
Towards DSL-based Web Engineering 
Martin Nussbaumer 
University of Karlsruhe 

Engesserstr. 4 
76128 Karlsruhe, Germany 

+49 (721) 608-8073 

nussbaumer@tm.uka.de 

Patrick Freudenstein 
University of Karlsruhe 

Engesserstr. 4 
76128 Karlsruhe, Germany 

+49 (721) 608-8042 

freudenstein@tm.uka.de 

Martin Gaedke 
University of Karlsruhe 

Engesserstr. 4  
76128 Karlsruhe, Germany 

+49 (721) 608-8076 

gaedke@tm.uka.de  
 

ABSTRACT 
Strong user involvement and clear business objectives, both 
relying on efficient communication between the developers and 
the business, are key factors for a project’s success. Domain-
Specific Languages (DSLs) being simple, highly-focused and 
tailored to a clear problem domain are a promising alternative to 
heavy-weight modeling approaches in the field of Web 
Engineering. Thus, they enable stakeholders to validate, modify 
and even develop parts of a distributed Web-based solution. 

Categories and Subject Descriptors 
D.2.13 [Software Engineering]: Reusable Software - Domain 
Engineering; D.2.2 [Software Engineering]: Design Tools and 
Techniques - Evolutionary prototyping;  

General Terms 
Human Factors, Languages, Design 

Keywords 
Web Engineering, DSL, Web Services, Conceptual Modeling 

1. INTRODUCTION 
Communication problems between the developers and the great 
diversity of stakeholders, faced especially in EAI projects, form a 
major roadblock to the efficient and reliable specification of a 
distributed Web-based solution. On the other hand, experience 
reports and research studies reveal the importance of clear 
business objectives and strong user involvement throughout the 
whole project lifecycle.  

Within the last years, a variety of complex and extensive 
modeling approaches aiming at providing a basis for the formal 
and systematic specification of aspects of Web applications has 
emerged [1, 4] . Based on our experiences gained in several large-
scale projects, this kind of modeling methodologies turned out to 
be a good means of specification and communication within the 
developer team. Regarding the strong collaboration with 
stakeholders, who are usually non-programmers with completely 
diverse educational backgrounds and work areas, they were too 
complex and too hard to learn.  

In contrast to this, Domain-Specific Languages (DSLs) are small, 
simple and highly-focused specification languages for a clear and 
small problem domain [2], i.e. a specific aspect of a distributed 
Web-based solution. They employ well-known concepts, 

abstractions and notations derived from the problem domain and 
thus are easy to learn, understand and use, both by developers and 
stakeholders. Our vision of DSL-based Web Engineering is to 
empower stakeholders and domain experts to directly contribute 
to the development effort by validating, modifying and even 
autonomously developing DSL programs. 

2. EVOLUTIONARY DSL FRAMEWORK 
Figure 1 depicts the three slices of our evolutionary DSL 
framework approach. During a continuous evolution, the 
components of a DSL for a particular aspect of a distributed Web-
based solution are being built or adapted (Conceptual Slice), they 
are applied to specify a part of the envisioned solution in terms of 
a DSL program (Logical Slice) and finally they are used to 
execute a DSL program (Physical Slice). Based on the 
experiences and requests for changes and improvements gained in 
an iteration, a new iteration is triggered. In order to be able to 
efficiently handle the emerging multitude of DSLs, we propose a 
Reuse Repository as the central storage for all DSL elements and 
associated metadata as well as a “DSL Librarian” team role.  

Reuse 
Repository

WSLS

DAR

XML

DSM

<XSD />

continuous evolution

continuous evolution

Physical Slice
Applcations and 
Components

Solution Building Block

SBB

Logical Slice

DSL progams

DIM

 
Figure 1: Overview of our evolutionary DSL framework  

The core elements of a DSL are the Domain-Specific Model 
(DSM) and one or more Domain Interaction Models (DIM). The 
former represents the formalized schema (usually an XML 
Schema) of all solutions that can be specified within the DSL’s 
associated problem domain. The latter, a DIM, is based on the 
DSM and provides dedicated (graphical) notations derived from 
and tailored to the DSL’s problem domain. A DIM specifies the 
“editing notation” that is used to develop a DSL program – the 
Domain Abstract Representations (DAR). As it must strictly 
adhere to the DSM, a DAR is usually serialized into an XML 
document. In order to execute a DSL program, we use a so-called 
Solution Building Block (SBB). A SBB is a software component 

 

Copyright is held by the author/owner(s). 
WWW 2006, May 23–26, 2006, Edinburgh, Scotland. 
ACM 1-59593-323-9/06/0005. 
 

In Proceedings of the 15th International Conference on World Wide Web (Edinburgh, Scotland, May 23 - 26, 2006). WWW '06.
ACM Press, New York, NY, 893-894. DOI= http://doi.acm.org/10.1145/1135777.1135931



whose behavior can be configured by a DAR. Web applications 
can thus be built by composing SBBs and configuring them with 
DSL programs. The WebComposition Service Linking System 
(WSLS) [3] serves as technical platform facilitating the 
systematic composition and configuration of SBBs. 

3. DSL CATALOGUE 
In the following, a selection from our DSL catalogue concerning 
the three important dimensions navigation, data interaction and 
web-based process guidance of an EAI project is presented. 

3.1 Data Interaction 
Problem Domain: In distributed web-based solutions, the 
integration of and interaction on various data sources, usually in 
form of web services, is a key requirement. 

Domain-Specific Model: The DSM describing Data Interaction 
is based on the CRUDS primitives, i.e. accessing and modifying 
data via create, read, update, delete and search. Based on 
XPointer expressions referring to the WSDL data type 
specifications of the associated web service, the interaction modes 
on each data element can be defined.  

Domain Interaction Model: In order to allow for a quick and 
intuitive configuration of the data interaction modes according to 
a web service’s WSDL specification, we integrated the DIM in 
the WSLS framework [3] by customizing the Property Editor. 
Hence, this editor allows for the easy specification and selection 
of the desired parameters for the data interaction like the web 
service URL or the desired data type. 

3.2 Web-based Process Guidance 
Problem Domain: In advanced web applications, user guidance 
processes, i.e. the traversal of a set of application domains 
according to events triggered by the user, play an important role. 

Domain-Specific Model: The concepts known from Finite State 
Machines represent the foundation of our DSM. The realization of 
our DSM is based on XLink and includes elements for specifying 
states (i.e. application domains), transitions and events. 

Domain Interaction Model: As a first step, due to the 
characteristics and requirements found in one of our projects, we 
employed Petri nets as a DIM, just focusing on very simple and 
intuitive constructs.  

3.3 Linklist 
Problem Domain: Interconnecting application domains to build 
linking structures like menus or an index, is inherently required 
for web applications. In EAI projects, parts of an integrated 
system landscape are composed (i.e. linked) to new application 
domains through appropriate linking structures.  
Domain-Specific Model: The Linklist DSM is based on XLink 
and provides concepts for structuring links and specifying the 
traversal behavior from the source to the target (embed or 
replace).  The extract from the DSM schema shows the 
declaration of link types that connect application domains. 
<xs:complexType name="domainType"> (1) 
 <xs:attribute name="linkbase" type="xs:string" /> 
 <xs:attribute ref="xlink:title"/> 
 <xs:attribute fixed="simple" ref="xlink:type" /> 
 <xs:attribute ref="xlink:href" /> 
 <xs:attribute ref="xlink:arcrole" /> 
 <xs:attribute ref="xlink:role" /> 
 <xs:attribute ref="xlink:show" /> 
 <xs:attribute fixed=”onRequest”  

  ref="xlink:actuate" /> 
</xs:complexType> 
 
An extract of a DSL program (i.e. a DAR) according to the DSM 
is depicted in the following code fragment. 
<linklist> (2) 
 <level label="Organizational Services"> 
  <domain xlink:type="simple"  
   xlink:actuate="onRequest"  
   xlink:href="personalScheduleDomain"   
   xlink:title="My Schedule"  
   linkbase="self" xlink:show="embed" /> 
    […links to further application domains…] 
  </level> 
</linklist> 
 
Domain Interaction Model: So far, we have developed a DIM 
which defines a graphical notation for a “Level”, an “Internal 
Link”, an “External Link” and a “Connector”. While “Level” is 
capable of grouping a set of links and allows for defining 
hierarchies, the link types specify the link target and the traversal 
behavior. The “Connector” realizes the aggregation of links and 
nesting of levels.  Figure 2 depicts the application of the Linklist 
DSL using the defined DIM symbols. 

 
Figure 2: Application of the Linklist DSL: (a) pen and paper 
drafted DIM, (b) MS Visio DIM, (c) applied and executed DSL 
program within a portal based on the WSLS framework. 

4. REFERENCES 
[1] Ceri, S., Fraternali, P., and Bongio, A. Web Modeling 

Language (WebML): A Modeling Language for Designing 
Web Sites. in 9th International WWW Conference. 2000.  

[2] Deursen, A.V., Klint, P., and Visser, J., Domain-Specific 
Languages: An Annotated Bibliography. ACM SIGPLAN 
Notices, 2000. 35(6): p. 26-36. 

[3] Gaedke, M., Nussbaumer, M., and Meinecke, J., WSLS: An 
Agile System Facilitating the Production of Service-Oriented 
Web Applications, in Engineering Advanced Web 
Applications, M. Matera and S. Comai, Editors. 2004, Rinton 
Press. 

[4] Schwabe, D., Rossi, G., and Barbosa, S. Systematic 
Hypermedia Design with OOHDM. in ACM International 
Conference on Hypertext' 96. 1996. Washington, USA. 

  

In Proceedings of the 15th International Conference on World Wide Web (Edinburgh, Scotland, May 23 - 26, 2006). WWW '06.
ACM Press, New York, NY, 893-894. DOI= http://doi.acm.org/10.1145/1135777.1135931


