32.3 41.5 

CO2  

emissions 2005 349.5 311.2 10 34.5 45.5 

CO2  

emissions 2006 353.4 310.6 10 38.5 52.2 

 
Although PowerACE allows for the calculation of CO2 savings on a very high 

detail level, it seems to be important to compare the results of the calculated CO2 
savings with the literature in order to evaluate the results. Klobasa and Ragwitz 
(Klobasa, Ragwitz, 2005a) provide an overview of existing studies and provide an 
own estimation of the CO2 savings in the year 2003. An overview of some studies 
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presented in the review by Klobasa and Ragwitz is given in Table 2. The results 
show that the calculated CO2 savings are higher in the selected literature. Thereby 
it has to be taken into account that all the studies deal with the period before the 
introduction of the European emission trading system which has changed the 
merit-order curve of power plants. An additional aspect is the higher renewable 
electricity generation in the year 2005 and 2006 which can lead to the replacement 
of less CO2 intensive plants.  

Table 2 Selected studies on CO2 savings of renewable electricity generation 

 Klobasa 

and Ragwitz 

(2005) 

Klobasa 

and Ragwitz 

(2005) 

Sontow, 

2000 

Geiger et 
al., 2004 

Year 2003 2003 Before 
2000 

Plant portfolio 
2000, 

Technology Renewables 
incl. large     

hydro 

Savings 
excl.  
hydro 

Wind Wind (15 
GW) 

Savings 943 
kg/MWh 

875 
kg/MWh 

800 
kg/MWh 

828    
kg/MWh 

Source: All values are taken from the overview given in (Klobasa, Rag-
witz, 2005a) 
 

The next step for the analysis of the CO2 price effect of renewable electricity 
generation is to asses the price effect of a reduction of the CO2 emissions by 38.5 
Mt. In order assess the price effect of renewable electricity generation the time se-
ries of market prices created by the models needs to be analyzed in more detail. A 
detailed analysis of both aspects can be found in (Sensfuß, 2007). 

6 Conclusions 

This paper shows that agent-based simulation platforms can be a valuable tool 
for the quantification of structural effects within the electricity sector. The theo-
retical background for important effects like the merit-order effect and the CO2 
price-effect of renewable electricity generation is discussed. As a first step of the 
necessary analysis the impact of renewable electricity generation on CO2 emis-
sions in the German electricity sector is analysed. In the given context the devel-
oped simulation platform allows for an hourly calculation of market prices and 
CO2 emissions which provides a good basis for future analyses. The agent-based 
architecture allows to differ between different players. In the context of impact of 
renewable electricity generation future studies can analyze issues like lower plant 
utilisation, reduced CO2 emissions and reduced profits on the level of single play-
ers such as the most important German utilities. 
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Summary. We present an agent-based software environment for modeling and 
simulation of adaptive consumers responding to dynamic electricity pricing. It has 
been specially designed for scenarios involving household customers. Households 
can be modeled down to the layer of single appliances, even taking into account 
presence and price awareness of inhabitants. Modeled utilities can calculate prices 
from different factors using different methods. The focus of investigations con-
ducted is the analysis of household load shifting potential under different tariffs 
and different negotiation strategies.  
Keywords: agent-based modeling, electrical load shifting, household consumers  
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1 Introduction 

It is important to keep the balance between electricity consumption and elec-
tricity production at all times. This is usually done by supplying cost intensive 
balancing power without taking into account the potential of the demand-side. The 
major factors responsible for high marginal costs are peak loads that usually are 
met using expensive peak load generation facilities, and grids dimensioned to sup-
port peak loads. Thus, it is necessary to minimise peaks while at the same time op-
timally utilise base load plants. 
Peak load reduction can be achieved either by power conservation methods or via 
load shifting on the consumer side which is also suited to address the problem of 
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optimal utilisation of base load plants. Load shifting can be achieved by methods 
of demand side management involving direct control of appliances or indirect con-
trol by addressing the inhabitants of households through time varying tariffs re-
flecting the marginal costs of electricity production. The maximum load shifting 
potential of households has still got to be examined and also the percentage of 
load shifting potential activated by different tariff signals or other control signals 
is currently not well known. 

This calls for a model of power consumption reflecting electricity demand 
down to the device level also encompassing human price awareness, presence pro-
files, as well as seasonal influences and thereby the elasticity of demand. Further-
more, if different negotiation strategies shall be examined w.r.t. to the achievable 
matching between load and production, the models must also support federations 
of consumer agents negotiating with utilities. 

In recent years, a lot of research has been done in the field of optimizing elec-
trical load through demand side management methods. We limit a short overview 
here on attempts related to multi-agent technologies. The HomeBots approach 
[Ygge and Akkermans 1996, Ygge 1998] is based on the idea of an electronic 
market place where utilities and devices (e.g. electrical heaters) are trading small 
amounts of energy to match the current demand with the supply. Prices are fixed 
by a market based approach. A similar approach is proposed by [Wedde et al. 
2006] focussing more on the technical aspects of implementing a distributed mar-
ket place. Both attempts aim for a completely new, distributed method of demand-
supply matching as well as electricity pricing that is not oriented at our current 
system of energy supply. They do not incorporate planning agents scheduling en-
ergy demanding tasks to optimally match between supply and demand. 

In [Penya 2006] also a retail market place for electricity is investigated, where a 
reverse combinatorial auction is used as a method for electricity pricing and load 
shifting. This model consists of two different agent-based systems: one system for 
price fixing between utilities and consumers, and another system for scheduling of 
demand tasks, This approach results in very high communication costs - it has not 
been tested for ‘real world’ scenarios. 

For these reasons we decided to develop our own agent-based modelling and 
simulation platform ACDC (adaptive consumers for dynamic cost models) aiming 
at dynamic pricing for consumers which is presented in this paper. A preliminary 
version of the ACDC frameworks has been described in [Sonnenschein et al. 
2006]. 

This paper is organised as follows: After a short introduction to the domain of 
load management in households we explain the architecture and some basic con-
cepts of our agent based simulator ACDC in chapter two. In chapter three different 
hypothetical scenarios for negotiation between consumers and a utility are intro-
duced. These scenarios are implemented in the ACDC framework and demon-
strate its flexibility. 
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1.1 Load shifting within households 

Load shifting is a basic mechanism for adapting load curves so as to reduce 
marginal costs of electric power supply. Load shifting within households is based 
on their inhabitants behavior and in their equipment. Thus, we have to account for 
both. 

There are different types of appliances. Controlling appliances control an envi-
ronmental factor within the household. Examples of this appliance type are 
fridges, air conditions, heaters and boilers. Appliances for spontaneous use are 
switched on and off by persons, following their needs of daily living. TV sets, 
lighting and cooking equipment are examples for this type. Finally, programmed 
appliances after having been switched on follow a given program and have a pre-
dictable power consumption sequence. It is important to note that the mechanisms 
of load shifting differ substantially for the appliance types.  

The load shifting potential of appliances for spontaneous use is only dictated by 
the needs of persons that vary due to many factors as circadian rhythms and social 
events. Usage patterns for this appliance type are influenced by the presence of 
persons within a household and circadian rhythms but can be modified through 
social events or other causes. The only way of exploiting a load shifting potential 
is by modifying people’s behavior, for example by varying electricity costs and 
thereby exploiting price awareness. 

Load shifting potential for programmed appliances is also driven by human be-
havior, but to a lesser degree. Usage of dishwashers, washing machines and alike 
devices is not always spontaneous and often planned. For instance, people might 
refrain from using their washing machine late in the evening due to noise. Also 
usage of programmed appliances is mostly delayed until after a certain payload 
has been reached. A very interesting fact concerning those appliances is, that they 
are equipped with controllers allowing to delay operation after starting the device. 
This can be interpreted as a user wanting the appliance to terminate its program at 
a latest given point in time. Taking this as a hook for integrating a scheduler al-
lows for load to be shifted to a moment when electricity consumption is most de-
sirable due to sufficient resources or low prices. Note, that the load can be shifted 
forward in time. 

Controlling appliances control a physical property (e.g. temperature) to stay 
within bounds defined by the persons living in a household. For that purpose they 
do not depend from human interaction. By intelligently exploiting the range be-
tween the bounds, load can be shifted. For instance, the temperature within a 
fridge’s cooling compartment may be allowed to vary between 5°C and 8°C. 
Whenever the upper bound is reached, the fridge’s cooling aggregate is started. It 
stays on as long as the lower temperature bound is not under-run. Using an intelli-
gent fridge controller, a fridge’s thermal storage capacity can be exploited as to 
prepone or postpone the cooling aggregate’s activity and thereby shifting load for 
time spans of about an hour [Stadler et al. 2007]. 

Single persons are reflected in our consumer models by their presence profiles. 
The usage patterns for household appliances derived from human behaviour are 
modeled through usage profiles. 
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2 ACDC – a modelling and simulation framework for cost 
adaptive electricity consumption scenarios 

A model in our ACDC framework consists of an electricity supplier (power 
company) calculating real-time prices for electricity, different classes of electricity 
consumers (households) modeled in essential by their scheduling mechanism of 
energy consuming tasks, and a communication protocol between consumers and 
the electricity supplier. Power plants and electric generators as e.g. wind turbines 
are modelled only as sources for time series of available electrical energy. 

2.1 System architecture 

The simulation and modeling environment ACDC consists of the basic build-
ing blocks depicted in figure 1. A purpose-built modeling tool allows graphical 
construction of models and parametrisation of models and their components. As-
pects that cannot be graphically defined (e.g. interaction protocols and rule sets for 
defining tariff calculation) may be composed from within a simple built-in text 
editor. Once defined, parametrised models are stored as XML-files within the sys-
tem’s scenario repository. 
 

 
Figure 1. General component architecture 
 
In standalone mode, these scenarios are read by a single simulation engine as soon 
as the ‘start simulation’ button is clicked. In distributed mode, multiple simulation 
clients may fetch scenarios from the scenario server as soon as they run out of a 
job. The generation time series, tariff time series and load timeseries are stored 
within a relational database at simulation time. From there, they can be retrieved 
via reporting adapters, either by standard reporting tools or by a live time series 
display and analysis tool currently under construction. 
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The simulation engine is built around the Repast framework [North et al. 2006] 
offering a comprehensive infrastructure for agent-based modelling and simulations 
including mechanisms for communication and synchronisation. Agents in this 
framework do not pursue their tasks in real-time but execute concurrently based 
on a common global simulation time. Developing the ideas from [Rölke 2004] this 
allows for partitioning a complex process of interaction into independent, loosely 
coupled software entities. 

Inter-agent communication is based upon the Repast Framework’s event han-
dling mechanism. To guarantee for extensibility, the flow of communication is 
specified within replaceable interaction protocols implemented through a control 
unit and a monitoring unit. Communication channels are configurable by allowing 
for specification of bandwidth or message-delay by the modeller and they are 
separated from the communication methods used (e.g. messages or handshakes). 

Aside from messages, the behavior of agents may be influenced by events. 
Whenever an event occurs, an agent may react to it or choose to ignore it. The 
simulator allows for specification of contents, purpose and other properties of 
messages and moreover it offers a broadcasting functionality that can be used for 
agents sending a message to multiple receivers. 

2.1.1 Agent types and agent structure 

Each agent within a simulation represents an entity within our scenario. The 
type specific functionality of an agent is structured in a number of type specific 
modules. Helper classes needed within modules or agents are represented by items 
which are not limited to representing data but may also have functionality as-
signed to them. 

We need three types of agents for modeling the scenarios required for our ana-
lyses. Utility agents represent utilities calculating electricity prices from different 
inputs comprising wind power predictions, electricity stock market prices at the 
European Energy Exchange, and also electricity consumption predictions. All of 
these inputs may be calculated from outputs of consumer agents or from utility 
agent modules providing interfaces to Excel files and comma separated value files. 

Electricity prices can be negotiated between utility agents and consumer agents 
in several rounds. The information exchange is performed by sending tentative 
pricing time series from the utility to its consumers, and by sending predicted con-
sumption time series calculated for a given pricing time series from consumers to 
their utility. 

Consumer agents represent households that consume electricity taking into ac-
count given pricing information. Consumption is aggregated from the set of ap-
pliances present within a household. 

Both, the activities of programmed appliances and controlling appliances are 
scheduled by per-agent schedulers using different strategies. Each consumer agent 
consists of an internal model with a scheduler for adaptive resource planning. 
Specific points in time for switching appliances on or off are derived from infor-
mation about probable usage periods. Additionally, the probability of usage might 
be a function of electricity prices. It is then the schedulers task to alter the periods 
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of activity for each appliance according to a given tariff with the objective of mi-
nimising overall costs. For this purpose different optimisation techniques are in-
volved [Sonnenschein et al. 2006]: the behaviour of controlling appliances is al-
tered by ant colony optimisation; planning of programmed appliances is driven by 
a tabu search algorithm. 
As an example, figure 2 depicts the internal structure of an agent representing 
electricity consumers. Device models, scheduler, metering and control unit are 
modules, while human behavior and consumption statistics are delivered by items.   
 

2.2 Configurability 

The ACDC tool consists of a simulator engine and an optional graphical user 
interface. Both are highly configurable in favor of adjustability to specific needs. 
The simulator engine was implemented as a standalone desktop application based 
on the Spring Framework [Johnson 2007]. This layered Java/J2EE application 
framework includes a non-invasive lightweight container that is able to link 
loosely-coupled components to a complex system. 

The simulator engine’s configuration is done in terms of XML. The Spring In-
version of Control (IoC) processes configuration options, such as the prefered per-
sistence technology, the list of databases to access, or the option of declarative 
transaction management, and so on, given in a simple and intuitive XML format. 
At runtime the configuration file is processed by the container. In case of a dis-
tributed simulation on more than one machine and hence different simulator en-
gines the underlying configuration can be shared across the network. This allows 
for configuring different decentral simulator engines either identically or inde-
pendently of each other. 
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Figure 2. Internal model of adaptive consumers 
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Configuring scenarios for simulation mostly takes place in terms of XML. Each 
scenario configuration is divided into two separate parts: Firstly, all agents partici-
pating in a simulation, their associated functionality, all required communication 
channels as well as desired choreographies are listed. All these entities are re-
quired to achieve the target-settings by simulating a scenario. This first brief part 
of configuration is passed to and evaluated by our custom-developed parser. The 
second part of the configuration file contains a series of Java object definitions 
that are required for simulation as well. Syntactically this part corresponds to a 
format processable by the IoC container out-of-the-box. At runtime the container 
performs instantiating or sourcing application objects (e.g. agents, modules, items 
etc.), configuring these objects, and assembling the dependencies between them. 

Most of the participating agents require different external definitions to satisfy 
their functions. Such external definitions like profiles of presence, price awareness 
or rule sets have to be specified with external tools and can be used for simulation 
via referencing such files in the scenario configuration. In addition, individual in-
habitant types can be modeled with individual behaviour in using certain appli-
ances wich is also be influenced by their individual price awareness. Hence a cor-
related behaviour can be achieved. 

Individual modelling of each single agent in large scenarios is a tedious and er-
ror-prone work. Thus, our system exploits a concept for factory driven generation 
of heterogeneous agent populations for large scenarios. Individual agents of such a 
population with mutually distinct traits and behaviour as well as diverse equip-
ment may be described by means of specialized XML-based definitions. Special-
ized, so called factory agents take use of these descriptions and generate the actual 
definitions of a large number of agents according to the given stencil. 

In connection with developing appropriate structures for such descriptions of 
distinct model parts and agents for use in factories the following problems had to 
be taken into account: 

Prefabricated model components must be available from different libraries in 
order to avoid double definitions, for reuse, and ease of modelling. 

Modelling of well defined varieties within model components must be possible 
in order to support heterogeneous agent populations; e. g. the definition of a re-
frigerator with an arbitrary but well defined distributed power input of its com-
pressor.  

Dependencies between model parts must be part of their definitions. E. g. sup-
posed a specific class of household agents possesses appliance A with a given 
probability P1. Now it should be possible to define that if a specific instance of 
these agents actually possesses appliance A than it also possesses appliance B with 
probability P2. 

In order to support a flexible integration of functional elements into the struc-
ture of our XML-based model description, we adapted the principles of custom 
elements. Custom elements are a commonly used build-in programming means 
within JavaServer Pages (JSP) wich allow for program generated parts within 
fixed template HTML-code. So, we adapted this idea and enriched our XML-
based factory definitions with similar structures for dynamic content. That means 
that our parsers for XML factory definitions are capable of identifying dynamic 
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content by means of namespace, interpreting such elements and replacing them 
with the generated output of the corresponding implementation. Figure 3 sche-
matically shows the chosen approach. 

In JSPs action elements represent dynamic actions that are executed at runtime 
when a JSP is requestet [Bergsten 2002]. In analogy, our dynamic XML elements 
are executed at parse-time. It is the factory parsers task to add a given number of 
agent definitions to a given scenario definition. In this way an agent description in 
a factory serves as a fuzzy stencil for the definitions to be inserted into the sce-
nario. For each inserted instance the dynamic elements' action classes are exe-
cuted. The individually generated output of these action classes then replaces the 
respective element within the stencil resulting in distinguishing agent definitions 
derived from a single prototype. 

 

 
Figure 3. Scheme for factory based agent generation 

 
As yet, we use these dynamic elements to realize control structures, for an in-

tegration of numerically derived content, i. e. specifically distributed values, and 
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script generated. In order to pass information between different executions of ac-
tions as well as between different simulation runs, two different scopes are pro-
vided: scenario and simulation. Data in the scenario scope is only valid for a sin-
gle scenario simulation run whereas the simulation scope allows for passing data 
from one simulation run to another; listing 1 shows an example of modelling a 
batch simulation with a growing number of agents for each run. 

 

 
Listing 1. Example of JSTL within XML 
 
In addition, we integrated support for dynamic attribute values. The Expression 

Language (EL) is defined by the Java Standard Tag Library (JSTL) specification 
[Delisle 2002]. EL expressions can be used to set attributes to dynamic values. 
Whereas the JSTL implementations only allow for a use with action elements our 
implementation allows for setting attributes of arbitrary (including non-dynamic) 
elements to dynamically generated values. A shared context allows for exchanging 
variable values between dynamic elements and EL expressions, or rather, their 
implementations. Another advantage resulting from our implementation is an easy 
way of extending the original standard language by integrating own implementa-
tions of additional functions as shown in listing 2 where the non EL function 
weighted_pick is used within an EL expression to choose from the given choices 
with respective probabilities. 

 

 
Listing 2. Example of EL extensions 
 
Factory driven generation of scenarios together with dynamic definitions and 

commonly used profile definitions enables us to model scenarios with a well de-
fined correlation between different actors within a scenario as well as dependen-
cies between different simulations runs. For example, in a scenario with multiple 
different agents representing varying instances of different classes of households 
generated by factories, it is still possible to model a correlation in the usage time 
of the refrigators by providing them with the same usage profile. In this way, all 
households will show a certain similarity in behaviour concerning the usage of the 
refrigator (i. e. opening the door, filling in warm food, etc.) while each of these 
appliances is separatedly treated, or rather, optimized according to the settings of 
the simulation. 

<ae:if test="${empty counter}"> 
   <ae:set var="counter" value="0" scope="simulation"/> 
</ae:if> 
<ae:set var="counter" value="${counter+5}" scope="simulation"/> 

<class name="growingExample" count="${counter}">[...]</class> 

<appliance ref=${weighted_pic(fridgeA, 20, fridgeB, 80)} /> 
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3 Definition of three scenarios for negotiating tariffs 
between a utility and its customers 

Negotiation in each scenario presented in this chapter is based on feedback 
loops between a utility and its customers. The feedback to a tariff given by a util-
ity is a load forecast. We view tariffs as a control signal leading to a load shift re-
sulting in a better balance of electricity consumption and electricity production. 
This approach differs from the approach described in [Wedde et al 2006] where 
the feedback of a customer contains pricing information instead of information on 
load. 

3.1 Independent customers negotiating with a utility 

The standard scenario used for conducting analyses of tariff induced load shift-
ing of household customers is based on the assumption that customers act inde-
pendently of each other, each reacting on tariff prognoses. Figure 4 shows a sim-
plified structure of the scenario with an emphasis on agent communication. 

 

 
Figure 4. Hierarchical communication scheme 
 
Each day at a specified time, the utility begins tariff negotiations. A single nego-
tiation round is split into the following steps: 
(1) The utility issues an initial tariff prognosis for the next day based upon 

the predicted costs of electricity, the input from wind power and a total ex-
pected load (based on prior experience). 

(2) Loop until break criterion is reached 
a. Consumer agents optimize the schedule of their device activities 

based on the predicted tariff and issue a load prognosis. 
b. The utility agent calculates a new tariff based on the predicted 

load and the facts already known at calculation time of the initial tariff. 
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(3) The last predicted tariff is sent to the consumers as final tariff; monitored 
household consumption is measured and integrated into the utilities load ex-
pectation for future days. 

The break criterion may be based upon the number of negotiation rounds or on the 
trend observed in the difference between desired load curves and achieved load 
curves. If the difference grows, it is assumed, that at least a local optimum had 
been reached. 

Usually the tariff for one day is divided into time slices of 15 minutes and these 
tariffs are mainly examined in our work, but it is also possible to examine differ-
ent time periods. With our tool it is also possible to take into account certain cal-
culation times and communication delays decoupled from simulation time. In this 
way, different time frames for such negotiations can be examined. 

This approach is well-suited to explore the maximum achievable load shifting 
for a given population of consumers and a given tariff calculation method. How-
ever, using this interaction protocol, tariff valleys will result in load peaks.  This is 
due to a synchronised behaviour of agents neither having knowledge of each oth-
ers reaction nor having any means of knowledge about the actions necessary to 
purposefully change their device activity plans with respect to the global optimiza-
tion goal to reduce load peaks. 

3.2  Probability based negotiation between federated customers 
and their utility 

An extension of the standard scenario described in section 4.1 has been de-
signed to reduce the disadvantages of independently negotiating consumers. 

Consumers negotiating following a probability based strategy are indirectly 
aware of other consumer’s presence, i.e. they do not communicate with any other 
consumer, but assume the existence of other consumers scheduling their devices to 
minimise their electricity costs. In this negotiation type, consumers agree to the 
fact that independent cost optimization for all consumers result in load peaks, and 
they agree to contribute in a fair way to avoid this effect. For this purpose, they 
use a probabilistic approach to attenuate their cost minimisation, resulting in a co-
operative behaviour between consumers and between consumers and the utility. 
This means a partial abandonment of local benefits in favour to allow a better 
match between electric load and production curves. The reduced load peaks lead 
to lower marginal costs for electricity supply and result in lower consumer prices 
in the long term.  

The probability based negotiation is based on a modification of the signal 
‘strength’ computed for each time slice of tariffs. This signal strength is compared 
with a randomly generated threshold value calculated separately by each consumer 
agent. The comparison of the signal strengths and the locally computed thresholds 
is used by consumer agents to calculate a fictitious tariff only used for device 
scheduling purposes but not designating electricity costs. To construct this ficti-
tious tariff, a so called base tariff is modified by each agent during each subse-
quent negotiation round as follows: 

If the local threshold is greater than the modification signal strength for a time 
slice, the base tariff’s corresponding value is replaced by the time slice’s value of 
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the tariff issued by the utility agent during the current negotiation round. Other-
wise the base tariff’s time slice value is kept. In that way each customer agent 
constructs an individual tariff as input to their device activity scheduler resulting 
in a modified device activity plan. 

The base tariff is a helper tariff which holds the costs that occurred in a time 
slice at the beginning of a price increase or decrease tendency of tariffs published 
by the utility agent during previous negotiating rounds. 

In the probability based negotiation scenario the assumption of homogeneous 
consumers is made. All consumers behave the same way regardless of their rela-
tive contribution to electricity consumption. Shifting load from a given time slice 
yields different results, depending on the consumer’s contribution to total con-
sumption. This can lead to inadequate load shifting. In addition to that, the ran-
domized threshold only guarantees for fairness of load shifting distribution be-
tween agents, if the number of consumer agents is big enough. 

First simulation runs show that the probability based negotiation indeed results 
in a better matching between electricity consumption and electricity production, if 
the signal strength is increased relatively slowly between negotiating rounds. 
Rapid increase of signal strength often results in a customer’s over-reaction and 
therefore can be a reason for insufficient load shifting. Besides achieving the main 
goal of improving the match between consumption and production, the probability 
based negotiating has the advantages of having both, low computational perform-
ance requirements and communication requirements. 

 
Figure 5. Simulation result from probability based negotiation 
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Figure 5 depicts the correlation between electricity costs and appliance usage 

for three households resulting from simulating probability based negotiation for a 
duration of two days. There are two appliances per household. One of those has a 
low power rating and is of use during morning and evening hours. The other has a 
high power rating and can be used throughout the day. 

The diagram shows, that the appliance type with high power rating is only acti-
vated when electricity costs are low. Moreover, due to probability based schedul-
ing of appliance activities, not all three households activate their appliances with 
high rating during the same time slots with low electricity costs. Instead, activity 
of those appliances is distributed over the available time slots. Note that the first 
and last time slot of each 24 hour period are not used, since appliance activity has 
been forbidden during the night. 

The appliance type with smaller rating cannot be scheduled to be active during 
low cost electricity phases, because those phases do not overlap with the allowed 
per-day activity periods for this appliance type. 

3.3 Communicative approach for federated customers negotiating 
with utility  

We assume that an even better match between electricty consumption and elec-
tricty production can be achieved by federated planning, and by dropping the as-
sumption of homogeneous consumers. Federated planning is conducted by a spe-
cial agent named concentrator. Each concentrator is assigned to a number of 
consumer agents and communicates with the utility on their behalf. Communica-
tion between consumers and concentrators is bidirectional. The concentrator re-
ceives tariffs from the utility agent. 
 

 
Figure 6. Integrating the concentrator 
 
(1) Just as for the probability based approach customers agree that coordinated 

planning of device activity results in better overall pricing conditions and is 
therefore worthwhile even if temporary disadvantages in accessibility to low 
priced tariff time slices can occur for single customers. 
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Within a single negotiating round the following steps are executed: 
 
(1) The utility issued tariff is used by each customer to schedule device activity 

independently of other consumers following mere personal benefits. 
(2) The resulting local device activity plan is sent to the concentrator. 
(3) After receiving all single device activity plans the concentrator builds an indi-

vidual tariff for each consumer agent based on that device’s activity plan and 
on the calculated signal strength. 

(4) The concentrator sends the individual tariffs to its associated consumers.  
(5) Finally, based on their special tariffs the customer reschedule their device ac-

tivity and provide a load prognosis for feedback needed by the utility. 
 

In detail the segment wise calculation of the individual tariff by the concentra-
tor depends on the signal strength, the consumer’s reaction strength and a rating of 
fairness. This can be found in [Andreßen 2007]. First results for this scenario are 
currently evaluated. 

4 Conclusion and further work 

We presented a flexibly configurable agent-based tool for modelling tariff 
based load shifting scenarios. It has already been extended to scenarios involving 
direct control of devices and can be easily extended to distinct market based sce-
narios for demand side management within the electricity domain. It still has to be 
tested whether the tool can also successfully be applied to modelling and simula-
tion problems within other domains. 

We showed that different inter-agent negotiation scenarios can be realised. The 
concept of thick agents extensible through function modules has proven particu-
larly useful. The novel architecture of ACDC allows for introduction of com-
pletely new agents simply by coding the functionality using the tool’s class 
framework without changing existing code and changing XML configuration files. 

The downside of the flexible approach is the complexity of our tool. Together 
with the multiple configuration options it results in a long learning periods for  
both, users and developers. 

The tool is currently used for carrying out analyses of load shifting potentials 
described in the introduction. Before the tool will be used in additional scenarios, 
e.g. in load shifting under market influences including settings with multiple utili-
ties and combined producers / consumers, we will improve its runtime efficiency. 
Further possible improvements include the introduction of an extended model 
checker, providing a better guidance when modelling new scenarios, a module for 
time series analysis and a context-sensitive editor with auto-completion for reduc-
ing the time required to construct new orchestration protocols and agent factory 
definitions. 
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Summary In response to the growing challenges of climate change and resource 
scarcity energy from renewable sources will have to play a significant role on fu-
ture energy markets. Therefore, significant efforts from the industry will be neces-
sary in terms of innovative processes and products to fulfill the needs of a future 
energy mix and the success determinants for these technological innovations are 
of considerable interest.  
The paper outlines the results of a study that focuses on the different aspects of in-
novation in the photovoltaic industry. Innovation research suggests that innovation 
processes take place in systems of highly interdependent actors. Agent-based 
modeling provides a suitable tool for the analysis of the various effects of actors’ 
choices, strategies and dynamic behavior.  The study concentrates on the main ac-
tors within the innovation system “Production and Application of Photovoltaic 
Technology Systems”: producers, PV system operators (households, farmers etc.), 
research institutes and universities, banks, interest groups and trade associations, 
installation firms, and government. Within these groups different characteristic 
features exist and each type is represented by one agent. Research institutes, for 
instance, can be oriented towards either applied or more theoretical research. This 
will affect their respective strategies on cooperativeness and knowledge genera-
tion. A variety of different types of producers is observable in the photovoltaic 
market, e.g. fast growing companies, new branches of established energy produc-
ers or off-mainstream innovative SMEs, which are characterized by different 
learning strategies and different goals. Households have different objectives and 
motives for the purchase of a certain type of PV system and their market behavior 
feeds back to industry and research. Viewing innovation processes from an agent-
based perspective allows innovative computational analysis of the organizational 
interdependencies between the relevant actors. It goes beyond standard analysis of 
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innovation processes in that it tries to combine agent based and systemic consider-
ations. In particular the response of actors to different energy policy measures, 
their dynamically emerging behavior and their related implications on innovation 
in the field of PV is described. The transferability and limits of the case study’s re-
sults are analyzed. 
Keywords: agent-based modeling, innovation, photovoltaics  

1 Introduction 

European energy markets currently undergo significant changes from centra-
lized monopolistic markets to a more competitive environment with a lot of differ-
ent participants. Additionally, the challenges from climate change and environ-
mental issues have to be met. Renewable energy will play a significant role on 
future energy markets as the new targets from the European Commission show 
(KOM (2007) 1). To reach these targets several support mechanisms have been 
developed and have led to high dynamics in the renewable energy industry.  
Apart from environmental goals, the support policies aim at economic develop-
ment and technological change. The German feed-in law, for instance, has already 
triggered the rapid development in the German wind industry and in the photovol-
taic industry. But it is widely agreed that still a lot of innovation is needed for 
technologies to provide clean electricity at affordable cost at a large scale for the 
future.  

Success factors in an innovation system hinge on a wide array of determinants. 
They differ depending on the innovation phase, the technology and the actors, in-
stitutions and participants in the innovation system. The technological system for 
solar cells exhibits some very interesting characteristics: Firstly, the technology as 
such has been known for more than 100 years by now (Green 2000). However, the 
technological development was dominated by ‘science-based experimentation’ un-
til the 1990s. Solar cells were first used for extraterrestrial applications during the 
so called ‘Space Age’ (1958 to 1973). Later on they were also used for consumer 
electronic products as well as for off-grid power systems (1974 until mid-1990s). 
Nevertheless the role of photovoltaics with regard to the supply of energy re-
mained quite limited until Japan and Germany started their first demand-oriented 
programs during the 1990s. These initiatives and successive programs and regula-
tive changes eventually led towards a significant growth of the PV-industry and 
therefore to an expansion of the whole technological system (Jacobsson et al. 
2002). Secondly, as the technology evolved, the motifs of actors changed and new 
actors have been attracted to the field. This and the interdependence of political in-
fluence, consumer behavior, research and development led to the chosen modeling 
approach. Agent based modeling (ABM) seems to be a very suitable approach in a 
highly interdependent system that evolves in a non-equilibrium and self-
organizing fashion.  

The structure of the contribution is as follows. After this introduction, chapter 
2 outlines the theoretical background of the analysis. We have drawn from three 
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disciplines – innovation research, agent based modeling and energy system analy-
sis and technology assessment. Chapter 3 gives an overview of the model and first 
results will be presented in chapter 4. Chapter 5 concludes. 

2 Theoretical Background 

2.1 Innovation research 

To capture the multi-faceted structure of the innovation system we work from 
a rather wide definition. Innovation in this analysis means all artifacts, processes, 
ideas and strategies that successfully change routines and are implemented in spe-
cific contexts of use, which can be changed in turn through the innovation. This 
definition is wider than some to be found in the literature in the sense that it not 
only comprises the invention of a new process or technology but also its diffusion 
. Therefore, the analysis does not stop at the mere analysis of patent data or the in-
troduction of a new technology, but takes the whole innovation system with its in-
trinsic feed-back loops into consideration. The interdependence between actors, 
their co-operation and spill-overs play an important role (see e. g. Carlsson and 
Stankiewicz 1991, Edquist 2001, Lundvall and Johnson 2001 and Malerba 2006). 
Accordingly, the process of innovation is not understood as a linear sequence but 
rather as a non-linear, highly interactive process as proposed by Kline and Rosen-
berg (1986) or Rothwell (1995). 

The importance of innovations for social change, international competition, 
structural change and economic growth has been analyzed quite successfully in 
the last decade. However, how and why innovation comes about and what triggers 
it or slows it down is still an open question. There is evidence, that knowledge is 
the most important input in the process of innovation; the importance of know-
ledge in certain innovative industries has been empirically shown (cf. Dosi 1988, 
Hullmann 2001). Sparks of innovation emerge through the interplay of different 
forms of heterogeneous knowledge: their confrontation, combination, fusion, 
transformation. Different schools of thought describe the accumulation and the 
distribution of knowledge within the firm, in the economic sector and in innova-
tion system differently. 

From an individualistic perspective the analysis focuses on the entrepreneur, 
who decides about access to knowledge in the firm (Hauschildt 2004). Evolutio-
nary economics takes a more comprehensive approach and sees the firm as know-
ledge storage and as part of a wider organizational system (Fagerberg et al. 2005). 
The distribution of knowledge affects the innovativeness of a firm, but the type of 
knowledge in the firm and the innovation system also has a large influence. Argy-
ris and Schön (1978) argued that the capacity to innovate would depend on the 
ability of organizations to bridge individual and collective forms of knowledge. 
Nonaka and Takeuchi (1995) proposed that the secret of the knowledge-creating 
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company would reside in its capacity to master the different modes of conversion 
of tacit and codified forms of knowledge. Cook and Brown (1999) have suggested 
that the true spark of innovation lies in the ‘generative dance between possessing 
and practicing knowledge’. 

As pointed out earlier, our approach takes the whole innovation system into 
account. The Innovation Systems approaches most clearly follow the principles of 
evolutionary economy. An “Innovation System” can be defined as the cluster of 
institutions, policies, and practices that determine a nation’s, region’s or sector’s 
capacity to generate and apply innovations (Carlsson and Stankiewicz 1991, 
Lundvall et al. 2001, Malerba and Orsenigo 1997).  

The Innovation Systems approach has achieved high visibility and political in-
fluence, but has been controversially discussed. Rammert (2002), for instance, ar-
gued that the approach lacked micro-foundations and would not reflect the path 
dependence of innovation formation due to habit, norms and institutions. Rammert 
argues further that innovation systems currently are undergoing a transition from 
sequentially organized systems to fractionally structured networks. Though such a 
system is different for each innovation – a thought that is reflected in the term “bi-
ography” of an innovation – Rammert, together with Hage and Hollingsworth 
(2000) or Amin and Cohendet (2004) assumes that the number of actors from dif-
ferent backgrounds enhance the likelihood of strong innovation activities and their 
success in the system. However, the more the analysis focuses on the individual 
biographies, the less the approach becomes suitable for more general recommen-
dations and results. Therefore, in our approach we try to balance the analysis of 
individual motifs with more structural and systematic assessments. An additional 
challenge is to keep the structural approach sufficiently flexible to be able to an-
swer the question “How are innovations generated, shaped and institutionalized by 
distributed innovative activities in heterogeneous innovation networks?”  

2.2 Multi-agent based simulation 

To analyze the innovation processes in the technological system for solar cells 
the agent based modeling approach is used. In contrast to the models of conven-
tional simulation (e.g. system dynamics), in which participants are modeled in an 
aggregated top-down approach, agent based models consist of different individual 
decision-making agents. These bottom-up built agents interact with each other and 
thereby influence the development of the whole system. This allows modeling of 
distributed problem solving processes in a more realistic way. Hence, agent based 
simulation allows to transfer complex systems from reality into a model, which 
can be used to analyze dynamic processes and alternative strategies within the sys-
tem.  

Actors or rather stakeholders in the real world are represented as ‘agents’ in 
the respective model. Agents can represent individuals as well as entities on a 
higher aggregation level, like e.g. a company, a political party or a research organ-
ization. To make full use of the benefits of the agent-based simulation approach, 



Success determinants for technological innovations in the energy sector – the case of 
photovoltaics      97 

 
actors and agents as their representatives in the model are described in terms of the 
following characteristics: 

 

• Dynamic environment: actors live in a changing environment to which they 
adopt. 

• Individuality: each actor is characterized by its own individuality, which means 
that he/she has its specific status, options for action and targets. The actor’s 
status may change over time because of its own internal momentum or because 
of external constraints. 

• Goals and strategies: Each actor has individual goals, which he/she strives to 
achieve. To achieve the goal, the actor has the capability to plan a course of 
events. The actor develops strategies for target-oriented action. 

• Communication and interaction: Actors have the capability to communicate 
and to interact with one another, which can lead both to co-operation and com-
petition. 

• Environmental model: the environmental model describes how the actor perce-
ives the real world. The environmental model is created by inputs from the real 
world and by cognitive processes. In general it reflects not only factual infor-
mation, but also mental attitudes. An actor’s action is always determined by 
his/her environmental model. An actor thus does not act on the basis of an 

'objective' reality, but on how he/she perceives reality. 
 

It is expected that agent based simulation offers distinct advantages in analyz-
ing innovation processes, as it allows a specific and detailed representation of re-
lated actors and stakeholders. It thus facilitates the simulation of the dynamic 
processes resulting from interaction between actors with different sets of goals or 
values. Cooperation in complex adaptive systems can create emergent behavior, 
which occurs when the behavior of a system is more complicated than the simple 
sum of the behavior of its components. Traditional modeling techniques such as 
linear programming do not include emergent behavior. The ability to model emer-
gent behavior is therefore considered a specific advantage of agent-based simula-
tion to analyze innovation processes.  

Regarding the analysis of innovation processes or rather innovation systems 
several theoretical studies already exist. These studies focus on different aspects 
related to innovation in general like e. g. the transfer of knowledge (März et al. 
2006, Wersching 2007, Pyka et al. 2006), the diffusion of innovations (Steyer and 
Zimmermann 2001) or the effects of different diversification strategies of firms 
(Dawid and Reimann 2003). But nevertheless, very few attempts have been made 
so far to apply agent-based modeling to simulate the influence of multiple stake-
holders on the innovation processes in a specific technological system. First ex-
amples are analyses of innovation processes in urban water infrastructure systems 
(Kotz and Hiessl 2005, Schwarz 2007) or the examination of the diffusion process 
of fuel cell vehicles (Schwoon 2003). 

Because of the crucial importance of the interdependences between the rele-
vant actors in innovation processes, and the dynamics of emergent behavior, we 
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consider multi-agent based simulation as an innovative, promising and powerful 
computational analysis tool which can be successfully used in the field of innova-
tion research. Open issues which still need further consideration are questions 
concerning the empirical validation of the models and how far multi-agent based sys-

tems can cope with the representation of medium to long term time periods (Richiardi 2004, 
Windrum et al. 2007). 

3 The Model 

3.1 Basic Assumptions 

The success of an innovation depends on the one hand on an adequate configu-
ration of people, objects and ideas and on the other hand on the combination of the 
personally embodied knowledge and the materially incorporated technological 
know-how (Rammert 2002). It is important to note that a realistic approach to the 
understanding of innovations has to be a dynamic, “biography” or “career” 
oriented one. Innovations are not a one stop affair. Rather innovations develop 
more or less quickly over time. Some innovations take their time. In certain sec-
tors innovations are rather small scale and incremental while in others they may in 
fact be destroying old and creating new structures. The firm is without any doubt 
an important agent in the generation of innovations. Whether it is in fact the cen-
tral agent is not so much a theoretical than an empirical question. The decisive 
impulses can result from producer-client/customer relations (e.g. von Hippel 1988, 
2004) or can even be the product of public initiatives (Edquist 2004).     

The types and structures of relationships and networks differ from sectoral sys-
tem to sectoral system, as a consequence of the features of the knowledge base, 
the relevant learning processes, the basic technologies, the characteristics of de-
mand, key links and dynamic complementarities. Thus, in a sectoral system pers-
pective, innovation and production are considered to be processes that involve sys-
tematic interactions among a wide variety of actors for the generation and 
exchange of knowledge relevant to innovation and its commercialization. Interac-
tions include market and non-market relations that are broader than the market for 
technological licensing and knowledge, inter-firm alliances, and formal networks 
of firms (Carlsson 1994, Breschi and Malerba 1997). Only recently a research tra-
dition is slowly evolving that takes these sectoral characteristics of innovation 

processes at its heart.6 The notion of a Sectoral System of Innovation (SSI) de-
parts from the traditional concept of sector used in industrial economics because it 
examines other agents in addition to firms, places great emphasis on knowledge, 
learning and sectoral boundaries, focuses on non-market as well as market interac-

                                                           
6  see Malerba 2004 for a state of the art overview. For case studies see also Brac-

zyk/Fuchs/Wolf 1999, Fuchs 2004, Fuchs and Koch 2005. 



Success determinants for technological innovations in the energy sector – the case of 
photovoltaics      99 

 
tions, and pays much attention to institutions. Innovation is considered as a 
process that involves continuous and systematic interactions among a variety of 
actors. 

A SSI is thus composed of a set of agents carrying out market and non-market 
interactions for the creation, production and sale of sectoral products (Malerba 
2004:10).  

 
(a) Any sector can be first of all characterized by its specific knowledge base, 

technologies and inputs. One way to categorize these elements was proposed 
by Malerba and Orsenigo (1997). They distinguish roughly between oppor-
tunity and appropriability conditions, degrees of cumulativeness of technol-
ogical knowledge and characteristics of the knowledge base.  

 
(b) Actors, Institutions, and Policies. A sector consists of a set of heterogeneous 

actors that are organizations or individuals (e.g. consumers, entrepreneurs, 
scientists). Organizations may be firms (e.g. users, producers and input sup-
pliers) or non-firm organizations (e.g. universities, financial organizations, 
government agencies, trade unions or technical associations), including sub-
units of larger organizations (e.g. research and development – R&D – or 
production departments) or groups of organizations (e.g. industry associa-
tions). Actors are characterized by specific learning processes, competen-
cies, beliefs, objectives, organizational structures and behaviors. They inte-
ract through processes of communication, exchange, cooperation, 
competition and command.  

 
(c) Institutions. Actors’ cognition, actions and interactions are shaped by institu-

tions, which include norms, routines, common habits, established practices, 
rules, laws, standards and so on. They may range from the ones that bind or 
impose enforcements on  actors to the ones that are created by the interaction 
among  actors (such as contracts); from more binding to less binding; and 
from formal to informal (such as patent laws or specific regulations versus 
traditions and conventions). Many institutions are national (such as the pa-
tent system), while others may be specific to sectoral systems, such as sec-
toral labor markets or sector-specific financial institutions. 

 
(d) Demand. The focus on users, customers, public procurement and regulation 

puts a specific emphasis on the role of demand in sectoral systems and in the 
innovation process. Demand is not seen as an aggregate set of similar buy-
ers, but as being composed of heterogeneous agents the interaction of which 
with producers is shaped by institutions. 

 
The starting point of the model development has been the definition of the ac-

tors that are relevant for the innovation system under scrutiny. The model at its 
current stage exhibits all the important characteristics with all the agents. As 
agents we include the most important actors in the innovation system: Producers 
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of PV-systems, consumers/system operators, R&D-institutes, government, trades, 
interest groups and banks. 

The agents „producer“, “R&D-institute“ and „consumer“ are at the core of the 
model. Producers not only produce, but also market and sell PV-systems.  They 
observe the markets, build expectations on demand development and change their 
respective strategy according to their own market success. Likewise, investment 
follows expectations on market development. Furthermore, they have their own 
R&D departments and work on own innovations. For this purpose they make use 
of publicly-available knowledge and also buy knowledge externally, e. g. via li-
censes. Additionally, they contribute to the overall knowledge base by generating 
new knowledge within the course of their R&D-activities.  

In addition to that, “producers” have the opportunity to use capital for three 
different purposes: they can improve the efficiency of production with respect to 
resources and/or labor, they have the possibility to invest in human capital and 
hire more skilled labor and they can acquire additional knowledge either from the 
market for licenses or from stepping up internal research and development ex-
penditures. “Producers” try different investment measures and develop their strat-
egy according to their market success.  

Research and development institutes and firms receive funding from public 
budgets (agent “government”) and from private budgets, i.e. other firms. The 
R&D institutes produce knowledge. Public knowledge is disseminated via publi-
cations, conference contributions and other scientific exchange platforms. Proprie-
tary knowledge is patented and then sold to firms. The amount of research results 
depends on the available capital, human resources, network activities and co-
operations. With respect to human resources the research and development agents 
compete on the labor market with the producers for skilled and qualified labor.  

Regarding the “consumers” of PV-modules, one could state that their respec-
tive motivation to buy a PV-system has changed considerably over time. 25 years 
ago, people who bought PV-modules were either enthusiastic about the technolo-
gical aspects or convinced of the environmental benefits. Economic aspects did 
not – and could not, given the state of the technology at that point in time – play a 
role. Since then two developments occurred. Firstly, the effectiveness of the sys-
tems improved and the yields increased substantially. Secondly, the monetary re-
turns have been improved by the market liberalization and the German feed-in ta-
riff system (EEG). The liberalization of the German electricity market provided 
the legal framework for market access for independent producers. In addition to 
that, the German feed-in tariff system with the obligation of net operators to con-
nect any producer of electricity from renewable energy sources (RES) to the grid 
and with fixed (profitable) tariffs for electricity from RES led to the development 
of a new, profit-oriented demand sector.  

Therefore, the demand side agents have to reflect this variety of motifs. Ac-
cordingly, attainable return on investment, stable conditions from the legal frame-
work, interest in environmentally safe investment, technological thrill and support 
of renewable energy are constituent parts of the utility function of the “consum-
ers”.  
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The role of banks (as a subcomponent of the agent “producer”) and the trades 

is less active in the system. They are modeled as bottlenecks for capital and labor 
inputs in installation. Nevertheless, their activities influence the possibilities of 
supply and demand as well as the number of PV-systems that can be installed dur-
ing certain time periods.  

Due to the large influence of the (political) framework conditions at least for 
the German development, the agent “Government” is important in the model. 
However, the political decision process is not modeled as such. The government 
gives money for R&D, provides investment subsidies, sets the feed-in tariff and 
also grants credits with low interest rates. These variables are affected by the gov-
ernments’ information level that is sustained by other departments (e.g. the targets 
for GHG), NGOs and trade associations and the firms. Additionally, the agents 
provide information themselves that facilitate trade activities.  Figure 1 gives a 
schematic representation of the model.  
 

 
Fig. 2. Structure of the model 

4 Results 

The detailed structure of the single agents in the model allows for an analysis 
of their behavior in the light of different assumptions. However, thus far, our 
model only includes one agent of each type, therefore competition between, for in-
stance, two different producers cannot be modeled as of yet. This is an issue of fu-
ture research.  

Nevertheless, individual strategies can be modeled and the agents individually 
exhibit plausible reactions. Furthermore, the interesting interactions and feed-back 
reactions can be modeled using different components together. The following 
firstly focuses on individual strategies of the “R&D-institute” agent and shows 
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two experiments. Secondly, a small subsystem consisting of this agent, the firms’ 
agent and the consumers is used to validate the technology push effect that is well-
known from the literature.  

4.1 Individual strategies 

As already mentioned, knowledge is a central element for innovation 
processes, especially with regard to science-based industries like the PV-sector. 
Accordingly, knowledge generating entities like R&D-institutes play a significant 
role in the technological system for PV systems.  Hence, it is important to analyze 
the effects of certain biographic influences on knowledge output in the R&D-
Institutes. Two R&D institutes with different focuses are considered. While the 
first one is more oriented towards applied research the other one leans towards ba-
sic research.  Each is calibrated with the data of a relevant existing institute of the 
photovoltaic sector. In order to analyze the behavior of the R&D agent it is inter-
preted as an insulated system and is decoupled from the model as a whole. The 
structure of the agent is given in figure 2. 
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Fig. 3. Internal structure of the “R&D”-agent 

The key process inside this agent is “Knowledge-generation”. The production 
rate depends on two prerequisites: “Human Capital” (workforce) and “Capital” 
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(cash and equipment). “Capital” is fed by direct public funding, by company con-
tracts and by indirect public funding via joint projects. “Capital” decreases due to 
the payment of wages and the ageing of equipment. The specific knowledge pro-
duction rate increases if more equipment is accumulated. The agent employs addi-
tional workforce if sufficient funds are available, providing that there is no lack of 
interested graduates. On the other hand, employees are dismissed if funds are in-
sufficient. With respect to workforce, the R&D institute competes with producers 
and the general labor market: graduates may prefer other employers if the labor 
market is in strong condition. Furthermore institute employees may migrate.  

Two types of explicit knowledge are produced. Public knowledge can be used 
by every agent without any precondition. Proprietary knowledge must be bought 
by other agents, with the exception of the producer who funded the corresponding 
project. The shares of the knowledge types depend on the relations in funding: 
public funding produces public knowledge, third party funds generate proprietary 
knowledge and joint project funding yields a mixture of both. 

Co-operation with producers, a major issue in innovation research, causes an 
ambivalent, complex impact on the agents. Strong co-operation increases the effi-
ciency of knowledge production. On the other hand, it stimulates migration to-
wards producers, hindering the R&D institute by moving away workforce and im-
plicit knowledge, but at the same instant promoting producers. 

The two experiments look at idealized biographic types of institutes. The first 
experiment takes the example of a large non-university research institute, created 
in 1985 on a low level. The following biographical characteristics were used as 
model input: 

- focus on applied research, 
- strong co-operation with industry, 
- public funding has increased until 1990, then stagnated, 
- increasing success in 1990’s in raising industry funding and, later, 

joint project funding and 
- a high scientific reputation, yielding unlimited availability of gra-

duates. 
 

The results of the simulation are given in figure 3. For a tentative calibration 
with empirical data we used data on the Fraunhofer-Institut für solare Energiefor-
schung (Fraunhofer Institute for Solar Energy Systems - ISE) in Freiburg, Germa-
ny. Its structure resembles the idealized type.  
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Fig. 4. Applied non-university research institute: model results (solid lines) and 
empirical data of the ISE (squares). 

 
The model satisfyingly reproduces the data on the development of the work-

force. Decreases in the workforce at the beginning of the 90s in the empirical data 
from ISE can be explained by a crisis in the institute (among other things a new 
competitor had been founded). So far the model does not include any of these 
changes.  

The difference between the simulated data and the empirical measurements 
concerning the production of public knowledge until mid 90s result from the fact 
that the empirical data only include peer-reviewed articles. The model, on the oth-
er hand, purposefully includes any type of public knowledge, including research 
results that are published in reports and non-reviewed publications (discussion pa-
pers, gray literature). For later years data and simulated results merge, because in-
ternational standards for publishing performance gradually catch on.  

The second experiment analyses a middle-sized university institute with me-
dium co-operation with the industry and a strong focus on basic research. As in 
the first experiment, we assume that the institute started in 1985 at a low level. 
Again a set of biographical characteristics was used as external drivers of the 
agent’s development: 

- strong focus on basic research, 
- public funding increased first, then stagnated at the beginning of the 

1990s, 
- medium co-operation with industry, 
- spin-off of an institute in the late 80s including staff transfer, 
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- acquisition of industry funding only started a couple of years ago, but 

took a very dynamic development, 
- recruitment of new graduates is recently limited due to sharp compe-

tition from private firms and 
- a recent shift of the institute’s main working fields, including a poli-

cy of workforce reduction in the dropped fields. 
 

Figure 4 shows the results of the simulation in comparison with empirical data. 
The empirical data for this tentative calibration are obtained from the Institut für 
physikalische Elektronik (Institute for Physical Electronics - IPE) at the University 
of Stuttgart, Germany, which resembles the idealized institute modeled.  
The accordance of the calculated human capital with the empirical data is fore-
most due to the model input. It is not a test of the model quality, therefore. How-
ever, the good reproduction of the development of the knowledge production 
(number of peer-reviewed articles as empirical data) is encouraging. The observed 
decrease of the number of published articles in more recent times proved to have 
complex causes. Obviously the decrease of workforce plays a role, but it isn't suf-
ficient to explain the whole effect. Sensitivity analyses showed that the production 
of public knowledge also considerably decreases if the workforce reduction policy 
is removed. Almost half of the effect is due to demanding tasks for the industry 
(competition with proprietary knowledge) and to the limitations of the institute to 
acquire new personnel in a sufficient amount. 
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Fig. 5. Medium size university institute: model results (solid lines) and empirical 
data of the IPE (squares) (solid squares right bottom: 3-year average of the empir-
ical data). 
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These experiments show that the R&D agent is suitable for modeling bio-

graphic determinants of different R&D institutes. The results allow for sensible 
deductions concerning the behavior of the R&D institutes. However, data for em-
pirical validation and calibration currently are incomplete and rather sketchy. Fu-
ture work will be dedicated to the strengthening of the empirical data base and will 
focus on more and different research institutes in the PV sector. As has been 
pointed out, the current status of the model does not allow explicit modeling of in-
teractions of different types of the same agent. For future work, different co-
operative strategies between agents will be interesting to model.  

4.2 Interdependence between key agents 

Based on the experience with the simulation experiments described above, pro-
totypical elements of all agents were merged for simulations with the whole mod-
el. The following experiment is an example of the dynamic behavior of the model. 
The experiment analyses the “technology push” hypothesis. This hypothesis fol-
lows the assertion that increasing public funding for the support of research will 
lead to accelerated innovation activities. To verify the hypothesis, we need two 
simulation runs. The first run represents the reference, because we want to show 
changes from an increase of public support with respect to some status quo, i.e. a 
reference case. The second run of the model includes the increase and the system’s 
reaction on this additional capital for research. Comparing the results of the two 
runs shows the effects of the technology support policy. Figure 5 shows the re-
sults.  
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The increase of public funding at T=5 leads to a significant increase in the produc-
tion of knowledge compared to the reference case. Since public funding primarily 
enters the production of public knowledge, the R&D agents shift their preferences 
from the production of proprietary knowledge to the production of public know-
ledge. Therefore, proprietary knowledge decreases as a reaction to the monetary 
increase. However, the production of both types of knowledge increases on the 
long run due to more capital being available for both uses.  

Producers profit from the increase in knowledge production, because they can 
use this knowledge as an input to their own R&D departments. The larger supply 
of (public) knowledge yields earlier product and process improvements compared 
to the reference case.  

Technological change accelerates and yields increasing demand as the respec-
tive agent reacts to the improvement of the PV-systems. Furthermore, the produc-
ers react upon their market success and also obtain a larger profit due to process 
innovations which result in sinking productions costs. Capital stock increases at 
the producers and can be spent on the different uses described in chapter 3.  

The experiment yields results that support the technology push hypothesis. 
Higher public funding accelerates the innovation activities. Additionally, a variety 
of feed-back loops reinforce the positive effect. The model reacts in a plausible 
way to an external shock that is modeled singular and discontinuous. The model is 
robust enough to deal with this type of external shocks and exhibits an accelera-
tion of the innovation indexes.  

5 Conclusions 

The aim of this paper was to present an agent-based model for the analysis of innova-

tion processes in the photovoltaic industry.  
In order to be able to examine the success factors for innovations as well as the 

effects of policy measures it is necessary to understand how the innovation system 
under scrutiny is influenced by the behavior of different stakeholders and their re-
spective interactions. Therefore, the stakeholders that are considered important are 
treated as agents in our model. Each agent is characterized by its individual goals, 
specific strategies and behavioral rules. The (dynamic) interdependences between 
the agents are also taken into account. After the implementation of the agents each 
one has been calibrated with empirical data.  

As the first experiments on the basis of a decoupled agent (“R&D-institute”) 
show the specific behavior of stakeholders can be modeled. Since the results of 
these simulation runs indicate that the model is already suitable for modeling bio-
graphic determinants of different R&D institutes the link between empirical re-
search and agent-based modeling seems to be possible. 

Apart from that the interactions between the agents and the respective influ-
ences on innovation processes can also be simulated on the basis of our model. 
Regarding the effects of discrete external influences the simulation model already 
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generates plausible results as the outcomes of the simulation run described in 
chapter 4.2 illustrate.  

Since the focus here was on the individual strategies of the different stakehold-
ers and also on their non-market interactions our model only includes one agent of 
each type. Therefore, market processes as competition between different produc-
ers or technologies cannot be modeled adequately as of yet. Nevertheless, we be-
lieve that the first results discussed in this paper demonstrate that the effects of the 
dynamic interactions between stakeholders on innovation processes (in the photo-
voltaic industry) can be analyzed using agent-based simulation. 

Given the already mentioned limitations of the current model there is still 
room for further improvements. Based on the developed structure more agents of 
each type have to be included such that analyses of the economic behavior of the 
agents as well as more detailed investigations of the non-market activities become 
possible. Additionally, the empirical validation of the model will be a key issue. 
Finally, the response of the stakeholders or rather agents to different policy meas-
ures will systematically be examined by simulating different scenarios on the basis 
of the calibrated model. These simulation runs will provide insights into the suc-
cess determinants of innovation and will support the future development of inno-
vation policies as well as their implementation. 
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Summary: In this paper, we present the formulation of a modelling approach for 
integrated gas and electricity systems considering physical system properties as 
well as the corresponding markets. Two different designs for integrated gas and 
electricity markets are proposed and compared with a separate market model. By 
modelling market participants as learning agents in oligopolistic structures, we in-
clude the possibility of strategic behaviour and the exercise of market power. Us-
ing two exemplary test cases we demonstrate the characteristics and the function-
ality of the proposed models and illustrate that the different market models lead to 
different market equilibria. Additionally, we assess the effects on overall social 
welfare. 
Keywords: Agent-based modelling, reinforcement learning, strategic behaviour, 
integrated electricity and gas markets. 
 

1 Introduction 

In the early 1990s electricity markets worldwide moved away from vertically 
integrated monopolies towards liberalized structures. The liberalization process 
was driven by economic as well as technological reasons. From an economic 
viewpoint it was argued that the historic monopoly status of electric utilities lacks 
the incentive to operate efficiently. Consequently, it was suggested that introduc-
ing competition would improve operation and investment efficiency resulting in 
an increase of overall social welfare and lower electricity prices. On the other 
hand, the introduction of the Combined Cycle Gas Turbine (CCGT) provided a 
technological justification for competition. The CCGT technology allowed for 
smaller plant sizes, being at least as economical as conventional thermal and hy-
dro plants with their large economies of scale. These trends reinforced the argu-
ment that competitive structures can be introduced attracting new market players, 
eventually resulting in a trading environment improving social welfare. 
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Recent generation investments in Europe emphasize the importance of gas-fired 
power plants as one possibility to partially replace aging national generation infra-
structures. In [BFE 2007], a future Swiss electricity generation scenario incorpo-
rating investments in gas-fired plants is developed. The scenarios presented in 
[BFE 2007] are complemented by current developments, e.g. Swiss utilities in-
vesting into gas-fired power plants in Italy as well as planned domestic projects. 
These investment activities into gas-fired generation facilities are likely to influ-
ence economic as well as technical properties of the interconnected European 
power system. From a technical perspective electricity and gas networks can not 
be regarded being autonomous respectively independent systems. Following the 
argumentation in [Geidl 2007/1] power stations may be seen as so-called energy 
hubs, where “an energy hub is considered a unit where multiple energy carriers 
can be converted, conditioned, and stored.” [Geidl 2007/2] Opportunities for con-
version, conditioning (e.g. generation) and storage may be seen as practical means 
of ‘coupling’ electricity and gas networks, where the coupling is induced through 
technical as well economic characteristics. 

 
The contribution of this paper is the formulation of a modelling approach for 

integrated gas and electricity systems considering physical system properties as 
well as the corresponding markets. The integrated physical system relies on the 
hub approach developed in [Geidl 2007/1]. Power plants are modeled as energy 
hubs representing the interdependency of gas and electricity networks. Markets for 
gas and electricity are modelled as oligopolies, explicitly taking into account the 
possibility for strategic behavior of market participants considering the fact that 
energy markets can not be regarded as being perfectly competitive [Krause 2007]. 
Although the market structures studied in this paper are at the moment not imple-
mented, the objective of this paper is to study different means of market organiza-
tion and their implications for social welfare, strategic participant behaviour as 
well as network utilization to provide insights into phenomena resulting from pro-
spective restructuring efforts. The remainder of this paper is organized as follows. 
Section 2 outlines modelling principles, namely agent-based computational eco-
nomics and reinforcement learning as behavioural agent model, and provides de-
scriptions of physical models of networks and generators as well as market mod-
els. Section 3 presents simulation results of two exemplary cases illustrating 
characteristics of the different proposed market designs.  Eventually, section 4 re-
capitulates the major findings and draws conclusions. 

2 Modelling 

2.1 Agent-based Computational Economics (ACE) 
 

Most economies incorporate a large number of market participants (also re-
ferred to as agents) interacting locally with each other by, e.g. selling or buying 
goods, where every participant may follow a set of individual objectives. This in-
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teraction on the micro-level determines to a large extent the overall market dy-
namics, i.e. the evolution of market characteristics, such as market prices, price 
volatility, overall trading volume etc. Hence, we observe a feedback between the 
micro- and the macro-level of markets. One concept to account for this feedback is 
agent-based computational economics, where systems are described through a bot-
tom-up approach by modelling the different market participants and letting them 
interact within a defined macro-structure. In section 2.3, we outline reinforcement 
learning as one concept to be applied for the behavioural modelling of the agents 
and provide descriptions of the different types of agents representing the micro-
level of markets. In the following section, the physical model structure represent-
ing the macro-level will be presented. 

2.2 Physical Model 

2.2.1 Network Models 

Electricity Network Model 

For the modelling of the electricity network, a DC power flow model is used. The 
power flow equation can therefore be formulated as follows: 

flow,el in,el hub,elP (P P ) PTDF= − ⋅  (1) 

Pflow,el are the line flows in the electricity network. The vector Pin,el contains the 
electricity productions at each node, either by gas-fired power plants (Pgfpp,el) or by 
non-gas-fired power plants (Pgen). The elements of Phub,el represent the electric 
power withdrawals from the network. PTDF is the power transfer distribution fac-
tor matrix. Each value in the PTDF matrix describes the change in the flow on a 
certain line when injecting an additional marginal amount of power (e.g. 1 MW) at 
the slack node and withdrawing this power at a certain node.  

Gas Network Model 

Unlike flows in electricity networks, flows in gas networks can be controlled 
through valves and pumps. Therefore, a network model is chosen where the gas 
flows Pflow,gas can be piped where minimal losses Ploss,gas occur. According to 
[Bouwmans 2002] and [Geidl 2007/1], pipeline losses can be approximated with 
cubic functions of the flows: 

2 3

loss,gas 0 1 flow,gas 2 flow,gas 3 flow,gasP k k P k P k P= + ⋅ + ⋅ + ⋅  (2) 

with the loss coefficients ki (i = 1,…,3) for each line. 
The power flow equation is formulated by using the incidence matrix Agas, 

which indicates the interconnections within the gas network: 

flow,gas gas in,gas hub,gasP A P P⋅ = −  (3) 
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with the gas injection into the network Pin,gas and the vector Phub,gas, representing 
the amounts of gas consumed by gas-fired power plants. 

2.2.2 Gas-fired Power Plants Modelled as Energy Hubs 

The modelling of gas-fired power plants relies on the hub approach developed 
in [Geidl 2007/1].  In general, an energy hub represents all energy related ele-
ments located at a certain node, i.e. conversion (e.g. electric transformer, gas tur-
bine and/or heat exchanger) and storage elements (e.g. battery storage and/or heat 
storage). The concrete hub model used for our analysis, however, simply contains 
a gas-fired power plant (see figure 1). 

 

Figure 1. Gas-fired power plants modelled as energy hubs 

The relation between the input and the output vector is generally defined by the 
following equation: 

L hubP C P= ⋅  (4) 

with the load vector PL and the vector Phub containing the power injections into 
the hub as elements. The coupling matrix C specific to the energy hub in figure 1 
is very simple: 

gas,elC (1 )= η  (5) 

where ηgas,el is the efficiency of the gas-fired power plant at the node repre-
sented by this hub. 

2.3 Market Model 

2.3.1 Combined gas and electricity markets 

The central contribution of this paper is the formulation of two different models 
for combined electricity and gas markets with a simultaneous clearing process 
(model 1 and model 2). For comparison, a model with separate electricity and gas 
market clearing processes (model 3) is used.  
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In model 1, gas-fired power plant operators offer electricity production capacity 

and demand gas. This means that they submit two separate bid functions. Subse-
quently, the bids in the electricity and gas market are simultaneously cleared in 
one integrated clearing process.  

In contrast to model 1, gas power plant operators in model 2 submit one single 
offer for their capacity to convert gas to electricity, i.e. they do not explicitly offer 
electricity or demand gas. The market clearing process implicitly takes into ac-
count the resulting amounts of offered electricity and demanded gas. 

In model 3, the model for separate market clearings, the electricity market is 
cleared first. Therefore, gas-fired power plant operators only submit one offer bid 
for electricity. Afterwards in the gas market, the gas-fired power plants are mod-
elled as inelastic demand, i.e. they buy the gas they need for electricity regardless 
of the gas price they have to pay. 

In the following sub-sections, the model of the electricity producers as agents 
(section 2.3.2), of loads (section 2.3.3), of the gas supply (section 2.3.4) and of the 
non-gas fired power plants (section 2.3.5) are described. These models are the 
same for all described market models. In sub-section 2.3.6, the different gas-fired 
power plant models for the two integrated market models and the separate model 
are introduced. Section 2.3.7 defines the ‘social welfare for electricity production’. 

2.3.2 Agent Description 

Most European gas and electricity markets are characterised by oligopolistic 
structures. Hence, market participants cannot be regarded as price takers, i.e. they 
can try to manipulate their bid to increase profits. In order to analyse such strate-
gic behaviour, all electricity producers are modelled as agents. The generators are 
assumed to have linear marginal cost functions cgen. In perfectly competitive mar-
kets, the power plant operators would submit these marginal cost curves when 
bidding in the electricity market. As we assume oligopolistic structures, agents 
have the possibility to manipulate their bid functions. There are two possibilities 
to make use of strategic bidding (see figure 1). A power plant operator can either 

add a certain markup φgen to its marginal cost curve, or manipulate the slope or do 
both. This leads to the manipulated bid curve c’gen. This concept for strategic be-
haviour can be found in [Krause 2007] and [Boisseleau 2004]. 
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Figure 2. Bid manipulation strategies 

 
In [Hobbs 2001] it is stated that intercept manipulations are more realistic than 

manipulating the slope. To considerable influence the clearing price, the slope 
manipulation has to be drastic. A regulator, however, would recognize such im-
mense slopes and would intervene. Hence in the model introduced in this paper, 
electricity producers can only manipulate the intercept of their marginal cost func-
tion.  

For the agent’s learning process a concept called reinforcement learning is 
used. In [Kaebling 1996] reinforcement learning is described as the problem faced 
by an agent that learns behaviour by trial-and-error interaction with a dynamic en-
vironment. At first, each agent chooses an action for manipulating the bid curve 
and submits the corresponding bid to the market. After the market clearing each 
agent receives a reinforcement signal, i.e. information about the consequences of 
the chosen strategy. The reinforcement signal is the profit of the power plant op-
erators, each of them represented by an agent. Profit is calculated as difference be-
tween revenues from electricity sales and electricity production costs. 

A possible algorithm basing on this concept is called Q-learning algorithm and 
has been introduced in [Watkins 1989]. An agent can choose its next action among 
a given set of actions A. After submitting the bid, the market is cleared and the 
agents’ reward r is calculated. Then the reinforced signal (Q-function), which 
represents the expected reward the agent will obtain by playing action a, is up-

dated:7 

t t t t t t

1 nQ(a ) Q(a ) (r(a ,..., a )) Q(a )← + α −  (6) 

                                                           
7 In contrast to the general definition of the Q-learning algorithm, where the environ-

ment may be characterised by different states, we assume that in our specific case only one 
possible state exists. Although agents learn over time, they face the same decision problem 
in each iteration. Therefore, we neglect the notion of state in equation 6. 
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where αt is the degree of correction. For αt = 1, the expected reward by choos-

ing action ai is equal to the reward the agent obtained the last time it played this 
strategy. For αt = 0, there is no learning and the Q-function stays unchanged. 

To determine which strategy an agent will choose, the ε-Greedy policy is used. 
With a probability ε, a random strategy is selected from the set of actions A. With 
a probability of 1- ε, the agent plays the strategy with the highest reward expecta-
tion. 

2.3.3 Load Model 

Gas-fired power plants are the only gas consumers in the model. The descrip-
tion of these gas-fired power plants acting as loads in the gas-market can be found 
in the sub-section about modelling of gas-fired power plants (section 2.3.6).  The 
electric loads are modelled with linear demand functions dL(PL).  

L 1 2 Ld f f P= − ⋅  (7) 

f1 and f2 are the demand functions’ slope and intercept. Such a linear represen-
tation of the willingness to pay appears to be broadly accepted as this assumption 
is widely used in the literature (see [Krause 2007], [Hobbs 2000], [Hobbs 2001], 
[Baldick 2004], [Minoia 2004] and [Metzler 1996]). Since there are a lot of mar-
ginally small electric loads, these can be regarded as price takers and are therefore 
not modelled as agents. Moreover, the power consumed by electric loads is limited 
to a maximum value PL,el,max. 

2.3.4 Gas Supply Model  

The gas offer is modelled by a total bid curve aggregating all participating gas 
suppliers. Since our investigation rather focuses on the effects of strategic behav-
iour in the electricity market, the strategic behaviour of these gas suppliers is not 
of interest here. Hence, they are not modelled as agents and we assume that they 
already found their optimal strategy. Just like the marginal electricity production 
costs, the gas offer is modelled as linear function. This representation of gas sup-
pliers is used in [Geidl 2007/1], too. 

gas 1 2 gasc a a P= + ⋅  (8) 

Pgas is the amount of gas injected into the network; a1 and a2 are the supply 
function’s slope and intercept. 

2.3.5 Model of Power Plants as Agents  

In this sub-section, power plants not fired by gas are described. Since electricity 
markets are characterised by oligopolistic structures, power plants are modelled as 
agents. The agent model has been introduced in section 2.3.2. As mentioned there, 
the marginal costs of power plants cgen are considered to be linear: 
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gen 1 2 genc b b P= + ⋅  (9) 

Pgen is the power produced by non-gas-fired power plants; b1 and b2 are cost co-
efficients. The power plant operators can select one out of three possible strategies 
when submitting the bid function. They can either bid the ‘true’ marginal cost 

curve (φ = 0%) or choose a markup of φ = 5% or φ = 10% respectively. As stated 
in section 2.3.2, agents cannot manipulate the slope of their marginal cost func-
tions. Hence, the generator bid functions c’gen look as follows: 

gen 1 gen 2 genc ' b (1 ) b P= ⋅ + φ + ⋅  (10) 

with φgen=+ 0.00, + 0.05 or +0.10 being the strategic markup. 

2.3.6 Model of Gas-fired Power Plants as Agents 

As mentioned in section 2.3.1, two different models for integrated gas and elec-
tricity markets are introduced. In model 1, gas-fired power plant operators offer 
electricity production capacity and submit a demand bid for gas. In model 2, they 
submit one single bid for their capacity to convert gas to electricity, i.e. they can 
manipulate the marginal electricity production costs without the gas costs when 
submitting the bid. For comparison, we use a third model with a separate electric-
ity and gas market clearing process. In all three models, the generators are mod-
elled as agents. Since for power plants in general linear marginal cost curves are 
assumed, marginal cost functions for conversion of gas to electricity (operating 
costs without fuel costs) are modelled as linear, too: 

gfpp,op 1 2 gfpp,elc e e P= + ⋅  (11) 

Pgfpp,el is the electric energy produced by the gas-fired power plants. e1 and e2 
are cost coefficients. 

Gas-fired power plants - model 1 

In model 1, gas-fired power plant operators have to bid their electricity without 
knowing in advance the gas price they will have to pay. Therefore the operators 
expect a certain gas price Πgas,exp at first. Afterwards, the expected gas costs are 
calculated and added to the marginal costs for converting gas to electricity to ob-
tain the total expected marginal cost function cgfpp: 

gas,exp

gfpp 1 2 gfpp,el

gas,el

c e e P
 Π

= + + ⋅  η 
 

(12) 

where ηgas,el are the efficiencies of gas-fired power plants. Since the gas-fired 
power plants are modelled as agents, the marginal cost functions’ intercept can be 
increased by 0, 5 or 10% . This leads to the bid function c’gfpp: 

gas,exp

gfpp 1 gfpp 2 gfpp,el

gas,el

c ' e (1 ) e P
 Π

= + ⋅ + φ + ⋅  η 
 

(13) 
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with φgfpp = +0.00, +0.05 or +0.10 being the strategic mark-up. Linear gas de-

mand functions d’gfpp are defined such that the power plants are able to operate at 

their rated power when paying the expected gas price.8 Since the operators can 
also behave strategically in the gas market, they can choose among the following 
set of demand functions: 

gfpp gas,exp 2 gfpp,gas,max gfpp,gas 2 gfpp,gasd ' ( g P ) (1 ) g P= Π + ⋅ ⋅ + φ − ⋅  (14) 

 with φgfpp,gas = -0.05, +0.00 or +0.05. g2 is a parameter of the demand functions. 
Although the agents supply two separate bids – one for electricity and one for gas 
–, the common optimisation procedure for the clearing of the gas and electricity 
market guarantees that each agent receives the exact amount of gas needed to pro-
duce the required amount of electricity. This simplifying assumption reasons from 
the fact that gas power plants usually operate gas storage facilities to balance 
short-term gas supply. 

Gas-fired power plants - model 2 

In model 2, gas-fired power plant operators only submit one bid for their capac-
ity to convert gas to electricity. As the gas-fired power plants are modelled as 
agents, they can add 0, 5 or 10% to their marginal operating cost curve’s intercept 
(marginal costs without gas costs). The bids for conversion cgfpp,op are therefore 
given by: 

gfpp,op 1 gfpp,op 2 gfpp,elc ' e (1 ) e P= ⋅ + φ + ⋅  (15) 

with the strategic markup φgfpp,op=+0.00, +0.05 or +0.10. Thus, the clearing 
process implicitly generates a certain gas demand based on the conversion bids of 

each agent. Gas demand and costs are results of the clearing process9. 

Gas-fired power plants - model 3 

In the model with separate electricity and gas market clearings, gas-fired power 
plant operators submit an offer bid in the electricity market. The expected gas 
prices are the same as in model 1. Since the conversion cost functions are the same 
in all three models, the expected marginal cost functions of model 3 are the same 
as in model 1. In model 3, gas-fired power plants are modelled as agents, too. As 

agents in model 3 have the same set of strategic markups φgfpp to choose from as in 
the other models, the bid function c’gfpp in model 3 is given by the same equation 
as in model 1 (eq. 13): 

                                                           
8 The expected gas price is derived from time series analysis of historical data. 
9 This market design may be compared to locational marginal pricing for transmission con-

gestion management, where transmission resources are implicitly allocated based on lo-

cational bids for electricity generation. 
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gfpp 1 gfpp 2 gfpp,el

gas,el

c ' e (1 ) e P
 Π

= + ⋅ + φ + ⋅  η 
 

 

2.3.7 Social Welfare 

In order to be able to compare the performance of the three models, a total so-
cial welfare of the electricity and the gas market is introduced. In model 1, this to-
tal welfare can be calculated by adding the social welfare in the gas market to the 
social welfare in the electricity market. In model 2, however, there is no social 
welfare in the gas market since the gas-fired power plants do not explicitly de-
mand gas, but only submit one bid for conversion. In model 3, the gas-fired power 
plants are modelled as inelastic gas demands. Hence, social welfare in the gas 
market cannot be calculated. In order to still have an adequate value to compare 
the models, the so-called ‘social welfare for electricity production’ is introduced. 
This ‘social welfare for electricity production’ is defined as the consumers’ sur-
plus in the electricity market minus the total costs for electricity production (costs 
of non-gas-fired power plants plus costs for gas and its conversion).  

 
 
 

3 Results 

In this section, simulation results of two examples showing characteristic fea-
tures of the models introduced in section 2 are presented. Example 1 (see sub-
section 3.1) illustrates the functionality of the agent model and shows some cha-
racteristics of the three models in a situation with limited competition. In example 
2, competition is increased and additionally line capacities in the electricity net-
work are constraint. 
 

3.1 Example 1 

This example will show the advantage of model 2, which consists in the fact 
that gas-fired power plant operators cannot manipulate the gas costs in their bids. 
In the following, this aspect will be illustrated and discussed with the help of si-
mulation results. Furthermore, the learning behaviour of the agents is described by 
considering their Q-functions. 

3.1.1 System of Example 1 

In model 2, gas-fired power plant operators cannot manipulate the gas costs 
since they only submit a bid for converting gas to electricity. Since this advantage 
of model 2 is network-independent, there are no capacity constraints and no losses 
in example 1. In this way, the influence of network topologies is neglected in first 
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step in order to focus on fundamental differences between the three considered 
market models. 

Figure 3 shows the simple system being analysed in this example. It contains 
three power plants that are not fired by gas (G1, G2 and G3) and one gas-fired 
power plant (G4). Since marginal costs of gas-fired power plants are relatively 
high, they are used to cover high electricity demands. In both examples, loads’ 
willingness to pay is high. The system parameters for loads, generators and gas 
supply are listed in the appendix. The used cost parameters are adopted from 
[NEA 2005]. 

 

Figure 3. System used in example 1 (without G5) and example 2 (with G5) 
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3.1.2 Simulation Results - Example 1 

The results of the market clearings, where power plants bid according to their 
optimal strategies, are listed in table 1. Since there are no losses and no capacity 
constraints, there is only one electricity price as well as one gas price for all nodes. 
Comparing the electricity prices in table 1 with the generator cost data (see appen-
dix) shows that only the marginal cost function of the gas-fired power plant is 
close to the electricity market clearing price (marginal cost curve’s intercept: 
33.42 €/MWh, electricity prices: model 1: 36.97 €/MWh, model 2: 33.55 €/MWh, 
model 3: 37.35 €/MWh). The costs of the hydro power plant G1 (b1 = 6.90) and of 
the nuclear power plant G2 (b1 = 24.30 €/MWh) are lower and the costs of the 
conventional thermal power plant G3 (b1 = 40.00 €/MWh) are higher than the 
electricity price. In this situation, the gas-fired power plant has a lot of market 
power since it can set a high markup without being competed by power plant G3. 
Therefore, the clearing results only depend on the strategy chosen by the gas-fired 
power plant G4. PL,tot is the total power of all loads. 

In figure 410, the Q-functions of the gas-fired power plant G4 and of power 
plant G2 in model 3 are plotted. As described above, only the operator of the gas-
fired power plant has an influence on the market clearing process by playing dif-
ferent strategies. Therefore, the earnings of the gas-fired power plant only depend 
on the own selected markup. This explains the constant values of all Q-functions 
in the case of the gas-fired power plant G4. Earnings of other power plant opera-
tors do not depend on their own strategies as their bids do not influence the clear-
ing process. Since these earnings only depend on the strategy chosen by the opera-
tor of the gas-fired power plant, they are expected to be the same for all strategies 
and hence the differences between the values of the Q-functions converge to zero 
after a certain number of iterations. Therefore, no best strategy can be determined 
when considering the development of the Q-functions of power plant G2. 

 

                                                           
10 Figures 4 to 6 show characteristic evolutions of the generators’ Q-functions as observed 

through repeated simulations. 
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Figure 4. Development of Q-functions in example 1 for model 3 

The situation for model 2 (figure 5) is very similar to the situation in model 3. 
The only major difference is that gas-fired power plants can merely manipulate the 
costs for conversion, but not the gas costs. This is due to the fact that in model 2 
operators of gas-fired power plants only submit an offer bid for their capacity to 
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convert gas to electricity. As the gas costs are the main part of the marginal costs 
of gas-fired power plants, there is only a very limited possibility for strategic be-
haviour. Hence, earnings of operators of gas-fired power plants only increase 
slightly when behaving strategically. 

 

 

Figure 5. Development of Q-functions in example 1 for model 2 

Figure 6 shows the Q-functions of the gas-fired power plant G4 and of power 
plant G2 in model 1. Since the operators of gas-fired power plants have to bid both 
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in the electricity market and in the gas market, nine different strategies are availa-
ble. In the plot at the top of figure 6 (Q-function of G4), the first number in the le-
gend is the manipulation of the gas demand bid while the second is the markup for 
the electricity supply bid. 

 

 

Figure 6. Development of Q-functions in example 1 for model 1 
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 Adding operating costs to the expected gas costs leads to the marginal cost 

function. A markup of 10% can be set on these marginal costs. In model 2, opera-
tors of gas-fired power plant do not expect a gas price; they simply offer capacity 
for converting gas to electricity. Hence, they can only set a markup on operating 
costs without manipulating the gas costs. Since strategic behaviour of the gas-fired 
power plant in model 2 is much smaller than in the two other models, more energy 
is traded and hence the ‘total social welfare for electricity production’ (see sub-
section 2.2.6) is higher. 
 

 

 Model 1 Model 2 Model 3 

φgfpp,opt 0.10  0.10 

φgfpp,gas,opt -0.05   

φgfpp,op,opt  0.10  

Electricity price [€/MWh] 36.97 33.55 37.35 

Gas Price [€/MWh] 16.73 17.14 16.69 

Pgfpp,el 1220 1591 1178 

PL,tot 6220 6591 6179 

SW [€] 256’981 257’840 256’787 

Table 1. Simulation results for example 1 for every agent choosing its greedy bid 
after convergence to a stable policy 

3.2 Example 2 

In example 1, competition between power plants was limited. In example 2, a 
second gas-fired power plant is added in order to increase competition between 
gas-fired power plants. Additionally, the line capacities are constraint to investi-
gate the behaviour of the models when network topologies are considered. In 
European electricity markets, transmission losses are usually not taken into ac-
count. Losses are therefore neglected in this example, too. 

3.2.1 System Data Example 2 

The system used in example 2 is similar to the system in example 1 (see figure 
3). Unlike in example 1, a second gas-fired power plant (G5) is placed at node 3. 
Additionally, the capacities of line 2 and line 3 in the electricity network are con-
straint to 400 MW.  The data for the loads, for the gas supply and for the non-gas-
fired power plants are the same as in example 1. Together with the data for the 
two gas-fired power plants and the PTDF matrix, they are listed in the appendix. 
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3.2.2 Simulation Results - Example 2 

In table 2, the results of the market clearings, where power plants bid according 
to the strategy with the highest profit expectations, are listed. Since there are con-
gested lines in the electricity network, there are different electricity prices at each 
node. 

 

 Model 1 Model 2 Model 3 

φgfpp,opt (G4/G5) 0.05 / 0.10  0.05 / 0.10 

φgfpp,gas,opt (G4/G5) -0.05 / 0.05   

φgfpp,op,opt (G4/G5)  0.10 / 0.00  

Electricity price [€/MWh] node 1 35.73 33.84 35.72 

Electricity price [€/MWh] node 2 32.42 32.34 32.41 

Electricity price [€/MWh] node 3 42.34 42.27 42.33 

Gas Price [€/MWh] 17.11 17.24 17.12 

Pgfpp,el (G4) [MWh] 631 754 641 

Pgfpp,el (G5) [MWh] 1000 1000 1000 

PL[MWh] 6300 6353 6301 

Pflow [MW] 175 225 181 

Pflow [MW] 375 400 378 

Pflow [MW] 400 400 400 

SW [€] 254’051 254’126 254’055 

Table 2. Simulation results for example 2 for every agent choosing its greedy bid 
after convergence to a stable policy 

Since competition between gas-fired power plants in example 2 is increased, it 
is not very profitable anymore for operators of gas-fired power plants to select 
high markups. The lowest electricity prices and the highest social welfare for elec-
tricity production are still obtained in model 2. Since the highest gas consumption 
occurs in model 2, the gas price is higher in this case than in model 1 and 3. In dif-
ference to example 1, electricity prices and social welfare are nearly the same for 
model 1 and model 3. This is surprising since in model 3, only the electricity mar-
ket is optimised whereas in model 1, overall social welfare of both markets is con-
sidered. 

 

4 Conclusions 

This paper presented a new modelling approach for combined electricity and 
gas markets. Two different designs for such combined markets have been pro-
posed and analysed in two exemplary cases with regard to the effects on strategic 
behaviour of market participants. The simulation results of both models have been 
compared to the outcomes of a market model with separate electricity and gas 
markets.  
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In example 1, where competition is limited and network constraints are ne-
glected, model 2 results in the lowest electricity prices and the highest social wel-
fare. The same findings hold true for example 2. The differences between the three 
models, however, are reduced by increased competition. It has been shown that 
the good performance of model 2 is mainly due to the fact that gas-fired power 
plant operators can only manipulate the costs for converting gas to electricity but 
not the gas costs. In example 2, model 3 surprisingly results in slightly lower elec-
tricity prices and higher social welfare than model 1.  

Our analysis shows that, under the modelling assumptions we made, combined 
electricity and gas markets offer potential benefits. In all examples, model 2 re-
sults in the highest social welfare and the lowest electricity prices. However, the 
differences in social welfare are relatively small and it is questionable if this gain 
in social welfare would justify the expenses for reorganising electricity and natural 
gas markets. Further and more detailed investigations are therefore needed in or-
der to be able to evaluate if the increasing physical coupling between electricity 
and gas networks can be efficiently assisted by a coupling of the corresponding 
markets. 
 

Appendix 

System data for example 1 

The system parameters for loads are shown in table 3 and for non-gas-fired 
power plants (G1, G2 and G3) in table 5. G1 represents an aggregated hydro units, 
G2 a nuclear power plant and G3 a conventional thermal power plant. The data for 
gas supply is listed in table 4. For a gas production of 3000 MW the average gas 
price at the APX between January 2007 and May 2007 (17.20 €/MWh) is paid. 
The data for the gas-fired power plant (G4) is listed in table 6. 
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 [ ],maxLP MW  

L1 79 0.04 1250 

L2 99 0.02 3500 

L3 99 0.03 2250 

Table 3. Load data for the systems used in examples 1 and 2 
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15.40 0.0006 4000 

Table 4. Data of the gas supplier for the system used in examples 1 and 2 
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 [ ],maxgen
P MW  

G1 6.90 0.0014 1000 

G2 24.30 0.0016 4000 

G3 40.00 0.0030 1000 

Table 5. Power plant data for the system used in examples 1 and 2 
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G4 1.45 0.0005 0.0002 17.5818 2000 0.55 

Table 6. Data of gas-fired power plants for the system used in example 1 

 

System data for example 2 
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ηgas,el 

G4 1.45 0.0012 0.0004 17.5079 1000 0.55 

G5 3.80 0.0008 0.0004 17.5079 1000 0.59 

Table 7. Data of the gas-fired power plants used in example 2 

 

 Node 1 Node 2 Node 3 

Line 1 0 -0.7747 -0.4507 

Line 2 0 -0.2254 -0.5493 

Line 3 0 0.2254 0.4507 

Table 8. PTDF matrix of the electricity network in example 2 with node 1 being 
the slack node 
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