
AUTOMATIC DISFLUENCY REMOVAL ON RECOGNIZED SPONTANEOUS SPEECH -
RAPID ADAPTATION TO SPEAKER-DEPENDENT DISFLUENCIES

Matthias Honal, Tanja Schultz

Interactive Systems Laboratories
University of Karlsruhe Germany, Carnegie Mellon University USA

76128 Karlsruhe, 15212 Pittsburgh

ABSTRACT

In this paper we investigate methods to adapt a system for dis-
fluency removal to different data properties. A gradient descent
algorithm for parameter optimization is presented which achieves
85.1% recall and 93.1% precision on the English Verbmobil cor-
pus and 53.0% recall and 79.0% precision on the Mandarin Chi-
nese CallHome corpus. This compares to the results produced with
hand-optimization on the test set. Furthermore we investigated the
impact of cross-validation and training set selection on recognizer
output. Finally we examined speaker dependent disfluency pro-
duction behavior and clustered training data accordingly in order
to improve the overall system.

1. INTRODUCTION

Spontaneous speech is disfluent. Disfluencies are those parts of
spontaneous speech, which can be removed in order to retrieve the
originally intended fluent utterance. Disfluency removal makes
sentences shorter, less ill-formed and thus facilitates the down-
stream processing by natural language understanding components
such as machine translation or summarization. Initial results on
integrating our disfluency remover into a speech-to-speech trans-
lation system show very promising results.

1.1. Disfluencies

We distinguish three disfluency categories:

• Repetitions/Corrections: A word sequence is repeated or
modified without changing the original train of thought.

• False starts: An utterance is aborted, then restarted with a
new idea or train of thought.

• Discourse markers: Filler words which do not contribute to
the semantic content of the discourse but indicate the speak-
ers intend to keep or take a turn. Furthermore, words are
considered as discourse markers which occur within repeti-
tions or false starts, indicating that previously uttered words
will be corrected. Words of the latter category are some-
times called editing terms.

The goal of disfluency removal is to delete disfluent words.
In the case of discourse markers this results simply in deleting the
above defined filler words and editing terms. More complex disflu-
encies (repetitions and false starts) can be divided in a reparandum
(words that will be abandoned, repeated or corrected), followed
by an optional interregnum (an editing term, as described above)
and a repair, where the actual repetition, correction, or restart takes

Repetition “I think you should, no, we should leave early
in the morning” becomes “I think, we should
leave early in the morning.”

False
Start

“We’ll never find a day, what about next
month?” becomes “What about next month?”

Discourse
marker

“Well, let’s see, we can leave Thursday, no, Fri-
day.” becomes “We can leave Friday.”

Table 1. Examples of disfluency types and their removal; disfluent
words of the different types appear in bold face

place. Disfluency removal for these complex disfluencies is thus
the removal of the reparandum. Table 1 shows examples for dis-
fluent sentences before and after disfluency removal.

1.2. Related work

Several systems for disfluency correction or detection have been
proposed in the past. In [1] Stolcke et al. propose a system for
sentence boundary and disfluency detection in speech recognizer
output. A prosodic model and a language model are combined to
identify the interruption point of disfluencies (it marks the offset of
the reparandum). On the Switchboard corpus the system identifies
93.0% of the considered events correctly; on recognizer output the
performance achieves 76.6%.

The system presented by Liu, Stolcke and Shriberg in [2] com-
bines a word-based and a POS-based language model with a lan-
guage model accounting for repetition patterns and with acoustic
and prosodic cues in order to identify interruption points of disflu-
encies. Rule based knowledge is then applied to find the reparan-
dum onset in order to remove the disfluencies. On the Switchboard
corpus a recall of 61.45% and a precision of 68.64% is reported.

Spilker et al. developed a system [3] where interruption points
are identified using acoustic cues. The extent of repair and reparan-
dum is determined using methods of statistical machine translation
to translate one into the other. On the German Verbmobil corpus
they achieve a recall of 64% and a precision of 84% on manually
transcribed speech. These results can be compared to the results of
our previous system discussed in [4]: Applying statistical machine
translation methods to identify and remove disfluencies we could
achieve a recall of 77.2% and a precision of 90.2% on manually
transcribed data of the English Verbmobil corpus.

Based on our system as introduced in [4] we investigate in
this paper how system parameters and the data for training and
cross-validation can be selected in order to optimize the overall
system performance. The paper is organized as follows: After the

I - 9690-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

description of the data set and a short introduction into the ba-
sic concepts of our system, we present a gradient descent method
for automatic parameter optimization using a cross-validation set.
Next we compare the impact of manually transcribed text versus
recognized speech used as training and cross-validation material
for disfluency removal in recognizer output. Finally we present
our approach to adapt the disfluency removal system to speaker
clusters differing in the amount of produced disfluencies.

2. DATA

Experiments were conducted based on two different corpora: The
English Verbmobil Corpus (EVM) for American English and the
Mandarin Chinese CallHome corpus (MCC) for Mandarin. Both
corpora consist of spontaneously spoken dialogs spoken by native
speakers. Table 2 shows important corpus characteristics.

EVM MCC

Dialogs 127 100
Speakers 60 200
Sentences 16583 24275

Words 118356 202099
Vocabulary 2290 7503

Table 2. Statistics from the EVM and the MCC corpus

Both corpora are divided in a training set, a test set, and a de-
velopment test set. The latter is used for cross-validation. Table 3
shows the size of the different data sets. For speech of the EVM
corpus we conducted experiments on both, the manual transcrip-
tions and the output of the recognizer. Since only little data is
available, the entire test set of the recognizer was used for testing
and tuning the disfluency removal system. The recognizer achieves
76.1% word accuracy on this test set. For training the disfluency
removal system we used the recognizer output of the recognizer’s
training set. The recognizer performance on this training set is
88.1% word accuracy.

Disfluencies were annotated manually for the MCC corpus.
For the EVM corpus, repetitions and false starts were annotated
manually, while discourse markers were annotated automatically
using Zechner’s system as described in [5]. For more details on
disfluencies in both corpora please refer to [4].

3. APPROACH

For the removal of disfluencies we use the noisy-channel approach,
a concept which is borrowed from statistical machine translation
[6]. The basic idea is that a fluent string C is passed through a
channel that adds noise (in form of disfluencies) to this string. We
can only observe the noisy, i.e. the disfluent string N . The goal of
disfluency removal is to recover the string Ĉ that is most likely to
be the fluent input string given the noisy output string. In statisti-
cal machine translation the fluent string is associated with the tar-

Training Test Devtest

EVM 91.1K 12.4K 9.1K
MCC 156.6K 21.1K 41.3K

Table 3. Data size in terms of words (EVM and MCC corpus)

get language, the disfluent string with the source language. Thus,
our problem can be reformulated as the translation of the disfluent
string into a fluent one. In equation 1 the problem is expressed in
mathematical terms and reformulated using Bayes rule. C denotes
the fluent string, N the disfluent string.

Ĉ = arg max
C

P (C|N) = arg max
C

{P (N |C) · P (C)} (1)

We model the probability P (C) with an n-gram language model
trained on fluent speech. The probability P (N |C) (the “transla-
tion model”) can be decomposed as follows1:

P (N |C) = PI,J (m) ·
J∏

j=1

Pw(nj) (2)

The probability PI,J (m) models the number m of contiguous
word sequences which can be deleted in N to obtain C. Pw(nj) is
the probability that word nj of the string N is disfluent. I denotes
the length of the fluent sentence C and J the length of the disfluent
sentence N .

Each of the probabilities Pw(nj) is finally composed of a
weighted sum over the following six models: (M1) models the
length of the deletion region of a disfluency, (M2) the position of
a disfluency, (M3) the length of the deletion region of a disfluency
with a word fragment at the end of the reparandum, (M4) the con-
text of a potentially disfluent word, (M5) uses information about
the deletions of the last two words preceding a potentially disfluent
word and (M6) takes into account whether a potentially disfluent
word is part of a repeated word sequence. Thus we have

Pw(nj) =

∑6
k=1 λkPMk(nj)∑6

k=1 λk

(3)

where PMk(nj) is the contribution of model Mk and λk is
the weighting factor for model Mk. The probability PMk(·) is
derived from the occurrences of disfluency characteristic k in the
training data. For a more detailed description of the models and
their impact on the system’s performance, please refer to [4].

4. GRADIENT DESCENT

Using equations (1), (2) and (3) and transforming the result into
negative log space, our search criterion becomes (we write S(x)
for − log P (x)):

Ĉ = arg min
C

S(C|N) = arg min
C

γS(C)+(1−γ)S(N |C) (4)

with

S(N |C) = SJ,I(m) −
J∑

j=1

log

(
6∑

k=1

λkPMk(nj)∑6
k=1 λk

)
(5)

The factor γ represents a weighting factor that controls the in-
fluence of the language model over the translation model. While
all probabilities can be learned from the training data, the weight-
ing factors γ and λk have to be determined separately. In our
work we use an iterative gradient descent procedure which maxi-
mizes the average probability P (C|N) for given pairs (C, N) of

1This is a slightly simplifi ed presentation that omits detailed informa-
tion of the probabilities. For more details please refer to [4].

I - 970

➡ ➡

the training data. (Maximization of P (C|N) corresponds to min-
imization of S(C|N) in negative log space.)

Starting with a set of initial parameters (γ(0), λ
(0)
k), for each

pair (C, N) new parameter values are calculated using the follow-
ing update rules:

γ(l+1) = γ(l) + ∆γ(l) λ
(l+1)
k = λ

(l)
k + ∆λ

(l)
k

(6)

The update quantities ∆γ(l) and ∆λ
(l)
k are calculated as fol-

lows:

∆γ(l) = −η
∂S(l)(C|N)

∂γ
+ α∆γ(l−1) (7)

∆λ
(l)
k = −η

∂S(l)(C|N)

∂λk
+ α∆λ

(l−1)
k (8)

The factor η is the learning rate, α is a momentum term, which
includes previous update directions to the current update direc-
tion and thus influences the effective learning rate. This proce-
dure is continued until the difference between the average value
of S(C|N) of the previous and the current epoch (one epoch is
one complete iteration through the training set) falls below a given
threshold. The final parameter set is taken from the epoch, in
which the average value of S(C|N) over all the pairs (Nxv, Cxv)
of development test set is minimal.

Table 4 compares the results obtained from using the gradient
descent procedure to results from hand-optimizing the parameters
on the test data. As can be seen, the parameter set resulting from
the gradient descent procedure achieves the same F1 as the hand
tuned parameter set. These results are very encouraging since the
hand optimization was performed on the test data and therefore
defines a kind of golden standard. These results hold for both
languages, and indicate that the gradient descent procedure gen-
eralizes well, even across languages. The performance difference
between EVM and MCC may result from the much larger vocabu-
lary size of the MCC corpus which can not be compensated by the
larger corpus size. We conclude that the gradient descent proce-
dure is an appropriate method for rapid system development that
makes hand tuning obsolete. According to our experience, hand
tuning requires tremendous manual and computational effort and
expertise, since the whole system has to be run for several param-
eter combinations and the results have to be evaluated carefully, in
order to find a good parameter set.

Setup Recall Precision F1

Hand optimized (EVM) 86.2% 91.5% 0.444
Gradient descent (EVM) 85.1% 93.1% 0.445
Hand optimized (MCC) 53.4% 77.8% 0.317
Gradient descent (MCC) 53.0% 79.0% 0.317

Table 4. Results for gradient descent compared to hand tuning on
the EVM and the MCC corpus

5. DISFLUENCY REMOVAL ON RECOGNIZED SPEECH

Results of the previous sections were all performed on manual
transcriptions. In this section we describe our experiments on ap-
plying the disfluency removal system to recognized speech. All
experiments were conducted on the EVM corpus. We investigated
the following training and cross-validation setups: (S1) Training

on manual transcriptions, cross-validation on recognizer output,
(S2) training and cross-validation on recognizer output, (S3) train-
ing and cross-validation on manual transcriptions, and (S4) train-
ing and cross-validation on a combination of manual transcriptions
and recognizer output. Parameters for each setup were optimized
separately using the gradient descent procedure. The disfluencies
in recognized speech were annotated by aligning the recognizer
output with the annotated manual transcriptions using the minimal
editing distance. Results of the experiments for the different setups
are given in table 5.

Setup Recall (in %) Precision (in %) F1

(S1) 70.8 80.2 0.376
(S2) 68.2 81.5 0.371
(S3) 70.6 80.1 0.375
(S4) 69.3 80.2 0.372

Table 5. Results on recognizer output (EVM) for different setups

As expected, the disfluency removal system suffers a signif-
icant degradation when tested on recognition output rather than
manual transcriptions. The lower recall may result from the fact
that words tagged as disfluent are not deleted by the system, since
they are falsely recognized and thus perceived as fluent by the sys-
tem in the given context. Furthermore, due to recognition errors,
sequences which are tagged as repetitions no longer exist as se-
quences of repeated words. The lower precision can be explained
by the fact that wrongly recognized words appear to be disfluent
in their context although the original word is fluent.

The setup (S1) achieves the best results with respect to the F1

score. This indicates that introducing noise in form of recognition
errors during training does not help to improve performance on
noisy test data. The decrease of recall in the other setups is mostly
due to the performance in deletions of short discourse markers
(such as “well”, “you know”). Using (S2) for training, due to
recognition errors these discourse markers occur less frequently
in contexts in which they are deleted. Precision increases for ex-
periments with setup (S2) because a system trained on recognized
speech can cope better with the problem of ill-formed and ungram-
matical sentences in a test set that is based on recognized speech
as well. Therefore, a smaller number of false positives are pro-
duced, since some ill-formed constructions are tolerated. The re-
sults produced with setup (S3) are almost as good as the results
produced with setup (S1). This indicates that training on man-
ually transcribed speech produces better results overall, however
for tuning the model weights a cross-validation set based on rec-
ognized speech seems more appropriate. The combination of man-
ually transcribed and recognized speech in (S4) does not improve
the results. This means that a simple combination does not profit
from the gains seen in (S2) and (S3).

6. SPEAKER DEPENDENT DISFLUENCY REMOVAL

The production of disfluencies differs across speakers. Some speak-
ers tend to speak more disfluent than others. Figure 1 shows the
number of utterances and disfluencies over all test speakers. It can
be observed that about 50% of the test speakers produce more than
one disfluency per utterance, and the other 50% of speakers pro-
duce less than one disfluency per utterance.

When we calculated the performance of our system per speaker
we found that both recall and precision vary significantly. The re-

I - 971

➡ ➡

Fig. 1. Number of disfluencies and utterances over test speakers

call ranges from 75.2% to 94.0%, the precision ranges from 82.4%
to 99.1% across speakers. In order to compensate for this effect
we divided the training and the cross-validation set into speaker
clusters in the hope that this gives a better model of the speaker
dependent disfluency production.

The analysis in figure 1 indicates that the number of disflu-
encies per utterance could serve as a good criterion to group the
speakers into two clusters. We divided the training set, the cross-
validation set, and the test set into two clusters M and L: Cluster
M contains the speakers producing more than one disfluency per
utterance, cluster L contains the speakers producing less than one
disfluency per utterance. In the following we trained the system for
both clusters separately, and tested it on the test sets of both clus-
ters. Experiments were conducted on both, manual transcriptions
and recognized speech. For experiments on recognized speech the
setup (S1) as described above was used, since it achieved the best
results on recognized speech. We trimed the training material to
assure an equal size of the training sets. This results in 3414 utter-
ances for cluster M (TrM34) and cluster L (TrL34). Furthermore
we randomly selected 3414 utterances from the original training
set (Tr34). To investigate the impact of this data reduction we
compared the results to the system trained on the complete train-
ing set (Tr85) consisting of 8573 utterances. Table 6 shows the
performance of the resulting systems on the test sets for cluster M
(TeM) and cluster L (TeL).

TRL ASR
TeM TeL TeM TeL

TrM34 79.2/88.9 90.0/89.3 64.6/76.4 78.4/79.8
TrL34 74.0/94.7 87.3/94.3 60.6/82.5 77.1/81.7
Tr34 75.7/92.7 87.9/92.2 62.2/79.3 76.5/80.8
Tr85 79.9/94.0 90.2/91.7 65.5/80.7 77.5/79.8

Table 6. Recall/precision (in%) for speaker clusters on manual
transcriptions (TRL) and recognized speech (ASR)

Training on the larger training set Tr85 produces in almost
all cases better results than training on the smaller training sets.
When comparing the results of the training sets built on the two
speaker clusters to the reduced training set (Tr34), we observed an
improvement of recall at the costs of precision when using TrM34,
and vice versa when using TrL34. One reason might be that the

system tends to delete more disfluencies when the training data
contains many disfluencies. In case the training data contains less
disfluencies, the system tends to delete less disfluencies but also
produces less false positives.

Table 6 shows that we could achieve improvements on either
recall or precision by training on the matching training set (TeM
on TrM34; TeL on TrL34) but not managed to improve both at
the same time. In terms of F1 scores, we got small, but signif-
icant gains compared to Tr34 when the matching training set is
used. This, however, requires that the correct speaker cluster is
known or can be derived accurately. Furthermore, we conclude
from the comparison between the reduced and the full training set
that currently the effectiveness of speaker dependent modeling is
hampered by the resulting reduction of the training data.

7. CONCLUSIONS

In this paper we presented three approaches to improve our disflu-
ency removal system. First, we implemented a gradient descent
method to automatically optimizing the parameter weights. The
resulting system is as good as the golden standard which was set by
hand optimizing the parameters on the test data. These results are
very encouraging since they allow for a rapid deployment of the
disfluency removal system in new domains or languages. Second,
we extended our experiments to recognizer output. We achieved
best results when we trained the models on manually transcribed
data and optimized the model weights on recognizer output data.
Finally, we found that the amount of produced disfluencies varies
across speakers and investigated a very simple straight-forward
criterion to cluster the training data in order to adapt our system
to this speaker dependent disfluency production behavior.

8. REFERENCES

[1] A. Stolcke, E. Shriberg, R. Bates, M. Ostendorf, D. Hakkani,
M. Plauche, G. Tür, and Y. Lu, “Automatic Detection of
Sentence Boundaries and Disfluencies Based on Recognized
Words,” in Proceedings of the ICSLP, 1998, vol. 5, pp. 2247–
2250.

[2] Y. Liu, E. Shriberg, and A. Stolcke, “Automatic Disflu-
ency Identification in Conversational Speech Using Multiple
Knowlege Sources,” in Proceedings of the 8th Eurospeech
Conference, Geneva, 2003.

[3] J. Spilker, M. Klarner, and G. Görz, “Processing Self-
Corrections in a Speech-to-Speech System,” in Verbmobil:
Foundations of Speech-to-Speech Translation, W. Wahlster,
Ed. 2000, Springer Verlag, Berlin.

[4] M. Honal and T. Schultz, “Correction of Disfluencies in Spon-
taneous Speech using a Noisy-Channel Approach,” in Pro-
ceedings of the 8th Eurospeech Conference, Geneva, 2003.

[5] K. Zechner, Automatic Summarization of Spoken Dialogues
in Unrestricted Domains, Ph.D. thesis, Language Technolo-
gies Institute, School of Computer Science, Carnegie Mellon
University, Pittsburgh, 2001.

[6] Y. Wang and A. Waibel, “Decoding Algorithm in Statisti-
cal Machine Translation,” in Proceedings of the 35th Annual
Meeting of the ACL, 1997.

I - 972

➡ ➠

