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ABSTRACT

Far-field speder identificaion is very challenging since
varying rerding conditions often result in un-matching
training and testing situations. Although the widely used
Gaussan Mixture Models (GMM) approach acdhieves
reasonable good results when training and testing
conditions match, its performance degrades dramaticdly
under urrmatching conditions. In this paper we propose a
new approach for far-field spedker identificaion: the
usage of multilingual phone strings derived from phore
reacgnizers in eight different languages. The experiments
are caried out on a database of 30 spedkers recorded with
eight different microphone distances. The results show that
the multi-lingual phone string approach is robust against
un-matching conditions and significantly outperforms the
GMMs. On 10-semnd test chunks, the average dosed-set
identification performance achieves 96.7% on variable
distance data.

1. INTRODUCTION

Speaker recogntion is the process of automatically
recognizing a speker by machines using the speker’'s
voice It can operate in two modes: identifying a parti-
cular speaker or verifying a speaker’s claimed identity [1].
Furthermore, speaker recogntion can be subdivided into
closed-set and open-set problems [2], depending on
whether the set of spekers is known or not. It can aso be
text-dependent or text-independent. In this paper closed-
set text-independent spedker identification is considered.
The techniques developed for text-independent speeker
identification include Neaest Neighbor, Vedor Quanti-
zaion, discriminative Neural Networks and Gausdan
Mixture Models [3]. Nowadays, the latter is the most
widely and succesdully used method for speaker
identification. However, for the use of speeker identi-
fication in real world applicaions, some dallenging
problems need to be solved. Among them is the robust
identification of spe&ersin far field. AlthoughGMM has
been applied succesdully to closed-spegking microphone
scenarios under matching training and testing conditions,

its performance degrades dramaticaly under un-matching
conditions. In this paper, we propose a new approach,
which is based on the idea of using multilingual phone
strings as inpu feaure for spedker identification. By using
phore strings, we exped to model the pronunciation
idiosyncrasy of a spedker. The phone strings are decded
applying phore recognizers from eight different langue
ges. By using multiple languages for decoding, we exped
to oltain more robust and language independent speeker
identification. Two variations of this approach are
compared to the traditional acoustic feaure GMM . Results
are given for matching and unmatching conditions using
data recorded on variable distances. The remaining paper
is organized as follows: the next sedion describes the
database used for carying ou al experiments. After a
brief repetition of GMMs in sedion 3, the multilingual
phore string approach is introduced in sedion 4. Sedion 5
gives an overview of the experiments and results before
sedion 6summarizes and concludes the paper.

2. DATABASE DESCRIPTION

Red-world applicaions are expeded to work under ur-
matching circumstances, i.e. the testing conditions e.g. in
terms of microphore distances might be quite different
from what had been seen during training. Therefore,
methods for robust spegker identification under various
distances need to be explored. For this purpose a database
containing speed recrded from microphones at various
distances had been colleded at the Interactive Systems
Laboratories. The database contains 30 spedkers in total.
From ead speker five sessons had been recorded where
the speker sits at atable in an office eavironment, reading
an article, which is different for ead session. Each sesson
is recorded using eight microphones in paralel: one
closed-speaking microphone (Sennheizer healset), one
Lapel microphone worn by the spedker, and six other
Lapel microphones. The latter six are attached to
microphone stands sitting on the table, at distances of 1
foat, 2 fed, 4 fed, 5 fed, 6 fed and 8fed to the speker,
respedively. Tables and graphs sown in this paper use
“Dis 0" to represent closed-spedking microphone distance
data, and “Disn” (n>0) to refer to the n-fee distance data.



The data of the first four sessions, together 7 minutes of
spoken speech (about 5000 phones) are used for training
the multilingual phone string approach, whereas only one
minute of the first session was used as training data for the
GMM approach. Testing was carried out on the remaining
fifth session adding up to one minute of spoken speech
(about 1000 phones). The GMM approach was tested only
on 10-second chunks, whereas the phone string approach
was also tested on longer and shorter chunks.

3. GAUSSIAN MIXTURE MODELSAPPROACH

The GMM approach has been widely studied and used in
speaker recognition tasks [3]. A multi-variate GMM
density, P()?|)\), is a weighted sum of uni-modal multi-

variate Gaussian density P()”(|)\): S W, p(§(|Ai), where A

is the parameter set of one Gaussian {,,2,} and M is the

number of mixture components. 13-dimension LPC
cepstra are used as feature vectors and 32 centers clustered
using K-means are used to initialize the Gaussian mixture
centers. We use EM agorithm to produce the most likely
estimates of mean vectors, covariance matrices and
mixture weights. In the recognition stage, the unknown
speaker is identified as spesker J if:

J=ag maxilog P()”(I |A'). T refers to the number of
i =

feature vectorsin the training speech and A’ isthe GMM
of speaker j.

Test\Train | DisO | Disl | Dis2 | Dis6
Dis0 100 | 43.3 30 | 26.7
Dis1 56.7 90 76.7 40
Dis?2 56.7 | 63.3 | 93.3 | 53.3
Dis6 40 30 60 | 83.3

Table 1: 9D rate (% correct) of GMM

Table 1 shows the GMM Speaker |Dentification Rate
in percentage correct for matching and un-matching
distance conditions in training and testing. Under matching
conditions (numbers are given in bold) the GMM
approach achieves reasonable good results, however under
un-matching conditions the performance degrades
dramatically. We conclude from these results that the
GMM approach lacks robustness in the case where the
models are tested on distances, which are not covered
from the training data.

4. MULTILINGUAL PHONE STRING APPROACH
Phone recognition and n-gram modeling has been success-

fully used for language identification [4,5] in the pat,
whereas its application to speaker identification is

introduced very recently [6]. In this paper we extend the
approach proposed in [6] to tackle the un-matching
distance and channel conditions. Furthermore, we
introduce two different methods based on multilingual
phone strings and compare these to the GMM approach.

The basic idea of the multilingual phone string
approach is to take phone strings decoded by phone
recognizers of severa different languages as features
instead of using the conventional acoustic feature vectors.
Throughout the experiments we applied phone recognizers
of eight different languages. By using information derived
from phone strings, we expect to cover speaker-dependent
idiosyncrasy of pronunciation. We expect features derived
from the pronunciation idiosyncrasy to be more robust
against un-matching conditions than acoustic features.
Furthermore we am to increase the robustness by
providing supplementary information from eight different
languages.

4.1. Phone Recognizer in eight Languages

The experiments are based on phone recognition engines
built in the eight languages: Mandarin Chinese (CH),
Croatian (KR), German (DE), French (FR), Japanese (JA),
Portuguese (PO), Spanish (SP), and Turkish (TU). For
each language, the acoustic model consists of a 3-state
HMM per phone with a mixture of 128 Gaussian
components per state. The Gaussians are on 13 Mel-scale
cepstral  coefficients with firss and second order
derivatives, power, and zero crossing rate. After cepstral
mean subtraction a linear discriminant analysis reduces the
input vector to 32 dimensions. All engines are trained and
evaluated in the framework of the GlobalPhone project,
which provides 15 to 20 hours word-level transcribed
training data per language [7]. Table 2 shows the number
of phones per language and the resulting Phone Error
Rates on each language. See [7] for further details.

Language | Phones| PER| Language | Phones | PER
CH 137 |48.8 KR 41 |411
DE 43 |46.1 PO 46 |45.0
FR 38 |46.7 SP 40 |[330
JA 31 |326 TU 29 428

Table 2: Phone error rate (PER %) for eight languages
4.2 Phone Language M odel Training

For the following experiments we trained Phone Language
Models (PLM) for each training speaker as showed in
figure 1 for speaker J. Thelabel L1 PRin figure 1 refersto
the phone recognizer of language No.1, and L8 PR refers
to the phone recognizer of language No.8. The training
data of speaker J is decoded by the phone recognizers of
each language to produce sequences of phone strings. The



n-gram phone language model PLM L1 for spe&ker Jis
creaed from the phone sequence of all training utterances
spoken by speer J decoded by the phone recgnizer of
language L 1.

Training

/ —> Phone — 3 SpkJ

String PLM L1
Spkr J
Training Speech

~~

: Training
[Lepr] —> Phone ___ y  sSpky
String PLM L8

Figure 1: Diagram of training the Phone Language Model

We present two multilingual phone string approaches
named MPLM-pp and MPLM-deg, respedively. Both will
be explained in detail in the following sub-sedions. These
approaches have the @ove described phone languege
model training step in common. The difference between
MPLM-pp and MPLM-dec is how the PLM of eath
spedker is applied.

4.3. MPLM-pp

The PLM of eadt speaker, which was trained as explained
in figure 1, is now used to determine the identity of a
spedker. Figure 2 shows how the incoming testing speed
of an unknown speder is processed by the PLM of
speker J in MPLM-pp approach (Multilingual Phore
Language Model used for perplexity cdculation).

Phone
String )
Perplexity
—> SpkJ |
, PLM L1 ¢
Perplexity
Test Speech  ° Phore —>
© String @
SPR] —> SpkJ |
PLM L8 | Perplexity

Figure 2: Block Diagram of MPLM-pp

Firstly, the phore recogrizers of eight languages
deaode the test speedr and produce eght phore strings,
one per language. Seaondly, these phone strings are fed
into the speakers PLM of the corresponding language to
cdculate the perplexities. This process results in eight
perplexities (one per language) for ead spedker. In the
third step these @ght perplexities are interpolated to build
a fina perplexity for ead speeker. The training spedker,
which produces the lowest perplexity, is identified as the
test spedker. In our experiments we used trigram PLMs
and equal weight linea interpolation.

4.4. MPLM-dec

In the MPLM-pp approach, both training and test data ae
decoded using equal distribution phone language model.
The speaker’s PLM is then used to compute the perplexity
of testing data. The ideafor the MPLM-dec gproach isto
use the speaker-dependent PLM directly to decode the test
speedr. The underlying assumption is, that a speaker
adhieves a lower deaoding distance score on a matching
PLM than for a un-matching PLM. In other words, the
training step in the MPLM-dec gproad is identicd to the
one in the MPLM-pp approach, but the testing step differs:
for the MPLM-dec gproach the testing data is decoded
multiple times using one spedker-dependent PLM ead
time. Thus in our experiments, the test data will be
decoded 30 times for ead language, ead time with one
speker's PLM. We use an equa weight linea interpo-
lation scheme to combine the deading scores from all
langueges. The training speaker who has the PLM, which
produces the lowest interpolated deading distance score,
is hypothesized as the identified spedker.

5. EXPERIMENTSAND RESULTS
5.1. MPLM -pp results
Table 3 shows the identification acaracy of MPLM-pp
approach at different test utterance length for the matching

condition, where bath testing and training are recorded at
distance Dis0.

Language 500s | 50s 10s 5s 3s
CH 100 | 100 | 56.7 40 | 26.7
DE 80 | 767 50 333 | 267
FR 70 | 567 | 46.7 | 16.7 | 133
JA 30 30 36.7 | 267 | 167
KR 40 | 333 30 26.7 | 36.7
PO 76.7 | 667 | 333 20 10
SP 70 | 56.7 30 20 | 167
TU 533 | 50 30 167 | 20
Int.ofallLM | 96.7 | 96.7 | 96.7 | 933 | 80

Table 3: SD Ratetested at different test length on Dis 0

With deaeasing test utterance length, the performance
based on a single language gets very low, however this can
be overcome by using the multilingual information derived
from al eight langueges. After a linear combination of all
langueges the SID performance dealy outperforms the
one on singe language. Figure 3 shows the identificaion
acarracy of combining al langueges on data recorded at
different distances. These ae the results under matching
conditions (Dis n-m refers to training on distance n and
testing on distance m data). On 10 seaonds test churks, the
performanceis comparable to GMMs.
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Figure 3: 9D Rate over test length for various distances
5.2. MPLM-dec results

MPLM-dec is far more epensive than MPLM-pp,
however the performance is worse. One reason might be
that the speeker’s PLM is undertrained, sincewe only used
about 7 minutes of speed to train it. This amount of data
is not enough for an acairrate etimation of the speaker’'s
PLM. Therefore, we ae planning for future experimentsto
focus on larger training data, such as SwitchBoard.

Language | (% corred) | Language | (% corred)
CH 533 KR 26.7
DE 40 PO 30
FR 233 SP 26.7
JA 26.7 TU 36.7

Int. of all LM 60

Table 4: 9D rate (% correct) of MPLM-dec
5.3. Matching vs. un-matching condition results

Table 5 shows high performances for MPLM-pp on
matching conditions. However table 6 shows the degraded
performance for the unrmatching case, if only phore
languege models of un-matching distance are gplied. If
the phore language models are combined at all distances,
the degradation can be mmpensated as siown intable 7.

Language Dis0-0 | Disl-1 | Dis2-2 | Dis6-6
Int. of al LM 96.7 90 96.7 833
Table 5: SD rate of MPLM-pp on matching conditions

Test-train distance | Disl-1 | Disl-2 | Disl-0
Int. of al LM 90 80 50
Table 6: SD rate of MPLM-pp on un-matching conditions

Test distance Disl | Dis2 | Dis6
Int. of al distances 96.7 | 96.7 | 833
Table 7: 9D rate of MPLM-pp on un-matching conditions
with combination of PLM at all distances

6. CONCLUSIONS

In this paper we described two spedker identificaion
approaches using multilingual phore strings and compared
them to GMMs. Phone strings capture the pronurciation
idiosyncrasy of spe&kers and are epeded to be
appropriate fedures, which are more robust under
different conditions. The evaluation on variable distance
data proved the robustness of the phone string approad,
adieving 9.7% spedker identification acaracy on 30
speskers under un-matching conditions, which clealy
outperformed GMMs. The proposed multilingual phone
string approach has the alditional benefit of being
languege independent. Furthermore we exped speeker’'s
pronunciation idiosyncrasy to be even more dominant in
spontaneous geed.  Our future reseach will therefore
investigate multilingual phone strings for  speaker
identificaion in spontaneous eed.
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