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ABSTRACT correlation between energy on all channels, which results

Vocal activity detection is an important technology forfbot N @ meeting-dependent feature vector length and precludes
automatic speech recognition and automatic speech undethe use of exclusively supervised acoustic models. Second,
standing. In meetings, participants typically vocalize fo We explicitly model the interaction between participaiatsd

only a fraction of the recorded time, and standard vocal acPerform a single decode in d tate space rather that

tivity detection algorithms for close-talk microphonesva decodes in a 2-state space. Third, for simplicity, we emply a
shown to be ineffective. This is primarily due to the prob-fully-connected hidden Markov model topology, which leads
lem of crosstalk, in which a participant's speech appears© optimal frame rates which are significantly larger than
on other participants’ microphones, making it hard to at- those employed in other meeting segmenters (ie. [1],[3]).
tribute detected speech to its correct speaker. We describe We assess the performance of our automatic segmen-
an automatic multichannel segmentation system for meetingtion systems by comparing the subsequent word error
recognition, which accounts for both the observed acossticate (WER), obtained with an automatic speech recognition
and the inferred vocal activity states of all participants-u (ASR) system, to WERs achieved by the same ASR sys-
ing joint multi-participant models. Our experiments showteém using a manually produced reference segmentation of
that this approach almost completely eliminates the cedkst the same audio. The baseline segmenter evaluated here is the
problem. Recent improvements to the baseline reduce trf@me as that in our NIST RT-06s Speech-to-Text Evaluation
development set word error rate, achieved by a state-of-thesubmission [4]. We present a description of the segmenter in
art multi-pass speech recognition system, by 62% relative tSection 2.

manual segmentation. We also observe significant perfor- In contrast to our previous work [7][8], in which a single-

mance improvements on unseen data. pass recongizer was used, we evaluate segmentation perfor-
mance using a 3-pass ASR system. This system, described in
1. INTRODUCTION Section 3, is a simplified version of our NIST RT-06s submis-

. ) , ) sion [4]. A WER comparison between segmentations over at
Vocal activity detection (VAD) is an important technology |gast three passes is important in order to take into account
for any application with an automatic speech recognitionpe influence of speaker and channel adaptation on hypothe-
(ASR) front end. In meetings, participants typically vocal ses from the first pass. Our experience has been that the WER
ize for only a fraction of the recorded time. Their tempoyall ga petween automatic segmentations shrinks with the num-
contiguous contributions should be identified prior to sfiee pgr of passes. Our experiments and analysis are presented in

recognition in order to associate recognized output Wit Sp Section 4: concluding remarks can be found in Section 5.
cific speakers (who said what) and to leverage speaker adap-

tation schemes. Segmentation into such contributions-is pr
marily informed by VAD on a frame-by-frame basis. 2. SEGMENTATION SYSTEM DESCRIPTION

This work focuses on VAD for meetings in which each The VAD system we use as our baseline was introduced
participant is wearing a close-talk microphone, a task Whic in [6]. Rather than detecting the 2-state speeth ¢s.
remains challenging primarily due to crosstalk from othernon-speech.{) activity of each partipant independently,
participants (regardless of whether the latter have th&ir 0 the baseline implements a Viterbi search for the best path
microphones). State-of-the-art meeting VAD systems whichhrough a ¥-state vocal interaction space, wheteis the
attempt to account for crosstalk rely on Viterbi decodingin number of participants. Our state vectqy, formed by con-
binary speech/non-speech space [9], assuming independengatenating the concurrent binary vocal activity stajef],
among participants. They employ traditional Mel-ceptral1<k<K, of all participants, is allowed to evolve freely over
features as used by ASR, with Gaussian mixture models [lthe vocal interaction space hypercube, under stochaatie tr
or multi-layer perceptrons [3]. Increasingly, such sysiem sition constraints imposed by a fully-connected, ergoitie h
are integrating new features, designed specifically for disden Markov model (eHMM). Once the best vocal interaction
criminating between nearfield and farfield speech, or speaketate pathy* is found, we index out the corresponding best
overlap and no-overlap situations [10]. vocal activity state patly* [k] for each participank. The

Our approach to meeting segmentation deviates from thainderlying motivation for this approach is that it allows us
of other state-of-the-art segmenters in three main wayst,Fi

we address the crosstalk problem by explicitly modeling the http://wwu. ni st. gov/ speech/ tests/rt/




muchavel et oL L )@ them. Furthermore, the terijy; - qr+1|| accounts for partic-
ipant state continuity; it allows the probability of the rira

-V ——————————————————————————— : sition {A,B} — {A,C} to differ from that of {A,B} —
| mulichannel audo rer @ § {C,D}, which agrees with intuition. Figure 2 shows the total
DECODING SweoTHING = number of unique transitions in the EDO space; for readabil-
! | ity, we limit the degree of overlap in the figure to 2.
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Figure 1: Segmentation system architecture
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to model the constraints that participants exert on one an-

other. The system, which employs 110 ms, non-overlapping ! Isi-sjl=1
frames, is depicted in Figure 1. - S

Tasks associated with running the system include: ISil=2 ; 1s;l-2

1. TM: training of a meeting-independent transition model; !

2. PASS 1 initial label assignment (ILA) for the test audio; ‘

3. AM: training of conversation-specific acoustic models lIsi-Sjll=1
using thetestaudio and the labels from (2); :

4. PASS 2 simultaneous Viterbi decoding of all partici-
pant channels, using the transition model from (1) and
the acoustic models from (3); and

5. PASS 3 smoothing VAD output to produce a segmenta-Figure 2: Unique transition probabilities in the EDO model

ISi-sjl=0

Isi-sjl=2

tion suitable for ASR. space with at most 2 simultaneously vocalizing participant
b The remantwgerof_trys se?ttlr(])n IS dtevoted toacomponent- 14 yrain the EDO model, we use the multi-participant
y-component description ot the system. utterance-level segmentationr(ar ) from the I1SL Meeting

. - - Corpus [2], where the number of meetingsRs= 18. The
2.1 TM: Transition Model Training training procedure is explained in detail in [8].
The role of the transition model during decoding is to pro-

vide estimates oP(qi+1 = Sj|q: = Sj), the probability of 2.2 Initial Label Assignment

transitioning to a statd; at timet + 1 from a stateS; at  \yq herform an unsupervised initial assignment of statdsabe

time t. The complete description of a conversation, wheny, 1, itichannel frames of audio using the heuristic
modeled as a first-order Markov process, ishux N ma-

trix, where N=2X. When participants are assumed to be- v log (M 9k(D) 0
have independently of one another, this probability reduce alk = ’ ;k g( @ (0) ) = )
to iy P (a1 (K] = Sj (K] | ar [k = Si [K]). ¥, otherwise

As in previous work [6], we have chosen to not assume
that participants behave independently. A main difficulty i where gy (1) is the crosscorrelation between IHM channels
modeling inter-participant dependencies is the need teo colj andk at lagt, andq [K] is the initial label we assign to the
lapse the 2¢ transition probability matrix in a conversation- frame in question. The crosscorrelation is computed in the
independent and parﬂmpan_t-mdependent manner, suth th@ectral domain, using rectangular windéws\e perform
model parameters learned in one conversation will generajyaximization directly without the use of weighting schemes
ize to unseen conversations, even when the participants aggch as the phase transform (PHAT). In [7], we showed that
different, and/or when the number of participants in thétra the ratio max @ik (1) /@;j (0), under certain simplifying as-
meetings does not match the number of participants in th§umptions of signal propagation and microphone response,

testmeeting. approximates the ratid; /dx whered; andd are the dis-
To address this issue, we have proposed the Extended Dgynces to microphonej andk, respectively, from a single
gree of Overlap (EDO) model [8], in which dominant sound source. Equation 2 therefore declaresparti
ipantk as vocalizing when the distance between the dominant
Plau1=Sjlat=Si) O (1) sound source and microphokeés smaller than the geomet-
P(llat+all = nj, [lac - aall = oij [ [lacl[ =ni) ric mean of the distances between the dominant sound source

and each of the remaining microphones.
wheren; = ||S;|| andn; = ||S;|| represent the number of vo-

cally active participants in stat& andSj, respectively, and 2.3 AM: Acoustic Model Training

i = [|Si-Sill < min(n;.n; h f I . . . .
0ij = |ISi - S| < min(ny, n;) represents the number of same The initial label assignment described in Equation 2 preguc

participants which are vocally active in ba#h andS;. The L : .
model represents the probability of transition between spea partitioning of the multichannel test audio. The labeled

cific states as proportional to the probability of transithe- 2|n [7], we erroneously specified that we are using Hamming wirslo
tween the degrees of simultaneous vocalization in each afhere, as well as here, we use a rectangular window for ILA.




frames are used to train a single, full-covariance Gaugeian
each of the ¥ states in our search space, over a feature spage
of 2K features: a log-energy and a normalized zero-crossing™* Hree urees

rate for each IHM channel. These features are computed us- \

ing 110 ms non—overlap[fing Hamming windows following
signal preemphasis .z 7). i

For certain participants, and especially for frames in / ™ ™
which more than one participant vocalizes, the ILA may
identify too few frames in the test meeting to effectively
train acoustic models. To address this problem, we have  rrstess
proposed and evaluated two methods: feature space rqtation
and sample-level overlap synthesis. Due to space constrain
we refer the reader to [6] for a description. We only men-
tion here that the methods are controlled by three parame-
ters, {Ag,Ar, As}, whose magnitudes empirically appear to system, which we refer to as MFCC.0. This corresponds to
depend on the number of features per channel and on tHdFCC.1 in Figure 3; however, MFCC.O relies on a dictio-
overall test meeting duration. nary and language model which were available during the

development of [4].

MVDR.1 MVDR.2 MVDR.3

Figure 3: 3-pass ASR system.

2.4 Viterbi Decoding and Segmentation Smoothing

We perform standard Viterbi decoding to obtain the best path 4. EXPERIMENTS

q*, and then extract a vocal activity estimajglk| for each We compare the performance of our segmentation algorithms
participantk. To produce usable segments for ASR, we perpy directly comparing the WERSs as was done in [1], [3], [7].
form 5 postprocessing passes per participant: (1) bridgingnd [8]. WERs reported here are obtained using the 3-pass
gaps shorter than 0.5s; (2) eliminating spurts shorter thaariant of our NIST RT-06s Speech-to-Text submission sys-
0.2s; (3) prepadding and postpadding all segments with 0.1em, described in the previous section. We note that an op-
and 0.3s, respectively; (4) bridging remaining gaps shortetimistic aim of an automatic segmenter is to produce WERs
than 0.4s; and (5) eliminating remaining spurts shorten thaachievable with manual, human-produced segmentation.
0.8s. These post-processing parameters were tuned on the

development set to minimize a first-pass WER. 4.1 Data
The data used in our experiments consist of two datasets from
3. ASR SYSTEM DESCRIPTION the NIST RT-06s evaluatiom.t 05s _eval was used for de-

Figure 3 shows the mult-pass ASR system used in our extelopment, and t 06s_eval was used for final evaluation;
periments. The system includes the first three passes of otif¢ have retained this separation in the current work. The
NIST RT-06s Speech-to-Text Evaluation system. Two dif-Wo sets consist of 10-minute excerpts from severa}l ‘meet-
ferent semi-continuous acoustic models were used for ddgs recorded at different sites; the number of participant
coding: one trained with vocal tract length normalizationP€r meeting varies between 3 and 11. _ ,
(VTLN) only, and one trained using speaker adaptive train- S€gmentation system development was carried out while
ing (SAT) with constrained maximum likelihood linear re- €xcluding a single meeting fromt 0Ss eval which con-
gression (MLLR). In both cases, 16000 distributions overf@ineéd a participant on speakerphone; this condition was
4000 codebooks were trained, with a maximum of 64 Gausknown in advance not to occur int 06s eval . We re-
sians per model in a 42-dimensional feature space. In ade' to the limited development set s 05s _eval * (it was
dition to the traditional front-end based on Mel-frequencyreférred to azonfDEVin [4]). For the purposes of future
Cepstral Coefficients (MFCCs), a second front-end based ofPmparison with other meeting transcription systems, & th
warped minimum variance distortionless response (MvDRpfurrent work we include the offending meeting in our devel-
was used. Combining the outputs of MFCC and MVDR sysOPment set results and analysis.
tems, using confusion network combination (CNC), leads to N .
significant cross-adaptation gains in subsequent passes. 42 Modifications to the Baseline Segmenter

We perform incremental adaptation using VTLN andWe briefly describe 5 modifications made to the baseline, af-
constrained MLLR during decoding in the first pass.terthe NIST RT-06s evaluation.
Thereafter, the parameters for VTLN, constrained MLLR  The first modification involved the elimination of the
and model-space MLLR are computed using confidencezero crossing rate (ZCR) feature, which was shown not to
annotated hypotheses of the first CNC pass and kept fixeaffect WERs. Since this modification reduces the feature
during subsequent decoding passes. VTLN-only acoustieector size from K to K, we have also retuned the acous-
models are used in the first and second passes, while tiie model parameter§Ag,Ar,As} onrt 05s_eval . The
third pass uses the SAT models. The language model usergligible effect of this change to the MFCC.0 WER on
for all decoding passes was an interpolation of different 4+t 05s_eval *, alongside the performance of the RT06s
gram models computed on meeting data, lecture data, cobaseline, is shown in Table 1.
versational telephone speech data and several other source In a second modification (F.100), we reduced the frame
collected from the web. A more detailed description of thesize and step from 0.110 s to 0.100 s. Since these param-
ASR components can be found in [4]. eters affect the smoothing pass, we have also modified the

The development of the segmentation systems [8] evalatter to consist of: (1) bridging gaps shorter than 0.433; (
uated in this work was carried out using a single-pass ASRIliminating spurts shorter than 0.25s; and (3) prepaddig a



| Segmentation | rt 05s eval = rt05s eval | 4.3 Generalization to a Multi-pass Recognizer

RTOGs baseling 37.0 45.6 In Table 2, we show the performance of our segmentation

- ZCR 36.9 42.5 system individually for each meetingiinit 05s _eval , using

I ::Li\og gig 33% the 3-pass ASR system described in Section 3. WERs for
: ' : each of the 3 CNC passes are shown, together with WERs

*+MULT 34.1 39.2 using the single-pass MFCC.0 ASR system for comparison.

+0Ov.2 34.4 37.8 We note first of all that the OV.2 segmentation, for all

manual refs 34.4 36.1 meetings combined, represents an 82% reduction in WER

relative to manual segmentation, over the baseline segment
Table 1: MFCC.0 WERS on our originalt 05s_eval * when the single-pass ASR system is used. However, for each

development setr¢ 05s_eval less one meeting) and on Pass of the 3-pass ASR system, this figure is smaller, at 62%.
the completer t 05s_eval development set, for five con- In absqlute.termso, OV.2 performance using the single-pass
secutive modifications to the segmentation baseline. Besf€c0gnizer is 1.7% absolute worse than manual segmenta-

erforming automatic segmentations are shown in bold. 10N, but with the multi-pass recognizer the same diffeeenc
P g g is 3.3-3.7%. OV.2 WERs, relative to manual segmentation

WERSs, represent a degradation of 12-13% in each pass.

postpadding all segments with 0.15s and 0.2s, respectively -00KINg T}t ezg:\r/rzt 055,er\f/al meeting Iindividually,_ it ;
As for the first modifications, these parameters were tuned t& @PParent that OV.2 outperforms manual segmentation for

inimize the MECC.0 WER “eval *. a majority of meetings with the single-pass recognizer with
mlnkm;?](iaré ?edugtf)r? (ILA Ot)nnitnOtShSe eh\;llicz 0 WER on which it was developed. MFCC.0 WERs on AMI1, AMI2,

rt 05s_eval * was achieved by noting that the ILA al- ,'[\“tSTZb V1, aniVTZS%rs Iogverltrtlat |\1|vith manualll Sedgmert;
gorithm is characterized by high precision but significantl [auON BY @S Much as .57 absolute. However, aréady In the

: irst pass with the multi-pass recognizer, only AMI1, VT1,
lower recall [5]. This suggests that a large number of frameéIrs ;
identified by the ILA as silence may in fact be missed vo-and VT2 have lower WERs for OV.2.- By the third pass,

cal activity. To test this hypothesis, we chose to use onh?™Y .ine AM|2|WER IS ttht('a s(.a][ne \ﬂntr;hov.z s?_gmentatmn |
50% of the ILA-identified silence frames for training the-all as with manual segmentation, for alf other meetings, manua

silent modelSy. These are selected by picking the first two segmentation yields the lowest WERs.

e The situation is similar for unseen datarin06s _eval
quartiles in terms of average per-channel log-energy, aler . '
channels. Table 1 shows the resulting WER reduction. presented in Table 3. Although OV.2 outperforms manual

The fourth modification consisted of replacing Equa—23%?23?%3?2;%;%%%1%22 z;\ltﬁ; g';g;g‘er:&%ﬁi'f;s%;cdal
tion 2 with true probabilities of the form segmentation achieves WERs which are lower by 0.8-5.3%
P( —Silq=Si)= 3) absolute than OV.2. Overall fart 06s_eval , OV.2 rep-

A1 = D)1= i resents a 49% reduction of the MFCC.0 WER gap between

P(llat+all = nj, [lat+1- atll = oij | [[at|| = ni) x manual segmentation and the baseline; for CNC.1, CNC.2

P(at+1] a1l =Ny, [|lae1-ael =03, [laell = i), and CNC.3, the same reduction is 40%, 22%, 27%, respec-

tively.
where only the first factor is supplied by the EDO model.
Given an EDO model transition, we assume the distribution 5. CONCLUSIONS
over next states licensed by that transition type to be umifo ) ) )
ie. We have described the automatic segmentation system used
in our NIST RT-06s Speech-to-Text Evaluation submission,
together with several modifications. Although the improved
OV.2 segmenter was developed by minimizing the WER ob-
(4) tained with a single-pass, development ASR system, the ben-
efits generalize when a state-of-the-art 3-pass recogiszer
used. With the exception of two meetings in the development
whereK is the number of participants in the test meeting.set, CMU2 and ICSI2, and two meetings in the evaluation
This ensures that the transition probabilities given bydqu set, EDI1 and EDI2, third pass WERs obtained using OV.2
tion 3 sum to unity. The MFCC.0 WER of the system with are lower than those with the baseline segmentation. When
this modification is shown as MULT in Table 1. all meetings are considered, OV.2 reducesrth85s _eval

Finally, we have simplified the search space by considWER difference between the baseline and manual segmenta-
ering states with only zero, one or two simultaneously vo-tion by 62%, and the unseern 06s_eval WER difference
calizing participants (OV.2). This entails redistribitran- by 27%. The current gap between manual and automatic seg-
sition probability mass among the remainifi|| <2 states mentation is 3.3% for thet 05s_eval development setand
and ignoring, during the training of the EDO model, all N- 3.0% for ther t 06s_eval evaluation set. These numbers
grams involving||S|| > 2 states. Table 1 shows the impact of are comparable to those reported elsewhere (ie. [1]), e spi
OV.2 on the MFCC.0 WER; although it leads to a negligibleof significant differences in segmentation system design.
WER increase fort 05s _eval *, it yields a very large im- A breakdown of CNC.3 ASR errors by type for
provement in the segmentation of the excluded meeting witht 06s _eval reveals that the number of substitutions, dele-

a speakerphone participant. We have therefore chosen OMibns, and insertions using OV.2 is 13.9%, 13.3%, and 2.9%,
for validation of our segmentation approach using the Fpasrespectively. The same breakdown for manual segmentation
recognizer on thet 06s _eval dataset. yields 15.0%, 9.1%, and 2.9%, respectively. That OV.2 in-

P(atr1|llatrall =y, [latrs-atll = 0ij, [Jat]| = ni) =
n;! (K—ni)!
Oij!(l’li—Oij)! (nj—oij)! (K—ni—nj+oij)! '




| Segm. ASR [ AMI1T AMI2 CMU1 CMU2 ICSI1 ICSI2 NIST1 NIST2 VT1 VT2[ all|
baseline MFCC.Q 33.7 47.4 36.8 37.8 34.5 276 1198 379 37.7 4045.6
ov.2 MFCC.0| 33.5 36.1 34.1 33.8 33.6 27.8 66.4 38.7 34.0 39%/.8
manual MFCC.0] 34.7 39.3 32.9 31.3 25.8 253 51.2 440 343 4435.1
baseline CNC.1| 28.4 43.9 34.8 34.7 31.3 26.2 108.9 343 336 3847
ov.2 CNC.1 29.5 33.3 33.3 32.9 30.9 27.0 61.6 425 30.0 373b.8
manual CNC.1| 33.8 31.6 31.2 31.0 22.0 23.4 45.4 356 301 38321
baseline CNC.2| 24.6 30.4 27.3 28.1 29.0 21.6 100.0 301 277 3334
ov.2 CNC.2 24.8 25.7 27.9 27.6 27.6 22.7 52.2 31.0 265 338
manual CNC.2| 247 26.8 25.0 25.1 20.0 20.4 37.4 27.7 267 31B.4
baseline CNC.3| 23.7 27.0 27.0 26.9 28.2 20.8 96.5 295 265 3EHA1
ov.2 CNC.3 23.4 24.0 27.0 271 26.5 21.9 49.4 293 256 3R28.6
manual CNC.3| 223 24.0 24.8 24.8 19.9 20.2 35.9 265 253 303%.3

Table 2: WERs for the baseline, OV.2 and manual segmentaiging a single-pass development ASR system (MFCC.0) and
a 3-pass system (cf. Figure 3), for the individual meetimystiO5s _eval .

| Segm. ASR [CMU1 CMU2 EDII EDI2 NIST1 NIST2 TNO1 VT1 VTZ all]
baseline MFCC.0 36.9 451 316 333 48.1 51.8 429 478 39421
ov.2 MFCC.0 36.6 431 355 356 41.0 43.8 409 434 36.39.8
manual MFCC.0] 37.2 40.0 347 32.2 39.7 35.6 417 39.3 33974
baseline CNC.1 32.3 405 286 284 44.6 47.4 41.3 41.3 34.87.8
ov.2 CNC.1 32.7 385 36.8 318 38.6 40.1 37.0 38.0 34.36.4
manual CNC.1 38.2 358 331 278 34.5 32.1 40.2 33.9 30.34.3
baseline  CNC.2 28.9 36.0 223 265 38.9 35.2 341 365 29.82.3
ov.2 CNC.2 29.2 344 237 275 34.4 33.0 33.7 346 29.31.3
manual CNC.2 28.7 324 217 252 29.5 23.2 32.7 293 26.27.9
baseline  CNC.3 28.9 356 20.7 261 37.9 31.1 335 352 288l1
ov.2 CNC.3 28.3 339 220 265 33.5 28.9 329 341 28.80.0
manual CNC.3 27.7 319 202 246 29.2 21.9 319 284 24270

Table 3: WERSs for the baseline, OV.2 and manual segmentaiging a single-pass development ASR system (MFCC.0) and
a 3-pass ASR system (cf. Figure 3), for the individual megtimr t 06s _eval .

curs the same rate of insertions as human segmentation sug- I1SL RT-06S Speech-to-Text Evaluation Systétroc. of MLMI
gests that it successfully addresses crosstalk, wideigvesl

to be the main source of segmentation errors in close-talk mi
crophone recordings of multi-party meetings.
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