
WebComposition Service Linking System:
Supporting development, federation and evolution

of service-oriented Web applications

Martin Gaedke, Martin Nussbaumer, Emma Tonkin

IT-Management and Web Engineering Research Group,
Institute of Telematics, University of Karlsruhe,

Zirkel 2, D-76128 Karlsruhe, Germany,
E-Mail: {gaedke | nussbaumer | tonkin}@tm.uni-karlsruhe.de

Abstract. There exists a need within many large organizations and their partners to
operate cross-organizational Web applications. This paper introduces the
WebComposition Service Linking System (WSLS), a component-based and service-
oriented system which makes extensive use of Web Services and other standardized
Internet technology in order to support development, maintenance and management of
reusable and configurable components for cross-organizational Web applications. A
real-world application based around the WSLS support system which provides
globally accessible core services, NUKATH -- Notebook University Karlsruhe(TH) --
is introduced. Our NUKATH project’s vision is that business processes of universities
shall be established, supported, and provided by aggregations of high-quality,
ubiquitously accessible, federated services. These federation-aware services could
thence be the basis for reusable and standardized business building blocks of a
university. Furthermore, these services could transcend the "business" borders of a
university – thus allowing for unique meta-structures of distributed universities
supporting new collaboration scenarios in education and research.

Keywords: Web Service, Reuse, Composition, Federation, Evolution,
Component-based Web Engineering

1 Introduction

Effective Web Engineering strategies within any large organizational structure such as
an enterprise or university have a well-understood dependency on effective
underlying technologies. A frequently embraced example of such technology is the
provision of reusable, configurable components [1, 2]. This constitutes a replacement
of previously used ad hoc methods and itself stems from the field of software
engineering [3] – it is often considered axiomatic to the field of Web Engineering that
reusability is a key concern. Recently, much work within the Web Engineering
community has focused on Web Services [4], a standards-based and highly
interoperable method of invoking remote procedures, an example of which would be
SOAP over HTTP [5]. They provide a powerful approach for the development of new
kinds of Web applications that are built by composition of distributed components –
typically, any given Web Service exists within a known environment; authentication,
data storage and so on are therefore dealt with on a local level, within the parent
organization. However, one may easily imagine scenarios in which unique services
provided by any given organization have value to Web applications of related

Proceedings of the Third Int. Workshop on Web-oriented Software Technology (IWWOST 2003)

organizations and it is therefore desirable to share – or rent – these services. In this
case, one could describe the desired situation by imagining a unique repository of
shared Web Services from which web applications may be assembled [6]. This
scenario presents difficulties; consistent authentication, cross-organizational
relationships, or data/business semantics must be compatible across the various
organizations, for example.

This argument suggests that Web Services alone in the context of cross-organizational
Web applications would be insufficient for many problem sets when deployed on a
larger scale. In this case, much of their potential stems more or less directly from the
addition of federation [7]. Federation has been qualitatively defined by IBM and
Microsoft as: The technology and business arrangements necessary for the
interconnecting of users, applications, and system. This includes authentication,
distributed processing and storage, data sharing and more.

This paper is structured as follows; we begin with a brief résumé of our previous work
in the field and the concepts that underpin its design and operation. Following this, we
continue by describing the concepts, results and practical decisions behind the
evolution of our work from the time of its conception to the present day. We introduce
our current framework, WSLS, and its application within the university context,
NUKATH. We proceed to identify a complex workflow process within the context of
university administration, of which we then demonstrate a model and solution.
Finally, we conclude with a number of brief comments about the future direction that
we envisage for our research.

2 WebComposition

Our approach to Web Engineering is fundamentally based on the choice of supporting
web applications throughout the lifecycle at the level of fine-grained objects rather
than the course-grained level that file-based resources represent. This approach [8],
introduced in 1997, was christened WebComposition; the objects to which it refers are
themselves known as web components. A practical implementation of this model was
also developed, the WebComposition system, designed as an open platform for Web
Engineering tools rather than a self-contained engineering environment.

The initial incarnation of this approach was the WCML system, based on the Web
Composition Markup Language [9]. This approach proved to be viable in the sense of
being a powerful toolkit and a great deal of support for additional features such as
WebDav [10], SOAP were added [11] over time. WCML was first applied in an
appropriately-scaled real-world environment during development of a world-wide e-
procurement system for Hewlett-Packard [12]. In practice, however, the freedom
given to the developer was sometimes too much, since WCML unbound was too
powerful and therefore appeared complex to the inexperienced. The learning curve
involved simply proved to be too steep in certain circumstances.

2.1 Separation of concerns

WebComposition is designed to force separation of the various elements and towards
this end applies the architecture of Service composition as introduced by the
EvolutionBus approach [13]. The Service architecture separates clearly and

Proceedings of the Third Int. Workshop on Web-oriented Software Technology (IWWOST 2003)

consistently, as shown in Figure 1 and focuses on simplification of design,
conceptualization and operation.

Figure 1 – Separation of concerns within a WebComposition Service

Each of these layers is defined as a service element, an abstraction for the purpose of
separating concerns. There are six of these contained within the model; content,
decoration, navigation, user interaction, process and communication. More
conceptually interesting than these points alone is the control function, the ‘glue’ that
merges the various layers together.

A simple example of the control function in action follows; the below represents a
sample snippet that describes the definition of a services by configuring the required
service elements in XML and binding them to the responsible control function
(defined by the CFURI).
…
<eb:service cf="CFURI" xmlns:eb="urn:wsls:evolutionbus:service">
 <eb:property name="Content">ContentFile.xml</eb:property>
 <eb:property name="Presenter">BookPresenterURI</eb:property>
 <eb:property name="Navigator">IndexNavigatorURI</eb:property>
</eb:service>
…

This configuration code and others like it are initially read by the EvolutionBus
system, which makes note of the control functions mentioned in the code and runs
them using the parameters provided; in this case, the CFURI control function is
designed to operate on the source file “ContentFile.xml” and uses the
BookPresenterURI service element for presenting the content and providing an index-
based navigational context by using the specified navigational service element (as
provided by the IndexNavigatorURI).

-

Inhalt Inhalt

Dekoration Dekoration

Navigation Navigation

Interaktion Interaktion

Verarbeitung Verarbeitung

Kommunikation Kommunikation

Inhalt Content

Dekoration Presentation

Interaktion Interaction

Verarbeitung Processing

Kommunikation Communication

Control

Function

Navigation

Proceedings of the Third Int. Workshop on Web-oriented Software Technology (IWWOST 2003)

2.2 EvolutionBus

WebComposition is based on an object-oriented model for web applications.
According to this model, a web application is hierarchically composed by
components. At higher levels in this hierarchy, a component may model not only a
page or even a site, but also application-specific concepts such as a document or a
dialog consisting of a number of inter-related pages. Further down the hierarchy,
components relate to parts of pages, such as for example tables, table entries, anchors
and referenced dynamic resources; components at this leve l may also represent
application-defined abstractions for page organization, for example Overview section.
The leaves in the component hierarchy are called primitives, the other components
being composites. This model does not prescribe the grain of primitives. For example,
a text consisting of several paragraphs could be modeled as a primitive provided that
the text as a whole represents the basic unit of manipulation.

In the WebComposition approach the basic architecture of a web application is
described with the term EvolutionBus. This initializes functions controlling all
application domains of a web application. It enables management and collaboration of
domain components, which implement specific application domains such as
procurement or reporting.

The evolution for which it is named may take place in two ways:

• Domain specific evolution – defined as the extension of a domain through new
services, e.g. adding a new service to domain by adding a service
configuration specifying the service elements to use (Cf. XML example shown
above).

• Evolution of the domain set – the evolution of an application through the
modification of the domain set, e.g. extension of an application’s functionality
by adding a new application domain. An example of this could be the addition
of a procurement domain, with support for a shopping basket and
corresponding functionality permitting items to be ordered from a Web-based
product catalog (which could exist independently of the procurement domain
in the sense of a product catalog domain).

At the present time, we are working towards extension of the EvolutionBus with the
concept of federation. The EvolutionBus implementation is already capable of a form
of federation, as part of its WebComposition heritage, and this will be extended to
form a practical framework.

3 WSLS support system

The next generation framework of the WebComposition approach, known as WSLS
(WebComposition Service Linking System) and pronounced Weasels, was designed
to force the developer to operate in a systematic way. Towards this aim, a number of
changes were made. A move was made to a restrictive component-based concept.
WSLS guides the developer more directly in the sense that development with the
system is deeply rooted in a good understanding of the abstract (EvolutionBus-based)
architecture [13]. Separation of concerns (eg, navigation, content, presentation) is now
strictly embedded into the WSLS system whereas WCML merely provided guidelines
to this effect; this stricter control should lead to a more consistent development effort.
The service-based component model used implies that WebComposition services are

Proceedings of the Third Int. Workshop on Web-oriented Software Technology (IWWOST 2003)

built upon distributed components. The lack of clear control exerted by WCML is not
limited to the issues of systematic separation of concerns; other issues, such as “best-
practices” for user interaction or presentational issues like accessibility, also fall
within this category and will be addressed in future WSLS development.

3.1 Supporting the WebComposition approach

WSLS is effectively an implementation of the WebComposition approach. The WSLS
framework provides a shared platform; it may be perceived as a framework but also
provides a number of support services and basic functions. Primary amongst these
services, lying at the core of the system, is the EvolutionBus. In the same way that the
microkernel for an operating system provides basic operations, so does the
EvolutionBus for the WSLS system.

This includes support required for developing all elements of the service architecture
as described in section 2.1 as well as for basic operation of the services and domains.
However, it is not exhaustive. Additional elements are, notably;

• Security and DRM, to support authentication and authorization also in the
future context of federated WSLS-based applications [14-16]

• Dedicated support for remote services and connecting EvolutionBuses using
Web Services

The UML class-diagram in Figure 2 describes an abstracted form of the WSLS
service definition as defined by the WebComposition approach (Cf. Figure 1). The
term ‘domain’ refers to a logical artifact (an area on a web page). Within the domain,
the control function involved acts to define the nature/structure of sub-domains or
service(s) visible within the domain. A domain including only services and service
elements, but which includes no other domains, is referred to as a container.

Figure 2 – WSLS service definition/abstraction

A domain consists therefore of sub-domains or containers. A simple example of a
container is a grid container, which simply shows every service held within it in a
grid layout. A more complex container such as one that controls a shopping process

Domain Control Function Service

Application-specific
Base service

Container

ServiceElement

1

1

1
1

1..n

1..n

Proceedings of the Third Int. Workshop on Web-oriented Software Technology (IWWOST 2003)

includes logic destined to tacitly control the process (eg. by showing services
appropriate to the current context within the process). Domains and container domains
both include the various service elements.

The WSLS implementation uses an event-based approach [17], which is to say that an
event, once raised, calls a chain of tasks which must be resolved by the control
function and delegated to responsible service elements for further operation. An
example of this is the event-based navigation; clicking on a link raises an event that
invokes the associated navigational service element. Although web user interfaces are
quite different from more traditional interfaces, passing events remains an effective
strategy – particularly given the WSLS design focus on configurable, reusable,
component-based systems. This is analogous to more traditional dialog-based
development environments such as Visual Basic and company.

The following Figure 3 shows a simplified example of domain architecture consisting
of presentation, content and navigation. The domain (here a container) itself has three
child services, Services A to C. As the diagram shows, the decorator element provides
a placeholder for the services as well as defining decoration in a literal sense. The
navigation element, in this case a simple previous/next navigation, joins pages A to C.
The control function responsible for the operation of the domain handles incoming
events and delegates necessary tasks to the service elements of the domain.

Figure 3 – A simple domain example within WSLS

3.2 Effective, flexible modeling of security and authentication

It has often been remarked upon in industry that role-based authentication is an
effective and easy modeling system with which to model business needs and
workflows. The security model implements a form of role-based authentication. It

ServiceA ServiceB ServiceC

Teaching/learning
Domain

DublinCore.Title

DublinCore.Author

PrevNext

(A, B, C) Metadata

Proceedings of the Third Int. Workshop on Web-oriented Software Technology (IWWOST 2003)

provides the ability to bind tickets to user accounts. This is equally usable above
accounting systems such as databasing, LDAP, .Net passport; it is effectively an
adaption layer. ‘Flexibility’ also implies the ability to work in a distributed way,
permitting federated services, in which this model succeeds.

A brief synopsis of the security model is as follows; the WSLS implementation
includes a user management system, which assigns roles to users according to context
– for example, a visitor to a web page may be simply a visitor, a student, professor, or
an administrator. Within each role, the user will be assigned one ticket, the task of
which is to provide information of the user’s permissions within the context of the
role, thus separating the visitors further into ticket-defined “sub-roles”. As an
example, imagine a faculty bulletin board where lecturers are given read, write and
delete access across all boards and students are permitted to add new comments and
read existing ones. The professor is provided with a ticket of unlimited duration
certifying his/her status, whilst the student is given a time- limited student ticket that
expires regularly, for example, at the end of each semester, at which time it has to be
renewed by the student office. Given this basis, XML-based configuration then
permits the site administrator to grant permissions as defined above:
…
<service name="test" cf="eventsURI"
 xmlns=’urn:wsls:evolutionbus:service’>
 <grant permission="View" role="GUESTS"/>
 <grant permission="View" role="AUTHENTICATED"/>
 <grant permission="Modify" role="Professors"/>
 <grant permission="Delete" role="CreatorOwner"/>
 <grant permission="Add" role="Students"/>
 <property name="Content.WebService.Adaptor.tmReader">
 http://mw.tm.uni-karlsruhe.de/services/events/events.asmx
 </property>
 <property name="Presenter">EventPresenterURI</property>
</service>
…

This service grants permissions according to the status of each entry in the bulletin
board events service; the Creator/Owner role refers to the author of a given event.
Note that the ‘Modify’ permission refers to “Add + Delete + (literal) Modify”.

It is notable that, firstly, the ticket provided to the user narrows the definition of the
role, secondly, that the tickets themselves may legally exist by default independently
of the role in which they are provided. One may conceive of a ‘separate’ subclass of
tickets which, by means of containing additional information or appropriate attributes
(such as a signed hash value), become suitable for use with Web Services – a security
token. The logic contained within the operation of tickets may be of arbitrary
complexity, and it is therefore possible to implement sophisticated rules, including
DRM-style systems depending on complex networks of multiple servers [18].

3.3 Overview of the WSLS-architecture

As shown below, the WSLS-architecture provides a supporting system and basic
framework upon the EvolutionBus foundation, including domains, container, services,
service elements, security services and metadata. The web application specific
services in the upper layer are built upon the WSLS framework. They may, however,

Proceedings of the Third Int. Workshop on Web-oriented Software Technology (IWWOST 2003)

also include elements from remote services such as RSS news feeds or the Google
Web Service provided by Google Inc.

Figure 4 – Architectural Overview of WSLS

4 NUKATH: Notebook University Karlsruhe (TH)

The following discussion of the WSLS support system exists in the context of the
NUKATH – Notebook University Karlsruhe (TH) – project, based around WSLS,
which provides globally accessible core services for education and knowledge
transfer. The NUKATH project vision is that business processes of universities shall
be established, supported, and provided by aggregations of high-quality, ubiquitously
accessible federated services. These federation-aware services could thence be the
basis for reusable and standardized business building blocks of a university or
organization and due to their federated nature may even provide the ability to
transcend the borders of one organization, permitting unique meta-structures of
distributed universities to be constructed. One might perhaps here stress the point that
services, basic or otherwise, are by no means restricted to being local in nature and are
designed in order to promote rich, open interaction.

WSLS is the provider of the basic functions (WSLS services and domains), whilst
NUKATH is the provider of the application-specific services, an implementation
designed specifically for university teaching and learning scenarios. Note that the
NUKATH ‘meta-structure’, which unites the various teaching and learning domains,
works in this way as an effect of the underpinning EvolutionBus implementation.
Returning for a moment to the tree structure as indicated by the UML diagram view
previously mentioned (Cf. Figure 2), one can relate the basic services in Figure 5,
below, to the leaves in the WebComposition component hierarchy.

Remote
Services

W
S

L
S

 R
u

n
tim

e
A

rch
itectu

re O
verview

Control
Function
Definitions

Core Service
Configuration

Core Service

Administration

Abstract
Domain CF

Abstract
Service CF

Abstract
Container CF

Abstract Service
Element

S
ervice E

lem
ents

Content

Presentation

Navigation

Interaction

Process

Communication

C
ore S

ervices

Domain
control
function

Container
control
function

Service
control
function

Roles

ACL

L&L Metadaten L&L Metadaten Dublincore

Abstract
Metadata

Security

Ticket
Services

RSS Web Service

Google Web Service

Web Application specific services

Login

Events Google

File
Lister

Download
Container

Grid
Container

Landmark

Menu

SetBased

Index Navigation

Filesystem

Metadata Adapt.tmReader

TextPresenter

XmlXslPresenter

Decorator

EvolutionBus System

Proceedings of the Third Int. Workshop on Web-oriented Software Technology (IWWOST 2003)

Figure 5 – EvolutionBus architecture applied to the NUKATH environment

WSLS itself includes a number of control function base services, which are
characterized by their simplicity; NUKATH adds a number of application-specific
services related to e-learning, knowledge transfer, administration and business
processes.

Figure 6 – Merging navigation and decoration to create a landmark

Figure 6 shows a real-world example of the merging between navigation and
presentation (provided by a decoration component) elements in an example domain,
plus the application logic that controls the landmark (e.g.: to list as the landmark
pattern requires, this internally requires the inclusion of index navigation). Recall
from 2.1 that there are several layers not explicitly shown in this example, such as
interaction, process and so on; these are inherent from the domain except where
specified otherwise; e.g. content may be given inherently from the domain

Landmark Landmark

Decoration Navigation

+

= =

Paragraph Navigation

Teaching and

learning domain

Teaching and

learning domain

Basic service

Teaching and

learning domain

Basic service

NUKATH

Headline

Proceedings of the Third Int. Workshop on Web-oriented Software Technology (IWWOST 2003)

configuration (an XML document for a web application describing domains,
container, services and their relationships).

5 Sample NUKATH workflows

We have chosen to concentrate for the purposes of this paper on two processes taken
from the NUKATH project: firstly, a subscription system, and secondly, the workflow
process that surrounds a student’s progress through a semester worth of lectures.

5.1 Subscription system

The subscription system is initially developed for use at the University in the context
of enrolment on a four month practical course, where students are subscribed for the
full three months. Following the end of the practical course, the subscription assigned
to the student changes to indicate a ‘passed’ status. This permits them a different form
of access to the site which shows, for example, possible thesis topics and suggested
further reading. When used elsewhere, a number of different functionalities are
required. As an example, more commercial environments may need to offer
subscriptions on a monthly basis, or to sell ‘ticket books’ providing a number of
accesses. These requirements are easy to model; consider Figure 7.

Bear in mind, however, that the simplicity of this model implies that a great deal of
the innate complexity of the problem has simply been redefined such that the tickets
models the required business or organizational rules. The ticket logic may be
relatively complex, including the application of cryptography standards and the use of
intermediate servers (as in the case of DRM systems) [15, 19].

Figure 7 – A simple subscription example

The following lecture/exam process is somewhat more complex, as described in
Figure 8, but the process can nonetheless be managed entirely by correctly modeling
the roles and tickets. The workflow process is described on the left, whilst on the right
is a model of the process showing the management of the workflow using tickets.

User: A

Ticket instance:
Monthly subscription
validity

Ticket instance:
Valid for ten uses

Ticket instance:

Other subscription
logic…

User: B

Abstract ticket

(IsValid->Boolean)

Role: Subscriber Role: Subscriber

Proceedings of the Third Int. Workshop on Web-oriented Software Technology (IWWOST 2003)

Figure 8 – Lecture/exam process

Notice that the stage concerning enrolment to the course is essentially a reprise of the
simple example previously discussed in this section. However, the later stages
concern multiple actors as well as asynchronous parallel actions and are as such more
complex. The service described here is effectively a ticket-based system for managing
a term’s worth of student enrolment. It is an application-specific base service within

Student Lecturer /
Examiner

Moderator

Enrols for
Lecture A

Attends
Lecture A

Examined
on Lecture A

Awaits
update

Marks
examination

Moderates
examination

Post results

Receives
results ,
credits

Object:

Exam

Actors:

Student(s)

Lecturers/examiners

Metadata:

State: (un)marked, moderated

Grade: (may be multiply graded)

…

Student receives:
Enrolment: Lecture A
Valid: Course length

Roles/Ticket in use

Student receives:

Eligible: Exam A

Exam A eligibility
expired.

Student receives
Secure Credits Ticket

for course (for
university credits DB)

Exam metadata altered
appropriately throughout

marking process, and
checked at result post.

Proceedings of the Third Int. Workshop on Web-oriented Software Technology (IWWOST 2003)

the NUKATH system and is as such reusable for any NUKATH deployment. Its
elements are also reusable, for example the rating service, the service that controls
result posting, and so forth, as of course are the object/metadata combination(s).

The utility of this system lies within the opportunity for federative strategies. Whilst it
describes an acceptable solution within a simple network, the additional level of
abstraction typically overlays an existing authentication method and might even be
considered to be redundant in some situations. However, once multiple organizations
are involved, this shared abstract layer becomes indispensable. Consider the following
scenario; a student at Karlsruhe University may complete modules with any of a
number of affiliated universities, such as Augsburg University. During their time at
the affiliated university the moment-to-moment administrative details are naturally
controlled by the partner university and on successful completion of the course, the
student receives credits from the partner university. When the student returns to his or
her home university, the credits represented in the student’s ticket are presented in
order to permit their education to continue. These may be copied into a regular student
profile database at the home university.

6 Conclusion and further work

We have identified a number of currently important directions in which to expand our
research. The first of these is the previously mentioned concept of federation. We are
working towards a robust definition of federation in the context of cross-
organizational Web applications, and exploring the limits of the security structures
proposed within this paper.

Now that the WSLS/NUKATH system exists, a detailed way of modeling web sites is
available based on the tree-view structure defined by the EvolutionBus as described
within this paper. This also encompasses modern additions such as Web Service
integration as currently defined. Now that this framework and support system exists in
a form which provides an appropriate level of restriction to the design process, we can
work on the new opportunities offered within the development process. This provides
a basis for exploring further issues that may arise during modern web development,
like issues of usability or IPR, whilst retaining a clear focus on reusability.

Examples

The WSLS-System and further information related to the WebComposition approach
can be found at: http://www.wsls.net

Acknowledgments

The work on the NUKATH project is supported by a grant from the
Bundesministerium für Bildung und Forschung (BMBF), Germany.

Proceedings of the Third Int. Workshop on Web-oriented Software Technology (IWWOST 2003)

References

[1] P. Allen and S. Frost, Component-Based Development for Enterprise Systems:
Applying The Select Perspective. Cambridge: Cambridge University Press,
1998.

[2] C. Szyperski, "Component-Oriented Programming: A Refined Variation on
Object-Oriented Programming," The Oberon Tribune, vol. 1, 1996.

[3] R. Prieto-Díaz, "Reuse as a New Paradigm for Software Development,"
presented at Systematic Resue: Issues in Initiating and Improving a Reuse
Program: Proccedings of the International Workshop on Systematic Reuse,
Liverpool, 1996.

[4] H. Haas, "Web Services Activity Statement," World Wide Web Consortium
(W3C), 2002.

[5] N. Mitro, "SOAP Version 1.2 Part 0: Primer - W3C Proposed
Recommendation 07 May 2003," vol. 2003: World Wide Web Consortium
(W3C), 2002.

[6] T. Bellwood, L. Clément, D. Ehnebuske, A. Hately, M. Hondo, Y. L.
Husband, K. Januszewski, S. Lee, B. McKee, J. Munter, and C. von Riegen,
"UDDI Version 3.0," UDDI.org, Published Specification uddi-v3.00-
published-20020719, 19.07.2002 2002.

[7] G. Della-Libera, B. Dixon, J. Farrell, P. Garg, M. Hondo, C. Kaler, B.
Lampson, K. Lawrence, A. Layman, P. Leach, J. Manferdelli, H. Maruyama,
A. Nadalin, N. Nagaratnam, R. Rashid, J. Shewchuk, D. Simon, and A.
Wesley, "Security in a Web Services World: A Proposed Architecture and
Roadmap," IBM Corporation and Microsoft Corporation, Web Page
01.05.2002 2003.

[8] H.-W. Gellersen, R. Wicke, and M. Gaedke, "WebCompostion: an object-
oriented support system for the Web engineering lifecycle," Computer
Networks and ISDN Systems, vol. 29, pp. 1429-1437, 1997.

[9] M. Gaedke, C. Segor, and H.-W. Gellersen, "WCML: Paving the Way for
Reuse in Object-Oriented Web Engineering," presented at 2000 ACM
Symposium on Applied Computing (SAC 2000), Villa Olmo, Como, Italy,
2000.

[10] Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D. Jensen, "RFC 2518:
HTTP Extensions for Distributed Authoring -- WEBDAV," IETF, Network
Working Group, RFC 2518, February 1999 1999.

[11] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F.
Nielsen, S. Thatte, and D. Winer, "Simple Object Access Protocol (SOAP)
1.1," vol. 2000: World Wide Web Consortium (W3C), 2000.

[12] M. Gaedke, H.-W. Gellersen, A. Schmidt, U. Stegemüller, and W. Kurr,
"Object-oriented Web Engineering for Large-scale Web Service
Management," presented at Thirty-Second Annual Hawaii International
Conference On System Sciences (HICSS-32), Island of Maui, USA, 1999.

[13] M. Gaedke, Komponententechnik für Entwicklung und Evolution von
Anwendungen im World Wide Web. Aachen: Shaker Verlag, 2000.

[14] J. Kohl and C. Neuman, "The Kerberos Network Authentication Service
(V5)," IETF, Network Working Group, Cambridge, MA, USA, Request for
Comments 1510, 09.1993 1993.

[15] J. S. Erickson, "Fair Use, DRM, And Trusted Computing," Communications of
the ACM (CACM), vol. 56, pp. 34-39, 2003.

Proceedings of the Third Int. Workshop on Web-oriented Software Technology (IWWOST 2003)

[16] B. L. Fox and B. A. LaMacchia, "Encouraging Recognition Of Fair uses In
DRM Systems," Communications of the ACM (CACM), vol. 56, pp. 47-49,
2003.

[17] D. S. Rosenblum and A. L. Wolf, "A Design Framework for Internet-Scale
Event Observation and Notification," in Proceedings of the Sixth European
Software Engineering Conference (ESEC/FSE 97), M. Jazayeri and H.
Schauer, Eds. Germany: Springer-Verlag, 1997, pp. 344-360.

[18] D. Eastlake, J. M. Reagle, D. Solo, M. Bartel, J. Boyer, B. Fox, B. LaMacchia,
and E. Simon, "XML-Signature Syntax and Processing - W3C
Recommendation 12 February 2002," http://www.w3.org/, W3C
Recommendation REC-xmldsig-core-20020212, 12.02.2002 2002.

[19] T. Imamura, B. Dillaway, and E. Simon, "XML Encryption Syntax and
Processing - W3C Recommendation 10 December 2002," http://www.w3.org/,
W3C Recommendation REC-xmlenc-core-20021210, 10.12.2003 2002.

Proceedings of the Third Int. Workshop on Web-oriented Software Technology (IWWOST 2003)

