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Abstract. This paper describes the 2006 lecture and conference meet-
ing speech-to-text system developed at the Interactive Systems Labora-
tories (ISL), for the individual head-mounted microphone (IHM), single
distant microphone (SDM), and multiple distant microphone (MDM)
conditions, which was evaluated in the RT-06S Rich Transcription Meet-
ing Evaluation sponsored by the US National Institute of Standards and
Technologies (NIST). We describe the principal differences between our
current system and those submitted in previous years, namely improved
acoustic and language models, cross adaptation between systems with
different front-ends and phoneme sets, and the use of various automatic
speech segmentation algorithms.

1 Introduction

In this paper, we present the ISL’s most recent speech-to-text systems for lec-
tures and conference meetings, which have evolved significantly over previous
versions [1-3] and which were evaluated in the NIST RT-06S Rich Transcription
Meeting Evaluation.

The systems described in [1] and [3] shared many common elements, e.g.
front-end, phoneme set, and training strategy. The systems described in this pa-
per differ from them in several important ways. Notably, we used only speaker-
adapted acoustic models. Even in the first pass, we used models trained with
vocal tract length normalization (VTLN), and employed speaker-based incre-
mental adaptation during decoding. Several acoustic models with different front-
ends were trained: besides our standard FF'T MFCC front-end, we also trained a
system with a minimum variance distortionless response (MVDR) [4] front-end.
Furthermore, in addition to our standard phoneme set, which was used in RT-
04S [3], we also trained a system based on the PRONLEX phoneme set in order
to exploit benefits from cross-adaptation and system combination [5]. We also
improved our language models by incorporating data collected from the world
wide web. Last but not least, we used different speech segmentation algorithms
compared to the one used in our RT-04S evaluation system [6].

Most of the decoding experiments described in this paper were conducted
on the lecture meeting portion of the official RT-06S development set, which is
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identical to the RT-05S evaluation set further referred to as lectDEV, and only
a small portion of experiments were done on the conference meeting portion
of this set, confDEV. The corresponding evaluation sets are named lectEVAL
and confEVAL. The confDEV results in this paper exclude one NIST meeting
(NIST_20050412-1303), as it contained a participant on speakerphone, a condi-
tion which was guaranteed not to appear in confEVAL.

2 Automatic Segmentation

Automatic segmentation for the various conditions of the lecture and confer-
ence subtasks is provided by different systems. For the IHM condition, which is
particularly difficult due to cross-talk from background speakers, we developed
separate systems for the lecture and conference meeting subtasks. The lecture
segmenter is an improved version of a single-microphone system which we used
in the TC-STAR project [7]; the conference segmenter is a further evolution of
our multi-microphone RT-04S THM segmentation system. During RT-06S de-
velopment, the two IHM systems further diverged due to subdomain-specific
challenges: participants without microphones in the lecture task, and overlap
and participant interaction in the conference task. We describe the two IHM
segmenters below. The MDM and SDM segmentation was the same for both the
lecture and conference meeting subtasks, and brief mention is included in the
lecture segmentation description.

Lecture Meeting Segmentation

Our THM lecture segmentation approach uses the following speech activity fea-
tures extracted with a frame size of 32 ms and a frame shift of 10 ms: frame
energy in decibels (F), mean and variance normalized E passed through a sig-
moid function (E,,), energy-normalized linear prediction error (L) [8], slope along
the frequency axis of a mel-warped filter-bank spectrum (.5), and SPEECH/NON-
SPEECH posteriors (P) computed using a multi-layer perceptron (MLP) trained
with standard MFCC features. Segmentation for the ITHM condition is performed
in three steps [9]:

1. Background speech activity rejection discards regions of prominent cross-talk.
This step uses E from all available microphones for a particular meeting and
additional constraints such as presence of a minimal percentage of voiced
speech and minimum duration.

2. Foreground speech activity detection identifies regions of reasonably promi-
nent foreground speech activity. This step uses S, E,, and L and a median
filter of length 0.5 s.

3. Sentence breaking further cuts down the segments into shorter segments at
points of high confidence NON-SPEECH, assuming those would correspond
to actual sentence breaks; NON-SPEECH confidences were estimated using
duration and average E.
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For the IHM condition, after these steps, all segments from a single microphone
are assumed to be produced by a single speaker. For SDM, only the sentence
breaking step above is performed, assuming that the recognizer is the best system
for discarding NON-SPEECH. The resulting segments are further tagged with
speaker labels using a hierarchical agglomerative speaker clustering technique [6].
For the MDM condition, a single best channel is first chosen based on average
SNR to perform further processing similar to the SDM condition.

Conference Meeting Segmentation
IHM segmentation in this subdomain is performed in 3 steps:

1. Initial label assignment is performed using our RT-04S THM conference meet-
ing segmenter.

2. Rather than decoding the 2-state SPEECH/NON-SPEECH activity of each par-
ticipant independently [10, 11], we find the best Viterbi path through a 2%-
state vocal interaction space, where K is the number of participants in the
test meeting [12]. This allows us to impose constraints on the degree of over-
lap in each meeting [13]. Single-Gaussian, multivariate acoustic models are
trained on the test data using the initial labels from (1) above, and algo-
rithms published in [12]. Our transition model is trained on the multichannel,
manual turn segmentation available from the orthographic transcription of
meetings collected at the ISL. It has the form:

P (g1 =5;[a=5i)=P(IS;, [I1S; 08l T1Sill) (1)

where ||.S;|| and ||.S;|| are the numbers of participants in SPEECH in the inter-
action states S; and S}, respectively, and ||S; N.S;|| is the number of partici-
pants in SPEECH in both S; and S;. A best single-participant SPEECH/NON-
SPEECH path v is then extracted for each participant from the best multi-
participant interaction path ¢*.

3. Each single-participant path 1} is independently smoothed, by eliminating
short intervals of speech activity and short speech activity gaps.

This algorithm significantly outperforms the segmenter used in our RT-04S eval-
uation system. In Table 1 we show 8th pass WER results using our RT-04S
meeting recognizer on the RT-04S eval data, together with our automatic RT-
04S segmentation, our automatic RT-06S segmentation, and manual segmenta-
tion. Similarly, the table gives 1st pass WER results using our RT-06S meeting
recognizer on confDEV and confEVAL, with the same three segmentation sys-
tems. As this table shows, for different passes, different recognizers, and different
data sets, the word error rate using our RT-06S conference meeting segmenta-
tion is 50%-80% lower than that using our RT-04S segmenter, relative to manual
segmentation.
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Table 1. ASR errors committed by the last pass of our RT-04S STT system and the
first pass of our RT-06S STT system, using our RT-04S meeting segmentation, our
RT-06S meeting segmentation, and manual segmentation, on the IHM condition for
conference meeting data.

RT-04S, last pass RT-06S, first pass
Segmentation RT-04S eval data confDEV confEVAL

del ins sub WER/| del ins sub WER/| del ins sub WER
RT-04S (V43c) |19.3 2.5 13.9 35.7 |17.8 3.4 18.4 39.5 [22.1 10.0 20.4 524
RT-06S (01) 14.2 1.8 14.1 30.1 |[13.9 3.1 20.0 37.0 |15.1 5.3 21.5 42.0
manual 11.5 2.8 14.7 28.9 |10.3 2.8 21.3 344 | 9.5 5.0 23.0 37.6

3 System Training and Development

All speech recognition experiments described in this paper were performed with
the help of the Janus Recognition Toolkit (JRTk) and the Ibis single pass de-
coder [14].

The following acoustic model training data was used: CMU (11hrs), ICSI
(72hrs), NIST (13hrs) and AMI (16hrs) which are recordings of meetings, TED
(13hrs), and CHIL (10hrs) which are recordings of lectures, and Hub4-BN
(180hrs) which contains recordings of news broadcasts . All the acoustic data
is in 16 kHz, 16 bit quality and recorded with head-mounted microphones, ex-
cept for the CMU and Hub4-BN training data, which were recorded with either
lapel or other microphones. For ICSI, NIST and AMI, farfield channels were also
available.

3.1 Signal Processing

In contrast to our RT-04S system, we used two different front-ends to increase
performance via cross-adaptation. The first front-end uses a 42-dimensional fea-
ture space based on MFCC with linear discriminant analysis (LDA) and a global
semi-tied covariance (STC) transform [15] with utterance-based cepstral mean
subtraction (CMS). It is identical to the one used in RT-04S. The second front-
end replaces the Fourier transformation by a warped minimum variance distor-
tionless response (MVDR) spectral envelope of model order 30. Due to the prop-
erties of the warped MVDR, neither the mel-filterbank nor any other filterbank
was used. The advantages of the MVDR approach are an increase in resolution in
low frequency regions relative to the traditionally used mel-filterbanks, and the
dissimilar modeling of spectral peaks and valleys to improve noise robustness as
noise is present mainly in low energy regions. Furthermore, the number of cep-
stral coefficients has been increased from 13 to 20. As before, a 42-dimensional
feature space after LDA and a global STC transform with utterance based CMS
was used.

3.2 Acoustic Model Training

The training setup was based on experiments performed during the develop-
ment of the lecture translation system [1]. We selected the training data that
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performs best on close talking audio, using only the ICSI, NIST and TED data
and skipping the CMU and the Hub4-BN training material. This reduced the
WER from 36.0% to 34.8% on lectDE'V. We also changed the model set used in
RT-04S slightly by adding noise models for laughter and other human noises to
the existing breath and general noise models, and splitting the filler model into
one for monosyllabic and another for disyllabic fillers.

Table 2. IHM improvements over the system developed in [1] on lectDEV. First pass
with incremental VTLN and feature-space constrained MLLR (FSA) estimation and a
frame shift of 10 ms, second pass with static VTLN, FSA and MLLR and 8 ms frame
shift.

Pass Acoustic Model Training Data #codebooks WER
ICSI+NIST+CMU+TED+BN 6000 32.6

1 ICSI+NIST+TED 4000 31.5
ICSI+NIST+CMU+TED+BN 6000 28.4

2 ICSI+NIST+TED 4000 27.0

For both subdomains, lecture and conference meetings, acoustic model train-
ing was performed with fixed state alignments, which were written by a small
system (2k codebooks) trained on the corpora mentioned above. Both the MVDR
and the FFT system were trained in the same way, resulting in a size of 16k dis-
tributions over 4k models, with a maximum of 64 Gaussians per model. The
training was similar to that used in [1], with one modification. A second pass for
incremental growing of Gaussians was performed after the STC training, which
leads to an additional gain of 0.3% resulting in a WER of 32.0% on the THM
data of lectDEV. To train the distributions for the semi-continuous system and
to compensate for the occasionally erroneous fixed-state alignments, 2 iterations
of Viterbi training were performed. For the ML-SAT models, three additional
iterations of maximum-likelihood speaker adaptive training (ML-SAT) [16] were
run, wherein feature space adaptation and MLLR parameters were estimated for
all speakers in the training set.

In addition to the FFT and MVDR systems, we trained another system using
the PRONLEX phoneme set. The initial versions of the training and recogni-
tion lexica were a merger of the callhome_english lexicon_ 97061 dictionary
and the LIMSI SI-284 training dictionary. Frequently missing words were added
manually, and all other missing words were generated automatically with the
help of a grapheme-to-phoneme conversion tool [17]. For the systems based on
this phoneme set, context-independent acoustic models were trained from flat
models. From them, fully context-dependent models were clustered in the same
way as for the other phoneme set. The training of the context-dependent models
followed the same scheme as for the other phoneme set, with the difference that
24k distributions over 3k models with a maximum of 64 Gaussians per model
were used and only feature space adaptation parameters were estimated during
ML-SAT.
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For the lecture meeting system we used maximum a posteriori (MAP) adap-
tation with a weight of 0.8 for the CHIL data to adapt our semi-continuous
models and gained 0.6% on top of the 32.0% WER on lectDEV. In a post-eval
experiment, we added that data to our initial training set instead of using MAP
and obtained a slight gain on lectDEV. During ML-SAT training, these models
were applied to the CHIL training data with a weight of 4.0. Comparing the
resulting system to the system used in [1], we improved our second pass result
by 1.4% absolute (see Table 2, second row).

For the conference meeting system, we used exactly the same acoustic models,
except for one difference: the PRONLEX system was additionally adapted using
MAP with a weight of 0.8 for the AMI training data.

For the farfield channels, we adapted the models by appending two Viterbi
training iterations using the farfield ICSI and NIST meeting data to the close-
talking models. Using the AMI farfield data gave no further gains on lectDEV.

3.3 Language Model Training

All systems use 4-gram mixture language models (LMs). Three separate LMs
were trained — for lectures, non-AMI conference-style meetings, and AMI con-
ference meetings — since the speaking style and topics were qualitatively different
in these subsets. The meeting transcripts, web text, and other sources used in
training were subdivided so that component LMs might be weighted differently
according to style (see Table 3). Mixture weights for each LM were optimized
on a held out set of data: 30k for lectures, and 53k for the AMI and non-AMI
conference meetings. All the LMs were built using the SRILM-toolkit [18], with
modified Kneser-Ney discounting [19]. Pruning was performed after the interpo-
lation of the LM-components, using a fixed threshold 10~°.

For web text collection, we employed two different web query strategies. For
the web-L and web-M-A collections, we followed the same web text collection
framework as proposed in [20], where frequently spoken 3-grams and 4-grams
from the target task training data are combined to form queries. For the other
collections, the frequent n-grams from different lecture or conference meeting
transcripts were combined with topic bigrams to form queries: web-MP with
frequent n-grams from the conference meeting transcripts and web-LP with fre-
quent n-grams from the lecture transcripts, respectively.® The goal was to obtain
text reflecting a broad variety of topics, some of which are not represented in
the training set. All UKA web data was perplexity filtered to 60% of the original
collection sizes, with the exception of the query-based filtering where size was
chosen to roughly match the UW meeting-based web collection (UW web-M).

The topic phrase generation consisted of: computing bigram tf-idf (term fre-
quency — inverse document frequency) weights for each document in the pro-
ceedings data, zeroing all but the top 10%, averaging these weight vectors over
the collection, and taking the top 1,400 bigrams excluding any with stop-words

3 The web-LP corpus includes as a subset the web-L corpus, with redundancy between
the collections removed.
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Table 3. Corpora and size used in training the LM components. Data that the web
collection query generation was based on is given in square brackets.

For all LMs:
non-AMI meetings (ICSI, CMU, NIST, LDC) 1095 K
AMI meetings ( RT-05S Dev: AMI-draft, AMI-final) 203 K
CHIL lectures 74 K
UW web-M [non-AMI meetings] 150M
UKA web-MP [non-AMI meetings, proceedings] 613M
w/ query-based filtering 124M
For the lecture meeting LM only:
Translingual English Database (TED) 98 K
Hub4 Broadcast News 131M
recent speech/language proceedings (2002-2005) 130M
UKA web-L [CHIL] 146M
UKA web-LP [CHIL, proceedings] 318M
w/ query-based filtering 130M
For conference meeting LMs only:
Switchboard CTS 4M
Fisher CTS 22M
UKA web-M-A [AMI meetings] 458M
UW web-F [Fisher CTS] 525M

or numbers (e.g. “Section 17). The topic bigrams were mixed randomly with the

general phrases until the desired number of queries (14k) was generated.

Table 4. Perplexity (PPL) and word error rate (WER) on lectDEV using language

models with different data source mixture components.

LM Components PPL WER
0 No web data 142 31.1
A + UW web-M 131 30.2
B + UKA web-L 132 30.2
C + UW web-M + UKA web-L 130 30.0
D + all web (query filtered) 128 29.9
E + all web (doc filtered) 126 29.8
F (E) - UW web-M 126 29.6
G (E)- BN,TED 126 29.7

We ran a series of experiments with different sets of web data as shown in Ta-
ble 4. Not surprisingly, the biggest impact is associated with incorporating any
web data, regardless of type. Using more web data gives further improvement
(LMs A-B vs. C-G). Both web-L and the UW web data alone yielded similar per-
formance (LMs A vs. B), though the web-L queries were better matched to the
lecture task. However, the two are somewhat complementary and give a small
gain when combined. We compared query-based vs. document-based perplexity
filtering (LMs D vs. E), since some of the queries generated by randomly com-
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bining topic words and lecture n-grams effectively mixed topics. Size differences
in the collections make it difficult to compare methods, but since the difference
was small and document-based filtering is more flexible, we used the latter in
subsequent experiments. Examining the weights used for different components
of LM-E (see Table 5), we noted that a small weight was given to the UW web-M
data once the other (more topic-oriented) collections were available, and we ob-
served a small gain in performance when it was removed (LM-F). We separately
explored removing the low weight text sources (LM-G) and again observed a
small but not significant gain. Overall, the best case model reduced perplexity
by roughly 10% and WER by roughly 5% relative, compared to using no web
data at all. Due to time constraints, the lecture system as applied in the evalua-

Table 5. Weights learned for the different component LMs for the lecture task associ-
ated with LM-E in Table 4.

Speech Transcripts Web Text Other
CHIL lectures 0.25 | UKA web-LP  0.20 | proceedings 0.19
non-AMI meetings 0.14 | UKA web-MP 0.10 | TED 0.004
AMI meetings 0.08 | UW web-M 0.05 | BN 0.004

tion used LM-C for most conditions, though LM-D was used in later passes for
the THM condition. Compared to the old 4-gram LM used in [1], we gain 1.6%
absolute from using LM-C, or 1.9% absolute if we use the best model obtained
with subsequent development.

We did no further development for the conference meeting language models
other than to introduce new web data. Based on the results of prior ICSI work
[21], we did not use the BN or TED data but included CTS transcripts. In
Table 6, the weights for the different language model components confirm the
different nature of the AMI meetings. In addition to the expected differences
of matched vs. mismatched collections, the AMI meetings do not leverage the
Fisher data nearly as much as the non-AMI meetings. Interestingly, the combined
weights of the different meeting-related web corpora are the same (.28) for both
LMs. The overall perplexity on the two data sets is quite different (70 vs. 98 for
AMI vs. non-AMI subsets of confDEV'), though both have a WER of 31.1%.

3.4 Recognition Lexicon

For the lecture system, the dictionary contained 58.7k pronunciation variants
over a vocabulary of 51.7k. The vocabulary was derived by using the corpora:
BN, Switchboard, meetings (ICSI, CMU, NIST, AMI), TED and CHIL. After
applying individual word-frequency thresholds to the corpora, we filtered the
resulting list with ispell to remove spelling errors and added a few manually
checked topic words from the set of topic bigrams used in web data collection.
The OOV-rate on lectDEV was 0.65%. The conference meeting system used a
dictionary of 56k pronunciation variants over a vocabulary of 48k entries from
Switchboard, Fisher, meetings, and CHIL corpora. In this case, we used the
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Table 6. Weights learned for the different component LMs for the conference meeting
task, with separate tuning for the non-AMI and AMI meetings.

LM weight
Component non-AMI AMI
non-AMI speech 0.31 0.08
AMI speech 0.01 0.42
CHIL speech 0.002 0.005
Switchboard CTS 0.03 0.03
Fisher CTS 0.30 0.12
UW web-M 0.11 0.03
UW web-F 0.06 0.06
UKA web-MP 0.10 0.09
UKA web-M-A 0.07 0.16

SRI vocabulary selection technique [22] available in the SRILM toolkit, again
followed by ispell filtering and the inclusion of topic words as well as skipping
those vocabulary entries not available in the lecture system dictionary.

Pronunciations for new words for most systems were generated using Festi-
val [23]. For the PRONLEX system, pronunciations were generated automati-
cally using Fisher’s grapheme-to-phoneme conversion tool [17].

4 Experiments and Results

4.1 Decoding Strategy

In order to find the best decoding and cross-system adaptation strategy, we per-
formed several different experiments on lectDEV. The best setup in terms of
word error rate and complexity for all conditions uses only VTLN-trained mod-
els (VTLN) or speaker-adapted models (ML-SAT) and no speaker-independent
models, even in the first decoding pass:

1. VTLN decoding using incremental, speaker-based VTLN [24] and feature-
space constrained MLLR (FSA) [25] adaptation.

2. VTLN, FSA and MLLR [26] adaptation on the confidence-weighted hypoth-
esis of the first pass and VTLN decoding with fixed adaptation parameters.

3. VTLN, FSA and MLLR adaptation on the output of second pass and ML-
SAT decoding,.

4. Same as in the third pass.

Using an 8 ms instead of a 10 ms frame-shift for passes 2—4, improves the final
WER by about 1% absolute [9] on lectDEV.

In another set of experiments, we followed results presented in [27,28] and
our own experience obtained during the development of a system for transcribing
English European Parliament Plenary Sessions [7]. It was seen that we gain sig-
nificantly (approx. 1.5% absolute) from cross-adaptation between systems with
different front-ends (MVDR, FFT), and that, when cross-adaptation between
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MVDR and FFT leads to no further gains, cross-adapting with the PRONLEX
system improves the WER after confusion network combination (CNC) [29] by
0.7% absolute [5].

4.2 Channel Combination and Selection for MDM

In RT-04S, channel combination was performed by decoding all channels and
doing a confusion network combination on the resulting lattices over all channels.
No selection was used, leading to a relatively high computational load for one
pass. This year, we were able to reduce the computational load by 70% with
no increase in WER by performing both channel combination and selection.
We constructed a single channel at the waveform level by selecting only those
channels for an utterance with a high signal-to-noise ratio (SNR); this leads to
an improvement in SNR of 2 dB on lectDEV. In addition to the speed-up on
the MDM condition, we gained 4% in WER with this blind channel combination
(BCC) approach compared to the SDM condition (see first and second pass
overall results in Table 7). Including additional utterances and/or channels based
on their SNR ratio to the confusion network combination of the BCC channel
yields a further gain of 0.5% absolute. A detailed explanation is given in [30].

4.3 Overall System Performance

Table 7 lists the overall system results with automatic segmentation for RT-06S.
The WERs per pass are after CNC of the lattices of the MVDR, FFT, and/or
PRONLEX system used in that pass. In each pass of the IHM system, both an
MVDR and an FFT system were used and cross-adapted on the previous pass.
In the fourth pass, we only used the PRONLEX system and adapted the fifth
pass systems (FFT, PRONLEX) on the CNC result of lattices from the third
and fourth pass.

Table 7. Overall results and real-time factors on RT-05S Eval and RT-06S Eval. In
contrast to previous sections, results for the conference meeting part of RT-05S Eval
include meeting NIST_20050412-1303. SDM and MDM results were scored with an
overlap of one.

ITHM SDM MDM
Pass lect conf lect conf lect conf
dev | eval | dev | eval || dev | eval | eval || dev | eval | eval
1 30.3 1 39.6 | 41.7 | 37.6 || 50.9 | 65.9 46.9 | 61.2
2 25.0 | 34.7 | 35.2 | 31.9 || 45.9 | 59.0 | 60.1 || 42.0 | 57.0
3 23.9 | 33.6 | 33.7 | 30.8 || 43.4 | 55.5 | 58.3 || 38.5 | 53.9 | 53.8
4 23.2 | 32.7 | 32.6 | 30.2 54.7 53.4
5 22.9 | 32.2 | 31.9 | 30.2
RTx 190 110 120

As described above (Section 4.2), the first and second pass for the MDM
condition used blind channel combination. In the third pass we added additional
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utterances and/or channels to the confusion network combination step. As for
IHM we used both an MVDR and an FFT front-end in each pass, but in contrast
to THM, the MVDR system was adapted on the CNC result and the FFT system
on the MVDR result of the subsequent pass. The first and second passes were
decoded with farfield acoustic models, but in the third pass we used the close-
talking acoustic models.

On the lecture meeting task, it can be seen that there is a huge gap between
the development and the evaluation data results. This comes from the additional
data collected by sites other than UKA. While the IHM error rates for UKA
(23.9%) and IBM (27.3%) are similar to those on the development data, which
were collected by UKA only, the error rates on data from AIT (35.3%), ITC
(31.8%) and UPC (54.0%) are much worse. The reason for that is likely the more
interactive style of the non-UKA lecture meetings, e.g. coffee breaks (UPC), and
the higher proportion of non-native speakers.
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