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Abstract
In this paper we present our investigations on the potential
of wavelet-based preprocessing for surface electromyographic
speech recognition. We implemented several variants of the
Discrete Wavelet Transform and applied them to electromyo-
graphical data. First we examined different transforms with var-
ious filters and decomposition levels and found that the Redun-
dant Discrete Wavelet Transform performs the best among all
tested wavelet transforms. Furthermore, we compared the best
wavelet transform to our EMG optimized spectral- and time-
domain features. The results showed that the best wavelet trans-
form slightly outperforms the optimized features with 30.9%
word error rate compared to 32% for the optimized EMG spec-
tral and time-domain features. Both numbers were achieved on
a 108 word vocabulary test set using phone based acoustic mod-
els trained on continuously spoken speech captured by EMG.
Index Terms: Electromyography, Wavelets, Speech Recogni-
tion, Preprocessing

1. Introduction
Recognition of spoken language provides a natural way for hu-
mans to communicate with computers. While speech recogni-
tion based on acoustic speech has advanced substantially, this
technology is limited to audible speech of reasonable SNR ra-
tio. However, real-life situations often require the recognition of
spoken speech even when the environment is extremely noisy or
when the speech is not audible at all. This includes noisy and
crowded environments as well as underwater or space opera-
tions. Non-audible speech is favored for the sake of privacy,
for example when making a confidential phone call in public
spaces. Last but not least, alternative input methods for speech
recognition may be useful for patients with medical speech im-
pairments.

One obvious way of achieving non-acoustic speech recog-
nition is monitoring the physical process which creates an audi-
ble signal, namely the movements of the articulatory apparatus
of the speaker, indicated by the activity of the facial muscles.
To capture the activity, electrodes are attached to the speaker’s
face. This process is known as surface electromyography, for
simplicity we abbreviate this in this paper to electromyography
(EMG). EMG recognition is possible on both audible and non-
audible speech.

Recently, some successful attempts have been made to per-
form speech recognition on EMG data [1, 2]. Most research in
EMG-based speech recognition is limited to a very small vo-
cabulary and the recognition of isolated words. However, in [3]
we presented first results on a phone-based EMG recognizer.
The initial front-end of this recognizer was based on classical
spectral features that showed limited success. After substantial
engineering, we found a set of optimized EMG features, which

decreased the word error rate to 32% on a 108 word vocabulary
(see below).

The wavelet transform in all its variants has become a
widely-used tool for signal processing and has been applied suc-
cessfully to EMG recognition of isolated words [2]. In this pa-
per we investigate the potential of wavelet transforms to EMG
recognition of continuous speech. We implement various trans-
forms and compare these wavelet-based features to our opti-
mized spectral and temporal features.

2. Experimental Setup
2.1. Data Acquisition

EMG signals vary a lot across different recording sessions, even
with the same speaker. In order to assure a controlled configu-
ration of this research, in this paper we report results collected
with the same data set that we used in [3]. In those experiments,
data was collected from one male speaker in one session. The
speaker read English sentences in normal audible speech, which
were simultaneously recorded by an EMG recorder and a stan-
dard close-talking microphone. The signal borders were marked
by the speaker pressing a start/stop button.

The corpus consisted of 38 phonetically balanced sentences
for training and 12 sentences from news articles for testing.
Each sentence was read 10 times, thus yielding a training set
with a total duration of 45.9 minutes and a test set with a to-
tal duration of 10.6 minutes. Additionally, 10 special “silence”
utterances were recorded.

The EMG signals were recorded with six pairs of Ag/Ag-
CL electrodes attached to the speaker’s skin capturing the signal
of the articulatory muscles, namely the levator angulis oris, the
zygomaticus major, the platysma, the orbicularis oris, the ante-
rior belly of the digastric and the tongue. Eventually, the sig-
nal obtained from the orbicularis oris proved unstable and was
dropped from the final experiments. The EMG signals were
sampled at 600 Hz and filtered by a 300 Hz low-pass and a 1 Hz
high-pass filter.

Details regarding the data acquisition setup can be found in
[3].

2.2. The Audible Speech Recognizer

In order to forced-align the audible speech recordings, we used
a Broadcast News (BN) speech recognizer trained with the
Janus Recognition Toolkit (JRTk). The recognizer is HMM-
based, and makes use of quintphones with 6000 distributions
sharing 2000 codebooks. The baseline performance of this sys-
tem is 10.2% WER on the official BN test set (Hub4e98 set 1),
F0 condition.
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2.3. The EMG Recognizer

The EMG speech recognizer used an HMM-based decoding al-
gorithm. Since the training set is very small, we restricted the
algorithm to a context-independent acoustic model. Further-
more, the decoding vocabulary was restricted to the words ap-
pearing in the test set, which contained 108 words in total. The
training set contained 415 words, 35 of which were also part of
the test set.

The EMG speech recognizer was bootstrapped with the
help of the recordings of audible speech data. First of all, the
forced-align labels of the audible speech data were generated
with the BN speech recognizer mentioned above. This informa-
tion was used as an initial labeling of the EMG data.

In our previous work [4], we showed that the EMG signal is
ahead of the audio signal since the speech signal is a product of
articulator movements and source excitation. We modeled this
anticipatory effect by adding a delay of 0 ms to 90 ms to the
EMG signal. Our experimental results are charted as a function
of this delay.

3. Preprocessing Methods
In this section we first summarize the special optimized EMG
features and then introduce the wavelet-based features. For de-
tails on the optimized EMG features and its performances the
reader is refered to [3].

3.1. Spectral Features

Some of our initial experiments showed that the traditional
spectral plus time-domain mean feature is very noisy. In par-
ticular, purely spectral preprocessing incurs a very high Word
Error Rate (WER). Nonetheless, we compare our results with
those obtained with a Windowed (Short-Time) Fourier Trans-
form (STFT) during which the output frequencies were quan-
tized into 9 separate subbands.

3.2. Special EMG Features

In order to extract features from EMG signals in a more robust
manner, we designed special EMG features whose main proper-
ties are a better normalization and smoothing of the input signal
[3].

The motivation behind this special feature design is that
EMG signal is very different from speech acoustic signal. In
a speech acoustic spectrogram, we can usually observe distin-
guishable phone characteristics, which is not the case in an
EMG spectrogram. As a result, traditional spectral feature ex-
traction does not work well for EMG signals. To solve this fea-
ture problem, we design this special EMG feature in order to
reduce feature dimension while keeping the most useful infor-
mation per frame. The reduced dimension also make it possible
to stack feature with a wider context, which is beneficial for
modeling long-range dynamics.

We use the following definitions: For any feature f , f̄ is its
frame-based time-domain mean, Pf is its frame-based power,
and zf is its frame-based zero-crossing rate. S(f , n) is the
stacking of adjacent frames of feature f in the size of 2n + 1
(−n to n) frames. In these computations, we used a frame size
of 27 ms and a frame shift of 10 ms. These values are reported
as giving optimal results by [5].

In our previous work, the best WER was obtained with the
E4 feature defined as:

E4 = S(f2, 5), where f2 = [w̄,Pw,Pr, zr, r̄].

3.3. The Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT) applies a set of linear
time invariant (LTI) filters to the signal, thereby extracting cer-
tain properties of the original data. The main feature of the
DWT is that it extracts details and approximations of the sig-
nal on different scales. This multi-scale analysis is achieved
by either dilating the filters appropiately or downsampling the
original signal, to which an adapted low-pass filter is applied be-
fore. The process of filtering the signal and changing the scale
is repeated a fixed number of times. This number is called the
maximum decomposition level.

There is a wide variety of filters which can be used for these
transforms. Special consideration must be given to the choice
of these filters since the results of the experiments vary consid-
erably when the filter setup is changed. The applied filters are
reported in the respective sections.

In each case, the basic high-pass filter which is used for
extracting the details on a certain scale is a finite LTI filter of
the form

H = (hk)k∈Z. (1)

This filter generates a corresponding low-pass filter G by the
formula

G = (gk)k∈Z, gk = (−1)kh1−k. (2)

This filter duality is a central property of all discrete wavelet-
based algorithms.

3.4. The Redundant Discrete Wavelet Transform

The Redundant Discrete Wavelet Transform (RDWT) [6] is the
most direct way of decomposing an input signal into different
scales. The representation created is highly redundant, however
it has got some desirable properties. In particular, this transfor-
mation is fully invariant towards small shifts of the input signal.

For an input signal c0 = (c0
k)k∈Z, we calculate the detail

coefficients dn and the approximation coefficients ci, i ≥ 1, by
the following algorithm:

1. Start with the filters (hk) and (gk) as described above.
Let L be the maximum decomposition level. Let i := 1.

2. Calculate ci and di, i ≤ L, by

ci
l =

X
k∈Z

ci−1
k hk−l

di
l =

X
k∈Z

ci−1
k gk−l

(3)

3. Upsample the filters (hk) and (gk), i. e.

hNEW
k =


hOLD

k/2 if k is even
0 if k is odd

gNEW
k =


gOLD

k/2 if k is even
0 if k is odd

(4)

4. Jump to step 2 if i < L and increment i by 1.

3.5. The Fast Wavelet Transform

The Fast Wavelet Transform (FWT) [7] is a variant of the
RDWT which eliminates the redundancy of the output vectors.
This is done by downsampling the output vectors by the fac-
tor two during each decomposition step. The algorithm avoids
computing unused coefficients and is therefore very fast.
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We define the operators H̃ and G̃, based on the original
filters H and G, by

H̃ : `2 −→ `2, (ck) 7→

 X
m∈Z

hm−2kcm

!

G̃ : `2 −→ `2, (ck) 7→

 X
m∈Z

gm−2kcm

!
.

(5)

Then for each i > 0, we can compute

ci = H̃(ci−1) and di = G̃(ci−1) (6)

until the desired maximum decomposition level is reached.
All information of the original signal is contained in the out-

put vectors {(d1), (d2), . . . , (dL), (cL)}, where L is the maxi-
mum decomposition level. However, for EMG recognition pur-
poses, it is sometimes useful to consider all generated vectors.

3.6. The Double-Tree Complex Wavelet Transform

The major drawback of the FWT is that it is not robust with
respect to small shifts of the input signal, i. e. such shifts
may generate a very different output signal. The Double-
Tree Complex Wavelet Transform (DTCWT) [8] was designed
to overcome this problem without resorting to the highly-
redundant RDWT. It achieves an approximate shift-invariance
by computing two FWTs with phase-shifted filters in paral-
lel. This creates two sets of detail/approximation coefficients˘
(ci

A), (di
A), (ci

B), (di
B) 1 ≤ i ≤ L

¯
, which are considered as

the real and imaginary parts of a wavelet transform with a com-
plex wavelet. The final coefficients used in the classification
process are then computed by:

(ci)k = |(ci
A)k + j · (ci

B)k| =
q

(ci
A)2k + (ci

B)2k

(di)k = |(di
A)k + j · (di

B)k| =
q

(di
A)2k + (di

B)2k

(7)

for each k, where j =
√
−1.

4. Experiments and Results
We used a two-step approach to evaluate the virtues of the DWT
for EMG signal processing. In the first part, the transforms
described above are compared to each other and to a classi-
cal STFT. In the second part, the strategies used in our previ-
ous work [3] to create special EMG features are applied to data
which is first processed by a wavelet transform.

In all experiments, an LDA is applied to the final feature
vectors, whose dimension is reduced to 32. The anticipatory
effect of the EMG signals is modeled by delaying the speech
signal for 0 ms - 90 ms.

4.1. Comparison of Plain DWT Features

We use the following features:

STFT Short-Time Fourier Transform with a window size of
27 ms and a frame shift of 10 ms. The resulting frequen-
cies and quantized into 9 subbands.

DTCWT DTCWT with a Daubechies-4 filter pair [9] for the
first step and a 14-tap q-shift filter pair [10] for all sub-
sequent steps.

FWT FWT with a 14-tap q-shift filter [10] for all steps.

RDWT RDWT with a 14-tap q-shift filter [10] for all steps.

In all wavelet experiments, the maximum decomposition
level was 5. Both detail and approximation coefficients were
used to generate the final feature vectors. Figure 1 shows that

Figure 1: Word Error Rate on Plain DWT Features
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the RDWT performs best among the wavelet transforms inves-
tigated here. Clearly, due to the downsampling performed by
both FWT and DTCWT, these tranforms fail to capture some
essential information of the EMG signal. In particular, the lo-
calization of certain signal properties at lower frequencies may
only be represented inaccurately.

A somewhat surprising result is the high WER when the
DTCWT is used—in fact, even the FWT performs better than
the DTCWT.

As expected, the STFT performs worse than all the DWT
variants. In [3], we reported that time-domain smoothing and
averaging of the EMG signal provides additional gain compared
to purely spectral features. The fact that the approximation co-
efficients of the wavelet transforms contain such a time-domain
smoothing of the input signal may explain the better perfor-
mance of the DWT variants.

4.2. The Wavelet Transform and Special EMG Features

In our previous experiments in [3], a separation of low-
frequency and high-frequency components of the signal is
achieved by computing a nine-point double-averaged signal
representing the low frequencies and then subtracting it from
the original signal to get the high frequencies. These features
are used as a base for calculating time-domain properties of the
signal. The goal of this section is to investigate the effects of
replacing this formula with the more elaborate multi-scale anal-
ysis performed by the wavelet transform.

For these experiments, we define three features:

X1 The signal is processed with a RDWT with a 14-tap q-
shift filter [10] till level 5. Only the detail coefficients
{(d1), . . . , (d5)} are used for further processing.

X2 The signal is processed with a RDWT with a 14-tap q-shift
filter [10] till level 2. Detail and approximation coeffi-
cients {(d1), (d2), (c1), (c2)} are used for further pro-
cessing.

E4 The E4 feature (see above).

For features X1 and X2, the further steps are as follows: To
each row ri of detail and approximation coefficients (the latter
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only in the case of X2), we apply the transformation F defined
by

F (ri) = [Pri , r̄i, zri ].

Thus we get the “preliminary” features X̃1 and X̃2 by

X̃1 = [F (d1), F (d2), F (d3), F (d4), F (d5)]

X̃2 = [F (d1), F (d2), F (c1), F (c2)],

i. e. the processed rows are stacked upon each other. Finally, we
obtain the features X1 or X2 by applying the Stacking filter:

X1 = S(X̃1, 5)

X2 = S(X̃2, 5).

Figure 2: Word Error Rate on Special EMG/Wavelet Features
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We see that the feature X2 slightly improves the WER to
a minimum of 30.9% compared to the E4 feature, whose opti-
mal performance was 32%. While this is a relatively small im-
provement, the wavelet transform gives us an important means
to customize the splitting of the EMG input signal into details
on different scales. Using a specially adapted filter may be a
lever to further increase the word accuracy, however choosing
such a filter is beyond the scope of this paper.

X1 shows unstable results with respect to the time delay,
however for certain delays its performance is comparable with
X2. Note that for X1, we only used the detail coefficients of
the RDWT, since the transformations contained in F perform
a smoothing and averaging of the signal. Further experiments
showed that adding the approximation coefficients to the feature
X1 significantly increases the WER.

The Stacking filter S adds context information to the final
feature. As we reported in [3], this context information is cru-
cial to obtaining optimal recognition results. Experiments with
other methods of adding context information showed compara-
ble results. However, it also turned out that beyond a certain
limit, adding more context information decreases the recogni-
tion accuracy. Therefore, the means of adding contextual infor-
mation must be carefully chosen and optimized.

5. Conclusions
We investigated the potential of wavelet transforms for surface
electromyographic speech recognition. Several variants of the

Discrete Wavelet Transform were implemented and applied to
electromyographical data. We found that the Redundant Dis-
crete Wavelet Transform performs best among all tested wavelet
transforms.

Furthermore, we used data processed by the Redundant
Discrete Wavelet Transform as a base for the calculation of
specially optimized time-domain features and achieved an im-
provement of the WER, which dropped from 32% to 30.9%.

Thus in this setup, the flexibility of the wavelet transform
gives us a means of customizing the EMG preprocessing. For
the future, we expect to further improve the feature extraction
by using specially optimized filters.
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