
Construction by Linking: The Linkbase Method

Johannes Meinecke

University of Karlsruhe
Engesserstr. 4

76128 Karlsruhe, Germany
+49 (721) 608-8072

meinecke@tm.uka.de

Frederic Majer

University of Karlsruhe
Engesserstr. 4

76128 Karlsruhe, Germany
+49 (721) 608-7393

majer@tm.uka.de

Martin Gaedke

Chemnitz University of Technology
Straße der Nationen 62

09111 Chemnitz, Germany
+49 (371) 531-25530

gaedke@cs.tu-chemnitz.de

ABSTRACT

The success of many innovative Web applications is not based on

the content they produce – but on how they combine and link

existing content. Older Web Engineering methods lack flexibility

in a sense that they rely strongly on a-priori knowledge of existing

content structures and do not take into account initially unknown

content sources. We propose the adoption of principles that are

also found in Component-based Software Engineering, to

assemble highly extensible solutions from reusable artifacts. The

main contribution of our work is a support system, consisting of a

central service that manages n:m relationships between arbitrary

Web resources, and of Web application components that realize

navigation, presentation, and interaction for the linked content.

Categories and Subject Descriptors

D.2.13 [Software Engineering]: Reusable Software – reusable

libraries. H.5.4 [Information Interfaces and Presentation]:

Hypertext / Hypermedia – Architectures

General Terms

Management, Design

Keywords

Web Engineering, Content Linking, Web Services, Triple Stores

1. INTRODUCTION
During recent years, the Web has experienced several paradigm

shifts. Seen originally as a means for publishing documents

worldwide, it has later also been used as a platform for

applications. Now, once again, we observe another fundamental

change, as sites no longer form isolated applications, but instead

combine their functionality with external services and the content

contributed by large communities of participating Web users. The

achieved added value is especially high, when content is not just

integrated as separate sets of resources, but when resources from

different sources are linked to each other. Within this work, we

speak of links as items referencing two resources that somehow

belong together, as e.g. a photo and an XML document describing

the person who took the photo. The systematic construction of

such Web applications is challenged with the need for continuous

extensions with new content sources. Unlike in situations where

everything is under the control of the application provider, the set

of sources that are potentially relevant changes frequently, as old

services become obsolete and new services become popular.

Consequently, the development process must account for

originally unknown sources to be integrated and linked to the

existing content later. Related to that, there is a repetitive

implementation effort for content source linking that is

independent of the application domain. Complexity results e.g.

from issues of distribution, caching, support for multiple service

interfaces, or the realization of navigation across the linked

content. Hence, this raises the question of how we can abstract

from specific applications and package generic functionality in

reusable components. Additionally, we have to deal with content

sources that are unprepared to be linked. Belonging to different

organizations, they were most likely developed without

knowledge from each other. Therefore, the linking structure has to

be imposed retrospectively, without the means to make any

changes to the external sources.

2. THE LINKBASE METHOD
To address the mentioned challenges, the Linkbase method aims

at building applications by linking autonomous content sources

with the help of a support system. Figure 1 outlines the general

architecture and the steps to be performed.

Figure 1: Architectural Overview of the Linkbase Method

Inspired by older Open Hypertext approaches as e.g. [3], links

between arbitrary resources are managed separately, with the help

of a central Web service (the Linkbase service) in a uniform way.

The Web application itself is assembled from generic, domain-

independent components that work with the links from the

Linkbase and the content from the different sources to provide

navigation, presentation, and interaction to the user. In the

following, we give a brief overview of the three groups of

activities that are necessary to apply the idea of the Linkbase for

building applications.

Copyright is held by the author/owner(s).

WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.

ACM 978-1-59593-654-7/07/0005.

mejoh
Text Box
J. Meinecke, F. Majer, M. Gaedke; Construction by Linking: The Linkbase Method; Proceedings of the Sixteenth International World Wide Web Conference (WWW), Banff, Canada, 8-12 May, 2007.

2.1 Providing the Content Sources
Before the content sources can be linked to each other, they need

to be accessible in a uniform way. In the case of conventional

Web resources, the URI already enable such a uniform access, as

e.g. addressing images via URLs over HTTP. If the content

originates from Web services, there is a wider choice of access

methods and interfaces. To overcome diversity, we propose the

introduction of a generic, uniform interface that abstracts from the

particular type of content. As one alternative, the CRUDS

interface allows the querying and manipulation of arbitrary sets of

content objects through the operations Create, Read, Update,

Delete and Search. The interface can either be implemented at

directly controlled services, or at wrapping services that delegate

the content requests to third-party services. In order to address the

resources uniformly, CRUDS uses a naming scheme based on

Uniform Resource Nominators (URN) that contain, in addition to

the local object identifiers of the resource, also an identifier of the

service supplying the resource.

2.2 Linking the Content
Based on the unified information space, the second step of the

Linkbase method deals with the actual linking of the resources.

The Linkbase approach treats links as triples of URIs, each

consisting of a subject, a predicate, and an object. In our case, the

subject and object URIs refer to resources provided by the

autonomous data sources, and the predicate URI serves as a label

for the type of relationship. For storing and managing triples,

there already exists a wide variety of triple stores [1]. In

correspondence to the loosely coupled architecture of the overall

solution to be built, the triple store is connected to the application

as a Web service, called Linkbase service. The built-in reasoning

support provided by many triple stores can be applied to relieve

the application from the burden of computing links by itself, as

e.g. in the case of transitive relationships. In addition to

referencing external content, it may also be necessary to retrieve

the information about which resource is linked to which from the

outside. To account for this, we propose an extension of the triple

store concept to provide triples extracted from external sources at

runtime (i.e. the triples do not originate from information stored at

the Linkbase, but from queries to external services).

2.3 Using Linked Content in the Application
The aim of the third step is to allow developers to construct the

actual Web application without having to program it. Instead, they

assemble the application from ready-built, reusable components.

To achieve this, the Linkbase method builds on previous work,

the WebComposition Service Linking System (WSLS) approach

[2]. In WSLS, separation of concerns is realized by developing

components as fine-grained implementation artifacts that can be

combined with each other by following the Decorator software

design pattern. For example, a component providing a list of

content objects might be combined with a component for

presenting the individual items and a component realizing an

index navigation pattern. In this work, we supplemented the

WSLS approach with a catalogue of components specialized on

dealing with linked content. Since both content sources and links

are accessible in a uniform way, we can restrict the number of

components to be implemented by focusing on generic

functionality. This includes particularly a component that retrieves

and caches the content objects from the Web services and that

supports the Web service interface chosen for unification (e.g. the

CRUDS interface). As a Linkbase-specific navigation component,

the Fisheye allows users to navigate through the graph formed by

the Linkbase, along selected types of links. This is realized by

decorating the presentation of a currently active and visible

content object with smaller navigatable preview presentations of

related objects around it (cf. Figure 2). An example for a

component that is concerned with presentation aspects is the

Timeline, which visualizes objects related to a given context in

time. The Content Connector supports the interaction between

the user and the linked content by allowing the user to insert new

links with a single mouse click. The complete component

catalogue covers the general functionality of the components, the

way they can be configured to suit different applications, and

concrete examples.

Figure 2: Example of a Fisheye Component

3. THE LINKBASE APPLIED
In order to gain practical experience, we implemented a Linkbase

support system, including an extended triple store service as well

as several tools to speed up development. This system has been

used within the context of the project “Software Engineering for

Information Appliances at Home”, whose outcome included a

Web portal targeted at families at home. The content sources

included a number of new services (e.g. for personal profiles of

family members) and wrappers for existing non-Web systems (e.g.

a calendar service that provides access to a Microsoft Exchange

server). Moreover, we developed a part of the components from

our catalogue. For example, the Fisheye component supports the

user in navigating through a family tree, as well as realizes a

presentation slide browser, where users can skim through the

sections and subsections of a structured lecture with up to 800

slides. The experiments demonstrated the reusability of the

identified components for a wide range of purposes.

4. REFERENCES
[1] Beckett, D., Scalability and Storage: Survey of Free

Software/Open Source RDF storage systems - 2002), W3C:

http://www.w3.org/2001/sw/Europe/reports/rdf_scalable_stor

age_report/ (12.10.2006).

[2] Gaedke, M., Nussbaumer, M., and Meinecke, J., WSLS: An

Agile System Facilitating the Production of Service-Oriented

Web Applications, in Engineering Advanced Web

Applications, S.C. M. Matera, Editor. 2005, Rinton Press. p.

26-37.

[3] Pearl, A. Sun's Link Service: A Protocol for Open Linking. in

2nd Annual ACM Conference on Hypertext. 1989.

Pittsburgh, USA: ACM Press. p. 137-146.

mejoh
Text Box
J. Meinecke, F. Majer, M. Gaedke; Construction by Linking: The Linkbase Method; Proceedings of the Fifteenth International World Wide Web Conference (WWW), Banff, Canada, 8-12 May, 2007.

