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NEWTON REGULARIZATIONS FOR

IMPEDANCE TOMOGRAPHY:

CONVERGENCE BY LOCAL INJECTIVITY

ARMIN LECHLEITER† AND ANDREAS RIEDER‡

Abstract. In [Inverse Problems 22(2006), pp. 1967-1987] we demonstrated experi-
mentally that the Newton-like regularization method CG-REGINN is a competitive solver
for the inverse problem of the complete electrode model in 2D-electrical impedance to-
mography. Here we establish rigorously the observed convergence of CG-REGINN (and
related schemes). To this end we prove that the underlying nonlinear operator has an
injective Frechét derivative whenever the number of electrodes is sufficiently large and the
discretization step size is sufficiently small. Though injectivity of the Frechét derivative
is an interesting new result on its own, it is only a secondary issue here. We namely rely
on it to obtain a so-called tangential cone condition in the fully discrete setting which is
the main ingredient in a well-developed convergence theory for Newton-like regularization
schemes.

Key words. Electrical impedance tomography, complete electrode model, tangential
cone condition, nonlinear ill-posed problem, Newton regularization.

AMS subject classifications. 35R30, 65J20.

1. Introduction. In impedance imaging or electrical impedance to-
mography (EIT) one reconstructs the conductivity of an object by applying
electric currents through the boundary of the object and recording the re-
sulting voltages on the boundary as well, see, e.g., Borcea [2] and Cheney
et al. [4] for an overview. In a practical setting currents are injected via
electrodes and, usually, the same electrodes are used for voltage recording.
This approach can mathematically be represented by the well-established
complete electrode model (CEM) which we focus on here.

Let γ : B → [c0,∞[, c0 > 0, be the searched-for conductivity distribution
in the simply connected Lipschitz-domain B ⊂ R

2. Further, the p electrodes
are denoted by E1, . . . , Ep and are assumed to be open subsets of ∂B, the
boundary of B, having positive surface measure: |Ej | > 0, j = 1, . . . , p.
Moreover, let the electrodes be connected and separated: Ei ∩ Ej = ∅,
i 6= j. To this electrode configuration we associate the electrode space

Ep := span{χE1
, . . . , χEp} ∩ L2

♦(∂B) ⊂ L2
♦(∂B)

where χEi is the indicator function of the i-th electrode and L2
♦(∂B) = {f ∈

L2(∂B) :
∫
∂B f dS = 0}.
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2 A. LECHLEITER AND A. RIEDER

The forward problem of impedance tomography under CEM now reads:
Given an electrode current I ∈ Ep and a contact impedance z > 0, find a
voltage potential up ∈ H1(B) and an electrode voltage U ∈ Ep such that

−∇
(
γ∇up

)
= 0 in B, (1.1a)

up + z γ ν∇up = U on E = ∪p
j=1Ej , (1.1b)

1

|Ej |

∫

Ej

γ ν∇up dS = I|Ej for j = 1, . . . p, (1.1c)

γ ν∇up = 0 on ∂B \ E, (1.1d)

where ν is the outer normal on the boundary of B. The conditions I ∈ Ep

and U ∈ Ep can be interpreted as conservation of charge and grounding
the potential, respectively. Both restrictions are necessary to guarantee
existence and uniqueness of a weak solution, see Somersalo et al. [19].

Let us briefly explain CEM: The domain B is assumed to have no electric
sources or drains. Hence, the electric flux γ∇up is divergence free which
yields (1.1a). In a medical application the conductivity between skin and
electrodes may be increased by dermal moisture. This effect of contact
impedance is taken into account by the Robin boundary condition (1.1b).
The equations in (1.1c) model the electrodes as perfect conductors: the
total electric flux over an electrode agrees with the electric current on that
electrode. As there is no flux over the boundary of B in-between electrodes
we have the Neumann boundary condition (1.1d).

As CEM only provides finitely many independent measurements, namely
p(p−1)/2 (see Section 4.1), one can only recover conductivities whose num-
ber of degrees of freedom is at most the number of independent measure-
ments. From this point of view it is quite natural and meaningful to restrict
the searched-for conductivities to a finite dimensional space. Here, we will
work with VT, a space of piecewise polynomials over a triangulation T of B.

For our numerical experiments presented in [12] we discretized the elliptic
equation (1.1) by a conforming finite element space SΥ with respect to a
subdivision Υ of B (note that Υ 6= T in general). Thus, we can compute the
finite element approximation (up,δ, Uδ) ∈ SΥ ⊕ Ep to the solution (up, U) ∈
H1(B) ⊕ Ep of (1.1). Here, the index δ > 0 denotes the discretization step
size related to Υ.

After these preparations we finally formulate the inverse problem of
impedance imaging in the fully-discrete setting. The corresponding forward
operator is

Fp,δ : V +
T

⊂ VT → L(Ep), Fp,δ(γ)I = Uδ,

where V +
T

= {σ ∈ VT : σ ≥ c0}. Put differently, Fp,δ(γ) maps the applied
electrode currents to the computed electrode voltages. In the EIT inverse
problem we need to find γ ∈ V +

T
from the observed current-to-voltage map-
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ping Λp ∈ L(Ep) such that
Fp,δ(γ) = Λp. (1.2)

To our knowledge the uniqueness question remains yet to be answered: Un-
der which assumptions on Ep, VT, and SΥ is γ ∈ V +

T
uniquely determined

by Λp? We will contribute a ‘local’ answer by showing injectivity of the
Frechét derivate of Fp,δ for Ep and SΥ rich enough. Therefore, we have local
uniqueness of (1.2).

However, the local uniqueness result is only a by-product of our main
objective, namely, proof of convergence of the Newton-like regularization
scheme CG-REGINN for solving (1.2). In [12] we reported various numerical
experiments revealing CG-REGINN as a competitive solver. Regularizing
effect and local convergence are guaranteed under the so-called tangential
cone condition, see Hanke [7] and [13]. In the exploration of iterative reg-
ularization techniques for nonlinear ill-posed problems the tangential cone
condition, which traces back to Scherzer [18], emerged as a minimal require-
ment on the nonlinearity to yield convergence and stability, see, e.g., [9, 17]
for an overview and for further original references.

The tangential cone condition controls the linearization error by the
nonlinear residual. For Fp,δ it has the following formulation as we will show:
For any γ ∈ int(V +

T
) there is a ball Br(γ) ⊂ int(V +

T
) such that, for any

τ, σ ∈ Br(γ),∗

∥∥Fp,δ(τ)−Fp,δ(σ)−F ′
p,δ(σ)[τ −σ]

∥∥
L(Ep)

. ‖τ −σ‖∞‖Fp,δ(τ)−Fp,δ(σ)‖L(Ep)

where F ′
p,δ denotes the Fréchet derivative of Fp,δ. Again, Ep and SΥ have to

be rich enough.
As we are not able to tackle injectivity of F ′

p,δ directly, we need to
take a little detour and start out from the continuum model of EIT due
to Caldéron [3]. In Section 3 we verify injectivity of the Fréchet derivative
of the continuum model forward operator restricted to conductivities in VT.
Here we succeed as we can rely on a very powerful tool recently introduced
by Gebauer [6]: It is possible to feed currents on the boundary such that
the potentials inside the object have arbitrarily high energy on some subset
and arbitrarily low energy on a different one.

By a limiting process we carry over injectivity first to CEM without
discretization, cf. (1.1), and then to the fully-discrete situation of F ′

p,δ (Sec-
tion 4).

We begin this paper in the next section with presenting an abstract
formulation of an parameter identification problem. All three EIT models
we consider here fit into our abstract framework and, therefore, we benefit
from a common treatment.

∗A . B indicates the existence of a generic constant m such that A ≤ mB uniformly
in all relevant parameters of the expressions A and B. The respective context will define
the meaning of ’relevant parameters’.
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2. Abstract framework. Let X be a real Banach space, Y be a real
Hilbert space and Z∗ be a subspace of Y ∗, the dual of Y .

We consider a mapping T : D(T ) ⊂ X → L(Z∗, Y ) defined by

T (σ)f = u

where u ∈ Y is the unique solution of the variational problem

a(σ;u, v) = 〈f, v〉 for all v ∈ Y.

Here, 〈·, ·〉 denotes the dual pairing between Y ∗ and Y . The bilinear form
a(η; ·, ·) : Y × Y → R is assumed to be defined for any η ∈ X and to be
uniformly Y -elliptic for η ∈ D(T ) where D(T ) ⊂ X has an open interior.
Furthermore, we require the following representation of a,

a(η; ·, ·) = b(η; ·, ·) + c(·, ·),

as a sum of a trilinear form b and a bilinear form c, both bounded, especially

|b(η;w, v)| . ‖η‖X‖w‖Y ‖v‖Y . (2.1)

Below, in Lemma 2.1, we show Frechét differentiability of T . To this end,
we provide auxiliary estimates. By ellipticity, ‖u‖2

Y . a(u, u) = 〈f, u〉 ≤
‖f‖Y ∗‖u‖Y yielding

‖T (σ)f‖Y . ‖f‖Y ∗ uniformly in σ ∈ D(T ). (2.2)

Next we establish Lipschitz continuity of T . Again, by ellipticity

‖T (σ)f − T (γ)f‖2
Y . a(γ;T (σ)f − T (γ)f, T (σ)f − T (γ)f)

= a(γ;T (σ)f, T (σ)f − T (γ)f) − 〈f, T (σ)f − T (γ)f〉

= a(γ;T (σ)f, T (σ)f − T (γ)f)

− a(σ;T (σ)f, T (σ)f − T (γ)f)

= b(γ − σ;T (σ)f, T (σ)f − T (γ)f)

(2.1)

. ‖γ − σ‖X‖T (σ)f‖Y ‖T (σ)f − T (γ)f‖Y

which, in view of (2.2), is the Lipschitz continuity

‖T (σ)f − T (γ)f‖Y . ‖γ − σ‖X‖f‖Y ∗ . (2.3)

Lemma 2.1. Let σ ∈ int(D(T )). Then, T is Frechét differentiable with
T ′(σ) ∈ L(X,L(Z∗, Y )) given by

T ′(σ)[h]f = u′
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where u′ ∈ Y solves

a(σ;u′, v) = −b(h;T (σ)f, v) for all v ∈ Y.

Proof. Clearly, the operator T ′(σ) is linear and uniformly bounded in σ:

‖T ′(σ)[h]f‖Y . ‖h‖X‖f‖Y ∗ . (2.4)

Now, let h ∈ X be so small that σ + h ∈ D(T ). With u+ = T (σ + h)f and
u = T (σ)f we have, by ellipticity,

‖u+ − u − u′‖2
Y . a(σ;u+ − u − u′, u+ − u − u′)

= a(σ;u+ − u, u+ − u − u′) − a(σ;u′, u+ − u − u′)

= a(σ;u+ − u, u+ − u − u′) + b(h;u, u+ − u − u′).

Since

a(σ;u+ − u, u+ − u − u′) = a(σ;u+, u+ − u − u′) − a(σ;u, u+ − u − u′)

= b(σ + h;u+, u+ − u − u′) + c(u+, u+ − u − u′)

− b(h;u+, u+ − u − u′) − a(σ;u, u+ − u − u′)

= 〈f, u+ − u − u′〉

− b(h;u+, u+ − u − u′) − 〈f, u+ − u − u′〉

= −b(h;u+, u+ − u − u′)

we proceed with

‖u+ − u − u′‖2
Y . b(h;u − u+, u+ − u − u′)

(2.1)

. ‖h‖X‖u+ − u‖Y ‖u
+ − u − u′‖Y

resulting in

‖u+ − u − u′‖Y . ‖h‖X‖u+ − u‖Y

(2.3)

. ‖h‖2
X‖f‖Y ∗ . (2.5)

Hence,
‖T (σ + h)f − T (σ)f − u′‖Y

‖h‖X
. ‖h‖X‖f‖Y ∗

h→0
−−−→ 0,

that is, T ′(σ)[h]f = u′.

Corollary 2.2. Under the assumptions of Lemma 2.1 we have

‖T (σ + h)− T (σ)− T ′(σ)[h]‖L(Z∗ ,Y ) .
(
‖σ‖X + ‖c‖

)
‖h‖X‖T ′(σ)[h]‖L(Z∗ ,Y )
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for σ ∈ int(D(T )) and σ + h ∈ D(T ).
Proof. We set u+ = T (σ + h)f , u = T (σ)f , and u′ = T ′(σ)[h]f . By

ellipticity,

‖u+ − u‖2
Y . a(σ + h;u+ − u, u+ − u)

= 〈f, u+ − u〉Y ∗×Y − b(σ + h;u, u+ − u) − c(u, u+ − u)

= −b(h;u, u+ − u) = a(σ;u′, u+ − u) = b(σ, u′, u+ − u) + c(u′, u+ − u)

.
(
‖σ‖X + ‖c‖

)
‖u′‖Y ‖u

+ − u‖Y ,

that is,
‖u+ − u‖Y .

(
‖σ‖X + ‖c‖

)
‖u′‖Y

which implies the assertion by the first estimate in (2.5).

We close this section with the Lipschitz continuity of T ′.

Lemma 2.3. Let σ1, σ2 ∈ int
(
D(T )

)
, h1, h2 ∈ X, and f1, f2 ∈ Z∗.

Then,

‖T ′(σ1)[h1]f1 − T ′(σ2)[h2]f2‖Y . ‖σ1 − σ2‖X‖h1‖X‖f1‖Y ∗

+ ‖h1 − h2‖X‖f1‖Y ∗ + ‖f1 − f2‖Y ∗‖h2‖X .

Proof. Set wi,j,k := T ′(σi)[hj ]fk for i, j, k ∈ {1, 2}. Then,

‖T ′(σ1)[h1]f1 − T ′(σ2)[h2]f2‖Y ≤ ‖w1,1,1 − w2,1,1‖Y + ‖w2,1,1 − w2,2,1‖Y

+ ‖w2,2,1 − w2,2,2‖Y

and each difference on the right will be estimated separately. We start with

‖w1,1,1 − w2,1,1‖
2
Y . a(σ1, w1,1,1 − w2,1,1, w1,1,1 − w2,1,1)

= −b(h1, T (σ1)f1, w1,1,1 − w2,1,1) + b(h1, T (σ2)f1, w1,1,1 − w2,1,1)

+ a(σ1;w2,1,1, w1,1,1 − w2,1,1) − a(σ1;w2,1,1, w1,1,1 − w2,1,1)

(2.1)

. ‖h1‖X‖T (σ1)f1 − T (σ2)f1‖Y ‖w1,1,1 − w2,1,1‖Y

+ ‖σ1 − σ2‖X‖w2,1,1‖Y ‖w1,1,1 − w2,1,1‖Y .

By (2.3) and (2.4) we obtain

‖w1,1,1 − w2,1,1‖Y . ‖σ1 − σ2‖X‖h1‖X‖f1‖Y ∗ .

Next, since

a(σ2;w2,1,1 − w2,2,1, v) = −b(σ2 + h1;T (σ2)f1, v) + b(σ2 + h2;T (σ2)f1, v)

= b(h2 − h1;T (σ2)f1, v)

(2.2)

. ‖h2 − h1‖X‖f1‖Y ∗‖v‖Y
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we find
‖w2,1,1 − w2,2,1‖Y . ‖h2 − h1‖X‖f1‖Y ∗ .

Finally,

a(σ2;w2,2,1 −w2,2,2, v) = b(h2;T (σ2)(f2 − f1), v)
(2.2)

. ‖h2‖X‖f2 − f1‖Y ∗‖v‖Y

gives
‖w2,2,1 − w2,2,2‖Y . ‖h2‖X‖f2 − f1‖Y ∗

concluding the proof.

3. Frechét derivative of EIT operator in the continuum model.

The continuum model of EIT was introduced by Caldéron in his pioneering
paper [3]: Current is applied on all of the boundary of B where also the
voltages are observed.

Let f ∈ L2
♦(∂B) be the applied current and γ ∈ L∞

+ (B) = {σ ∈ L∞(B) :
σ ≥ c0} be the conductivity. Then, the governing equation in weak formu-
lation is ∫

B
γ∇u∇v dx =

∫

∂B
fv dS for all v ∈ H1

♦(B) (3.1)

and it has a unique solution u ∈ H1
♦(B) := {v ∈ H1(B) :

∫
∂B v dS = 0}.

The inverse EIT problem in the continuum model can now be phrased
as: given the Neumann-to-Dirichlet operator

Λ: f 7→ u|∂B (3.2)

find the conductivity γ. By classical results from the theory of partial differ-
ential equations, see, e.g., [15], Λ is known to be a bounded linear operator

between H
−1/2
♦ (∂B) and H

1/2
♦ (∂B).

Mathematically, we have to solve an equation with the nonlinear operator
F describing the forward problem, that is, we need to solve F (γ) = Λ where

F : D(F ) ⊂ L∞(B) → L(H
−1/2
♦ (∂B),H

1/2
♦ (∂B)), γ 7→ Λ,

with D(F ) := L∞
+ (B) being a cone with vertex c0 in the space of bounded

and measurable functions. Note that F (γ) = Λ is uniquely solvable, see
Astala and Päivärinta [1].

Relying on the abstract framework of the former section we show Frechét
differentiability of the forward operator F . To this end we introduce operator

T : D(F ) ⊂ L∞(B) → L(H
−1/2
♦ (∂B),H1

♦(B))

by
T (γ) : f 7→ u where u is the solution of (3.1).

Taking the trace of T we obtain F , more precisely we have that

F (γ) = R∂BT (γ)
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with R∂B ∈ L
(
H1

♦(B),H
1/2
♦ (∂B)

)
being the trace operator. Moreover, T

fits into the abstract framework with X = L∞(B), Y = H1
♦(B), Z∗ =

H
−1/2
♦ (∂B), a(γ; v,w) =

∫
B γ∇v∇w dx, and 〈f, v〉 =

∫
∂B fv dS.

Therefore, by (2.3)

‖F (σ)f −F (γ)f‖H1/2(∂B) . ‖T (σ)f −T (γ)f‖H1(B) . ‖σ−γ‖∞‖f‖H−1/2(∂B)

implying the Lipschitz continuity of

F : L∞
+ (B) ⊂ L∞(B) → L(Ht

♦(∂B),Hs
♦(∂B)), t ≥ −1/2, s ≤ 1/2.

According to Lemma 2.1 F is also Frechét differentiable in γ ∈ int
(
D(F )

)

with derivative F ′(γ) ∈ L
(
L∞(B),L(Ht

♦(∂B),Hs
♦(∂B))

)
given

F ′(γ)[h]f = R∂Bu′ (3.3)

where u′ ∈ H1
♦(B) is the unique solution of the elliptic problem

∫

B
γ∇u′∇ϕdx = −

∫

B
h∇u(f)∇ϕ dx for all ϕ ∈ H1

♦(B). (3.4)

In (3.4), u(f) = T (γ)f ∈ H1
♦(B) solves (3.1).

The following theorem is Lemma 2.3 formulated in the EIT setting.

Theorem 3.1. Let γ1, γ2 ∈ int
(
D(F )

)
, h1, h2 ∈ L∞(B), and f1, f2 ∈

H
−1/2
♦ (∂B). Then,

‖F ′(γ1)[h1]f1 − F ′(γ2)[h2]f2‖H1/2(∂B) . ‖γ1 − γ2‖∞‖h1‖∞‖f1‖H−1/2(∂B)

+ ‖h1 − h2‖∞‖f1‖H−1/2(∂B) + ‖f1 − f2‖H−1/2(∂B)‖h2‖∞.

3.1. Injectivity of F ′ for piecewise polynomial conductivities.

From here on we restrict the conductivities to a finite dimensional space
of piecewise polynomials: Embed B into a rectangular domain D which
is covered by a triangulation T. Neither is T assumed to be regular nor
uniform, see Figure 3.1. Let WT be the space of all functions defined on
D which are polynomials locally on any triangle of T (v ∈ WT iff v|△ is a
polynomial for any △ ∈ T) and set

VT := {v|B : v ∈ WT} ⊂ L∞(B).

The following lemma states that the Fréchet derivative of T : D(F ) ⊂
L∞(B) → L(L2

♦(∂B),H1
♦(B)) cannot vanish for any γ ∈ int(D(F )) in any

direction h ∈ VT.
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B

D

Figure 3.1: Embedding of B into the rectangular domain D which is triangulated

non-regularly and non-uniformly.

Lemma 3.2. Let γ ∈ int(D(F )). For all h ∈ VT \ {0} we have

‖T ′(γ)[h]‖
L(L2

♦(∂B),H1

♦(B)) ∼ ‖∇T ′(γ)[h]‖
L(L2

♦(∂B),L2

♦(B)) > 0.

Proof. We will rely on a result due to Gebauer [6, Theorem 2.7] which
we quote here for the reader’s convenience:

Let σ satisfy the unique continuation property (σ piecewise
Lipschitz is sufficient) and let Ω1, Ω2 ⊂ B be two open sets
with Ω1∩Ω2 = ∅. Furthermore, let B\(Ω1∪Ω2) be connected
and B\(Ω1∪Ω2) contain the relatively open set S. Then there
exists a sequence of currents {fn} ⊂ L2

⋄(S) and corresponding
potentials {un}, defined by the weak formulation of

∇ · σ∇un = 0, σ∂νun|∂B =

{
fn on S,

0 otherwise,

such that

lim
n→∞

∫

Ω1

|∇un|
2dx = ∞ and lim

n→∞

∫

Ω2

|∇un|
2dx = 0.

We will construct Ω1 and Ω2 where we will distinguish two scenarios de-
pending on h 6= 0:

1. h is not identically zero on the boundary ∂B. As h is locally a
polynomial, there is a relatively open connected subset S of ∂B
such that sgn(h) differs from zero and is constant in an open and
connected neighborhood U of S in B. In this neighborhood U we
fix an open ball Ω1 compactly contained in B. Further, we set Ω2 =
B r U .

2. h is identically zero on ∂B. Here we will show that supp(h) is a union
of triangles of T. To this end assume that ∂supp(h) cuts a triangle
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Ω1

W

supp(h)

UΩ2 = B \ U

B

S

Figure 3.2: A construction of Ω1, Ω2, and S in the proof of Lemma 3.2. The

support of h ∈ VT is the union of triangles surrounded by the bold black polygon.

The sign of h is constant different from zero on the light gray semi-disk W ⊂ supp(h)

and Ω1 is the hatched disk in W . Further, U is defined as the union of W and the

dark gray region connecting ∂W ∩ ∂supp(h) with ∂B.

△ into two pieces with positive measure. One of these pieces is in
the exterior of supp(h) where h is identically zero. Hence, h|△ = 0
and the intersection of a triangle with ∂supph is either one edge or
a node.

If h is not identically zero on ∂supp(h) then there is a relatively open
connected subset S̃ of ∂supp(h) such that sgn(h) differs from zero
and is constant in an open and connected neighborhood W of S̃ in
supp(h). We choose Ω1 to an open ball compactly contained in W .
Further, we define U to be the union of W and a neighborhood of a
path connecting one point in S̃ with ∂B. Observe that sgn(h) ≥ 0
on U . Finally, set Ω2 := B \U and S := int(U ∩ ∂B) relative to ∂B.
Figure 3.2 highlights a graphical representation of the construction
of Ω1, Ω2, and S.

If h is identically zero on ∂supp(h) then there is an open subset W of
supp(h) such that int

(
W ∩ ∂supp(h)

)
is relatively open in ∂supp(h)

and sgn(h) is constant in W different from zero.
In case W ∩ ∂B 6= ∅ we set U := W , S := int(U ∩ ∂B), Ω2 := B \U ,
and choose Ω1 to be an open ball compactly contained in U .
In case W ∩ ∂B = ∅ we choose Ω1 to be an open ball compactly
contained in W . Further, we define U to be the union of W and a
neighborhood of a path connecting one point in int

(
W ∩ ∂supp(h)

)

with ∂B. Observe that sgn(h) ≥ 0 on U . Finally, set Ω2 := B \ U
and S := int(U ∩ ∂B) relative to ∂B.
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In all situations considered, the defined Ω1, Ω2 and S satisfy the hypotheses
of Gebauer’s theorem quoted above. Thus, there is a sequence fj ⊂ L2

♦(∂B)
such that

lim
j→∞

∫

Ω1

|∇u(fj)|
2 dx = ∞ and lim

j→∞

∫

Ω2

|∇u(fj)|
2 dx = 0.

Moreover,
∫

B
h |∇u(fj)|

2 dx =

∫

Ω1

h |∇u(fj)|
2 dx +

∫

Ω2

h |∇u(fj)|
2 dx

+

∫

U\Ω1

h |∇u(fj)|
2 dx.

The sign of the integral over U \ Ω1 is either 0 or the sign of h in Ω1.
Therefore, ∫

B
h |∇u(fj)|

2 dx → ±∞ as j → ∞, (3.5)

the sign being the sign of h in Ω1.
Assume now that

‖∇T ′(γ)[h]‖
L(L2

♦
(∂B),L2(B)) = 0. (3.6)

Recall: T ′(γ)[h]f = u′ with u′ ∈ H1
♦(B) being the solution of (3.4) and

u = u(f) solves (3.1). Plugging ϕ = u(fj) into (3.4) we find that

−

∫

B
h|∇u(fj)|

2 dx =

∫

B
γ ∇(T ′(γ)[h]fj)︸ ︷︷ ︸

= 0 by (3.6)

∇u(fj) dx = 0

contradicting (3.5), i.e., (3.6) is falsified. The stated norm equivalence is
due to Poincaré’s inequality, see e.g. [16].

Now the injectivity result for F ′ follows easily.

Corollary 3.3. Under the assumptions of the former lemma we have
that

min
{
‖F ′(γ)[h]‖

L(L2

♦(∂B)) : h ∈ VT, ‖h‖∞ = 1
}

> 0.

Proof. Assume the claim to be false. As VT is finite dimensional and
F ′(γ) is continuous (Theorem 3.1) there is a normalized h ∈ VT such that
F ′(γ)[h]f = 0 for any f ∈ L2

♦(∂B). Further,

−

∫

B
h|∇u(f)|2 dx

(3.4)
=

∫

B
γ∇(T ′(γ)[h]f)∇u(f) dx

(3.1)
=

∫

∂B
f (F ′(γ)[h]f)︸ ︷︷ ︸

=0

dS = 0
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which cannot hold true due to (3.5).

As a by-product we obtain a tangential cone condition for the continuum
model in a semi-discrete setting.

Theorem 3.4. Let F : V +
T

⊂ VT → L
(
L2

♦(∂B)
)

be the EIT operator
where V +

T
= VT∩L∞

+ (B). If γ ∈ int(V +
T

) then there is an open ball Br(γ) ⊂
int(V +

T
) about γ of radius r > 0 such that, for all τ, σ ∈ Br(γ),

∥∥F (τ) − F (σ) − F ′(σ)[τ − σ]
∥∥

L(L2

♦
(∂B))

. ‖τ − σ‖∞‖F (τ) − F (σ)‖L(L2

♦
(∂B))

where the constant depends, amongst others, on γ, r, and VT.
Proof. Setting h = τ − σ we find from Corollary 2.2 (recall: c = 0) that
∥∥F (τ) − F (σ) − F ′(σ)[h]

∥∥
L(L2

♦
(∂B))

≤ C(B, c0) ‖T (τ) − T (σ) − T ′(σ)[h]
∥∥

L(L2

♦(∂B),H1

♦(B))

≤ C(B, c0) ‖σ‖∞‖h‖∞‖∇T ′(σ)[h]‖
L(L2

♦
(∂B),L2

♦
(B))

≤ C(B, c0) (‖γ‖∞ + ρ)‖h‖∞‖∇T ′(σ)[h]‖L(L2

♦
(∂B),L2

♦
(B))

which holds true for all τ ∈ V +
T

and all σ ∈ Bρ(γ) where ρ > 0 is such
that Bρ(γ) ⊂ int(V +

T
). Tracking the constants and their dependencies is

important here, therefore, we state them explicitely.
By continuity (Theorem 3.1) and injectivity (Corollary 3.3) we have that

sup

{
‖∇T ′(σ)[h]‖

L(L2

♦(∂B),L2

♦(B))

‖F ′(σ)[h]‖L(L2

♦
(∂B))

: (σ, h) ∈ Bρ(γ) × VT

}
< ∞. (3.7)

Hence,
∥∥F (τ) − F (σ) − F ′(σ)[h]

∥∥
L(L2

♦
(∂B))

≤ C(B, c0, γ, ρ, VT) (‖γ‖∞ + ρ)‖h‖∞‖F ′(σ)[h]‖L(L2

♦
(∂B)).

If ‖h‖∞ < 1
C(B,c0,γ,ρ,VT) (‖γ‖∞+ρ) then

‖F ′(σ)[h]‖
L(L2

♦
(∂B)) ≤

‖F (τ) − F (σ)‖
L(L2

♦(∂B))

1 − C(B, c0, γ, ρ, VT)(‖γ‖∞ + ρ)‖h‖∞
and the assertion is true for any positive r with

r < min

{
ρ,

1

2C(B, c0, γ, ρ, VT) (‖γ‖∞ + ρ)

}
.

Remark. If the supremum (3.7) can be shown to be uniformly bounded
in T then, by continuity, Theorem 3.4 implies a tangential cone condition
for F : D(F ) ⊂ L∞(B) → L

(
L2

♦(∂B)
)
.
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4. Complete electrode model. For the weak formulation of (1.1) we
define the bilinear form a : Yp × Yp → R, Yp := H1(B) ⊕ Ep, by

a
(
(v, V ), (w,W )

)
:=

∫

B
γ∇v∇w dx +

1

z

∫

E
(v − V )(w − W ) dS.

The form a is elliptic (γ ≥ c0) and continuous where the ellipticity and conti-
nuity constants depend neither on the number nor the size of the electrodes,
see Hyvönen [8, Lemma 2.5, Corollary 3.6]. The weak solution (up, U) ∈ Yp

of (1.1) is now given as the unique solution of the variational problem:

a
(
(up, U), (w,W )

)
=

∫

∂B
I W dS for all (w,W ) ∈ Yp. (4.1)

The nonlinear forward operator Fp describing CEM is given by

Fp : D(F ) ⊂ L∞(B) → L(Ep), γ 7→ {I 7→ U},

that is, Fp(γ) maps the electrode current I to the electrode voltage U of the
solution of (4.1): Fp(γ)I = U .

To use the abstract framework of Section 2 we introduce Tp : D(F ) ⊂
L∞(B) → L(Ep, Yp) by

Tp(γ)I = (up, U) where (up, U) solves (4.1). (4.2)

We emphasize that all assumptions from Section 2 are satisfied. The oper-
ators Fp and Tp are related via

Fp(γ) = REpTp(γ) (4.3)

with the restriction operator REp ∈ L(Yp,Ep), REp(v, V ) = V . Ac-
cording to Lemma 2.1 the Frechét derivative F ′

p(γ) ∈ L
(
L∞(B),L(Ep)

)
,

γ ∈ int
(
D(F )

)
, is given by

F ′
p(γ)[h]I = REpT

′
p(γ)[h]I = REp(u

′
p, U

′) = U ′

where (u′
p, U

′) ∈ Yp uniquely solves

a
(
(u′

p, U
′), (w,W )

)
= −

∫

B
h∇up(I)∇w dx for all (w,W ) ∈ Yp (4.4)

with up = up(I) being the first component of the solution of (4.1) with
respect to the electrode current I.

4.1. Piecewise polynomial conductivities. The symmetry of
Fp(γ) ∈ L(Ep),

〈I, Fp(γ)J〉L2(∂B)
(4.1)
= a

(
(up(I), Fp(γ)I), (up(J), Fp(γ)J)

)

(4.1)
= 〈Fp(γ)I, J〉L2(∂B),
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reveals that CEM offers only p(p − 1)/2 independent measurements (Fp(γ)
may be represented by a symmetric matrix of order dimEp = p−1). There-
fore, we can only hope to recover conductivities whose number of degrees of
freedom is at most the number of independent measurements.

From this point of view considering Fp in the finite-dimensional setting

Fp : V +
T

⊂ VT → L(Ep)

is reasonable (VT and V +
T

are as in Section 3.1). Below in Theorem 4.3 we
will validate injectivity of F ′

p(γ) ∈ L
(
VT,L(Ep)

)
for p sufficiently large. The

proof of injectivity will be prepared by auxiliary results.
An important ingredient of our analysis are suitable estimates between

solutions of CEM and the continuum model, provided by Lechleiter et
al. [11]. These estimates link the injectivity result from Section 3.1 to CEM.
In [11] an asymptotic analysis in the number of electrodes shows the nec-
essary convergence properties between the CEM and the continuum model.
As suitable framework, consider a sequence of forward operators {Fp}p∈N,
where the index p corresponds to the number of electrodes used to define
the forward operator Fp. To every Fp there corresponds hence a certain
electrode configuration with p electrodes. The convergence formulated in
(4.6) below relies on estimate (7.4) from [11] and therefore we need to adopt
the geometric assumptions as specified in [11]: The Lipschitz boundary of
B is assumed to be piecewise C∞ where all electrodes are located, in any
configuration, on the C∞-patches. Let us denote by {Ep

j }
p
j=1 ⊂ ∂B the

set of (connected and separated) electrodes and by {Gp
j}

p
j=1 ⊂ ∂B the set

of gaps between the electrodes for the pth configuration. We require that
supj |E

p
j | → 0 as p → ∞ and

∑p
j=1 |E

p
j | → |∂B|, where |Ep

j | and |∂B| de-
notes the surface measure of the electrode Ep

j and the boundary ∂B. The
last condition already implies that

∑p
j=1 |G

p
j | → 0, however, the analysis in

[11] shows that we need to strengthen this assumption by

lim
p→∞

p∑

j=1

∣∣Gp
j

∣∣θ = 0 (4.5)

for some exponent θ ∈ (0, 1).† Now, let Pp : L2(∂B) → L2(∂B) denote the
orthogonal projection onto Ep. Then,

lim
p→∞

sup
{
‖u(f) − up(Ppf)‖H1(B) : f ∈ L2

⋄(∂B), ‖f‖L2(∂B) = 1,

γ ∈ D(F )
}

= 0
(4.6)

where u(f) = T (γ)f and up(Ppf) are the electric potentials from (3.1) and
(4.1) with respect to the boundary current f and electrode current Ppf ,

†Due to the continuous embedding H1/2(R) →֒ Lθ(R) for θ ∈ [2,∞) [14, Theorem 8.5]
we need to replace condition (7.7) from [11], valid in three dimensions, by (4.5) for our
two dimensional setting.
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respectively, see Lechleiter et al. [11, Sec. 7, Remark 7.7].

Lemma 4.1. Under the above assumptions we have that

‖F ′(γ)[h]f − F ′
p(γ)[h]Ppf‖L2(∂B)

. ‖(Id − Pp)F
′(γ)[h]f‖L2(∂B) + ‖h‖∞‖∇(u(f) − up(Ppf))‖L2(B)

for any f ∈ L2
⋄(∂B) and any h ∈ L∞(B). The involved constant is uniform

in γ ∈ int(D(F )) and does not depend on p or on the specific electrode
configuration.

Proof. Set u′ = F ′(γ)[h]f . The quantity to estimate is

‖F ′(γ)[h]f − F ′
p(γ)[h]Ppf‖L2(∂B) = ‖u′ − U ′‖L2(∂B)

≤ ‖u′ − Ppu
′‖L2(∂B) + ‖Ppu

′ − U ′‖L2(∂B).

The first difference is part of the statement. Therefore, we only consider the
second difference. From the Yp-ellipticity of a we find that

‖(u′
p, U

′) − (u′, Ppu
′)‖2

Yp
. a

(
(u′

p, U
′) − (u′, Ppu

′), (u′
p, U

′) − (u′, Ppu
′)
)

= −

∫

B
h∇up∇(u′

p − u′) dx − a
(
(u′, Ppu

′), (u′
p, U

′) − (u′, Ppu
′)
)

= −

∫

B
h∇up∇(u′

p − u′) dx −

∫

B
γ∇u′∇(u′

p − u′) dx

−
1

z

∫

E

(
u′ − Ppu

′
)(

u′
p − u′ − (U ′ − Ppu

′)
)
dS

(3.4)
=

∫

B
h∇(u − up)∇(u′

p − u′) dx

−
1

z

∫

E

(
u′ − Ppu

′
)(

u′
p − u′ − (U ′ − Ppu

′)
)
dS

. ‖h‖∞‖∇(u − up)‖L2‖(u′
p, U

′) − (u′, Ppu
′)‖Yp

+ ‖u′ − Ppu
′‖L2(∂B)‖(u

′
p, U

′) − (u′, Ppu
′)‖Yp .

Thus,

‖(u′
p, U

′) − (u′, Ppu
′)‖Yp . ‖∇(u − up)‖L2(B) + ‖u′ − Ppu

′‖L2(∂B), (4.7)

yielding the stated estimate.

Corollary 4.2. Under the above assumptions we have that

lim
p→∞

sup
{
‖F ′(γ)[·] − F ′

p(γ)[·]Pp‖L(L∞(B),L(L2

♦
(∂B))) : γ ∈ int(D(F ))

}
= 0.
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Proof. In view of (4.6) and Lemma 4.1 the stated convergence is verified
as soon as we have shown that

lim
p→∞

sup
{
‖(Id − Pp)F

′(γ)[h]f‖L2(∂B) : (γ, h, f) ∈ M
}

= 0

where

M := int(D(F ))×{η ∈ L∞(B) : ‖η‖∞ ≤ 1}×{g ∈ L2
♦(∂B) : ‖g‖L2(∂B) ≤ 1}.

The linear operators {Pp} converge pointwise to the identity on L2
♦(∂B)

and this convergence is uniform on compact subsets, see, e.g., Kress [10,
Corollary 10.4].

Finally, we validate the compactness of K := {F ′(γ)[h]f : (γ, h, f) ∈ M}
in L2(∂B). By Theorem 3.1 the set K is bounded in H1/2(∂B). As
H1/2(∂B) is compactly embedded in L2(∂B) (Rellich’s theorem, e.g.,
McLean [15, Theorem 3.30]), K is compact in L2(∂B).

Theorem 4.3. For p sufficiently large the Frechét derivative of

Fp : V +
T

⊂ VT → L(Ep)

is injective. More precisely: Fix r > c0. Then, there is an integer pT =
pT(r) depending on r and V +

T
such that, for p ≥ pT,

‖F ′
p(γ)[h]‖L(Ep) ≥

Γ(r)

2
‖h‖∞ for γ ∈ int(V +

T
) with ‖γ‖∞ ≤ r and h ∈ VT.

Here,

Γ(r) := min
{
‖F ′(σ)[v]‖

L(L2

♦
(∂B)) : σ, v ∈ VT, ‖v‖∞ = 1, c0 ≤ σ ≤ r

}
> 0.

Proof. Let us first convince ourselves that Γ(r) is well defined and posi-
tive. Indeed, the mapping (γ, h) 7→ ‖F ′(γ)[h]‖

L(L2

♦(∂B)) is continuous (The-

orem 3.1) and non-zero (Corollary 3.3) on that compact subset of VT × VT

over which the minimum is taken. Now,

‖F ′
p(γ)[h]Pp‖L(L2

♦
(∂B)) ≥ ‖F ′(γ)[h]‖L(L2

♦
(∂B))

− ‖F ′(γ)[h] − F ′
p(γ)[h]Pp‖L(L2

♦(∂B)).

For γ ∈ int(V +
T

) with ‖γ‖∞ ≤ r we have

‖F ′(γ)[h]‖
L(L2

♦
(∂B)) ≥ Γ(r) ‖h‖∞.

Further, there is a pT ∈ N such that

sup
{
‖F ′(σ)[h] − F ′

p(σ)[h]Pp‖L(L2

♦
(∂B)) : σ ∈ int(V +

T
)
}

≤
Γ(r)

2
‖h‖∞ for p ≥ pT
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which follows from Corollary 4.2. Thus,

‖F ′
p(γ)[h]‖L(Ep) ≥ ‖F ′

p(γ)[h]Pp‖L(L2

♦
(∂B)) ≥

Γ(r)

2
‖h‖∞

and we are done.

Corollary 4.4. If γ ∈ int(V +
T

) then F ′
p(γ) ∈ L(VT,L(Ep)) is injective

for any p satisfying

‖F ′(γ)[·] − F ′
p(γ)[·]Pp‖L(VT ,L(L2

⋄(∂B))) < Γ(‖γ‖∞).

A necessary requirement for injectivity is p(p − 1) ≥ 2 dim VT.

As in Section 3.1 we are now in a position to prove a tangential cone
condition for Fp locally about any γ ∈ int(V +

T
).

Theorem 4.5. If γ ∈ int(V +
T

) then there is an open ball Br(γ) ⊂
int(V +

T
) about γ of radius r > 0 such that, for all τ, σ ∈ Br(γ),

∥∥Fp(τ) − Fp(σ) − F ′
p(σ)[τ − σ]

∥∥
L(Ep)

. ‖τ − σ‖∞‖Fp(τ) − Fp(σ)‖L(Ep)

uniformly for all p ≥ pT = pT(r + ‖γ‖∞), that is, neither the involved
constant nor the radius r depend on p.

Proof. By Corollary 2.2 and (4.3),

∥∥Fp(γ + h) − Fp(γ) − F ′
p(γ)[h]

∥∥
L(Ep)

. ‖Tp(γ + h) − Tp(γ) − T ′
p(γ)[h]

∥∥
L(Ep,Yp)

(4.8)

.
(
‖γ‖∞ + z−1

)
‖h‖∞‖T ′

p(γ)[h]‖L(Ep ,Yp)

for γ ∈ int(V +
T

) and γ + h ∈ V +
T

. The constant is independent of VT and p.

Since F ′
p(σ) is injective for σ ∈ Bρ(γ) ⊂ int(V +

T
) and p ≥ pT(ρ + ‖γ‖∞)

we can proceed exactly as in the proof of Theorem 3.4. It remains to show
that the supremum

sup

{
‖T ′

p(σ)[h]‖L(Ep ,Yp)

‖F ′
p(σ)[h]‖L(Ep)

: (σ, h) ∈ Bρ(γ) × VT

}

is independent of p, compare (3.7). From Theorem 4.3 we know that
‖F ′

p(σ)[h]‖L(Ep) & ‖h‖∞ uniformly in σ ∈ Bρ(γ) and uniformly in p ≥ pT.

Because ‖T ′
p(σ)[h]‖L(Ep ,Yp) . ‖h‖∞ uniformly in p and in σ ∈ Bρ(γ)

(Lemma 2.3), the supremum is bounded in p indeed.
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4.2. Finite element discretization. Let SΥ ⊂ H1(B) be a conform-
ing finite element space over the subdivision Υ of B.‡ By δ > 0 denote the
discretization step size associated to Υ. We require that

lim
δ→0

‖w − Πδw‖H1(B) = 0 for any w ∈ H1(B)

where Πδ : H1(B) → SΥ is the orthogonal projection.

The finite element approximation (up,δ, Uδ) ∈ Yp,δ := SΥ ⊕ Ep ⊂ Yp to
(up, U) ∈ Yp solves uniquely the variational problem

a
(
(up,δ, Uδ), (w,W )

)
=

∫

∂B
I W dS for all (w,W ) ∈ Yp,δ, (4.9)

compare (4.1). The corresponding EIT forward operator Fp,δ, we consider
here, is given as

Fp,δ : V +
T

⊂ VT → L(Ep), Fp,δ(γ)I = Uδ.

With the same techniques used in the previous subsection we will first verify
injectivity of F ′

p,δ and then a tangential cone condition for Fp,δ for p ≥ pT

and δ sufficiently small. Without giving details we use results of Section 2.
Observe that

Fp,δ(γ) = REpTp,δ(γ), (4.10)

where the definition of Tp,δ : D(F ) ⊂ L∞(B) → L(Ep, Yp,δ) is obvious, com-
pare (4.2) and (4.3).

The Frechét derivative F ′
p,δ(γ) ∈ L(VT,L(Ep)), γ ∈ int(V +

T
), is

F ′
p,δ(γ)[h]I = U ′

δ where U ′
δ is the second component of (u′

p,δ, U
′
δ) ∈ Yp,δ

which uniquely solves

a
(
(u′

p,δ, U
′
δ), (w,W )

)
= −

∫

B
h∇up,δ(I)∇w dx for all (w,W ) ∈ Yp,δ

with up,δ(I) being the first component of the solution of (4.9), compare (4.4).

Lemma 4.6. We have that

lim
δ→0

sup
{
‖F ′

p(γ) − F ′
p,δ(γ)‖L(VT ,L(Ep)) : γ ∈ int(V +

T
), ‖γ‖∞ ≤ r, p ∈ N

}
= 0.

for any r > c0.

Proof. All we need is finite element convergence theory. Indeed, the
difference

‖F ′
p(γ)[h]I − F ′

p,δ(γ)[h]I‖L2(∂B) = ‖U ′ − U ′
δ‖L2(∂B)

‡Note that B is not required to be polygonal: The boundary elements of Υ may be
curvilinear since no boundary conditions need to be obeyed.
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will be bounded by Strang’s first lemma, see, e.g., Ciarlet [5, Theorem 4.1.1]:

‖(u′
p, U

′) − (u′
p,δ, U

′
δ)‖Yp . inf

(w,W )∈Yp,δ

‖(u′
p, U

′) − (w,W )‖Yp

+ sup
w∈SΥ

|
∫
B h∇(up − up,δ)∇w dx|

‖w‖H1(B)

uniformly in γ (and h and I). First we bound the above infimum by setting
(w,W ) = (Πδu

′
p, U

′):

inf
(w,W )∈Yp,δ

‖(u′
p, U

′) − (w,W )‖Yp ≤ ‖u′
p − Πδu

′
p‖H1(B).

Now we turn to the supremum

sup
w∈SΥ

|
∫
B h∇(up − up,δ)∇w dx|

‖w‖H1(B)
≤ ‖h‖∞‖up − up,δ‖H1(B)

. ‖h‖∞‖up − Πδup‖H1(B).

Thus,

‖F ′
p(γ)[h]I − F ′

p,δ(γ)[h]I‖L2(∂B)

. ‖u′
p − Πδu

′
p‖H1(B) + ‖h‖∞‖up − Πδup‖H1(B)

(4.11)

and the constant does not depend on p or on γ. Both differences on the
right converge to zero as δ → 0 uniformly in p and in γ ∈ Br(0) as we show
next.

First we consider ‖up − Πδup‖H1(B). By the Lipschitz continuity (2.3)

the mapping V +
T

∋ γ 7→ up(γ) ∈ H1(B) is continuous and the image of the

compact ball Br(0) is compact in H1(B) (VT is finite dimensional). Thus,

lim
δ→0

sup
{
‖up − Πδup‖H1(B) : γ ∈ Br(0)

}
= 0, (4.12)

see again Kress [10, Corollary 10.4]. As V +
T

∋ γ 7→ u′
p(γ) ∈ H1(B) is also

continuous (Lemma 2.3) the same line of reasoning yields

lim
δ→0

sup
{
‖u′

p − Πδu
′
p‖H1(B) : γ ∈ Br(0)

}
= 0. (4.13)

Both limits are even uniform in p. Assume the contrary. Then, there is an
ε > 0 for which we can find a positive zero sequence {δi}i and a correspond-
ing sequence {pi}i of electrode configurations such that

sup
{
‖upi − Πδi

upi‖H1(B) : γ ∈ Br(0)
}
≥ ε, for all i ∈ N.

If {pi}i is bounded we immediately have a contradiction. Therefore let us
assume that {pi}i diverges to infinity. We have

‖upi − Πδi
upi‖H1(B) ≤

∥∥(Id − Πδi
)u

∥∥
H1(B)

+
∥∥(Id − Πδi

)(upi − u)
∥∥

H1(B)

≤
∥∥(Id − Πδi

)u
∥∥

H1(B)
+ ‖upi − u‖H1(B).
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The right difference on the right tends to zero uniformly in γ as i → ∞, see
(4.6). By the same arguments proving (4.12) the left difference on the right
converges uniformly in γ ∈ Br(0). So, we found the contradiction

0 < ε ≤ sup
{
‖upi − Πδi

upi‖H1(B) : γ ∈ Br(0)
} i→∞
−−−→ 0.

To establish uniformity of (4.13) in p we may argue just as above when
replacing u and upi by u′ and u′

pi
, respectively. Now we have to take care of

∥∥(Id − Πδi
)u′

∥∥
H1(B)

and ‖u′
pi
− u′‖H1(B).

From above we know how to prove uniform convergence in γ ∈ Br(0) of the
left difference. The right difference we have already investigated, see (4.7)
and Corollary 4.2.

Finally we have established uniformity in p of the limits (4.12) and (4.13).
Recalling (4.11) we end up with

lim
δ→0

sup
{
‖F ′

p(γ)[h]I − F ′
p,δ(γ)[h]I‖L2(∂B) : γ ∈ Br(0), p ∈ N

}
= 0.

As the operators act on finite-dimensional spaces, this pointwise convergence
first yields

lim
δ→0

sup
{
‖F ′

p(γ)[h] − F ′
p,δ(γ)[h]‖L(Ep) : γ ∈ Br(0), p ∈ N

}
= 0

for all h ∈ VT and then the result.

Combining Lemma 4.6 with Theorem 4.3 we are able to prove injectivity.

Theorem 4.7. For p sufficiently large and δ > 0 sufficiently small the
Frechét derivative of

Fp,δ : V +
T

⊂ VT → L(Ep)

is injective. More precisely: Fix r > c0. Then, there is a δmax = δmax(r) > 0
only depending on r and V +

T
such that, for p ≥ pT(r) and δ ≤ δmax,

‖F ′
p,δ(γ)[h]‖L(Ep) ≥

Γ(r)

3
‖h‖∞

for γ ∈ int(V +
T

) with ‖γ‖∞ ≤ r and h ∈ VT.

The function Γ is defined in Theorem 4.3.
Proof. We use Theorem 4.3 and proceed exactly as in its proof:

‖F ′
p,δ(γ)[h]‖L(Ep) ≥

Γ(r)

2
‖h‖∞ − ‖F ′

p(γ)[h] − F ′
p,δ(γ)[h]‖L(Ep)

for p ≥ pT(r) and ‖γ‖∞ ≤ r. Further, by Lemma 4.6 there is a δmax > 0
such that

sup
{
‖F ′

p(γ)[h] − F ′
p,δ(γ)[h]‖L(Ep) : γ ∈ Br(0), p ∈ N

}
≤

Γ(r)

6
‖h‖∞
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for all δ ≤ δmax.

Corollary 4.8. If γ ∈ int(V +
T

) then F ′
p,δ(γ) ∈ L(VT,L(Ep)) is injective

for any p and δ satisfying

‖F ′(γ)[·] − F ′
p,δ(γ)[·]Pp‖L(VT ,L(L2

⋄(∂B))) < Γ(‖γ‖∞).

Now we are well prepared for the tangential cone condition in the fully
discrete setting.

Theorem 4.9. If γ ∈ int(V +
T

) then there is an open ball Br(γ) ⊂
int(V +

T
) about γ of radius r > 0 such that, for all τ, σ ∈ Br(γ),

∥∥Fp,δ(τ)−Fp,δ(σ)−F ′
p,δ(σ)[τ −σ]

∥∥
L(Ep)

. ‖τ −σ‖∞‖Fp,δ(τ)−Fp,δ(σ)‖L(Ep)

uniformly for all p ≥ pT(r + ‖γ‖∞) and all 0 < δ ≤ δmax(r + ‖γ‖∞), that
is, neither the involved constant nor the radius r depend on p or on δ.

Proof. Our preparatory work done in the proofs of Theorems 3.4 and 4.5
allows to be brief here. Basis of the proof are Corollary 2.2 and relation
(4.10). Observe that (4.8) holds analogously, that is, Fp and Tp are replaced
by Fp,δ and Tp,δ, respectively. The corresponding constant is now idependent
of VT, p, and δ. Arguments, already used in the proof of Theorem 4.5,
confirm that

sup

{
‖T ′

p,δ(σ)[h]‖L(Ep ,Yp)

‖F ′
p,δ(σ)[h]‖L(Ep)

: (σ, h) ∈ Bρ(γ) × VT

}

is bounded in p ≥ pT and δ ≤ δmax.

Remark. In our numerical experiments [12, Section 5] we realized a
stabilizing effect when using a much finer FE discretization for computing
the Jacobian than for reconstructing the conductivity (in the notation of
this paper: Υ much finer than T). Our observation is in full agreement with
the latter two theorems.

As explained in the Introduction we finally established rigorously the re-
ported convergence [12] of the regularizing scheme CG-REGINN. We close
this paper by commenting on the convergence. To this end we shortly in-
troduce CG-REGINN for solving the inverse EIT problem

Fp,δ(γ) = Λε
p

where Λε
p is a perturbed version of the exact and achievable data Λp =

Fp,δ(γ
+), γ+ ∈ int(V +

T
), satisfying

‖Λp − Λε
p‖L(Ep) ≤ ε.
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CG-REGINN starts out from an initial guess γ0 ∈ V +
T

and computes a
sequence {γn}n by

γn+1 = γn + sn.

The Newton correction sn is determined as follows: Apply the conjugate
gradient iteration with starting guess zero to the normal equation of the
linearization

F ′
p,δ(γn)[s] = Λε

p − Fp,δ(γn)

and stop it as soon as the relative residual is less than a tolerance µn ∈ ]0, 1[.
That is, sn satisfies

‖F ′
p,δ(γn)[sn] − Λε

p‖L(Ep) ≤ µn‖Λ
ε
p − Fp,δ(γn)‖L(Ep).

Further, CG-REGINN is stopped by a discrepany principle: Choose R > 0
and pick γN(ε) as approximate solution if

‖Λε
p − Fp,δ(γN(ε))‖L(Ep) < Rε ≤ ‖Λε

p − Fp,δ(γn)‖L(Ep), n = 0, . . . ,N(ε) − 1.

The results of [7, 13] in combination with Theorem 4.9 yield local conver-
gence: Let R be sufficiently large and choose the tolerances {µn} within a
certain interval. If γ0 ∈ Bρ(γ

+) with ρ sufficiently small then CG-REGINN
is well defined, that is, all iterates {γ1, . . . , γN(δ)} stay in Bρ(γ

+) and there
is a number L < 1 such that

‖Λε
p − Fp,δ(γn+1)‖L(Ep)

‖Λε
p − Fp,δ(γn)‖L(Ep)

≤ L, n = 0, . . . ,N(ε) − 1.

Moreover,

lim
ε→0

γN(ε) = γ+.
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