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Abstract
Automatic detection of emotions has been evaluated using stan-
dard Mel-frequency Cepstral Coefficients, MFCCs, and a vari-
ant, MFCC-low, calculated between 20 and 300 Hz, in order to 
model pitch. Also plain pitch features have been used. These 
acoustic features have all been modeled by Gaussian mixture 
models, GMMs, on the frame level. The method has been tested 
on two different corpora and languages; Swedish voice con-
trolled telephone services and English meetings. The results 
indicate that using GMMs on the frame level is a feasible tech-
nique for emotion classification. The two MFCC methods have 
similar performance, and MFCC-low outperforms the pitch 
features. Combining the three classifiers significantly improves 
performance.

1. Introduction
Recognition of emotions in speech is a complex task that is 
furthermore complicated by the fact that there is no unambigu-
ous answer to what the “correct” emotion is for a given speech 
sample. The vocal emotions explored may have been induced or 
acted or they may be have been elicited from more “real”, life-
like contexts [1], [2]. Spontaneous speech from actual telephone 
services could be counted as such a material.  The line of emo-
tion research can roughly be viewed as going from the analysis 
of acted speech [3] to more “real” [2], [4], [5]. The motivation 
of the latter is often to try to enhance the performance of hu-
man-machine interaction systems, such as voice controlled tele-
phone services.
A difficulty with spontaneous emotions is in their labeling, 
since the actual emotion of the speaker is almost impossible to 
know with certainty. Also, emotions occurring in spontaneous 
speech seem to be more difficult to recognize compared to acted 
speech [2]. In [6], a set of 6 features selected from 200 is 
claimed to achieve good accuracy in a 2-person corpus of acted 
speech. This approach is adopted by several authors. They ex-
periment with large numbers of features, usually at the utterance 
level, and then rank each feature in order to find a small golden 
set, optimal for the task at hand [7]. 
Classification results reported on spontaneous data are sparse in 
the literature. In [5], the corpus consists of recordings of inter-
actions between users and an automatic voice service. It is re-
ported that performance flattens out when 10 out of 60 features 
are used in a linear discriminant analysis (LDA) cross-valida-
tion test. The performance is improved by introducing corpus 
reduction procedures. In [4], data is recorded from various air 
travel booking systems. The authors report good performance 
for discrimination between frustration versus else and annoyed
+ frustration versus else. However, they rely heavily on lan-
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ge model features, repetitions and manual annotation of 
aking style. In [8], data from a commercial call center was 
d. As is frequently the case, the results for various acoustic 
tures were only slightly better than a system classifying all 
mplars as neutral. There is an indication that the golden set 
coustic features has yet to be found, or simply does not exist 
thout conditioning on other sources of information). As 
ntioned, some authors use several hundred features per utter-
e, which means that almost the entire spectrum is covered. 
 natural continuation is simply to use spectral features, such 
el-frequency (MFCC) or linear prediction (LPCC) cepstral 

fficients, possibly with additional pitch measures. Delta 
CC measures on the utterance level has been used earlier, 

. in [6], [9].  However, we have chosen to model the 
ribution of the MFCC parameters on the frame level in order 
btain a more detailed description of the speech signal. 
spontaneous speech the occurrence of canonical emotions 
h as happiness and anger is typically low. The distribution of 
ses is highly unbalanced, making it difficult to measure and 
pare performance reported by different authors. The differ-

e between knowing and not knowing the class distribution 
l significantly affect the results. Therefore we will include 
lts from both types of classifiers in our results.  

2. Material
 have used two different spontaneous speech corpora for our 
eriments as described below. 

. The Voice Provider material 
 first material used in 
 study was recorded at 8 
z at the Swedish com-
y Voice Provider, 
ed VP in the following, 
ich runs more than 50 
erent voice-controlled 
phone services. The 
ices cover information 

arding airlines, ferry 
fic, postal assistance 
 much more. Most ut-
nces are neutral (non-
ressive), but some per-
t are frustrated, most 
n due to misrecogni-
s by the speech recognizer. The utterances are labeled by an 
erienced, senior voice researcher into neutral, emphasized or 
ative (frustrated) speech. When labeling a speaker’s 

Table 1: The Voice Provider 
Material

Development set 
Neutral 3865 94 % 
Emphatic 94 2 % 
Negative 171 4 % 
Total 4130  

Evaluation set 
Neutral 3259 93 % 
Emphatic 66 2 % 
Negative 164 5 % 
Total 3489  
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dialogue it is at times obvious that the speaker is emphasizing, 
or hyper-articulating, an utterance rather than expressing 
frustration. This is, however, not obvious without taking the 
dialogue context into account. This is our reason for introducing 
the emphatic label, since these utterances should not be counted 
as frustrated, if possible. A subset of the material was labeled by 
5 different speech researchers and the pair-wise inter-labeler 
kappa was 0.75 – 0.80.
The VP material was split into a development and evaluation set 
according to the proportions in Table 1. In order to ensure that 
enough data for negative and emphatic classes are available in 
both sets, utterances were sampled from the entire corpus, but 
no sessions were split between the development and evaluation 
set.  

2.2. The ISL Meeting Corpus 
In addition to the VP data, 
we apply our approach to 
meeting recordings. The 
ISL Meeting Corpus con-
sists of 18 meetings, with 
an average number of 5.1 
participants per meeting 
and an average duration of 
35 minutes. The audio is of 
16 bit, 16 kHz quality, re-
corded with lapel micro-
phones. It is accompanied 
by orthographic transcrip-
tion, and, more recently, 
annotation of a three-way 
emotional valence (negative, neutral, positive) at the speaker 
contribution level [10]. For our purposes, this corpus was split 
into a development set and an evaluation set, as shown in Table 
2.  The emotion labels were constructed by majority voting (2 
of 3) for each segment. Split decisions (one vote for each class) 
were removed. Finally, the development set was split into two 
subsets that were used for cross-wise training and testing. 

3. Features
Three main sets of features are described; 1) standard MFCCs 
2) MFCC-low using filters from 20 Hz to 300 Hz 3) pitch. 

3.1. Mel-frequency Cepstral Coefficients 
Mel-frequency Cepstral Coefficients, MFCCs, are extracted 
using pre-emphasized audio, using a 25.6 ms Hamming window 
every 10 ms. For each frame, 24 FFT-based Mel-warped loga-
rithmic filter bank coefficients from 300 to 3400 Hz are ex-
tracted and then cosine transformed to 12 dimensions, followed 
by RASTA-processing (position of pole 0.94) [11], and append-
ing of the 0’th component, which corresponds to energy. Fi-
nally, the delta (computed from 2 frames backward and for-
ward) and delta-delta (computed from 2 frames backward and 
forward from delta) features are added, resulting in a 39 dimen-
sional feature vector. For the 16 kHz ISL data, we use 26 filters 
from 300 to 8000 Hz; otherwise the processing is identical. 
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Table 2: The ISL Meeting 
Corpus

Development set 
Neutral 6312 80 % 
Negative 273 3 % 
Positive 1229 16 % 
Total 7813  

Evaluation set 
Neutral 3259 70 % 
Negative 151 3 % 
Positive 844 19 % 
Total 4666  
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. MFCC-low 
se features are computed in the same way as MFCCs but the 
r banks are placed in the 20 - 300 Hz region instead. We ex-
t these low frequency MFCCs to model F0 variations. Three 
erent frame size and frame rate combinations were tested: 
25.6 ms frames every 10 ms; (2) 64 ms frames every 25 ms; 
 (3) 128 ms frames every 50 ms.  

. Pitch and derivative 
 algorithm for pitch tracking uses the Average Magnitude 
ference Function (AMDF) due to [12]. The variant used here 
 introduced in [13]. Pitch is extracted on a logarithmic scale 
 the utterance mean is subtracted. Finally, delta features are 
ed. We also tried out delta-delta features, but several nu-
rical problems occurred in the modeling stage and we ulti-
tely abandoned delta-delta features. In initial tests, we also 
d not to subtract the utterance mean, but the result was worse 
pared to performing the subtraction. 

4. Classifiers
 acoustic features are modeled using Gaussian mixture mod-
(GMMs) with diagonal covariance matrices measured over 
frames of an utterance. First, using all the training data, a 
t GMM is trained with the Expectation Maximization (EM) 
orithm with a maximum likelihood criterion, and then one 
M per class is adapted from the root model using the maxi-

m a posteriori (MAP) criterion [14]. MAP adaptation pro-
s against overtraining, and removes the need to optimize the 
ber of Gaussians per class which may be necessary due to 

erences in the amount of available training data per class. 
 use 512 Gaussians for MFCCs and 64 Gaussians for pitch 
tures. These numbers were optimized empirically in initial 
s. This way of using GMMs has proved successful for 
aker verification [15]. 
ddition to acoustic features, we also used average log-likeli-
ds of n-grams using manual orthographic transcriptions for 

 training and test data. Only human noises and words from 
 transcriptions were used. N-grams without human noises 
e also explored but the result was no better than random. 
 SRILM toolkit was used for n-gram modeling [16]. 

. Classifier combination 
 output from multiple classifiers was combined using multi-

 linear regression, with the final class selected as the argmax 
r the per-class least square estimators. The transform matrix 
 estimated from the training data...

5. Experiments
 ran our experiments with the features and classifiers de-
bed above. We also used combinations of them. The acous-
combination was composed by the GMM modeling MFCC, 
 best MFCC-low GMM for the particular corpus, and pitch 
M. The combination matrix was estimated by first testing 

 respective GMM with its training data. For the ISL corpus, a 
t result was constructed from the two development subsets 
concatenating the outputs of each estimated GMM on its 
ning data. The result was used for optimizing the combina-
 matrix, which was used for the cross-wise test of the devel-



opment set and also for the evaluation set. This should provide a 
more robust estimate for the matrix since it relies on the output 
of two classifiers. For the evaluation set runs, a new GMM was 
trained on the entire development set.
The performance for the n-gram experiments flattened out for 
n=3 and therefore we do not report lower order n-grams. Vari-
ous minimum count pruning methods where also tried out, and 
even though the performance improved a little, these features 
were not used because they performed poorly during initial tests 
on the training data. 

6. Results
Performance is measured as absolute accuracy, average recall 
(for all classes) and f1, computed from the average precision 
and recall for each classifier. The results are compared to two 
naïve classifiers:  a random classifier that classifies everything 
with equal class priors, random with equal priors, and a random 
classifier knowing the true prior distribution over classes in the 
training data, random using priors. The combination matrix, see 
section 4.1., accounts for the prior distribution in the training 
data, making the neutral class heavily favored. Therefore a 
weight vector which forces the matrix to normalize to equal 
prior distribution was also used. Regarding this we report two 
more results: acoustic combination with equal priors, that is 
optimized for the accuracy measure and acoustic combination 
using priors, which optimizes the average recall rate. Thus, all 
classifiers in our tables under the random equal priors heading 
do not know the a priori distribution of the classes and should 
only be compared to each other. The same holds for the classifi-
ers under the heading random using priors. Note that the per-
formance difference in percentages is higher for a classifier not 
knowing the prior distribution compared to the corresponding 
random classifier, than for the same classifier knowing the prior 
distribution compared to its corresponding random classifier. 
This is due to the skewed prior distributions. 
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Table 4: Voice Provider results for Neutral and Emphatic vs. 
Negative. Accuracy, Average Recall and f1. 

Classifier Acc. A. Rec. f1 
Random with equal priors 0.50 0.50 0.50 
Acoustic combination 0.95 0.52 0.56 
Random using priors 0.92 0.50 0.50 
Acoustic comb. using priors 0.95 0.51 0.60 
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Table 3: Voice Provider results for Neutral vs. Emphasis vs. 
Negative. Accuracy, Average Recall and f1. 

Classifier Acc. A. Rec. f1 
Random with equal priors 0.33 0.33 0.33 
MFCC 0.80 0.43 0.40 
MFCC-low 10 ms 0.78 0.39 0.37 
Pitch 0.56 0.40 0.38 
Acoustic combination 0.90 0.37 0.39 
Random using priors 0.88 0.33 0.33 
Acoustic comb. using priors 0.93 0.34 0.38 
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. Voice Provider results 
m Table 3 we note that all classifiers with equal priors per-

 substantially better than random. The results for the differ-
 MFCC-low tests were not very different. Only the 10 ms 
e is reported, which gave best results for the training set. The 
CC-low classifier is almost as good as the standard MFCC 
 and it performs considerably better than the pitch based 
M.  
ables 4 and 5 the emphatic class has been combined either 

h the neutral or the negative class resulting in binary classifi-
on. The small differences between these tables suggest that 
oring the dialogue context makes it hard to differentiate be-
en emphatic and negative speech, since their acoustic mani-
ations seem to be similar, compare section 2.1. 
e can also note that combining all the three acoustic classifi-
gives the best overall results, although the effect is not as 
nounced when using priors, as discussed above. 

. ISL meeting corpus results 
le 6 shows our results for the ISL meeting corpus. Among 

 MFCC configurations in the low frequency region, MFCC-
 25 ms performed best for the development set. Accordingly 
 was used for the evaluation set. Again, the table shows that 
 pitch feature does not perform on the same level as the 
CC features. When the distribution among errors for the 
ividual classes was examined, it revealed that most clas-
ers were good at recognizing the neutral and positive class, 
 not the negative one. The reason for this is most probably its 
 frequency, which results in poor training statistics. The 3-
m classifier gives an improvement of the performance when 
bined with the acoustic features.  

able 5: Voice Provider results for Neutral vs. Emphatic and 
Negative. Accuracy, Average Recall and f1. 

lassifier Acc. A. Rec. f1 
andom with equal priors 0.50 0.50 0.50 
coustic combination 0.92 0.54 0.56 
andom using priors 0.88 0.50 0.50 
coustic comb. using priors 0.93 0.52 0.58 

ble 6: ISL Meeting Corpus Evaluation set. Accuracy, Average 
Recall and f1. 

assifier Acc. A. Rec. f1 
ndom with equal priors  0.33 0.33 0.33 
FCC 0.66 0.49 0.47 
FCC-low 25 ms 0.66 0.46 0.44 
tch 0.41 0.38 0.37 
gram 0.47 0.57 0.52 
oustic combination 0.79 0.50 0.47 
oustic + 3-gram combination 0.80 0.53 0.50 
ndom using priors 0.67 0.33 0.33 
oustic comb. using priors 0.82 0.42 0.48 
oustic+3-gram comb. using priors 0.85 0.48 0.52 



7. Discussion
The diverse results achieved on our two corpora, VP and ISL, 
are not surprising considering the differences between them. 
The VP corpus is labeled by a single expert, and the ISL data is 
annotated by three naïve labelers. Having three labelers makes 
majority voting possible. For the ISL data, some speakers in the 
development set occur in the evaluation set (a complete disjoint 
set is impossible to achieve for this corpus), and although this 
may also be the case for the VP data, the effect of it is probably 
negligible. The two corpora have different acoustic quality and 
contain different languages. The utterances in the VP data are 
noisy and recorded from various telephones, while the ISL data 
are recorded by quality microphones in silent office environ-
ment. The VP utterances generally consist of one or a few 
words directed to a machine. The ISL meeting utterances are 
longer and directed to humans. The ISL emotions were mostly 
positive and were easier to detect, while the VP material only 
contained negative emotions, due to users frustration with the 
system.  

8. Conclusion
Automatic detection of emotions has been evaluated using 
spectral and pitch features, all modeled by GMMs on the frame 
level. The method has been tested on two corpora; voice con-
trolled telephone services and meetings. The corpora were in 
two different languages, Swedish and English. Results show 
that frame level GMMs are useful for emotion classification. 
Combining the three main acoustic classifiers significantly im-
proved performance. Including 3-grams for the ISL corpus gave 
a further improvement.
The two MFCC methods used show similar performance, and 
MFCC-low outperforms pitch features.  A reason may be that 
MFCC-low gives a more stable measure of the pitch. Also, it 
may be due to its ability to capture voice source characteristics, 
see [17], where the level difference between the first and the 
second harmonic is used as a measure of different phonations, 
which in turn may vary across emotions. Our reason for intro-
ducing MFCC-low was to measure pitch. However, considering 
the potential to measure phonation from the first two harmonics, 
its upper frequency should be at least doubled in order to cap-
ture these effects for all female voices.  
The lower overall performance for the VP data may be due to 
the telephone quality of the speech and possibly also due to a 
larger variation in the way negative emotions are expressed.  
The language differences may also influence the results. 
A possible way to improve performance for the VP corpus 
would be to perform emotion detection on the dialogue, rather 
than the utterance level, and also take the lexical content into 
account. This would mimic the behavior of the human labeler. 
Above we have indicated the difficulty to compare emotion 
recognition results. However, it seems that our results at least 
compare to those in [5] that also reports results on emotion rec-
ognition for a real-life interactive voice response system. 
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