
WEB APPLICATION DEVELOPMENT
EMPLOYING DOMAIN-SPECIFIC LANGUAGES

Martin Nussbaumer, Patrick Freudenstein, Martin Gaedke

University of Karlsruhe, Institute of Telematics,

IT-Management and Web Engineering Research Group
Engesser Str. 4, D-76128 Karlsruhe, Germany

{nussbaumer, freudenstein, gaedke}@tm.uni-karlsruhe.de

ABSTRACT
In Web application development projects, the
specification of the envisioned solution is a time-
consuming task suffering from communication problems
between the developers and the business. Based on our
experiences gained in several real-world projects, we
propose an approach combining Domain-Specific
Languages and a supporting technical platform. Web
application development can thus be performed by
composing building blocks and configuring them with
DSL programs.

KEY WORDS
Web Engineering, Domain-Specific Languages,
Conceptual Modeling, Reuse, XML and Web Services

1. Introduction
Assuring efficient and clear communication between the
various actors in software development projects is a key
factor. Based on the evaluation of meanwhile over 50,000
IT projects within the last ten years, the Standish Group’s
annual CHAOS Reports list aspects like strong user
involvement and clear business objectives among the top
five success factors for IT projects [1]. Particularly in the
fields of requirements specification and conceptual design
establishing a common understanding and avoiding
misunderstandings between the developers and the
business becomes decisive.

In the context of Web Engineering, a multitude of
approaches allowing for an extensive, systematic and
formal specification of aspects of a distributed Web-based
solution have emerged, e.g. [2, 3]. They usually provide
very expressive and powerful concepts and notations
which makes them a good means of communication
within the developer team. However, learning these
languages is usually a rather time-consuming task. For
stakeholders involved in Web application development
projects, who are mostly non-programmers with diverse
academic and non-academic backgrounds, this effort is
often unreasonably high.

In contrast to these “heavy” languages, Domain-Specific
Languages (DSLs), also known as “Little Languages” [4],
have recently gained increasing attention. In [5] they are
defined as “programming languages or executable

specification languages that offer, through appropriate
notations and abstractions, expressive power focused on,
and usually restricted to, a particular problem domain”.
Being highly focused on a small, specific aspect of the
solution and providing dedicated concepts and (graphical)
notations from the problem domain, DSLs are easy to
learn, understand and use, both for the developers and the
business. The usability of a DSL can be further enhanced
by supplying dedicated graphical representations and
accompanying editors for particular stakeholder groups.
Similar to programs written in a general purpose
language, e.g. Java or C#, a DSL program can be
transformed into executable code by a dedicated DSL
compiler.

Our vision of DSL-based Web Engineering is to enable
stakeholders and domain experts themselves to
understand, validate, modify, and even develop aspects of
a distributed Web-based solution on the basis of DSLs.
Thus, we aim at smoothing communication problems and
misunderstandings out and thus achieving more efficient
and more successful Web application development
projects.

The remainder of this paper is organized as follows. In
section 2, we motivate our idea of DSL-based Web
Engineering based on our lessons learned in a large-scale
university-wide Enterprise Application Integration (EAI)
project. Following, in section 3, we present our approach
towards DSL-based Web Engineering, consisting of an
evolutionary DSL framework and an underlying technical
platform. In section 4, we portray an extract of our DSL
catalogue and describe one DSL dealing with form-based
user interaction in more detail. Afterwards, in section 5,
we perform the evaluation of our approach based on a
real-world scenario. Finally, we draw the conclusions and
present future work.

2. Lessons Learned
In the following, we report from our experiences gained
in several real-world Web application development
projects and in particular in the large-scale university-
wide Enterprise Application Integration (EAI) project
“Karlsruhe’s Integrated Information Management (KIM)”
[6]. In the following, we portray the communication
problems between the various project participants and

Proceedings of the IASTED International Conference on Software Engineering (SE2006), Pages 13-18, Innsbruck, Austria, 2006

stakeholders arising in the course of requirements
specification and conceptual design.

Especially in projects dealing with the development of
distributed, large-scale Web-based solutions,
communication between the business and the developers
is being aggravated by the great diversity of involved
stakeholders. This is due to the fact that, in such
distributed scenarios, the stakeholders usually have
completely different professional and educational
backgrounds. Thus, it is comprehensible that each group
uses its own “language” when talking about aspects of the
solution. Regarding the specification of business
processes in the KIM project, for example, the variety of
languages ranged from written natural language over Petri
nets [7] to the Business Process Modeling Notation
(BPMN). In addition, we found stakeholders to be
predominantly non-programmers and rarely available for
interview sessions. Consequently, in order to assure an
efficient and preferably far-reaching collaboration
between stakeholders and developers, languages for the
design of facets of a distributed Web-based solution
should be easy to learn, understand and use.

Over the last years, a lot of languages trying to cover their
problem domain as exhaustive as possible by including a
broad range of concepts and notations have been
elaborated. In our experiences, these kinds of languages
proved to be a good means of conceptual and logical
design within the developer team. Surprisingly, in the
most cases, our attempts of employing them for the
collaboration with stakeholders failed due to their
complexity. The time and effort necessary for learning a
common set of such languages turned out to be not
feasible.

Hence, we recognized simplicity as a key factor to
usability and effectiveness. Based on our experiences,
using small and simple languages and thus empowering
all stakeholders to understand and use them turned out to
be a more successful option. In the majority of cases, a
language covering about 80% of a problem domain was
completely sufficient and yielded in turn to a much better
usability and efficiency. Further improvements could be
achieved by including high-level abstractions and
concepts of the problem domain and by providing
graphical notations tailored to the characteristics and
needs of particular stakeholder groups.

3. A DSL-based Web Engineering Approach
With regard to our experiences as described in the
previous section, we discovered Domain-Specific
Languages (DSLs) to be an ideal alternative to the
existing “heavy-weight” conceptual design languages.
DSLs can be characterized as small, simple and highly
focused languages for specifying clearly identifiable
aspects of a solution. Moreover, they employ idioms,
concepts and (graphical) notations of the associated
problem domain. Thus, they are easy to learn, understand
and use, especially for domain experts without software
development skills.

Figure 1 shows the elements of our approach towards
DSL-based Web Engineering which is based on the
principles of evolution and reuse. We differentiate
between two phases in the course of a continuous
evolution: Development for Reuse comprises the design
and development of a DSL and Development with Reuse
covers the usage of a DSL for the specification and
development of a part of a distributed Web-based
solution.

DSL
Librarian

Reuse
Repository

Development for Reuse

Development with Reuse

WSLSDAR

XML

DSM

<XSD />
DIM SBB

Figure 1: Overview of our evolutionary and reuse-
oriented approach towards DSL-based Web Engineering

In our approach, a DSL consists of three components. The
Domain-Specific Model (DSM), usually an XML Schema
Document, represents the formal schema for all solutions
that can be described with the DSL. Thus, the DSM has to
be designed in accordance with the problem domain the
DSL is intended for. Based on the DSM, a Domain
Interaction Model (DIM) comprises a dedicated
(graphical) notation being as intuitive as possible for a
particular stakeholder group. The DIM is tightly coupled
to the DSM; however, it needs not to cover all of its
aspects. By using a DIM, stakeholders can employ the
DSL, i.e. understand, validate and even create DSL
programs, without being confronted with complicated
source code. Instead, the DIM should provide concepts
and notations derived from the problem domain and
thereby should be easy to understand and use. In order to
meet different requirements and characteristics of various
stakeholder groups, a dedicated DIM for each group could
be included in a DSL. A further enhancement to the
usability and effectiveness of a DSL can be achieved by
accompanying editing tools based on the notations
specified in the DIMs.

Besides the design of a DSM and one or more DIMs, the
development of a Solution Building Block (SBB), being
capable of executing the DSL programs, completes the
“Development for Reuse” phase. An SBB can be seen as
a software component whose behavior can be configured
through a DSL program, usually in terms of an XML
document. We use the WebComposition Service Linking

Proceedings of the IASTED International Conference on Software Engineering (SE2006), Pages 13-18, Innsbruck, Austria, 2006

System (WSLS) [8] as technical framework for the SBBs.
WSLS is based on the core ideas of the WebComposition
approach [9] and aims at facilitating the systematic
evolution of Web applications by reusing software
artifacts and emphasizing the “configuration instead of
programming” paradigm. In our approach, the WSLS
framework allows for the systematic composition and
configuration of SBBs.

During the “Development with Reuse” phase, the Domain
Abstract Representation (DAR) is developed. The DAR
represents the specification of a concrete solution within
the DSL’s problem domain. In other words, the DAR is a
DSL program. Consequently, it is based on the DSM and
modified by using one or more DIMs. As the DSM is
usually specified as an XML Schema, the DAR is
serialized and stored in an XML document based on the
DSM. However, in contrast to today’s integrated
development environments (IDE), the editing process
using DIM notations is not performed on this serialized
form. Modifications are rather carried out directly on the
abstract model itself. Thus, DSL programs can be edited
in a more powerful way than it would be possible if
interacting with the DAR’s serialized form. After having
developed a DAR, its XML representation is passed to the
DSL’s associated SBB, i.e. a component of the WSLS
framework. The SBB in turn adapts its behavior
according to the DAR and thereby executes it. Web
application development can thus be performed in an
evolutionary manner by composing SBBs and configuring
them with DARs.

Both the emerging variety of DSLs for the diverse aspects
of distributed Web-based solutions and each DSL itself
underlie a continuous evolution. Based on experiences
gained from employing DSLs in collaboration with
various stakeholders, existing DSLs are improved, new
ones are developed and some could even be removed. To
support a systematic and efficient usage and management
of DSLs in such an evolutionary environment, we propose
the installation of a central Reuse Repository [10] and the
incorporation of a DSL Librarian team role.

The Reuse Repository acts as the central storage for DSLs
and associated metadata and provides means for their
efficient organization, management and retrieval. During
the “Development for Reuse” phase, new or modified
DSLs are classified and stored in the repository.
Therefore, versioning features and a sophisticated
classification schema are essential. Later on, in the
“Development with Reuse” phase, existing DSLs are
searched in the repository depending on factors like the
problem domain, the application type or the kind of
stakeholders. This again requires an advanced
classification schema and appropriate search
functionalities.

The DSL Librarian is responsible for the efficient
management and usage of DSLs. She accompanies the
project team throughout the development process and puts
emphasis on efficient reuse when developing and

consuming DSLs. Furthermore, she assists in finding and
applying DSLs and is in charge of the administration of
the Reuse Repository and its contents as well as the
conservation of gained experiences and knowledge.

4. DSL Catalogue
In this section, we describe three DSL’s out of our Reuse
Repository catalogue targeting important aspects of Web
applications: Navigation, Web-based process guidance,
and form-based user dialogs. The presentation of each
DSL is divided up into a statement about the problem
domain, the description of the Domain-Specific Model
and the introduction of a Domain Interaction Model.
While the first two DSLs are depicted focusing only on
their most important characteristics, the form-based user
interaction is described in more detail.

4.1 Link List
Problem Domain: Building linking structures, e.g.
menus or index, by interconnecting application domains
and their related chunks of information is a central task in
the development of Web applications.

Domain Specific Model: The Link List DSM is based on
XLink and provides concepts for structuring links and
specifying the traversal behavior from the source to the
target (embed or replace).

Domain Interaction Model: So far, we have developed a
DIM which defines symbols for a “Level”, an “Internal
Link”, an “External Link” and a “Connector”. A “Level”
groups a set of links, the link types specify the link target
and the traversal behavior, and the “Connector” realizes
the aggregation of links and nesting of levels.

4.2 Web-Based Process Guidance
Problem Domain: In Web applications, user guidance
processes, i.e. the traversal of a set of application domains
according to events triggered by the user, play an
important role.

Domain Specific Model: The concepts known from finite
State Machines (FSM) represent the foundation of our
DSM. The realization of our DSM is based on XLink and
includes elements for specifying states (i.e. application
domains), transitions and events.

Domain Interaction Model: Due to the characteristics
and requirements found in the KIM project, we employed
Petri nets as a DIM, just focusing on very simple and
intuitive constructs.

4.3 PetriX Dialog Modeling
Problem Domain: Terry R. Schussler stated at the “Mac
World San Francisco ‘98” conference: “Interaction is not
animation. It's not audio. It's not video. It's user control
and dynamic experience.” Especially in the graphical
environment of the Web, interface design has to deal with
constructing meaningful behavior while placing
interaction gadgets. Thus, in order to foster
comprehensive dialog modeling towards dynamic user
experiences, a dedicated DSL is needed.

Proceedings of the IASTED International Conference on Software Engineering (SE2006), Pages 13-18, Innsbruck, Austria, 2006

Domain Specific Model: We decided to use XForms [11]
for our DSM as it is a recommendation of the W3C.
Although most user agents still don’t support native
XForms, most of the big vendors promised support, like
e.g. the Mozilla browser [12] or a plug-in for the Internet
Explorer. While traditional form mechanisms introduced
in HTML 2.0 are fundamental for HTML, XForms will
become an integral part of the XHTML 2.0 specification.
Furthermore, parts of XForms can be reused in other
markup languages like SMIL, SVG or WML.

XForms distinguishes three parts to separate presentation
from data and behavior: the XForms model, instance data
and the user interface. The XForms model solely
describes the logical elements of a form. Therefore, it
consists of an XML instance that collects the values
entered by a user while editing the form. Beyond that, the
model provides submission information about the server’s
location and the encoding style. In contrast, the user
interface describes layout and appearance of embedded
form controls that are bound to the model’s data instance.
Data binding in XForms is established by using XPath
expressions.

XForms allows for declaring XML event handlers that are
capable of capturing high-level semantics like e.g.
displaying a message box. Thus, an XForms-based
application enhances the accessibility while not
exclusively relying on scripting technologies as it is
common today. Hence, each form control possesses the
ability to define events and event handlers according to
XML Eventing.

Figure 2 gives an overview of the controls defined in
XForms and the additional structuring elements “group”,
“repeat” and “switch”. The “Interaction Carrier” is
responsible for linking the controls with the model’s data
instance by referencing them via XPath expressions or
XForms-specific bindings. Furthermore, an interaction
carrier provides means for defining action statements to
specify dedicated behavior.

Figure 2: The XForms user interface concepts as a high-
level UML class diagram.

Domain Interaction Model: As a means for supporting
dialog engineers and stakeholders in creating and
modifying user interface descriptions, we customized
Microsoft Visio with dedicated support for PetriX
diagrams. The PetriX approach combines the power of
Petri nets [7] for describing workflows and behavior with
the abstraction and extensibility of the XForms controls to
create user interfaces. Consequently, a form modeled with
PetriX is divided in two logical units: partitions (places)
and interaction structures (transitions that connect places).

A partition place encapsulates a set of interaction carriers
which group and enrich them with additional layout
information. The layout of a partition can be specified by
applying Cascading Style Sheet (CSS) attributes and
providing an appearance hint on how the partition should
be rendered on a client. Partitions can be nested and thus
can contain further partitions.

An interaction structure defines the behavior between the
connected partition places. Hence, an interaction structure
can dynamically control which parts of a form are visible
and thus can be filled out by a user. Especially if parts of
the form are dependent from data values or user actions,
an interaction structure reduces the form’s complexity by
hiding unnecessary parts. Figure 3 shows two typical
interaction structures that are common in form design:
previous-next and choice. Their behavior is expressed
with a Petri net transition that can be triggered by
dedicated form controls in a partition.

Figure 3: The Interaction Structures “Previous-Next”
(left hand) and “Choice” (right hand) in their Petri net
representation.

After the dialog structure has been modeled with Visio,
the Petri net-like models are mapped to XForms code
using XML transformations. Therefore, we developed an
XSLT-based transformation engine which takes the XML
export from Visio as input. The resulting Domain
Abstract Representation is then passed to a corresponding
Solution Building Block being able to render the XForms
code using a mixture of HTML and JavaScript.

5. PetriX applied – an example
In the following, we outline how the PetriX DSL can be
used in practice based on an example from our university.
Within the scope of the development of an employee self-
service portal for our university’s department, we reused
the experiences gained from the KIM project. As an initial
step, we built the portal structure and components on top
of our technical platform WSLS by composing Solution
Building Blocks configured with appropriate DSLs.

Figure 4 depicts the Domain Interaction Model for PetriX
which was introduced in section 4.3. We customized

Proceedings of the IASTED International Conference on Software Engineering (SE2006), Pages 13-18, Innsbruck, Austria, 2006

Microsoft Visio to support dialog engineers in creating
user interfaces by using the drag & drop facility of the
graphical editor. Thus, it allows the placement of the pre-
defined model symbols and their annotation with
additional properties from the fields of behavior,
attributes and usage. In Visio, a so-called “stencil”
facilitates the definition of graphical notation sets as
depicted on the left hand side of Figure 4 (1a, 1b).

We defined the two stencils: Petri Net to model behavior
and XForms to support the basic control module of
XForms. The drawing canvas contains the form partitions
which are connected by transitions to shape the dedicated
behavior imposed by the interaction structures (Figure 4 -
area 2). The depicted diagram displays a choice allowing
for the activation of one of the connected partitions
depending on the selected value of the xforms:select1.
Visio offers means for the annotation of the pre-defined
graphical notations. The modular characteristics of
XForms for combining attribute groups facilitate
managing and applying annotation sets (3a). The selected
xforms:input control comprises a dedicated set of
annotation attributes like data referencing or CSS support
(3b).

In the following we describe how a dialog modeled with
PetriX can be mapped to a corresponding XForms code
fragment. Therefore, we regard the scenario depicted in
Figure 4for travel expenses, where a user first selects the
type of transportation, i.e. one of the values “car”, “train”
or “plane”. Depending on that selection, the relevant part
of the form is rendered dynamically to query only
relevant values.

Figure 4: The PetriX DIM realized with Microsoft Visio

In the case of the xforms:select1 control, the selected
value is bound via an XPath expression
(expenses/transport/type) to a data instance which is part
of the XForms model (1).
<xforms:model> (1)
 <xforms:instance>
 <expenses xmlns=”urn:forms:expenses”>
 ...
 <transportation>
 <type />
 <distance />
 <privateCar />
 <flightnumber />

 <frequentFlyerMiles/>
 <bahncard />
 </transportation>
 ...
 </expensesForm>
 </xforms:instance>
</xforms:model>

After the PetriX diagram is completed, it is exported from
Visio as an XML document. We used an XSL(T)-based
transformation tool which provides dedicated support for
processing Visio Xml documents. The transformation of
the PetriX model is realized according to term rewriting.
In the depicted example, the transitions from the selection
partition to the partitions car, plane and train can be
expressed by the XForms module switch as follows: The
xforms:select1 control is bound to the corresponding
data instance and writes the current selected value, e.g.
car. The corresponding XForms code fragment can be
constructed by term rewriting according to the annotated
values like e.g. the referenced XPath expression (2).
<select1 ref="expenses/transport/type"> (2)
 <label>Select transportation type</label>
 <item>
 <label>Traveled by car</label>
 <value>car</value>
 </item>
 <item>
 <label>Traveled by train</label>
 <value>train</value>
 </item>
 <item>
 <label>Traveled by plane</label>
 <value>plane</value>
 </item>
</select1>

The choice interaction structure from our example is
expressed by using the XForms switch module (3). For
each connected transition an XForms case is rendered
which can display the relevant part of the form at runtime.
This relevance is expressed by the current selected value
of the xforms:select1 control.
<switch ref=”expenses/transport/type”> (3)
 <case id=”car”>
 term rewriting of connected partition “car”
 </case>
 <case id=”plane”>
 term rewriting of connected partition “plane”
 </case>
 <case id=”train”>
 term rewriting of connected partition “train”
 </case>
</switch>

Figure 5: The interaction structure “Choice” and the
corresponding rendered XForms dialog.

Proceedings of the IASTED International Conference on Software Engineering (SE2006), Pages 13-18, Innsbruck, Austria, 2006

Figure 5 depicts the relevant part of the rendered form,
which corresponds to the given example “Select
Transportation”. The interaction structure is in the state
after a user has selected the option “car”. Consequently,
the form only renders the controls associated with the
partition “car”.

6. Summary & Future Work
In this paper, we presented our approach towards the
development of distributed Web-based solutions
employing Domain-Specific Languages. We reported
from our experiences in the field of communication
between developers and stakeholders gained in several
real-world projects and pointed out the major difficulties
leading to misunderstandings and insufficiently or not
fulfilled requirements. Existing conceptual modeling
languages offer complex concepts and notations and
attempt to cover their problem domain as exhaustive as
possible. However, regarding the collaboration with
stakeholders who are usually non-programmers and have
no experiences in the field of software development, they
require too much time and effort for learning,
understanding and using them.

Our approach’s underlying vision is the direct
involvement of stakeholders in the development effort by
enabling them to autonomously understand, validate and
specify parts of a distributed Web-based solution. Thus,
simplicity is a key requirement. We identified Domain-
specific Languages (DSLs) to be an ideal building block
for our approach. DSLs can be characterized as simple,
highly-focused languages for solving clearly identifiable
aspects of a distributed Web-based solution and
incorporate concepts, idioms and notations from the
problem domain. As they are subject to continuous
evolution, we introduced an evolutionary framework for
their systematic development, management and usage.
Our technical platform for the execution of DSL programs
consists of Solution Building Blocks (SBBs) who can be
systematically composed and configured with DSL
programs on the basis of the WebComposition Service
Linking System (WSLS).

Following, we presented an extract from our DSL
catalogue and described a DSL for the problem domain of
form-based user interaction called “PetriX”. The DSL’s
formal model employs concepts from XForms and Petri
nets and includes an easy to use graphical notation which
was supplemented by a dedicated tool support based on
Microsoft Visio. In the last section, we exemplarily
demonstrated the usage of PetriX in a real-world scenario
dealing with the development of a travel expenses report
feature within an employee self-service portal.

Future work deals with the continuous evolution of our
DSL catalogue based on the experiences gained in current
projects. We aim at improving existing DSLs and
developing new ones in order to cover more and more
aspects of distributed Web-based solutions. With respect
to the PetriX DSL, we are analyzing requirements
concerning behavioral aspects of forms and user

interaction in general and derive further interaction
structures to be included in the DSL. Furthermore,
advanced presentation aspects should be considered.
Beyond that, we strive for enhancements of our
approach’s technical infrastructure like a semantic
classification schema for the repository allowing for
context-based searches and an integrated environment for
DSL-based Web application development.

7. References
[1] The Standish Group International, CHAOS

Research - Research Reports, 1994-2005:
http://www.standishgroup.com.

[2] Ceri, S., Fraternali, P., and Bongio, A., Web
Modeling Language (WebML): A Modeling
Language for Designing Web Sites, Proc. 9th
International World Wide Web Conference
(WWW), Amsterdam, Nethderlands, 2000, 137-
157.

[3] Schwabe, D., Rossi, G., and Barbosa, S.,
Systematic Hypermedia Design with OOHDM,
Proc. ACM International Conference on
Hypertext' 96, Washington, USA, 1996.

[4] Bentley, J.L., Programming pearls: Little
languages, Communications of the ACM, 29 (8),
1986, 711-721.

[5] Deursen, A.V., Klint, P., and Visser, J., Domain-
Specific Languages: An Annotated
Bibliography, ACM SIGPLAN Notices, 35 (6),
2000, 26-36.

[6] KIM Project Homepage - 2005, University of
Karlsruhe: http://www.kim.uni-karlsruhe.de/
(24.04.2005).

[7] Petri, C.A., Kommunikation mit Automaten,
Dissertation, Technische Universität Darmstadt,
Darmstadt, 1962.

[8] Gaedke, M., Nussbaumer, M., and Meinecke, J.,
WSLS: An Agile System Facilitating the
Production of Service-Oriented Web
Applications, in Engineering Advanced Web
Applications, S.C. M. Maristella, Editor. 2005,
Rinton Press. p. 26-37.

[9] Gaedke, M. and Turowski, K., Integrating Web-
based E-Commerce Applications with Business
Application Systems, Netnomics Journal, Baltzer
Science Publishers, 2 (2000), 2000, 117-138.

[10] Gaedke, M., Rehse, J., and Graef, G., A
Repository to facilitate Reuse in Component-
Based Web Engineering, Proc. International
Workshop on Web Engineering at the 8th
International World-Wide Web Conference
(WWW8), Toronto, Ontario, Canada, 1999.

[11] Dubinko, M., et al., XForms 1.0 - W3C
Recommendation, 2003, W3C:
http://www.w3.org/TR/2003/REC-xforms-
20031014/.

[12] Beaufour, A., et al., Mozilla XForms Project -
2005: http://www.mozilla.org/projects/xforms/.

Proceedings of the IASTED International Conference on Software Engineering (SE2006), Pages 13-18, Innsbruck, Austria, 2006

