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ABSTRACT 
 
Far-field speaker identification is very challenging since 
varying recording conditions often result in un-matching 
training and testing situations. Although the widely used 
Gaussian Mixture Models (GMM) approach achieves 
reasonable good results when training and testing 
conditions match, its performance degrades dramatically 
under un-matching conditions. In this paper we propose a 
new approach for far-field speaker identification: the 
usage of multil ingual phone strings derived from phone 
recognizers in eight different languages. The experiments 
are carried out on a database of 30 speakers recorded with 
eight different microphone distances. The results show that 
the multi-lingual phone string approach is robust against 
un-matching conditions and significantly outperforms the 
GMMs. On 10-second test chunks, the average closed-set 
identification performance achieves 96.7% on variable 
distance data.  
 
 

1. INTRODUCTION 
 
Speaker recognition is the process of automatically 
recognizing a speaker by machines using the speaker’s 
voice. It can operate in two modes: identifying a parti-
cular speaker or verifying a speaker’s claimed identity [1]. 
Furthermore, speaker recognition can be subdivided into 
closed-set and open-set problems [2], depending on 
whether the set of speakers is known or not. It can also be 
text-dependent or text-independent. In this paper closed-
set text-independent speaker identification is considered. 

The techniques developed for text-independent speaker 
identification include Nearest Neighbor, Vector Quanti-
zation, discriminative Neural Networks and Gaussian 
Mixture Models [3]. Nowadays, the latter is the most 
widely and successfully used method for speaker 
identification. However, for the use of speaker identi-
fication in real world applications, some challenging 
problems need to be solved. Among them is the robust 
identification of speakers in far field. Although GMM has 
been applied successfully to closed-speaking microphone 
scenarios under matching training and testing conditions, 

its performance degrades dramatically under un-matching 
conditions. In this paper, we propose a new approach, 
which is based on the idea of using multil ingual phone 
strings as input feature for speaker identification. By using 
phone strings, we expect to model the pronunciation 
idiosyncrasy of a speaker. The phone strings are decoded 
applying phone recognizers from eight different langua-
ges. By using multiple languages for decoding, we expect 
to obtain more robust and language independent speaker 
identification. Two variations of this approach are 
compared to the traditional acoustic feature GMM. Results 
are given for matching and unmatching conditions using 
data recorded on variable distances. The remaining paper 
is organized as follows: the next section describes the 
database used for carrying out all experiments. After a 
brief repetition of GMMs in section 3, the multil ingual 
phone string approach is introduced in section 4. Section 5 
gives an overview of the experiments and results before 
section 6 summarizes and concludes the paper.  
 

2. DATABASE DESCRIPTION 
 

Real-world applications are expected to work under un-
matching circumstances, i.e. the testing conditions e.g. in 
terms of microphone distances might be quite different 
from what had been seen during training. Therefore, 
methods for robust speaker identification under various 
distances need to be explored. For this purpose a database 
containing speech recorded from microphones at various 
distances had been collected at the Interactive Systems 
Laboratories.  The database contains 30 speakers in total. 
From each speaker five sessions had been recorded where 
the speaker sits at a table in an off ice environment, reading 
an article, which is different for each session. Each session 
is recorded using eight microphones in parallel: one 
closed-speaking microphone (Sennheizer headset), one 
Lapel microphone worn by the speaker, and six other 
Lapel microphones. The latter six are attached to 
microphone stands sitting on the table, at distances of 1 
foot, 2 feet, 4 feet, 5 feet, 6 feet and 8 feet to the speaker, 
respectively. Tables and graphs shown in this paper use 
“Dis 0” to represent closed-speaking microphone distance 
data, and “Dis n” (n>0) to refer to the n-feet distance data. 



The data of the first four sessions, together 7 minutes of 
spoken speech (about 5000 phones) are used for training 
the multilingual phone string approach, whereas only one 
minute of the first session was used as training data for the 
GMM approach. Testing was carried out on the remaining 
fifth session adding up to one minute of spoken speech 
(about 1000 phones). The GMM approach was tested only 
on 10-second chunks, whereas the phone string approach 
was also tested on longer and shorter chunks. 
 

3. GAUSSIAN MIXTURE MODELS APPROACH 
 
The GMM approach has been widely studied and used in 
speaker recognition tasks [3]. A multi-variate GMM 
density, ( )λxP
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number of mixture components. 13-dimension LPC 
cepstra are used as feature vectors and 32 centers clustered 
using K-means are used to initialize the Gaussian mixture 
centers. We use EM algorithm to produce the most likely 
estimates of mean vectors, covariance matrices and 
mixture weights. In the recognition stage, the unknown 
speaker is identified as speaker J if: 
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feature vectors in the training speech and jλ  is the GMM 
of speaker j. 
 

Test \ Train Dis 0 Dis 1 Dis 2 Dis 6 
Dis 0 100 43.3 30 26.7 
Dis 1 56.7 90 76.7 40 
Dis 2 56.7 63.3 93.3 53.3 
Dis 6 40 30 60 83.3 
Table 1: SID rate (% correct) of GMM 

 
Table 1 shows the GMM Speaker IDentification Rate 

in percentage correct for matching and un-matching 
distance conditions in training and testing. Under matching 
conditions (numbers are given in bold) the GMM 
approach achieves reasonable good results, however under 
un-matching conditions the performance degrades 
dramatically. We conclude from these results that the 
GMM approach lacks robustness in the case where the 
models are tested on distances, which are not covered 
from the training data.  
 
4. MULTILINGUAL PHONE STRING APPROACH 

 
Phone recognition and n-gram modeling has been success-
fully used for language identification [4,5] in the past, 
whereas its application to speaker identification is 

introduced very recently [6]. In this paper we extend the 
approach proposed in [6] to tackle the un-matching 
distance and channel conditions. Furthermore, we 
introduce two different methods based on multilingual 
phone strings and compare these to the GMM approach.  

The basic idea of the multilingual phone string 
approach is to take phone strings decoded by phone 
recognizers of several different languages as features 
instead of using the conventional acoustic feature vectors.  
Throughout the experiments we applied phone recognizers 
of eight different languages. By using information derived 
from phone strings, we expect to cover speaker-dependent 
idiosyncrasy of pronunciation. We expect features derived 
from the pronunciation idiosyncrasy to be more robust 
against un-matching conditions than acoustic features. 
Furthermore we aim to increase the robustness by 
providing supplementary information from eight different 
languages. 
 
4.1. Phone Recognizer in eight Languages  
 
The experiments are based on phone recognition engines 
built in the eight languages: Mandarin Chinese (CH), 
Croatian (KR), German (DE), French (FR), Japanese (JA), 
Portuguese (PO), Spanish (SP), and Turkish (TU). For 
each language, the acoustic model consists of a 3-state 
HMM per phone with a mixture of 128 Gaussian 
components per state. The Gaussians are on 13 Mel-scale 
cepstral coefficients with first and second order 
derivatives, power, and zero crossing rate. After cepstral 
mean subtraction a linear discriminant analysis reduces the 
input vector to 32 dimensions. All engines are trained and 
evaluated in the framework of the GlobalPhone project, 
which provides 15 to 20 hours word-level transcribed 
training data per language [7]. Table 2 shows the number 
of phones per language and the resulting Phone Error 
Rates on each language. See [7] for further details. 
 

Language  Phones PER Language Phones PER 
CH 137 48.8 KR 41 41.1 
DE 43 46.1 PO 46 45.0 
FR 38 46.7 SP 40 33.0 
JA 31 32.6 TU 29 42.8 

Table 2: Phone error rate (PER %) for eight languages 
 

4.2 Phone Language Model Training  
 
For the following experiments we trained Phone Language 
Models (PLM) for each training speaker as showed in 
figure 1 for speaker J. The label L1 PR in figure 1 refers to 
the phone recognizer of language No.1, and L8 PR refers 
to the phone recognizer of language No.8. The training 
data of speaker J is decoded by the phone recognizers of 
each language to produce sequences of phone strings. The 



n-gram phone language model PLM L1 for speaker J is 
created from the phone sequence of all training utterances 
spoken by speaker J decoded by the phone recognizer of 
language L1. 

 
We present two multilingual phone string approaches 

named MPLM-pp and MPLM-dec, respectively.  Both wil l 
be explained in detail i n the following sub-sections. These 
approaches have the above described phone language 
model training step in common. The difference between 
MPLM-pp and MPLM-dec is how the PLM of each 
speaker is applied. 
 
4.3. MPLM-pp 
 
The PLM of each speaker, which was trained as explained 
in figure 1, is now used to determine the identity of a 
speaker. Figure 2 shows how the incoming testing speech 
of an unknown speaker is processed by the PLM of 
speaker J in MPLM-pp approach (Multil ingual Phone 
Language Model used for perplexity calculation). 

 
Firstly, the phone recognizers of eight languages 

decode the test speech and produce eight phone strings, 
one per language. Secondly, these phone strings are fed 
into the speakers’ PLM of the corresponding language to 
calculate the perplexities. This process results in eight 
perplexities (one per language) for each speaker. In the 
third step these eight perplexities are interpolated to build 
a final perplexity for each speaker. The training speaker, 
which produces the lowest perplexity, is identified as the 
test speaker. In our experiments we used trigram PLMs 
and equal weight linear interpolation. 
 

4.4. MPLM-dec 
 
In the MPLM-pp approach, both training and test data are 
decoded using equal distribution phone language model. 
The speaker’s PLM is then used to compute the perplexity 
of testing data. The idea for the MPLM-dec approach is to 
use the speaker-dependent PLM directly to decode the test 
speech. The underlying assumption is, that a speaker 
achieves a lower decoding distance score on a matching 
PLM than for a un-matching PLM. In other words, the 
training step in the MPLM-dec approach is identical to the 
one in the MPLM-pp approach, but the testing step differs: 
for the MPLM-dec approach the testing data is decoded 
multiple times using one speaker-dependent PLM each 
time. Thus in our experiments, the test data will be 
decoded 30 times for each language, each time with one 
speaker’s PLM. We use an equal weight linear interpo-
lation scheme to combine the decoding scores from all 
languages. The training speaker who has the PLM, which 
produces the lowest interpolated decoding distance score, 
is hypothesized as the identified speaker. 
 

5. EXPERIMENTS AND RESULTS 
 
5.1. MPLM-pp results  
 
Table 3 shows the identification accuracy of MPLM-pp 
approach at different test utterance length for the matching 
condition, where both testing and training are recorded at 
distance Dis0. 
 

Table 3: SID Rate tested at different test length on Dis 0 
 

With decreasing test utterance length, the performance 
based on a single language gets very low, however this can 
be overcome by using the multilingual information derived 
from all eight languages. After a linear combination of all 
languages the SID performance clearly outperforms the 
one on single language. Figure 3 shows the identification 
accuracy of combining all languages on data recorded at 
different distances. These are the results under matching 
conditions (Dis n-m refers to training on distance n and 
testing on distance m data). On 10 seconds test chunks, the 
performance is comparable to GMMs. 

Language 500s 50s 10s 5s 3s 
CH 100 100 56.7 40 26.7 
DE 80 76.7 50 33.3 26.7 
FR 70 56.7 46.7 16.7 13.3 
JA 30 30 36.7 26.7 16.7 
KR 40 33.3 30 26.7 36.7 
PO 76.7 66.7 33.3 20 10 
SP 70 56.7 30 20 16.7 
TU 53.3 50 30 16.7 20 

Int. of all LM 96.7 96.7 96.7 93.3 80 Figure 2: Block Diagram of MPLM-pp 
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Figure 3: SID Rate over test length for various distances 

 
5.2. MPLM-dec results 
 
MPLM-dec is far more expensive than MPLM-pp, 
however the performance is worse. One reason might be 
that the speaker’s PLM is undertrained, since we only used 
about 7 minutes of speech to train it. This amount of data 
is not enough for an accurate estimation of the speaker’s 
PLM. Therefore, we are planning for future experiments to 
focus on larger training data, such as SwitchBoard. 
 

Language (% correct) Language (% correct) 
CH 53.3 KR 26.7 
DE 40 PO 30 
FR 23.3 SP 26.7 
JA 26.7 TU 36.7 

Int. of all LM 60 
Table 4: SID rate (% correct) of MPLM-dec 

 
5.3. Matching vs. un-matching condition results 
 
Table 5 shows high performances for MPLM-pp on 
matching conditions. However table 6 shows the degraded 
performance for the un-matching case, if only phone 
language models of un-matching distance are applied. If 
the phone language models are combined at all distances, 
the degradation can be compensated as shown in table 7. 
 

Language Dis0-0 Dis1-1 Dis2-2 Dis6-6 
Int. of all LM 96.7 90 96.7 83.3 

Table 5: SID rate of MPLM-pp on matching conditions 
 

Test-train distance Dis1-1 Dis1-2 Dis1-0 
Int. of all LM 90 80 50 

Table 6: SID rate of MPLM-pp on un-matching conditions 
 

Test distance Dis1 Dis2 Dis6 
Int. of all distances 96.7 96.7 83.3 

Table 7: SID rate of MPLM-pp on un-matching conditions 
with combination of PLM at all distances 

 
6. CONCLUSIONS 

 
In this paper we described two speaker identification 
approaches using multil ingual phone strings and compared 
them to GMMs.  Phone strings capture the pronunciation 
idiosyncrasy of speakers and are expected to be 
appropriate features, which are more robust under 
different conditions. The evaluation on variable distance 
data proved the robustness of the phone string approach, 
achieving 96.7% speaker identification accuracy on 30 
speakers under un-matching conditions, which clearly 
outperformed GMMs. The proposed multilingual phone 
string approach has the additional benefit of being 
language independent.  Furthermore we expect speaker’s 
pronunciation idiosyncrasy to be even more dominant in 
spontaneous speech.  Our future research will therefore 
investigate multilingual phone strings for speaker 
identification in spontaneous speech. 
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