
WAEX: Web Accessibility Evaluator in a single
XSLT file

Vicente Luque Centeno, Carlos Delgado Kloos
Carlos III University of Madrid
Email: {vlc,cdk}@it.uc3m.es

Martin Gaedke, Martin Nussbaumer
University of Karlsruhe

Email: {gaedke,nussbaumer}@tm.uni-karlsruhe.de

Abstract— Web accessibility rules, i.e., the conditions to
be met by Web sites in order to be considered as accessible
for all, can be (partially) checked automatically in many
different ways. Monolitic applications built on top of
procedural programming languages like C, Java, Perl or
PHP have been developed during the last years. These
applications usually provide their own interpretation
of the W3C guidelines, so it is easy to obtain different
evaluation results when different evaluation tools are
applied to a common sample page.

Since most accessibility rules are involved with the
markup of Web sites and XSLT can be applied to any
selectable-by-condition markup, we have developed WAEX
as a Web Accessibility Evaluator in a single XSLT file.
Such XSLT file contains 50+ singular accessibility rules
and XHTML-specific conditions that are in the prose
of the XHTML specification because they could not be
included in the grammar specification (the DTD or the
XML Schemas). This approach of using XSLT as a
declarative repository of accessibility rules has lead to a
portable and reusable style sheet that generates rather
complete (if compared with already existing evaluation
tools) accessibility reports for any Web page.

I. I NTRODUCTION

WAI (Web Accessibility Initiative)’s WCAG (Web
Content Accessibility Guidelines) 1.0 [1] from W3C has
become an important reference for Web accessibility
in the Web community. It has been accepted as a set
of guidelines that improve accessibility and eliminate
barriers on Web sites. The lack of accessibility affects a
large amount of people (between 10% and 20%) that fre-
quently find important barriers when trying to navigate
through today’s Web sites. Barriers reduce accessibility
not only for people with some sort of personal disabil-
ity (vision or hearing impairment, mobility problems
to manage a keyboard or a mouse, or cognitive and
neurological problems). Accessibility is also a major step
towards device independent Web design, allowing Web

interoperability to be independent from devices, browsers
or operating systems. Web accessibility allows having
cheaper Web site maintenance and a wider target public.
Some governments are also requiring that some Web
sites become accessible.

The set of the 65 WCAG’s checkpoints that accessible
documents have to pass is a very heterogeneous set of
constraints, which are difficult to evaluate and repair.
Both WCAG 1.0 [1] and the HTML Techniques for
the new WCAG 2.0 draft [2] specifications are written
at a high abstraction level, which is frequently quite
open to subjective interpretation (astoo long textsor
too many elements), including implicit conditions or,
simply, containing constraints whose detection cannot be
automated.

There are several tools nowadays which can help us to
detect accessibility barriers on Web sites. Watchfire[9],
Tawdis [10] or HERA [11] are only a few of them. It
is well known that all these tools require a person to
supervise and complete the results of the evaluation
tools because a lot of rules are relayed on manual checks
by the user. However, we still have the problem of
different particular interpretationson each tool. This is
due to the fact that these tool’s authors have had different
subjective interpretations of the W3C’s guidelines, as
depicted at [17]. As a result, we can easily find several
tools reporting different evaluation results for a same
sample page. Even further, it is difficult indeed to find
two evaluation tools that evaluate the same conditions.

One of the main reasons for this heterogeneity is due
to the way these tools have been implemented. Since they
have been mostly implemented usingprocedural pro-
gramming languages, the conditions being checked are
unclear for people using them for Web site evaluation.
Our approach to solve that problem consists on providing
declarative rules, readable and reusable by anyone, even
for those with little programming background.

Our approach lead us to build WAEX [15]: a Web

Proceedings of the Second International Workshop on Automated Specification of Web Systems (WWV), November 9, Cyprus

Accessibility Evaluator in a single XSLT file. Because
of its XSLT nature, it can only be applied to well formed
HTML pages. Fortunately, HTML reparation software
like Tidy [13] and the HTML parser of libxml [14]
allows us to apply WAEX to any Web page.

The rest of this paper depicts the most important
WAEX’s rules, and is organized as follows: Section
II deals with accessibility conditions already expressed
formally in the XHTML grammar (the DTD or XML
Schema) and compares them with the corresponding
XSLT templates in WAEX. Section III deals with those
accessibility conditions expressible in a XHTML gram-
mar, but not expressed indeed in a DTD or Schema.
Section IV covers accessibility conditions not express-
ible in a XHTML grammar. Section V contains some
conclusions and future work.

II. A CCESSIBILITY CONDITIONS ALREADY

EXPRESSED IN THEXHTML GRAMMAR

One of the most important accessibility issues involve
validation against a public grammar. In fact, the XHTML
grammar already represents some well known accessi-
bility checkpoints. Specific rules in the DTD or XML
Schema of XHTML already require that specific manda-
tory markup properly appears in XHTML documents.
For instance, table I contains rules that state that every
image must always have analt attribute. While both
the DTD, the XML Schema declare thealt attribute as
required for every image, XSLT can be used to spot any
image having no suchalt attribute as a barrier. Such
a rule in WAEX may easily report the absence of this
important attribute for accessibility (thealt attribute),
because all these rules state that every image with no
alt attribute would be considered as faulty since users
that cannot see the image can’t read a textual alternative
either.1 2

Mandatory elements can also be required by a gram-
mar. For instance, table II contains rules to assert that
every document has atitle (an essential element for
the user to differentiate Web pages) and that it must be
directly inside thehead element. In fact, they also assert
that only a single title must be present. Having none
or multiple titles is considered as an error. While both

1A similar set of expressions can be used to state that the alt
attribute is also required for everyarea element.

2Ornamental images containing no information, should have an
empty string as the textual alternative, but this attribute must be
present anyhow according to WCAG. The fact that the textual alter-
native is an adequate alternative for the image is another checkpoint
which is outside of our scope.

the DTD and XML Schema express that condition in a
regular expression, XSLT may be used to assert that the
title must exist and it must be unique.

Validation is also useful for detecting forbidden or
deprecated markup within a document. It is important to
avoid deprecated markup in order to properly separate
structure from presentation. For instance, bullets in list
items should be specified only by a CSS (Cascading
Style Sheet), instead of using the list’stype attribute,
because they are considered as apresentationalfeature.
Even though such an attribute is allowed in XHTML
Transitional [2], it has been eliminated on XHTML Strict
and successive XHTML versions because it has been
deprecated. Table III states that lists should no longer
have any suchtype attribute.3 The XSLT expression
provided in table IIIexplicitly forbids this, while DTD
and XML Schema declare thatimplicitly .

Deprecated and forbidden elements can also be de-
tected if a modern XHTML grammar is being used for
validation. Deprecated elements likeb (bold), i (italic),
tt (tele-type),center or font , as well as forbidden
elements not in the HTML specification likeblink or
marquee , can be spotted (as presentational markup that
should be left out in favour of CSS) by either a grammar
which does not recognize them as valid elements or with
an XSLT rule like the one at table IV.

III. A CCESSIBILITY CONDITIONS EXPRESSIBLE(BUT

NOT EXPRESSED) IN A XHTML GRAMMAR

XHTML is not a single language. Since its birth,
it has had several versions, starting from Transitional
and Strict [2], launching XHTML Basic [4] and ending
by XHTML 1.1 [3]. Those different languages have
different restrictions, some of them had been previously
declared in the 1999’s WCAG [1]. For example, the
alt attribute is mandatory since XHTML Transitional
1.0. Deprecated elements likefont or center were
removed in XHTML Strict 1.0. XHTML 1.1 introduced
some new rules and removed some deprecated features
from XHTML Strict 1.0. XHTML Basic does not allow
frames, plugins, scripts, both server or client side image
maps or nested tables for layout, thus implying that
those WCAG rules referring to these elements simply
can’t be broken. XHTML Basic was designed as the
minimum subset of XHTML tags and attributes that all
browsers should understand, especially oriented to small

3Other deprecated attributes likebgcolor or forbidden ones like
bordercolor are also implicitly forbidden by grammar.

Proceedings of the Second International Workshop on Automated Specification of Web Systems (WWV), November 9, Cyprus

Expression
DTD <!ATTLIST img alt CDATA #REQUIRED>
XML Schema <xs:element name=”img”> <xs:complexType>

<xs:attribute name=”alt” use=”required”
type=”xs:string”/>

</xs:complexType> </xs:element>
XSLT <xsl:template match=”//img[not(@alt)]”>

<xsl:message>Images with no alt attribute</xsl:message>
</xsl:template>

TABLE I

IMAGES WITHOUT ALTERNATIVE TEXT. THE img ’ S alt ATTRIBUTE IS MANDATORY.

Expression
DTD <!ELEMENT head (%head.misc;,

((title , %head.misc;, (base, %head.misc;)?)|
(base, %head.misc;, (title , %head.misc;))))>

XML Schema <xs:element name=”head”>
<xs:complexType> <xs:sequence>
<xs:group ref=”head.misc”/>
<xs:choice> <xs:sequence>

<xs:element ref=”title ”/> <xs:group ref=”head.misc”/>
<xs:sequence minOccurs=”0”>
<xs:element ref=”base”/> <xs:group ref=”head.misc”/>

</xs:sequence>
</xs:sequence> <xs:sequence>

<xs:element ref=”base”/> <xs:group ref=”head.misc”/>
<xs:element ref=”title ”/> <xs:group ref=”head.misc”/>

</xs:sequence> </xs:choice>
</xs:sequence> </xs:complexType>

</xs:element>
XSLT <xsl:template match=”/html[count(./head/title)!=1]”>

<xsl:message>Document without a unique title</xsl:message>
</xsl:template>

TABLE II

DOCUMENT WITHOUT A UNIQUE TITLE. DOCUMENT’ S TITLE IS MANDATORY.

Expression
DTD Though declarations such as

<!ATTLIST ul type ”(disc| square| circle)” #IMPLIED>
might exist (in older XHTML versions), such attributes should not be used

XML Schema Though declarations such as
<xs:attribute name=”type”/> inside
<xs:element name=”ul”/> might exist (in older XHTML versions), such
attributes should not be used

XSLT <xsl:template match=”(//ul| //ol)[@type]”>
<xsl:message>List item’s bullet should be specified by

CSS</xsl:message>
</xsl:template>

TABLE III

L IST ITEM’ S BULLET SHOULD BE SPECIFIED BYCSS

Proceedings of the Second International Workshop on Automated Specification of Web Systems (WWV), November 9, Cyprus

Expression
DTD No such<!ELEMENT b ...> nor

<!ELEMENT i ...> ... (in new XHTML versions)
XML Schema No such<xs:element name=”b”/> nor

<xs:element name=”i”/> ... (in new XHTML versions)
XSLT <xsl:template match=”//b| //i | //tt | //font | //center| //blink”>

<xsl:message>Deprecated elements no longer in use</xsl:message>
</xsl:template>

TABLE IV

DEPRECATED ELEMENTS NO LONGER IN USE

devices with smaller capabilities. Its usage involves that
presentation completely relies on CSS.

The refinement process started by XHTML 1.0 and
ended by XHTML 1.1 has already included rules ex-
pressible in a grammar into successive DTDs and/or
XML Schemas. However, some refinements still remain
uncompleted. For example, WCAG 1.0 states that all
frames should have a mandatory title attribute. Even
though this rule is very similar to the one exposed at
table I, the XHTML grammar still defines this attribute
as optional, instead of required. For this reason, rules
from table V are required, unless we locally redefine
this rule in our own DTD or XML Schema.4

Table VI contains a summary of XHTML prohibitions
stated in the prose of XHTML specification. Such restric-
tions could be easily expressed formally in the XHTML
DTD. However, they were not formalized by any rule.

The best of having checkpoints guaranteed by a gram-
mar is that they arevery cheap and easy to detect:
just choosing a modern grammar to validate documents
against to, and using an existing XML-ized validator like
[8], may easily spot where barriers belonging to this
category appear within a document.

IV. A CCESSIBILITY CONDITIONS NOT EXPRESSIBLE

IN A XHTML GRAMMAR

There are some accessibility conditions that are not ex-
pressible indeed in a DTD or XML Schema. Many tools
have their own internal implementation of these condi-
tions hard-coded within lines of a program coded in an
procedural programming language like Java, C or PHP.
This might lead to complex algorithms which (usually)
implement something different from the desired check-
point. Approaches like [12] have tried to represent such

4A similar approach (DTD or Schema redefinition) could be taken
for the usage of thenoframes element, because the public DTD
does not properly require such element even though it is required to
be present as an alternative for frames for browsers that can’t support
frames.

rules in a set ofdeclarative expressionsdeclared in self-
developed XML files that represent rules which can only
be interpreted by a self-developed ad-hoc program. Us-
ing already existing software was the aim of the XQuery-
based WCAG formalization approach [16]. However,
though the XQuery language [6] is quite compact, it is
still a draft having little implementation support. A more
accurate and also cheaper implementation of checkpoint
evaluation can be achieved when using other already
known constraint languages for XML, like XSLT. This
approach impliescheaperevaluation because no specific
software needs to be developed indeed, and there are
specific programs already supporting this language. As
a result, we have a XSLT-based declarative ruleset which
is smaller, more reusableand easier to understand and
homogeneize than the equivalent procedural routines.

As a starting example, we will begin with attributes
that enhance accessibility, but whose presence is required
only under certain circumstances. For instance, table
VII states that every image input, (i.e., input form
fields whose type attribute isimage) requires thealt
attribute (as any other image). It would not be nice
to declare thealt attribute as mandatory for every
input element, because input form fields having a
type attribute different ofimage don’t really expect
such alt attribute. Conditions that indicate whether
some markup is mandatory or not, are not expressible
in DTDs or XML Schemas.

In fact, conditions that involve some comparison or
calculation over the document’s content, are not express-
ible in DTDs or XML Schemas. Other accessibility-
related attributes are also required in other elements
under other conditions as well. Table VIII contains such
required attributes, their container elements and their
conditions to be mandatory. They are summarized, but
they can be used just like the expressions in table VII.

Not only the presence or absence of markup de-
termines accessibility. The conditions themselves may
become an evaluation result. For instance, Web acces-

Proceedings of the Second International Workshop on Automated Specification of Web Systems (WWV), November 9, Cyprus

Expression
DTD <!ATTLIST frame title CDATA #REQUIRED>

However, it is defined as#IMPLIED (not required)
XML Schema <xs:element name=”frame”> <xs:complexType>

<xs:attribute name=”title” use=”required”
type=”xs:string”/>

</xs:complexType> </xs:element>
However, it is defined asoptional (not required)

XSLT <xsl:template match=”//frame[not(@title)]”>
<xsl:message>Frames without description.</xsl:message>

</xsl:template>
TABLE V

FRAMES WITHOUT DESCRIPTION. THE frame ’ S title ATTRIBUTE IS MANDATORY.

Container el-
ement

Forbidden contents Condition to be forbid-
den

pre img, object, big, small, sub, sup Always forbidden
a, label a, area, label, input, select, textarea, button Always forbidden
form form Always forbidden
table table In XHTML Basic [4]
ins Any block-typeelement If the ins element is in-

side an inline-type ele-
ment

TABLE VI

RESTRICTIONS INXHTML SPECIFICATION(PROSE) NOT EXPRESSED IN THEDTD

Expression
DTD Not feasible
XML Schema Not feasible
XSLT <xsl:template match=”//input[@type=’image’][not(@alt)]”>

<xsl:message>Image input with no alt</xsl:message>
</xsl:template>

TABLE VII

IMAGE INPUTS WITHOUT ALTERNATIVE TEXT. THE alt ATTRIBUTE IS MANDATORY.

Container el-
ement

Attribute Condition to be mandatory

img,area alt Always
frame title Always
input alt If input’s type is ”image”
img longdesc If image’s alt attribute is not enough
html lang If document’sxml:lang is missing
frame longdesc If frame’s title attribute is not enough
th abbr If table header’s text is too long
input value If form field collects editable text
table summary If table contains tabular data, i.e, it is not a

layout-onlytable
abbr,acronym title If definition not previously defined

TABLE VIII

ATTRIBUTES CONDITIONALLY REQUIRED.

Proceedings of the Second International Workshop on Automated Specification of Web Systems (WWV), November 9, Cyprus

sibility checkpoints state that both keyboard and mouse
should behave similarly in order to have some device in-
dependence properties. This involves that any JavaScript
routine triggered by a mouse event should also be
triggered as well by the corresponding keyboard event,
and vice-versa. Table IX contains an XSLT template
checking whether theonmouseup event is being used
for other purpose than theonkeyup event. A more
complete rule should also check the same behaviour for
other events.5

Not only conditionally mandatory attributes can be
required, but also conditionally mandatory elements as
well. For instance, multimedia elements like plugins,
applets or videos should have alternative contents for
those users that cannot interact with them properly.
These alternative contents must be placed directly inside
the object element itself (theobject tag acts as
a container of its alternative), as stated in table X.
Take notice thatparam elements are not considered as
alternative contents.

Thus, anyobject element should have some other
alternative element inside if it does not have a readable
alternative text. Other conditionally required elements
are represented in table XI. For instance, some accessi-
bility checkpoints state thatfieldset elements should
be present in order to make manageable groups of form
fields. When the number of options in a combo box
(select element) is high, it is a good idea to group
them with the optgroup element. The expressions
from table XI are summarized, but they can be used just
like the expressions in table X.

Some other important accessibility rules don’t really
involve existence or absence, but misusage of HTML
markup. These rules state that some HTML attributes
should not be improperly used. For example, it is a very
bad practice to trigger JavaScript routines from thehref
attribute of active elements like links or client-side map
areas. It is much better to use event-focused attributes
like onclick for that purpose, and leave thehref
attribute usable for users that have browsers with no
JavaScript support. The XSLT template from table XII
detects this bad practice.

Other bad practices involving typically misused at-
tributes are collected in table XIII. As we can see,
it is bad practice to use client side auto-refresh or

5Also for onmousedown, onkeydown, onkeypress, onmouseover,
onmouseout, onmousemove, ondblclick, ...

auto-redirect, unadvised emerging windows, improper
keyboard short-cuts or unclear tabulation orders.

However, the expressive power of XSLT becomes
clearer when we leave out these previous simple con-
ditions involving the relationship between elements and
their contents and we start looking atrelationships
among elements placedanywhere in the document.
For instance, headers (h1-h6 elements) in a document
should be properly used. This involves not skipping
header labels. As stated at [1], “h2 elements should
follow h1 elements, h3 elements should follow h2 el-
ements, etc. Content developers should not skip levels
(e.g., h1 directly to h3)”. Table XIV contains a XSLT
template that spots those headers that skip levels. The
preceding XPath axis is used here to determine if the
current header is used accordingly to the immediately
preceding header in the document. These constraints
between one element and its preceding element cannot
be expressed with a DTD or XML Schema, but they can
fit easily in a XSLT template.6

Relationships among non-similar elements can be ad-
dressed with constraint languages as well. For example,
each client-side map area should have a redundant link
(somewhere in the document) for those users that cannot
use client-side maps. This implies that, for everyarea
element, at least one link in the same document should
share the same destination (i.e. point to the samehref).
In other words, some link in the document should
replicate thehref attribute for each area. As inferred
from table XV, we have to distinguish between the
area element itself and the link before comparing their
href attributes. In XSLT, we can use the<xsl:variable>
element to reference the area element when the context
node has been changed. The XSLT expression from
table XV states that anyarea whosehref attribute
is not being replicated by a link somewhere else in the
document will be spotted as an accessibility barrier.

Expressions involving more than one variable or fol-
lowing internal references can also be expressed with
XSLT. This is the case for the relationship between
form fields and theirlabel elements. According to
accessibility good practices, all non-hidden form fields
should have a description stating the purpose of the form
field (or what kind of data is expected to be entered).

6For reducing verbosity, they are presented all together in a singular
XSLT template. They might have been written in a template for each
header, but we wanted to reduce verbosity and maintain singular
templates only.

Proceedings of the Second International Workshop on Automated Specification of Web Systems (WWV), November 9, Cyprus

Expression
DTD Not feasible
XML Schema Not feasible
XSLT <xsl:template match=”//*[@onmouseup or @onkeyup]

[not(@onmouseup=@onkeyup)]”>
<xsl:message>Device dependence. Both keyboard and mouse should be-

have similarly.</xsl:message>
</xsl:template>

TABLE IX

DEVICE DEPENDENCE. BOTH KEYBOARD AND MOUSE SHOULD BEHAVE SIMILARLY.

Expression
DTD Not feasible
XML Schema Not feasible
XSLT <xsl:template match=”//object[normalize-space(.)=”]

[not(*[name()!=’param’])]”>
<xsl:message>Multimedia objects without alternative. The alternative in-

side is mandatory.</xsl:message>
</xsl:template>

TABLE X

MULTIMEDIA OBJECTS WITHOUT ALTERNATIVE. THE ALTERNATIVE INSIDE IS MANDATORY.

Container el-
ement

Required element Condition to be mandatory

head title Always
html head Always
frameset,
iframe

noframes Always

object some alternative inside If object does not contain alternative text
form fieldset If too many form fields
select optgroup If too many options
table caption If table contains tabular data, i.e, it is not a

layout-onlytable
TABLE XI

ELEMENTS CONDITIONALLY REQUIRED

Expression
DTD Not feasible
XML Schema Not feasible
XSLT <xsl:template match=”(//a| //area)[starts-with(@href,’javascript:’) and

not(@onclick)]”>
<xsl:message>JavaScript code should appear in event

attributes.</xsl:message>
</xsl:template>

TABLE XII

NOT ONLY JAVA SCRIPT-BASED NAVIGATION . JAVA SCRIPT CODE SHOULD APPEAR IN EVENT ATTRIBUTES.

Container el-
ement

Misused
attribute

Misusage condition

a, area href JavaScript present athref attribute, instead of at
onclick attribute

meta http-equiv Badly used for auto-refresh or auto-redirect
input alt If input’s type is not ”image”
* (any tag) alt Alt attribute equalssrc attribute
* (any tag) target Badly used for emerging windows
* (any tag) tabindex Not a set of unique consecutive numbers
* (any tag) accesskey Not a unique character

TABLE XIII

ATTRIBUTES TYPICALLY MISUSED

Proceedings of the Second International Workshop on Automated Specification of Web Systems (WWV), November 9, Cyprus

Expression
DTD Not feasible
XML Schema Not feasible
XSLT <xsl:template match=”//h6[not(preceding::*[self::h1 or self::h2 or self::h3

or self::h4 or self::h5 or self::h6][1][self::h6 or self::h5])]|
//h5[not(preceding::*[self::h1 or self::h2 or self::h3 or self::h4 or self::h5

or self::h6][1][self::h6 or self::h5 or self::h4])]|
//h4[not(preceding::*[self::h1 or self::h2 or self::h3 or self::h4 or self::h5

or self::h6][1][self::h6 or self::h5 or self::h4 or self::h3])]|
//h3[not(preceding::*[self::h1 or self::h2 or self::h3 or self::h4 or self::h5

or self::h6][1][self::h6 or self::h5 or self::h4 or self::h3 or self::h2])]|
//h2[not(preceding::*[self::h1 or self::h2 or self::h3 or self::h4 or self::h5

or self::h6][1])]”>
<xsl:message>Improper headers</xsl:message>

</xsl:template>
TABLE XIV

PROPERLY USED HEADERS

Expression
DTD Not feasible
XML Schema Not feasible
XSLT <xsl:template match=”//area”>

<xsl:variable name=”area” select=”.” />
<xsl:if test=”not(//a[@href = $area/@href])”>
<xsl:message>Missing redundant area’s link</xsl:message>

</xsl:if>
</xsl:template>

TABLE XV

A REDUNDANT LINK IS REQUIRED FOR EACH CLIENT-SIDE MAP AREA.

This description should either be in itstitle attribute
or in a label tag referring to it. The XSLT template
from table XVI establishes that for any form field that
has notitle attribute, alabel referring to the form
field must be present.

Blind people usually find a lot of barriers within a doc-
ument. They usually read Web pages with screen readers,
so they usually navigate through the list of links in a
document in order to navigate faster. Thus, it is important
that the link’s contents can be easily understood when
read out of context. Links saying the same words (like
”click here” or ”read more”) and pointing to different
targets make navigation difficult. We also must consider
that blind users are non-case sensitive when they use
screen readers. For that reason, it is a bad practice if
two links pointing to different targets share the same
pronounceable text. The pronounceable text of a link is a
mixture of its text contents, theirtitle attribute (which
provides extra information) and thealt attributes of all
the images inside the link. Although other features like
punctuation signs have not been considered in the XSLT
expression from table XVII, we can use them to detect
similar links pointing to different targets.

V. CONCLUSIONS AND FUTURE WORK

We needed to express rules or templates easy to
understand that could be applied to any Web page easily
and transparently, i.e., that users could easily understand
how to comply with them. We needed that such rules
could be reusable and easy to modify. We found that
XSLT [7] could be used to express such templates. By
applying a self-developed XSLT file, we could generate
accessibility reports directly from any Web page.

Soon, we became aware of the expressing power of
this approach. We became aware that we could easily
express conditions from already built Web Accessibility
evaluators, no matter if they were simple or complex in
a fine and clean way. We also realized that we could
express conditions not previously being checked. For
instance, we included conditions from the XHTML spec-
ification not previously formalized in the corresponding
DTD or Schema.

We have dealt with subjective conditions using the
approach of having some customizable parameters in
the XSLT file. This way, people might customize some
values of the XSLT according to their own needs.

We would have liked to find the required expressing
power in DTDs or XML Schema. If so, we would have

Proceedings of the Second International Workshop on Automated Specification of Web Systems (WWV), November 9, Cyprus

Expression
DTD Not feasible
XML Schema Not feasible
XSLT <xsl:template match=”//select| //textarea|

input[@type=’password’ or @type=’text’ or
@type=’checkbox’ or @type=’radio’ or @type=’file’]”>

<xsl:variable name=”ff” select=”.” />
<xsl:variable name=”l” select=”//label[@for=$ff/@id]” />
<xsl:if test=”count($l)>1 or

(count($l)=0 and not(@title))”>
<xsl:message>Missing form field’s label</xsl:message>

</xsl:if>
</xsl:template>

TABLE XVI

A LABEL IS REQUIRED FOR EACH FORM FIELD

Expression
DTD Not feasible
XML Schema Not feasible
XSLT <xsl:template match=”//a| //area”>

<xsl:variable name=”a” select=”.” />
<xsl:for-each select=”$a/following::a | $a/following::area”>
<xsl:if test=”@href != $a/@href and

translate(normalize-space(concat(@title, .//@alt, .)),
’abcdefghijklmnopqrstuvwxyźaé́ıóúñ’,
’ABCDEFGHIJKLMNOPQRSTUVWXYZÁÉÍÓÚÑ’) =

translate(normalize-space(
concat($a/@title, $a//@alt, $a)),

’abcdefghijklmnopqrstuvwxyźaé́ıóúñ’,
’ABCDEFGHIJKLMNOPQRSTUVWXYZÁÉÍÓÚÑ’)” >

<xsl:message>
Different links sharing the same pronounceable text
<!– $a and . are such links –>

</xsl:message>
</xsl:if>

</xsl:for-each>
</xsl:template>

TABLE XVII

AVOID SIMILAR LINKS POINTING TO DIFFERENT TARGETS.

written our conditions in such a grammar (and WAEX
would probably be an enhanced DTD or Schema). How-
ever, we found that DTDs and XML Schemas don’t have
the required expressivity, so that’s why we used XSLT.

We are planning to adapt WAEX to generate EARL
[5] reports as well.

VI. A CKNOWLEDGEMENTS

We gratefully acknowledge support from the MOSAIC
TSI-2005-08225-C07and INFOFLEX TIC2003-07208
projects of the “Ministerio de Educación y Ciencia”
(Spanish ministry). The second author also gratefully
acknowledges support from his University and the “Sec-
retaŕıa de Estado de Universidades e Investigación del
Ministerio de Educación y Ciencia” of Spain for his
sabbatical stay at MIT during the academic year 2005/06,

and to the MIT for hosting him during this year in an
inspiring environment.

REFERENCES

[1] W3C Web Content Accessibility Guidelines 1.0 (Recommenda-
tion, May 1999)
www.w3.org/TR/WCAG10

[2] W3C XHTML 1.0TM 1.0 - The Extensible HyperText Markup
Language (Second Edition), A Reformulation of HTML 4 in
XML 1.0, W3C Recommendation 26 January 2000, revised 1
August 2002
www.w3.org/TR/xhtml1

[3] W3C XHTML 1.1 TM 1.1 - Module-based XHTML W3C
Recommendation 31 May 2001
www.w3.org/TR/xhtml11

[4] W3C XHTML Basic W3C Recommendation 19 December 2000
www.w3.org/TR/xhtml-basic

[5] W3C Evaluation and Report Language (EARL) 1.0 Guide -
Editors’ Draft 14 February 2006
www.w3.org/TR/EARL10

Proceedings of the Second International Workshop on Automated Specification of Web Systems (WWV), November 9, Cyprus

[6] W3C XQuery 1.0: An XML Query Language W3C Working
Draft 29 October 2004
www.w3.org/TR/xquery

[7] W3C XSL Transformations (XSLT) Version 1.0 W3C Recom-
mendation 16 November 1999
www.w3.org/TR/xslt

[8] W3C Markup Validation Service
validator.w3.org

[9] WatchfireWebXACT Accessibility tool
webxact.watchfire.com

[10] CEAPAT, Fundacíon CTIC, Spanish Ministry of Employment
and Social Affairs (IMSERSO)Online Web accessibility test
www.tawdis.net

[11] Fundacíon SIDAR Accessibility testing with Style
www.sidar.org/hera

[12] Jean Vanderdonckt, Abdo Beirekdar, Monique Noirhomme-
FraitureAutomated Evaluation of Web Usability and Accessi-
bility by Guideline Review
4th Web Engineering International Conference (ICWE 2004),
Munich

[13] SourceforgeHTML parser and pretty printer in Java
jtidy.sourceforge.net

[14] Daniel VeillardThe XML C parser and toolkit of Gnome
www.xmlsoft.org

[15] Vicente Luque CentenoWAEX: Web Accessibility Evaluator in
a single XSLT file
www.it.uc3m.es/vlc/waex.html

[16] Vicente Luque Centeno, Carlos Delgado Kloos, Martin Gaedke,
Martin NussbaumerWCAG Formalization with W3C Standards
The 14th International World Wide Web Conference
(WWW2005), ISBN 1-59593-051-5, pags. 1146-1147 Chiba,
Japan, May 11-14, 2005

[17] Vicente Luque Centeno, Carlos Delgado Kloos, Jesús Arias
Fisteus, Norberto Fernández Garćıa Estudio comparativo de
herramientas de evaluación de la accesibilidad web
V Jornadas de Ingenierı́a Teleḿatica, JITEL 2005, ISBN 84-
8408-346-2 Vigo, 12-14 de Septiembre de 2005

Proceedings of the Second International Workshop on Automated Specification of Web Systems (WWV), November 9, Cyprus

