KIT | KIT-Bibliothek | Impressum | Datenschutz

Improved Software Fault Detection with Graph Mining

Eichinger, Frank; Böhm, Klemens; Huber, Matthias

Abstract:

This work addresses the problem of discovering bugs in software development. We investigate the utilisation of call graphs of program executions and graph mining algorithms to approach this problem. We propose a novel reduction technique for call graphs which introduces edge weights. Then, we present an analysis technique for such weighted call graphs based on graph mining and on traditional feature selection. Our new approach finds bugs which could not be detected so far. With regard to bugs which can already be localised, our technique also doubles the precision of finding them.


Volltext §
DOI: 10.5445/IR/1000008547
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Programmstrukturen und Datenorganisation (IPD)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2008
Sprache Englisch
Identifikator urn:nbn:de:swb:90-85474
KITopen-ID: 1000008547
Erschienen in Proceedings of the 6th International Workshop on Mining and Learning with Graphs (MLG) at ICML
Externe Relationen Siehe auch
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page