
In�uen
e of vibrations on theele
troni
 properties of DNAZur Erlangung des akademis
hen Grades einesDOKTORS DER NATURWISSENSCHAFTENvon der Fakultät für Physik derUniversität Karlsruhe (TH)genehmigteDISSERTATIONvonDipl.-Phys. Benjamin S
hmidtaus Neumünster

Tag der mündli
hen Prüfung: 11.07.2008Referent: Prof. Dr. Gerd S
hönKoreferent: Prof. Dr. Juan-Carlos Cuevas





Deuts
he ZusammenfassungDie vorliegende Arbeit befasst si
h mit dem elektronis
hen Transport dur
h kurze DNAMoleküle, wobei insbesondere untersu
ht wurde, wel
hen Ein�uss Vibrationen der Basen-paare haben. Experimentelle und theoretis
he Arbeiten der letzten Jahre haben gezeigt,dass Vibrationen eine wi
htige Rolle beim elektronis
hen Transport dur
h DNA spie-len. Wie diese Rolle genau aussieht, wird allerdings zur Zeit no
h kontrovers disku-tiert. Insbesondere ist ni
ht eindeutig geklärt, ob si
h Polaronen in DNA bilden, danur einige Experimente mit Polaronenbildung zu erklären sind. In anderen Experi-menten wurden hingegen relativ hohe Ströme gemessen, die si
h eher mit einer (quasi-)kohärenten Bes
hreibung des Transport erklären lassen. Deshalb haben wir den elek-tronis
hen Transport dur
h DNA genau in diesen beiden Grenzfällen untersu
ht. Wirbes
hreiben dabei DNA Moleküle dur
h ein minimales tight-binding Modell, wobei jedesDNA Basenpaar mit einem tight-binding Platz identi�ziert wird. Die Parameter fürdieses Modell haben wir Experimenten und/oder ab initio Re
hnungen entnommmen.Im ersten Abs
hnitt haben wir die quasi-kohärente Transportsituation untersu
ht. Indiesem Limit führt die Kopplung an Vibrationen zu inelastis
hen Beiträgen zum Strom,wel
her zumindest teilweise seinen kohärenten Charakter behält. Für die Bes
hreibungdieser Situation haben wir einen Bewegungsglei
hungsansatz (equation-of-motion) für dieelektronis
he Ein-Teil
hen Green-Funktion der DNA gewählt, wel
her die Vibrationsef-fekte berü
ksi
htigt, die dur
h lokale und ni
ht-lokale Elektronen-Vibrationskopplungentstehen. Um die starke Kopplung der Elektronen und Vibrationen bes
hreiben zukönnen, entfernen wir dur
h eine unitäre Transformation genau diesen Kopplungstermaus dem Hamiltonoperator. Diese Prozedur erlaubt es uns, die Reihe von Green-Funktionen höherer Ordnung abzubre
hen, wel
he si
h aus der Bewegungsglei
hungergibt. Physikalis
h lässt si
h das Abbre
hen der Reihe für eine s
hwa
he ni
ht-lokale Elektronen-Vibrationskopplung begründen. Da wir motiviert dur
h experimentelleErgebnisse annehmen, dass das 
hemis
he Potential von DNA, wel
he an metallis
heElektroden gekoppelt ist, in der Energielü
ke zwis
hen hö
hstem besetzten und niedrig-stem unbesetzten Molekülorbital (HOMO und LUMO) liegt, zeigt die I-V Kennlinie einfür Halbleiter 
harakteristis
hes Verhalten.In dieser Arbeit haben wir gezeigt, dass die Zustandsdi
hte von homogenen DNASequenzen bandartig ist, wobei aufgrund der geringen Gröÿe des Systems die einzel-nen elektronis
he Resonanzen si
htbar sind. Zusätzli
h dazu erkennt man �Vibrations�-Resonanzen, die si
h im Abstand von ganzzahligen Vielfa
hen der betra
hteten Vi-brationsenergie oberhalb und unterhalb der entspre
henden elektronis
hen Resonanzbe�nden. Je weiter die �Vibrations�-Resonanzen dabei von den dazugehörigen elektroni-s
hen Resonanzen entfernt sind, desto geringer ist ihr spektrales Gewi
ht in der Zustands-di
hte. Aufgrund der ni
ht-lokalen Kopplung der Elektronen und Vibrationen weist dieZustandsdi
hte eine groÿe Asymmetrie auf, die si
h aber denno
h nur unwesentli
h aufi



den Strom auswirkt. Der Transport dur
h homogene DNA Moleküle wird dur
h elasti-s
he, quasi-ballistis
he Beiträge dominiert. Für endli
he Spannung und Raumtemperaturbewirkt die Streuung von Elektronen an Vibrationen eine Verminderung des Stromes um
a 30% im Verglei
h zum vibrationslosen Fall. Andererseits führt die Kopplung an Vi-brationen bei niedrigen Temperaturen zu einer Erhöhung des Leitwertes um mehrereGröÿenordnung. Das liegt daran, dass es zur Bildung von �Vibrations�-Resonanzen inder Energielü
ke kommt, die eine von Null vers
hieden Transmission haben.Die Zustandsdi
hte von inhomogenen DNA Sequenzen ist aufgrund von AndersonLokalisierung stark fragmentiert, wobei es genau wie bei homogenen Sequenzen nebenden elektronis
hen Resonanzen zusätzli
he �Vibrations�-Resonanzen gibt. Der elektro-nis
he Transport dur
h derartige DNA Moleküle basiert fast vollständig auf inelastis
henE�ekten, da Energie für die Überwindung von Potentialbarrieren benötigt wird, wel
hesi
h aus der inhomogenen Sequenz ergeben. Diese Energie wird von den Vibrationen derBasenpaare bereitgestellt. Beispielhaft haben wir die Sequenz 5'-CAT TAA TGC TATGCA GAA AAT CTT AT-3' untersu
ht. Die I-V Kennlinie dieser Sequenz weist dreiStufen auf, wel
he si
h mit den Energien bestimmter, entweder reiner oder gemis
hter,Guanin- und Adeninzustände in Verbindung bringen lassen. Diese Zuständen be�ndensi
h in der Zustandsdi
hte bei Energien E − EF = −0.3 eV, -0.7 eV und -0.95 eV. Wirkonnten zeigen, dass im Gegensatz zu homogenen Sequenzen die I-V Kennlinie der inho-mogenen DNA Moleküle dur
h die ni
ht-lokale Vibrationskopplung qualitativ modi�ziertwird. Insbesondere führt die ni
ht-lokale Kopplung bei der von uns untersu
hten Modell-sequenz zu einer Halbierung der Transmission für die Zustände bei E − EF = −0.7 eV.Erstaunli
herweise ergab si
h bei unseren Untersu
hungen, dass der Strom dur
h in-homogene DNA Sequenzen ni
ht-monoton von der Kopplung an die Elektroden (Γ) ab-hängt. Für eine feste Spannung errei
ht der Strom ein Maximum, wenn Γ ungefährglei
h dem Imaginärteil der Vibrations-Selbstenergie Σvib ≈ 0.01 eV ist. Dieses Ergebniszeigt, dass es ni
ht unbedingt besser ist, die Kopplung an die Elektroden zu maximie-ren, und dass eine systematis
he (experimentelle) Untersu
hung der Elektrodenkopplungnotwendig ist.Im zweiten Teil der Arbeit haben wir uns mit inkohärentem Polaron-Hüpftransportdur
h kurze DNA Moleküle bes
häftigt, die an metallis
he Elektroden gekoppelt sind.Polaronen bilden si
h in DNA dur
h eine starke Kopplung der elektronis
hen Freiheits-grade an die Vibrationen der DNA Basenpaare. Wir nehmen in unserem Modell dabeian, dass die einzelnen Basenpaare unabhängig voneinander s
hwingen können. Um dieSituation starker Kopplung bes
hreiben zu können, führen wir eine unitäre Transforma-tion des Hamiltonoperators dur
h. Dies ermögli
ht eine perturbative Bes
hreibung desuntersu
hten Problems in neuen Parametern, die si
h aus der Transformation ergeben.Diese Parameter sind die Hüpf- (tij/∆) und Tunnelintegrale (tL/R
i /∆), wel
he dur
h dieBindungsenergie der Polaronen ∆ normalisiert wurden. Experimentelle Untersu
hungenhaben für diese Bindungsenergien folgende Werte gefunden: für Guanin ∆G = 0.47 eVund für Adenin ∆A = 0.18 eV. Um physikalis
h interessante Gröÿen wie den Strom zubere
hen, bes
hreiben wir das System dur
h eine Ratenglei
hung für die Besetzungszahlder einzelnen DNA Basen. Die Raten wurden anhand von Fermis Goldener Regel bere
h-net und bes
hreiben inkohärente Hüpfprozesse in der DNA unter der Berü
ksi
htigungder Anregung oder Absorption von Basenpaar-S
hwingungen.ii



Für alle DNA Moleküle erhalten wir halbleitende I-V Kennlinien, wel
he für homogeneund symmetris
he Sequenzen symmetris
h sind. Einige inhomogene Sequenzen allerdingszeigen stark glei
hri
htendes Verhalten. Der Grund dafür liegt in den Transportengpässendur
h Potentialstufen in der Sequenz, die nur unter Absorption von Vibrationsenergieüberwunden werden können, d. h. die Raten für derartige Hüpfprozesse sind sehr gering.Je na
h Strom�ussri
htung liegen die Engpässe an anderen Stellen und sind mal mehroder weniger �eng�, so dass si
h für positive und negative Spannung unters
hiedli
heStröme ergeben. Auÿerdem konnten wir zeigen, dass die S
hwellspannung, bei wel
herder Strom�uss einsetzt, emp�ndli
h von der DNA Sequenz anhängt. Bei homogenen Se-quenzen entspri
ht die S
hwellspannung gerade der lokalen Energie der betra
hten DNABasen. Bei inhomogenen Sequenzen hingegen hängt die S
hwellspannung ni
ht direkt voneiner internen Energieskala ab, wobei die Spannungen allerdings zwis
hen den Wertender homogenen Sequenzen liegen. Die S
hwellspannung der inhomogenen Sequenzen istdabei dur
h die ni
ht-triviale Ladungsvers
hiebung bei endli
her Spannung bestimmt.Der Stromanstieg der I-V Kennlinie wei
ht auÿdem von der Form einer Fermi Funktionab. Diese Veränderung ist bei der Sequenz GAAAAAAG am ausgeprägtes, wel
he einsehr breites Maximum im di�erentiellen Leitwert aufweist. Bei anderen Sequenzen, diemehr als eine einzelne Guanin Base an beiden Enden haben, ist die Verbreiterung desMaximums nur sehr gering. Die Ladungsvers
hiebungen werden dur
h die Darstellungdes lokalen 
hemis
hen Potentials Φi visualisiert. Dieses zeigt ans
hauli
h, wie die an-gelegte Spannung über die Länge des DNA Molekül abfällt. Wie man erwarten würde,fällt die meiste Spannung an den S
hnittstellen zu den Elektroden und an der Trans-portengpässen im Inneren der DNA ab.Wie für Polaronen Hüpfen zu erwarten ist, konnten wir zeigen, dass der Strom füreine homogene DNA Sequenz thermis
h aktiviert ist und eine Temperaturabhängigkeithat, die einem Arrhenius-Gesetz folgt. Dieses Ergebnis ist in Übereinstimmung miteinigen Experimenten der letzten Jahre. Die von uns bere
hnete Aktivierungsenergie Eahängt von der angelegten Spannung ab und nähert si
h für Spannungen oberhalb derS
hwellspannung dem Wert Ea = ∆/2 an, wel
her für Polaronen im Festkörper gilt.Im letzten Teil dieser Arbeit haben wir eine allgemeine Bes
hreibung für Polaronen-transport in mesoskopis
hen Systemen entwi
kelt, die eine Kopplung an metallis
he Elek-troden berü
ksi
htigt. Diese Bes
hreibung ist ni
ht auf DNA Moleküle bes
hränkt. Dervon uns gewählte Ansatz basiert auf einer diagrammatis
hen E
htzeit-Entwi
klung derEin-Teil
hen-Di
htematrix entlang der Keldysh-Kontour. Unter Miteinbeziehung vonNi
ht-Diagonalelementen der Ein-Teil
hen-Di
htematrix können au
h Kohärenze�ekt inder Bes
hreibung von Polaronentransport berü
ksi
htigt werden. Auÿerdem ergibt si
haus der diagrammatis
he Entwi
klung, dass Divergenzen dur
h resonantes Tunneln, dieim vorherigen Abs
hnitt aufgrund phänomenologis
her Argumente verna
hlässigt wur-den, ni
ht mehr auftreten. Vielmehr führt die Mögli
hkeit von resonantem Tunneln zuKorrelationse�ekten zwis
hen den Besetzungen von unters
hiedli
hen Basenpaaren.Wir wenden diesen Formalismus auf Hüpftransport von Polaronen dur
h DNA an. Fürstarke Kopplung zwis
hen Elektronen und Vibrationen und hohe Temperaturen könnenKohärenze�ekte verna
hlässigt werden, so dass für eine korrekte Bes
hreibung die Diago-nalelemente der Di
htematrix ausrei
hend sind. Im Gegensatz zum vorherigen Abs
hnittberü
ksi
htigen wir jetzt Korrelationen zwis
hen den Besetzungen und untersu
hen, wanniii



Korrelationen auftreten und wel
he Änderungen in den Transporteigens
haften sie her-vorrufen. Wie wir gezeigt haben, spielen Korrelationen nur für die Transporteigen-s
haften von inhomogenen DNA Sequenzen ein Rolle, wobei sie dabei im Allgemeinen zueiner Verminderung des Stroms um bis zu einer Gröÿenordnung führen. Das interessantesErgebnis ist jedo
h, dass Korrelationen bei einigen DNA Sequenzen zu einer neuen Ener-gieskala führen können, die si
h in einem zweiten Maximum im di�erentiellen Leitwertnieders
hlägt. Diese neue Energieskala ergibt si
h dur
h Korrelationen einzelner DNABasen, wel
he von anderen Basen umgeben sind, die eine andere lokale Energie besitzen,z. B. das Guanin in der Sequenz AAAAGAAA. Für angelegte Spannungen, bei denendie relativen Korrelationen (Eq. 6.15) anfangen, stark von Null abzuwei
hen, bilden si
hdie zweiten Maxima im di�erentiellen Leitwert aus. Die Spannungen, bei denen diesges
hieht, liegen oberhalb der S
hwellspannung, aber au
h hier ist die genaue Positionstark abhängig von der betra
hteten Sequenz.Es zeigt si
h, dass Korrelationen von einzelnen Basen an den S
hnittstellen mit denElektroden (z. B. GAAAAAAG) stark von der Kopplung an die Elektroden abhän-gen. Für verminderte Kopplung Γ ergeben si
h s
hwä
here Korrelationen und au
h dieentspre
henden zweiten Maxima im di�erentiellen Leitwert sind stark verkleinert. Ko-rrelationen von einzelnen Basen in der Mitte von Sequenzen (z. B. AAAAGAAA) sindhingegen ni
ht von Γ abhängig und damit ändern si
h au
h die zweiten Maxima im dif-ferentiellen Leitwert ni
ht. Diese Verhalten ändert si
h allerdings, wenn es zusätzli
heisolierte Basen an den S
hnittstellen zu den Elektroden gibt (z. B. GAATGAC). In diesemFall vermindern si
h au
h die Korrelationen, die mit der Base im Inneren der Sequenzverknüpft sind, wenn die Kopplung an die Elektroden verringert wird. Wir habe auÿer-dem gezeigt, dass Korrelationen zwis
hen nä
hsten Na
hbarn am gröÿten sind, da dieKorrelationen exponentiell mit dem Abstand abnehmen.Abs
hlieÿend ist zusammenzufassen, dass Vibrationen zu sehr unters
hiedli
he E�ektenim elektronis
hen Transport führen können, abhängig von der Stärke und dem Charakterder Kopplung. Wir ho�en, dass die vorliegende Arbeit dabei hilft, die Ergebnisse ausTransportexperimenten an DNA Molekülen besser zu interpretieren und zu einem tieferenVerständnis der dabei relevanten Physik beiträgt.
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�I knew all the rules, but the rules did not know me. . . �Eddie Vedder





1. Introdu
tionSin
e the invention of the transistor in 1948 the te
hnologi
al improvements in stru
turingsili
on have lead to in
reasing integration densities of 
omputer 
hips, a

ompanied byan in
rease in 
omputational power. Where the �rst mi
ropro
essor in the 1970s heldonly about 2 000 transistors, today over 100 million CMOS (
omplementary metal oxidesemi
ondu
tor) transistors �t on a single 
ommer
ially available 
omputer 
hip. Thisgain in 
omputational power is answered by the introdu
tion of ever more demandingappli
ations, driving the development of the next generation of integrated ele
troni
swith even higher transistor densities.The in
rease in integration density was so far mainly a
hieved by miniaturization ofthe gate length of the CMOS transistors. The 
urrent sizes are in the range of some tensto a hundred nanometers. It is 
lear that this trend 
annot go on forever, as eventuallyfurther downs
aling of the CMOS te
hnology will rea
h the atomi
 limit. But even beforethat, for dimensions of a few nanometers, leakage 
urrents due to quantum me
hani
altunneling will render todays transistor design useless. Additional problems arise due toan in
rease in dissipated heat and growing 
apa
itan
es between the 
omponents.A way out of the dilemma is the use of novel materials that fun
tion in spite of or evenbe
ause of quantum me
hani
s. Mole
ular ele
troni
s is one of the alternatives under in-vestigation today. The 
on
eptual advantages of mole
ules are their size in the order of afew nanometers and the possibility to parallelly synthesize moles of them by 
hemistry. In
ontrast, the 
ost and the te
hnologi
al di�
ulties of stru
turing sili
on mi
ros
opi
allyby ever more advan
ed methods are the limiting fa
tors of todays ele
troni
s te
hnology.The idea to use single organi
 mole
ules as diodes was �rst introdu
ed by Aviram andRatner in 1975 [1℄, but at that time the idea was just a theoreti
al hypothesis far froma
tual a

omplishment. Only with the development of the s
anning probe te
hniques in1980s instruments for the investigation and manipulation at the atomi
 and mole
ulars
ale be
ame available.With the right `tools' at hand resear
hers from di�erent dis
iplines (physi
s, 
hemistryand biology) started the quest for mole
ules that 
ould be used as 
omponents in inte-grated 
ir
uits. In the last de
ade this �eld has attra
ted an in
reasing interest as theability to manufa
ture nanos
ale 
onta
ts has improved 
onsiderably.The three main 
on
epts used today for produ
ing su
h 
onta
ts are the break-jun
tionte
hnique [2, 3℄ and the s
anning probe te
hniques, namely STM (s
anning tunnelingmi
ros
ope) [4℄ and 
ondu
ting AFM (atomi
 �eld mi
ros
ope) [5℄. To form a breakjun
tion at �rst a free standing thin metal 
onstri
tion is produ
ed by standard ele
tronbeam te
hniques. When bending the underlying substrate by pushing a rod against it,the 
onstri
tion is stret
hed until it �nally opens. Due to the setup geometry, pushingthe rod against the substrate by a few mi
ron will only 
hange the size of the gap inthe 
onstri
tion by a few Ångstrøm. Thus, this te
hnique allows a fairly 
ontrolled way1



Chapter 1: Introdu
tionof produ
ing nanos
ale 
onta
ts. The 
entral part of STM and AFM are atomi
allysharp tips. The position of these tips is 
ontrolled by either piezo a
tuator (STM) or bysensitive 
antilever stru
tures (AFM). The distan
e of the STM tip to the 
ondu
tingsample is adjusted by measuring the magnitude of the tunneling 
urrent between tip andsample, whereas the de�e
tion of the AFM 
antilever is 
ontrolled by monitoring a laserbeam re�e
ted by it.Using the above and other te
hniques, many di�erent types of mole
ules have to datebeen investigated by resear
hers to study their 
apabilities for future ele
troni
s, e. g.
arbon nanotubes [6�8℄ organi
 or biologi
al mole
ules [9�12℄. DNA (Deoxyribonu
lei
a
id) is one of these mole
ules. The advantages of DNA are its `re
ognition' and `self-assembly' properties and the fa
t that it 
an be 
hemi
ally synthesized in any length andsequen
e desired, i. e. tailor-made to �t spe
i�
 needs. Re
ognition des
ribes the propertyof a mole
ule to sele
tively bind only to a de�ned other mole
ule or substrate, whereasself-assembly is the 
apability of mole
ules to form greater super-mole
ules under theappropriate 
onditions without external aid. These properties allow the 
onstru
ting of,for example, two- or even three-dimensional networks with DNA (e. g. [13, 14℄), without
ompli
ated lithographi
 pro
edures, whi
h fa
ilitates the in
orporation into 
onven-tional ele
troni
 
omponents. These properties also make DNA mole
ules interesting ass
a�olds for the 
onstru
tion of networks from many di�erent materials, e. g. nano par-ti
les [15℄ or metalli
 wires [16℄. Other mole
ules la
king this property would have to bein
orporated into ele
troni
 
ir
uits by more 
ompli
ated means, diminishing somewhatthe advantage over 
onventional integrated ele
troni
s.It should be noted that the interest in ele
troni
 transport properties of DNA lies notonly in mole
ular ele
troni
s, but also in the role that 
harge migration plays in therepair of oxidative damage (mutation) in DNA [17℄. Rajski and 
oworkers argued thatsome proteins a
ting as transmitter and re
eiver might 
onstantly test the soundness ofthe DNA by sending 
harges between them. A mutation of the DNA situated betweentransmitter and re
eiver would interrupt the 
harge migration, thus allowing for its de-te
tion and eventually its repair [18℄. So, general resear
h on transport properties ofDNA 
an also help to understand the me
hanisms of oxidative damage and its repair.Another aspe
t of the ele
troni
 properties of DNA has only emerged re
ently, namelythe possibility of determining the sequen
e of DNA by ele
troni
 means [19℄. A fastmethod to determine the DNA sequen
e would 
hange todays medi
ine, as a detailedgeneti
 map of a patient, showing e. g. geneti
 mutations, would allow spe
i�
 personal-ized treatment. The 
urrent sequen
ing te
hniques are far to slow for su
h a task, sin
ethe pro
edure involves various time 
onsuming 
hemi
al steps, in
luding fragmentationof the DNA into smallest pie
es. These steps are ne
essary, as only for very short DNAse
tions the sequen
e 
an be determined in reasonable time and a

ura
y. Ele
troni
 se-quen
ing te
hniques 
ould allow for a determination of the DNA sequen
e without priorfragmentation [20℄.To �nd suitable 
andidates for integrated 
ir
uits, one has to fathom the response of the(DNA) mole
ule to an applied bias. As for all nano-s
ale systems the transport propertiesof mole
ules di�er sometimes strongly from the ma
ros
opi
 ones we are a

ustomed to.For example, a ma
ros
opi
 wire has a resistan
e in
reasing proportionally with its lengthin a

ordan
e with Ohm's law, whereas the typi
al resistan
e e. g. of an atomi
 gold wire2



is R = 12.8 kΩ independent of its length [21,22℄ as long as it is shorter than the ele
tronmean free path. In fa
t, the resistan
e is not intrinsi
 to the gold wire, but it is due to theinterfa
e between ma
ros
opi
 ele
trode and nanos
opi
 wire. In a simple pi
ture, theele
trons 
oming from the leads have to `squeeze' into the small wire, thereby experien
inga resistan
e. This means that the `inje
tion' of ele
trons into nanos
ale system in many
ases strongly in�uen
es the transport 
hara
teristi
s. Therefore it is 
ru
ial how thesystem, e. g. the mole
ule, is 
onne
ted to the ele
trodes. Furthermore, experimentaland theoreti
al investigation indi
ate that the a
tual atomi
 
onta
t geometry mightstrongly in�uen
e the 
ondu
tion properties of the mole
ule [19, 23℄. This poses majorproblems on the interpretation of experimental results, as the exa
t 
onta
t geometriesprodu
ed e. g. by the break-jun
tion te
hnique is not known.There are two possibilities how a mole
ule 
an bind to a metalli
 ele
trode: througha 
ovalent bond or via van-der-Waals type intera
tion (physisorption). Often mole
ulesare fun
tionalized with thiol linkers (mainly a sulphur atom) whi
h form strong 
ovalentbonds to noble metals, espe
ially gold. Due to the strong bond, thiol linkers allow fora quite stable 
on�guration of ele
trodes and mole
ule, but whether these linkers formgood transport jun
tions is debatable. Theoreti
al 
al
ulations indi
ate that the overlapof the ele
troni
 states responsible for transport in the ele
trode and the mole
ule israther poor, if a thiol linker setup is used [24℄.One 
an imagine that ma
ros
opi
 metalli
 ele
trodes 
oupled to a nanometer-sizedmole
ule will alter the properties of the mole
ule. E�e
tively, (partial) 
harging and
harge rearrangement on the mole
ule, a

ompanied by stru
tural reorganization, mighto

ur. The 
hemi
al potential inside the mole
ule will be determined by the metal and itusually lies in the gap between highest o

upied and lowest uno

upied mole
ular orbital(HOMO and LUMO), but often 
loser to the HOMO than to the LUMO [25℄. For aphysi
al understanding of transport through mole
ules detailed knowledge of the natureand in�uen
e of the 
onta
ts is needed.For small mole
ules the 
oupling to the ele
trodes is dominant, but for longer mole
ules(e. g. DNA), where the ele
tron spends a 
onsiderable amount of time on the mole
ulesitself, its intrinsi
 properties be
ome more and more relevant. For these systems in-tera
tions with vibrations are important. Organi
 and biologi
al mole
ules are usuallyquite soft and at room temperature many vibrational modes 
an be exited. At roomtemperature DNA experien
es strong mole
ular vibration of the base pairs, with a root-mean-square displa
ement as high as 10% of the latti
e 
onstant [26℄. So the transportproperties of mole
ules, in parti
ular DNA, 
annot be understood without taking intoa

ount these vibrations. For example, the intera
tion with the vibration 
an strongly re-du
e the 
oheren
e length and 
hange the transport from 
oherent tunneling or band-liketransport to in
oherent hopping.For strong intera
tion with the vibration, a trapping of the 
harge by formation of asmall polaron is possible. A polaron is a quasi-parti
le 
onsisting of a 
harge and thesurrounding latti
e distortion. Many experiments on long-range 
harge transfer in DNAmole
ules have shown that holes 
an migrate along DNA 
overing quite large distan
esby polaron hopping [27℄. Shorter distan
es are over
ome mainly by quantum me
hani
altunneling. Experiments of the physi
al 
ommunity probing the 
ondu
tion properties ofDNA use setups that are 
loser to the situations in ele
troni
 
ir
uits, i. e. DNA mole
ules3



Chapter 1: Introdu
tion
onta
ted to ele
trodes. These types of experiments have not lead to a 
lear pi
tureof the physi
s involved in transport through DNA. The results range from insulatingbehavior to ohmi
 I-V 
hara
teristi
s, from absen
e of temperature dependen
e to strongtemperature dependen
e. The major problem in developing a 
onsistent des
ription oftransport through DNA is the la
k of reprodu
ibility of the experimental results. Onereason for this is the aforementioned di�
ulty in produ
ing reprodu
ible 
onta
ts between(DNA) mole
ules and metalli
 ele
trodes. Also, experimentalists use many di�erentapproa
hes to study the transport 
hara
teristi
s of DNA, i. e. di�erent setups (breakjun
tions vs. STM-tips, freely suspended mole
ules vs. mole
ule lying on a substrate) ordi�erent sample types (single mole
ules vs. self-assembled monolayers). This, of 
ourse,makes a systemati
 interpretation of the results very di�
ult. Another point that shouldnot remain unaddressed is the limited stability of mole
ules, whi
h poses a major problemfor long-term investigations on the same mole
ule and, unfortunately, eventually for theiruse in integrated 
ir
uits.In this thesis, we investigate the ele
troni
 properties of DNA to shed more light onthe question if and how DNA 
an allow for 
harge transport. We fo
us mainly on thein�uen
e that vibrations have on the ele
troni
 properties. For this we will dis
uss the twolimits mainly used to des
ribe transport in DNA. The `quasi'-
oherent situation, whereintera
tions with vibrations introdu
e inelasti
 e�e
ts, whi
h allow for transport evenin inhomogeneous DNA sequen
es. On the other hand intera
tions with vibrations 
anlead to self-lo
alization of the ele
trons, 
hanging transport to a sequen
e of in
oherenthopping pro
esses.About this thesisIn Chapter 2 we will give a short introdu
tion to DNA, dis
uss its stru
tural and ele
-troni
 properties and explain the basi
 
on
epts of 
harge transfer in DNA. In parti
ular,we will explain the spe
ial ele
troni
 features of DNA arising from the primary and se
-ondary stru
ture, i. e. why DNA is dire
ted and what impli
ations that has for ele
troni
transport. Various experiments are dis
ussed, whi
h probe the ele
troni
 properties ofDNA either by 
hemi
ally introdu
ing a 
harge onto the DNA (
harge transfer) or by
onta
ting it to biased ele
trodes (
harge transport). We explain what 
on
lusions 
an bedrawn from the results of these experiments and what question still remain unanswered.In parti
ular, the e�e
t of polaron formation in DNA is dis
ussed.A general introdu
tion to the physi
s of polarons is given in 
hapter 3 starting his-tori
ally with the 
on
ept of large polarons and then explaining the properties of smallpolarons, whi
h are relevant for transport in DNA. A short dis
ussion of the generalapproa
hes to transport phenomena in mesos
opi
 systems follows, explaining also therelevant time and energy s
ales. The tight-binding approximation is introdu
ed whi
h isused throughout this thesis.In Chapter 4 we will dis
uss transport through DNA mole
ules 
oupled to biased leadswith strong inelasti
 
ontributions due to intera
tion with vibrational modes of the DNAbase pairs. In the 
onsidered situation the 
oupling to vibrations does not lead to polaronformation so at least partial 
oheren
e of transport is retained. We fo
us on the in�uen
eof an additional non-lo
al (non-diagonal) ele
tron vibration 
oupling on the transport4



properties of homogeneous and inhomogeneous DNA sequen
es. We des
ribe the DNAby a tight-binding model and 
al
ulate the physi
al quantities of interest by equation-of-motion theory. For a des
ription of the nonequilibrium situation due to biasing ofthe system an approximative s
heme is applied. Mathemati
al details of the 
al
ulationsare found in Appendix B and C. We see that the inelasti
 
ontributions to the 
urrentin inhomogeneous DNA sequen
es are dominant. This is obvious, sin
e for transport too

ur, the ele
trons have to over
ome potential barriers arising from the di�erent energiesof the DNA base pairs. This energy is provided by the base pair vibrations, whi
h onlyallow transport in inhomogeneous sequen
es. Additionally a nonmonotoni
 dependen
eof the 
urrent on the 
oupling to the ele
trodes is found; i. e. , a stronger 
oupling to theele
trodes (ex
eeding some threshold value) redu
es the 
ondu
tivity.In the �fth Chapter we 
on
entrate on the limit of in
oherent polaron hopping trans-port, where the ele
trons are lo
alized due to strong lo
al intera
tion with vibrationalmodes of the DNA base pairs. This situation is des
ribed by a 
lassi
al rate equationwith rates obtained by golden rule arguments, valid for any applied bias. The resultingformulation is formally an extension of the so-
alled P (E) theory. Due to the strongele
tron-vibration 
oupling a straightforward 
al
ulation of the golden rule rates basedon this 
oupling is not possible. By performing a unitary transformation on the Hamilto-nian the strong 
oupling term vanishes and a perturbative treatment be
omes possible.We investigate how the 
hara
teristi
s of the 
urrent voltages 
urves 
hange for di�erentDNA sequen
es and how this is related to the 
hemi
al potential of the various base pairs.We observe re
tifying behavior for inhomogeneous sequen
es and explain the origin ofthis e�e
t. Finally, we study the temperature dependen
e of transport at di�erent biasvoltages and 
ompare to experiments.A generalization of the approa
h of the �fth 
hapter is presented in Chapter 6. Wedevelop a real-time diagrammati
 expansion of the single parti
le density matrix alongthe Keldysh 
ontour, whi
h is not restri
ted to DNA, but 
an be applied to arbitrarypolaroni
 systems 
oupled to biased ele
trodes. This diagrammati
 approa
h allows forthe in
lusion of non-diagonal elements of the single parti
le density matrix des
ribing
oheren
e e�e
ts and higher order pro
esses. We will not 
onsider these, but insteadfo
us on the in�uen
e of 
orrelations between o

upations on di�erent base pairs on thetransport properties of DNA. We see that for inhomogeneous sequen
es these 
orrelationgive rise to 
hanges in the 
urrent voltage pro�le as 
ompared to the more simple approa
hin Chapter 5. We show that these 
hanges are due to a new energy s
ale introdu
ed intothe system by the 
orrelations.Chapter 7 
on
ludes our investigation on the in�uen
e of vibrational modes on theele
troni
 transport properties of DNA. We 
ompare the results from the two approa
hespresented in the fourth to sixth 
hapter and indi
ate how these 
ould be distinguishedin experiments. This might help to understand whi
h physi
al e�e
t underlies transportin DNA. A brief outlook is presented in the end. In the Appendi
es A, B, C, and E wepresent the mathemati
al details involved in the 
al
ulation for this thesis, whi
h are not
entral for an understanding of our results. In Appendix D we sket
h an extension of theapproa
h dis
ussed in the fourth 
hapter, whi
h is formally valid for all applied biases.
5
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2. Motivation: Charge transport inDNA2.1. Stru
tural and ele
troni
 propertiesDeoxyribonu
lei
 a
id (DNA) is a long polymer �ber 
onsisting of a 
hain of deoxyri-bonu
leotides. A deoxyribonu
leotide 
omprises a base, a sugar and a phosphate group.The 
entral part is the sugar mole
ule deoxyribose (see Fig. 2.1), where the pre�x `deoxy'indi
ates that the sugar has an oxygen atom less than ribose. In Fig. 2.1 the 5 
arbonatoms of the mole
ule are numbered 1' to 5', where the prime is used to distinguishthem from 
arbon atoms of other parts of the DNA mole
ule. The labeling is helpful,sin
e ea
h 
arbon atom is spe
i�
 in binding to the di�erent entities building the DNA.The 1' 
arbon atom of the deoxyribose binds to one of four bases, guanine (G), 
ytosine
Figure 2.1: S
hemati
 pi
ture of a deoxyribose mole
ule. The various 
arbon atoms are num-bered 1' through 5'. Pi
ture taken from [28℄.(C), adenine (A) or thymine (T). Two sugar-nu
leotide entities are 
onne
ted by a singlephosphate group, whi
h binds to the 3' 
arbon atom of one sugar and to the 5' 
arbonatom of another (see Fig. 2.2b). This 
hain of sugar-phosphate groups is 
alled the DNAba
kbone, whi
h is dire
ted, having an unbound hydroxyl group (3') at one end and anunbound phosphate group (5') at the other. Whereas the ba
kbone mole
ules are thesame for every link of the DNA 
hain, the base 
onne
ted to it (either A, G, T or C) un-derlies no restri
tion, rather the geneti
 
ode of life is en
rypted in the spe
i�
 sequen
eof these bases. Of 
ourse, in natural DNA as well adenine-thymine as guanine-
ytosinebase pairs are present in great number.In 1953 James Watson and Fran
is Cri
k dis
overed the three dimensional stru
ture ofDNA by studying x-ray di�ra
tion patterns of DNA �bers. They found that DNA formsthe today well known double helix stru
ture by 
ombining two 
hains of deoxyribonu-
leotides, whi
h run in opposite dire
tion (see Fig. 2.2a). An important aspe
t in theformation of the double helix is that the two strands are 
omplementary, i. e. a guaninebase on one strand is always 
onne
ted to a 
ytosine base on the other strand via three7



Chapter 2: Motivation: Charge transport in DNAhydrogen bonds, and an adenine base is always 
onne
ted to a thymine base via twohydrogen bonds (see Fig. 2.2
). This property is essential for the self-reprodu
tion ofDNA, whi
h is the basis of 
ell devision, sin
e one strand is always the matrix for its
omplementary strand. The spe
i�
 binding properties of two single DNA strands are thebasis of the re
ognition properties of DNA. It is energeti
ally favorable to 
ombine twoDNA strands and form the double helix stru
ture as either two or three hydrogen bondsare formed per base pairs. In this stru
ture the hydrophili
 phosphate groups are on theoutside of the double helix in dire
t 
onta
t with the water. In aqueous solution a singlestrand will therefore eventually bind to another 
omplimentary strand (self-assembly).

(a) (b)
(
)Figure 2.2: Mole
ular stru
ture of DNA and its bases. (a) DNA double helix in a sti
k diagramwith three π-orbitals and their overlap s
hemati
ally depi
ted for the top two basepairs. (b) ba
kbone stru
ture of DNA and the four bases with the strand dire
tionindi
ated by 3' and 5'. (
) the two Watson-Cri
k base pairs guanine-
ytosine (G-C) and adenine-thymine (A-T) in an all atom ball-sti
k representation. Pi
turetaken from [17℄.Additionally to the primary stru
ture given by the sequen
e of bases, the DNA also hasa se
ondary stru
ture, i. e. the spe
i�
 stru
tural form of the double helix. In natural,aqueous environment DNA is in the so 
alled B-Form, where the distan
e between twosubsequent base pairs is 3.4Å and they en
lose an angle of 36◦. In this 
onformation8



2.1 Stru
tural and ele
troni
 propertiesthe bases of the two strands are aligned to ea
h other and orthogonal to the DNA axis.In aqueous environment the negative 
harge of the phosphate groups is 
ompensated bypositively 
harged 
ounter-ions (mainly sodium, potassium or magnesium). There arealso other known se
ondary stru
tures. Most 
ommon is the A-form that DNA assumesin dry environment. In the A-DNA two neighboring base pairs en
lose an angle of 33.6◦and are separated 2.3Å.In 1962 Eley and Spivey argued that the sta
k of π-orbitals formed by the DNA inits natural 
onformation 
ould allow 
harge migration (see Fig. 2.2a) [29℄. The reasonfor this assumption is the aromati
ity of the DNA bases, i. e. the delo
alization of the
π-orbitals in the `aromati
' ring stru
tures of the bases (
ompare Fig. 2.2
). An overlapof these orbitals between neighboring bases 
ould result in a delo
alization of the orbitalsover more than one base pair. The question of how well the ele
trons in homogeneousor inhomogeneous DNA mole
ules are delo
alized is still a matter of debate, sin
e thee�e
t of DNA base dynami
s and the environment might be 
ru
ial. The ab initio 
al
u-lations by Arta
ho et al. [30℄ for homogeneous polyG-polyC DNA showed delo
alization,however the resulting band-width was only about 40meV. Other works also support theidea of partial ele
troni
 delo
alization in homogeneous DNA mole
ules [31�33℄. Experi-mentally Bu
hvarov and 
oworkers found eviden
e for ele
troni
 delo
alization over 3 to4 base pairs in some samples of homogeneous polyA-polyT DNA, whi
h, they argued,was probably enhan
ed by nu
lear rearrangement, i. e. latti
e distortion [34℄.In general, a DNA mole
ule is not a periodi
, least of all homogeneous system. Sin
e ininhomogeneous DNA mole
ules the ele
troni
 
oupling between the orbitals of neighbor-ing bases is small 
ompared to the energy di�eren
es between these orbitals, one wouldexpe
t su
h DNA sequen
es to be an insulator with Anderson lo
alization. At roomtemperature natural DNA experien
es strong mole
ular vibration of the base pairs, witha root-mean-square displa
ement as high as 10% of the latti
e 
onstant [26℄. Thereforethe properties of DNA 
annot be understood without taking into a

ount vibrations andintera
tion with the environment. As we will later show, also inhomogeneous sequen
es
an support 
harge transport, assisted by latti
e vibrations and environment.Cal
ulations have shown that the highest o

upied mole
ular orbital (HOMO) of aDNA base pair resides on either guanine or adenine, whereas the lowest uno

upiedmole
ular orbital (LUMO) resides on the other half of the base pair, i. e. either 
ytosineor thymine [30,32℄. A measure for the energies of the HOMO, whi
h are the most relevantfor transport, are the ionization potential of the bases. For guanine it is ǫG = 7.75 eVand for adenine ǫA = 8.26 eV. The gap between HOMO and LUMO is about 2 eV [30℄.Senthilkumar et al. studied the hopping integrals tij for all possible 
ombinations ofneighboring base pairs [35℄. They saw for example that the overlap between a guanineand an adenine is strongly dependent on their sequen
e, even if they are on the samestrand. In a sequen
e 5'-GA-3' the hopping parameter is tGA = −0.186 eV, whereasfor the reverse sequen
e 5'-AG-3' the hopping parameter is just tAG = −0.013 eV. Thereason for this is the broken symmetry along the DNA axis due to the twisting of theDNA and the dire
tedness of ba
kbone. Note that this does not imply an non-hermitianHamiltonian. Forward and ba
kward hopping between A and G in a spe
i�
 sequen
e oftwo base pairs are 
omplex 
onjugates. 9



Chapter 2: Motivation: Charge transport in DNA5'-XY-3'(all in eV)X\Y G C A TG 0.119 0.046 -0.186 -0.048C -0.075 0.119 -0.037 -0.013A -0.013 -0.048 -0.038 0.122T -0.037 -0.186 0.148 -0.038Table 2.1: Hopping integrals tij taken from Ref. [35℄ and adapted to our model. The notation5'-XY-3' indi
ates the dire
tion along the DNA strand (see, e. g. Fig. 2.2).In this work, we will redu
e the ele
troni
 
omplexity of DNA to a simple tight-bindingmodel, whi
h we introdu
e in 
hapter 4. In this model we 
onsider one tight-binding siteper base pair, i. e. we only model the HOMO and the 
oupling between the HOMOs ofneighboring base pairs. We extra
t the parameters for the hopping integral tij from theresults obtained by Senthilkumar et al. and adapt them to our simpli�ed model. Theresulting values for tij are given in Table 2.1.2.2. ExperimentsThe question whether the predi
tion of Eley and Spivey (DNA being able to transport
harge) 
an be 
on�rmed, aroused and still arouses the attention of many resear
hers in
hemistry, biology, and physi
s. The pioneering work in this �eld was done by Ja
quelineBarton and her group, who measured the �uores
en
e of an organi
 
hromophore. Theyfound that the �uores
en
e is quen
hed, when the mole
ule was atta
hed to a DNAmole
ule. They explained this quen
hing with the 
harge migrating along the DNAaway from the ex
ited mole
ule [36℄.A typi
al 
harge transfer experiment was 
ondu
ted by Giese and 
oworkers [37℄. Inthis experiment a hole was inje
ted into a guanine donor base (labeled G22 in Fig. 2.3)by photo-
hemi
al means. After some time the DNA strands were 
hemi
ally treated,so that the strands 
leaved exa
tly at the guanine base pair that 
arried the hole. Usingele
trophoresis the number of DNA mole
ules of di�erent lengths was determined. Sin
ethe DNA mole
ules were 
leaved at the base pair that 
arried the hole, the length ofsu
h a DNA se
tion was identi
al to the distan
e the hole had migrated. Therefore therelative number of DNA se
tion with a 
ertain length is equivalent to the ratio of holesthat migrated the 
orresponding distan
e. Thus the number of holes that have rea
hedthe a

eptor site (GGG) was determined. Typi
ally, donor and a

eptor are separatedby a bridge of DNA bases, whi
h in this 
ase 
onsist only of adenine. Figure 2.3 showsthe logarithm of the yield (PGGG/PG) versus the number of intermediate adenine bases nmeasured in this experiment. The yield is the ratio of holes rea
hing the a

eptor tripleguanine 
ompared to the number staying at the single donor guanine.For short intermediate bridges (n = 1, 2, 3), i. e. few adenine bases, the slope of thestraight line (logarithm of the yield versus number of bridge bases) in Fig. 2.3 is β =

0.6Å−1. This strong distan
e dependen
e is 
hara
teristi
 for tunneling between the10



2.2 Experiments

Figure 2.3: Logarithm of the Yield (PGGG/PG) against number of adenine bridge bases n,where PG (PGGG) is the number of holes at the donor (a

eptor) site. The yieldis a measure for the 
harge transfer e�
ien
y. Clearly two regimes are visible.For short donor-a

eptor distan
es (n = 1, 2, 3), i. e. in the tunneling limit theslope is β = 0.6Å−1. For n ≥ 4 the line is drawn to illustrate the weak distan
edependen
e (hopping limit). The pi
ture is taken from [37℄.donor and the a

eptor guanine through the potential barrier of the adenine base pairs.The tunneling rate de
reases exponentially with the distan
e between the G-C basepairs and it be
omes negligible if the two G-C base pairs are too far apart. For n ≥ 4the distan
e dependen
e be
omes very weak, i. e. tunneling is no longer relevant. Theinterpretation is that the hole migrates via a
tivated, in
oherent hopping also using theadenine bases as `stepping stones'.These two me
hanisms were veri�ed by experiments of many groups. In parti
ular,experiments on long-range equilibrium 
harge transfer along DNA show that the domi-nant transport me
hanism is a
tivated hopping of holes between the HOMOs of adja
entbase pairs in the DNA sta
k [27, 38�42℄. In the simplest 
ase the bridges separating thedonor and a

eptor guanine bases 
onsist of a number of adenine bases (see Fig. 2.3),but more 
ompli
ated bridges were investigated as well. All these experiments showed aweak distan
e dependen
e for bridges longer than a few base pairs, whi
h is 
onsistentwith a
tivated hopping transport.The 
hoi
e of using guanine bases as donor and a

eptor mole
ules separated by variousbridges whi
h mainly 
onsist of adenine bases is easily understood: from the ionizationpotential it is 
lear that the most stable position for a hole is the HOMO of a guanine base.As an a

eptor a triple guanine (GGG) is 
hosen, that has a slightly higher ionizationpotential than the single guanine. So the triple guanine exerts a small `thermodynami
for
e' on the hole. In the bridge of A-T base pairs the adenine is the most relevant sin
e11



Chapter 2: Motivation: Charge transport in DNAits ionization potential is the 
losest to guanine. The idea is that in the hopping regimethe hole will hop only between guanine and adenine bases even if they are on di�erentstrands of the double helix. In their experiments Joy et al. found 
lear indi
ations forthis behavior. They proved this by repla
ing bridge adenine bases with another mole
uleof similar stru
tural, but di�erent ele
troni
 properties [43℄.For hopping transport to o

ur, the 
harge �rst has to undergo a lo
alization. Severaltheoreti
al arti
les argue that holes are lo
alized on single (guanine) bases either by sol-vation e�e
ts and/or stru
tural reorganization [44�47℄. The degree of lo
alization is stilla matter of debate [43℄, but many authors agree that 
onformational motion of the DNAis important for 
harge migration in DNA [48�51℄. This lo
alization 
an be interpretedas a polaron, whi
h is a quasi-parti
le 
onsisting of a 
harge and the surrounding latti
edistortion (in the next 
hapter we will give a short introdu
tion into this subje
t). Manyauthors have used the polaron hopping pi
ture to model experimental results [52�54℄.It is now the most promising 
andidate for the transport me
hanism in 
harge transferexperiments. It should be noted that for the study of general sequen
es the 
ompetitionbetween hopping and superex
hange tunneling has to be a

ounted for [37, 55�57℄.A measure for the degree of lo
alization is the so 
alled reorganization energy or polaronbinding energy ∆, i. e. the energy gain through distortion of the latti
e (or polarization ofthe solvent), when an additional 
harge is pla
ed on a base pair. Olofsson and 
oworkersextra
ted reorganization energies (not a

ounting for solvation e�e
ts) from experimentsand obtained values of ∆A = 0.18 eV and ∆G = 0.47 eV for adenine and guanine basesrespe
tively [46℄. The DFT 
al
ulation performed by them and also by another group [47℄show values of the polaron binding energy of the same order of magnitude.In 
ontrast to the 
hemi
al 
ommunity, where the ideas of tunneling and a
tivated(polaron) hopping 
an explain the experimental �ndings and therefore the nature of
harge transfer along DNA, the sometimes 
ontradi
tory results in experiments of thephysi
s 
ommunity still give rise to 
ontroversial dis
ussions. For the understanding ofthe ele
troni
 properties of DNA these latter experiments are indispensable, sin
e thetransfer of 
harges in ele
tro
hemi
al experiments is not sensitive to the details of theintrinsi
 ele
troni
 stru
ture, i. e. whether DNA has a 
ontinuum of ele
troni
 states(ele
troni
 band) or dis
rete levels [58℄. These 
hara
teristi
s 
an only be probed bynon-equilibrium transport experiments.To date there are only very few experiments in whi
h the I-V 
hara
teristi
s of indi-vidual DNA mole
ules are measured(e. g. [16, 59�68℄), mainly be
ause of the di�
ultiesto 
onta
t the DNA to metalli
 ele
trodes and to ensure that only single mole
ules aremeasured. The �rst experiment on a single DNA mole
ule was performed by Braun and
oworkers in 1998 [16℄. In this experiment the DNA of the ba
teriophage lambda with
48 502 base pairs (≈ 15 µm) was pla
ed between two metal ele
trodes 12 µm apart usingthe re
ognition and self-assembly properties of DNA. For this purpose the ele
trodeswhere fun
tionalized with single stranded segments of the used DNA mole
ules. Theadded DNA solution 
ontained the 
omplementary strands and therefore spontaneouslyatta
hed to the fun
tionalized ele
trodes (see Fig. 2.4(a)). The sample was dried andkept at ambient 
onditions during the measurements, whi
h showed no 
urrent even upto a bias voltage of 10V.12



2.2 Experiments

(a) (b)Figure 2.4: (a) s
hemati
 drawing of how the λ-DNA mole
ules are 
onta
ted to the metalele
trodes by self-assembly and re
ognition. (b) �uores
en
e image of the DNA(light diagonal line) bridging the gap between the ele
trodes (dark wide lines).The pi
tures are taken from [16℄.A year later Fink et al. reported nearly ohmi
 behavior with 
urrents of over 10 nA intransport measurements of bundles of few `λ'-DNA mole
ules with lengths of some hun-dred nanometers 
onta
ted dire
tly with a tungsten tip [59℄. A possible explanation forthis good 
ondu
tivity is a likely doping due to imaging with a low-energy ele
tron pointsour
e. The �rst experiment on single, short DNA mole
ules was performed by Porathand 
oworkers in 2000 [60℄. Homogeneous DNA strands with 30 poly(dG)-poly(dC) basepairs (10.4 nm) in solution were ele
trostati
ally trapped between two lithographi
allyet
hed Pt ele
trodes. After trapping, the sample was dried by a �ow of nitrogen. The
urrent measurements showed `semi-
ondu
ting' behavior with 
urrents slightly above1 nA and thresholds between 0.5 and 1 eV. The measurements were performed at dif-ferent temperatures, ranging from 4K to room temperature and always showed similar
hara
teristi
s, but with stronger variations between the samples in properties like thethreshold for higher temperatures (see Fig. 2.5(a)).Xu and 
oworkers followed a di�erent path [64℄. They performed all of their experi-ments at room temperature in bu�er solution, driving a movable gold STM tip into a goldsubstrate and then pulling it away, 
onstantly measuring the 
urrent. DNA mole
uleswith thiol linkers from the solution 
ould bridge the gap between STM tip and surfa
e andform 
ovalent bonds with the gold via the thiol groups. If an individual DNA mole
ulewas found to be trapped, I-V 
hara
teristi
s were measured (see Fig. 2.5(b)). They sawnearly ohmi
 behavior with maximum 
urrents of up to 150 nA for DNA mole
ules withsequen
e 5'-GCGCGCGC-3' and length of about 2.7Å. Varying the number n of GCsegments in the mole
ules (5'-(GC)n-3') they saw a shallow 1/length dependen
e of the
ondu
tan
e, in agreement with hopping transport.Newer experiments performed in the group of Danny Porath [65, 69℄, where single in-homogeneous DNA mole
ules of 26 base pairs were spanned between a gold substrateand a gold nanoparti
le 
onta
ted by an AFM tip using thiol linkers, showed even higher
urrents of up to 220 nA at 2V. The measurements were again performed at room temper-ature under ambient 
onditions. They reported higher 
ondu
tivities in DNA mole
ules13



Chapter 2: Motivation: Charge transport in DNA

(a) (b)Figure 2.5: Current-Voltage 
hara
teristi
s and experimental setups of two experiments. (a)three I-V 
urves measured on short homogeneous DNA strands with 30 poly(dG)-poly(dC) base pairs (10.4 nm), whi
h were ele
trostati
ally trapped between two�xed Pt ele
trodes. Graph taken from [60℄. (b) three I-V 
urves measured onDNA mole
ules with sequen
e 5'-GCGCGCGC-3', whi
h were also ele
trostati-
ally trapped between two gold ele
trode tips. Graph taken from [64℄.with 26 base pairs with in
reasing number of G-C base pairs in the sequen
e. For ahomogeneous sequen
e only 
omprising A-T base pairs they even found insulating be-havior [69℄. These latter �ndings were independently supported by experiments of Igbaland 
oworkers [70℄. On the other hand an experiment with similar setup as in [69℄, wheresingle DNA mole
ules (in this 
ase fun
tionalized with trimethylenethiol linkers) werespanned between a gold substrate and a gold STM tip, showed 
omparable 
urrents forboth homogeneous poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA [67℄. The 
urrentsthough were quite small, only about 100 pA at 0.2V.In all of the above measurement (ex
ept the one by Braun and 
oworkers), the DNAmole
ules were suspended by the 
onta
ts, but otherwise free hanging. In a se
ond groupof experiments the DNA mole
ules were pla
ed on a substrate and either lithographi
allyfabri
ated ele
trodes and/or STM or metalized AFM tips were used for probing thetransport 
hara
teristi
s. For longer DNA mole
ules all experiments showed insulatingbehavior of the DNA, whether they investigated λ-DNA of hundred nanometers [71℄or a few mi
rometers [16, 72℄ or homogeneous poly(dG)-poly(dC) DNA mole
ules oflengths L ≥ 40 nm [73℄. An explanation for this behavior is, of 
ourse, the length ofthe mole
ules under 
onsideration, but the intera
tion with the substrate might alsopromote the insulating behavior. Storm et al. showed that DNA mole
ules preparedon a substrate (SiO2 or mi
a) were �attened out on the surfa
e having only about onefourth of their natural height [73℄. Other 
onformational 
hanges of the DNA and theindu
tion of defe
ts due to intera
tion with a substrate are also 
on
eivable.14



2.2 ExperimentsOn the other hand short DNA mole
ules prepared on substrates have repeatedly shownhigh 
ondu
tivities and 
urrents of up to a few nanoampere [74,75℄. In their experimentShigematsu et al. prepared salmon sperm DNA on a SiO2/Si substrate and �xed it bytwo 
arbon nanotube (CNT) probes of a pair of nanotweezers [75℄. One of these CNTswas used as sour
e and another CNT atta
hed to an AFM tip was used as drain (sees
hemati
 drawing in Fig. 2.6(a)). The 
urrent for a �xed bias of Vb = 2 V was re
ordedas a fun
tion of the sour
e-drain distan
e dCA (see Fig. 2.6(b)). The resulting distan
edependen
e �tted well with the relation
I ∝ sinh

(
eVb

2kBT

a

dCA

) (2.1)for bulk polaron hopping [76℄, where a is the hopping distan
e. This indi
ates thatpolaron hopping is a probable me
hanism for transport in DNA.

(a) (b)Figure 2.6: (a) S
hemati
 drawing of measurement setup used by Shigematsu et al., wheretwo 
arbon nanotube (CNT) probes �x the DNA mole
ule. One of these CNTswas used as sour
e and another CNT atta
hed to an AFM tip was used as drain.(b) Dependen
e of the 
urrent for Vb = 2V on the sour
e-drain distan
e dCA. Thebla
k line shows a �t with equation 2.1. Pi
tures taken from [75℄.Yoo et al. used the same formula (Eq. 2.1) to �t their results, but instead of thedistan
e dependen
e they probed the temperature dependen
e of transport [62℄. Theresults obtained by Roy et al. [68℄ also show a temperature dependen
e in agreementwith the 
on
ept of polaron hopping. Other experiments show quite the 
ontrary behav-ior, i. e. quasi temperature independent 
urrents [60, 67℄. For a detailed 
omparison ofexperiments see the reviews by Endres et al. [17℄ and Porath et al. [58℄.In 
on
lusion, some trends emerge from the experiments indi
ating that short DNAmole
ules 
an 
arry 
urrents and longer mole
ules 
an not. The varian
e in the maximum
urrents are owed partially to the di�ering environmental parameters and the di�
ultyto reprodu
ibly 
ouple DNA to metalli
 ele
trodes. It seems that free hanging DNAmole
ules 
ondu
t better than DNA lying on a substrate. This, of 
ourse, would poseadditional problems, when trying to use DNA in integrated 
ir
uits in future ele
troni
s.The physi
al reason for 
harge transport on the other hand is not 
lear. Experimentswhi
h show strong temperature dependen
e suggest polaron hopping transport, or at15



Chapter 2: Motivation: Charge transport in DNAleast a strong intera
tion with vibrations. But this temperature dependen
e is not seenin other experiments. Furthermore, most experiments show `semi-
ondu
ting' I-V 
har-a
teristi
s, but other groups see ohmi
 behavior. Consequently, there is also no 
on
lusiveeviden
e about the intrinsi
 ele
troni
 properties of DNA.For this work, we take the observations showing strong temperature dependen
e andthe results of the 
hemi
al 
harge transfer experiments as the basis for our investigations,suggesting that vibrations and polarons play an important role also in non-equilibriumtransport through DNA.

16



3. General 
on
epts3.1. PolaronsIn this se
tion we will shortly introdu
e the subje
t of polarons in general. We start withthe 
on
ept of large polarons whi
h were the �rst to be investigated histori
ally. Laterwe will 
ome to small polarons whi
h are most likely present in DNA mole
ules.3.1.1. Large PolaronsFirst investigations by Landau on self-trapping of ele
trons pioneered the work on po-larons before the name even existed [77℄. Landau and Pekar extended their resear
h onele
trons strongly 
oupled to a polar environment, whi
h they des
ribed in a 
lassi
al
ontinuum model [78℄. In this model a polaron is an ele
tron or a hole surrounded bya 
harge 
loud from the polar ioni
 environment, whi
h is des
ribed by its stati
 ǫ and
lassi
al high-frequen
y ǫ∞ diele
tri
 
onstants, whereas the polarization is modeled by aharmoni
 os
illator with frequen
y ω. Ioni
 
rystals, in whi
h the ele
tron/hole intera
tswith opti
al phonons, seem to ful�ll these requirements. The 
harge 
arrier wave fun
-tion is modeled by a Gaussian distribution fun
tion with the mean squared deviation rp.The e�e
tive environment des
ription is valid only if the polaron size rp is 
onsiderablylarger than the latti
e spa
ing a. When the parti
le moves, it drags the polarization withitself whi
h a�e
ts its energy and e�e
tive mass. An important measure for the 
ouplingstrength is the Fröhli
h 
oupling 
onstant
α =

e2

4πǫ0~κ

√

m∗

2~ω
;with κ−1 =

(
ǫ−1
∞ − ǫ−1

)
.The model by Pekar et al. [78℄ predi
ts a polaron radius rp = 1.51κaB where aB = 4πǫ0~

2

m∗e2is the Bohr radius. The ground state energy and the polaron mass are
E0 = − 0.109α2

~ω

MP ≃0.02α4m∗,where m∗ is the e�e
tive ele
tron mass due to the ele
troni
 bands. The use of ane�e
tive environment is justi�ed if rp ≫ a, i. e. α ≪ ~

2m∗ωa2 . On the other hand, thephonon number has to be high to justify the 
lassi
al approa
h. The phonon numberis of the order 2E0

~ω
, that is 2E0

~ω
≫ 1. From this we dedu
e α2 ≫ 5. The above two
onditions are rarely ful�lled in reality [79, 80℄.A situation more often found in nature is that of weak-
oupling large polarons with

α < 1 where due to small phonon number the quantization of the latti
e vibrations has to17



Chapter 3: General 
on
eptsbe taken into a

ount. Fröhli
h was the �rst to investigate this regime [81℄. The so 
alledFröhli
h Hamiltonian des
ribes the linear intera
tion of a single ele
tron in a solid withlongitudinal opti
al (LO) phonons of frequen
y ω. As in the model by Pekar the ele
tronis modeled as a free parti
le with e�e
tive mass m∗ due to non-paraboli
 bands. TheHamiltonian was investigated by many others thereafter, but the most a

urate resultswere obtained by Feynman, who used a variational approa
h based on path-integrals tosolve the problem [82℄. Up to se
ond order in α the ground state energy and polaronmass are:
E0 = − ~ω

(
α + 0.0159α2

)

Mp =m∗
(

1 +
α

6
+ 0.0236α2

)

.The Fröhli
h model 
an des
ribe the behavior of some semi-
ondu
tors and ioni
 
rystalswith an isotropi
 e�e
tive mass and their 
ondu
tion band minimum at the Γ point. [79℄3.1.2. Small PolaronsIn the 1950s a dis
ussion started on how to explain the very low mobility µ in somematerials. The 
lassi
al band-like transport theory did not apply, so it was suggested thatthe low mobility might be explained by hopping transport of lo
alized 
harge 
arriers [83℄.A little later experiments by Heikes and Johnston showed that the mobility in NiO athigh temperatures follows an a
tivation law. They 
on
luded that the ioni
 transport inNiO was due to phonon assisted hopping [84℄.Holstein was the �rst to propose a mathemati
al model to 
on
isely explain thesephenomena [85℄. He showed that due to strong ele
tron-phonon intera
tion the ele
tron
an undergo `self-trapping'. Thus transport is only possible when the ele
tron and thelatti
e distortion move together. In this model the latti
e distortion, i. e. the polaron sizeis 
on�ned to about one latti
e spa
ing a; this approa
h is therefore 
alled the `smallpolaron' model. Holstein 
ould show that at su�
iently low temperatures the transportwas band-like with a strongly redu
ed band-width
∆EP ∝ ∆E exp

(

−

(
λ

~ω

)2

coth
~ω

2kBT

)

,where ∆E is the original ele
troni
 band-width and λ is the ele
tron-phonon 
oupling
onstant, whi
h will be de�ned in Eq. 3.4. At temperatures higher than the Debyetemperature the bands are too narrow and transport is a random walk of polaronhopping from site to site. The probability for su
h a hop follows an a
tivation law
Wp ∝ exp (−Ea/kBT ), with the a
tivation energy Ea ∼ λ2

2~ω
.An important step in the investigation of the small polaron was done by Lang andFirsov. Sin
e the ele
tron phonon 
oupling λ is large it is no use to do a perturbationtheory in this parameter, so they introdu
ed the so 
alled polaron unitary transformation[86℄. As a result of this transformation the ele
tron is `dressed' in a multiphonon 
loudand other small parameters arise that 
an be used as a basis for a perturbative treatmentor the use of the Kubo formula.18



3.2 Transport in mole
ular systemsNowadays the small polaron has attra
ted new interest as a 
andidate to explain thebehavior of novel high-TC super
ondu
tors but also in mole
ular ele
troni
s. We willuse the 
on
ept of small polarons to investigate hopping transport in DNA. For anextensive introdu
tion into the �eld of small polarons see books by Alexandrov [80, 83℄and Böttger [76℄.3.2. Transport in mole
ular systemsThe ele
troni
 properties of a bulk 
ondu
tor 
an be des
ribed by a set of 
ontinuousele
troni
 bands. For a mole
ular system this is not true: the ele
troni
 states are usuallynot 
ontinuous but dis
rete levels and the transport 
an be strongly a�e
ted by quantum-me
hani
al e�e
ts due to the small size, the 
oupling to the 
onta
ts and the position ofthe Fermi energy. A 
ru
ial aspe
t is the intera
tion with vibration, sin
e mole
ules arerather soft and �exible and vibrations are easily ex
ited.The transfer of an ele
tron from a donor to an a

eptor in a mole
ular system istherefore driven by the a

ompanying nu
lear rearrangement in the mole
ule in thedire
tion of minimal free energy. The rate ket for su
h a transfer (quantum-me
hani
altunneling) pro
ess is given by the Mar
us theory [87, 88℄
ket =

4π2

h
|tDA|

2
√

4πλkBT exp

[
−(δEDA − λ)2

4λkBT

]

,where tDA is the ele
troni
 
oupling between donor and a

eptor, whi
h are separatedby a energy gap δEDA. λ is the reorganization energy, i. e. the energy des
ribing therearrangement of the atoms in the mole
ules in su
h a transfer pro
ess. The ele
troni

oupling usually depends exponentially on the distan
e d between donor and a

eptor
tDA ∝ exp(−βd), sin
e this is a usual tunneling event.If the mole
ule is 
onne
ted to two ele
trodes the situation 
hanges; now the drivingfor
e for transport is the applied bias and we are no longer interested in a transientphenomenon like 
harge transfer, but in a steady state property of the system [88℄. In thissituation the ele
troni
 
oupling strengths between donor, a

eptor and the ele
trodesdetermine the transport [89℄. If the 
oupling between donor and a

eptor is good andtheir energies agree, 
harges be
ome delo
alized over the mole
ular system, whi
h allows
oherent transport. If the 
oupling to the vibrations is not too strong, the vibrationswill lead to inelasti
 e�e
ts in the transport pro
ess, but the 
oheren
e of the transportis at least partially 
onserved. We 
all this regime `quasi'-
oherent. For small enoughtemperatures (kBT ≪ ~ω) 
hara
teristi
 steps in the I-V 
urves arise, where the positionof the steps agrees with the frequen
y ω of the vibrational mode that produ
es them.For strong 
oupling and high temperature, i. e. in the small polaron limit, the intera
tionwith vibrations leads to a trapping of the 
harge and transport be
omes a sequen
e ofin
oherent hopping pro
esses. In this work we will study both regimes for the 
ase oftransport through DNA mole
ules. 19



Chapter 3: General 
on
eptsTime and energy s
alesThe two limits of 
oherent and in
oherent transport 
an also be des
ribed by respe
tivetime and energy s
ales. These time s
ales are the dwell time τ of the ele
tron on themole
ule and the dephasing time τφ, des
ribing the time in whi
h the ele
tron loses itsphase 
oheren
e due to intera
tion with the vibrations [88℄. The dephasing time de
reaseswith temperature and ele
tron-vibration 
oupling strength. The ratio τφ/τ determinesthe dominant transport me
hanism. For large ratio τφ/τ the ele
tron moves very fastand its motion 
an be de
oupled from the mole
ular motion by the Born-Oppenheimerapproximation. The intera
tion with the vibrations is just a perturbation to the mainly
oherent transport through the mole
ule. For small τφ/τ we have polaron formation andin
oherent hopping transport. Transport is also governed by other internal energy s
alesof the system, whi
h are the position of the mole
ular levels parti
ipating in the transport(HOMO (highest o

upied mole
ular orbital) and LUMO (lowest uno

upied mole
ularorbital)), their relative position to the Fermi energy and the 
oupling to the ele
trodes.Of 
ourse, the temperature kBT plays an important role in the o

upation of ele
troni
states.One of the most important fa
tors determining the 
urrent is the position of the 
hemi-
al potential µ, des
ribing the energy up to whi
h the states are o

upied. For an isolatedmole
ule this is easily determined but for a mole
ules sandwi
hed between two metalli
ele
trodes, whi
h usually are by far bigger than the mole
ule, this task be
omes di�-
ult. The reason for this is the 
harging of the mole
ule due to 
harge transfer from theele
trodes during the alignment of the 
hemi
al potential with the Fermi energy of theele
trodes. In general this 
harge transfer is fra
tional, depending on the work fun
tionof the metal and the resulting 
hemi
al potential lies somewhere in the HOMO-LUMOgap [90℄. Unless ab initio 
al
ulations or experiments obtain reliable values, the positionof the 
hemi
al potential in the mole
ular system 
an be seen as a �tting parameter.Throughout this work we 
hose the 
hemi
al potential to be slightly above the HOMOstates.Transport in DNAAmole
ular system like DNA 
onsists of various parts/mole
ular orbitals, whi
h 
an havedi�erent energies and 
oupling to ea
h other. Of 
ourse, if it is homogeneous, all energiesand 
ouplings are the same. In the limit τφ/τ ≫ 1 su
h a homogeneous system givesrise to a band-like density of states (ex
ept for �nite-size features) where ele
trons formBlo
h-states whi
h are delo
alized over the entire mole
ule. Transport in su
h a systemis mainly 
oherent and transmission probabilities are high and nearly independent of thelength of the mole
ule. Intera
tions with vibration will lead to inelasti
 
ontributions tothe 
urrent.For inhomogeneous systems, the ele
trons undergo Anderson lo
alization (dependingon the degree of inhomogeneity) and the transmission, still being 
oherent, is suppressedand de
reases exponentially with the length of the mole
ule. A 
oupling of the ele
troni
degrees of freedom to vibrations 
an lead to a small but �nite broadening of the levels.More importantly, the vibrational energy 
an allow the ele
trons to over
ome potential20



3.2 Transport in mole
ular systemsbarriers, diminishing the lo
alization in inhomogeneous samples and enabling transport.At least partial 
oheren
e of the transport is 
onserved.In the opposite limit τφ/τ ≪ 1 small polarons are formed, whi
h are lo
alized on oneor a few base pairs of the DNA, so the band pi
ture is no longer appli
able. The 
harge
an hop between di�erent base pairs, depending on the spe
i�
 rates. The di�eren
es be-tween homogeneous and inhomogeneous sequen
es are more subtle than for the 
oherentsituation.3.2.1. Theoreti
al methodsAs argued in the introdu
tion of this se
tion, the 
urrent-voltage 
hara
teristi
s in nano-s
ale systems and mole
ules 
an di�er strongly from the 
hara
teristi
s of bulk systems.The �rst important dis
overy in this �eld was done by Landauer in 1957 [21, 91℄. Hefound that for systems smaller than the ele
tron mean free path, i. e. in a ballisti
 
on-du
tor, transport 
an be des
ribed as a quantum me
hani
al s
attering problem. Thesimple model system he studied 
onsisted only of a s
atterer (the mole
ule) sandwi
hedbetween two biased metalli
 leads. In the linear regime, i. e. for small bias, transport is
hara
terized by the linear 
ondu
tan
e g, whi
h at zero temperature is proportional tothe transmission T through the system
g = g0T (EF) .The proportionality fa
tor g0 = 2e2/h is the so 
alled quantum of 
ondu
tan
e of aperfe
t ballisti
 
ondu
tor with transmission T = 1. The transmission is 
al
ulated atthe Fermi energy EF of the leads, where the ele
trons are inje
ted into the mole
ule.The transmission fun
tion T (E) 
an be obtained from the s
attering matrix or, usingthe Fisher-Lee relation [92℄, dire
tly from the retarded and advan
ed Green-fun
tions

Gret/adv(E) of the mole
ule 
oupled to the ele
trodes
T (E) = 4 tr

{
ΓL(E)Gret(E)ΓR(E)Gadv(E)

}
. (3.1)The Green fun
tion des
ribe the density of states of the system and is given by

Gret(E) =
[[

Gret
0 (E)

]−1
+ ΣL(E) + ΣR(E)

]−1

,where
Gret

0 (E) =
[
E − Hmol + i0+

]−1is the Green-fun
tion of the isolated mole
ule (for general de�nition of the Green fun
tionand relation between Gret and Gadv see App. A). The Hamiltonian Hmol of the mole
ularor mesos
opi
 system is assumed to be known, whi
h of 
ourse is a problem of its own. Inthe next se
tion we will address this point. ΣL/R(E) are the self-energies of the left/rightele
trode respe
tively. The ele
trode self-energies des
ribe the energy 
ontribution tothe system/mole
ule due to the ele
trodes. In general this 
ontribution is 
omplex anddes
ribes a broadening of the ele
troni
 states, whi
h is equivalent to a �nite lifetime dueto the possibility of ele
trons es
aping from the mole
ule via the ele
trodes. The ele
trode21



Chapter 3: General 
on
eptsself-energies are determined by the spe
tral densities of the ele
trodes; for a �at densityof states in the ele
trodes (wide band limit) they are given by ΓL/R(E) = Im
(
ΣL/R(E)

).For the 
urrent at �nite temperature one obtains
J =

e

4h

∫

dE [fL(E) − fR(E)]T (E) , (3.2)where fL/R(ǫ) is the Fermi fun
tion in the left/right lead.The Landauer formula and Fisher-Lee relation are only valid when there are no in-tera
tions on the mole
ule. This of 
ourse is not true if we in
lude vibrations intoour 
al
ulation. For the 
ase of an intera
ting region between two ele
trodes Meir andWingreen obtained a general formula for the 
urrent [93℄
J =

ie

2h

∫

dE
(

tr
{
[fL(E)ΓL(E) − fR(E)ΓR(E)]

(
Gret(E) − Gadv(E)

)}

+ tr {[ΓL(E) − ΓR(E)]G<(E)}
)

, (3.3)where G</>(E) are the `lesser' and `greater' Green fun
tions of the mole
ule 
oupledto the ele
trodes. These Green fun
tions des
ribe the o

upation of the system. Inequilibrium these are 
onne
ted to the retarded and advan
ed Green fun
tion (Gret/adv)by the �u
tuation-dissipation relation (see App. A). In nonequilibrium these are inde-pendent quantities and have to be 
al
ulated separately. Therefore one has to use aformalism valid also out of equilibrium, like the Keldysh formalism [94℄, or one has toapply some approximative s
heme. For the non-intera
ting 
ase Eq. 3.3 redu
es to thesimple Landauer form (Eq. 3.2).Meir and Wingreen derived their formula from a general expression for the 
urrent.From the 
ontinuity relation it is obvious that
JL = −e

d

dt
〈NL〉 = −

ie

~
〈[H, NL]〉 ,were NL is the number of ele
trons in the left lead and H is the total Hamiltonian.Obviously for a steady-state situation the number of ele
trons on the mole
ule is 
onstant,sin
e all ele
trons that enter from the left leave to the right. The above two formulas arethe basis of most transport 
al
ulation for DNA so far. Some also in
lude intera
tionwith vibrations or dephasing due to 
oupling to a reservoir [95�97℄.Another approa
h for the 
al
ulation of transport quantities is the formulation of amaster equation

d

dt
Ps =

∑

s′

Ps′Ws′,s − PsWs,s′where Ps is the probability to be in some (
harge) state s and Ws′,s is the rate for atransition from state s to s'. In steady state d
dt

Ps = 0. From this the 
urrent 
an beeasily obtained
I = −e

{
∑

s′

Ps′W
L
s′,s − PsW

L
s,s′

}

.
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3.2 Transport in mole
ular systemsHere the index L indi
ates that only rates are 
onsidered that des
ribe transitions wherethe 
harge leaves to the left lead. Again some formalism has to be used that 
an des
ribenonequilibrium situations when a a �nite bias is applied. In the most simple 
ase therates 
an be obtained from Fermi's golden rule, whi
h assumes that the transition froman initial state i to �nal state f is indu
ed by a perturbation H'. The transition rate isthen given by
W =

2π

~
|〈f |H ′| i〉|

2
δ(Ei − Ef) ,where initial and �nal states have the energy Ei and Ef , respe
tively. As one 
an see,the rate from Fermi's golden rule is se
ond order in the perturbation. Master or rateequations are usually applied to des
ribe the 
harge transfer in 
hemi
al experiments [98,99℄, but they have also been su

essfully used to des
ribe tunneling through mi
ros
opi

onta
ts and in quantum dots (e. g. [100℄).Tight-binding des
riptionIn the previous subse
tion we have introdu
ed several approa
hes for the 
al
ulation ofobservable quantities, in parti
ular the 
urrent and the 
ondu
tan
e. We assumed thatthe Hamiltonian, des
ribing the system under 
onsideration, was known. Of 
ourse, ingeneral this is not the 
ase. In parti
ular, a solution to the full many-ele
tron system isout of rea
h of todays 
omputational power. Thus, if a mi
ros
opi
 des
ription of thesystem is needed, an appropriate approximative s
heme has to be applied.The most 
ommon approximation in the des
ription of 
omplex systems is the so-
alled tight-binding (TB) approa
h. In 1929 Blo
h introdu
ed the basi
 ideas of the TBs
heme, whi
h approximates the many-ele
tron wave fun
tion by a linear 
ombinationof single parti
le `atomi
' wave fun
tion [101℄. Throughout the years, the TB model wassu

essfully used, e. g. in band stru
ture 
al
ulation of various solid state systems [102℄.In parti
ular, the tight-binding s
heme is often used to model ele
troni
 properties inmole
ular systems and we will also resort to it throughout this thesis. As a furtherapproximation, we will not 
onsider atoms as elemental building blo
ks for our TB de-s
ription but mole
ular orbitals that are extended over various atoms (for details seeChap. 2 and 4). The essential di�
ulty of this s
heme lies in the appropriate 
hoi
e ofthe TB parameters for the 
onsidered system.By the nature of the approximation the TB model is in general dis
rete, performinga sum over all atoms that are in
luded in the des
ription. The Hamiltonian is then
hara
terized by the atomi
 `onsite' energies ǫ of the spe
i�
 atoms/sites and the overlapof the various `atomi
' orbitals. In se
ond quantization, where one no longer 
onsiderswave fun
tions, but o

upation numbers of states, the Hamiltonian in the tight-bindingpi
ture has the following form:

Hel =
∑

i

ǫia
†
iai −

∑

i,j

tija
†
iaj .Here ǫi is the onsite energy of site i and tij is the so 
alled hopping integral whi
hdes
ribes the overlap of wave fun
tions between di�erent sites i and j. The in
lusion ofintera
tion terms is formally straightforward. 23



Chapter 3: General 
on
eptsEle
tron-vibration 
ouplingWhen studying intera
tion with vibrations or phonons, usually the deviation from theequilibrium position of the vibrating atoms or larger entities (DNA bases) is taken to besmall. Thereby, non-linear e�e
ts are negle
ted and the intera
tion Hamiltonian be
omeslinear in the vibrational displa
ement. The resulting Hamiltonian for the vibration andthe ele
tron-vibration 
oupling are
Hvib =

∑

α

~ωαB†
αBα

Hel−vib =
∑

α

∑

i,j

λα
ija

†
iaj

(
B†

α + Bα

)
,where α labels the vibrational mode and B†

α + Bα is proportional to the vibrationaldispla
ement. The 
oupling matrix element is given by
λα

ij =
∑

n

Cnα

√

~

2Mnωα

〈i| ∇Rn
H(R) |j〉 , (3.4)where Mn is the mass of the atom n with displa
ement 
oordinate Rn. The matrixelement Cnα des
ribes the transformation between atomi
 displa
ement and normal mode

α and H(R) is the ele
troni
 Hamiltonian for a given position of all atoms R [88℄.The diagonal 
omponents of the intera
tion Hamiltonian (i = j) des
ribe the polar-ization of the stru
ture when the site is o

upied by a 
harge, whi
h is re�e
ted in a
hange in onsite energy. Often 
al
ulations are restri
ted to just the diagonal 
ompo-nents, whi
h is justi�ed for small overlap between neighboring states i and j. For manysituations this approximation is not justi�ed. As e. g. Starikov showed, the non-diagonal(from here on we will 
all them non-lo
al) elements of some vibrational modes in DNAare of the same order as the diagonal elements [50℄. The non-lo
al elements des
ribethe in�uen
e of vibrations on the probability for tunneling, whi
h 
learly 
hanges if e. g.the distan
e between the two involved sites varies. This phenomenon 
an be des
ribedas vibration assisted tunneling. In this work we will dis
uss both diagonal (lo
al) andnon-lo
al ele
tron-vibration 
oupling for the quasi-
oherent 
ase, but restri
t us to thelo
al 
oupling for the situation of polaron hopping.
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4. Quasi-
oherent transport4.1. De�nition of the ProblemAs dis
ussed in 
hapter 2, several experiments and theoreti
al 
onsiderations in the pasthave stressed the importan
e of the environment and vibrations on the ele
tron trans-fer [38, 52℄ and transport [62, 103℄. But experiments alone 
annot explain the physi
sunderlying 
harge transport through DNA. For an detailed understanding and interpre-tation of the experimental results, modeling and theoreti
al 
al
ulations are indispens-able.Numerous re
ent theoreti
al arti
les addressed the ele
troni
 transport properties ofDNA in a mi
ros
opi
 approa
h [67, 95�97, 104�110℄. In these approa
hes the DNA istypi
ally des
ribed within a tight-binding model for the ele
troni
 degrees of freedomwith parameters either taken from ab-initio quantum 
hemistry simulations [35, 50, 111℄or motivated by a �t to experiments [96℄. The varian
e of qualitatively di�erent tight-binding models is large, ranging from involved all-atomi
 representations to models whereea
h base pair is represented by only a single orbital. However, the vibrations have beentreated so far only within very simple models (if treated at all), where spe
i�
ally onlya lo
al site independent ele
tron-vibration 
oupling has been taken into a

ount [95,96℄.While these approa
hes are su�
ient to des
ribe the transition from elasti
 (quasi-ballisti
) to inelasti
 (dissipative) transport they ignore the fa
t that the non-lo
alele
tron-vibration 
oupling strength 
an be 
omparable in magnitude to the lo
al one [50℄.As the non-lo
al ele
tron-vibration 
oupling leads e�e
tively to a vibration-assisted hop-ping, the proper in
lusion of this 
oupling 
an be important for transport through DNAwith inhomogeneous sequen
es. Starikov 
al
ulated the 
hange in onsite energy ǫi andhopping integrals tij using a PM3 semi-empiri
al quantum 
hemistry pa
kage for variousdispla
ements of the DNA bases asso
iated with 
ertain vibrational modes of the DNA.He observed that 
ertain vibrational modes not only strongly 
hange the onsite energy,but also the hopping integrals, sometimes in the same order of magnitude [50℄.In this 
hapter we formulate a minimum model for a DNA mole
ule 
oupled to leftand right ele
trodes, where the base pairs are represented by single tight-binding orbitals,with energies di�ering for Guanine-Cytosine (GC) and Adenine-Thymine (AT) pairs, asmotivated in se
tion 2.1. Figure 4.1 shows a s
hemati
 drawing of the situation under
onsideration. The light blue re
tangles to both sides represent left and right ele
trodeswhi
h are 
oupled to the �rst and last base. The 
oupling is 
hara
terized by the spe
traldensities ΓL/R. The DNA double-helix is unequivo
ally de�ned by the sequen
e of onlya single strand, sin
e the se
ond one is 
omplementary. We always 
onsider the strandstarting from left at the 5' end and running to the 3' end at the right, when des
ribinga 
ertain DNA sequen
e. 25



Chapter 4: Quasi-
oherent transport

Figure 4.1: S
hemati
 drawing of a DNA helix (taken from [112℄) and the tight-binding modelused to des
ribe its ele
troni
 properties.
We adopt a situation of strong lo
al ele
tron-vibration intera
tion, where the vibra-tional modes are also 
oupled to the surrounding environment (water or bu�er solution).This extension allows for dissipation of energy, leading to a 
ontinuous spe
trum of thevibration with a broadened resonan
e. We assume that the ex
ited vibration is extendedover the whole DNA mole
ule. This does not allow small polaron formation (we willdis
uss this limit in the following 
hapters). Transport retains (at least partial) 
oher-en
e, but there 
an be strong inelasti
 e�e
ts. We 
all this regime `quasi'-
oherent, todistinguish it from both a pure ballisti
 and the fully in
oherent polaron hopping situ-ation. An additional non-lo
al 
oupling further 
hanges the hopping between adja
entmole
ular orbitals/tight-binding sites and allows for vibration assisted tunneling.
4.2. Model and te
hniqueIn this se
tion we explain, how DNA 
oupled to biased ele
trodes is modeled in the`quasi'-
oherent regime, as introdu
ed before. We will then dwell on the te
hniques weused to obtain measurable quantities like the 
urrent.26



4.2 Model and te
hnique4.2.1. HamiltonianFrom the dis
ussion above, we arrive at the Hamiltonian H = Hel +Hvib +Hel−vib +HL +
HR + HT,L + HT,R + Hbath with

Hel =
∑

i

ǫia
†
iai −

∑

<ij>

tija
†
iaj

HT,L + HT,R =
∑

ν,r,i

[

tri c
†
νrai + tr∗i a†

icνr

]

Hvib =
∑

α

ωαB†
αBα

Hel−vib =
∑

α

∑

i

λ0 a†
iai(Bα + B†

α)

+
∑

α

∑

<ij>

λij a†
iaj(Bα + B†

α) . (4.1)The index r = L, R represents left and right ele
trode. The term Hel des
ribes theele
trons in the mole
ular 
hain with operators a†
i , ai in a single-orbital tight-bindingrepresentation with onsite energies ǫi of the base pairs and hopping tij between neigh-boring base pairs. As mentioned above, both onsite energies and hopping depend onthe base pair sequen
e, e. g. the onsite energy of a Guanine-Cytosine base pair di�ersfrom the onsite energy of a Adenine-Thymine base pair. As explained in Se
. 2.1, for thehopping matrix elements tij we adopted the ab initio results, from Siebbeles et al. [35℄denoted in table 2.1. For the onsite energies of guanine and adenine, we resort to theionization potentials of these bases, i. e. ǫG = 7.75 eV and ǫA = 8.26 eV, but a
tually onlythe di�eren
es between these two energies (ǫG − ǫA = 0.51 eV) and to the Fermi energy

EF matter.The terms HL/R refer to the left and right ele
trodes. They are modeled by non-intera
ting ele
trons, des
ribed by operators c†ν L/R, cν L/R, with a �at density of states ρe(wide band limit). The 
hemi
al details of the 
oupling between the mole
ule and theele
trodes are not the fo
us of this work. For our purposes it is fully 
hara
terized by
HT,L + HT,R with tunneling amplitudes assumed to be independent of the type of basepair i and the quantum numbers of the ele
trode states ν. The left lead is 
oupled onlyto the �rst base pair and the right ele
trode is 
oupled only to the last base pair. The
oupling strength is then 
hara
terized by the parameter ΓL,R = 2πρL,R

e |tL,R|2, whi
hleads to a level broadening of the base pair orbitals 
oupled to the ele
trodes.The vibrational degrees of freedom are des
ribed by Hvib, with bosoni
 operators Bαand B†
α for the vibrational mode with frequen
y ωα. Hel−vib 
ouples the ele
trons on themole
ule to the vibrational modes, where λ0 and λij are the strengths for the lo
al andnon-lo
al ele
tron-vibration 
oupling, respe
tively. Note that the vibration modes areextended over the entire DNA mole
ule and that the 
oupling of the modes to ele
tronsis assumed independent of the base pairs involved. This retains a `quasi'-
oherent trans-port situation even in the strong 
oupling limit. The strength of the ele
tron-vibration
oupling for various vibrational modes has been 
omputed in Ref. [50℄ for homogeneous27



Chapter 4: Quasi-
oherent transportdimers and tetramers of AT and GC pairs. Here we 
onsider also inhomogeneous se-quen
es, for whi
h the ele
tron-vibration 
ouplings are not known, but we assume thatthey di�er not too mu
h from the values for homogeneous sequen
es. As an exemplarymode we 
hose the `stret
h' mode (see Fig. 4.2) of Ref. [50℄, whi
h shows relatively strong
oupling to both ele
troni
 parameters for AT and GC base pairs. The values for the

Figure 4.2: S
hemati
 drawing of the vibrational stret
h mode of two DNA bases. The DNAstrand runs along the z-dire
tion. Pi
ture a

ording to [50℄.stret
h mode obtained by Starikov for the vibrational frequen
ies ω and matrix elementsin Eq. 3.4 are given by (using gij = 〈i| ∇Rn
H(R) |j〉)

~ωAT = 0.011 eV ~ωGC = 0.016 eV
gii(AT) = 0.1104 eV/Å gii(GC) = -0.2349 eV/Å
gij(AT) = 0.0820 eV/Å gij(GC) = -0.1779 eV/Å .From this one 
an estimate the lo
al and non-lo
al ele
tron-vibration 
oupling by assum-ing a redu
ed mass of 118.92 g/mol for the AT and 122.69 g/mol [50℄ for the GC basepairs

λii(AT) ≈ 0.004 eV λii(GC) ≈ -0.008 eV
λij(AT) ≈ 0.003 eV λij(GC) ≈ -0.006 eV .We restri
t the non-lo
al 
oupling terms to nearest neighbors, λij = λ1δi,j=i±1 and forour model we take λ0 and λ1 as parameters, independent of the base pairs involved,for whi
h we 
hoose values in rough agreement with the above estimates, i. e. λ0,1 ≈

1 − 10 meV. This allows for a qualitative dis
ussion of the e�e
ts that arise from theele
tron-vibration 
oupling in DNA.The vibrations themselves are 
oupled to the environment, the mi
ros
opi
 details ofwhi
h do not matter. We model it by a harmoni
 os
illator bath Hbath whose relevantproperties are summarized by its linear (`Ohmi
') power spe
trum (or spe
tral fun
tion)up to a high-frequen
y 
ut-o� ωc [113℄. The 
ut-o� is ne
essary for 
onvergent results andis physi
ally equivalent to the Debye frequen
y in a solid state system. The 
oupling ofthe vibrations to the bath 
hanges the vibrations spe
tra from dis
rete (Einstein) modesto 
ontinuous spe
tra with a peak around the vibrational frequen
y. This 
an be shownexpli
itly when 
al
ulating the polarization of the vibration (the vibrational self-energydue to 
oupling to the bath) [114℄. Physi
ally, the 
oupling to a bath allows for dissipation28



4.2 Model and te
hniqueof ele
troni
 and vibrational energy. This dissipation is 
ru
ial for the stability of themole
ule in a situation where inelasti
 
ontributions to the 
urrent dissipate a substantialamount of power on the mole
ule itself.We only 
onsider a single vibrational mode when performing the numeri
al 
al
ulations,sin
e we are mainly interested in the physi
s involved when in
luding non-lo
al ele
tron-vibration 
oupling. The vibrational mode with resonan
e frequen
y ω0 
oupled to thebath is then des
ribed by a spe
tral density
Di(ω) = − i

∫

dteiωtθ(t)
〈{

B†(t) + B(t), B† + B
}〉

=
1

π

(
ηi(ω)

(ω − ωi)2 + ηi(ω)2
−

ηi(ω)

(ω + ωi)2 + ηi(ω)2

)

. (4.2)with a frequen
y dependent broadening η(ω) whi
h arises from the vibration-bath 
ou-pling. For the 'Ohmi
' bath with weak vibration-bath 
oupling and 
ut-o� ωc we 
onsider
η(ω) = η0 ω θ(ωc−ω), with η0 = 0.05 eV. Mathemati
ally the 
rossover from the dis
retevibrational modes to a 
ontinuous spe
trum of a single mode is done by substituting
∑

α →
∫

dωD(ω).4.2.2. Lang-Firsov transformationIn order to treat the limit of strong lo
al ele
tron-vibration 
oupling we perform theLang-Firsov unitary transformation [79, 86℄ on the Hamiltonian H . The transformationwas developed for the des
ription of small polarons (see Se
. 3.1). Sin
e in this 
hapter weassume a global vibration, i. e. all base pairs `vibrate' together in phase, we do not havesmall polaron formation, but still 
an des
ribe inelasti
 e�e
ts arising from the strong
oupling to the vibrations, whi
h would not arise in a dire
t perturbative treatment inthe ele
tron-vibration 
oupling. The transformation is de�ned by the generator fun
tion
S.

H̃ = eSHe−S ; S = −
∑

iα

λ0

ωα
a†

iai

[
Bα − B†

α

]
.We introdu
e transformed ele
tron and vibration operators a

ording to

ãi = aiχ

B̃α = Bα −
∑

i

λ0

ωα
a†

iai

χ = exp

[
∑

α

λ0

ωα

(Bα − B†
α)

]

, 29



Chapter 4: Quasi-
oherent transportwhere the operator χ in
orporates the intera
tion with the vibrations and is 
ru
ial forthe des
ription of the inelasti
 e�e
ts. The new Hamiltonian reads (with χχ† = χ†χ = 1)
H̃ =

∑

i

(ǫi − ∆)a†
iai −

∑

<ij>

tija
†
iaj

+
∑

r,ν,i

[

tri c
†
νraiχ + tr∗i a†

iχ
†cνr

]

+ HL + HR

+
∑

α

ωαB†
αBα +

∑

α

∑

<ij>

λij a†
iaj(Bα + B†

α) + H̃ee , (4.3)where the Hamiltonian
H̃ee = −

∑

<ij>

∑

α

λ2
0

ωα

a†
iai · a

†
jaj − 2

∑

<ij>

∑

k

∑

α

λij λ0

ωα

a†
iaj · a

†
kak (4.4)des
ribes an e�e
tive vibration mediated ele
tron�ele
tron intera
tion whi
h will be ne-gle
ted throughout this 
hapter. This is a reasonable approximation for the low 
harge
arrier (hole) density in mole
ular systems [76℄.The purpose of the Lang-Firsov transformation is to remove the lo
al ele
tron-vibration
oupling term from the transformed Hamiltonian in ex
hange for the transformed oper-ators and the so-
alled polaron shift

∆ =

∫

dωD(ω)
λ2

0

ω
.The polaron shift or reorganization energy des
ribes the lowering of the onsite energyof the ele
tron due to the intera
tion with the vibration. Sin
e we 
ouple the ele
troni
degrees of freedom to a global vibration, ∆ is 
onstant for all base pairs. The non-lo
alele
tron-vibration 
oupling term, however, remains un
hanged and has to be dealt within a di�erent way than the lo
al term. There is an additional ele
tron-vibration 
ouplingdue to the operator χ in the transformed tunnel Hamiltonian from the leads. In this studywe negle
t e�e
ts arising from this additional 
oupling. This is a valid approximation for

ΓL,R ≫ λ0, the usual approximation taken in the literature [96, 114℄.Green fun
tionsIn this se
tion we 
onsider the above Hamiltonian and use an approximative s
heme todes
ribe the situation of �nite bias. A more rigorous treatment will be introdu
ed inAppendix D.For the 
al
ulation of physi
al quantities like 
urrent and density of states we usethe Green fun
tion formalism as introdu
ed in the previous 
hapter. We introdu
e theretarded ele
tron Green fun
tion (see App. A).
Gret

kl (t) = − iθ(t)
〈{

ak(t)χ(t), a†
l χ

†
}〉

, (4.5)where the thermal average is taken with respe
t to the transformed Hamiltonian H̃,whi
h does not expli
itly in
lude the lo
al ele
tron-vibration intera
tion. By applying30



4.2 Model and te
hniquethe equation of motion (EOM) te
hnique we 
an derive a self-
onsistent 
al
ulations
heme for Gret
kl (t). The EOM te
hnique for an intera
ting system generates 
orrelationfun
tions of higher order than initially 
onsidered, resulting in a hierar
hy of equationsthat does not 
lose in itself. Therefore, an appropriate trun
ation s
heme needs to beapplied. In our 
ase, we 
lose the hierar
hy on the �rst possible level negle
ting all higherorder Green fun
tions beyond the one de�ned above. In parti
ular, our approximationsare perturbative to �rst order in λ1, restri
ting our study to relatively weak non-lo
alele
tron-vibration 
oupling strengths.Equation of motionThe equation of motion for an operator in the Heisenberg pi
ture is given by

d

dt
ai(t) = i [H, ai] (t) .From the above expression the behavior of the time evolution of the operator 
an beobtained. This is the basis of the equation of motion te
hnique. Before applying it, weseparate the retarded ele
tron Green fun
tion into two parts,

Gret
kl (t) = −iθ(t)

〈{

ak(t)χ(t), a†
l χ

†
}〉

= −iθ(t)
〈

ak(t)χ(t)a†
l χ

†
〉

︸ ︷︷ ︸

G
(1)
kl

(t)

−iθ(t)
〈

a†
l χ

†ak(t)χ(t)
〉

︸ ︷︷ ︸

G
(2)
kl

(t)

.This is useful, be
ause for G
(1)
kl (t) and G

(2)
kl (t) self-
onsisten
y equations 
an be derivedvia the equation of motion te
hnique (EOM), but the equation of motion applied tothe retarded Green fun
tion itself leads to an equation 
ontaining not only the retardedGreen fun
tion, i. e. a 
oupled equation.The expressions of the 
ommutator of all fermioni
 operators with the Hamiltonian(Eq. 4.3) 
an be found quite easily, whereas the expli
it derivation of [H̃, χ

] is moreinvolved and therefore shown in App. B. With these, we obtain the following expressionfor the equation of motion of G
(1)
kl (t),

∑

j

[

(i
d

dt
− ǫk)δjk + tkj

]

G
(1)
jl (t)

= δ(t)
〈

aka
†
l

〉

+ iθ(t)∆
〈

ak(t)χ(t)a†
l χ

†
〉

− iθ(t)

{
∑

j 6=k,α

λkj

〈

aj(t)
[
Bα(t) + B†

α(t)
]
χ(t)a†

l χ
†
〉

+
∑

α

λ0

[〈

ak(t)Bα(t)χ(t)a†
l χ

†
〉

+
〈

ak(t)χ(t)B†
α(t)a†

l χ
†
〉]

+
∑

α

∑

<ij>

2 λij λ0

ωα

〈

ak(t)a
†
i (t)aj(t)χ(t)a†

l χ
†
〉

+
∑

ν,r

tr∗k

〈

cr
ν(t)a

†
l χ

†
l

〉
} (4.6)
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Chapter 4: Quasi-
oherent transportand a similar relation for G
(2)
kl (t),

∑

j

[

(i
d

dt
− ǫk)δjk + tkj

]

G
(2)
jl (t)

= δ(t)
〈

a†
l ak

〉

+ iθ(t)∆
〈

a†
l χ

†ak(t)χ(t)
〉

− iθ(t)

{
∑

j 6=k

λkj

〈

a†
l χ

†aj(t)
[
B(t) + B†(t)

]
χ(t)

〉

+ λ0

[〈

a†
l χ

†ak(t)B(t)χ(t)
〉

+
〈

a†
l χ

†ak(t)χ(t)B†(t)
〉]

+ (t)
∑

<ij>

2 λij λ0

ω0

〈

a†
l χ

†ak(t)a
†
i (t)aj(t)χ(t)

〉

+
∑

ν,r

tr∗k

〈

a†
l χ

†cr
ν(t)
〉
}

. (4.7)To determine expressions like 〈aj(t)Bα(t)χ(t)a†
l χ

†
〉 and similar higher order 
orrelationfun
tions one would have to 
ompute the EOM for these, too. This leads to 
orrelatorsof ever higher order, so we trun
ate the hierar
hy and approximate them by assuming,e. g. for the expression

〈

aj(t)Bα(t)χ(t)a†
l χ

†
〉

H̃
≈ Fα(t)

〈

aj(t)χ(t)a†
l χ

†
〉

H̃
. (4.8)The expli
it expression for the fun
tions Fα(t) and their derivation for the various 
or-relators in Eqs. 4.6 and 4.7 
an be found in appendix B. The approximative s
hemeinvolves a fa
torization of vibrational and ele
troni
 operators in the 
orrelation fun
-tions, whi
h is exa
t for vanishing ele
tron-vibration 
oupling. Sin
e the strength of theele
tron-vibration 
oupling in H̃ is proportional to λ1, this approximation is valid for nottoo large values of λ1.Expressions like 〈a†

l χ
†ak(t)a

†
i (t)aj(t)χ(t)

〉 are treated in a mean-�eld like manner,where we negle
t 
orrelations arising from the e�e
tive intera
tion of 
harges on di�erentbases due to non-lo
al ele
tron-vibration 
oupling:
〈

ak(t)a
†
i (t)aj(t)χ(t)a†

l χ
†
〉

≈
〈

ak(t)a
†
i(t)
〉〈

aj(t)χ(t)a†
l χ

†
〉

−
〈

aj(t)a
†
i(t)
〉〈

ak(t)χ(t)a†
l χ

†
〉

.This approximation is based on the same prin
iple as the negle
t of H̃ee in the transformedHamiltonian, the small 
harge density in DNA.The 
orrelators 〈cr
ν(t)a

†
l χ

†
〉 and 〈a†

l χ
†cr

ν(t)
〉 in Eq. 4.6 and 4.7, respe
tively, arise fromthe 
oupling to the ele
trodes and des
ribe the a

ording self-energy. The 
al
ulation ofthese expressions 
an be found in Appendix C.32



4.2 Model and te
hniqueAfter Fourier transformation and 
rossover to the 
ontinuous vibrational spe
trum (seeEq. 4.2) we obtain
∑

j

[(E − ǫk)δjk + tkj] G
(1)
jl (E)

=
〈

aka
†
l

〉

− ∆G
(1)
kl (E) +

∑

j

Σret,L
kj G

(1)
jl (E) +

∑

j

Σret,R
kj G

(1)
jl (E)

+

∫

dωD(ω)

{

−
∑

<ij>

〈

aja
†
i

〉 2λijλ0

ω
G

(1)
kl (E) +

∑

<ij>

〈

aka
†
i

〉 2λijλ0

ω
G

(1)
jl (E)

+
λ2

0

ω

[∫

dteiEtF1(t, ω) G
(1)
kl (t)

]

+
∑

j 6=k

λkjλ0

ω

[∫

dteiEt [F1(t, ω) − 1] G
(1)
jl (t)

]}(4.9)and
∑

j

[(E − ǫk)δjk + tkj ] G
(2)
jl (E)

=
〈

a†
l ak

〉

− ∆G
(2)
kl (E) +

∑

j

Σret,L
kj G

(2)
jl (E) +

∑

j

Σret,R
kj G

(2)
jl (E)

+

∫

dωD(ω)

{

−
∑

<ij>

〈

aja
†
i

〉 2λijλ0

ω
G

(2)
kl (E) +

∑

<ij>

〈

aka
†
i

〉 2λijλ0

ω
G

(2)
jl (E)

+
λ2

0

ω

[∫

dteiEtF2(t, ω) G
(2)
kl (t)

]

+
∑

j 6=k

λkjλ0

ω

[∫

dteiEt [F2(t, ω) − 1] G
(2)
jl (t)

]}

,(4.10)where the ele
tron-vibration intera
tion is des
ribed by the two fun
tions
F1(t, ω) = (N(ω) + 1) e−iωt − N(ω)eiωt

F2(t, ω) = N(ω)e−iωt − (N(ω) + 1) eiωt ,with the Bose fun
tion N(ω).In the wide band limit the retarded right and left ele
trode self-energies are 
onstantand purely imaginary,
Σret,R

jk =
∑

ν

tR∗
k gret

νR(E)tRj = −iΓRδjNδkN

Σret,L
jk =

∑

ν

tL∗
k gret

νL(E)tLj = −iΓLδj1δk1 .We 
an now identify
(E − ǫk)δjk + tjk + i0+ =

[
Gret

0 (E)
]−1

jk
, 33



Chapter 4: Quasi-
oherent transportwhere Gret
0 (E) is the retarded Green fun
tion for the isolated mole
ule without ele
tron-vibration intera
tion. The validity of this equation 
an easily be seen by 
omputingthe equation of motion for Gret(t) for the isolated mole
ule without ele
tron-vibration
oupling.In the equations above, many fa
tors of the kind 〈ak a†

l

〉 appear. The exa
t value forthese is: 〈ak a†
l

〉

H̃
=
∫

dE
2πi

G<
kl(E). In order to have a de
oupled system of equationswe approximate these by 〈ak a†

l

〉

H̃
≈
〈

ak a†
l

〉

H̃el

, where H̃el is the Hamiltonian for theisolated mole
ule (
ompare Eq. 4.3).With all the above approximations we 
al
ulate the retarded Green fun
tion by itera-tion of the self-
onsisten
y equations Eq. 4.9 and 4.10. For a mole
ular DNA 
hain with
N bases the density of states then reads

A(E) = −
1

πN

N∑

i=1

Im
{
Gret

ii (E)
}

.We evaluate the 
urrent using the relation be Meir and Wingreen [93℄ as introdu
ed inSe
tion 3.2.
I =

ie

h

∫

dǫ
(

tr
{[

fL(ǫ)ΓL − fR(ǫ)ΓR
] (

Gret(ǫ) − Gadv(ǫ)
)}

+ tr
{[

ΓL − ΓR
]
G<(ǫ)

})

, (4.11)where fL(ǫ) and fR(ǫ) are the Fermi distributions in the left and right lead, respe
tively.To 
ompute the `lesser' Green fun
tion G<(ǫ), we use the relation [79℄ (see also App. A)
G<(ǫ) = Gret(ǫ)

[
ΣL< + ΣR< + Σ<

vib(ǫ)
]
Gadv(ǫ) .While the lesser ele
trode self-energies, su
h as ΣL<, 
an be determined easily withinthe above approximation for any applied bias, we have to approximate the behavior ofthe lesser self-energy due to the vibrations Σ<

vib. Extending the �u
tuation-dissipationrelation of the equilibrium situation we write
Σ<

vib(ǫ) = −feff(ǫ)
[
Σret

vib(ǫ) − Σadv
vib (ǫ)

]
,with an e�e
tive ele
tron distribution feff = [fL(ǫ) + fR(ǫ)]/2. The expressions for

Σret
vib , Σadv

vib are obtained from the retarded Green fun
tion (see App. A) 
al
ulated fora given bias as explained above. Combining all terms we obtain a 
on
ise expression forthe 
urrent, whi
h 
an be separated into `elasti
' and `inelasti
' parts as
I =

2e

h

∫

dǫ [Tel(ǫ) + Tinel(ǫ)] [fL(ǫ) − fR(ǫ)] ,where we identify the `elasti
' and `inelasti
' transmission fun
tions [115, 116℄
Tel(ǫ) = 2 tr

{
ΓRGret(ǫ)ΓLGadv(ǫ)

} (4.12)
Tinel(ǫ) =

i

4
tr{(ΓR + ΓL)Gret(ǫ)

[
Σret

vib(ǫ) − Σadv
vib (ǫ)

]
Gadv(ǫ)} . (4.13)34



4.3 ResultsNote that also the `elasti
' transmission depends on the e�e
ts of vibrations, sin
e theself-
onsistent evaluation of the Green fun
tion is performed in the presen
e of vibrationsand environment. The inelasti
 
ontribution 
an also be termed `in
oherent', as typi
allythe ele
trons will leave the DNA at a lower energy than they enter it.4.3. ResultsIn this se
tion we analyze the e�e
t of vibrations on the ele
troni
 properties of DNA, i.e.,we determine the density of states, the transmission and the 
urrent. As expli
it exampleswe 
onsider homogeneous and inhomogeneous DNA sequen
es of 26 base pairs in thepresen
e of a single vibrational mode as des
ribed in the previous se
tion. For simpli
ity,we 
ouple the left and right ele
trodes symmetri
ally to the DNA, so ΓL = ΓR ≡ Γ, andwe 
hoose Γ = 0.1 eV. We further assume that the bias voltage Vb drops symmetri
allya
ross both ele
trode-DNA interfa
es.4.3.1. Homogeneous Poly-(GC) DNAFor a homogeneous DNA 
onsisting of 26 Guanine-Cytosine base pairs we obtain a band-like density of states displayed in Fig. 4.3. With the fairly small hopping element of
0.119 eV (see Tab. 2.1) for this �nite system one 
an still resolve the peaks due tosingle ele
troni
 resonan
es, espe
ially near the van-Hove-like pile up of states near theband edges. All states are delo
alized over the entire system. The inset displays theelasti
 transmission, showing that the states have a high transmission of Tel ∼ 0.5, withthe states at the upper band edge showing the highest values. Both density of statesand elasti
 transmission show a strong asymmetry, whi
h is a dire
t 
onsequen
e of thenon-lo
al ele
tron-vibration 
oupling in this model.To further elu
idate this 
onne
tion we take a 
loser look at the upper and lowerband edge of the density of states (see Fig. 4.4). Without ele
tron-vibration 
oupling(solid 
urve) we see the ele
troni
 resonan
es of equal height, positioned at the energies
orresponding to the `Blo
h'-like states of this �nite size tight-binding 
hain. If wein
lude only lo
al ele
tron-vibration 
oupling (dashed line), vibrational satellite statesappear, and the spe
tral weight of the original ele
troni
 resonan
es de
reases, 
onsistentwith the spe
tral sum rule. Note that the displayed vibration satellites are not satellitesof the displayed ele
troni
 states, but emerge from other states at higher and lowerenergies. Indeed the di�eren
e in peak positions is not equal to ~ω0. In
lusion of thenon-lo
al 
oupling λ1 shifts the original ele
troni
 resonan
e positions (dashed-dottedline). In the present example, with positive sign of λ1, the resonan
es are shifted to the`outside', 
orresponding to an e�e
tive in
rease in bandwidth; for the opposite sign of λ1the resonan
es shift to the `inside'. Furthermore, a distin
t asymmetry of the resonan
esis observed, i.e. the upper band edge states have a larger peak height than the lowerband edge states. This asymmetry in the density of states 
omes with a 
orrespondingasymmetry in the elasti
 transmission, see Fig. 4.3 for the overall view.As shown in Fig. 4.5 the 
oupling to vibrations strongly in
reases the zero-bias 
on-du
tan
e at low temperatures, whereas at high temperatures the 
ondu
tan
e slightly35
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Figure 4.3: Density of states and transmission of Poly-(GC) with 26 base pairs and the follow-ing parameters: base pair onsite energy ǫG = −0.35 eV, Fermi energy EF = 0 eV,vibrational energy ~ω0 = 0.01 eV, 
uto� ~ωc = 0.03 eV, linewidth Γ = 0.1 eV androom temperature kBT = 0.025 eV. The strong asymmetry of the 
urves withrespe
t to the band 
enter is a 
onsequen
e of the non-lo
al ele
tron-vibration
oupling λ1.
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Figure 4.4: Density of states of Poly-(GC) with 26 base pairs and parameters as in Fig. 4.3.The solid line shows the purely ele
troni
 resonan
es. In
lusion of only a lo
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tron-vibration 
oupling λ0 redu
es the weight at the original ele
troni
 reso-nan
e in favor of `vibrational satellites' (dashed line). The addition of a non-lo
alele
tron-vibration 
oupling λ1 (dash-dotted line) introdu
es shifts of the resonan
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Figure 4.5: Zero-bias 
ondu
tan
e and I-V -
hara
teristi
s for Poly-(GC) with 26 base pairsand parameters as in Fig. 4.3. The in
lusion of vibrations in
reases the zero-bias
ondu
tan
e at low temperatures (kBT roughly below ~ω0) by several orders ofmagnitude. At room temperature, however, the zero bias 
ondu
tan
e is slightlyredu
ed. Inset: the I-V -
hara
teristi
s shows a `semi
ondu
ting' behavior at roomtemperature. The non-lo
al ele
tron-vibration 
oupling λ1 in
reases both the non-linear 
ondu
tan
e in the gap and around the threshold, leading to a slightlyenhan
ed 
urrent.de
reases (dashed and dash-dotted line). This e�e
t has been observed before, e.g. inRef. [95℄. At low temperatures, the 
ondu
tan
e is in
reased sin
e the density of statesat the Fermi energy is e�e
tively enhan
ed due to (broadened) vibrational `satellite' res-onan
es. The transport remains `elasti
', i.e. ele
trons enter and leave the DNA at thesame energy (�rst 
ontribution to the 
urrent Eq. 4.12). At su�
iently high tempera-tures, however, the ba
k s
attering of ele
trons due to vibrations redu
es the 
ondu
tan
ein 
omparison to situation without ele
tron-vibration 
oupling (solid line).The inset of Fig. 4.5 shows a typi
al I-V -
hara
teristi
 for the system. A quasi-semi
ondu
ting behavior is observed, where the size of the 
ondu
tan
e gap is determinedby the energeti
 distan
e of the Fermi energy to the (
losest) band edge. After 
rossingthis threshold, the 
urrent in
reases roughly linear with the voltage until at larger biasit saturates when the right 
hemi
al potential drops below the lower transmission bandedge. Small step-like wiggles due to the `dis
rete' ele
troni
 states are visible at lowtemperature (not shown), but are smeared out at room temperature. The 
urrent isdominated by the elasti
 transmission, as expe
ted for a homogeneous system.The non-lo
al 
oupling has a quantitative e�e
t on the nature of the I-V -
urve. Thezero bias 
ondu
tan
e as well as the non-linear 
ondu
tan
e around the threshold arein
reased by 
lose to a fa
tor 1.2. This in
rease is dire
tly related to the enhan
ementof the density of states and elasti
 transmission around the upper band edge (see Figs.4.3 and 4.4). 37
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Figure 4.6: Density of states of an inhomogeneous DNA with sequen
e (5'-CAT TAA TGCTAT GCA GAA AAT CTT AG-3'). We 
hose the following parameters: GC onsiteenergy ǫG = −0.35 eV, AT onsite energy ǫA = −0.86 eV , Fermi energy EF = 0 eV,vibration energy ~ω0 = 0.01 eV, 
uto� ~ωc = 0.03 eV, linewidth Γ = 0.1 eV androom temperature kBT = 0.025 eV. The density of states is fragmented into`bun
hes' of strongly lo
alized states with very low elasti
 transmission.4.3.2. Inhomogeneous DNAInhomogeneous DNA sequen
es show a transport behavior whi
h di�ers signi�
antlyfrom that of the homogeneous Poly-(GC) sequen
e. As a spe
i�
 example, we analyzethe sequen
e 5'-CAT TAA TGC TAT GCA GAA AAT CTT AG-3' (plus 
omplementarystrand), whi
h has been investigated experimentally by Porath et al. [65℄. The densityof states is displayed in Fig. 4.6. Rather than tra
es of bands it now shows dis
rete`bun
hes' of states due to the disorder in the sequen
e. All states are strongly lo
alized,extending over at most a few base pairs [108℄. The right-most (largest energy) bun
h ofstates is due to the GC base pairs. Two of these GC pairs are the only base pairs thatare dire
tly 
oupled to the metalli
 ele
trodes. Note that the equilibrium Fermi level isset at EF = 0 eV, roughly 0.35 eV above these states. The �rst states with mostly AT
hara
ter are lo
ated around −0.7 eV.As to be expe
ted the elasti
 transmission through these lo
alized states is extremelylow. The largest 
ontribution to the elasti
 transmission stems from the AT-like statesaround an energy ǫA = −0.86 eV (note that the 
onsidered sequen
e is AT ri
h). Buteven these states have an elasti
 transmission of less than 10−14 for the parameters weuse. Consequently, the `elasti
' quasi-ballisti
 transmission of ele
trons is 
ompletelynegligible for the 
onsidered sequen
e.In spite of the lo
alization of the ele
tron states, a rather signi�
ant 
urrent 
an betransmitted, as displayed in Fig. 4.7. It is due to the inelasti
 
ontributions to trans-port, where ele
trons dissipate (or absorb) energy during their motion through the DNA.Roughly speaking, the transported ele
trons ex
ite the vibrations whi
h in turn either38



4.3 Resultsdissipate their energy to the environment or `promote' other ele
trons, thus in
reasingtheir probability to hop to neighboring but energeti
ally distant base pairs. This inelasti
transmission strongly depends on the spe
i�
 states (in 
ontrast to the band-like trans-mission for the homogeneous sequen
e). As a 
onsequen
e, the inelasti
 transmission ofdi�erent states 
an di�er by several orders of magnitude. Together with the bun
heddensity of states this leads to the step-like behavior for the 
urrent displayed in Fig. 4.7.The �rst step 
entered around Vb ∼ 0.7 V roughly 
orresponds to states with GC 
hara
-ter, whereas the se
ond step at 1.4V 
orresponds to hybridized states with mixed AT-GC
hara
ter. Here, the GC states display a larger inelasti
 transmission as 
an be seen fromthe large non-linear 
ondu
tan
e peak around Vb ∼ 0.6 − 0.7 V (see inset of Fig. 4.7).The non-lo
al ele
tron-vibration 
oupling λ1 for this sequen
e leads to qualitative
hange of the I-V -
hara
teristi
s, depending on the details of the nature of the statesand therefore expli
itly on the DNA sequen
e. The 
urrent on the lowest bias plateauis in
reased relative to the 
ase with only lo
al ele
tron-vibration 
oupling, although theGC states do barely shift towards the Fermi energy. However, the inelasti
 transmissionof the states is slightly in
reased (see inset), leading to an in
reased 
urrent on the �rstplateau (dashed line).In 
ontrast, the 
ondu
tan
e due to states with mixed AT-GC nature is mu
h redu
ed(almost by a fa
tor of two, see middle peak in the inset of Fig. 4.7) whi
h leads to asmaller in
rease of the 
urrent for the middle step. Obviously, the transmission of thesemixed states is redu
ed by the `vibration assisted ele
tron hopping'. On the other hand,the last step at ∼ 2V is almost una�e
ted.While the 
hanges of the I-V -
hara
teristi
s due to non-lo
al ele
tron-vibration 
ou-pling are relatively small for the present sequen
e and model parameters, the observedsensitivity of the inelasti
 transmission suggests that other sequen
es 
ould display mu
hlarger e�e
ts. Furthermore, quantum 
hemistry 
al
ulations [50℄ suggest that the lo
aland non-lo
al ele
tron-vibration 
ouplings 
an be of the order of ∼ 10 meV, i.e. largerthan what we 
onsidered here. Inhomogeneities in the ele
tron-vibration 
oupling, not
overed in the present 
al
ulation, might have a further impa
t.The DNA sequen
e we 
onsidered was investigated in transport experiments, and weshould 
ompare the experimental and theoreti
al results. As some important fa
torsare still not well determined, a quantitative 
omparison is not feasible. However, weobserve both in experiment and theory roughly a `semi
ondu
ting' I-V -
hara
teristi
swith (sometimes) steplike features. The size of the 
urrents is roughly 
omparable, ofthe order of ∼ 80 nA at a bias of Vb = 1 V. As the 
hoi
e of the position of the Fermienergy de�nes the size of the `semi
ondu
ting' gap, this gap 
ould be adjusted to �tthe experiment. On the other hand, the value of the 
urrent for this sequen
e (withparameters derived from quantum 
hemistry 
al
ulations) 
an not be simply s
aled by
hanging a single `free' parameter like the ele
trode-DNA 
oupling Γ.For the 
ase of the homogeneous sequen
e, the 
urrent at a given bias (say, at Vb = 1 V)grows monotoni
ally with in
reasing Γ (as long Γ is smaller than the hopping amplitude
tij), as is expe
ted from quasi-ballisti
 Landauer-type transport. In 
ontrast, for theinhomogeneous sequen
e, the 
urrent is a non-monotoni
 fun
tion of Γ, see Fig. 4.8. Inparti
ular, the 
urrent at the �rst plateau (at Vb = 1V) initially grows as we de
rease
Γ from the value used in the above �gures (Γ = 0.1 eV), up to a point at whi
h the39
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Figure 4.7: I-V -
hara
teristi
s and di�erential 
ondu
tan
e for an inhomogeneous DNA withsequen
e (5'-CAT TAA TGC TAT GCA GAA AAT CTT AG-3'). Parameters arethe same as in Fig. 4.6. The in
lusion of a non-lo
al ele
tron-vibration 
oupling
λ1 leads to 
hanges in the 
ondu
tan
e, depending on the nature of the relevantstate.
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4.4 Summaryimaginary part of the vibration self energy Σvib is of the same size as Γ. This happensaround Γmax ∼ 0.01 eV. The 
urrent at Γmax is of order of ∼ 500 nA. If Γ is de
reasedfurther, the 
urrent drops rapidly from the maximal value.1 On the other hand, if Γis in
reased above the value Γ = 0.1 eV, the 
urrent also drops initially, before at verylarge Γ quasi-ballisti
 transport be
omes dominant and the 
urrent in
reases again (notshown in the �gure).Summarizing these results, we 
on
lude that for the given model parameters, i.e. forvalues of Γ in the large range 1−200 meV, likely to be realisti
 for present-days transportexperiments in DNA, the 
urrent at the �rst plateau lies in the range of 50 − 500 nA.4.4. SummaryTo summarize, in this 
hapter we have presented a te
hnique that allows the 
ompu-tation of ele
tron transport through short sequen
es of DNA, in
luding lo
al and non-lo
al 
oupling to vibrations and a dissipative environment. Using an equation-of-motionapproa
h we identify elasti
 and inelasti
 
ontributions to the 
urrent. For homoge-neous DNA sequen
es, the transport is dominated by elasti
 quasi-ballisti
 
ontributionsthrough a band-like density of states (Fig. 4.3,4.4), whi
h display an asymmetry due tothe non-lo
al ele
tron-vibration 
oupling. The 
oupling to vibrations strongly enhan
esthe zero-bias 
ondu
tan
e at low temperatures. The 
urrent at �nite bias above the`semi
ondu
ting' gap, however, is only quantitatively modi�ed by the non-lo
al ele
tron-vibration 
oupling (Fig. 4.5). For inhomogeneous DNA sequen
es, the transport is almostentirely due to inelasti
 pro
esses, the e�e
tiveness of whi
h is strongly sequen
e depen-dent (Fig. 4.6). For the 
onsidered example sequen
e the non-lo
al ele
tron-vibration
oupling qualitatively modi�es the I-V -
hara
teristi
s (Fig. 4.7). We also point out thatthe 
urrent through inhomogeneous DNA sequen
es depends non-monotoni
ally on theele
trode-DNA 
oupling Γ (Fig. 4.8).

1Note that our assumption Γ >> λ0 breaks down at some point. Nevertheless, the de
rease of the
urrent at very small Γ makes physi
al sense. 41





5. In
oherent polaron hopping:Fermi's Golden Rule
5.1. De�nition of the ProblemIn the previous 
hapter we have studied the in�uen
e of vibrations on the ele
troni
transport in DNA when some 
oheren
e of transport is retained and we do not have aself-trapping of the ele
trons due to intera
tion with the vibrations. With this transportme
hanism extremely high 
urrent as measured in the groups of Porath or Tao [64,65℄ areexplainable. On the other hand, many experiments and ab initio 
al
ulations indi
atethat small polarons are formed in DNA, as argued in Chapter 2. The a
tual size ofthe polaron is still 
ontroversially dis
ussed, but it is at most a few bases, maybe evenrestri
ted to a single base. In this limit, the ele
trons be
ome lo
alized and transport isa sequen
e of in
oherent hopping pro
esses. The intera
tion with vibrations is on onehand the sour
e of lo
alization, but on the other hand it provides the ne
essary energyto over
ome the barriers posed by the lo
alization.We model the ele
troni
 properties of the DNA just as explained in the previous Se
-tions 4.1 and 2.1. In 
ontrast to the previous 
hapter, where we 
onsidered vibrationsextended over the whole mole
ule, we now 
onsider lo
al vibrations to allow the formationof small polarons. We therefore 
onsider that every base pair i 
an vibrate independentlyfrom the other base pairs, i. e. every site is 
onne
ted to independent os
illators. Thevibrational frequen
y ωαi and the strength of the lo
al 
oupling to the 
harge density(here we only 
onsider diagonal ele
tron-vibration 
oupling terms) λαi 
an in generaldepend on the vibrational mode α and on the base pair i that is vibrating. Throughoutthis 
hapter we will restri
t ourselves to one vibrational mode per base pair.We will evaluate the rates for polaron hopping in the spirit of what is known as the
P (E)-theory for ele
tron tunneling in a dissipative environment modeled by a bath ofos
illators [117�119℄. Here, instead of a bath of os
illators we have for ea
h DNA basepair one lo
alized vibrational mode whi
h, however, is broadened due to the 
oupling toa dissipative environment. 43



Chapter 5: In
oherent polaron hopping: Fermi's Golden Rule

Figure 5.1: Ball-sti
k representation of a guanine-
ytosine base pair. The labeled bonds d1,
d2 and d3 are distorted the most, when the base pair is 
harged. The 
harge ismainly lo
alized on the guanine base (not shown). The pi
ture is taken from [47℄.5.2. Model and te
hnique5.2.1. HamiltonianTo des
ribe the situation dis
ussed above, we 
onsider the Hamiltonian H = Hel + HL +

HR + HT,L + HT,R + Hvib + Hel−vib + Hbath, with
Hel =

∑

i

ǫia
†
iai −

∑

<ij>

tija
†
iaj

HT,L + HT,R =
∑

ν,r,i

[

trc†νrai + tr∗a†
icνr

]

Hvib =
∑

i

~ωi

(

B†
i Bi +

1

2

)

Hel−vib =
∑

i

λi a
†
iai

(

Bi + B†
i

)

. (5.1)The �rst term Hel des
ribes the ele
trons in the DNA 
hain just as introdu
ed in theprevious 
hapter, with onsite energies and hopping integrals for next-neighbor hoppingtaken from ab initio 
al
ulations. Also, the terms HL,R(not written expli
itly, see Chap. 4)with r = L, R refer to the left and right ele
trodes, with a �at density of states ρe (wideband limit). The details of the 
oupling between the DNA and the ele
trodes are notthe fo
us of this work. For our purposes it is su�
iently des
ribed by HT,L + HT,R withtunneling amplitudes assumed to be independent of the base pair i and the quantumnumbers of the ele
trode states ν. The 
oupling strength is then 
hara
terized by theparameter ΓL,R ∝ ρe|t
L,R|2.The vibrational degrees of freedom of base i are des
ribed by Hvib, with bosoni
 opera-tors B†

i and Bi for the mode with frequen
y ωi. The 
oupling of the ele
trons on the DNAto the vibrational modes is des
ribed by Hel−vib, where λi is the lo
al ele
tron-vibration
oupling strength. Here we only 
onsider the so-
alled stret
h mode with frequen
y
~ωi = 16 meV for a GC base pair and ~ωi = 11 meV for an AT base pair, whi
h 
ou-ple strongly to the ele
trons, as shown by Starikov [50℄. Furthermore, Alexandre et al.44



5.2 Model and te
hniqueshowed that in the formation of a polaron by pla
ing an additional 
harge on a guanine-
ytosine base pair, the bonds with the strongest distortion, where the hydrogen bonds(labeled d2 and d3 in Fig. 5.1) between G and C [47℄. The stret
h mode is exa
tly thevibrational mode whi
h 
hanges this bond distan
e (see also Fig. 4.2).The 
oupling strengths are 
hosen in su
h a way that the reorganization energy orpolaron shifts �t the values extra
ted from experiments and listed by Olofsson et al,
∆A = 0.18 eV and ∆G = 0.47 eV [46℄. These values probably underestimate the e�e
t ofthe solvent on the reorganization energy, but give an idea of the magnitude of energiesinvolved in the polaron formation.The vibration of ea
h base pair i is 
oupled to the lo
al environment, Hi,bath, themi
ros
opi
 details of whi
h do not matter. Just as explained in the previous se
tion, this
hanges the vibrations' spe
tra from dis
rete modes ωi to 
ontinuous spe
tra, di�erentfor both types of base pairs,

Di(ω) = − i

∫

dteiωtθ(t)
〈{

B†
i (t) + Bi(t), B

†
i + Bi

}〉

=
1

π

(
ηi(ω)

(ω − ωi)2 + ηi(ω)2
−

ηi(ω)

(ω + ωi)2 + ηi(ω)2

)

. (5.2)with frequen
y dependent broadening ηi(ω). [115℄ The a
tual form of ηi(ω) depends onthe properties of the bath. A reasonable 
hoi
e whi
h assures also 
onvergen
e at low andhigh frequen
ies is ηi(ω) = η0
ω3

ω3
i

θ(ωc −ω) with η0 = 0.5 meV and a 
uto� of the order of
~ωc = 0.045 meV. The 
oupling to the bath introdu
es the dissipation, whi
h is 
ru
ialfor the stability of the DNA mole
ule in 
urrent 
arrying situations where substantialamount of heat 
an be produ
ed in the DNA.5.2.2. Lang-Firsov TransformationIn order to des
ribe the system with strong ele
tron-vibration 
oupling we �rst applythe so-
alled polaron or Lang-Firsov unitary transformation just as explained previously,but now 
onsidering the lo
al nature of the vibrations,

H̃ = eSHe−S .The generator of the Transformation is given by
S = −

∑

i

λi

~ωi

a†
iai

[

Bi − B†
i

]

.We introdu
e transformed ele
tron and vibrational operators,
ãi = aiχi

B̃i = Bi −
λi

~ωi
a†

iaiand polaron operators
χi = exp

[
λi

~ωi

(Bi − B†
i )

]

. 45



Chapter 5: In
oherent polaron hopping: Fermi's Golden RuleOperators χi with di�erent indi
es i a
t on di�erent vibrational states, therefore they
ommute at all times. In terms of these quantities the Hamiltonian reads
H̃ =H̃0 + H̃ ′ (5.3)
H̃0 =

∑

i

(ǫi − ∆i)a
†
iai +

∑

i

~ωi

(

B†
i Bi +

1

2

)

+ HL + HR (5.4)
H̃ ′ = −

∑

<ij>

tij a†
iχ

†
iajχj (5.5)

+
∑

ν,r,i

[

trc†νraiχi + tr∗a†
iχ

†
icνr

] (5.6)
∆i =

∫

dωDi(ω)
λ2

i

~ω
. (5.7)In 
ontrast to the Hamiltonian H̃ (Eq. 4.3) of the previous 
hapter, here no e�e
tiveele
tron�ele
tron intera
tions H̃ee arise. The reason for their o

urren
e was, that we
onsidered a vibration extended over the whole mole
ule, so ele
trons 
ould `intera
t'with ea
h other via the vibration. The lo
al nature of the vibrations 
onsidered heredoes not lead to su
h an intera
tion. From the de�nition of the polaron shift (Eq. 5.7)we 
an 
al
ulate the ele
tron-vibration 
oupling strengths assuming polaron shifts andvibrational frequen
ies listed above

λG = 0.086 eV (5.8)
λA = 0.045 eV . (5.9)A perturbative treatment of the Hamiltonian H would not make sense, due to thestrong ele
tron-vibration 
oupling strengths, but after the Lang-Firsov transformationwe 
an pro
eed studying the e�e
t of strong ele
tron-vibration 
oupling in perturbationtheory in H̃ ′. The small parameters are tij/∆i and tr/∆i, whi
h allows trun
ating theperturbation expansion at lowest non-vanishing order in these parameters. From here onwe will use the shifted onsite energy ǫ̃i = ǫi − ∆i in all expressions.Rate equation and 
urrentAs remarked in Se
. 3.1, the small-polaron theory 
overs two limits of transport. Atsu�
iently low temperatures polarons form bands with bandwidth

W ≃ W0 exp

[

−

(
λ

~ω

)2

coth

(
~ω

2kBT

)]

,where W0 denotes the ele
troni
 bandwidth without vibrations. [83℄ At high temperaturesthe bandwidth W de
reases exponentially as the in
reasing number of multi-phononpro
esses destroy the 
oheren
e, and the band pi
ture 
eases to be valid. Transportis then a

omplished by a sequen
e of in
oherent polaron hops. A rough estimate for46



5.2 Model and te
hniquethe 
ross-over temperature is kBT ≃ ~ω [4 ln (λ/~ω)]−1. [80℄ For the ele
tron-vibration
oupling strengths of interest in the present problem, room temperature is already wellabove this limit.To des
ribe room-temperature transport it is therefore su�
ient to 
onsider a rateequation for the diagonal elements of the single-parti
le density matrix, i.e. the o
-
upation numbers of the sites ρl(t) =
〈

a†
l (t)al(t)

〉. These o

upation numbers evolvea

ording to a master equation with transition rates whi
h we obtain in an expansionin H̃ ′ from Fermi's Golden Rule. If we 
onsider the rate for a hopping pro
ess frombase pair (site) l to m, we have to take into a

ount that also the vibrational states may
hange. If the initial and �nal states of the 
oupled system are denoted by I and F , therates are
Wlm = 2π

~
|tlm|

2
∣
∣
〈
F
∣
∣a†

mχ†
malχl

∣
∣ I
〉∣
∣
2
δ(EI − EF ).In the following the vibrational states are not expli
itly 
onsidered. Therefore, we tra
eout the vibrational degrees of freedom Xl by summing over all initial vibrational statesweighted by the appropriate thermal probability and over all �nal states. Thus thetransition rate from a state with site l initially o

upied and site m initially emptybe
omes

Wlm =
2π

~
|tlm|

2
∑

Xl,X
′
l

̺l(Xl) |〈X
′
l |χl|Xl〉|

2

×
∑

Xm,X′
m

̺m(Xm)
∣
∣
〈
X ′

m

∣
∣χ†

m

∣
∣Xm

〉∣
∣
2

× δ(ǫ̃l − ǫ̃m + EXl
− EX′

l
+ EXm

− EX′
m
) ,where ̺l(Xl) is the probability of �nding vibration l in state Xl. Rewriting the energy
onserving delta-fun
tion by its Fourier transform we obtain

Wlm =
1

~2
|tlm|

2

∫

dt e
i
~
(ǫ̃l−ǫ̃m)tPl(t)Pm(t) , (5.10)where

Pl(t) =
∑

Xl

̺l(Xl)
〈

Xl

∣
∣
∣χ

†
l (t)χl(0)

∣
∣
∣Xl

〉 (5.11)
=Ll exp

[
∫

dωDl(ω)

(
λl

~ω

)2
cos (ω [t + i~β/2])

sinh (~ωβ/2)

]

,with
Ll =exp

{

−

∫

dωDl(ω)

(
λl

~ω

)2

coth (~ωβ/2)

}

. (5.12)The fun
tion Pl(t) is known from the `P (E) theory', whi
h des
ribes tunneling in adissipative ele
tromagneti
 environment, modeled by an in�nite set of os
illators. Here,47



Chapter 5: In
oherent polaron hopping: Fermi's Golden Ruleinstead of su
h a bath we have broadened lo
al vibrational modes of two DNA basepairs involved in the hopping pro
ess. Figure 5.2 shows the P (E) fun
tion and the
ombinations of it appearing in the rates introdu
ed above and below. The parametersused in the 
al
ulation were introdu
ed in the previous se
tion (Se
. 5.2). The fun
tionsin Fig. 5.2 give the probability for a hopping or tunneling pro
ess for an energy di�eren
e
E between initial and �nal state. The general shape is a Gaussian with maximum at
−∆ and height about ∝ ∆.

Figure 5.2: Various 
ombinations of P(E) fun
tions, where the index indi
ates the two typesof bases, G (guanine) and A (adenine). The 
ombination PAPG stands for the
onvolution ∫ dE′PA(E−E′)PG(E′) and similar for the other 
ombinations, whi
hare relevant in the hopping transitions from e. g. an A base to a G base. Theused parameters were introdu
ed in Se
. 5.2, in parti
ular, the polaron shifts are
∆A = 0.18 eV and ∆G = 0.47 eV.The 
al
ulation for the tunneling transition between the left (L) and right (R) ele
-trodes and the �rst or last site of the DNA 
hain l = 1 or l = N pro
eeds similarly,ex
ept that one has to tra
e also over the ele
trodes' ele
troni
 states, while we have to
onsider only the lo
al vibration of the one site involved. Hen
e we have for the rates onthe left and right jun
tion between ele
trodes and DNA 
hain

W L
− =ΓL

∫
dE

2π~
(1 − fL(E))P1(ǫ̃1 − E) (5.13)

W L
+ =ΓL

∫
dE

2π~
fL(E)P1(E − ǫ̃1) , (5.14)where ΓL/R = 2π|tL/R|2ρe, fL/R(E) is the Fermi fun
tion in left/right lead, and P1/N(E)is the Fourier transform of P1/N(t).48



5.2 Model and te
hniqueThe master equation for sites in the DNA 
hain thus reads
d

dt
ρl =

∑

m

[

− ρl (1 − ρm)Wlm + (1 − ρl) ρmWml

]

, (5.15)where the sum over m is restri
ted to nearest neighbors of l 1. For the base pair at theleft end of the 
hain we get
d

dt
ρ1 = − ρ1W

L
− + (1 − ρ1) W L

+

+
[

− ρ1 (1 − ρ2)W12 + (1 − ρ1) ρ2W21

]

, (5.16)and similar for the right interfa
e.As is obvious from Eqs. 5.15 and 5.16 the single-parti
le 
harge densities are 
onsid-ered to be un
orrelated. This, of 
ourse, is only true approximatively, sin
e the o

upa-tions of di�erent sites are e�e
tively linked by the hopping rates. As we only 
onsidernext neighbor hopping, the most important 
harge�
harge 
orrelation is the one betweenneighboring sites. As we will explain in the next 
hapter, the 
orrelations 
an introdu
eanother energy s
ale depending on the 
onsidered sequen
e. For now we will negle
tthese 
orrelations as the most important features arise already without them.We are interested in the steady state, dρl/dt = 0, whi
h develops for a 
onstant appliedbias. After solving the resulting self-
onsistent equations iteratively we 
an 
al
ulate thenon-equilibrium 
urrent through the left lead,
IL = e

[

− ρ1W
L
− + (1 − ρ1)W L

+

] (5.17)or for the right lead, whi
h is the same sin
e the 
urrent is 
onserved, IL = −IR.Dis
ussion of the hopping ratesFor the hopping rates Eq. (5.10) the situation di�ers from the usual P (E) theory: insteadof one in�nite vibrational bath ea
h base pair (m and l) has its own vibration degreeof freedom and we get produ
ts Pm(t)Pl(t), whi
h be
ome 
onvolutions in energy spa
e.The rates still satisfy detailed balan
e
Wlm = Wml exp

[
ǫ̃l − ǫ̃m

kBT

]

, (5.18)where ǫ̃m and ǫ̃l are the onsite energies of base pairs m and l, respe
tively.For large times, Pl(t) approa
hes a 
onstant, lim
t→∞

Pl(t) = Ll. Therefore it 
an beseparated into two terms, one de
aying in time and one 
onstant:
Pl(t) = P̃l(t) + Ll . (5.19)1In
luding also hopping to more distant bases, one 
ould a

ount for the superex
hange me
hanism,dominant for guanine bases 
loser than three base pairs. This is, however, not important for thesequen
es 
onsidered in this work, so it was not in
luded in the numeri
al evaluation. 49



Chapter 5: In
oherent polaron hopping: Fermi's Golden RuleA

ordingly we 
an write
Pl(t)Pm(t) = P̃l(t)P̃m(t) + LmP̃l(t) + LlP̃m(t) + LmLl .The produ
t P̃l(t)P̃m(t) des
ribe transitions, where the number of vibrations 
hanges onboth sites, the next two terms des
ribe 
hanges in one of the two sites only, while thelast term des
ribes transitions without 
hanges in the vibration state. When performingthe time integration in Eq. (5.10), this last term leads to a divergen
e when the two siteenergies are degenerate

1

2π~

∫

dt e
i
~
(ǫ̃l−ǫ̃m)tLmLl = LlLmδ (ǫ̃l − ǫ̃m) , (5.20)sin
e in this situation the phenomenon of resonant tunneling o

urs. In this situationthe perturbation theory limited to se
ond order is not su�
ient. Rather, one should sumup in a `ladder'-approximation an in�nite series of su
h terms, leading to a result with�nite rates. [76, 120, 121℄ In the next 
hapter we will study the same system in moredetail using a diagrammati
 approa
h and, as we will show, this `ladder'-approximationwill give rise to the 
orrelation e�e
ts mentioned in the previous se
tion.Alternatively, we 
an phenomenologi
ally regularize the divergen
e of Eq. (5.20) byformally introdu
ing an imaginary part to the level energies ǫ̃l. This is motivated by thefa
t that they a
quire a �nite width due to the intera
tion with the vibrations or leads.In this way the hopping rates be
ome �nite. We further note that the 
ontribution ofthe vibration-free transitions (the 
onstant term of Eq. 5.20) is multiplied by the fa
tor

LlLm. In our 
ase, this fa
tor is exponentially small. This 
orresponds to the fa
t thatwe 
onsider the limit where polaron hopping by far dominates polaron band transport.We therefore 
an ignore the terms ∝ LmLl in our analysis all together, i.e. we subtra
tthem in Eq. (5.10). The regularized hopping rates are therefore
Wlm =

|tl,m|
2

~2

∫

dt e
i
~
(ǫ̃l−ǫ̃m)t

[

Pl(t)Pm(t) − LlLm

]

. (5.21)To give a feeling for the relationship between 
urrent in a system and the o

upationnumbers, let us 
onsider two neighboring sites (1 and 2) of a system with a 
urrent I anda given o

upation of of site 1. The rate for a hopping pro
ess from site 1 to 2 is W12and the ba
kward hopping rate is W21 = W12 exp [−β∆E], where ∆E is the di�eren
ebetween the onsite energies of site 1 and 2. The o

upation of site 2 is then given by
ρ2 =

ρ1 + I
eW12

ρ1(1 − e−β∆E) + e−β∆E
.In Figure 5.3 the o

upation of site 2 is shown as a fun
tion of the onsite energy di�eren
efor four di�erent values of I/eW12, where the o

upation of site 1 is assumed to be

ρ1 = 0.9. Clearly, the o

upation of site 2 is always lower if site 2 has higher energy(negative ∆E). If site 2 has lower energy, the o

upation strongly depends on the 
urrent.For low 
urrent the o

upation 
an be higher than on site 1. The 
urrent, of 
ourse, willbe determined by the applied bias and the stru
ture of the whole system.50



5.3 Results
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Figure 5.3: O

upation of site 2 for given o

upation of site 1 as a fun
tion of the onsite energydi�eren
e for four di�erent values of the 
urrent.5.3. Results5.3.1. Sequen
e e�e
tsUsing the rate equation we will study now the 
harge transport and the non-equilibriumo

upation of the sites for various DNA sequen
es. Both quantities depend stronglyon the spe
i�
 sequen
e. All DNA sequen
es are `semi-
ondu
ting' sin
e the Fermienergy lies in the HOMO-LUMO gap, i.e. well above the HOMO states whi
h 
arrythe transport.Figure 5.4 shows the I-V 
hara
teristi
s for two su
h sequen
es, 5'-GGGGGGGG-3'(green, dash-dotted line) and 5'-GAAAAAAG-3' (bla
k, solid line). The �rst sequen
edisplays the `semi-
ondu
ting' behavior with a gap 
hara
terized by the distan
e of theFermi energy to the onsite energy of the G base (shifted by ∆G). Due to its ele
troni
symmetry the I-V 
hara
teristi
 is symmetri
 with respe
t to the applied bias. On theother hand, the se
ond DNA sequen
e shows strong re
tifying behavior, despite of itsseemingly symmetri
 sequen
e. The reason for this asymmetry lies in the ele
troni
asymmetry of the hopping amplitudes, together with the in
oheren
e of the hoppingpro
esses between DNA base pairs. This 
an easily be understood: For positive bias thehopping `bottlene
k' of the system is at the 
rossover from A to G at the 3' end of thestrand. There, the polaron needs to over
ome an energy barrier mediated by vibrationalex
itations. For negative bias the `bottlene
k' is at the 
rossover from A to G at the5' end of the strand. Due to the opposite dire
tion of the dominating hopping pro
ess,with |tGA| > |tAG| (
ompare Table 2.1), the 
urrent for negative bias is higher thanfor positive bias. Thus, inhomogeneous sequen
es will in general display a re
tifying,semi-
ondu
ting I-V 
hara
teristi
. The re
ti�
ation e�e
t will be weaker for longer andmore disordered sequen
es, as more `bottlene
ks' in either dire
tion appear. Note that nore
tifying behavior would be observed if we model the transport as a 
oherent transitionthrough the total length of the 
hain (`Landauer approa
h'). [96, 122, 123℄ 51
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Figure 5.4: I-V 
hara
teristi
s for two DNA strands with sequen
es 5'-GGGGGGGG-3' (dash-dotted line) and 5'-GAAAAAAG-3' (solid line) with the following parameters:Base pair onsite energies ǫA = −0.26 eV, ǫG = +0.25 eV, polaron shifts ∆A =
0.18 eV and ∆G = 0.47 eV, Fermi energy EF = 0eV, symmetri
 
oupling toleads with linewidths ΓL = ΓR = 0.01 eV, vibrational energies ~ωA = 11meV,
~ωG = 16meV, and room temperature kBT = 25meV. The inset shows theabsolute value of the 
urrent on logarithmi
 s
ale. The 
urrent for the se
ondsequen
e shows re
ti�
ation by a fa
tor of ∼ 200.We now study the sequen
e dependen
e of the 
urrent threshold, or equivalently theposition of the peak in the di�erential 
ondu
tan
e dI/dVb (both di�er only by a termproportional to temperature). Figure 5.5 shows the di�erential 
ondu
tan
e as a fun
tionof the applied bias for 5 di�erent DNA sequen
es 5'-AAAAAAAA-3', 5'-GAAAAAAG-3', 5'-GGAAAAGG-3', 5'-GGGAAGGG-3', and 5'-GGGGGGGG-3'. For the homoge-neous sequen
es the threshold is equal to the onsite energy of the 
onsidered base pairs(eVb = 2ǫ̃A for 5'-AAAAAAAA-3' and eVb = 2ǫ̃G for 5'-GGGGGGGG-3'). For theinhomogeneous sequen
es the threshold lies in between the limits set by the homoge-neous sequen
es, i.e. it is not determined by the internal energy s
ales alone. Thevarying threshold is a 
onsequen
e of the way the 
harges are rearranged along the DNAmole
ule, whi
h of 
ourse is very sensitive to the 
onsidered sequen
e.As dis
ussed above, Eqs. (5.14) des
ribe the tunneling rate from the ele
trode to theadja
ent DNA base pair. The tunneling is modi�ed by the vibrational modes whi
h
an be ex
ited, depending on the applied bias. This `renormalized' tunneling 
an leadto a very broad di�erential 
ondu
tan
e peak whi
h is very di�erent from the usual(derivative of) Fermi fun
tion form, as observed most prominently for the sequen
e 5'-GAAAAAAG-3'. Note that there is nearly no modi�
ation on the low bias side of thepeak.5.3.2. Lo
al 
hemi
al potentialAs dis
ussed above, the I-V 
hara
teristi
 of a DNA mole
ule is a�e
ted by bias andsequen
e dependent 
harge rearrangements on the DNA base pairs. For the ease of52
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Figure 5.5: Di�erential 
ondu
tan
e (logarithmi
 s
ale) as a fun
tion of applied bias for �vedi�erent DNA sequen
es with parameters as in Fig. 5.4. For the homogeneoussequen
es the threshold, i.e. the position of the maximum of the di�erential 
on-du
tan
e, is set by onsite energy of the 
onsidered base pairs. For the inhomoge-neous sequen
es, however, the threshold is not determined by the internal energys
ales alone. The sequen
e-dependent thresholds lie in between the limits set bythe homogeneous sequen
es. For some sequen
es (e.g. 5'-GAAAAAAG-3'), thepeaks are broadened due to `renormalized' tunneling.displaying these e�e
ts, i.e, both small deviations from an o

upation 1, as well as o

u-pations near 0, we introdu
e a lo
al 
hemi
al potential Φi, de�ned by
Φi(Vb) = ǫ̃i − kBT ln

(
1

ρi(Vb)
− 1

)

. (5.22)This quantity is superior to the o

upation in visualizing the non-equilibrium 
hargerearrangement, be
ause it rea
ts sensitively to even small 
hanges in the o

upation.Figure 5.6 shows the I-V 
urves for the two DNA mole
ules 5'-GAAAAAAG-3' (bla
k,solid line) and 5'-GGAAAAGG-3' (red, dashed line), and the inset shows the lo
al 
hem-i
al potential Φ for the last guanine base (at the 3' end) for both sequen
es. Althoughthe sequen
es are very similar, the I-V 
hara
teristi
s di�er strongly in the maximum
urrent and in the way the 
urrent in
reases for in
reasing bias voltage. The 
urrent ofthe se
ond sequen
e has rea
hed a plateau already at about Vb = −0.8 V, whereas thebla
k 
urve has not leveled o� even for Vb = −1.5V . This strong deviation from a Fermifun
tion behavior is in part a 
onsequen
e of the renormalization of the tunneling ratesby the vibrations.This di�eren
e in the I-V 
hara
teristi
s is re�e
ted in the lo
al 
hemi
al potential Φ,most prominently at the last guanine base of both sequen
es, as shown in the inset. Atlow bias both sequen
es behave in the same way: the potential in
reases equally withthe applied bias. The DNA is not 
ondu
ting and therefore, the situation is similar tothe 
harging of a 
apa
itor. At the drop-o� around Vb = −0.3 V, the 
urrent sets inand a potential drop between base pair and lead is established. In 
orresponden
e to the
urrent, the lo
al 
hemi
al potential for the se
ond sequen
e 5'-GGAAAAGG-3' levels53



Chapter 5: In
oherent polaron hopping: Fermi's Golden Rule

-1.5 -1 -0.5 0
V

b
 (V)

-120

-100

-80

-60

-40

-20

0

I 
(p

A
)

GAAAAAAG
GGAAAAGG

-1.5 -1 -0.5 0V
b
 (V)

0

0.05

0.1

0.15

Φ
 (

eV
)

Figure 5.6: I-V 
urves for the two sequen
es 5'-GAAAAAAG-3' (solid line) and 5'-GGAAAAGG-3' (dashed line) (parameters see Fig. 5.4). Despite the very similarsequen
es, the I-V show 
lear di�eren
es. The inset shows the lo
al 
hemi
alpotential Φ for the last guanine base (at the 3' end) for both sequen
es at variousbias voltages. Equivalent behavior between lo
al potential and I-V is visibleo�, whereas the potential of the �rst sequen
e 5'-GAAAAAAG-3' never rea
hes a plateauin the range up to Vb = −1.5 V.To give a feeling for the total 
harge rearrangement Figure 5.7 shows the lo
al 
hemi
alpotential Φi of the two DNA sequen
es for all base pairs i and all voltages. The 
hemi
alpotential lands
ape also suggests how the bias voltage Vb applied to the leads dropsover the entire DNA mole
ule. Regions of good 
ondu
tivity show almost no voltagedrop, as seen for the stret
hes of adenine bases in the middle of both sequen
es. Onthe other hand most of the voltages drops at the base pairs 
lose to the interfa
es. Thepotential/voltage drop over for the entire sequen
e 5'-GAAAAAAG-3' is less than for5'-GGAAAAGG-3'. This suggests that the the �rst sequen
e is better 
ondu
ting thanthe latter, whi
h is in a

ordan
e with their I-V 
urves (Fig. 5.6).5.3.3. Temperature dependen
e and a
tivation energyIn the experiments of Ref. [62℄ the 
urrent through bundles of long homogeneous DNAmole
ules showed a strong temperature dependen
e. The data 
ould be �tted by ana
tivation law I(V ) = α(V ) exp
[
−Ea

kBT

], with a voltage dependent prefa
tor α(V ) thatalso shows a temperature dependen
e for the 
ase poly(dG)-poly(dC) bundles. Asai [53℄has used the Kubo formula for a polaron hopping model to obtain a similar relation forthe linear response 
ondu
tivity.Our results are obtained in a non-equilibrium situation and also show a strong tem-perature dependen
e. An Arrhenius plot of the 
urrent vs. temperature shows linearbehavior, indi
ating that the 
urrent is indeed an a
tivated quantity (though we also ob-serve deviations from a perfe
t Arrhenius law). Fitting the temperature dependen
e ofour data by an Arrhenius law allows us to estimate the a
tivation energy for a given biasvoltage and polaron shift ∆. Figure 5.8 shows the a
tivation energy Ea obtained by this54



5.4 Summary
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Figure 5.7: Lo
al 
hemi
al potential Φ for all base pairs of the DNA strand with sequen
e 5'-GAAAAAAG-3' (bla
k lines) and 5'-GGAAAAGG-3' (red lines) at various biasvoltages and with parameters as in Fig. 5.4. The lo
al potential drops di�erentlyfor the two sequen
es, implying di�erent 
ondu
tion properties.�tting as a fun
tion of the polaron shift at three di�erent bias voltages for a homogeneousDNA strand with 15 GC base pairs. 2 The a
tivation energy is proportional to ∆G, butthe proportionality fa
tor di�ers depending on the applied bias voltages. For voltagessmaller than the gap, the a
tivation energy also in
ludes the energy needed to over
omethe gap. For voltages above the threshold the proportionality fa
tor between a
tivationenergy and polaron shift is about 1/2, 
onsistent with the high-temperature value for thebulk polaron hopping 
ondu
tion Ea = 0.5∆ (see green/dotted line in Fig. 5.8) [76℄.5.4. SummaryIn this 
hapter we have investigated the non-equilibrium polaron hopping transport inshort DNA 
hains with various sequen
es, 
oupled to voltage-biased leads in the frameof rate equations whi
h take into a

ount inelasti
 transitions in the lo
al vibrationdegrees of freedom. Our theory is formally an extension of the so-
alled P (E) theoryof tunneling in a dissipative ele
tromagneti
 environment. We �nd semi-
ondu
ting I-V
hara
teristi
s with thresholds that are very sensitive to the 
onsidered DNA sequen
e.For all non-symmetri
 sequen
es (whi
h is the typi
al 
ase) we observe re
tifying behavior(Fig. 5.4). The sequen
e dependent thresholds are not dire
tly 
onne
ted to intrinsi
energy s
ales (Fig. 5.5), rather they are intimately related to the non-trivial 
harge2We 
hose to set the polaron shift in the ele
troni
 part of the Hamiltonian to zero, so that the gapbetween onsite energy ǫ̃G and the Fermi level is 
onstant for all ele
tron-vibration 
oupling strengths(|ǫ̃G − EF| = 0.25eV ). This allows us to keep the bias voltages �xed for the range of polaron shifts
onsidered. 55
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Figure 5.8: A
tivation energy Ea for polaron hopping of a homogeneous DNA with 15 G-Cbase pairs as a fun
tion of the polaron shift ∆ for voltages Vb = 0.04V (solid line),
Vb = 0.55V (dashed line), and Vb = 0.8V (dash-dotted line). All other parametersas in Fig. 5.4. For 
omparison, the dotted line shows the a
tivation energy ofpolaron hopping 
ondu
tion in bulk at high temperatures (Ea = 0.5∆) [76℄.rearrangement along the DNA mole
ule at �nite bias. We have visualized this e�e
t bydisplaying the lo
al 
hemi
al potential Φi (Fig. 5.7). As expe
ted for polaron hopping,the 
urrent is thermally a
tivated with a temperature dependen
e following an Arrhenius-law. The a
tivation energy Ea is voltage dependent and approa
hes the bulk polaronvalue Ea = 1/2∆ (∆: polaron shift) for voltages above the threshold (Fig. 5.8).
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6. In
oherent polaron hopping:Diagrammati
 approa
hIn the previous 
hapter, we developed a des
ription of polaron hopping in terms of a rateequation with rates obtained by golden rule arguments. This des
ription is restri
ted todiagonal 
omponents of the density matrix and it negle
ts 
orrelations between 
hargedensities of di�erent base pairs mediated by the hopping pro
esses. In this 
hapter wewill introdu
e a diagrammati
 approa
h for polaron hopping in one dimensional system
oupled to two biased leads. This approa
h is a real-time expansion on the Keldysh
ontour and is an extension of a te
hnique developed by Böttger and Bryskin in the late1970s for bulk systems. [76℄6.1. Theory6.1.1. Real-time density matrix expansionThe Hamiltonian we 
onsider has been introdu
ed in detail in the previous 
hapter. Westart with the form H̃ , whi
h was obtained after the Lang-Firsov transformation
H̃ =H̃0 + H̃ ′ (6.1)
H̃0 =

∑

i

(ǫi − ∆i)a
†
iai +

∑

i

~ωi

(

B†
i Bi +

1

2

)

+ HL + HR (6.2)
H̃ ′ = −

∑

<ij>

tij a†
iχ

†
iajχj (6.3)

+
∑

ν,r,i

[

trc†νraiχi + tr∗a†
iχ

†
icνr

] (6.4)
∆i =

∫

dωDi(ω)
λ2

i

~ω
. (6.5)To 
al
ulate quantities of interest, e. g. the o

upation number 〈a†

i (t)ai(t)
〉 and the
urrent in a non-equilibrium situation with applied bias, we make a real time expansionof the density matrix along the Keldysh 
ontour. The evolution in the intera
tion pi
tureintrodu
es the time dependen
e

ai(t) =aie
−i(ǫi−∆i)t = aie

−iǫ̃it

Bi(t) =Bie
−iωit.57



Chapter 6: In
oherent polaron hopping: Diagrammati
 approa
hFrom here on we will use the shifted onsite energy ǫ̃i = ǫi − ∆i in all expressions.The single-parti
le density matrix of the DNA 
hain 
an be written as ρl
k(t) =

〈

a†
k(t)al(t)

〉

H̃
. We express it in the intera
tion pi
ture, assuming that the perturba-tion H̃ ′ is adiabati
ally turned on from the time t0 = −∞,

ρl
k(t) =

〈

U †

H̃0
(t,−∞)a†

kalUH̃0
(t,−∞)

〉

H̃0

e−i(ǫ̃l−ǫ̃k)t,with time evolution operator
UH̃0

(t,−∞) = T

{

exp

[

−i

∫ t

−∞

dtH̃ ′
H̃0

(t)

]}

. (6.6)A Taylor expansion of the time evolution operators in H̃ ′ de�nes a diagrammati
 expan-sion. The forward time-evolution operator UH̃0
(t,−∞) is expanded on the upper bran
hof the Keldysh 
ontour, whereas the ba
kward time-evolution operator U †

H̃0
(t,−∞) isexpanded on the lower bran
h (see Fig. 6.1). The index H̃0 indi
ates that these oper-ators are written in the intera
tion pi
ture. The time ordering operator `T' in Eq. 6.6

Figure 6.1: S
hemati
 drawing of the Keldysh 
ontour and the forward and ba
kward time-evolution operators. The open and 
rossed 
ir
le (the 
lamp) represent the twooperators al and a†k, respe
tively, whi
h are evaluated at time t.(anti-time ordering operator `T̃') ensures that the di�erent times ti, arising from theTaylor expansion of the forward (ba
kward) time evolution operator, are ordered in the
orre
t way along the 
ontour. Note, oftentimes forward and ba
kward time evolutionoperators are 
ombined and a 
ontour ordering operator `Tk' is introdu
ed to ensure the
orre
t ordering of times along the Keldysh 
ontour. [94, 124℄In performing the expansion in the time evolution operators, we obtain 
ertain operatorprodu
ts, whi
h we have to average thermally. Sin
e H̃0 is quadrati
 in the fermionoperators, these 
an be treated using Wi
k's theorem. On the other hand, the vibrationaloperator produ
ts, involving various operators χi(tj), 
annot be fa
tored. The rules forthe evaluation of these operator produ
ts are given in Appendix E. A spe
i�
 term inthe Taylor expansion, is represented by diagram with a 
ertain number of verti
es on theupper and lower bran
h of the Keldysh 
ontour, where ea
h vertex is proportional eitherto tij (a hopping vertex) or triν (a tunneling vertex). The di�erent verti
es are 
onne
tedby fermion and vibrational lines and belong to di�erent times ti, whi
h have to be (anti-)time ordered along the (lower) upper bran
h of the 
ontour.58



6.1 TheoryA feature of this expansion is that 
ertain diagrams are diverging even in �rst order.These diagrams 
an be identi�ed by so 
alled free se
tions (we will introdu
e the 
on
eptof free se
tions below in more detail), that 
ut at least one pair of fermion lines, whereboth lines are asso
iated with sites (the same or di�erent), that have the same onsiteenergy. This is equivalent to the situation of resonant tunneling. In su
h a 
ase an in�nitenumber of diagrams has to be summed up in a way similar to a `ladder'-approximation [76,120, 121℄.1 Note, when 
onsidering only diagonal elements of the single-parti
le matrix,every diagram is diverging. In the derivation of the diagrammati
 rules listed below su
ha ladder summation is performed. This leads to a relation for the time derivative of thedensity matrix
d

dt
ρl

k(t) = − i (ǫl − ǫk) ρl
k(t)

+

∫ t

−∞

dt1
∑

{mi,m′
i}

[

ρm1

m′
1
(t1)W

m1l
m′

1k(t1, t) +
(

δm′
1m1

− ρm1

m′
1
(t1)
)

Vm1l
m′

1k(t1, t)

+ ρm1m2

m′
1m′

2
(t1)W

m1m2l
m′

1m′
2k(t1, t) + ρm1m2m3

m′
1m′

2m′
3
(t1)W

m1m2m3l
m′

1m′
2m′

3k(t1, t) + . . .

]

. (6.7)The important property of the irredu
ible blo
ks W and V is, that they do not diverge.Clearly, this is not a self-
onsistent equation for the single-parti
le density matrix, as itdepends also on higher order density matri
es, e. g.
ρm1m2

m′
1m′

2
(t1) =

〈

U †

H̃0
(t1)a

†
m′

2
am2a

†
m′

1
am1UH̃0

(t1)
〉

. (6.8)Then, also a similar equations for the higher order density matri
es has to be 
omputed,i. e. one has to deal with an in�nite hierar
hy of equations. For pra
ti
ability an appro-priate de
oupling s
heme has to be applied.Why does a many-parti
le density matrix a�e
t the behavior of a single-parti
le densitymatrix? This be
omes obvious, when 
onsidering a hopping pro
ess between two sites
m and n, where the two-parti
le density o

urs. Su
h a hopping pro
ess is determinedby the hopping probability, whi
h is represented by a se
ond order irredu
ible diagram,and the o

upation of the �nal site n. The two-parti
le density matrix 
ombines theprobability to �nd the initial site m o

upied and the �nal site n empty. In general, theo

upation of di�erent sites is 
orrelated, ex
ept for situations, where the 
harge densityis very low. To des
ribe the situation of un
orrelated o

upation numbers, the densitymatrix 
an be fa
torized in a Hartree-Fo
k type way

ρm1m2

m′
1m′

2
≈ ρm1

m′
1
ρm2

m′
2
+ ρm1

m′
2

(

δm2m′
1
− ρm2

m′
1

)

. (6.9)This approximation was taken in the previous 
hapter.1For example, a se
ond order diagram with a diverging free se
tion 
ontributes to a similar �rst orderdiagram. This 
an be in
orporated, by the 
onvolution of the �rst order blo
k diagram with thesingle density matrix, as in Eq. 6.7. If the se
ond order blo
k has a non-diverging free se
tion, thanthe �rst order blo
k is just multiplied by Fermi fun
tion. For su
h situations, the density matri
esin Eq. 6.7 have to repla
ed by Fermi fun
tions. For example ρm1

m′

1

→ δm′

1
m1

fm1
. 59



Chapter 6: In
oherent polaron hopping: Diagrammati
 approa
h6.1.2. Constru
tion of irredu
ible blo
k diagramsBelow we will state the rules for the 
onstru
tion and evaluation of irredu
ible blo
kdiagrams. The rules for pure hopping diagrams, i. e. those 
ontaining only verti
es ∝ tij ,were developed by Böttger and Bryksin [76℄. We extended their theory adding new rulesto treat diagrams with tunneling verti
es ∝ triν .The perturbative expansion 
an be visualized by the 
onstru
tion of diagrams whi
hare equivalent to expressions in the analyti
 expansion. The main 
ontribution to thediagrams 
omes from so 
alled irredu
ible blo
ks, whi
h, as the name implies, 
annot bede
omposed into more simple diagrams. The main feature of an irredu
ible blo
k diagramis, that it does not diverge, when integrating over the internal times ti. Irredu
ible blo
ks
an be identi�ed by their property of not allowing free se
tions. A free se
tion is a verti
alline drawn between the leftmost vertex and the rightmost vertex (ex
ept for the 
lamp)that does not 
ross either a phonon line or an external fermion (tunneling) line.The rules 
ome in two sets: the �rst for the 
onstru
tion and labeling of possiblediagram, the se
ond set for the evaluation of a parti
ular diagram. The rules are gen-eral for all orders of perturbation theory. We give a 
on
rete example of a third order
ontribution to the blo
k Wm1m2l
m′

1m′
2k(t) in Fig. 6.2.1. Draw the Keldysh time 
ontour as a re
tangle whi
h is open to the left, 
orrespond-ing to t → −∞.2. For a diagram of order n we draw on the 
ontour n + 1 pair verti
es 
onsisting ofone open 
ir
le © (symbolizing a destru
tion operator) and one 
rossed 
ir
le ⊕(symbolizing a 
reation operator). All 
ir
les belonging to operators a
ting on themole
ule (DNA) are drawn on the inside of the 
ontour, whereas 
ir
les belongingto ele
trode operators are drawn on the outside of the 
ontour. Therefore, if thepair vertex is due to a tunneling pro
ess tri,ν one 
ir
le is on the inside and theother one is on the outside of the 
ontour. The 
ir
les of a hopping pro
ess areboth drawn on the inside of the 
ontour where the open 
ir
le is always `earlier'along the Keldysh 
ontour than the 
rossed 
ir
le. As we 
al
ulate diagrams toevaluate the density matrix, we draw one pair vertex (also 
alled `
lamp' [76℄) atthe inside of the right verti
al line of the Keldysh 
ontour, 
orresponding to time t.The other n verti
es are drawn at n times ti on either the upper or lower bran
h ofthe Keldysh 
ontour (where t2 is the leftmost, earliest time and t1 is the rightmost,latest time).3. Ea
h open 
ir
les© on the inside of the 
ontour has one ingoing fermion line (arrowpointing to the vertex) and ea
h 
rossed 
ir
le ⊕ has one outgoing fermion line(arrow pointing away from the vertex) whi
h is lo
ally dire
ted along the Keldysh
ontour.4. Complementary 
ir
les outside the 
ontour are pairwise 
onne
ted by a fermion linedrawn outside of the 
ontour. Sin
e this line 
orresponds to an ele
tron propagatingin ele
trode r the 
onne
ted 
ir
les have to belong to the same ele
trode r, otherwisethe diagram 
ontribution is zero.60



6.1 Theory5. The 
lamp is always 
onne
ted by a fermion line to the rightmost vertex (other thanthe 
lamp) drawn inside of the 
ontour. If the rightmost vertex is a hopping vertex,the fermion line is dire
ted along the 
ontour. If the rightmost vertex is a tunnelingvertex, the inside 
ir
le (open or 
rossed) is 
onne
ted to the 
omplementary 
ir
leof the 
lamp, no matter what the dire
tion of the fermion line.6. The remaining un
onne
ted inside 
ir
les have fermion lines going into (
omingfrom) the region left of the diagram (t → −∞) without interse
ting ea
h other.7. Ea
h 
ir
le belongs to one spe
i�
 state for the mole
ule or the ele
trode. We labelthe mole
ule states (sites) by latin 
hara
ters (e.g. m, m′, . . .) and the ele
trodestates by Greek 
hara
ters (e.g. ν). Note that the two 
ir
les of a hopping vertex
an not 
orrespond to the same state (site). Sin
e we want to 
al
ulate the densitymatrix ρl
k then the 
rossed 
ir
le of the 
lamp is asso
iated with the state (site) kand the open 
ir
le 
orresponds to state (site) l.8. Ex
ept for the 
lamp, the 
ir
les on the inside of the 
ontour must be 
onne
tedby phonon lines so that the diagram has no free se
tion, as de�ned above. One
ir
le 
an be 
onne
ted to more than one phonon line. All diagrams with di�erentnumber of phonon lines (but still without free se
tions) have to be 
onsidered.Only 
ir
les belonging to the same state (site) 
an be 
onne
ted by a phonon line.Therefore, the two 
ir
les of a hopping vertex 
an not be 
onne
ted.The rules for evaluating a diagram are as follows.1. A hopping vertex at time ti is asso
iated with a fa
tor

±itm′mKm′Kme−i(ǫm′−ǫm)(ti−t2) where the 
reation operator (
rossed 
ir
le)
orresponds to site label m′ and the destru
tion operator to the site label m (re
allthat t2 is the leftmost time of the diagram). A tunneling vertex is asso
iatedwith a fa
tor ±itr∗νmKme−i(ǫν−ǫm)(ti−t2) or ±itrm′νKm′e−i(ǫm′−ǫν)(ti−t2) if the 
reationoperator a
ts on the ele
trode or on the mole
ule, respe
tively. Verti
es on theupper half of the 
ontour have the minus sign, verti
es on the lower half of the
ontour have the plus sign. The fa
tor
Km = exp

{

−
1

2

∫

dωDm(ω)

(
λm

ω

)2

(2N(ω) + 1)

}

.The 
lamp 
ir
les 
ontribute a fa
tor e−i(ǫl−ǫk)(t1−t2), where the open 
ir
le of the
lamp 
orresponding to the state l and 
rossed one 
orresponding to state k.2. The outside fermion lines of the ele
trodes r 
ontribute a fa
tor 1 − f r
ν or f r

νdepending whether they run in the dire
tion of the 
ontour or against it. Here f r
νis the Fermi fun
tion at energy ǫν − µr, with the 
hemi
al potential µr.3. The fermion lines entering (leaving) the irredu
ible blo
k from (to) the left arelabeled from top to bottom. The labels determine the indi
es of the irredu
ibleblo
k, e.g. Wm1m2l

m′
1m′

2k(t). The lines leaving the diagram 
orrespond to the lower labels61
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Figure 6.2: A third order diagram to the rate Wm1m2l
m′

1m′
2k

(t2, t1)(primed labels in the example Fig. 6.2) whereas the lines entering the diagram fromthe left 
orrespond to the upper labels (unprimed labels). Sin
e the fermion linesare 
onne
ted to 
ir
les on the inside of the diagram (whi
h belonged to some state(site) j) a Krone
ker fa
tor has to be added, e.g. δm1l and δm′
1k for the example ofFig. 6.2.4. A phonon line 
onne
ting two 
ir
les both asso
iated to a state (site) m has a value

F ζ
m(ti − tj) = exp {ζAm(ti − tj)} − 1 ,with

Am(t) =

∫

dωDm(ω)

(
λm

ω

)2
cos (ω [t + i~β/2])

sinh (~ωβ/2)
,where the 
ir
le at time ti is later on the 
ontour than the 
ir
le at time tj . Thefa
tor ζ is determined by the type of 
ir
les the line 
onne
ts. If the 
ir
les aredi�erent ζ = +1, otherwise ζ = −1.5. Multiply with a fa
tor (−1)M+N , where M is the number of interse
tions of fermionlines on the outside of the 
ontour (tunneling lines) and N is the number of inter-se
tions of fermion lines on the inside of the 
ontour.6. We integrate over all internal times ti (ex
ept t1 and t2) and sum over all ele
trodestates ν and all internal mole
ule states i, j, ex
ept the states asso
iated with the
lamp.Let us have a look at the third order example in Fig. 6.2. This diagram is partof the rate Wm1m2l

m′
1m′

2k(t2 − t1). Full lines are fermion lines and dashed lines are phononlines. For easier readability we introdu
e renormalized hopping and tunneling strengths
t̃m′

1m1
= tm′

1m1
Km′

1
Km1 , t̃r∗lν = tr∗lνKl and t̃rνl = trνlKl. The diagram has the value:

Wm1m2l
m′

1m′
2k(t2 − t1) =(−i)2i

∑

rν

t̃m′
2m2

t̃r∗lν t̃rνl δm1l δm′
1k δm2l (1 − f r

ν )

× e−i(ǫν−ǫl)(t1−t2)e−i(ǫl−ǫk)(t1−t2)F+
l (t2 − t1)

×

∫ t1

t2

dt3e
−i(ǫl−ǫν)(t3−t2)F−

l (t2 − t3)F
+
l (t1 − t3) .
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6.1 TheoryAs 
an be seen from Eqs. 6.7 and 6.10, the irredu
ible blo
ks are 
onvoluted with single-and many-parti
le density matri
es or 
orrelation fun
tions. The order of the labels ofthe irredu
ible blo
k rate determine the 
orrelation fun
tion it will be 
onvoluted with.Lines leaving the blo
k (primed labels) 
orrespond to 
reation operators in Eq.6.8, linesentering the blo
k (unprimed labels) 
orrespond to destru
tion operators. The order ofoperators from left to right 
orresponds to the order of the lines leaving/entering thediagram from bottom to top.For example, let us 
onsider some rate Wm1m2m3l
m′

1m′
2m′

3k(t2− t1) whi
h has the following orderof the terminals at the left of the diagram from bottom to top: m′
3, m′

2, m3, m′
1, m2, and

m1 (the primed labels 
orrespond to fermion lines leaving the diagram, the unprimed tolines entering the diagram as in Fig. 6.2). This rate will be 
onvoluted with the higherorder 
orrelation fun
tion
〈
am′

3
(t2)am′

2
(t2)a

†
m3

(t2)am′
1
(t2)a

†
m2

(t2)a
†
m1

(t2)
〉

H̃The above rules apply to the most general situation of polaron transport, where 
oher-en
e e�e
ts are 
onsidered by in
luding non-diagonal elements of the single and many-parti
le density matri
es. As explained in the previous 
hapter, for the situation ofstrong ele
tron-vibration 
oupling and high temperature it is su�
ient to 
onsider onlydiagonal 
omponents of the density matri
es. In the rest of the work, we will resort tothis limit and dis
uss a situation of �nite bias applied to a DNA mole
ule, whi
h hasrea
hed steady-state. Thus, equation 6.7 for the time derivative of the single-parti
ledensity matrix redu
es to
0 =

∫ 0

−∞

dt1
∑

{mi}

[

ρm1Wm1l(t1) + (1 − ρm1)Vm1l(t1)

+ ρm1m2Wm1m2l(t1) + ρm1m2m3Wm1m2m3l(t1) + . . .

]

. (6.10)6.1.3. First and se
ond order diagramsIn the previous 
hapter we obtained the rates for hopping transport in DNA mole
ulesfrom golden rule arguments. Equivalently, the rate equation and the asso
iated rates 
anbe obtained from diagram using the above rules. The advantage of this pro
edure is, thatno divergen
es o

ur and that 
orrelation e�e
ts are in
orporated naturally, that werenot 
onsidered in the previous 
hapter. As explained before, we will restri
t ourselves todiagonal 
omponents of the density matri
es. The rates are given by the eight diagramdepi
ted in Figure 6.3 and 6.4, where Table 6.1 list the values of the diagrams. Insertingthese rates into Eq. 6.10, the rate equations 5.15 and 5.16 are obtained.Ea
h of the tunneling diagrams depi
ted in Fig. 6.3 is the sum of two almost identi
aldiagrams arising from the rules given above, one with a vibrational line and one withoutit. This is re�e
ted in the fa
t that the generalized vibrational line (dashed line in thediagrams) has a value of F+
l (t1 − t2) + 1. Similarly, ea
h hopping diagram is the sumof three diagrams, one with two vibrational lines and two with a single vibrational line.63
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(a) (b)
(
) (d)Figure 6.3: The four tunnel diagrams. The two diagrams on top of ea
h other are their respe
-tive 
omplex 
onjugates. The full lines represent fermion lines. The dashed linerepresents the sum of all possible vibrational lines arising from the diagrammati
rules, e. g. for diagram (a) it has a value F+

l (t1 − t2) + 1.

(a) (b)
(
) (d)Figure 6.4: The four hopping diagrams. The two diagrams on top of ea
h other are theirrespe
tive 
omplex 
onjugates. The full lines represent fermion lines. The dashedline represents the sum of all possible vibrational lines arising from the diagram-mati
 rules, e. g. for diagram (a) it has a value F+

l (t1 − t2)F
+
m2

(t1 − t2) + F+
l (t1 −

t2) + F+
m2

(t1 − t2).
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6.1 Theorydiagrams value Eq.6.3(a)+6.3(
) W r
m1l = −Γr

∫
dE
2π~

(1 − fr(E))Pl(ǫ̃l − E)δlm1 5.136.3(b)+6.3(d) V r
m1l = Γr

∫
dE
2π~

fr(E)Pl(E − ǫ̃l)δlm1 5.146.4(a)+6.4(
) Wm1m2l = −
|tl,m2

|2

~2

∫
dt e

i
~
(ǫ̃l−ǫ̃m2)t

[
Pl(t)Pm2(t) −K2

l K
2
m2

]
δlm1 5.216.4(b)+6.4(d) Wm1m2l =

|tm1,l|
2

~2

∫
dt e

i
~
(ǫ̃m1−ǫ̃l)t

[
Pm1(t)Pl(t) −K2

m1
K2

l

]
δlm2 5.21Table 6.1: Values for the diagrams of Fig. 6.3 and 6.4. For the evaluation of the tunnelingdiagrams the wide band limit was assumed. The index r = L/R stands for theleft/right ele
trode.The value of the generalized vibrational line is therefore F+

l (t1−t2)F
+
m2

(t1−t2)+F+
l (t1−

t2) + F+
m2

(t1 − t2). In the previous 
hapter, the in�uen
e of the vibrations was des
ribedby the fun
tions Pl(t), whi
h were known from the `P(E)' theory. In the diagrammati
rules the vibrations are des
ribed by fun
tions F
+/−
l (t). The relation between these twofun
tions is given by Pl(t) = K2

l

(
F+

l (t) + 1
)

= Ll

(
F+

l (t) + 1
). In the previous 
hapter,the fun
tion Ll = K2

l was introdu
ed for simpli
ity.The rates from the various diagrams are 
onvoluted with di�erent 
orrelation fun
tions,depending on the fermion lines leaving to the left as explained above. The diagrams pre-sented in Fig. 6.3 and 6.4 are 
onvoluted with 
orrelation fun
tions as listed in Table 6.2.diagrams 
orrelation fun
tion6.3(a)+6.3(
) 〈

a†
l al

〉

=ρl6.3(b)+6.3(d) 〈

ala
†
l

〉

=1 − ρl6.4(a)+6.4(
) 〈

a†
l am2a

†
m2

al

〉

=ρl − ρlm26.4(b)+6.4(d) 〈

a†
m1

ala
†
l am1

〉

=ρm1 − ρm1lTable 6.2: Diagrams and the 
orrelation fun
tions they are 
onvoluted with. The two-parti
ledensity matrix is given by ρlm =
〈

a†l ala
†
mam

〉.Inserting the rates and the asso
iated 
orrelation fun
tion into Eq. 6.10 one obtainsthe rate equation for the single-parti
le density matrix ρl.6.1.4. Two-parti
le density matrixIn the previous 
hapter the two-parti
le 
orrelation fun
tions were fa
torized ρlm2 ≈
ρlρm2 . In the following we will investigate whi
h in�uen
e the 
orrelations have onthe transport through DNA. For this we have to state equations for the two-parti
ledensity matri
es, as well. The rules for the diagrams arising from the expansion of the65
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(a) (b)
(
) (d)Figure 6.5: Four tunnel diagrams. To ea
h of these diagrams there exists another that istheir respe
tive 
omplex 
onjugate. The full lines represent fermion lines. Thedashed line represents the sum of all possible vibrational lines arising from thediagrammati
 rules, e. g. for diagram (a) it has a value F+

m(t1 − t2) + 1. Note thevarious orderings of the indi
es on the left of the irredu
ible blo
k.
(a) (b)
(
) (d)Figure 6.6: Four hopping diagrams. To ea
h of these diagrams there exists another that istheir respe
tive 
omplex 
onjugate. The full lines represent fermion lines. Thedashed line represents the sum of all possible vibrational lines arising from thediagrammati
 rules, e. g. for diagram (a) it has a value F+

m(t1 − t2)F
+
n (t1 − t2) +

F+
m(t1 − t2) + F+

n (t1 − t2).
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6.1 Theorytwo-parti
le density matrix are almost identi
al to the ones stated above for the single-parti
le density matrix. The only di�eren
e arises from the 
lamp, whi
h now 
onsistsof four 
ir
les (two empty, two 
rossed) representing the four fermion operators of thetwo-parti
le density matrix. There are now two possibilities to 
onne
t the rightmostvertex with the 
lamp, whi
h both have to be 
onsidered. Furthermore, not only one butthree fermion lines from the remaining terminals of the 
lamp leave to (enter from) theregion left of the irredu
ible blo
k without interse
ting ea
h other. The equation for thetime derivative of the two-parti
le density matrix has the same stru
ture as Eq. 6.7 and6.10.The diagrams up to se
ond order are given in Figure 6.5 and 6.6. As for the single-parti
le density matrix, there are always two diagrams whi
h are their respe
tive 
omplex
onjugates. So, only one of them is shown. The irredu
ible blo
ks, i. e. the rates, havethe same value as the ones derived previously, ex
ept for some δ-fun
tions due to theadditional terminals of the 
lamp and the 
orrelators, they are 
onvoluted with.The rate, that every diagram (plus its 
omplex 
onjugate) represents, is listed in these
ond 
olumn of Table 6.3. The values of these rates 
orrespond to the ones givenin Table 6.1. In the third 
olumn the 
orrelators are shown with whi
h the rates are
onvoluted. In the se
ond se
tion of the table, i. e. for n = l or n = m, the relation
n̂2

l = n̂l was used, where n̂l = a†
l al is the number operator of site l. In the third se
tion,the three-parti
le 
orrelation fun
tions have been fa
torized into two- and single-parti
le
orrelation fun
tions to obtain 
losed equations. The rule for the fa
torization is givenby

〈ABC〉 ≈ 〈A〉 〈B〉 〈C〉 + [〈AB〉 〈C〉 − 〈A〉 〈B〉 〈C〉]

+ [〈AC〉 〈B〉 − 〈A〉 〈B〉 〈C〉]

+ [〈BC〉 〈A〉 − 〈A〉 〈B〉 〈C〉] ,where the 
apital letters represent pairs of fermion operators, i. e. a†
l al. With the aboverates one obtains the following rate equation for the two-parti
le density matrix in theinside of the DNA mole
ule

d

dt
ρlm =

∑

n

{

[ρlm (1 − ρn) − ρlnρm − ρmnρl + 2ρlρmρn]Wlnl

+ [ρlm (1 − ρn) − ρmnρl − ρlnρm + 2ρlρmρn]Wmnm

+ [ρnl (1 − ρm) − ρlmρn − ρnmρl + 2ρnρmρl]Wnll

+ [ρnm (1 − ρl) − ρlmρn − ρlnρm − 2ρlρnρm]Wnmm

}

. (6.11)For a two-parti
le density matrix at the left jun
tion the rate equation has the followingform
d

dt
ρ12 =ρ12W

L
11 + (ρ2 − ρ12) V L

11

+ [ρ12 (1 − ρ3) − ρ23ρ1 − ρ13ρ2 + 2ρ1ρ2ρ3]W232

+ [ρ13 (1 − ρ2) − ρ32ρ1 − ρ12ρ3 + 2ρ1ρ3ρ2]W322 . (6.12)67
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ti
approa
h diagrams value 
orrelation fun
tion6.5(a)+
.
. W r
ll ρlm6.5(b)+
.
. W r
mm ρlm6.5(
)+
.
. V r

ll ρm − ρlm6.5(d)+
.
. V r
mm ρl − ρlm6.6(a)+
.
. n = l Wlml

〈

a†
l alala

†
l a

†
mam

〉

= 06.6(b)+
.
. n = m Wmlm

〈

a†
l a

†
mamama†

mal

〉

= 06.6(
)+
.
. n = m Wmll

〈

ala
†
l a

†
ma†

mamam

〉

= 06.6(d)+
.
. n = l Wlmm

〈

a†
l a

†
l alama†

mal

〉

= 06.6(a)+
.
. n 6= l Wlnl

〈

a†
l ala

†
mana

†
nam

〉

≈ ρlm (1 − ρn) − ρlnρm − ρmnρl + 2ρlρmρn6.6(b)+
.
. n 6= m Wmnm

〈

a†
l a

†
mamana

†
nal

〉

≈ ρlm (1 − ρn) − ρmnρl − ρlnρm + 2ρlρmρn6.6(
)+
.
. n 6= m Wnll

〈

a†
nala

†
mama†

l an

〉

≈ ρnl (1 − ρm) − ρlmρn − ρnmρl + 2ρnρmρl6.6(d)+
.
. n 6= l Wnmm

〈

a†
na

†
l alama†

man

〉

≈ ρnm (1 − ρl) − ρlmρn − ρlnρm − 2ρlρnρmTable 6.3: Values for the diagrams of Fig. 6.5 and 6.6 plus their 
omplex 
onjugates. For the evaluation of the tunneling diagrams thewide band limit was assumed. The index r = L/R stands for the left/right ele
trode. In the se
ond se
tion, for the situations

n = l or n = m the relation n̂2
l = n̂l was used, where n̂l = a†l al is the number operator of site l. In the third se
tion, thethree-parti
le 
orrelation fun
tions have been fa
torized into two- and single-parti
le 
orrelation fun
tions to obtain 
losedequations. 68



6.2 ResultsNote, for the two-parti
le density matrix the relation ρlm = ρml holds. The rateequations for single-parti
le density matri
es have the following form, similar to Eq. 5.15and 5.16,
d

dt
ρl =

∑

m

[

(ρl − ρlm)Wlml + (ρm − ρml)Wmll

] (6.13)
d

dt
ρ1 =ρ1W

L
11 + (1 − ρ1) V L

11 + (ρ1 − ρ12)W121 + (ρ2 − ρ21)W211 . (6.14)The rate equations for all other single and two-parti
le density matri
es have a similarstru
ture following Table 6.3. The rate equations for the single and two-parti
le densitymatri
es have to be solved simultaneously. The 
urrent 
an then be 
al
ulated usingEquation 5.17.CorrelationsTo see whi
h terms in the rate equation for the two-parti
le density matrix give rise to
orrelation e�e
ts, we exemplary 
ompare Eq. 6.12 with
d

dt
[ρ1ρ2] =

d

dt
[ρ1] ρ2 + ρ1

d

dt
[ρ2]

=ρ1ρ2W
L
11 + (ρ2 − ρ1ρ2) V L

11

+ (ρ1 − ρ12) ρ2W121 + (ρ2 − ρ21) ρ2W211

+ ρ1 (ρ2 − ρ21)W212 + ρ1 (ρ1 − ρ12)W122

+ ρ1 (ρ2 − ρ23)W232 + ρ1 (ρ3 − ρ32)W322 .For the se
ond and last line the 
orresponding terms in Eq. 6.12 are easily found whenidentifying ρ12 ≡ ρ1ρ2. On the other hand, the 
orresponding terms for the third andfourth line are not obvious. The reason lies in the use of the identity n̂2
l = n̂l in derivingEq. 6.12, where n̂l = a†

l al is the number operator of site l (see Table. 6.1). Whenfa
torizing the three-parti
le 
orrelators in the middle se
tion of Table. 6.1 dire
tly,without using the above identity, one obtains exa
tly the expressions in the third andfourth line of the above equation. Consequently, all hopping terms 
ontribute to the
orrelation e�e
ts.6.2. ResultsIn this se
tion we study the I-V 
hara
teristi
s of short DNA mole
ules in
luding 
or-relation e�e
ts and 
ompare with the results obtained in the previous 
hapter. Firstly,it should be noted that 
orrelation e�e
ts do not in�uen
e the transport properties ofhomogeneous DNA sequen
es, as 
an be seen from Eqs. 6.13 and 6.14. In homogeneousDNA the onsite energies of all base pairs are identi
al therefore the hopping rates for aforward and ba
kward hopping pro
ess are equal in magnitude but with opposite sign.Sin
e ρij = ρji holds, the two-parti
le density matri
es drop out of the equations and the69
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(b)Figure 6.7: (a) Di�erential 
ondu
tan
e (logarithmi
 s
ale) as a fun
tion of applied bias fortwo DNA sequen
es in
luding (solid lines) and negle
ting (dashed lines) 
orrelatione�e
ts. (b) Corresponding I-V 
hara
teristi
s of the two solid 
urves in (a). Allresults are obtained with the following parameters: base pair onsite energies ǫA =
−0.26 eV, ǫG = +0.25 eV, polaron shifts ∆A = 0.18 eV and ∆G = 0.47 eV, Fermienergy EF = 0eV, symmetri
 
oupling to leads with linewidth ΓL = ΓR = 0.01 eV,vibrational energies ~ωA = 11meV, ~ωG = 16meV, and room temperature kBT =
25meV.o

upation and 
onsequently the 
urrent, only depends on the single-parti
le densities.The I-V 
urves are therefore identi
al with or without 
orrelation e�e
ts.Throughout this 
hapter we will present various results whi
h in
lude 
orrelations ef-fe
ts, i. e. when the single- and two-parti
le density matrix are 
al
ulated by simultaneousnumeri
al iteration of the 
orresponding rate equations. The number of rate equation forthe two-parti
le density matri
es in
reases quadrati
ally with the number of DNA bases,leading to numeri
al di�
ulties in the 
al
ulations for large systems. We therefore 
on-sider only nearest-neighbor 
orrelation fun
tions ρi,i+1 (unless indi
ated di�erently), asthey have the most important in�uen
e on the transport properties of the DNA. This isobvious as only these two-parti
le density matrix elements dire
tly enter in the rate equa-tions for the single-parti
le density matrix (Eqs. 6.13 and 6.14). The other two-parti
le
orrelation fun
tions only indire
tly enter through the rate equation for the two-parti
ledensity matrix. In a later part of this 
hapter we will expli
itly show the validity of thisassumptions, as the 
orrelation fun
tions of more distant base pairs only slightly 
hangethe results. The main physi
al e�e
ts remain un
hanged.6.2.1. Correlation e�e
tsFigure 6.7(a) shows a 
omparison of the di�erential 
ondu
tan
e with (full lines) andwithout (dashed lines) 
orrelation e�e
ts for the sequen
es GAAAAAAG (bla
k lines)and GGAAAAGG (red lines). The dashed 
urves are identi
al to the ones presentedin Fig. 5.5 of the previous 
hapter. Figure 6.7(b) displays the 
orresponding I-V 
har-a
teristi
s for the situation with 
orrelation e�e
ts. For both sequen
es the 
urrent atnegative bias is redu
ed by about an order of magnitude when 
orrelation e�e
ts are70



6.2 Results
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(b)Figure 6.8: Di�erential 
ondu
tan
e as a fun
tion of applied bias for DNA mole
ules withsequen
e AAAAGAAA (a) and GAAAAAAG (b) for two di�erent ele
trode 
ou-pling strengths ΓL/R = 0.01 eV (bla
k lines) and ΓL/R = 0.001 eV (red lines). ForAAAAGAAA there is only a very weak dependen
e on ΓL/R, in parti
ular the se
-ondary peak at high positive and negative bias is not e�e
ted. For GAAAAAAGthe se
ondary maxima are strongly lowered and broadened for smaller ΓL/R. Theprimary maxima are only weakly a�e
ted. All parameters as in Fig. 6.7.
onsidered as 
an be estimated from the area under the di�erential 
ondu
tan
e 
urves.For positive bias (not shown) the redu
tion is only about a fa
tor of 2. As dis
ussed inthe previous 
hapter the position of the 
urrent threshold, i. e. the primary maximumin the di�erential 
ondu
tan
e, is not determined by an internal energy s
ale alone, butalso by the spe
i�
 
harge rearrangements in the DNA. This is also seen for the 
ase of
orrelations, where the position of the 
ondu
tan
e peak has slightly shifted to lower biasvoltages, as 
ompared to the un
orrelated results. The most prominent 
hange, though,is the additional se
ondary maximum in the dI/dVb of the sequen
e GAAAAAAG, when
orrelation e�e
ts are 
onsidered. Without 
orrelation e�e
ts the di�erential 
ondu
-tan
e only shows a very broad single peak. This indi
ates that a new energy s
ale isintrodu
ed into the system by the 
orrelation.Additional energy s
aleIn the following we will show some situations in whi
h se
ondary peaks in the di�erential
ondu
tan
e or likewise steps in the I-V 
hara
teristi
s arise. Figure 6.8 shows the di�er-ential 
ondu
tan
e dI/dVb as a fun
tion of applied bias Vb for two DNA mole
ules withsequen
es AAAAGAAA (6.8(a)) and GAAAAAAG (6.8(b)) for two di�erent ele
trode
oupling strengths ΓL/R = 0.01 eV and ΓL/R = 0.001 eV. For the sequen
e AAAAGAAAwe 
an identify two maxima in the di�erential 
ondu
tan
e for positive and negative bias,respe
tively � at Vb = −0.9 V, -0.55V, 0.46V, and 0.7V. The primary peak or thresholdindi
ates the voltage at whi
h the 
urrent sets in. As dis
ussed in the previous 
hap-ter, the position of the the primary peak is not given by an internal energy s
ale alone.Rather the position is determined by internal energies and the way the 
harges rearrangefor an applied bias voltage, whi
h depends very sensitively on the DNA sequen
e. 71



Chapter 6: In
oherent polaron hopping: Diagrammati
 approa
hThe se
ondary peaks for both positive and negative bias 
an be identi�ed with newenergy s
ales arising from the 
orrelations. The position of these peaks is also stronglydependent on the sequen
e, as will be
ome 
lear from the results for other sequen
es.Changing the 
oupling to the ele
trodes by one order of magnitude does not 
hangethe transport 
hara
teristi
s for the sequen
e AAAAGAAA, as the bottlene
k of thesystem is the hopping to guanine on the inside of the DNA2. Astonishingly, by adding ase
ond guanine in the 
enter (AAAGGAAA, not shown), the se
ondary maxima vanish
ompletely, whereas the primary maxima remain un
hanged. This indi
ates that the
orrelations only introdu
e a new energy s
ale when a single isolated guanine is presentin the sequen
e. Nevertheless, the 
orrelations 
hange the transport 
hara
teristi
s, evenwhen no se
ondary maximum arises. A similar e�e
t is always seen when a single baseis surrounded by other bases with a di�erent onsite energy (not shown).For the sequen
e GAAAAAAG there are also two maxima at positive and negative bias,but for positive bias, the se
ond always seen, peak is strongly suppressed as 
ompared toAAAAGAAA. The positions of the primary peaks for GAAAAAAG agree well with thevalues for AAAAGAAA, but the positions of the se
ondary maxima 
learly di�er. Themain di�eren
e of GAAAAAAG to the other sequen
e is the dependen
e on the ele
trode
oupling Γ. For smaller Γ the se
ondary maxima are strongly redu
ed, broadened, andthe positions are shifted. This behavior is a 
lear indi
ation that these maxima arisefrom 
orrelations asso
iated with the inje
tion onto the guanine base from the interfa
e(or the reverse pro
ess). In 
ontrast, the se
ondary peaks for the sequen
e AAAAGAAAarise from 
orrelations asso
iated with a hopping pro
ess onto the guanine base in the
enter of the sequen
e.If a 
ontrolled way to vary the 
oupling between DNA mole
ule and ele
trode wereat hand, this e�e
t 
ould be easily studied experimentally. If indeed it was found, thatse
ondary maxima existed and were, depending on the sequen
e, either sensitive or insen-sitive to the ele
trode 
oupling, then this 
ould be an indi
ation that the physi
s involvedin 
harge migration along DNA was similar to the one we des
ribed. It should also benoted, that by adding further guanine bases at the front and at the end of GAAAAAAG(GGAAAAGG) the se
ondary maxima vanish as 
an be seen in Fig. 6.7. As mentionedabove the same phenomena was found for AAAAGAAA.Correlation fun
tionTo further explain what happens when a new energy s
ale is introdu
ed, we take a lookat the 
orrelation fun
tions ρij , to identify the voltage at whi
h the 
orrelations be
omeimportant. In parti
ular, we dis
uss the relative 
orrelation ∆ρij , i. e. the quantity
∆ρij =

ρij − ρiρj

ρiρj
. (6.15)When 
orrelations are irrelevant ∆ρij = 0, but when 
orrelations exist ∆ρij is eitherpositive or negative. The in�uen
e of the 
orrelation fun
tion ρi,i+1 on the 
urrent is most2In real DNA there would be a 
ompeting pro
ess, i. e. tunneling through the G between the surroundingA bases, whi
h is so far not 
onsidered in our model.72



6.2 Resultsimportant when the bases i and i + 1 have di�erent onsite energies. For equal energiesthe terms involving the 
orrelation fun
tions ρi,i+1 drop out of the rate equations for thesingle-parti
le density matrix (Eq. 6.13 and 6.14) as dis
ussed above for homogeneoussequen
es. In Figure 6.9 and 6.10 the 
hara
teristi
s of the 
orrelation fun
tions ∆ρijare displayed for the two sequen
es AAAAGAAA and GAAAAAAG, respe
tively.In Fig. 6.9(a) the relative 
orrelations ∆ρ45 (AG) and ∆ρ56 (GA) are 
ompared withthe di�erential 
ondu
tan
e for the sequen
e AAAAGAAA. These 
orrelations are themost interesting as the single guanine base is at position 5 in the sequen
e. As indi
atedby the dashed verti
al lines, the 
orrelations set in at the same voltage Vb as the se
-ondary maxima in the di�erential 
ondu
tan
e arise. It is therefore, reasonable to assumethat the se
ondary peak in the dI/dVb and the 
orrelations at this link are 
onne
ted.Figure 6.9(b) shows a 
omparison of ∆ρi,i+1 for all bases i of the sequen
e AAAAGAAAfor the two di�erent ele
trode 
oupling strengths Γ = 0.01 eV and Γ = 0.001 eV at thetwo bias voltages Vb = −0.88V (top panel) and Vb = −0.68V (bottom panel). Thesevoltages agree with the se
ondary maxima (for both negative and positive bias voltage)in the di�erential 
ondu
tan
e shown in Fig. 6.8(a). As in Figure 6.8(a) for the dI/dVbthere is no di�eren
e between the 
orrelation fun
tions for the two ele
trode 
ouplingstrengths.The transport bottlene
ks of the sequen
e AAAAGAAA are the transitions 4 → 5for positive and 6 → 5 for negative bias. The relative 
orrelations asso
iated withthese transitions ∆ρ45 (∆ρ56) are negative for positive (negative) bias. For the sequen
eAAAGGAAA, whi
h does not have a se
ondary maximum, the relative 
orrelations asso-
iated with the respe
tive bottlene
k transitions are zero. One 
ould therefore argue that
∆ρi,i+1 < 0 at bottlene
ks leads to se
ondary maxima in the di�erential 
ondu
tan
e.Unfortunately, for more 
ompli
ated sequen
es this argument is too simple. For the se-quen
e AAAAGAAA, the `non-bottlene
k' transition from guanine to adenine (5 → 6for positive and 5 → 4 for negative bias) lead to ∆ρi,i+1 > 0.For the sequen
e GAAAAAAG the dependen
e of the 
orrelation fun
tions on Γ isdi�erent. Figure 6.10(b) shows a 
omparison of ∆ρi,i+1 for all bases i of the sequen
eGAAAAAAG for Γ = 0.01 eV and Γ = 0.001 eV. The two bias voltages Vb = −1.28V(top panel) and Vb = −1.00V (bottom panel) are 
hosen to agree with the se
ondarymaxima (for both negative and positive bias voltage) in the di�erential 
ondu
tan
eshown in Fig. 6.8(b)3. The value of ∆ρ12 (∆ρ78) for negative (positive) bias voltage
hanges strongly with Γ just as the se
ondary maxima of the di�erential 
ondu
tan
e(Fig. 6.8(b)). Again a strong relationship between 
orrelations and se
ondary maximain the di�erential 
ondu
tan
e is obvious.For positive bias the transport bottlene
k of the DNA mole
ule is the hopping transitionfrom the adenine (base 7) to the guanine (base 8). For negative bias the bottlene
k is thetransition from base 2 to base 1. As with the sequen
e AAAAGAAA, these bottlene
ksprodu
e negative relative 
orrelation (∆ρi,i+1 < 0). For all other sites i ∆ρi,i+1 = 0. InFig. 6.10(a) the relative 
orrelation ∆ρ12 and ∆ρ78 are 
ompared with the di�erential3Sin
e the position of the se
ondary maxima shift with Γ a value between the maxima for both 
ouplingsis 
hosen. 73
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orrelation fun
tion ∆ρi,i+1 with ele
-trode 
oupling Γ = 0.01 eV (bla
k line) and
Γ = 0.001 eV (red line) for Vb = −0.88V(top panel) and Vb = 0.68V (bottom panel).Figure 6.9: Chara
teristi
s of DNA mole
ule with sequen
e AAAAGAAA. All parameters asin Fig. 6.7.
ondu
tan
e for the sequen
e GAAAAAAG. The dashed verti
al lines again indi
ate thatthe 
orrelations set in at the same voltage Vb as the se
ondary maxima in the di�erential
ondu
tan
e arise (
ompare to Fig. 6.9(a)).More 
ompli
ated sequen
esSo far we have only dis
ussed the in�uen
e of the 
orrelations on relatively simple DNAsequen
es. For those systems, the 
onne
tion between 
orrelations and 
urrent or dif-ferential 
ondu
tan
e is quite easily established. Nevertheless, the physi
al reason why
orrelations arise at a spe
i�
 bias voltage is not 
lear.For more 
ompli
ated sequen
es the above dis
ussed behavior holds also, i. e. when sin-gle guanine or adenine bases are present in the sequen
e an additional energy s
ale arise,whi
h is re�e
ted as a se
ondary maximum in the di�erential 
ondu
tan
e. Figure 6.11shows the 
hara
teristi
s of a DNA mole
ule with sequen
e GAATGAC, with single gua-nine (
ytosine) at the ends and in the 
enter and a single adenine between a guanineand a 
ytosine. The shape of the di�erential 
ondu
tan
e 
urve (Fig. 6.11(a)) is similarto the one of AAAAGAAA. On the other hand, the fa
t that the se
ondary maximade
rease strongly with the ele
trode 
oupling Γ indi
ates that they arise from the 
or-relations at the ele
trode interfa
es. This is partly supported by the relative 
orrelation

∆ρi,i+1 shown in Fig. 6.11(b). The relative 
orrelations are shown for the voltages thatagree with the se
ondary maxima at negative and positive bias. For negative bias only
∆ρ12 6= 0, whi
h de
reases with Γ. For positive bias ∆ρ67 < 0 but ∆ρ56 > 0, i. e. 
orre-lations between the guanine and adenine at positions 5 and 6 also seem to be relevantfor positive bias voltages at the se
ondary maximum. Nevertheless, both 
orrelationsde
rease with the 
oupling to the ele
trodes. The in�uen
e of the 
orrelations ∆ρ56 isnot quite 
lear. At higher bias more 
orrelations arise (not shown), but a 
onne
tion ofthese with the I-V 
ould so far not be established.74



6.2 Results
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orrelation fun
tion ∆ρi,i+1 with ele
-trode 
oupling Γ = 0.01 eV (bla
k line) and
Γ = 0.001 eV (red line) for Vb = −1.28V(top panel) and Vb = 1.00V (bottom panel).Figure 6.10: Chara
teristi
s of DNA mole
ule with sequen
e GAAAAAAG. All parametersas in Fig. 6.7.It 
an be summarized that the 
orrelations due to single guanine bases at the ele
trodejun
tions dominate the behavior of the se
ondary maxima with respe
t to Γ. Addi-tional single guanine (or adenine) bases in the 
enter of the sequen
e do not lead to Γindependent se
ondary maxima, as was observed for AAAAGAAA (Fig. 6.8(a)).6.2.2. Long-range vs. short-range 
orrelationIn the entire 
hapter we restri
ted our 
al
ulations to nearest-neighbor 
orrelations andignored 
orrelations between more distant base pairs. The in
lusion of long-range 
orrela-tions to some degree 
hanges the I-V 
hara
teristi
s, but the essential physi
al e�e
ts arenot a�e
ted. Figure 6.12(a) shows the 
urrent and di�erential 
ondu
tan
e of the DNAsequen
e GAAAAAAG in
luding and negle
ting long-range 
orrelations. The �rst stepat negative bias in the I-V 
hara
teristi
s is �attened out when long-range 
orrelationsare 
onsidered. This redu
es the primary maximum in the di�erential 
ondu
tan
e to ashoulder. The same happens to the se
ondary maximum at positive bias. For high biasvoltages the 
urrents in
luding or negle
ting long-range 
orrelations are equal, showingthat at these voltages long-range 
orrelations are irrelevant.This interpretations is validated by Fig. 6.12(b), whi
h shows the (absolute value ofthe) relative 
orrelation |∆ρ1j | between the �rst and jth base as a fun
tion of j. Thebla
k line shows the distan
e dependen
e for a bias voltage Vb = −1.24 V, i. e. at theposition of the se
ondary maximum at negative bias. The relative 
orrelation de
reaseexponentially with the distan
e � already for j = 3 the 
orrelations are one order ofmagnitude smaller than for j = 2. At a bias Vb = −0.56 V, where the di�erential
ondu
tan
es in Fig. 6.12(a) di�er the most, the relative 
orrelations de
rease far slowerbut still exponentially. Therefore, long-range 
orrelations at this bias voltage are moreimportant. Note that the data point for the eighth base di�ers from the exponential75
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Figure 6.13: Current and di�erential 
ondu
tan
e as a fun
tion of applied bias for GAATGAC.The bla
k lines show the results when 
orrelation between all base pairs werein
luded. The red lines show the approximative result, where only 
orrelationsbetween nearest neighbors were 
onsidered. All parameters as in Fig. 6.7.behavior for both voltages as it is a guanine base, whereas the other six bases are adeninebases.To show that these arguments hold also for more 
ompli
ated DNA sequen
es, Fig. 6.13depi
ts the 
urrent and di�erential 
ondu
tan
e as a fun
tion of applied bias for the se-quen
e GAATGAC, whi
h we studied above. Here all primary and se
ondary maxima inthe di�erential 
ondu
tan
e are 
learly visible. The in
lusion of long-range 
orrelationsslightly 
hanges the shape and height of these peaks in the di�erential 
ondu
tan
e, butfor high positive and negative voltages the 
urrent is again identi
al with the approxi-mation of nearest-neighbor 
orrelations.Non-lo
al ele
tron-vibration 
ouplingAs we have explained in the fourth 
hapter, non-lo
al or non-diagonal ele
tron vibration
oupling is also strong in DNA. Disregarding su
h 
oupling may negle
t some importantphysi
al e�e
ts. Consequently, it might be interesting to generalize our approa
h toin
lude non-lo
al ele
tron vibration 
oupling. In the following we shortly sket
h how this
ould be done by extending the diagrammati
 approa
h des
ribed above.One would have to 
onsider the following non-lo
al ele
tron vibration 
oupling termas an addition to the perturbative Hamiltonian H̃ ′

∑

ij

λij a†
iχ

†
iajχj

(

Bi + B†
i + Bj + B†

j

)

. (6.16)The in
lusion of this term into the diagrammati
 expansion is not straight forward.Firstly, a new kind of vertex with value ±iλijKiKje
−i(ǫi−ǫj)(ti−t2) is obtained. The fermionlines of the diagrams are not a�e
ted, but there are all kinds of new vibrational lines.These lines arise from operator produ
ts of the kind

〈
χk(t1)χj

(

Bk(t1) + B†
k(t1)

)

χ†
k(t2)χk(t3)χ

†
k(t4) (6.17)

· · ·χk(tn−1)
(

Bk(tn−1) + B†
k(tn−1)

)

χ†
k(tn)

〉
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Chapter 6: In
oherent polaron hopping: Diagrammati
 approa
hwith (Bk(ti) + B†
k(ti)) at various positions in the produ
t. A 
losed formula whi
hdes
ribes the value of the vibrational lines is therefore not easily found (
ompare toAppendix E).6.3. Summary and outlookIn this 
hapter we have developed a diagrammati
 approa
h to polaron transport in smallmole
ules 
oupled to biased metalli
 ele
trodes. This approa
h is based on a real-timeexpansion of the single-parti
le density matrix along the Keldysh 
ontour. It extendsa te
hnique for polaron transport in bulk systems whi
h was developed by Böttger andBryskin. We have applied this te
hnique to short DNA mole
ules with various sequen
es.This diagrammati
 approa
h in
ludes e�e
ts arising from 
orrelations between the o
-
upations of di�erent base pairs, whi
h were not 
onsidered in the previous 
hapter.Correlations are only relevant for inhomogeneous DNA sequen
es and, in general, theylead to a redu
tion of the 
urrent. For sequen
es whi
h in
lude single isolated bases sur-rounded by bases with other onsite energies, a new energy s
ale arises. This new energys
ale stems from 
orrelations asso
iated with the isolated base and leads to a se
ondarymaximum in the di�erential 
ondu
tan
e. Correlations asso
iated with isolated basesin the 
enter of a sequen
e are insensitive to the 
oupling to the ele
trodes, whereas
orrelations asso
iated with bases at the ele
trode interfa
e are strongly redu
ed for de-
reased 
oupling to the ele
trodes. A de
rease in the 
orrelations is a

ompanied by aredu
tion of the se
ondary maxima in the di�erential 
ondu
tan
e. We have also shownthat 
orrelations between di�erent bases de
rease exponentially with the distan
e, i. e.
orrelations between nearest-neighbors are the most important.There are some interesting e�e
ts asso
iated with 
orrelations between di�erent basesin DNA mole
ules, but there remains an open question: What determines the spe
i�
voltage, i. e. the energy s
ale, at whi
h the 
orrelations develop. Some simpler model hasto be found that allows more insight into the physi
al e�e
ts that govern su
h 
orrelations.Furthermore, in real DNA there are other pro
esses, whi
h 
ompete with the nearest-neighbor hopping. These pro
esses are tunneling transitions between bases with equalonsite energies that are no further apart than two or three base pairs. The in
lusion ofsu
h pro
esses into our theoreti
al model would lead to a better understanding whi
he�e
t tunneling has on hopping transport through DNA.
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7. Con
lusionsIn this thesis we have studied ele
troni
 transport through short DNAmole
ules, stressingthe in�uen
e of base pair vibrations. Experiments and earlier theoreti
al investigationshave shown that vibrations are important in the ele
troni
 transport through DNA, al-though there is still some 
ontroversy over the exa
t in�uen
e of vibrations. In parti
ular,the question whether polarons are formed in DNA is not 
on
lusively answered, as onlysome experimental results favor the idea of polarons. Other experiments show relativelyhigh maximum 
urrents, whi
h agrees better with a (quasi)-
oherent transport pi
ture.Therefore, we have dis
ussed transport through DNA in these two limits, by developingindependent theoreti
al methods to study these situations. In both these situations theDNA is des
ribed by a minimum tight-binding model, identifying ea
h base pair with onetight-binding site, with parameters taken from experiments and/or ab initio 
al
ulations.Firstly, we have investigated the quasi-
oherent situation, where the 
oupling to vi-brations introdu
es inelasti
 
ontributions to the 
urrent, but a partial 
oheren
e oftransport is 
onserved. We have developed an equation-of-motion (EOM) approa
h forthe single-parti
le Green fun
tion of the ele
trons in the DNA, whi
h des
ribes vibra-tional e�e
ts arising from lo
al and non-lo
al ele
tron-vibration 
oupling. To des
ribethe limit of relatively strong ele
tron-vibration 
oupling we apply a unitary transforma-tion to the Hamiltonian, 
an
eling the lo
al intera
tion term. This pro
edure allows fora trun
ation of the series of higher-order Green fun
tions arising from the EOM. Thetrun
ation is physi
ally justi�ed for small non-lo
al 
oupling. As we assume that the
hemi
al potential of the DNA 
oupled to the ele
trodes lies in the gap between highesto

upied and lowest uno

upied mole
ular orbital (HOMO and LUMO), DNA mole
uleswill in general experien
e `semi
ondu
ting' I-V 
hara
teristi
s.We showed that homogeneous DNA sequen
es have a band-like density of states withdistin
t ele
troni
 resonan
es due to �nite size. Additionally, vibrational satellites ariseenergeti
ally above and below the 
orresponding ele
troni
 resonan
e due to the lo
alele
tron-vibration 
oupling. The distan
e of these vibrational satellites to the 
orre-sponding ele
troni
 resonan
e agrees with integer multiples of the vibration energy, wheremore distant satellites have strongly redu
ed spe
tral weights. Furthermore, the densityof states displays a strong asymmetry due to the non-lo
al ele
tron-vibration 
oupling,but, nevertheless, its e�e
t on the 
urrent is rather small. The transport through a ho-mogeneous DNA mole
ule is dominated by elasti
 quasi-ballisti
 
ontributions. For �nitebias and room temperature, s
attering of the ele
trons with the vibrations de
reases the
urrent by about 30% as 
ompared to the vibrationless 
ase. On the other hand, the
oupling to vibrations enhan
es the zero-bias 
ondu
tan
e at low temperatures by severalorders of magnitude. The reason for this lies in the emergen
e of vibrational satellites inthe gap, whi
h have non-zero transmission.79



Chapter 7: Con
lusionsAs inhomogeneous DNA sequen
es experien
e Anderson lo
alization, the density ofstates is highly fragmented. As for the homogeneous sequen
e, there are ele
troni
 reso-nan
es and vibrational satellites. For su
h DNA mole
ules ele
troni
 transport is almostentirely governed by inelasti
 pro
esses. That means that the energy to over
ome thepotential barriers in the DNA, asso
iated with the inhomogeneous sequen
e, is providedby the base pair vibrations. We exemplary studied the sequen
e 5'-CAT TAA TGCTAT GCA GAA AAT CTT AG-3', whi
h I-V 
hara
teristi
s show distin
t steps as-so
iated with the energies of either pure or hybridized states of guanine and adenine.This states 
an be identi�ed in the density of states at E − EF = −0.3 eV, -0.7 eV, and-0.95 eV. We 
ould show, that in 
ontrast to homogeneous DNA, the non-lo
al ele
tron-vibration 
oupling qualitatively modi�es the I-V 
hara
teristi
s for inhomogeneous DNAmole
ules. In parti
ular, for our model sequen
e the transmission of the states around
E − EF = −0.7 eV was halved.Astonishingly, we found that the 
urrent through su
h inhomogeneous DNA sequen
esdepends non-monotoni
ally on the ele
trode-DNA 
oupling Γ. The 
urrent rea
hes amaximum value when Γ is about equal to the imaginary part of the vibrational self-energy Σvib ≈ 0.01 eV. This shows that it is not always better to maximize the 
ouplingof the DNA to the ele
trodes and that a systemati
 (experimental) study of the 
ouplingis needed.Se
ondly, we studied the limit of in
oherent polaron hopping transport through shortDNA mole
ules 
oupled to biased leads. The polarons are formed due to strong intera
-tion between ele
trons and base pair vibrations, whi
h are assumed to be independent ofthe vibrations of other base pairs. To des
ribe strong lo
al ele
tron-vibration 
oupling aunitary transformation is performed on the Hamiltonian, giving rise to new parametersfor a perturbative expansion. These are the hopping (tij/∆) and tunneling (tL/R

i /∆)strengths normalized by the polaron binding energy ∆, whi
h is ∆G = 0.47 eV and
∆A = 0.18 eV for guanine and adenine, respe
tively. To derive the 
urrent through su
ha system, we stated a set of rate equations for the o

upation number of the variousDNA base pairs, with rates obtained from Golden Rule arguments. These rates take intoa

ount inelasti
 hopping transitions involving ex
itation or absorption of lo
al base pairvibrations.For all DNA mole
ules we observe semi-
ondu
ting I-V 
hara
teristi
s, whi
h are sym-metri
 for homogeneous and symmetri
 sequen
es, but show re
tifying behavior for allnon-symmetri
 sequen
es. The reason for this, lies in the fa
t that the `bottlene
ks' fortransport are hopping transitions, where a potential step has to be over
ome. Sin
e thesesteps are, in general, di�erent for positive or negative bias voltage they lead to di�erent
urrents. We showed that the 
urrent thresholds are very sensitive to the 
onsideredsequen
e. For homogeneous sequen
es they agree with the polaron shifted onsite energyof the 
orresponding base pairs, but for inhomogeneous sequen
es the thresholds arenot dire
tly related to intrinsi
 energy s
ales. For su
h DNA mole
ules the non-trivial
harge rearrangement at �nite bias determine the exa
t position of the threshold, whi
his somewhere in between the limits set by the onsite energies of guanine and adenine.The shape of the thresholds di�ers from the Fermi fun
tion form. This 
hange in shape isthe most prominent for the sequen
e `GAAAAAAG' with only single guanine base pairsat both ends, whi
h shows a very broad peak, whereas for other sequen
es, 
omprising80



more than a single guanine at the ends, the thresholds are only slightly broadened. Thee�e
t of 
harge rearrangements is visualized by displaying the lo
al 
hemi
al potential
Φi, whi
h illustrates how the applied bias voltage `drops' over the entire DNA mole
ule.As expe
ted most of the voltage drops at the jun
tions to the ele
trodes and at the`bottlene
ks' of the sequen
e.We show that the 
urrent for a homogeneous DNA mole
ule is thermally a
tivated witha temperature dependen
e following an Arrhenius-law, whi
h is expe
ted for polaronhopping transport. This result agrees well with some re
ent experiments. The obtaineda
tivation energy Ea depends on the applied bias voltage and approa
hes the bulk polaronvalue Ea = ∆/2 for voltages above the threshold.In the third part of this thesis we have developed a general approa
h to polaron trans-port through mesos
opi
 systems 
oupled to biased ele
trodes, whi
h is not restri
ted toDNA. The approa
h is based on a diagrammati
 real-time expansion of the single parti
ledensity matrix along the Keldysh 
ontour. The 
onsideration of non-diagonal elementsof the single-parti
le density matrix allows the in
lusion of 
oheren
e e�e
ts in the de-s
ription of polaron hopping. Furthermore, by nature of the diagrammati
 expansion,divergen
es asso
iated with resonant tunneling, whi
h where negle
ted in the previouspart by phenomenologi
al arguments, do not o

ur. Instead, the possibility of resonanttunneling gives rise to 
orrelation e�e
ts between o

upations of di�erent sites.We apply this approa
h to polaron hopping transport through DNA. In the limit ofstrong ele
tron-vibration 
oupling and high temperature 
oheren
e e�e
ts 
an be ne-gle
ted and we 
onsider only the diagonal elements of the single parti
le density matrix.In 
ontrast to the previous part, we now 
onsider 
orrelations between the o

upation ofdi�erent sites and study when su
h 
orrelations o

ur and whi
h 
hanges they promotein the transport 
hara
teristi
s. We showed that these 
orrelations only a�e
t inhomo-geneous DNA sequen
es and, in general, lead to a redu
tion of the 
urrent of up to oneorder of magnitude for high voltages. Most importantly, for some DNA sequen
es they
an introdu
e a new energy s
ale, whi
h manifests itself as an additional peak in thedi�erential 
ondu
tan
e. This new energy s
ale arises from 
orrelations asso
iated withDNA bases in a sequen
e that are surrounded by bases with other onsite energies, e. g.the guanine in AAAAGAAA. At bias voltages where these relative 
orrelations (Eq. 6.15)start to di�er strongly from zero, the se
ondary maxima arise in the di�erential 
ondu
-tan
e. These se
ondary peaks arise at voltage above the primary 
urrent threshold, buttheir exa
t position strongly depends on the 
onsidered DNA sequen
e.We �nd that 
orrelations whi
h are asso
iated with isolated bases at the ele
trodeinterfa
e (e. g. GAAAAAAG) strongly depend on the ele
trode 
oupling strength Γ.For de
reased 
oupling the 
orrelations and also the asso
iated se
ondary peaks in thedi�erential 
ondu
tan
e are strongly redu
ed. On the other hand, 
orrelations asso
iatedwith isolated bases in the 
enter of a sequen
e (e. g. AAAAGAAA) are insensitive tothe ele
trode 
oupling and 
onsequently also the se
ondary maxima do not vary. Thisbehavior 
hanges, if additional to the isolated base in the 
enter there are isolated basesat the ele
trode jun
tions (e. g. GAATGAC). In su
h a 
ase the 
orrelations asso
iatedwith the base in the 
enter are also redu
ed when the ele
trode 
oupling is de
reased.We have also shown that 
orrelations between nearest-neighbors are the most important,as the 
orrelations de
rease exponentially with the distan
e. 81



Chapter 7: Con
lusionsInelasti
 e�e
ts are important to transport in DNA and 
an lead to di�erent behavior,depending on the strength and nature of the 
oupling between ele
troni
 and vibrationaldegrees of freedom. Hopefully this work will help to interpret the results of ele
troni
transport experiments with short DNA mole
ules and lead to a deeper understanding ofthe physi
s involved.
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Appendix A. Useful relationsA.1. Green fun
tionsThe various Green fun
tions are de�ned by
G>

kl(t, t
′) = − i

〈

ak(t)a
†
l (t

′)
〉 (A.1)

G<
kl(t, t

′) =i
〈

a†
l (t

′)ak(t)
〉 (A.2)

Gret
kl (t, t′) = − iθ(t − t′)

〈{

ak(t), a
†
l (t

′)
}〉 (A.3)

=θ(t − t′) (G>
kl(t, t

′) − G<
kl(t, t

′)) (A.4)
Gadv

kl (t, t′) =iθ(t′ − t)
〈{

ak(t), a
†
l (t

′)
}〉 (A.5)

=θ(t′ − t) (G<
kl(t, t

′) − G>
kl(t, t

′)) , (A.6)where only three of the four Green fun
tions de�ned above are independent. The fourthGreen fun
tion is given by the relations
G>

kl(t, t
′) − G<

kl(t, t
′) =Gret

kl (t, t′) − Gadv
kl (t, t′) (A.7)

G>
kl(E) − G<

kl(E) =Gret
kl (E) − Gadv

kl (E) . (A.8)The retarded Green fun
tions follows the Dyson equation given by
Gret(E) =

[(
Gret

0 (E)
)−1

− Σret(E)
]−1

, with (A.9)
Gret

0 (E) =
[
E − H + i0+

]−1
, (A.10)where H is the Hamiltonian of the system.The lesser Green 
an be 
al
ulated from the retarded and advan
ed Green fun
tionsand the respe
tive self-energies by the kineti
 equation

G<(E) = Gret(E) [Σ<(E)] Gadv(E) , (A.11)where for the last three equations the Green fun
tions where assumed to be matri
es inthe site indi
es k, l.The 
omplex 
onjugate of the Green fun
tions read
[

G
>/<
kl (t, t′)

]∗

= −G
>/<
lk (t′, t) and [

G
>/<
kl (E)

]∗

= −G
>/<
lk (E) (A.12)

[
Gret

kl (t, t′)
]∗

= Gadv
lk (t′, t) and [

Gret
kl (E)

]∗
= Gadv

lk (E) . (A.13)In equilibrium the �u
tuation-dissipation relation is valid
G>

kl(E) = (1 − f(E))
(
Gret

kl (E) − Gadv
kl (E)

) (A.14)
G<

kl(E) = − f(E)
(
Gret

kl (E) − Gadv
kl (E)

)
. (A.15)83



Appendix A: Useful relationsA.2. Langreth rulesLet us 
onsider some 
ontour ordered Green fun
tions (A, B, C, and D) whi
h areevaluated at spe
i�
 times τi on the Keldysh 
ontour [94, 124℄. The asso
iated real-time Green fun
tions (lesser, retarded . . . ) of produ
ts and 
onvolutions of these 
ontourordered Green fun
tions are found from the Langreth rules.For easier readability we do not expli
itly write out the time arguments for 
onvolutionswith respe
t to time. That implies for a 
onvolution on the 
ontour C =
∫

C
AB →

C(τ, τ ′) =
∫

C
dτ1A(τ, τ1)B(τ1, τ

′) and similar for a 
onvolution on the real-time axis.Contour Real-time axis
C =

∫

C

AB C< =

∫

t

[
AretB< + A<Badv

]

Cret =

∫

t

AretBret

D =

∫

C

ABC D< =

∫

t

[
AretBretC< + AretB<Cadv + A<BadvCadv

]

Dret =

∫

t

AretBretCret

C(τ, τ ′) = A(τ, τ ′)B(τ, τ ′) C<(t, t′) = A<(t, t′)B<(t, t′)

Cret(t, t′) = A<(t, t′)Bret(t, t′) + Aret(t, t′)B<(t, t′)

+Aret(t, t′)Bret(t, t′)

C(τ, τ ′) = A(τ, τ ′)B(τ ′, τ) C<(t, t′) = A<(t, t′)B>(t′, t)

Cret(t, t′) = A<(t, t′)Badv(t′, t) + Aret(t, t′)B<(t′, t)The above expressions are taken from [124℄.
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Appendix B. Boson 
orrelatorB.1. Commutation relation with the HamiltonianWe want to 
al
ulate the 
ommutator [H̃, χ], where the only relevant parts of the Hamil-tonian (Eq. 4.3) are the ones in
luding vibrational operators Bα, sin
e χ 
ommutes withall fermion operators and with itself ([χ, χ] = [χ†, χ] = 0). Using the Feynman rule fordisentangling of operators
eA+B = eAeBe−

1
2
[A,B] if [A, [A, B]] = [B, [A, B]] = 0we 
an write

χ = exp

[
∑

α

(
λ0

ωα
Bα −

λ0

ωα
B†

α

)]

=
∏

α

exp

[
λ0

ωα

Bα −
λ0

ωα

B†
α

]

=
∏

α

exp

[
λ0

ωα

Bα

]

︸ ︷︷ ︸

Iα

exp

[

−
λ0

ωα

B†
α

]

︸ ︷︷ ︸

Jα

exp

[

−
λ2

0

2ω2
α

]

︸ ︷︷ ︸

Kα

.We now perform the 
ommutation
[

H̃, χ
]

=
∑

α

∏

α′ 6=α

Iα′Jα′Kα′ ·
[

H̃, IαJαKα

]

=
∑

α

∏

α′ 6=α

Iα′Jα′Kα′ ·
{[

H̃, Iα

]

JαKα + Iα

[

H̃, Jα

]

Kα

}

,sin
e [Iα′Jα′Kα′ ,
[

H̃, IαJαKα

]]

= 0 for α′ 6= α.Let us look at the two remaining 
ommutators separately.(1)
[

H̃, Iα

]

=
∑

n

1

n!

(
λ0

ωα

)n

[H̃, Bn
α]

=
∑

n

n

n!

(
λ0

ωα

)n

[H̃, Bα] Bn−1
α sin
e [Bα, [H̃, Bα]] = 0 .85



Appendix B: Boson 
orrelatorUsing
[

H̃, Bα

]

= −ωαBα −
∑

<ij>

λ1 a†
iaj and

[

H̃, Bn
α

]

= 0 for n=0 ,we obtain
[

H̃, Iα

]

=
∞∑

n=1

1

(n − 1)!
Bn−1

α

(
λ0

ωα

)n−1
[

λ0

ωα

{

−ωαBα −
∑

<ij>

λ1 a†
iaj

}]

= Iα

[

−λ0Bα −
∑

<ij>

λ0λ1

ωα
a†

iaj

]

.(2)
[

H̃, Jα

]

=
∑

n

1

n!

(
−λ0

ωα

)n

[H̃, B†n
α ]

=
∑

n

n

n!

−λ0

ωα

n

[H̃, B†
α] B†(n−1)

α sin
e [B†
α, [H̃, B†

α]] = 0 .Using
[

H̃, B†
α

]

= ωαB†
α +

∑

<ij>

λ1 a†
iaj and

[

H̃, B†n
α

]

= 0 for n=0 ,we obtain
[

H̃, Jα

]

=

∞∑

n=1

1

(n − 1)!
B†(n−1)

α

(
−λ0

ωα

)n−1
[

−λ0

ωα

{

ωαB†
α +

∑

<ij>

λ1 a†
iaj

}]

= Jα

[

−λ0B
†
α −

∑

<ij>

λ0λ1

ωα
a†

iaj

]

.Combining everything, we get
[

H̃, χ
]

=
∑

α

∏

α′ 6=α

Iα′Jα′Kα′ ·

{[

−λ0Bα −
∑

<ij>

λ0λ1

ωα
a†

iaj

]

IαJαKα

+IαJαKα

[

−λ0B
†
α −

∑

<ij>

λ0λ1

ωα

a†
iaj

]}

=
∑

α

{[

−λ0Bα −
∑

<ij>

λ0λ1

ωα
a†

iaj

]

χ + χ

[

−λ0B
†
α −

∑

<ij>

λ0λ1

ωα
a†

iaj

]}

.
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B.2 Expli
it expressions for higher order 
orrelatorsB.2. Expli
it expressions for higher order 
orrelatorsExpli
itely, for the di�erent 
orrelators in the equation for G
(1)
kl (t) we have

〈

aj(t)Bα(t)χ(t)a†
l χ

†
〉

≈ −
λα

ωα
(N(ωα) + 1)(1 − e−iωαt)

〈

aj(t)χ(t)a†
l χ

†
〉

〈

aj(t)B
†
α(t)χ(t)a†

l χ
†
〉

≈
λα

ωα
N(ωα)(1 − eiωαt)

〈

aj(t)χ(t)a†
l χ

†
〉

〈

aj(t)χ(t)B†
α(t)a†

l χ
†
〉

≈
λα

ωα

(
1 + N(ωα)(1 − eiωαt)

) 〈

aj(t)χ(t)a†
l χ

†
〉and for G

(2)
kl (t)

〈

a†
l χ

†aj(t)B(t)χ(t)
〉

≈ −
λα

ωα

(
1 + N(ωα)(1 − e−iωαt)

) 〈

a†
l χ

†aj(t)χ(t)
〉

〈

a†
l χ

†aj(t)B
†(t)χ(t)

〉

≈
λα

ωα
(N(ωα) + 1)(1 − eiωαt)

〈

a†
l χ

†aj(t)χ(t)
〉

〈

a†
l χ

†aj(t)χ(t)B†(t)
〉

≈
λα

ωα

[
(N(ωα) + 1)(1 − eiωαt) − 1

] 〈

a†
l χ

†aj(t)χ(t)
〉

.In the next se
tion the derivation of the �rst line in the above formulas, is shortlysket
hed.Cal
ulation of the higher order boson 
orrelatorsHere we sket
h the approximation taken to trun
ate the hierar
hy at the �rst leveland how the expressions listed above are 
al
ulated. The approximation we take is thefollowing
〈

aj(t)Bα(t)χ(t)a†
l χ

†
〉

H̃
≈ Fα(t)

〈

aj(t)χ(t)a†
l χ

†
〉

H̃
. (B.1)The fun
tion Fα(t) is obtained by 
onsidering a Hamiltonian H̃0 equivalent to H̃ ,but without ele
tron-vibration 
oupling terms and 
al
ulating the same higher order
orrelation fun
tion 〈aj(t)Bα(t)χ(t)a†

l χ
†
〉

H̃0

, where now the average is taken with respe
tto H̃0. Then the ele
troni
 and vibrational 
orrelators fa
torize,
〈

aj(t)Bα(t)χ(t)a†
l χ

†
〉

H̃0

=
〈

aj(t)a
†
l

〉

H̃el
0

〈
Bα(t)χ(t)χ†

〉

H̃vib
0

, (B.2)where H̃el
0 and H̃vib

0 are the ele
troni
 and vibrational parts of H̃0.After some straight-forward algebra (see below) we obtain
〈
Bα(t)χ(t)χ†

〉

H̃vib
0

= Fα(t)
〈
χ(t)χ†

〉

H̃vib
0and 
onsequently

〈

aj(t)Bα(t)χ(t)a†
l χ

†
〉

H̃0

= Fα(t)
〈

aj(t)χ(t)a†
l χ

†
〉

H̃0
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Appendix B: Boson 
orrelatorSo, we want to �nd an expression for the 
orrelator 〈Bα(t)χ(t)χ†
〉

H̃vib
0
, where H̃vib

0 =
∑

α ωαB†
αBα. For this 
ase the time-evolution for the boson operators be
ome trivial

Bα(t) = Bαe−iωαt. This derivation pro
eeds, using ideas from [76℄. First we rewrite the
orrelator and divide it into two parts.
〈
Bα(t)χ(t)χ†

〉

= < Bα(t) exp
[∑

α′

λα′

ωα′

(Bα′(t) − B†
α′(t))

]

exp
[

−
∑

α′

λα′

ωα′

(Bα′ − B†
α′)
]

>

=
∏

α′ 6=α

< exp
[λα′

ωα′

(Bα′(t) − B†
α′(t))

]

exp
[

−
λα′

ωα′

(Bα′ − B†
α′)
]

>
︸ ︷︷ ︸

Fα′ (t)

×< Bα(t) exp
[λα

ωα
(Bα(t) − B†

α(t))
]

exp
[

−
λα

ωα
(Bα − B†

α)
]

>
︸ ︷︷ ︸

<Ia>

.Now we look at Ia, where we expli
itly write the density matrix ̺vib = exp
[

− β~ωαnα

]and the sum over all quantum me
hani
al states |nα >, i. e. the o

upation numbers ofvibrational mode α,
< Ia > =

1

Z

∞∑

nα=0

exp
[

− β~ωαnα

]

× < nα|Bα(t) exp
[λα

ωα
(Bα(t) − B†

α(t))
]

exp
[

−
λα

ωα
(Bα − B†

α)
]

|nα > ,with Z =
∑∞

nα=0 exp
[

− β~ωαnα

].Applying the Feynman rule for disentangling of operators (see previous se
tion), we 
anrewrite
exp

[λα

ωα

(Bαe−iωαt − B†
αeiωαt)

]

exp
[

−
λα

ωα

(Bα − B†
α)
]

=

exp
[

−
λ2

α

ω2
α

]

exp
[

−
λα

ωα

B†
αeiωαt

]

exp
[λα

ωα

Bαe−iωαt
]

exp
[λα

ωα

B†
α

]

exp
[

−
λα

ωα

Bα

]

.using the 
ommutator relationship
exp

[λα

ωα
Bαe−iωαt

]

exp
[λα

ωα
B†

α

]

=

exp
[(λα

ωα

)2

e−iωαt
]

exp
[λα

ωα
B†

α

]

exp
[λα

ωα
Bαe−iωαt

]

,the above expression be
omes
exp

[λα

ωα
(Bαe−iωαt − B†

αeiωαt)
]

exp
[

−
λα

ωα
(Bα − B†

α)
]

= exp
[

−

(
λα

ωα

)2

(1 − e−iωαt)
]

︸ ︷︷ ︸

K(t)

exp
[λα

ωα
B†

α(1 − eiωαt)
]

exp
[

−
λα

ωα
Bα(1 − e−iωαt)

]

.
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B.2 Expli
it expressions for higher order 
orrelators
Ia now reads

Ia = Bα(t) exp
[λα

ωα
(Bα(t) − B†

α(t))
]

exp
[

−
λα

ωα
(Bα − B†

α)
]

= K(t) Bα(t) exp
[λα

ωα
B†

α(1 − eiωαt)
]

exp
[

−
λα

ωα
Bα(1 − e−iωαt)

]

.We want to move all term 
ontaining B† to the left. For that we need the relation
Bα(t) exp

[λα

ωα

B†
α(1 − eiωαt)

]

=

exp
[λα

ωα

B†
α(1 − eiωαt)

]

exp
[

−
λα

ωα

B†
α(1 − eiωαt)

]

Bαe−iωαt exp
[λα

ωα

B†
α(1 − eiωαt)

]

︸ ︷︷ ︸

Bαe−iωαt − λα

ωα
(1 − e−iωαt)

,whi
h was derived using
eŜB̂e−Ŝ = B̂ +

[

Ŝ, B̂
]

+
1

2

[

Ŝ,
[

Ŝ, B̂
]]

+ . . . .De�ning u = λα

ωα
(1 − eiωαt), we 
an write

Ia = −u∗ K(t) exp
[

u B†
α

]

exp
[

− u∗ Bα

]

+K(t) exp
[

u B†
α

]

Bαe−iωαt exp
[

− u∗ Bα

]

.We 
an now write an expression for < Ia >, that we 
an use to 
al
ulate the expli
itresult,
< Ia >

= −
λα

ωα
(1 − e−iωαt)F (t)

+
K(t)

Z

∞∑

nα=0

exp
[

− β~ωαnα

]

< nα| exp
[

u B†
α

]

Bαe−iωαt exp
[

− u∗ Bα

]

|nα >

︸ ︷︷ ︸

Ib

.To 
al
ulate Ib, we state the following rules, when a
ting with the boson operators onthe states,
< nα|e

u B†
α =

nα∑

m=0

um

m!

[ nα!

(nα − m)!

] 1
2

< nα − m|

Bαe−iωαte−u∗ Bα|nα > =

nα−1∑

l=0

(−u∗)l

l!

[ nα!

(nα − l − 1)!

] 1
2
e−iωαt|nα − l − 1 >

< nα − m|nα − l − 1 > = δm,l+1 . 89



Appendix B: Boson 
orrelatorUsing these, the expression in bra
kets of Ib reads
< nα|e

u B†
αBαe−iωαte−u∗ Bα |nα >=

nα∑

m=0

um

m!

[ nα!

(nα − m)!

] 1
2

nα−1∑

l=0

(−u∗)l

l!

[ nα!

(nα − l − 1)!

] 1
2
e−iωαtδm,l+1 .Performing the sum over l we end up with

< nα|e
u B†

αBαe−iωαte−u∗ Bα |nα > =

nα∑

m=1

um

m!

nα!

(n − m)!

(−u∗)m−1

(m − 1)!
e−iωαt

=

nα∑

m=1

(−|u|2)(m−1)

[(m − 1)!]2
nα!

(nα − m)!
·

u

m
e−iωαt .Together with Z =

∑∞
nα=0 exp

[

− β~ωαnα

]

=
[
1 − e−β~ωα

]−1, this makes
Ib = (1 − e−β~ωα)

∞∑

nα=1

e−β~ωαnα

nα∑

m=1

(−|u|2)(m−1)

[(m − 1)!]2
nα!

(n − m)!
·

u

m
e−iωαt .Using the variable transform l = nα − 1 and k = m − 1, Ib be
omes

Ib = K(t) (1 − e−β~ωα)

∞∑

l=0

e−β~ωα(l+1)

l∑

k=0

(−|u|2)k

(k!)2

(l + 1)!

(l − k)!
·

u

k + 1
e−iωαt

= K(t) (1 − e−β~ωα)e−β~ωα u e−iωαt

∞∑

l=0

l∑

k=0

e−β~ωαl (−|u|2)k

(k!)2

(l + 1)!

(l − k)!
·

1

k + 1

= K(t) (1 − e−β~ωα)e−β~ωα u e−iωαt

∞∑

l=0

∞∑

k=0

e−β~ωα(l+k) (l + k + 1)!

(l!)2(k)!
(−|u|2)l ·

1

l + 1
,where in the last step we set the upper limit of k to in�nity, together with 
hanging thea

ordant values in the formula, whi
h is not straight forward, but 
an be 
he
ked byexpli
it 
omparison between the terms from the se
ond and third line. Using the identityfor the fa
ulty (l + k + 1)! =

∫∞

0
dxxl+k+1 e−x, we obtain

Ib = K(t) (1 − e−β~ωα)e−β~ωα u e−iωαt

×

∞∑

l=0

e−β~ωαl (−|u|2)l

(l!)2(l + 1)

∫ ∞

0

dx

∞∑

k=0

xl+k+1 e−xe−β~ωαk 1

k!
︸ ︷︷ ︸

Ic

.The expression Ic 
an be 
omputed to90



B.3 Detailed balan
e relation
Ic =

∫ ∞

0

dx xl+1e−x
∞∑

k=0

xk e−β~ωαk 1

k!

=

∫ ∞

0

dx xl+1e−x(1−exp[−β~ωα])

= (1 − e−β~ωα)−(l+1)

∫ ∞

0

dx [x(1 − e−β~ωα)]l+1e−x(1−exp[−β~ωα]) .Using y = x(1 − e−β~ωα) and dy = dx(1 − e−β~ωα) →

Ic = (1 − e−β~ωα)−(l+2)

∫ ∞

0

dy yl+1e−y

= (1 − e−β~ωα)−(l+2)(l + 1)! .Consequently, we get
Ib =

e−β~ωα

(1 − e−β~ωα)
u e−iωαt × K(t)

∞∑

l=0

e−β~ωαl

(1 − e−β~ωα)l

(−|u|2)l

l!
︸ ︷︷ ︸

Fα(t)

= N(ωα) u e−iωαt
Fα(t) .Putting it all ba
k together, we �nally get

〈
Bα(t)χ(t)χ†

〉
≈ −

λα

ωα
(N(ωα) + 1)(1 − e−iωαt)

〈
χ(t)χ†

〉
.The other 
orrelators are 
al
ulated similarly.B.3. Detailed balan
e relationusing the following representation for the boson 
orrelator:

〈
χ(t)χ†

〉
= exp

{

−
∑

α

(
λ0

ωα

)2
cosh (ωαβ/2) − cos (ωα [t + iβ/2])

sinh (ωαβ/2)

} (B.3)
〈
χ†χ(t)

〉
= exp

{

−
∑

α

(
λ0

ωα

)2
cosh (ωαβ/2) − cos (ωα [t − iβ/2])

sinh (ωαβ/2)

} (B.4)(B.5)It is easy to show that P (E) follows the details balan
e relation P (−E) = e−βEP (E),where
P (E) =

∫

dteiEt
〈
χ(t)χ†

〉 (B.6)
P (−E) =

∫

dteiEt
〈
χ†χ(t)

〉 (B.7)
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Appendix B: Boson 
orrelatorWe verify this by writing the inverse Fourier transform for P (−E) and e−βEP (E):
∫

dE

2π
e−iEtP (−E) =

〈
χ†χ(t)

〉 (B.8)
∫

dE

2π
e−iE(t−iβ)P (E) (B.9)

= exp

{

−
∑

α

(
λ0

ωα

)2
cosh (ωαβ/2) − cos (ωα [t − iβ + iβ/2])

sinh (ωαβ/2)

} (B.10)
= exp

{

−
∑

α

(
λ0

ωα

)2
cosh (ωαβ/2) − cos (ωα [t − iβ/2])

sinh (ωαβ/2)

} (B.11)
=
〈
χ†χ(t)

〉 (B.12)Sin
e the �rst and last line are identi
al, also the details balan
e relation is true.
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Appendix C. Ele
trode self-energyWe de�ne G1
νlr(t) = −iθ(t)

〈

cr
ν(t)a

†
l χ

†
〉 and G2

νlr(t) = −iθ(t)
〈

a†
l χ

†cr
ν(t)
〉 and 
al
ulatethe a

ording EOMs with the Hamiltonian from Eq. 4.4.

(

i
d

dt
− ǫν

)

︸ ︷︷ ︸

[gret(t)]−1

G1
νlr(t) = δ(t)

〈

cr
νa

†
l χ

†
〉

+
∑

j

trj

[

−iθ(t)
〈

aj(t)χ(t)a†
l χ

†
〉]

︸ ︷︷ ︸

G1
jl

(t)

(

i
d

dt
− ǫν

)

︸ ︷︷ ︸

[gret(t)]−1

G2
νlr(t) = δ(t)

〈

a†
l χ

†cr
ν

〉

+
∑

j

trj

[

−iθ(t)
〈

a†
l χ

†aj(t)χ(t)
〉]

︸ ︷︷ ︸

G2
jl

(t)

↓

G1
νlr(t) = gret

νr (t)
〈

cr
νa

†
l χ

†
〉

+

∫

dt′
∑

j

trjg
ret
νr (t − t′)G1

jl(t
′)

G2
νlr(t) = gret

νr (t)
〈

a†
l χ

†cr
ν

〉

+

∫

dt′
∑

j

trjg
ret
νr (t − t′)G2

jl(t
′)where trj is the 
oupling of the left, r = L (right, r = R) ele
trode to the �rst, j = 1(last, j = N) base pair and gret

νr (E) = is the non-intera
ting retarded green fun
tions ofthe left or right ele
trode. For the wide band limit, this simpli�es to gret
νr (E) = −i2πρr

e.The so far unspe
i�ed equal time 
orrelator of the �rst equation reads
〈

cr
νa

†
l χ

†
〉

= −

∫
dE

2πi

∑

i

tri
[
gret

νr (E) G>
il (E) + g>

νr(E) Gadv
il (E)

]
. (C.1)The se
ond unspe
i�ed 
orrelator has the same magnitude, but with opposite sign, sin
ethe relation

〈

cr
na

†
l χ

†
〉

+
〈

a†
l χ

†cr
n

〉

=
〈{

cr
n, a

†
l

}

χ†
〉

= 0 (C.2)holds. As one 
an see from Eq. C.1 this would lead to a 
oupling between G1(t) and
G2(t) to other Green fun
tions. To have fully de
oupled equations, we set both 
or-relators 〈cr

na
†
l χ

†
〉 and 〈a†

l χ
†cr

n

〉 to zero. This approximation is reasonable, sin
e their
ontribution to Eq. 4.6 and 4.7 is small, at most of the order of Γr and adding G1(t) and
G2(t) in the end results in their 
an
ellation a

ording to Eq. C.2. The validity of thisapproximation has been 
he
ked numeri
ally.

93





Appendix D. Non-equilibriumEquation of motionIn 
ontrast to the method des
ribed in Chapter 4 for determining the transport propertiesof the mole
ular system, where the lesser self-energy was approximated by an e�e
tiveFermi fun
tion, we now want 
al
ulate the full non-equilibrium transport of the system.The vibration o

upation 
an still be des
ribed by the equilibrium Bose-fun
tion, sin
ethe 
oupling to the bath relaxes the vibration fast enough into equilibrium.In non-equilibrium the distribution-fun
tion (G<) and the density of states (Gret)are independent of ea
h other. In 
ontrast, the �u
tuation-dissipation relation linksthese two in equilibrium. To 
al
ulate the non-equilibrium properties of the system we
al
ulate the equation of motion for the 
ontour ordered Green fun
tion Gkl(τ, τ
′) =

−i
〈

TCak(τ)χ(τ)a†
l (τ

′)χ†(τ ′)
〉 For this we split the Hamiltonian (Eq. 4.3) into a partdes
ribing the un
oupled system and a part des
ribing the rest, H̄ = H̄0 + H̄1, with

H̄0 =
∑

i

(ǫi − ∆)a†
iai −

∑

<ij>

tija
†
iaj

H̄1 =
∑

n,r,i

[

trinc
†
nraiχ + tr∗ina†

iχ
†cnr

]

+ H̄R + H̄L

+
∑

α

ωαB†
αBα +

∑

α

∑

<ij>

λij a†
iaj(Bα + B†

α) . (D.1)The equation of motion (EOM) then reads
∑

j

[(

i
d

dτ
− ǫk + ∆

)

δkj + tkj

]

︸ ︷︷ ︸

[G0
jl]

−1

Gjl(τ, τ
′) =δ(τ − τ ′)δkl

−i
〈

TC

[
ak(τ)χ(τ), H̄1

]
a†

l (τ
′)χ†(τ ′)

〉

︸ ︷︷ ︸

<<[akχ,H̄1]a†
l
χ†>>(τ−τ ′)

.(D.2)After rearranging we obtain
Gkl(τ, τ

′) =G0
kl(τ, τ

′) +
∑

j

∫

dτ1G
0
kj(τ, τ1) <<

[
ajχ, H̄1

]
a†

l χ
† >>(τ1−τ ′) . (D.3)
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Appendix D: Non-equilibrium Equation of motionApplying the Langreth rules we get for the retarded/advan
ed and lesser/greater Greenfun
tion in real time
Gret

kl (t, t′) =Gret,0
kl (t, t′) +

∑

j

∫

dt1G
ret,0
kj (t, t1) <<

[
ajχ, H̄1

]
a†

l χ
† >>ret

(t1−t′) (D.4)
Gadv

kl (t, t′) =Gadv,0
kl (t, t′) +

∑

j

∫

dt1G
adv,0
kj (t, t1) <<

[
ajχ, H̄1

]
a†

l χ
† >>adv

(t1−t′) (D.5)
G

>/<
kl (t, t′) =G

>/<,0
kl (t, t′) +

∑

j

∫

dt1G
ret,0
kj (t, t1) <<

[
ajχ, H̄1

]
a†

l χ
† >>

>/<
(t1−t′)

+
∑

j

∫

dt1G
>/<,0
kj (t, t1) <<

[
ajχ, H̄1

]
a†

l χ
† >>adv

(t1−t′) (D.6)or in energy spa
e
Gret

kl (E) =Gret,0
kl (E) +

∑

j

Gret,0
kj (E) <<

[
ajχ, H̄1

]
a†

l χ
† >>ret

E (D.7)
Gadv

kl (E) =Gadv,0
kl (E) +

∑

j

Gadv,0
kj (E) <<

[
ajχ, H̄1

]
a†

l χ
† >>adv

E (D.8)
G

>/<
kl (E) =G

>/<,0
kl (E) +

∑

j

Gret,0
kj (E) <<

[
ajχ, H̄1

]
a†

l χ
† >>

>/<
E

+
∑

j

G
>/<,0
kj (E) <<

[
ajχ, H̄1

]
a†

l χ
† >>adv

E . (D.9)This is equivalent to the result obtained by the far more 
ompli
ated method of Niuet al [125℄. Using the Eq. (D.8) one 
an rewrite Eq. (D.9) to (in matrix notation)
G>/<(E) =G>/<,0(E)

[[
Gadv,0(E)

]−1
Gadv(E)

]

+ Gret,0(E) <<
[
aχ, H̄1

]
a†χ† >>

>/<
E . (D.10)The Green fun
tion <<

[
ajχ, H̄1

]
a†

l χ
† >>

ret/adv
E depends on G>(E) and G<(E).Therefore we have a set of 
oupled equations whi
h have to be solved self-
onsistently.The Green fun
tion 
onsisting of the 
ommutator with H̄1 des
ribe the intera
tion withthe leads, the non-lo
al ele
tron-vibration 
oupling and the in�uen
e of the strong lo
alele
tron-vibration 
oupling.The 
ommutator with the ele
trode-system Hamiltonian H̄T,L and H̄T,R give rise to

<<
[
ajχ, H̄T,L/R

]
a†

l χ
† >>ret

t = − iθ(t)

〈
{

cL/R
n (t), a†

l χ
†
l

}

χ†(t)χ(t)
︸ ︷︷ ︸

=1

〉 (D.11)
<<

[
ajχ, H̄T,L/R

]
a†

l χ
† >><

t = i

〈

a†
l χ

†cL/R
n (t) χ†(t)χ(t)

︸ ︷︷ ︸

=1

〉

, (D.12)respe
tively.96



To obtain the retarded self-energy due to the ele
trodes we 
al
ulate the EOM forEq. (D.11). We de�ne Gret
nlr(t) = −iθ(t)

〈{

cr
n(t), a†

l χ
†
l

}〉 with r =L/R and then we
ompute the equation of motion for Gret
nlr(t)

i
∂

∂t
Gret

nlr(t) = δ(t)
〈{

cr
n, a†

l χ
†
}〉

︸ ︷︷ ︸

=0

+ǫnG
ret
nlr(t)

+
∑

j

trnj

[

−iθ(t)
〈

aj(t)χ(t)a†
l χ

†
〉

− iθ(t)
〈

a†
l χ

†aj(t)χ(t)
〉]

︸ ︷︷ ︸

Gret
jl

(t)

.After fourier transformation from time to energy-domain, we obtain
E Gret

nlr(E) = ǫnG
ret
nlr(E) +

∑

j

trnj Gret
jl (E)

→ Gret
nlr(E) = gret

nr (E)
∑

i

trnj Gret
jl (E) ,where gret

nr (E) is the retarded Green fun
tion of ele
trode r = R/L.With this, the retarded ele
trode self-energy be
omes
Σret,r

jk =

[
∑

n

tr∗nkg
ret
nr (E)trnj

]

= −iΓr
kj . (D.13)The last equality arises in the so 
alled wide-band limit, where the density of states inthe ele
trodes is assumed to be 
onstant.To solve Eq. (D.12) we 
al
ulate the EOM for G<

nlr(t) = i
〈

a†
l χ

†cr
n(t)

〉. In analogy tothe non-equilibrium derivation in the book of Haug and Jauho [124℄ (pages 162,163) weget
G<

nlr(E) =
∑

i

trni

[
gret

nr (E) G<
il (E) + g<

nr(E) Gadv
il (E)

]
,where we 
an identify the lesser self-energy due to 
oupling to left (r = L) or right(r = R) lead.

Σ<,r
jk =

∑

n

tr∗nkg
<
nr(E)trnj = if(E)2Γr

kjNote, that we used the full 
oupling to leads, i. e. in
luding the χ-terms in H̄T,L and
HT,R.In the EOM we en
ounter the same types of terms whi
h arose in the EOM in se
tionbefore, e. g. 〈ak(t)Bα(t)χ(t)a†

l χ
†
〉. We treat these in the same manner, as in the previousse
tion, see Eq. (4.8) and following. E�e
tively this is equivalent to fa
torizing the97



Appendix D: Non-equilibrium Equation of motionele
troni
 and vibrational degrees if freedom. Is this? This is the only approximationin this theory.With these approximations the retarded and lesser 
orrelators read
<< [ak(t)χ(t), H1], a

†
l χ

† >>ret (E) =
∑

j

ΛkjG
ret
jl (E)

+
∑

j 6=k

λkjλ0

[
F1(G

>r
jl )(E) + F2(G

<r
jl )(E)

]

+ λ2
0 [F1(G

>r
kl )(E) + F2(G

<r
kl )(E)] (D.14)and

<< a†
l χ

†[ak(t)χ(t), H1] >>< (E) =
∑

j

ΛkjG
<
jl(E) +

∑

j

Σ<
kjG

adv
jl (E)

+
∑

j 6=k

λkjλ0F2

(
G<

jl

)
(E)

+ λ2
0F2 (G<

kl) (E) , (D.15)with the fun
tionals F1(G
ν
kl)(E) and F2(G

ν
kl)(E), that des
ribe the strong intera
tionwith the lo
al vibrations

F1(G
ν
kl)(E) =

∫

dteiEt

∫

dω
D(ω)

ω

[
(N(ω) + 1) e−iωt − N(ω)eiωt

]
Gν

kl(t)

=

∫

dω
D(ω)

ω
[(N(ω) + 1)Gν

kl(E − ω) − N(ω)Gν
kl(E + ω)] (D.16)

F2(G
ν
kl)(E) =

∫

dteiEt

∫

dω
D(ω)

ω

[
N(ω)e−iωt − (N(ω) + 1) eiωt

]
Gν

kl(t)

=

∫

dω
D(ω)

ω
[N(ω)Gν

kl(E − ω) − (N(ω) + 1)Gν
kl(E + ω)] (D.17)and the de�nition

Λkj = − ∆δkj + Σret
kj +

∫

dω
D(ω)

ω

[

2
∑

i6=j

〈

aka
†
i

〉

λijλ0

− 2
∑

<ij′>

〈

aj′a
†
i

〉

λij′λ0δkj −
∑

j 6=k

λkjλ0

]

.The un
ommon Green fun
tions in Eq. (D.14) are G>r
kl (t) = θ(t)G>

kl(t) and G<r
kl (t) =

−θ(t)G<
kl(t). The variable ν in Eq. (D.16) and Eq. (D.17) stands for the various Greenfun
tions in Keldysh spa
e.Inserting Eq. (D.14) and Eq. (D.15) into the EOM formulas (Eq. (D.7) and Eq. (D.10)respe
tively) and 
omparing the result for the lesser Green fun
tion (Eq. (D.10)) withthe general relation

G<(E) = G<
0 (E) + Gret

0 (E)Σret(E)Gadv(E)

+Gret
0 (E)Σ<(E)Gadv(E) + G<

0 (E)ΣadvGadv(E) ,98



we 
an identify
F2(G

<)(E) = Σret
vib(E)G<(E) + Σ<

vib(E)Gadv(E) . (D.18)For Gret and G< self-
onsisten
y equations have to be solved numeri
ally. The otherGreen fun
tions 
an be derived from the relations given in App. A. The drawba
k isthat the 
urrent 
omputed by the Meir and Wingreen formula (Eq. 3.3) is not 
onserved,i. e. IL 6= IR. This unphysi
al result is due to the approximation in 
al
ulating the boson
orrelators. Other authors using similar approa
hes, but without non-lo
al ele
tron-vibration 
oupling, do not 
omment on this problem although they should experien
e itas well [96, 115℄.
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Appendix E. Vibrational operatorprodu
tsIn the perturbation expansion of the single parti
le density matrix ρl
k(t) =

〈

a†
k(t)al(t)

〉

H̃to order n in the perturbative Hamiltonian H̃ ′ (Eq. 6.3), one obtains up to n vibra-tional operators (equal number of χ and χ†) at di�erent times whi
h a
t upon the samevibrational states.
〈

χk(t1)χ
†
k(t2)χk(t3)χ

†
k(t4) · · ·χk(tn−1)χ

†
k(tn)

〉

H0

=
(

exp

{

−
1

2

∑

α

(
λkα

Ωkα

)2

(2N(Ωkα) + 1)

})n

× exp

{

{ζ12Ak(t1 − t2)} + TC {ζ13Ak(t1 − t3)} + · · ·

+TC {ζn−1,nAk(tn−1 − tn)}

}

,where
ζij =

{

+1 when χk(ti)χ
†
k(tj) or χ†

k(tj)χk(ti),

−1 when χk(ti)χk(tj) or χ†
k(ti)χ

†
k(tj)

.The evaluation of the operator produ
ts pro
eeds similar to the derivation inApp. B.2, ex
ept that now more fun
tions χk(ti) are involved. The expression TC in
TC {ζ12Ak(t1 − t2)} ensures, that t1 is later on the 
ontour than t2 and Ak(t1 − t2) isgiven by

Ak(t1 − t2) =
∑

α

(
λkα

ωkα

)2
[
(N(ωkα) + 1) e−iωkα(t1−t2) + N(ωkα)eiωkα(t1−t2)

]

=
∑

α

(
λkα

ωkα

)2
cos (ωkα [t1 − t2 + i~β/2])

sinh (~ωkαβ/2)
.For a 
orrelator with n operators χk and χ†

k a
ting on the same state one gets N = (n)(n−1)
2di�erent terms Ak(ti−tj) in the exponential fun
tion. This is due to the various operator
ommutations involved in deriving the above expression.
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