
Universität Karlsruhe - Fakultät für Informatik - Bibliothek - Postfach 6980 - 76128 Karlsruhe

The Dialog DSL: Rapid Development of
Advanced Web-based Dialogs

with Stakeholders

Patrick Freudenstein
and

Martin Nussbaumer

Interner Bericht 2008-6

 ISSN 1432-7864

This paper is an extended version of „Constructing Advanced Web-based Dialog Components with Stakeholders - a DSL Approach”
by Patrick Freudenstein and Martin Nussbaumer, 8th International Conference on Web Engineering (ICWE2008), July 2008, New York, USA.

The Dialog DSL: Rapid Development of
Advanced Web-based Dialogs with Stakeholders

Patrick Freudenstein and Martin Nussbaumer
Karlsruhe Institute of Technology - University of Karlsruhe (TH)

Department of Telematics, IT Management and Web Engineering Research Group,
Engesserstr. 4, 76128 Karlsruhe, Germany

{patrick.freudenstein, martin.nussbaumer}@kit.edu

Abstract

Complex dialogs with comprehensive underlying

data models are gaining increasing importance in
today’s Web applications. This in turn accelerates the
need for highly dynamic dialogs offering guidance to
the users and reducing cognitive overload. Beyond
that, requirements from the fields of Web accessibility,
platform-independence and Web service integration
arise. Considering the resulting complexity, a
systematic engineering approach becomes important.
Besides addressing the specific characteristics of these
dialogs, key success factors from a communication
perspective like strong user involvement and clear
business objectives must be taken into account. To this
end, we present an evolutionary, extensible approach
for the model-driven construction of advanced dialogs
which is based on a Domain-specific Language (DSL).
We introduce a modeling notation based on Petri net
constructs and XForms as well as a supporting Web-
based editor, both focusing on simplicity and fostering
communications. The technical framework allows for
quick prototyping and flexible changes. In conclusion,
complex, device-independent dialogs with rich
behavior and appearance can be constructed and
evolved with intense stakeholder collaboration.

1. Introduction

The World Wide Web is currently performing its
next evolution cycle towards a platform for
sophisticated enterprise applications and portals with a
high intensity and complexity of user interaction
aspects [22, 25]. Considering the significant
complexity of tasks performed within these new types
of applications as well as the comprehensive
underlying data models, highly dynamic dialogs
reducing cognitive overload and offering guidance to

the users are required. Such usability aspects have a
major influence on the efficiency and efficacy of users
[20]. Beyond that, aspects from the fields of
accessibility, platform independence, and adaptivity
have to be considered. From the technical point of
view, the integration of Web service communication
for retrieving updates of the dialog’s data model or for
submitting the final user input is a common
requirement found in this new generation of Web
applications. Facing the immense complexity in
development and evolution of such advanced dialogs, a
dedicated engineering approach is desirable.

Besides these application type-specific
requirements, such a dialog engineering approach must
also consider key factors arising from a project
management perspective. To this end, agility, strong
stakeholder involvement and clear business objectives
have been identified as key success factors in
comprehensive empirical studies [28] and taken on in
agile software development methods [3]. Against this
background, a systematic Web Engineering approach
should also treat them as guiding principles.

This being the situation, we present an
evolutionary, model-driven approach for the
construction of rich dialogs meeting both the dialog-
and the project management-specific requirements
stated above. Our approach comprises a Domain-
specific Language (DSL), the Dialog DSL, and an
associated technical framework. The Dialog DSL is
part of our research towards the model-driven
construction of Workflow-based Web applications
using Domain-specific Languages for their various
aspects [11]. It is based on our previous work, the
WebComposition Service Linking System (WSLS)
approach [12] and our latest research towards DSL-
based Web Engineering [21]. By using this DSL-based
approach, stakeholders and domain experts having no
experience in software development can directly

contribute to the development effort by understanding,
validating, adapting, and even developing dialog
models. Moreover, the Dialog DSL allows for short
iteration cycles with running versions of the aspired
dialog being available very early. In conclusion, our
DSL approach enables an intense collaboration
throughout the development process and lowers the
possibility of misunderstandings.

Section 2 introduces the particular requirements for
a systematic dialog engineering approach and
illustrates them in the context of a real-world EAI
scenario. In section 3, we outline the idea of DSL-
based Web Engineering to facilitate the understanding
of the succeeding sections. Afterwards, in section 4, an
overview of the Dialog DSL, its extension points and
the associated process model is given. Subsequently, in
section 5, a detailed presentation of its core pillars
based on the example scenario follows: The modeling
notation based on Petri nets [24] and XForms [4], a
supporting Web-based model editor, the underlying
technical platform, and the involved model
transformations. The latter are used for runtime
adaptations of dialog models according to
characteristics of requesting client devices as well as
their transformation into executable markup, e.g.
XForms code. Experiences from the application of the
Dialog DSL in real-world projects are outlined in
section 6. Section 7 discusses related work and section
8 concludes the paper and outlines future work.

2. Problem Scope

In this section, we first introduce a general core set
of requirements a systematic engineering approach for
the construction of advanced dialogs should fulfill.
Afterwards, these requirements are illustrated in the
context of a representative scenario, which will also
serve as a running example throughout the paper.

2.1 Requirements Catalogue

Based on the challenges experienced in several real-

world projects as well as from general requirements for
dialog engineering methods found in literature, e.g.
[15, 18], we identified the following key requirements.
The first three requirements aim at vital characteristics
of advanced dialogs a suitable engineering approach
must address, whereas the last three concern the
development process and the methodology itself.
These requirements served as starting point for the
design of our approach and will be used for the evalua-
tion of related work and the method itself (section 7).

Usability: The engineering approach should treat
dynamic behavior, user guidance and feedback, and
adaptivity as vital usability features of advanced
dialogs.

Accessibility: The accessibility of the resulting
dialogs for everyone is a key requirement. Especially
in business applications or in the public sector, no
potential users must be passed over.

Platform-independence: Particularly dialogs in
business-related Web applications should be accessible
not only from a desktop or notebook computer, but
also from mobile devices like PDAs.

Agility & Evolution: A dedicated dialog
engineering approach should be agile and evolution-
oriented in terms of supporting short revision
lifecycles and the efficient adoption of changes.

Strong Stakeholder Involvement: Strongly
emphasizing stakeholder involvement and supporting
efficient and efficacious communications is,
particularly for the specification and construction of
dialogs, crucial.

Reuse: With respect to requirements from the fields
of agility, software quality, and development
efficiency, systematic reuse of all kinds of artifacts
should be incorporated as a guiding principle
throughout the development process.

2.2 Challenges in a Real-World Scenario

The project “Karlsruhe’s Integrated Information

Management (KIM)” [1] is a university-wide
Enterprise Application Integration (EAI) project in
which we have been collaborating in for several years
now. The KIM project aims at integrating the great
diversity of heterogeneous systems and at establishing
an IT platform for the integrated and uniform
execution of university-spanning business processes.

Within the KIM project, we addressed the travel
management business process starting from the
traveler filling out her travel request up to receiving
the final travel expense statement from the travel
management department. In the course of the
development of an corresponding workflow-based
Web application using our methodology presented in
[11], several advanced dialogs had to be constructed.
One of them, the travel expense report filled out by
travelers after the journey, will serve as a
representative example.

The travel expense report includes personal data,
the detailed travel itinerary as well as all incurred
expenses. Thus, the associated data model is quite
comprehensive and includes several context-dependent
elements. For example, the required information

differs depending on the travel destination (national /
international) and the used means of transport (e.g.
train, plane, car). Thus, a dialog should reduce
complexity by dynamically showing only relevant
elements to the user. Beyond that, dynamic features
like hints, data validation, automatic calculation etc.
can further improve the usability of the dialog.

Regarding the dialog’s future users and their skill-
levels, two major groups can be identified: On the one
hand, experienced faculty secretaries handling travel
reports for several senior researches and thus using the
dialog at a regular basis. On the other hand, regular
employees using the dialog only a few times a year.
The user group of frequent users is likely to prefer
filling out the dialog in an “expert mode”, having all
input fields on one screen, thereby supporting fast
processing. In contrast, infrequent users need much
more guidance and support reducing cognitive
overload, e.g. like the ‘Wizard’ interaction pattern
[29].

In addition to these usability requirements, the
dialog should also be usable platform-independently.
For example, travelers might want to fill out parts of
the expense report during their journey using a mobile
device (e.g. a PDA). Furthermore, due to recent legal
regulations in the public sector, dialog must be
accessible for users with disabilities [6].

Besides these dialog-specific requirements, further
challenges arising from a development- and project
management perspective exist. Web applications in
general [8] and their dialogs in particular [27] underlie
a continuous evolution, for example due to adaptations
in the data model, design or layout changes, or
completely new requirements. Thus, a suitable dialog
engineering approach should be agile in terms of
support short revision cycles and the efficient adoption
of changes.

Throughout the development process of the travel
expense dialog, a multitude of stakeholders from
different organizational units with diverse professional
backgrounds and skill levels has to be involved. In
order to improve the efficiency and efficacy of the
collaboration, the employed modeling notations have
to be as simple and intuitive as possible and should
focus on relevant dialog-specific aspects while hiding
unwanted complexity. An associated, easy-to-use
editor for creating and adapting dialog models is
desirable. Early prototypes can help to achieve a
common understanding and to identify discrepancies
between requirements and their realization [30].
Design alternatives, e.g. targeting usability aspects, can
be explored and misunderstandings can be resolved at
an early, yet cost-efficient point of time.

Considering the immense number of Web-based
dialogs being developed at a University over time, the
strong integration of reuse in all phases of the
development process is desirable. The systematic reuse
of various artifacts, e.g. data models, dialog models (in
part or whole), as well as software components
contributes particularly to development efficiency and
software quality [19].

3. DSL-based Web Engineering

The Dialog DSL is part of our research in the
context of DSL-based Web Engineering [21] in
general and Workflow-based Web Applications in
particular [11]. The overall goal of our DSL-based
Web Engineering approach is fostering communication
and collaboration with stakeholders by emphasizing
simplicity. A DSL can be seen as “a programming
language or executable specification language that
offers, through appropriate notations and abstractions,
expressive power focused on, and usually restricted to,
a particular problem domain” [9]. With respect to the
development of advanced Web applications, we
propose using various DSLs, each of them being
tailored to a specific problem domain. Each DSL
employs well-known concepts, abstractions and
notations derived from the problem domain.
Considering simplicity as a key factor for usability and
efficacy, a DSL might cover only about 80% of a
problem domain’s complexity, if in return all
stakeholders are enabled to learn and use it. By
providing various graphical notations and
accompanying editors, each of them being as intuitive
as possible for a particular stakeholder group, the
usability of a DSL can be further improved. In
conclusion, stakeholders without software
development skills are enabled to directly contribute to
the development effort by understanding, validating,
adapting and even specifying parts of the solution.

In our approach, a DSL consists of a Domain-
specific Model (DSM), one or more Domain
Interaction Models (DIMs) and a Solution Building
Block (SBB). The DSM, usually an XML Schema
document, specifies the formal schema for all solutions
that can be described with the DSL. Based on the
DSM, a DIM defines dedicated (graphical) notations,
being as intuitive as possible for a particular
stakeholder group. Ideally supported by associated
editors, stakeholders use one or more DIMs to validate,
adapt or create DSL programs. Thereby, they are not
confronted with complicated source code, but rather
employ concepts, abstractions and notations from the
problem domain. A SBB is a dedicated software

component being capable of executing DSL programs
by adapting its behavior accordingly. The
WebComposition Service Linking System (WSLS) [12]
serves as technical platform for the SBBs. WSLS aims
at facilitating the systematic construction and evolution
of Web applications by reusing software artifacts and
emphasizing the “configuration instead of
programming” paradigm. Thus, Web applications can
be constructed by assembling SBBs for their various
concerns and configuring them with DSL programs at
runtime.

4. The Dialog DSL at a Glance

In this section, an overview of the Dialog DSL’s
elements, its extension points and the associated
process model is given. An in-depth description of
these building blocks follows in section 5.

4.1 Elements of the Dialog DSL

Domain-specific Model (DSM): The Dialog

DSL’s DSM specifies the formal schema for all
dialogs that can be designed with the DSL. A DSM
should be tailored to the problem domain, not the
solution domain, i.e. the DSM must abstract from the
final implementation. Although DIM notations serve
for simplifying and tailoring a DSL to a specific
stakeholder group, choosing well-known concepts and
abstractions from the problem domain already in the
DSM is advisable. Exploring the domain of Web-based
dialogs, we identified two necessary groups of
concepts to be integrated in an appropriate DSM:
Concepts for describing interaction elements and
concepts for specifying dynamic behavior of a dialog,
so-called interaction structures.

Figure 1. Simplified excerpt from the DSL’s DSM.

Figure 1 shows an excerpt from the DSM starting

from a dialog partition, i.e. a semantically cohesive
part of a dialog, which can contain interaction

structures and interaction elements. Regarding the
interaction elements, we chose to integrate the
concepts for specifying interaction elements from the
W3C XForms standard [4]. They are a good means for
expressing interaction elements within a DSL as they
are based on high-level user interaction primitives
[26]. Thus, they separate the expression of the intent
underlying a particular form control from its
presentational and behavioral aspects. The DSM can
be extended by additional interaction elements as
indicated in the figure by the corresponding extension
point. Regarding interaction structures, we defined an
extensible core set representing common dynamic
behaviors in dialogs: Sequence represents a wizard-like
sequence of dialog partitions, each of them being
presented to the user one at a time and connected via
previous / next navigation facilities, thus allowing for
semantic grouping and reducing complexity. Choice
represents the dynamic display of a dialog partition in
response to a selection made by the user. As indicated
in the figure by the corresponding extension point, this
initial set of interaction structures can also be easily
extended.

Domain Interaction Model (DIM): So far, we
have developed a two-tiered, Petri net-based DIM
notation in accordance to the DSM. On the first tier,
the elements from the data model are distributed on
various partitions and dynamic behavior between them
using interaction structures is modeled. Dialog
partitions are represented by Petri net places
containing elements from the dialog’s data model.
Petri net transitions correspond to the performed user
interaction, i.e. changing a value in the dialog’s data
model. Interaction structures are represented by
predefined graphical Petri net templates. On the second
tier, the concrete appearance of each partition
employing interaction elements is specified. With
respect to the device-dependent model adaptations at
runtime, dedicated symbols allow for marking
partitions and groups of interaction elements as non-
dividable.

This two-tiered modeling approach fosters reuse
and allows for separation of concerns - thus again
putting emphasis on usability and simplicity. In
addition, we developed a supporting Web-based editor
which allows for the comfortable creation and adaption
of these models.

Solution Building Block (SBB): The Dialog DSL’s
SBB represents the core of the technical platform. It
communicates with a Dialog Web Service for initiating
the generation of raw dialog models based on a XML
Schema definition or for reusing dialogs. Moreover, it
links to the Web-based editor for creating and adapting
dialogs. Finally, the SBB identifies requesting user

agents at runtime and performs corresponding dialog
adaptations as well as ultimately transforms dialog
models into executable markup, e.g. XForms or
XAML [17].

4.2 The Dialog DSL Process Model

Figure 2 shows the Dialog DSL’s associated

process model for the construction of advanced
dialogs. It consists of three phases in the course of a
continuous evolution.

Figure 2. Overview of the evolutionary

dialog engineering approach.

Data Design: In this phase, the data model for the

dialog being constructed is developed. This can be
achieved in several ways: Firstly, supported by
sophisticated search mechanisms considering criteria
from the development context like the type of
application being developed or the workflow context
the dialog is used in, a suitable data model can be
retrieved from the reuse repository. Secondly, if the
data entered in the dialog shall be submitted to a Web
service, the target data schema can be extracted from
the Web service’s WSDL document. Thirdly, the data
schema can be elaborated from scratch in strong
collaboration with the involved stakeholders, ideally
supported by an elicitation tool. The output of this
phase is an XML Schema document specifying the
dialog’s data schema. Based on this schema, the
Dialog DSL’s technical framework is already able to
construct a running dialog that can be directly used in
production or further refined using the Web-based
editor at runtime.

Partition Design: This phase addresses the
modeling of dialog partitions and dynamic behavior.
Therefore, in the first step, the elements from the
dialog’s data schema are distributed on several dialog
partitions, each of them representing a semantically
cohesive dialog unit, e.g. personal data, travel itinerary

or expenses. Then, employing predefined interaction
structures like Sequence or Choice, dynamic transitions
between these partitions are defined. Due to this
template-based modeling approach, this phase is
ideally supported by a visual drag & drop editor,
thereby again emphasizing simplicity and enabling the
strong participation of stakeholders.

Appearance Design: In this phase, the concrete
appearance of each dialog partition is designed, again
supported by the Web-based editor. Therefore, an
interaction element is assigned to each element from
the data model. Based on the type of a data element, a
possible interaction element was already assigned at
dialog generation time (e.g. input for string, select1 for
enumerations etc.) and can be modified. This can be
done by either selecting the appearance, i.e. how shall
the interaction element being rendered (e.g. select1
either as radio buttons or dropdown list) or exchanging
the interaction element type. Considering the final
rendering for diverse clients with possibly smaller
screen sizes, a dialog partition may be split up into
several smaller partitions. To this end, partitions as
well as groups of elements therein can be marked as
non-dividable. Furthermore, style sheets can be applied
and additional markup be inserted. In order to provide
additional guidance to the user, input validations or
dynamic features like hints or auto completion can be
defined. Due to the visual editor, this phase can also be
performed in strong collaboration with stakeholders.

Evolution: In case of extensions or modifications
in the data model, the technical framework regenerates
only these elements that are affected by the change
while preserving the rest of the dialog. These new or
modified elements can then be designed in detail with
respect to partition membership, dynamic behavior and
appearance in the succeeding phases. For changes not
affecting the data model, the Data Design phase can be
skipped.

5. Dialog DSL Building Blocks

Based on the example scenario presented in section
2.2, this section describes the core pillars of the Dialog
DSL approach in detail: First of all, the modeling
notation for specifying dynamic behavior and concrete
appearance of a dialog and its partitions (section 5.1)
as well as a corresponding Web-based editor (section
5.2) are presented. Afterwards, section 5.3 gives an
overview of the technical framework for generating,
reusing, designing, and rendering dialogs. Finally, the
model transformations involved in user-agent related
runtime adaptations as well as term rewritings for

transferring DSL programs into executable dialogs and
vice versa are described (section 5.4).

5.1 The Modeling Notation

The Domain-specific Model (DSM) of the Dialog
DSL defines two major groups of concepts: Interaction
elements and interaction structures. Interaction
elements represent high-level user interaction
primitives following the W3C XForms user controls,
whereas interaction structures stand for common
dynamic behaviors in dialogs like Sequence or Choice.
According to our DSL approach, the Dialog DSL’s
Domain Interaction Model (DIM), i.e. the modeling
notation, defines corresponding notations for the
concepts defined in the DSM.

With regard to interaction elements, employing
well-known dialog user controls turned out to be a
good choice. For example, an input interaction element
is represented by an input field, a select1 interaction
element by a dropdown list control, and a trigger
interaction element by a button. This way we defined a
graphical symbol for each interaction element in the
DSM. The fact that almost all symbols in the DIM
notation were already known to stakeholders made it
rather intuitive.

Regarding the modeling of dynamic behavior by
interaction structures, we decided to employ
predefined Petri net constructs. Petri nets are very
suitable for modeling dynamic behavior, parallelism
and the state of a system. These characteristics can all
be found in advanced dialogs, thus making Petri nets a
good choice. In order to reduce complexity which
could arise in complex Petri nets, we predefined a
transition template for each interaction structure,
thereby simplifying the modeling process.

In order to achieve a good separation of concerns,
the modeling notation is divided into two tiers: The
first tier addresses the modeling of dialog partitions
and transitions by means of the Petri net transition
templates mentioned above. The second tier focuses on
the appearance design of a partition.

5.1.1 Partitions & Transitions Modeling Tier

On this tier, semantically cohesive elements from
the dialog’s data model are grouped into dialog
partitions which are represented by Petri net places. At
runtime, if a Petri net place is marked, its elements are
visible. Subsequently, the transitions between these
dialog partitions are defined using predefined Petri net
transition templates according to the DSL’s interaction
structures.

Figure 3. A 'Choice' interaction structure as

Petri net transition template.

Figure 3 shows the Petri net representation of a

Choice Interaction structure. We consider elements in
a Petri net place again as Petri net places, thus resulting
in hierarchical Petri nets. Accordingly, the Choice
transition template is connected to the element whose
value decides on which transition is fired and to the
various target places. The transitions are labeled with
the various values the element in the source place can
take. To this end, it is advisable to map such an
element to an interaction element with a discrete value
range (e.g. select1), which can be done on the
Appearance Modeling Tier. At runtime, if a place
becomes marked, all elements become marked. When
the user changes the value of an element connected
with a Choice transition, the mark of the element flows
to the target partition, thus making it and its elements
visible. The source partition’s mark, however, is still
there, meaning that both partitions are visible. If this is
not the desired behavior, i.e. the source partition
should become invisible and only the target partition
become visible, the transition would have to be
connected to the source partition instead of the
concrete element. As we are trying to emphasize
simplicity in the modeling notation, we decided to
always connect a Choice transition to the respective
element. In case the source partition shall become
invisible when a transition fires, the transition can be
annotated with a [Replace] tag. It should be mentioned
that when a partition becomes invisible, its state is
preserved by the marking of its encapsulated elements
and thus is restored when the partition becomes visible
again.

Figure 4. A ‘Sequence’ interaction structure as

Petri net transition template.

The Petri net representation of a Sequence

Interaction Structure is shown in Figure 4. Here, the

transitions are always connected to the Petri net places
as this interaction structure is independent from the
data model. It rather represents a wizard-like
navigation through a linear space of dialog partitions.
When the model is rendered into an executable dialog,
corresponding interaction elements (e.g. buttons)
allowing the activation of a transition are added to the
source partition. Thereby, the labels annotated at the
transitions are taken as labels for the interaction
elements.

5.1.2 Appearance Modeling Tier

Based on the dialog partitions defined on the
superordinate tier, this tier focuses the concrete
appearance design of each of these partitions. Figure 5
illustrates a core set of the possible modeling options.

Figure 5. Binding XForms User Controls to data

elements and defining semantic groups.

 First of all, an XForms user control represented by

a corresponding graphical symbol has to be assigned to
each data element. Moreover, labels can be defined for
each interaction element and additional markup, e.g.
for headings, be inserted. Furthermore, a partition can
be semantically tagged as ‘not dividable’, indicated by
a black corner. This means that possible runtime model
adaptations for clients with small displays should
attempt to keep the elements of the partition together.
In case a partition is possibly dividable, this can also
be done on a more fine-grained level for interaction
elements, indicated by a dotted rectangle. Supported by
a corresponding editor, this ‘pen and paper’ modeling
approach can be augmented by configuring interaction
elements in detail using a property editor.

5.2 The Editor

In order to support the model-driven construction
and evolution of dialogs using the modeling notation
described above, we developed a corresponding Web-
based editor. Figure 6 shows screenshots of the
editor’s user interfaces for Partition & Transition
Design (1) and Appearance Design (2). Regarding the
former, the editor displays a list of the elements from
the data model that have not yet been assigned to a
partition (left panel). In the top panel, graphical

buttons for adding new partitions and defining
Sequence or Choice transitions are available. Data
model elements from the left panel can be assigned to
partitions via drag & drop. After having clicked on a
Sequence or Choice transition button, the user can
connect two partitions or an element from one partition
with another partition respectively via clicking on
them. Thereupon, the editor draws the transition and
allows the user to annotate it.

 Each partition contains a button labeled
‘Appearance Design’, which leads the user to the
Appearance Design view of the respective partition
(Figure 6-2). There, the user can select an interaction
element type for each data element. Depending on the
element’s data type, a default interaction element has
already been assigned. Furthermore, additional
markup, e.g. for headings, can be inserted and the
relative layout of the interaction elements be defined.
Beyond that, a checkbox in the upper left allows for
tagging a partition as non-dividable and semantically
cohesive element groups can be specified using the
floatable Property Editor. In addition, the Property
Editor allows for the detailed configuration of each
interaction element like e.g. its label, navigation index,
access key or appearance, hint, help and alert texts,
input validations or calculations. A screenshot of the
rendered dialog resulting from the models edited in
Figure 6 is shown in Figure 9.

Figure 6. Partition & Transition Design (1) and

Appearance Design (2) in the Web-based editor.

Based on our work in the field of Web

Accessibility, e.g. [16], we have begun to equip the
editor with a proactive accessibility engine advising
the user of potentials of improvements already at
design time. Beyond that, our technical platform - the

WSLS framework - already allows for runtime
accessibility checks of a Web application.

5.3 Technical Platform

Figure 7 gives an overview of the Dialog DSL’s
technical platform consisting of the Solution Building
Block (SBB), the Dialog Web Service, the Web-based
editor as well as the underlying WebComposition
Service Linking System (WSLS).

The SBB running on the WSLS framework can be
considered as the main component and thus is in
charge of various functions during the development
process. In the beginning, it can be either configured
with a data schema and submission information or an
URL to a WSDL file and the name of the operation the
dialog shall be submitted to. The SBB passes the
respective data schema to the Dialog Web Service
which generates a corresponding raw dialog model and
returns it to the SBB. Thereby, an appropriate
interaction element is assigned to each element of the
data model depending on its data type. If requested, a
decomposition of the dialog into partitions derived
from the data model’s structure is performed.
Alternatively, a dialog model from the repository can
be searched and reused. From that moment on, a
running dialog is already available – without having
performed any manual modeling. The dialog can now
either be modeled in detail using the Web-based editor
or used in production. In either case, no
(re)compilation or (re)deployment is required.

If a client requests the Web page containing the
dialog, its screen characteristics are identified based on
the user agent string contained in the HTTP request or,
in case of a mobile device, by evaluating User Agent
Profile (UAProf) information [23] provided in terms of
the W3C Composite Capability Preferences Profile
(CC/PP) standard. By applying the model
transformations presented in the next subsection, the
SBB adapts the dialog model accordingly, translates it
into executable markup, e.g. XForms, and returns it to
the client. In order to achieve an adequate
performance, the final markup is cached until the
dialog model gets changed and can thus be reused for
identical requests.

Submissions of the dialog model in whole or part
are received by the SBB and processed, e.g. in the
context of a workflow, or forwarded to a Web service
the dialog asynchronously communicates with. In the
latter case, the SBB receives the response from the
Web service and forwards it to the corresponding
client.

Figure 7. Overview of the technical platform.

5.4 Model Transformations

Within the presented DSL approach, two kinds of
model transformations are required. One the one hand,
transformations are applied to the dialog model
according to the capabilities of the requesting user
agent. On the other hand, the dialog model has to be
transformed into executable markup, e.g. XForms
code.

5.4.1 User-Agent-related Transformations

In our approach, dialogs and their decomposition
into partitions are modeled with respect to a regular
desktop terminal. For user agents with smaller screens,
they have to be further decomposed into suitable
device-specific partitions, also referred to as
‘Pagination’.

Figure 8. Pagination of a large dialog partition.

Figure 8 illustrates the model transformation for

decomposing Partition A into several smaller
partitions, i.e. Partion A.1-A.3. The pagination
algorithm fills a partition with controls until their
combined estimated size on the user agent exceeds the
given maximum screen size. In that case, an additional
partition is created and filled. As far as possible,
semantic groupings like the grouping of Control 3 and
4 are preserved. The interconnection of the resulting
micro-partitions is realized via the Sequence
interaction structure.

5.4.2 Model-Code Transformations

On the one hand, after potential model adaptations
have been conducted by the SBB, it has to translate the
user agent-specific dialog model into executable
markup. On the other hand, in order to enable the
import of existing markup code from third parties and
its subsequent adaptation using the Web-based editor,
also transformation in the backward direction have to
be provided. So far, we developed such bidirectional
transformations between the Dialog DSL’s formal
schema, i.e. the Domain-specific Model (DSM), and
XForms.

Table 1. Multi-step transformation of

dialog models into final markup.
(1)

DSM-based
pattern

(2) Context-free
grammar rule

Sequence:=P1 P2

(3) Extended rule Sequence:=seq(P1, P2)

(4) Term
rewriting rule

seq(t1,t2)
 <switch>
 <case id=”t1”>eval(t1)</case>
 <case id=”t2”>eval(t2)</case>
 </switch>

Table 1 illustrates the multi-step transformation

process. In the first step, a DSM-based model element
(1) is mapped to a context-free grammar-based
expression (2). Then, this expression is extended by a
term-algebraic operation (3) allowing for their
processing within a term rewriting-based compiler. In
the last step, term rewriting rules are applied to
translate the expressions into the final markup code
(4). Here, term rewriting rules to other markup
languages like e.g. XAML could be flexibly
incorporated.

Figure 9 shows the finally rendered dialog, whose
modeling is depicted in Figure 6. When the value of
the interaction element labeled ‘Used Train?’ (1) is
changed to ‘yes’, it triggers a Choice interaction
structure, dynamically making the dialog partition

‘Transport Costs (Train)’ (2) visible. At (3), two
buttons realizing the Sequence interaction structure are
located.

Figure 9. Rendered dialog with dynamic
Choice (1+2) and Sequence (3) behavior.

6. Practical Experiences

The Dialog DSL was successfully used for several
complex dialogs within the KIM project. The observed
improvements regarding the efficiency and efficacy of
the construction process are promising. Due to the
model-driven approach, the construction time could be
considerably decreased. Moreover, the simple
template-based modeling notation and the associated
editor as well as short iteration cycles combined with
immediate previews allowed for an intensified
stakeholder collaboration. For example, adapting the
model and immediately seeing the impact on the
running dialog eased the collaboration a lot. Beyond
that, the modeling notation in combination with the
editor turned out to be rather intuitive, even for
stakeholders with few technical skills. Compared to
similar dialogs developed without the Dialog DSL, we
observed an increase in the dialog’s usability caused
by the adoption of the introduced Interaction Structure
patterns and their intuitive application. Currently, we
are working on a comprehensive empirical study on
the assets and drawbacks of the Dialog DSL based on
diverse scenarios and stakeholder groups.

Sequence

P1 P2

7. Related Work

In the following, we outline four representative
approaches and point out the differences compared
with our approach based on the requirements presented
in section 2.1.

The UML-based Web Engineering methodology
(UWE) [14] allows for the model-driven construction
of dialogs using dedicated UML stereotypes.
Regarding the modeling of dynamic behavior, first
ideas based on UML state charts were proposed [2],
but seem not to have been pursued in more detail so
far. Due to the implementation-independent modeling
approach, dialogs for diverse platforms could be
generated by dedicated model transformations.
However, platform-independent dialog markup
languages like e.g. XForms as well as automatic
adaptations according to requesting devices have not
been realized so far. Also the consideration of
accessibility concerns at design time has not been
addressed explicitly. Regarding the requirement of
agility, i.e. short evolution cycles and flexible
adoptions of changes, UWE models cannot be directly
transformed into running applications as there is still
some manual source code development required. This
also hinders stakeholders without development skills to
modify existing dialogs. However, UWE dialog
models look rather intuitive, thus improving
communications during the development process. An
explicit reuse strategy or infrastructure has not been
presented yet, even though reusing UWE dialog
models is basically possible.

The Object-Oriented Hypermedia (OO-H) method
[13] supports the model-driven construction of dialogs
and their direct transformation into executable source
code. Thus, it fosters agility, even though evolution
cycles with OO-H seem to be longer than with our
approach. Regarding rich dynamic behavior and user
guidance, OO-H defines a valuable interaction pattern
catalogue including static and dynamic navigation
patterns as well as command control patterns.
Although the patterns were defined from a user’s
perspective, they lack an intuitive graphical
representation. Thus, the modeling process for the
experienced designer is eased and the quality of the
resulting interfaces improved. However, regarding the
integration of stakeholders in the development process,
detailed OO-H dialog models still remain quite
complex. The OO-H model compiler is able to produce
markup for various platforms like ASP, JSP, PHP or
WML. Dialog-specific markup languages like XForms
are not included so far. An explicit consideration of
accessibility concerns at design time is not apparent.

The Web Modeling Language (WebML) recently
presented a dedicated extension towards Rich Internet
Applications [5], augmenting the existing WebML
modeling notation by the possibility to model dynamic
behavior on pages. So far, as WebML is a
methodology addressing particularly data-intensive
Web applications, the focus lies on dynamic filtering
and ordering of data in response to a user’s input.
More general dynamic behavior as well as reducing
cognitive overload and providing user guidance in
dialogs have not been considered yet. WebML
generally supports mobile devices, even though it does
not employ dialog-specific markup languages like
XForms or automated dialog adaptations according to
the requesting client device. The WebML modeling
notation does not address the concrete appearance of a
dialog, but rather provides tool-support via a style
editor.

The Object-Oriented Hypermedia Design Method
(OOHDM) [7] employs Abstract Data View (ADV)
models for the specification of dialogs and their
dynamic behavior[10]. While ADV seem to be suitable
for the formal specification of a dialog’s static and
dynamic aspects, they are rather unintuitive for
stakeholders with few technical skills. Client-specific
dialog adaptations at runtime as well as the
consideration of accessibility concerns have not been
addressed yet. Recently, the OOHDM group proposed
an interesting approach towards enriching hypermedia
application interfaces by animating navigational
transitions and thereby emphasizing semantically
important information [10]. With regard to the
dynamic transitions employed in our approach, it
would be interesting to further investigate how both
approaches can be integrated, thus offering additional
guidance to the user.

8. Conclusion & Future Work

Facing the challenges found in the development and
evolution of advanced Web-based dialogs, we
presented a systematic engineering approach which is
based on a Domain-specific Language (DSL) - the
Dialog DSL - and an associated technical framework.
This DSL-based approach puts strong emphasis on
simplicity, thereby enabling stakeholders to intensely
participate in the development process by validating,
modifying or even creating dialog models.

The DSL is formally based on interaction primitives
derived from the W3C XForms standard and an
extensible set of common dynamic interaction
structures like ‘Sequence’ or ‘Choice’. The proposed
two-tiered modeling notation employs Petri net

semantics for the decomposition of dialog elements
into dialog partitions and the modeling of dynamic
transitions between them. Due to a template-based
modeling approach, the notation remains rather
intuitive. Regarding the modeling of a partition’s
concrete appearance, well-known dialog control
symbols are employed. Dedicated notations allow
influencing the device-adaptive rendering at runtime.

Furthermore, we presented a corresponding Web-
based editor supporting the easy yet detailed creation
and adaption of dialog models. Modifications to the
dialog model can be performed at runtime, thus
enabling short evolution cycles while preserving model
consistency. The Dialog DSL’s technical framework
realizes the sophisticated generation of raw dialogs
based on a data schema and facilitates the reuse of
dialog models. Moreover, it identifies requesting client
devices, adapts the dialog model accordingly and
finally transforms it into executable platform-
independent markup (e.g. XForms) employing term
rewriting techniques.

We successfully applied the presented approach in
several real-world scenarios and observed promising
improvements. A comprehensive empirical evaluation
of the Dialog DSL will be the next step in our research
agenda. Beyond that, we are striving for identifying
and conceptualizing additional interaction structures
from existing dialogs. Moreover, we are planning to
integrate a proactive rule-based usability validation
supporting the modeler already at design time.

9. References

1. KIM Project Homepage - 2005), University of Karlsruhe:

http://www.kim.uni-karlsruhe.de/
2. Baumeister, H., Koch, N., and Mandel, L.: Towards a

UML Extension for Hypermedia Design. in Proceedings
of UML´99: The Unified Modeling Language - Beyond
the Standard. 1999. Fort Collins,USA: Springer Verlag

3. Beck, K., et al.: Manifesto for Agile Software
Development - 2001): http://www.agilemanifesto.org
(10.11.2006)

4. Boyer, J.M., et al.: XForms 1.0 (Third Edition) - W3C
Recommendation (2007):

5. Bozzon, A., et al.: Conceptual Modeling and Code
Generation for Rich Internet Applications. in Proceedings
of International Conference on Web Engineering 2006.
2006. Menlo Park, USA

6. Consortium, W.W.W.: Web Accessibility Initiative
(WAI) Homepage - 2006): http://www.w3.org/WAI/

7. Daniel Schwabe, G.R.: An Object Oriented Approach to
Web-Based Application Design, in Theory and Practice
of Object Systems 1998, Wiley and Sons: New York,
USA

8. Deshpande, Y., et al.: Web Engineering. Journal of Web
Engineering, 2002. 1(1): p. 3-17

9. Deursen, A.V., Klint, P., and Visser, J.: Domain-Specific
Languages: An Annotated Bibliography. ACM
SIGPLAN Notices, 2000. 35(6): p. 26-36

10. Fialho, A. and Schwabe, D.: Enriching Hypermedia
Application Interfaces. in Proceedings of 6th
International Workshop on Web-Oriented Software
Technologies (IWWOST'07). 2007. Como, Italy

11. Freudenstein, P., et al.: Model-driven Construction of
Workflow-based Web Applications with Domain-specific
Languages. in Proceedings of the 3rd International
Workshop on Model-Driven Web Engineering. 2007:
CEUR Workshop Proceedings, ISSN 1613-0073.

12. Gaedke, M., Nussbaumer, M., and Meinecke, J.: WSLS:
An Agile System Facilitating the Production of Service-
Oriented Web Applications, in Engineering Advanced
Web Applications, S.C. M. Matera, Editor. 2005, Rinton
Press. p. 26-37

13. Gómez, J. and Cachero, C.: OO-H Method: Extending
UML to Model Web Interfaces, in Information modeling
for internet applications, P.v. Bommel, Editor. 2003, IGI
Publishing: Hershey, PA, USA. p. 144 - 173

14. Hennicker, R. and Koch, N.: Modeling the User Interface
of Web Applications with UML. in Proceedings of
Practical UML-Based Rigorous Development Methods
Workshop at the UML 2001, . 2001: Köllen
Druck+Verlag

15. Kappel, G., et al.: Web Engineering: The Discipline of
Systematic Development. 1 ed. 2006: Wiley

16. Luque Centeno, V., et al.: Web Composition with WCAG
in Mind. in 14th International World Wide Web
Conference, International Cross-Disciplinary Workshop
on Web Accessibility (W4A). 2005. Chiba, Japan

17. Macvittie, L.A.: XAML in a Nutshell. 2006: O'Reilly
Media

18. Matera, M., Rizzo, F., and Carughi, G.T.: Web Usability:
Principles and Evaluation Methods, in Web Engineering,
E. Mendes and N. Mosley, Editors. 2006, Springer:
Heidelberg. p. 143-180

19. Mcllroy, M.D.: Mass Produced Software Components. in
Sofiware Engineering; Report on a conference by the
NATO Science Committee. 1968. Garmisch, Germany:
NATO Scientific Affairs Division, Brussels, Belgium

20. Nielsen, J.: Forms vs. Applications, in Jakob Nielsen's
Alertbox. 2005

21. Nussbaumer, M., Freudenstein, P., and Gaedke, M.: The
Impact of DSLs for Assembling Web Applications.
Engineering Letters, 2006. 13(2006): p. 387-396

22. O'reilly, T.: What Is Web 2.0 - Design Patterns and
Business Models for the Next Generation of Software -
Online Article (2005):
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/0
9/30/what-is-web-20.html (18.10.2005)

23. Open Mobile Alliance: User Agent Profile Specification -
2003):
http://www.openmobilealliance.org/release%5Fprogram/
uap_v2_0.html

24. Petri, C.A.: Kommunikation mit Automaten. 1962,
Technischen Universität Darmstadt: Darmstadt

25. Phifer, G., et al.: Hype Cycle for Web and User
Interaction Technologies, 2007, in Gartner Reports. 2007,
Gartner, Inc.: Stanford, CT, USA

26. Raman, T.V.: Auditory User Interfaces--Toward The
Speaking Computer. 1997: Kluwer Academic Publishers

27. Roger S. Pressman: Part Three: Applying Web
Engineering, in Software Engineering: A Practioner's
Approach. 2005, McGraw-Hill: New York. p. 499-626

28. The Standish Group International: CHAOS Research -
Research Reports (1994-2005):
http://www.standishgroup.com

29. Welie, M.V. and Trtteberg, H.: Interaction Patterns in
User Interfaces. in Proceedings of 7th Pattern Languages
of Programs Conference. 2000. Illinois, USA

30. Wiegers, K.E.: Software Requirements. Second ed. 2003:
Microsoft Press. 430 pages

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

