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ABSTRACT
Vocal activity detection is an important technology for both
automatic speech recognition and automatic speech under-
standing. In meetings, participants typically vocalize for
only a fraction of the recorded time, and standard vocal ac-
tivity detection algorithms for close-talk microphones have
shown to be ineffective. This is primarily due to the prob-
lem of crosstalk, in which a participant’s speech appears
on other participants’ microphones, making it hard to at-
tribute detected speech to its correct speaker. We describe
an automatic multichannel segmentation system for meeting
recognition, which accounts for both the observed acoustics
and the inferred vocal activity states of all participants us-
ing joint multi-participant models. Our experiments show
that this approach almost completely eliminates the crosstalk
problem. Recent improvements to the baseline reduce the
development set word error rate, achieved by a state-of-the-
art multi-pass speech recognition system, by 62% relative to
manual segmentation. We also observe significant perfor-
mance improvements on unseen data.

1. INTRODUCTION

Vocal activity detection (VAD) is an important technology
for any application with an automatic speech recognition
(ASR) front end. In meetings, participants typically vocal-
ize for only a fraction of the recorded time. Their temporally
contiguous contributions should be identified prior to speech
recognition in order to associate recognized output with spe-
cific speakers (who said what) and to leverage speaker adap-
tation schemes. Segmentation into such contributions is pri-
marily informed by VAD on a frame-by-frame basis.

This work focuses on VAD for meetings in which each
participant is wearing a close-talk microphone, a task which
remains challenging primarily due to crosstalk from other
participants (regardless of whether the latter have their own
microphones). State-of-the-art meeting VAD systems which
attempt to account for crosstalk rely on Viterbi decoding ina
binary speech/non-speech space [9], assuming independence
among participants. They employ traditional Mel-ceptral
features as used by ASR, with Gaussian mixture models [1]
or multi-layer perceptrons [3]. Increasingly, such systems
are integrating new features, designed specifically for dis-
criminating between nearfield and farfield speech, or speaker
overlap and no-overlap situations [10].

Our approach to meeting segmentation deviates from that
of other state-of-the-art segmenters in three main ways. First,
we address the crosstalk problem by explicitly modeling the

correlation between energy on all channels, which results
in a meeting-dependent feature vector length and precludes
the use of exclusively supervised acoustic models. Second,
we explicitly model the interaction between participants,and
perform a single decode in a 2K-state space rather thanK
decodes in a 2-state space. Third, for simplicity, we emply a
fully-connected hidden Markov model topology, which leads
to optimal frame rates which are significantly larger than
those employed in other meeting segmenters (ie. [1],[3]).

We assess the performance of our automatic segmen-
tation systems by comparing the subsequent word error
rate (WER), obtained with an automatic speech recognition
(ASR) system, to WERs achieved by the same ASR sys-
tem using a manually produced reference segmentation of
the same audio. The baseline segmenter evaluated here is the
same as that in our NIST RT-06s Speech-to-Text Evaluation1

submission [4]. We present a description of the segmenter in
Section 2.

In contrast to our previous work [7][8], in which a single-
pass recongizer was used, we evaluate segmentation perfor-
mance using a 3-pass ASR system. This system, described in
Section 3, is a simplified version of our NIST RT-06s submis-
sion [4]. A WER comparison between segmentations over at
least three passes is important in order to take into account
the influence of speaker and channel adaptation on hypothe-
ses from the first pass. Our experience has been that the WER
gap between automatic segmentations shrinks with the num-
ber of passes. Our experiments and analysis are presented in
Section 4; concluding remarks can be found in Section 5.

2. SEGMENTATION SYSTEM DESCRIPTION

The VAD system we use as our baseline was introduced
in [6]. Rather than detecting the 2-state speech (V ) vs.
non-speech (N ) activity of each partipant independently,
the baseline implements a Viterbi search for the best path
through a 2K-state vocal interaction space, whereK is the
number of participants. Our state vector,qt , formed by con-
catenating the concurrent binary vocal activity statesqt [k],
1≤k≤K, of all participants, is allowed to evolve freely over
the vocal interaction space hypercube, under stochastic tran-
sition constraints imposed by a fully-connected, ergodic hid-
den Markov model (eHMM). Once the best vocal interaction
state pathq∗ is found, we index out the corresponding best
vocal activity state pathq∗ [k] for each participantk. The
underlying motivation for this approach is that it allows us

1http://www.nist.gov/speech/tests/rt/
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Figure 1: Segmentation system architecture

to model the constraints that participants exert on one an-
other. The system, which employs 110 ms, non-overlapping
frames, is depicted in Figure 1.

Tasks associated with running the system include:
1. TM: training of a meeting-independent transition model;
2. PASS 1: initial label assignment (ILA) for the test audio;
3. AM: training of conversation-specific acoustic models

using thetestaudio and the labels from (2);
4. PASS 2: simultaneous Viterbi decoding of all partici-

pant channels, using the transition model from (1) and
the acoustic models from (3); and

5. PASS 3: smoothing VAD output to produce a segmenta-
tion suitable for ASR.
The remainder of this section is devoted to a component-

by-component description of the system.

2.1 TM: Transition Model Training

The role of the transition model during decoding is to pro-
vide estimates ofP(qt+1 = S j |qt = Si), the probability of
transitioning to a stateS j at time t + 1 from a stateSi at
time t. The complete description of a conversation, when
modeled as a first-order Markov process, is anN×N ma-
trix, where N≡2K . When participants are assumed to be-
have independently of one another, this probability reduces
to ∏K

k=1P(qt+1 [k] = S j [k] |qt [k] = Si [k]).
As in previous work [6], we have chosen to not assume

that participants behave independently. A main difficulty in
modeling inter-participant dependencies is the need to col-
lapse the 22K transition probability matrix in a conversation-
independent and participant-independent manner, such that
model parameters learned in one conversation will general-
ize to unseen conversations, even when the participants are
different, and/or when the number of participants in the train
meetings does not match the number of participants in the
test meeting.

To address this issue, we have proposed the Extended De-
gree of Overlap (EDO) model [8], in which

P(qt+1 = S j |qt = Si ) ∝ (1)
P(‖qt+1‖ = n j , ‖qt ·qt+1‖ = oi j |‖qt‖ = ni ) ,

whereni ≡ ‖Si‖ andn j ≡ ‖S j‖ represent the number of vo-
cally active participants in statesSi andS j , respectively, and
oi j ≡ ‖Si ·S j‖ ≤ min(ni ,n j) represents the number of same
participants which are vocally active in bothSi andS j . The
model represents the probability of transition between spe-
cific states as proportional to the probability of transition be-
tween the degrees of simultaneous vocalization in each of

them. Furthermore, the term‖qt ·qt+1‖ accounts for partic-
ipant state continuity; it allows the probability of the tran-
sition {A,B} −→ {A,C} to differ from that of{A,B} −→
{C,D}, which agrees with intuition. Figure 2 shows the total
number of unique transitions in the EDO space; for readabil-
ity, we limit the degree of overlap in the figure to 2.

‖qt‖

‖Si‖ = 0

‖Si‖ = 1

‖Si‖ = 2

‖Si ·S j ‖ = 0

‖Si ·S j ‖ = 1

‖Si ·S j ‖ = 2

‖Si ·S j ‖ = 1

‖Si ·S j ‖ = 0

‖Si ·S j ‖ = 0

‖qt+1‖

‖S j ‖ = 2

‖S j ‖ = 1

‖S j ‖ = 0

Figure 2: Unique transition probabilities in the EDO model
space with at most 2 simultaneously vocalizing participants.

To train the EDO model, we use the multi-participant
utterance-level segmentation (.mar) from the ISL Meeting
Corpus [2], where the number of meetings isR = 18. The
training procedure is explained in detail in [8].

2.2 Initial Label Assignment

We perform an unsupervised initial assignment of state labels
to multichannel frames of audio using the heuristic

q̃ [k] =







V , if ∑
j 6=k

log
(

maxτ φ jk(τ)

φ j j (0)

)

> 0

N , otherwise
(2)

whereφ jk(τ) is the crosscorrelation between IHM channels
j andk at lagτ, andq̃ [k] is the initial label we assign to the
frame in question. The crosscorrelation is computed in the
spectral domain, using rectangular windows2. We perform
maximization directly without the use of weighting schemes
such as the phase transform (PHAT). In [7], we showed that
the ratio maxτ φ jk (τ)/φ j j (0), under certain simplifying as-
sumptions of signal propagation and microphone response,
approximates the ratiod j/dk whered j and dk are the dis-
tances to microphonesj and k, respectively, from a single
dominant sound source. Equation 2 therefore declares partic-
ipantk as vocalizing when the distance between the dominant
sound source and microphonek is smaller than the geomet-
ric mean of the distances between the dominant sound source
and each of the remaining microphones.

2.3 AM: Acoustic Model Training

The initial label assignment described in Equation 2 produces
a partitioning of the multichannel test audio. The labeled

2In [7], we erroneously specified that we are using Hamming windows.
There, as well as here, we use a rectangular window for ILA.



frames are used to train a single, full-covariance Gaussianfor
each of the 2K states in our search space, over a feature space
of 2K features: a log-energy and a normalized zero-crossing
rate for each IHM channel. These features are computed us-
ing 110 ms non-overlapping Hamming windows following
signal preemphasis (1−z−1).

For certain participants, and especially for frames in
which more than one participant vocalizes, the ILA may
identify too few frames in the test meeting to effectively
train acoustic models. To address this problem, we have
proposed and evaluated two methods: feature space rotation,
and sample-level overlap synthesis. Due to space constraints,
we refer the reader to [6] for a description. We only men-
tion here that the methods are controlled by three parame-
ters,{λG,λR,λS}, whose magnitudes empirically appear to
depend on the number of features per channel and on the
overall test meeting duration.

2.4 Viterbi Decoding and Segmentation Smoothing

We perform standard Viterbi decoding to obtain the best path
q∗, and then extract a vocal activity estimateqt [k] for each
participantk. To produce usable segments for ASR, we per-
form 5 postprocessing passes per participant: (1) bridging
gaps shorter than 0.5s; (2) eliminating spurts shorter than
0.2s; (3) prepadding and postpadding all segments with 0.1s
and 0.3s, respectively; (4) bridging remaining gaps shorter
than 0.4s; and (5) eliminating remaining spurts shorter than
0.8s. These post-processing parameters were tuned on the
development set to minimize a first-pass WER.

3. ASR SYSTEM DESCRIPTION

Figure 3 shows the mult-pass ASR system used in our ex-
periments. The system includes the first three passes of our
NIST RT-06s Speech-to-Text Evaluation system. Two dif-
ferent semi-continuous acoustic models were used for de-
coding: one trained with vocal tract length normalization
(VTLN) only, and one trained using speaker adaptive train-
ing (SAT) with constrained maximum likelihood linear re-
gression (MLLR). In both cases, 16000 distributions over
4000 codebooks were trained, with a maximum of 64 Gaus-
sians per model in a 42-dimensional feature space. In ad-
dition to the traditional front-end based on Mel-frequency
Cepstral Coefficients (MFCCs), a second front-end based on
warped minimum variance distortionless response (MVDR)
was used. Combining the outputs of MFCC and MVDR sys-
tems, using confusion network combination (CNC), leads to
significant cross-adaptation gains in subsequent passes.

We perform incremental adaptation using VTLN and
constrained MLLR during decoding in the first pass.
Thereafter, the parameters for VTLN, constrained MLLR
and model-space MLLR are computed using confidence-
annotated hypotheses of the first CNC pass and kept fixed
during subsequent decoding passes. VTLN-only acoustic
models are used in the first and second passes, while the
third pass uses the SAT models. The language model used
for all decoding passes was an interpolation of different 4-
gram models computed on meeting data, lecture data, con-
versational telephone speech data and several other sources
collected from the web. A more detailed description of the
ASR components can be found in [4].

The development of the segmentation systems [8] eval-
uated in this work was carried out using a single-pass ASR
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Figure 3: 3-pass ASR system.

system, which we refer to as MFCC.0. This corresponds to
MFCC.1 in Figure 3; however, MFCC.0 relies on a dictio-
nary and language model which were available during the
development of [4].

4. EXPERIMENTS

We compare the performance of our segmentation algorithms
by directly comparing the WERs as was done in [1], [3], [7],
and [8]. WERs reported here are obtained using the 3-pass
variant of our NIST RT-06s Speech-to-Text submission sys-
tem, described in the previous section. We note that an op-
timistic aim of an automatic segmenter is to produce WERs
achievable with manual, human-produced segmentation.

4.1 Data

The data used in our experiments consist of two datasets from
the NIST RT-06s evaluation.rt05s eval was used for de-
velopment, andrt06s eval was used for final evaluation;
we have retained this separation in the current work. The
two sets consist of 10-minute excerpts from several meet-
ings recorded at different sites; the number of participants
per meeting varies between 3 and 11.

Segmentation system development was carried out while
excluding a single meeting fromrt05s eval which con-
tained a participant on speakerphone; this condition was
known in advance not to occur inrt06s eval. We re-
fer to the limited development set asrt05s eval* (it was
referred to asconfDEV in [4]). For the purposes of future
comparison with other meeting transcription systems, in the
current work we include the offending meeting in our devel-
opment set results and analysis.

4.2 Modifications to the Baseline Segmenter

We briefly describe 5 modifications made to the baseline, af-
ter the NIST RT-06s evaluation.

The first modification involved the elimination of the
zero crossing rate (ZCR) feature, which was shown not to
affect WERs. Since this modification reduces the feature
vector size from 2K to K, we have also retuned the acous-
tic model parameters{λG,λR,λS} on rt05s eval*. The
negligible effect of this change to the MFCC.0 WER on
rt05s eval*, alongside the performance of the RT06s
baseline, is shown in Table 1.

In a second modification (F.100), we reduced the frame
size and step from 0.110 s to 0.100 s. Since these param-
eters affect the smoothing pass, we have also modified the
latter to consist of: (1) bridging gaps shorter than 0.45s; (2)
eliminating spurts shorter than 0.25s; and (3) prepadding and



Segmentation rt05s eval* rt05s eval

RT06s baseline 37.0 45.6
– ZCR 36.9 42.5
+ F.100 35.2 41.1
+ ILA.0 34.2 40.5
+ MULT 34.1 39.2
+ OV.2 34.4 37.8
manual refs 34.4 36.1

Table 1: MFCC.0 WERs on our originalrt05s eval*
development set (rt05s eval less one meeting) and on
the completert05s eval development set, for five con-
secutive modifications to the segmentation baseline. Best-
performing automatic segmentations are shown in bold.

postpadding all segments with 0.15s and 0.2s, respectively.
As for the first modifications, these parameters were tuned to
minimize the MFCC.0 WER onrt05s eval*.

A third reduction (ILA.0) in the MFCC.0 WER on
rt05s eval* was achieved by noting that the ILA al-
gorithm is characterized by high precision but significantly
lower recall [5]. This suggests that a large number of frames
identified by the ILA as silence may in fact be missed vo-
cal activity. To test this hypothesis, we chose to use only
50% of the ILA-identified silence frames for training the all-
silent modelS0. These are selected by picking the first two
quartiles in terms of average per-channel log-energy, overall
channels. Table 1 shows the resulting WER reduction.

The fourth modification consisted of replacing Equa-
tion 2 with true probabilities of the form

P(qt+1 = S j |qt = Si ) = (3)
P(‖qt+1‖ = n j , ‖qt+1 ·qt‖ = oi j |‖qt‖ = ni ) ×

P(qt+1 |‖qt+1‖ = n j , ‖qt+1 ·qt‖ = oi j , ‖qt‖ = ni ) ,

where only the first factor is supplied by the EDO model.
Given an EDO model transition, we assume the distribution
over next states licensed by that transition type to be uniform,
ie.

P(qt+1 |‖qt+1‖ = n j , ‖qt+1 ·qt‖ = oi j , ‖qt‖ = ni ) =

ni !
oi j ! (ni −oi j )!

·
(K−ni)!

(n j −oi j )! (K−ni −n j +oi j )!
. (4)

whereK is the number of participants in the test meeting.
This ensures that the transition probabilities given by Equa-
tion 3 sum to unity. The MFCC.0 WER of the system with
this modification is shown as MULT in Table 1.

Finally, we have simplified the search space by consid-
ering states with only zero, one or two simultaneously vo-
calizing participants (OV.2). This entails redistributing tran-
sition probability mass among the remaining‖S‖≤2 states
and ignoring, during the training of the EDO model, all N-
grams involving‖S‖ > 2 states. Table 1 shows the impact of
OV.2 on the MFCC.0 WER; although it leads to a negligible
WER increase forrt05s eval*, it yields a very large im-
provement in the segmentation of the excluded meeting with
a speakerphone participant. We have therefore chosen OV.2
for validation of our segmentation approach using the 3-pass
recognizer on thert06s eval dataset.

4.3 Generalization to a Multi-pass Recognizer

In Table 2, we show the performance of our segmentation
system individually for each meeting inrt05s eval, using
the 3-pass ASR system described in Section 3. WERs for
each of the 3 CNC passes are shown, together with WERs
using the single-pass MFCC.0 ASR system for comparison.

We note first of all that the OV.2 segmentation, for all
meetings combined, represents an 82% reduction in WER
relative to manual segmentation, over the baseline segmenter
when the single-pass ASR system is used. However, for each
pass of the 3-pass ASR system, this figure is smaller, at 62%.
In absolute terms, OV.2 performance using the single-pass
recognizer is 1.7% absolute worse than manual segmenta-
tion, but with the multi-pass recognizer the same difference
is 3.3-3.7%. OV.2 WERs, relative to manual segmentation
WERs, represent a degradation of 12-13% in each pass.

Looking at eachrt05s eval meeting individually, it
is apparent that OV.2 outperforms manual segmentation for
a majority of meetings with the single-pass recognizer with
which it was developed. MFCC.0 WERs on AMI1, AMI2,
NIST2, VT1, and VT2 are lower that with manual segmen-
tation by as much as 5.3% absolute. However, already in the
first pass with the multi-pass recognizer, only AMI1, VT1,
and VT2 have lower WERs for OV.2. By the third pass,
only the AMI2 WER is the same with OV.2 segmentation
as with manual segmentation; for all other meetings, manual
segmentation yields the lowest WERs.

The situation is similar for unseen data inrt06s eval,
presented in Table 3. Although OV.2 outperforms manual
segmentation for CMU1 and TNO1 with the single-pass rec-
ognizer, by the second pass of the 3-pass recognizer manual
segmentation achieves WERs which are lower by 0.8-5.3%
absolute than OV.2. Overall forrt06s eval, OV.2 rep-
resents a 49% reduction of the MFCC.0 WER gap between
manual segmentation and the baseline; for CNC.1, CNC.2
and CNC.3, the same reduction is 40%, 22%, 27%, respec-
tively.

5. CONCLUSIONS

We have described the automatic segmentation system used
in our NIST RT-06s Speech-to-Text Evaluation submission,
together with several modifications. Although the improved
OV.2 segmenter was developed by minimizing the WER ob-
tained with a single-pass, development ASR system, the ben-
efits generalize when a state-of-the-art 3-pass recognizeris
used. With the exception of two meetings in the development
set, CMU2 and ICSI2, and two meetings in the evaluation
set, EDI1 and EDI2, third pass WERs obtained using OV.2
are lower than those with the baseline segmentation. When
all meetings are considered, OV.2 reduces thert05s eval
WER difference between the baseline and manual segmenta-
tion by 62%, and the unseenrt06s eval WER difference
by 27%. The current gap between manual and automatic seg-
mentation is 3.3% for thert05s eval development set and
3.0% for thert06s eval evaluation set. These numbers
are comparable to those reported elsewhere (ie. [1]), in spite
of significant differences in segmentation system design.

A breakdown of CNC.3 ASR errors by type for
rt06s eval reveals that the number of substitutions, dele-
tions, and insertions using OV.2 is 13.9%, 13.3%, and 2.9%,
respectively. The same breakdown for manual segmentation
yields 15.0%, 9.1%, and 2.9%, respectively. That OV.2 in-



Segm. ASR AMI1 AMI2 CMU1 CMU2 ICSI1 ICSI2 NIST1 NIST2 VT1 VT2 all
baseline MFCC.0 33.7 47.4 36.8 37.8 34.5 27.6 119.8 37.9 37.7 40.845.6
OV.2 MFCC.0 33.5 36.1 34.1 33.8 33.6 27.8 66.4 38.7 34.0 39.837.8
manual MFCC.0 34.7 39.3 32.9 31.3 25.8 25.3 51.2 44.0 34.3 44.836.1
baseline CNC.1 28.4 43.9 34.8 34.7 31.3 26.2 108.9 34.3 33.6 38.841.7
OV.2 CNC.1 29.5 33.3 33.3 32.9 30.9 27.0 61.6 42.5 30.0 37.035.8
manual CNC.1 33.8 31.6 31.2 31.0 22.0 23.4 45.4 35.6 30.1 38.732.1
baseline CNC.2 24.6 30.4 27.3 28.1 29.0 21.6 100.0 30.1 27.7 33.835.4
OV.2 CNC.2 24.8 25.7 27.9 27.6 27.6 22.7 52.2 31.0 26.5 32.329.8
manual CNC.2 24.7 26.8 25.0 25.1 20.0 20.4 37.4 27.7 26.7 31.326.4
baseline CNC.3 23.7 27.0 27.0 26.9 28.2 20.8 96.5 29.5 26.5 33.334.1
OV.2 CNC.3 23.4 24.0 27.0 27.1 26.5 21.9 49.4 29.3 25.6 32.228.6
manual CNC.3 22.3 24.0 24.8 24.8 19.9 20.2 35.9 26.5 25.3 30.325.3

Table 2: WERs for the baseline, OV.2 and manual segmentationsusing a single-pass development ASR system (MFCC.0) and
a 3-pass system (cf. Figure 3), for the individual meetings in rt05s eval.

Segm. ASR CMU1 CMU2 EDI1 EDI2 NIST1 NIST2 TNO1 VT1 VT2 all
baseline MFCC.0 36.9 45.1 31.6 33.3 48.1 51.8 42.9 47.8 39.442.1
OV.2 MFCC.0 36.6 43.1 35.5 35.6 41.0 43.8 40.9 43.4 36.339.8
manual MFCC.0 37.2 40.0 34.7 32.2 39.7 35.6 41.7 39.3 33.937.4
baseline CNC.1 32.3 40.5 28.6 28.4 44.6 47.4 41.3 41.3 34.037.8
OV.2 CNC.1 32.7 38.5 36.8 31.8 38.6 40.1 37.0 38.0 34.136.4
manual CNC.1 38.2 35.8 33.1 27.8 34.5 32.1 40.2 33.9 30.734.3
baseline CNC.2 28.9 36.0 22.3 26.5 38.9 35.2 34.1 36.5 29.632.3
OV.2 CNC.2 29.2 34.4 23.7 27.5 34.4 33.0 33.7 34.6 29.131.3
manual CNC.2 28.7 32.4 21.7 25.2 29.5 23.2 32.7 29.3 26.027.9
baseline CNC.3 28.9 35.6 20.7 26.1 37.9 31.1 33.5 35.2 28.831.1
OV.2 CNC.3 28.3 33.9 22.0 26.5 33.5 28.9 32.9 34.1 28.030.0
manual CNC.3 27.7 31.9 20.2 24.6 29.2 21.9 31.9 28.4 24.427.0

Table 3: WERs for the baseline, OV.2 and manual segmentationsusing a single-pass development ASR system (MFCC.0) and
a 3-pass ASR system (cf. Figure 3), for the individual meetings inrt06s eval.

curs the same rate of insertions as human segmentation sug-
gests that it successfully addresses crosstalk, widely believed
to be the main source of segmentation errors in close-talk mi-
crophone recordings of multi-party meetings.
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