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ABSTRACT

In modern meeting environments people interact a lot with
electronic communication devices such as computers, cell-
phones, PDAs etc. which notify their users of events like
incoming phone calls, text messages or e-mails. Depending
on the current user state (e.g. listening, talking, resting,
reading e-mails etc.) a different behavior of such devices
might be desirable.

In this paper we investigate the possibility to detect the
user’s state from his brain activity by measuring his elec-
troencephalogram (EEG). Using neural networks and sup-
port vector machines for classification an average accuracy
for the discrimination of six user states of 94.1% in subject
and session dependent and 58.9% in subject independent
experiments is obtained. To make the application of EEG
more realistic in meeting environments, we developed a com-
fortable headband with four build-in electrodes with which
an average accuracy of 83.0% for discrimination of three user
states in subject dependent experiments could be achieved.
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1. INTRODUCTION

Electronic devices like laptops, cell-phones or PDAs are ubig-
uitous in modern meeting environments. During meetings
users receive different kinds of notifications from these de-
vices such as incoming phone calls, text messages, e-mails
etc. Depending on the current user state, a disturbance by
electronic devices may be either welcome or unwanted: A
user who is listening attentively to a talk might feel dis-
turbed even by a vibrating alert of his cell phone, while
such an alert would perhaps be welcome when he is resting
since he is not interested in the topic currently discussed.
Thus it would be desirable to detect changes in the user’s
state automatically so that the communication devices can
configure themselves appropriately. Furthermore informa-
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tion about the user’s state could improve communication
between meeting participants: A speaker who could tell that
his audience is little interested in his talk could immediately
try to change his style of presentation to regain the audi-
ence’s attention.

In this paper we investigate the possibility to detect the

user’s state from his brain activity, i.e. by measuring his

electroencephalogram (EEG) using scalp electrodes. To make
EEG recording applicable in a meeting scenario, the follow-

ing issues must be addressed:

e Robustness: In contrast to clinical EEG recordings,
people must be able to talk and to move in a real
meeting environment which introduces artifacts in the
data.

e Speed: Signal processing and classification must be
fast enough, since user state identification should be
possible in real time.

e Realistic scenarios: The user states considered here
shall be likely to occur really in meeting scenarios.

e User comfort: A user state detection device must be
comfortable to wear and the user wearing it must find
his appearance still acceptable. This means that lit-
tle electrodes at suitable positions should be used and
conductive gel should not get in contact with the user’s
hair.

This work should be seen as a first step in the research on
how these goals could be reached by relaxing the inconve-
niences of clinical EEG recording to make it practical for
user state detection.

1.1 Motivation for user state identification

To motivate the benefit of an EEG-based user state iden-
tification system, some scenarios shall be illustrated here,
where user state identification may be helpful.

Typical user states during a meeting are talking, listening
or watching slides, reading or resting. A user might want
to have different configurations of his mobile devices during
all of these states without having to change them manually
whenever his state changes. While during talking all kinds
of alerts might be disturbing, during attentive listening only
those alerts could be delayed which the user classified to be



of minor importance. A user who is reading e-mails may
be open for more kinds of alerts, but he may not want to
see pop up chat requests from his friends on his computer
screen in contrast to a user who is resting. To know whether
a user is reading the slides which are just presented or for
example his e-mail, the distinction of the states audio-visual
perception and reading might help.

For a speaker the information about the average state of his
audience could be of interest. The states resting or reading
might indicate that the talk is too easy, too difficult or not of
general interest. When the average user state changes from
audio-visual perception to listening or resting although the
speaker is actively explaining his slides, the audience might
have already understood the current slide or requires more
visual information. It is important that in this scenario in-
formation about the user state is never used to control par-
ticular users, since this would violate their privacy. For this
reason the speaker should only see the average state of his
audience. Additionally it is important that users share the
information about their user state voluntarily (using their
own user state identification device) because they want to
have a better and more efficient presentation.

The combination of EEG-based user state detection with
other information could improve the interaction with elec-
tronic devices or between meeting participants even more.
Currently we are working on EEG-based workload measure-
ment, but also other techniques like speech and image recog-
nition and natural language understanding could be com-
bined with the user state information.

1.2 Bio-Medical Background

Using metal electrodes on the scalp and highly sensitive am-
plifiers oscillations of electrical potentials with amplitudes
between 1V and 100uV and frequencies between 0Hz and
80Hz can be registered. These oscillations which are com-
monly known as electroencephalogram (EEG) show specific
characteristics at different scalp positions, depending on the
current mental state [20].

The sources of the EEG are the potential differences emerg-
ing from the neuronal activity in the brain’s cortex. Infor-
mation between neurons is transfered via the synapses where
chemical reactions take place which cause ion movements
resulting in excitatory or inhibitory electrical potentials in
the post-synaptic neurons. The electrical fields emerging
from the ion movements are called cortical field potentials
and have a dipole structure. If the electrical activity of a
huge number of neurons is synchronized, the corresponding
dipoles point all in the same direction and their sum is large
enough, potential differences between particular scalp posi-
tions and a constant reference point can be measured. EEG
characteristics like frequency, amplitude, temporal and to-
pographic relations of certain patterns can then be used to
make inferences about underlying neural activities [23].

A higher mental task is characterized by activity at a par-
ticular position of the cortex (figure 1) [20]. The user states
which are considered in this work however are characterized
by activity patterns at several positions of the cortex, which
suggests that the activity of the whole cortex must be con-
sidered to achieve best discrimination results. For a task
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Figure 1: Functional cortex divisions of the human
brain according to [20]. Names of anatomical cortex
areas are printed in italics.

like reading for example, the visual cortex, the area for un-
derstanding symbols (letters in this case) and the area for
understanding the semantic meaning of the words will have
a characteristic activity [20].

1.3 Related Work

A lot of work about detection of mental states using EEG
data has been done in the past decade (see for instance [1],
[2], [11], [8]) using the dataset recorded by Keirn and Aunon
[17]. This dataset comprises recordings of five tasks which
include resting with closed eyes, mental letter composing,
imagination of counting numbers written on a board, rota-
tion of an imaginary geometric figure and mental arithmetic,
where each task had to be performed without vocalizing or
moving.

Anderson et. al [1], [2] used data from six electrode channels
from the central, parietal and occipital cortex to discrimi-
nate the tasks described above. In [1] neural networks were
applied to classify a frequency-based representation of the
signals resulting in an accuracy of up to 74% for discrim-
ination of the baseline task from the arithmetic task. In
[2] all five mental tasks were discriminated using a neural
network with the coefficients of an 6" order auto-regressive
(AR) model for each of the six electrodes as input features.
In experiments with four subjects an average accuracy of
54% was obtained when averaging over the network outputs
of 20 consecutive half-second time windows. Ford [11] ob-
tained an average accuracy of 88.5% for the discrimination
of the baseline task from the arithmetic task using Learning
Vector Quantization and the coefficients of the AR Model
as described above as input features. Finally Culpepper [8]
reports an accuracy of up to 94% for the discrimination of
different pairs and and up to 86% for the discrimination of
triplets out of all five mental tasks using independent com-
ponent analysis for artifact removal and a frequency based
representation of the EEG signals as input for neural net-
works. Note that all results were obtained in subject de-
pendent experiments. Results in [1] and [2] were obtained
across sessions, however they do not differ significantly from
results reported for session dependent experiments.

More recently Chen et al. [6] introduced a Physiologically
Attentive User Interface (PAUI) which uses heart rate vari-
ability to asses mental load and the p power range (8Hz -



Figure 2: Headband with four build-in electrodes.

30Hz) of a one-electrode EEG to measure motor activity.
Using this information four attentional states of the user
are distinguished: resting, moving, thinking and busy. As a
sample application the automated regulation of notifications
of a cellphone is proposed. In a six-person trial the correct
state could be identified in 83% of all cases.

No research work could be found which attempts to identify
user states beeing relevant in meeting scenarios which is the
goal in this work. Therefore no direct comparison to the
results obtained here can be given.

Other goals in computational processing of EEG data are
monitoring of alertness (e.g. [16]) or task demand (e.g. [19],
[5]). Furthermore EEG data is used in brain-computer inter-
faces where computers and other electronic devices should
be controlled using only brain-activity (See for instance [22]
for an overview).

2. DATA

For data acquisition two different devices were used: The

major portion of the recordings was done with an ElectroCap™

EEG-cap [10] with electrode placements according to the in-
ternational 10-20 system. 16 electrodes at the positions fpl,
fp2, 13, 4, {7, 18, fz, t3, t4, t5, t6, p3, p4, pz ol and 02 were
recorded using the ElectroCap™ system. In order to show
the feasibility of more comfortable EEG recording devices,
we developed a headband with four built-in electrodes at the
positions fpl, fp2, {7 and 8 (figure 2). The use of only these
four electrodes has the advantage that no electrode paste
gets into contact with the subjects hair and that only very
little paste, which can be easily wiped off, remains after the
recording on the forehead. Up to now only two recordings
have been done using the headband.

In both cases reference electrodes were placed at or below
the ear lobes and linked together, which results in a virtual
reference point in the middle of the head. Amplification and
A/D-conversion was done with a 16 channel VarioPort™
physiological data recorder [3]. Each channel had an ampli-
fication factor of 2775 and a frequency range from 0.9Hz to
60Hz. After amplification A/D conversion was performed
using 4096 A /D-steps and a sampling rate of 256 Hz.

In contrast to recordings for clinical purposes, subjects were
allowed to move freely during the recordings and the sub-
ject’s head was not fixated to prevent muscular activity
which usually introduces large artifacts in the data. During
some of the recorded user states talking was even required.

| Task H Avg. length | Range |
@) 145 [143, 149
(L) 264 [169, 388]
(AV) 360 [238, 495]
(RE) 408 [223, 646]
(RS) 206 (124, 345]
(C) 252 [139, 496]
Total 1636 [1267,2132]

Table 1: Average length and range of task durations
in seconds for all tasks over all subjects.

User states were simulated by giving the subjects the fol-
lowing tasks to do: (R) resting, (L) listening to a talk, (AV)
perceiving an audio-visual presentation, (RE) reading an ar-
ticle in a magazine, (RS) summarizing this article, (C) per-
forming non-trivial calculations on a sheet of paper.

All tasks were recorded in a contiguous session lasting about
45 minutes. A resting period (task (R)) of about 70 sec-
onds was inserted between each task or block of tasks (tasks
(RE) and (RS) were performed as one block without resting
in between). The order of the tasks or blocks of tasks be-
tween the resting periods was chosen randomly. Each task
was adapted to the academical background of the subject to
be recorded, so that mental demands were neither too high
or too low. The talks (task (L)) contained a lot of facts,
technical terms and complicated processes about selected
topics of human physiology. This guaranteed a high mental
load and a high memory demand which is typical for talks
given without visual aid. For the audio-visual presentations
topics from biology, medical imaging and computer science
were chosen. Subjects were required to summarize the in-
formation obtained during tasks (L), (AV) and (A) which
guaranteed their attention.

To give an idea about the amount of available data, table
1 shows the average length and the range of task durations
(minimum and maximum) in seconds for all tasks over all
subjects.

In order to avoid a bias of the classifiers towards one class
(i.e. one task), for each class the same amount of training
data had to be used. Thus the data collected during a resting
period of only 70 seconds would limit the exploitation of the
training data a lot. Therefore the data from two resting
periods for each subject was concatenated, so that for each
task at least 124 seconds of data (minimum for task (RS))
were available.

For the experiments reported in this work, the following data
collected from volunteers was used:

CMUSubjects Six computer science students aged between
23 and 33 years (four males, two females) were recorded
at Carnegie Mellon University in Pittsburgh (USA).
None of them was a native English speaker, but they
all had very good knowledge of the English language.
146 minutes of data in total were collected.

UKASubjects: Three university students with varying aca-
demic backgrounds aged between 23 and 26 years (two



raw data| artifact feature e sers
-l "~ L classification | userstate
removal extraction

Figure 3: Overview over the user state detection
system

males, one female) were recorded at University of Karl-
sruhe (Germany). One of them was a none-native Ger-
man speaker. Two subjects were recorded twice. 153
minutes of data were available from this data collec-
tion.

HeadBandSubjects: 54 minutes of EEG data were col-
lected at the University of Karlsruhe from two female

university students aged between 21 and 23 years using
the headband.

3. METHODS

Figure 3 shows the main components of our user state de-
tection system. Independent component analysis (ICA) is
applied for artifact removal. Then features are extracted
representing the frequency content of the signal, simple fea-
ture normalization is performed and optionally linear dis-
criminant analysis (LDA) is applied for feature reduction.
The resulting features are then used by a multi-class sup-
port vector machine or a multilayer neural network for clas-
sification.

3.1 Artifact Removal

Due to eye movements or muscular activity, there is a num-
ber of artifacts which contaminate the EEG signals. Espe-
cially eye blinks cause large artifacts in the signal, since the
corresponding muscles are very close to the (frontal) EEG
electrodes and the electrical potentials caused by muscular
activity are an order of magnitude larger than the sources
of the EEG. ICA has been shown to be very efficient for the
purpose of artifact removal (see, for instance [15]).

The signal measured at one EEG electrode can be seen as
a linear combination of signals emerging from independent
processes (i.e. cortical field potentials, muscular artifacts,
60Hz AC noise from electrical power lines etc.) [12]: Let
Z(t) be the vector of signals we are measuring at time ¢ at
all electrodes and 3(t) the real sources of the signals, i.e. the
independent components. Then we can write

Z(t) = A 5(t)

where A is called mixing matrix. The goal of ICA is now
to determine the matrix A, or its inverse the unmixing ma-
trix W, so that estimates for independent components can
be obtained given the measured signals. Then components
containing artifacts can then be rejected by visual inspection
and the data can be projected back in the original coordi-
nate system (figure 4).

The open source Matlab toolbox EEGLAB [9], was used
for ICA computation is this work, which applies the Infor-
max algorithm [4] for estimation of the ICA matrices. ICA
estimation and component rejection was performed on the
training data and the results were then applied to the test
data.

Original data ICA components
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Figure 4: Using ICA for artifact removal: indepen-
dent components are computed from the original
data, then the second component which contains eye
blinking artifacts is rejected and the data is pro-
jected back to the original coordinate system.

3.2 Feature Extraction and Normalization
After artifact removal features were extracted which repre-
sent the frequency content of the data. Two seconds long
segments of the time signal which overlap one second were
used to compute the power spectrum with a short time
fourier transformation. This results in one feature per sec-
ond and frequency band of 0.5Hz band width. In order to
reduce the influence of single outliers among the features,
averaging over the previous k features was applied. The
averaged feature for frequency band f at time to zf(to) is
obtained from the features z;(¢) as follows

k
= (i) -z (to — 1) (1)

=0

In this work the value of (i) was set constantly to 1, how-
ever it could also be used to decrease the influence of a
features with increasing 3.

Feature values for different frequency bands might have dif-
ferent ranges and they might fluctuate differently. However
large fluctuations do not necessarily mean a large impor-
tance for classification. Therefore three simple normaliza-
tion techniques were applied:

GlobalNorm: On the training data mean and variance is
calculated for each electrode and each frequency band.
The obtained values are then used for mean subtrac-
tion and variance normalization on the training, vali-
dation and test data.

UserNorm: Mean and variance normalization for each fre-
quency band is performed separately on training, vali-
dation and test data. If more than one subject is in one
of the datasets, normalization is performed separately
for each subject.

RelPower: To preserve relations of feature values between
frequency bands, the value for each frequency band is
divided by the sum of values over all frequency bands.



Note that a possible drawback of this method is, that
information about the relation of the power content
between data points gets lost.

Although frequencies between 0Hz and 80Hz can be ob-
served in normal EEG, according to [20] it is sufficient to
consider the frequency content only up to 40Hz to monitor
the mental processes we are interested in. Therefore we ex-
tracted features for the frequency range OHz to 45Hz, thus
obtaining 90 features per electrode. Having 16 electrodes,
this results in 1440 features total per data point which is
huge compared to the relatively small amount of data (see
table 1). Thus methods for feature reduction might help to
obtain more reliable estimates for the models learned dur-
ing classification. One such method is linear discriminant
analysis (LDA) which can be used to find those features
which discriminate best between given classes. The LDA
algorithm ranks features according to their discriminative
power. Thus feature reduction can be performed by taking
the n best ranked features.

3.3 Classification

Two classifiers are compared in this work: multilayer neu-
ral networks (NNs) and multi-class support vector machines
(SVMs) which is a generalization of the standard SVM for-
mulation to multiple classes proposed in [7].

We used NNs with one hidden layer and tanh activation
functions. Training was performed with standard backprop-
agation with adaptive learning rate, early stopping using the
validation set was applied to encounter the problem of over-
fitting. Since results obtained with neural networks fluctu-
ate in a certain range due to random weight initializations,
we trained several networks with the same data and used
majority decisions over all networks to make predictions.

SVMs do not suffer from the problem of instable results
due to different initializations. Furthermore ”Xi-Alpha es-
timates” which represent and upper bound for the leaving-
one-out error can be computed quickly from the SVM pa-
rameters which avoids time-consuming cross-validation[14].

Conventional SVMs are binary classifiers and multiple con-
ventional SVMs must be trained to construct a classifier for
more than two classes. In this work an SVM-like method
which addresses explicitly the multi-class problem proposed
in [7] is used. The classification problem is formulated here
as follows: A data point Z is assigned that class k for which
the similarity between its prototype My, and & (expressed as
M, - &) is maximal. The prototypes M} can be seen as the
rows of a matrix M whose norm must be minimized given
some constraints. This problem can be solved using typical
SVM optimization techniques.

In this work we used the multi-class version of the SV M!9ht
software [13] [21], which embeds the above formulation in a
more general framework. Optimization algorithms of this
software are designed to make SVM learning feasible for
large scale problems which is essential for our data.

4. EXPERIMENTS AND RESULTS

Several types of experiments were conducted for this work:

SD User and session dependent experiments: Different data
portions of the same recording were used for training
(80% of the whole session, average length 19.5 min-
utes), testing and validation (each 10% of the whole
data, average length 2.4 minutes). These types of ex-
periments were conducted on the CMUSubjects data
and on the HeadBand data.

UI User independent experiments: For the CMUSubjects
data we trained our system on the data from five sub-
jects (in average 97.4 minutes training data) and tested
it on the data from the remaining subject in a round-
robin manner. For comparability of the results the
same test sets as in the SD setup were used. For val-
idation 9.0 minutes of data from the UKASubjects
data collection were available.

SI User dependent but session independent experiments:
For the subjects from the UKASubjects data set
which were recorded twice the system was trained us-
ing 80% of the the data of one session (in average 26.4
minutes) and tested on the test set from the other ses-
sion (10% of the session data, in average 3.3 minutes)
recorded from the same subject.

4.1 Baseline

4.1.1 Classifier Selection

Table 2 compares the results of a neural network (NN) with
20 neurons in the hidden layer and a linear SVM for ex-
periment types SD, UI and SI. No averaging, artifact re-
moval or feature reduction was done here. The normal-
ization method GlobalNorm was applied to make input
features suitable for the classifiers. Note that the neural
network performance seems to be comparatively invariant
against the number of neurons in the hidden layer. This
parameter was varied between 15 and 25 without significant
changes in results.

In case of experiment setup Ultraining can take up to one
hour on a 3.0GHz Pentium 4 in the worst case for both
classifiers. For the other setups training takes only a few
minutes. For all three setups and both classifiers classifica-
tion time for one sample is more than an order of magnitude
below the sample length of one second, even on a 800MHz
Pentium 3 laptop.

None of both classification methods performed significantly
better than the other one. However neural networks have
the problem, that results fluctuate depending on the weight
initialization as mentioned above. Even when using seven
networks to make a majority decision, there are standard
deviations of about 6% for the average accuracies over all
classes when repeating the same experiment five times for
the same test set, particularly for experiment setups SI and
UT where accuracies are comparatively low. For this reason
we decided to use SVMs in the following experiments. An-
other finding is that, as one would expect, results decrease
tremendously in session or even user independent experi-
ments. Although the amout of training data is much larger
for setup UT results are worse compared to setup SI, where
the training set is about four times smaller. This suggests
that without appropriate normalization or adaptation the
generalization ability between sessions is much better than
the generalization ability between subjects.



| [ NN [ SVM |
SD || 92.3% | 89.7%
UI || 37.55% | 38.2%
SI 58.6% | 56.8%

Table 2: Average accuracies over all test sets and
classes for different classifiers and different experi-
ment setups.

4.1.2 Performance for Individual User States

Figure 5 shows the accuracies for the single user states. Al-
though accuracies for setup UI (black bars) are much below
accuracies for setup SD (gray bars), the same tendencies
concerning the variations between user states can be ob-
served. For the setup SI (white bars), performance for the
user states resting (R), reading (RE) and summarization of
the read article (RS) is in the range of the session dependent
experiments, while accuracies for the other user states are
in the range for user independent experiments. This might
indicate that user states like reading, talking and resting
are more robust towards the variability of electrode place-
ments or of the subject’s mental state which is an inevitable
problem for session independent experiments. Physiological
reasons for this speculation remain to be investigated.

The user states listening to a talk (L) and perceiving an au-
diovisual presentation (AV) are mostly confused with each
other and with resting (R). This is not surprising, since both
user states involve the auditory system, and short resting-
like periods might really occur during these states, since
it is difficult to be constantly alert for a longer time. For
the user independent experiments where the performance
for user state (R) is bad as well, this state is mostly con-
fused with user states (L) and (AV). The arithmetic task,
i.e. user state (C) is mostly confused with reading (RE) and
conversely user state (RE) is confused with user state (C) in
user independent experiments. An explanation here might
be that both states involve the understanding of symbols
which is performed in the parietal cortex.

Note the standard deviation between subjects, depicted by
the whiskers in figure 5, which is extremely high particularly
for lower accuracies in setups UI and SI. Closer inspection
of the results for particular subjects shows, that for each
subject there are different user states which can be predicted
extremely good or extremely bad using the training data
from other subjects or sessions.

4.2 Normalization and Averaging

Figure 6 shows the impact of averaging over the previous k
samples according to equation 1 on the validation sets. For
setup SD (solid line) gains for k > 2 are relatively small,
while for setup SI (dotted line) considerable gains up to
k = 4 can be observed. Therefore we decided to continue
experiments with a value of k = 2 for setup SD which results
in an accuracy of 93.4% on the test set and a value of k =
4 for setup UI resulting in an accuracy of 46.7% on the
test set. For setup SI no appropriate validation set was
available, since validation data should neither be taken from
the test nor from the training session. Therefore we decided
to use a value of k = 3 here, following the intuition that
the properties for setup SI are somewhere between those of
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Figure 5: Results for different user states. The stan-
dard deviation between subjects is shown by the
whiskers.

\

o
®

Accuracy
o
~
|
(2]
ll~)

o
o

o
o

1N
IS

Figure 6: Impact of averaging over previous samples
for setup SD (solid line) and setup UI (dotted line).

setups SD and UI. Thus an accuracy of 61.8% on the test
set was obtained.

The results for different normalization methods for the dif-
ferent experiment setups are displayed in table 3. While
there are no significant changes between method Global-
Norm and method UserNorm for setups SD and SI which
contain only one subject in the training set, performance for
setup UI improves significantly (relative gain 22.8%) when
using method UserNorm. We conclude, that mean sub-
traction and variance normalization for each subject sepa-
rately seems to reduce variabilities between subjects which
are detrimental for classification performance. For normal-
ization method RelPower results decrease tremendously for
each setup. An explanation might be that the information
about the relations between the power contents of the dif-
ferent samples gets lost. This information seems to be im-
portant however, since for most subjects clear differences in
total power contents for the datapoints of different classes
can be observed.

The difference between the best results for setup UI and SI
is now very small compared to the results obtained for the
baseline in table 2. However one can see that despite nor-
malization efforts slightly better results are obtained when
training on one session from the same subject, compared to
five sessions from different subjects. Note furthermore that
for no user state accuracies for setup UI and SD are in the
same range, while this is still the case for the user states
(R), (RE) and (RS) when comparing setups SI and SD.



| || GlobalNorm | UserNorm | RelPower |

SD (k = 2) 93.4% 93.1% 122%
UI (k = 4) 46.7% 58.9% 34.1%
SI (k = 3) 61.8% 62.7% 25.9%

Table 3: Results for different normalization methods
for the different experiment setups. Results in the
first column correspond to the baseline after finding
the optimal value of &

| [ SD | SI |
no ICA || 93.4% | 62.7%
ICA 94.1% | 56.8%

Table 4: Best results without ICA application (see
table 3) compared with results obtained with ICA-
based artifact removal for setup SD and SI

4.3 Artifact Removal

The use of ICA for artifact removal is straight forward as
described in section 3.1 only for setup SingleSub where ar-
tifact contaminated components can be identified easily by
visual inspection of the training data. (We concentrate here
on eye-blinking artifacts, since their obvious impact on the
EEG signal seems to be largest.) Furthermore only for this
setup the ICA weights learned on the training data seem to
be applicable to the test data in the sense that artifact com-
ponents on the test data and the training data are the same.
For setup SI this appears to be the case at first sight too,
however the artifact components on the test data contain
apparently to much of the actual EEG information, so that
rejection of such components is detrimental to the results.
Table 4 shows that for setup SingleSub small but signif-
icant improvements can be achieved (relative gain 10.6%),
while for setup SI there is a significant performance loss.
ICA-based artifact removal by visual inspection of the ICA
components seems not to be possible for setup UI, since ar-
tifacts are spread over multiple channels. Removal of one or
more such components would remove too much useful EEG
information.

4.4 Feature Reduction

The computation of LDA coefficients involves the solution of
an eigenvalue problem which does not have a stable solution
in case of the user dependent data since not enough data
points are available. Therefore LDA was only applied in the
user independent experiments where the training sets were
about four times larger. We tried to reduce the original data
points with 1440 features down to a dimensionality of 25 fea-
tures and compared the results to the case where no feature
reduction was performed. Interestingly no significant differ-
ences in results on the validation data could be found for
a reduction down to 75 features (figure 7). For testing we
decided to reduce the dimensionality of the data only to 300
features. This ”conservative” choice of the dimensionality
was made to make sure that results are still stable, given
the findings on the validation data. With 300 dimensional
feature vectors an accuracy of 57.5% on the test set could
be obtained, compared to 58.9% without feature reduction.
Training time and memory consumption is reduced largely
when 300 features instead of 1440 are used. We conclude
that comparatively few features seem to be important for
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Figure 7: Average performance on the validation set
for a feature reduction from 1440 down to 25 fea-
tures on setup UIL. Note that non-equidistant scale
on the x-axis for better visualization.

the classification task. For practical applications this means
particularly a gain in training and classification time and
less memory consumption of the learned models. Furter-
more models can be estimated more reliable with a smaller
number of features.

Electrodes preferred by the LDA, i.e. electrodes from which
most features are selected, are located over the frontal and
the parietal cortex. This suggests that the EEG from these
regions is particularly important for the user states we are
considering in this work.

In future work other feature selection algorithms have to be
applied, which can cope better with data sparseness in case
of high dimensional data. Interesting results for a similar
problem have been recently reported in [18]

45 Electrode Reduction

Findings from the previous section suggest, that the elec-
trodes from the frontal and from the parietal cortex should
be included in a set of reduced electrodes in any case. From
a practical point of view the use of only the frontal elec-
trodes fpl, fp2, {7 and {8 is more suitable however as argued
in section 2.

Using only these electrodes from the EEG-cap recordings
an average accuracy on the CMUSubjects data of 70.8%
is obtained for setup SD. This compares to an accuracy
of 65.3% obtained for the HeadBand data. When only the
three user states resting (R), perceiving a presentation (AV)
and reading (RE) are taken into account accuracies raise to
79.5% for the CMUSubjects data and to 83.0% for the
HeadBand data for setup SD. The identification of these
three user states is particularly important for applications
in scenarios as described in section 1.1.

We conclude that user state detection with only four frontal
electrodes is possible, however results drop significantly when
no data from electrodes at other positions is available.

4.6 Adaptation to a Specific Subject

Since training data from only one session was available for
session independent experiments, we tried to add the whole
CMUSubjects training data to the original training data
and tested in a round-robin manner on all four sessions for



which we conducted session independent experiments. This
resulted in an average accuracy of 61.1% which does not dif-
fer much from the 62.7% obtained when using only the train-
ing sets for setup SIThis suggests that only additional noise
is introduced when data from different subjects is added to
enhance the training data for one particular subject.

5. CONCLUSIONS

In this paper we presented a system for user state identifi-
cation using EEG data. Information about the current user
state could be used to allow for more intelligent interac-
tion between users and electronic communication devices or
for more efficient interaction between users during meetings.
Data for six user states which are typical for a meeting sce-
nario was collected and several experiments were conducted.

Using support vector machines for classification and inde-
pendent component analysis for artifact removal an average
accuracy of 94.1% could be obtained for the discrimination
of the six user states in user and session dependent exper-
iments with a conventional EEG-cap. Average accuracies
for session indepenent experiments (62.7%) and user inde-
pent experiments (58.9%) are much below. In an experiment
with a headband with four build-in electrodes an accuracy
of 90.2% for the discrimination of three user states in a user
and session dependent experiment was obtained. Improve-
ments of electrodes and techniques for electrode attachment
(e.g. on a glasses frame) are still needed however to make
the use of wearable EEG devices even more acceptable and
comfortable for users.
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