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Deutshe ZusammenfassungDie vorliegende Arbeit befasst sih mit dem elektronishen Transport durh kurze DNAMoleküle, wobei insbesondere untersuht wurde, welhen Ein�uss Vibrationen der Basen-paare haben. Experimentelle und theoretishe Arbeiten der letzten Jahre haben gezeigt,dass Vibrationen eine wihtige Rolle beim elektronishen Transport durh DNA spie-len. Wie diese Rolle genau aussieht, wird allerdings zur Zeit noh kontrovers disku-tiert. Insbesondere ist niht eindeutig geklärt, ob sih Polaronen in DNA bilden, danur einige Experimente mit Polaronenbildung zu erklären sind. In anderen Experi-menten wurden hingegen relativ hohe Ströme gemessen, die sih eher mit einer (quasi-)kohärenten Beshreibung des Transport erklären lassen. Deshalb haben wir den elek-tronishen Transport durh DNA genau in diesen beiden Grenzfällen untersuht. Wirbeshreiben dabei DNA Moleküle durh ein minimales tight-binding Modell, wobei jedesDNA Basenpaar mit einem tight-binding Platz identi�ziert wird. Die Parameter fürdieses Modell haben wir Experimenten und/oder ab initio Rehnungen entnommmen.Im ersten Abshnitt haben wir die quasi-kohärente Transportsituation untersuht. Indiesem Limit führt die Kopplung an Vibrationen zu inelastishen Beiträgen zum Strom,welher zumindest teilweise seinen kohärenten Charakter behält. Für die Beshreibungdieser Situation haben wir einen Bewegungsgleihungsansatz (equation-of-motion) für dieelektronishe Ein-Teilhen Green-Funktion der DNA gewählt, welher die Vibrationsef-fekte berüksihtigt, die durh lokale und niht-lokale Elektronen-Vibrationskopplungentstehen. Um die starke Kopplung der Elektronen und Vibrationen beshreiben zukönnen, entfernen wir durh eine unitäre Transformation genau diesen Kopplungstermaus dem Hamiltonoperator. Diese Prozedur erlaubt es uns, die Reihe von Green-Funktionen höherer Ordnung abzubrehen, welhe sih aus der Bewegungsgleihungergibt. Physikalish lässt sih das Abbrehen der Reihe für eine shwahe niht-lokale Elektronen-Vibrationskopplung begründen. Da wir motiviert durh experimentelleErgebnisse annehmen, dass das hemishe Potential von DNA, welhe an metallisheElektroden gekoppelt ist, in der Energielüke zwishen höhstem besetzten und niedrig-stem unbesetzten Molekülorbital (HOMO und LUMO) liegt, zeigt die I-V Kennlinie einfür Halbleiter harakteristishes Verhalten.In dieser Arbeit haben wir gezeigt, dass die Zustandsdihte von homogenen DNASequenzen bandartig ist, wobei aufgrund der geringen Gröÿe des Systems die einzel-nen elektronishe Resonanzen sihtbar sind. Zusätzlih dazu erkennt man �Vibrations�-Resonanzen, die sih im Abstand von ganzzahligen Vielfahen der betrahteten Vi-brationsenergie oberhalb und unterhalb der entsprehenden elektronishen Resonanzbe�nden. Je weiter die �Vibrations�-Resonanzen dabei von den dazugehörigen elektroni-shen Resonanzen entfernt sind, desto geringer ist ihr spektrales Gewiht in der Zustands-dihte. Aufgrund der niht-lokalen Kopplung der Elektronen und Vibrationen weist dieZustandsdihte eine groÿe Asymmetrie auf, die sih aber dennoh nur unwesentlih aufi



den Strom auswirkt. Der Transport durh homogene DNA Moleküle wird durh elasti-she, quasi-ballistishe Beiträge dominiert. Für endlihe Spannung und Raumtemperaturbewirkt die Streuung von Elektronen an Vibrationen eine Verminderung des Stromes uma 30% im Vergleih zum vibrationslosen Fall. Andererseits führt die Kopplung an Vi-brationen bei niedrigen Temperaturen zu einer Erhöhung des Leitwertes um mehrereGröÿenordnung. Das liegt daran, dass es zur Bildung von �Vibrations�-Resonanzen inder Energielüke kommt, die eine von Null vershieden Transmission haben.Die Zustandsdihte von inhomogenen DNA Sequenzen ist aufgrund von AndersonLokalisierung stark fragmentiert, wobei es genau wie bei homogenen Sequenzen nebenden elektronishen Resonanzen zusätzlihe �Vibrations�-Resonanzen gibt. Der elektro-nishe Transport durh derartige DNA Moleküle basiert fast vollständig auf inelastishenE�ekten, da Energie für die Überwindung von Potentialbarrieren benötigt wird, welhesih aus der inhomogenen Sequenz ergeben. Diese Energie wird von den Vibrationen derBasenpaare bereitgestellt. Beispielhaft haben wir die Sequenz 5'-CAT TAA TGC TATGCA GAA AAT CTT AT-3' untersuht. Die I-V Kennlinie dieser Sequenz weist dreiStufen auf, welhe sih mit den Energien bestimmter, entweder reiner oder gemishter,Guanin- und Adeninzustände in Verbindung bringen lassen. Diese Zuständen be�ndensih in der Zustandsdihte bei Energien E − EF = −0.3 eV, -0.7 eV und -0.95 eV. Wirkonnten zeigen, dass im Gegensatz zu homogenen Sequenzen die I-V Kennlinie der inho-mogenen DNA Moleküle durh die niht-lokale Vibrationskopplung qualitativ modi�ziertwird. Insbesondere führt die niht-lokale Kopplung bei der von uns untersuhten Modell-sequenz zu einer Halbierung der Transmission für die Zustände bei E − EF = −0.7 eV.Erstaunliherweise ergab sih bei unseren Untersuhungen, dass der Strom durh in-homogene DNA Sequenzen niht-monoton von der Kopplung an die Elektroden (Γ) ab-hängt. Für eine feste Spannung erreiht der Strom ein Maximum, wenn Γ ungefährgleih dem Imaginärteil der Vibrations-Selbstenergie Σvib ≈ 0.01 eV ist. Dieses Ergebniszeigt, dass es niht unbedingt besser ist, die Kopplung an die Elektroden zu maximie-ren, und dass eine systematishe (experimentelle) Untersuhung der Elektrodenkopplungnotwendig ist.Im zweiten Teil der Arbeit haben wir uns mit inkohärentem Polaron-Hüpftransportdurh kurze DNA Moleküle beshäftigt, die an metallishe Elektroden gekoppelt sind.Polaronen bilden sih in DNA durh eine starke Kopplung der elektronishen Freiheits-grade an die Vibrationen der DNA Basenpaare. Wir nehmen in unserem Modell dabeian, dass die einzelnen Basenpaare unabhängig voneinander shwingen können. Um dieSituation starker Kopplung beshreiben zu können, führen wir eine unitäre Transforma-tion des Hamiltonoperators durh. Dies ermögliht eine perturbative Beshreibung desuntersuhten Problems in neuen Parametern, die sih aus der Transformation ergeben.Diese Parameter sind die Hüpf- (tij/∆) und Tunnelintegrale (tL/R
i /∆), welhe durh dieBindungsenergie der Polaronen ∆ normalisiert wurden. Experimentelle Untersuhungenhaben für diese Bindungsenergien folgende Werte gefunden: für Guanin ∆G = 0.47 eVund für Adenin ∆A = 0.18 eV. Um physikalish interessante Gröÿen wie den Strom zuberehen, beshreiben wir das System durh eine Ratengleihung für die Besetzungszahlder einzelnen DNA Basen. Die Raten wurden anhand von Fermis Goldener Regel bereh-net und beshreiben inkohärente Hüpfprozesse in der DNA unter der Berüksihtigungder Anregung oder Absorption von Basenpaar-Shwingungen.ii



Für alle DNA Moleküle erhalten wir halbleitende I-V Kennlinien, welhe für homogeneund symmetrishe Sequenzen symmetrish sind. Einige inhomogene Sequenzen allerdingszeigen stark gleihrihtendes Verhalten. Der Grund dafür liegt in den Transportengpässendurh Potentialstufen in der Sequenz, die nur unter Absorption von Vibrationsenergieüberwunden werden können, d. h. die Raten für derartige Hüpfprozesse sind sehr gering.Je nah Strom�ussrihtung liegen die Engpässe an anderen Stellen und sind mal mehroder weniger �eng�, so dass sih für positive und negative Spannung untershiedliheStröme ergeben. Auÿerdem konnten wir zeigen, dass die Shwellspannung, bei welherder Strom�uss einsetzt, emp�ndlih von der DNA Sequenz anhängt. Bei homogenen Se-quenzen entspriht die Shwellspannung gerade der lokalen Energie der betrahten DNABasen. Bei inhomogenen Sequenzen hingegen hängt die Shwellspannung niht direkt voneiner internen Energieskala ab, wobei die Spannungen allerdings zwishen den Wertender homogenen Sequenzen liegen. Die Shwellspannung der inhomogenen Sequenzen istdabei durh die niht-triviale Ladungsvershiebung bei endliher Spannung bestimmt.Der Stromanstieg der I-V Kennlinie weiht auÿdem von der Form einer Fermi Funktionab. Diese Veränderung ist bei der Sequenz GAAAAAAG am ausgeprägtes, welhe einsehr breites Maximum im di�erentiellen Leitwert aufweist. Bei anderen Sequenzen, diemehr als eine einzelne Guanin Base an beiden Enden haben, ist die Verbreiterung desMaximums nur sehr gering. Die Ladungsvershiebungen werden durh die Darstellungdes lokalen hemishen Potentials Φi visualisiert. Dieses zeigt anshaulih, wie die an-gelegte Spannung über die Länge des DNA Molekül abfällt. Wie man erwarten würde,fällt die meiste Spannung an den Shnittstellen zu den Elektroden und an der Trans-portengpässen im Inneren der DNA ab.Wie für Polaronen Hüpfen zu erwarten ist, konnten wir zeigen, dass der Strom füreine homogene DNA Sequenz thermish aktiviert ist und eine Temperaturabhängigkeithat, die einem Arrhenius-Gesetz folgt. Dieses Ergebnis ist in Übereinstimmung miteinigen Experimenten der letzten Jahre. Die von uns berehnete Aktivierungsenergie Eahängt von der angelegten Spannung ab und nähert sih für Spannungen oberhalb derShwellspannung dem Wert Ea = ∆/2 an, welher für Polaronen im Festkörper gilt.Im letzten Teil dieser Arbeit haben wir eine allgemeine Beshreibung für Polaronen-transport in mesoskopishen Systemen entwikelt, die eine Kopplung an metallishe Elek-troden berüksihtigt. Diese Beshreibung ist niht auf DNA Moleküle beshränkt. Dervon uns gewählte Ansatz basiert auf einer diagrammatishen Ehtzeit-Entwiklung derEin-Teilhen-Dihtematrix entlang der Keldysh-Kontour. Unter Miteinbeziehung vonNiht-Diagonalelementen der Ein-Teilhen-Dihtematrix können auh Kohärenze�ekt inder Beshreibung von Polaronentransport berüksihtigt werden. Auÿerdem ergibt sihaus der diagrammatishe Entwiklung, dass Divergenzen durh resonantes Tunneln, dieim vorherigen Abshnitt aufgrund phänomenologisher Argumente vernahlässigt wur-den, niht mehr auftreten. Vielmehr führt die Möglihkeit von resonantem Tunneln zuKorrelationse�ekten zwishen den Besetzungen von untershiedlihen Basenpaaren.Wir wenden diesen Formalismus auf Hüpftransport von Polaronen durh DNA an. Fürstarke Kopplung zwishen Elektronen und Vibrationen und hohe Temperaturen könnenKohärenze�ekte vernahlässigt werden, so dass für eine korrekte Beshreibung die Diago-nalelemente der Dihtematrix ausreihend sind. Im Gegensatz zum vorherigen Abshnittberüksihtigen wir jetzt Korrelationen zwishen den Besetzungen und untersuhen, wanniii



Korrelationen auftreten und welhe Änderungen in den Transporteigenshaften sie her-vorrufen. Wie wir gezeigt haben, spielen Korrelationen nur für die Transporteigen-shaften von inhomogenen DNA Sequenzen ein Rolle, wobei sie dabei im Allgemeinen zueiner Verminderung des Stroms um bis zu einer Gröÿenordnung führen. Das interessantesErgebnis ist jedoh, dass Korrelationen bei einigen DNA Sequenzen zu einer neuen Ener-gieskala führen können, die sih in einem zweiten Maximum im di�erentiellen Leitwertniedershlägt. Diese neue Energieskala ergibt sih durh Korrelationen einzelner DNABasen, welhe von anderen Basen umgeben sind, die eine andere lokale Energie besitzen,z. B. das Guanin in der Sequenz AAAAGAAA. Für angelegte Spannungen, bei denendie relativen Korrelationen (Eq. 6.15) anfangen, stark von Null abzuweihen, bilden sihdie zweiten Maxima im di�erentiellen Leitwert aus. Die Spannungen, bei denen diesgeshieht, liegen oberhalb der Shwellspannung, aber auh hier ist die genaue Positionstark abhängig von der betrahteten Sequenz.Es zeigt sih, dass Korrelationen von einzelnen Basen an den Shnittstellen mit denElektroden (z. B. GAAAAAAG) stark von der Kopplung an die Elektroden abhän-gen. Für verminderte Kopplung Γ ergeben sih shwähere Korrelationen und auh dieentsprehenden zweiten Maxima im di�erentiellen Leitwert sind stark verkleinert. Ko-rrelationen von einzelnen Basen in der Mitte von Sequenzen (z. B. AAAAGAAA) sindhingegen niht von Γ abhängig und damit ändern sih auh die zweiten Maxima im dif-ferentiellen Leitwert niht. Diese Verhalten ändert sih allerdings, wenn es zusätzliheisolierte Basen an den Shnittstellen zu den Elektroden gibt (z. B. GAATGAC). In diesemFall vermindern sih auh die Korrelationen, die mit der Base im Inneren der Sequenzverknüpft sind, wenn die Kopplung an die Elektroden verringert wird. Wir habe auÿer-dem gezeigt, dass Korrelationen zwishen nähsten Nahbarn am gröÿten sind, da dieKorrelationen exponentiell mit dem Abstand abnehmen.Abshlieÿend ist zusammenzufassen, dass Vibrationen zu sehr untershiedlihe E�ektenim elektronishen Transport führen können, abhängig von der Stärke und dem Charakterder Kopplung. Wir ho�en, dass die vorliegende Arbeit dabei hilft, die Ergebnisse ausTransportexperimenten an DNA Molekülen besser zu interpretieren und zu einem tieferenVerständnis der dabei relevanten Physik beiträgt.
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�I knew all the rules, but the rules did not know me. . . �Eddie Vedder





1. IntrodutionSine the invention of the transistor in 1948 the tehnologial improvements in struturingsilion have lead to inreasing integration densities of omputer hips, aompanied byan inrease in omputational power. Where the �rst miroproessor in the 1970s heldonly about 2 000 transistors, today over 100 million CMOS (omplementary metal oxidesemiondutor) transistors �t on a single ommerially available omputer hip. Thisgain in omputational power is answered by the introdution of ever more demandingappliations, driving the development of the next generation of integrated eletroniswith even higher transistor densities.The inrease in integration density was so far mainly ahieved by miniaturization ofthe gate length of the CMOS transistors. The urrent sizes are in the range of some tensto a hundred nanometers. It is lear that this trend annot go on forever, as eventuallyfurther downsaling of the CMOS tehnology will reah the atomi limit. But even beforethat, for dimensions of a few nanometers, leakage urrents due to quantum mehanialtunneling will render todays transistor design useless. Additional problems arise due toan inrease in dissipated heat and growing apaitanes between the omponents.A way out of the dilemma is the use of novel materials that funtion in spite of or evenbeause of quantum mehanis. Moleular eletronis is one of the alternatives under in-vestigation today. The oneptual advantages of moleules are their size in the order of afew nanometers and the possibility to parallelly synthesize moles of them by hemistry. Inontrast, the ost and the tehnologial di�ulties of struturing silion mirosopiallyby ever more advaned methods are the limiting fators of todays eletronis tehnology.The idea to use single organi moleules as diodes was �rst introdued by Aviram andRatner in 1975 [1℄, but at that time the idea was just a theoretial hypothesis far fromatual aomplishment. Only with the development of the sanning probe tehniques in1980s instruments for the investigation and manipulation at the atomi and moleularsale beame available.With the right `tools' at hand researhers from di�erent disiplines (physis, hemistryand biology) started the quest for moleules that ould be used as omponents in inte-grated iruits. In the last deade this �eld has attrated an inreasing interest as theability to manufature nanosale ontats has improved onsiderably.The three main onepts used today for produing suh ontats are the break-juntiontehnique [2, 3℄ and the sanning probe tehniques, namely STM (sanning tunnelingmirosope) [4℄ and onduting AFM (atomi �eld mirosope) [5℄. To form a breakjuntion at �rst a free standing thin metal onstrition is produed by standard eletronbeam tehniques. When bending the underlying substrate by pushing a rod against it,the onstrition is strethed until it �nally opens. Due to the setup geometry, pushingthe rod against the substrate by a few miron will only hange the size of the gap inthe onstrition by a few Ångstrøm. Thus, this tehnique allows a fairly ontrolled way1



Chapter 1: Introdutionof produing nanosale ontats. The entral part of STM and AFM are atomiallysharp tips. The position of these tips is ontrolled by either piezo atuator (STM) or bysensitive antilever strutures (AFM). The distane of the STM tip to the ondutingsample is adjusted by measuring the magnitude of the tunneling urrent between tip andsample, whereas the de�etion of the AFM antilever is ontrolled by monitoring a laserbeam re�eted by it.Using the above and other tehniques, many di�erent types of moleules have to datebeen investigated by researhers to study their apabilities for future eletronis, e. g.arbon nanotubes [6�8℄ organi or biologial moleules [9�12℄. DNA (Deoxyribonuleiaid) is one of these moleules. The advantages of DNA are its `reognition' and `self-assembly' properties and the fat that it an be hemially synthesized in any length andsequene desired, i. e. tailor-made to �t spei� needs. Reognition desribes the propertyof a moleule to seletively bind only to a de�ned other moleule or substrate, whereasself-assembly is the apability of moleules to form greater super-moleules under theappropriate onditions without external aid. These properties allow the onstruting of,for example, two- or even three-dimensional networks with DNA (e. g. [13, 14℄), withoutompliated lithographi proedures, whih failitates the inorporation into onven-tional eletroni omponents. These properties also make DNA moleules interesting assa�olds for the onstrution of networks from many di�erent materials, e. g. nano par-tiles [15℄ or metalli wires [16℄. Other moleules laking this property would have to beinorporated into eletroni iruits by more ompliated means, diminishing somewhatthe advantage over onventional integrated eletronis.It should be noted that the interest in eletroni transport properties of DNA lies notonly in moleular eletronis, but also in the role that harge migration plays in therepair of oxidative damage (mutation) in DNA [17℄. Rajski and oworkers argued thatsome proteins ating as transmitter and reeiver might onstantly test the soundness ofthe DNA by sending harges between them. A mutation of the DNA situated betweentransmitter and reeiver would interrupt the harge migration, thus allowing for its de-tetion and eventually its repair [18℄. So, general researh on transport properties ofDNA an also help to understand the mehanisms of oxidative damage and its repair.Another aspet of the eletroni properties of DNA has only emerged reently, namelythe possibility of determining the sequene of DNA by eletroni means [19℄. A fastmethod to determine the DNA sequene would hange todays mediine, as a detailedgeneti map of a patient, showing e. g. geneti mutations, would allow spei� personal-ized treatment. The urrent sequening tehniques are far to slow for suh a task, sinethe proedure involves various time onsuming hemial steps, inluding fragmentationof the DNA into smallest piees. These steps are neessary, as only for very short DNAsetions the sequene an be determined in reasonable time and auray. Eletroni se-quening tehniques ould allow for a determination of the DNA sequene without priorfragmentation [20℄.To �nd suitable andidates for integrated iruits, one has to fathom the response of the(DNA) moleule to an applied bias. As for all nano-sale systems the transport propertiesof moleules di�er sometimes strongly from the marosopi ones we are austomed to.For example, a marosopi wire has a resistane inreasing proportionally with its lengthin aordane with Ohm's law, whereas the typial resistane e. g. of an atomi gold wire2



is R = 12.8 kΩ independent of its length [21,22℄ as long as it is shorter than the eletronmean free path. In fat, the resistane is not intrinsi to the gold wire, but it is due to theinterfae between marosopi eletrode and nanosopi wire. In a simple piture, theeletrons oming from the leads have to `squeeze' into the small wire, thereby experieninga resistane. This means that the `injetion' of eletrons into nanosale system in manyases strongly in�uenes the transport harateristis. Therefore it is ruial how thesystem, e. g. the moleule, is onneted to the eletrodes. Furthermore, experimentaland theoretial investigation indiate that the atual atomi ontat geometry mightstrongly in�uene the ondution properties of the moleule [19, 23℄. This poses majorproblems on the interpretation of experimental results, as the exat ontat geometriesprodued e. g. by the break-juntion tehnique is not known.There are two possibilities how a moleule an bind to a metalli eletrode: througha ovalent bond or via van-der-Waals type interation (physisorption). Often moleulesare funtionalized with thiol linkers (mainly a sulphur atom) whih form strong ovalentbonds to noble metals, espeially gold. Due to the strong bond, thiol linkers allow fora quite stable on�guration of eletrodes and moleule, but whether these linkers formgood transport juntions is debatable. Theoretial alulations indiate that the overlapof the eletroni states responsible for transport in the eletrode and the moleule israther poor, if a thiol linker setup is used [24℄.One an imagine that marosopi metalli eletrodes oupled to a nanometer-sizedmoleule will alter the properties of the moleule. E�etively, (partial) harging andharge rearrangement on the moleule, aompanied by strutural reorganization, mightour. The hemial potential inside the moleule will be determined by the metal and itusually lies in the gap between highest oupied and lowest unoupied moleular orbital(HOMO and LUMO), but often loser to the HOMO than to the LUMO [25℄. For aphysial understanding of transport through moleules detailed knowledge of the natureand in�uene of the ontats is needed.For small moleules the oupling to the eletrodes is dominant, but for longer moleules(e. g. DNA), where the eletron spends a onsiderable amount of time on the moleulesitself, its intrinsi properties beome more and more relevant. For these systems in-terations with vibrations are important. Organi and biologial moleules are usuallyquite soft and at room temperature many vibrational modes an be exited. At roomtemperature DNA experienes strong moleular vibration of the base pairs, with a root-mean-square displaement as high as 10% of the lattie onstant [26℄. So the transportproperties of moleules, in partiular DNA, annot be understood without taking intoaount these vibrations. For example, the interation with the vibration an strongly re-due the oherene length and hange the transport from oherent tunneling or band-liketransport to inoherent hopping.For strong interation with the vibration, a trapping of the harge by formation of asmall polaron is possible. A polaron is a quasi-partile onsisting of a harge and thesurrounding lattie distortion. Many experiments on long-range harge transfer in DNAmoleules have shown that holes an migrate along DNA overing quite large distanesby polaron hopping [27℄. Shorter distanes are overome mainly by quantum mehanialtunneling. Experiments of the physial ommunity probing the ondution properties ofDNA use setups that are loser to the situations in eletroni iruits, i. e. DNA moleules3



Chapter 1: Introdutionontated to eletrodes. These types of experiments have not lead to a lear pitureof the physis involved in transport through DNA. The results range from insulatingbehavior to ohmi I-V harateristis, from absene of temperature dependene to strongtemperature dependene. The major problem in developing a onsistent desription oftransport through DNA is the lak of reproduibility of the experimental results. Onereason for this is the aforementioned di�ulty in produing reproduible ontats between(DNA) moleules and metalli eletrodes. Also, experimentalists use many di�erentapproahes to study the transport harateristis of DNA, i. e. di�erent setups (breakjuntions vs. STM-tips, freely suspended moleules vs. moleule lying on a substrate) ordi�erent sample types (single moleules vs. self-assembled monolayers). This, of ourse,makes a systemati interpretation of the results very di�ult. Another point that shouldnot remain unaddressed is the limited stability of moleules, whih poses a major problemfor long-term investigations on the same moleule and, unfortunately, eventually for theiruse in integrated iruits.In this thesis, we investigate the eletroni properties of DNA to shed more light onthe question if and how DNA an allow for harge transport. We fous mainly on thein�uene that vibrations have on the eletroni properties. For this we will disuss the twolimits mainly used to desribe transport in DNA. The `quasi'-oherent situation, whereinterations with vibrations introdue inelasti e�ets, whih allow for transport evenin inhomogeneous DNA sequenes. On the other hand interations with vibrations anlead to self-loalization of the eletrons, hanging transport to a sequene of inoherenthopping proesses.About this thesisIn Chapter 2 we will give a short introdution to DNA, disuss its strutural and ele-troni properties and explain the basi onepts of harge transfer in DNA. In partiular,we will explain the speial eletroni features of DNA arising from the primary and se-ondary struture, i. e. why DNA is direted and what impliations that has for eletronitransport. Various experiments are disussed, whih probe the eletroni properties ofDNA either by hemially introduing a harge onto the DNA (harge transfer) or byontating it to biased eletrodes (harge transport). We explain what onlusions an bedrawn from the results of these experiments and what question still remain unanswered.In partiular, the e�et of polaron formation in DNA is disussed.A general introdution to the physis of polarons is given in hapter 3 starting his-torially with the onept of large polarons and then explaining the properties of smallpolarons, whih are relevant for transport in DNA. A short disussion of the generalapproahes to transport phenomena in mesosopi systems follows, explaining also therelevant time and energy sales. The tight-binding approximation is introdued whih isused throughout this thesis.In Chapter 4 we will disuss transport through DNA moleules oupled to biased leadswith strong inelasti ontributions due to interation with vibrational modes of the DNAbase pairs. In the onsidered situation the oupling to vibrations does not lead to polaronformation so at least partial oherene of transport is retained. We fous on the in�ueneof an additional non-loal (non-diagonal) eletron vibration oupling on the transport4



properties of homogeneous and inhomogeneous DNA sequenes. We desribe the DNAby a tight-binding model and alulate the physial quantities of interest by equation-of-motion theory. For a desription of the nonequilibrium situation due to biasing ofthe system an approximative sheme is applied. Mathematial details of the alulationsare found in Appendix B and C. We see that the inelasti ontributions to the urrentin inhomogeneous DNA sequenes are dominant. This is obvious, sine for transport toour, the eletrons have to overome potential barriers arising from the di�erent energiesof the DNA base pairs. This energy is provided by the base pair vibrations, whih onlyallow transport in inhomogeneous sequenes. Additionally a nonmonotoni dependeneof the urrent on the oupling to the eletrodes is found; i. e. , a stronger oupling to theeletrodes (exeeding some threshold value) redues the ondutivity.In the �fth Chapter we onentrate on the limit of inoherent polaron hopping trans-port, where the eletrons are loalized due to strong loal interation with vibrationalmodes of the DNA base pairs. This situation is desribed by a lassial rate equationwith rates obtained by golden rule arguments, valid for any applied bias. The resultingformulation is formally an extension of the so-alled P (E) theory. Due to the strongeletron-vibration oupling a straightforward alulation of the golden rule rates basedon this oupling is not possible. By performing a unitary transformation on the Hamilto-nian the strong oupling term vanishes and a perturbative treatment beomes possible.We investigate how the harateristis of the urrent voltages urves hange for di�erentDNA sequenes and how this is related to the hemial potential of the various base pairs.We observe retifying behavior for inhomogeneous sequenes and explain the origin ofthis e�et. Finally, we study the temperature dependene of transport at di�erent biasvoltages and ompare to experiments.A generalization of the approah of the �fth hapter is presented in Chapter 6. Wedevelop a real-time diagrammati expansion of the single partile density matrix alongthe Keldysh ontour, whih is not restrited to DNA, but an be applied to arbitrarypolaroni systems oupled to biased eletrodes. This diagrammati approah allows forthe inlusion of non-diagonal elements of the single partile density matrix desribingoherene e�ets and higher order proesses. We will not onsider these, but insteadfous on the in�uene of orrelations between oupations on di�erent base pairs on thetransport properties of DNA. We see that for inhomogeneous sequenes these orrelationgive rise to hanges in the urrent voltage pro�le as ompared to the more simple approahin Chapter 5. We show that these hanges are due to a new energy sale introdued intothe system by the orrelations.Chapter 7 onludes our investigation on the in�uene of vibrational modes on theeletroni transport properties of DNA. We ompare the results from the two approahespresented in the fourth to sixth hapter and indiate how these ould be distinguishedin experiments. This might help to understand whih physial e�et underlies transportin DNA. A brief outlook is presented in the end. In the Appendies A, B, C, and E wepresent the mathematial details involved in the alulation for this thesis, whih are notentral for an understanding of our results. In Appendix D we sketh an extension of theapproah disussed in the fourth hapter, whih is formally valid for all applied biases.
5
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2. Motivation: Charge transport inDNA2.1. Strutural and eletroni propertiesDeoxyribonulei aid (DNA) is a long polymer �ber onsisting of a hain of deoxyri-bonuleotides. A deoxyribonuleotide omprises a base, a sugar and a phosphate group.The entral part is the sugar moleule deoxyribose (see Fig. 2.1), where the pre�x `deoxy'indiates that the sugar has an oxygen atom less than ribose. In Fig. 2.1 the 5 arbonatoms of the moleule are numbered 1' to 5', where the prime is used to distinguishthem from arbon atoms of other parts of the DNA moleule. The labeling is helpful,sine eah arbon atom is spei� in binding to the di�erent entities building the DNA.The 1' arbon atom of the deoxyribose binds to one of four bases, guanine (G), ytosine
Figure 2.1: Shemati piture of a deoxyribose moleule. The various arbon atoms are num-bered 1' through 5'. Piture taken from [28℄.(C), adenine (A) or thymine (T). Two sugar-nuleotide entities are onneted by a singlephosphate group, whih binds to the 3' arbon atom of one sugar and to the 5' arbonatom of another (see Fig. 2.2b). This hain of sugar-phosphate groups is alled the DNAbakbone, whih is direted, having an unbound hydroxyl group (3') at one end and anunbound phosphate group (5') at the other. Whereas the bakbone moleules are thesame for every link of the DNA hain, the base onneted to it (either A, G, T or C) un-derlies no restrition, rather the geneti ode of life is enrypted in the spei� sequeneof these bases. Of ourse, in natural DNA as well adenine-thymine as guanine-ytosinebase pairs are present in great number.In 1953 James Watson and Franis Crik disovered the three dimensional struture ofDNA by studying x-ray di�ration patterns of DNA �bers. They found that DNA formsthe today well known double helix struture by ombining two hains of deoxyribonu-leotides, whih run in opposite diretion (see Fig. 2.2a). An important aspet in theformation of the double helix is that the two strands are omplementary, i. e. a guaninebase on one strand is always onneted to a ytosine base on the other strand via three7



Chapter 2: Motivation: Charge transport in DNAhydrogen bonds, and an adenine base is always onneted to a thymine base via twohydrogen bonds (see Fig. 2.2). This property is essential for the self-reprodution ofDNA, whih is the basis of ell devision, sine one strand is always the matrix for itsomplementary strand. The spei� binding properties of two single DNA strands are thebasis of the reognition properties of DNA. It is energetially favorable to ombine twoDNA strands and form the double helix struture as either two or three hydrogen bondsare formed per base pairs. In this struture the hydrophili phosphate groups are on theoutside of the double helix in diret ontat with the water. In aqueous solution a singlestrand will therefore eventually bind to another omplimentary strand (self-assembly).

(a) (b)
()Figure 2.2: Moleular struture of DNA and its bases. (a) DNA double helix in a stik diagramwith three π-orbitals and their overlap shematially depited for the top two basepairs. (b) bakbone struture of DNA and the four bases with the strand diretionindiated by 3' and 5'. () the two Watson-Crik base pairs guanine-ytosine (G-C) and adenine-thymine (A-T) in an all atom ball-stik representation. Pituretaken from [17℄.Additionally to the primary struture given by the sequene of bases, the DNA also hasa seondary struture, i. e. the spei� strutural form of the double helix. In natural,aqueous environment DNA is in the so alled B-Form, where the distane between twosubsequent base pairs is 3.4Å and they enlose an angle of 36◦. In this onformation8



2.1 Strutural and eletroni propertiesthe bases of the two strands are aligned to eah other and orthogonal to the DNA axis.In aqueous environment the negative harge of the phosphate groups is ompensated bypositively harged ounter-ions (mainly sodium, potassium or magnesium). There arealso other known seondary strutures. Most ommon is the A-form that DNA assumesin dry environment. In the A-DNA two neighboring base pairs enlose an angle of 33.6◦and are separated 2.3Å.In 1962 Eley and Spivey argued that the stak of π-orbitals formed by the DNA inits natural onformation ould allow harge migration (see Fig. 2.2a) [29℄. The reasonfor this assumption is the aromatiity of the DNA bases, i. e. the deloalization of the
π-orbitals in the `aromati' ring strutures of the bases (ompare Fig. 2.2). An overlapof these orbitals between neighboring bases ould result in a deloalization of the orbitalsover more than one base pair. The question of how well the eletrons in homogeneousor inhomogeneous DNA moleules are deloalized is still a matter of debate, sine thee�et of DNA base dynamis and the environment might be ruial. The ab initio alu-lations by Artaho et al. [30℄ for homogeneous polyG-polyC DNA showed deloalization,however the resulting band-width was only about 40meV. Other works also support theidea of partial eletroni deloalization in homogeneous DNA moleules [31�33℄. Experi-mentally Buhvarov and oworkers found evidene for eletroni deloalization over 3 to4 base pairs in some samples of homogeneous polyA-polyT DNA, whih, they argued,was probably enhaned by nulear rearrangement, i. e. lattie distortion [34℄.In general, a DNA moleule is not a periodi, least of all homogeneous system. Sine ininhomogeneous DNA moleules the eletroni oupling between the orbitals of neighbor-ing bases is small ompared to the energy di�erenes between these orbitals, one wouldexpet suh DNA sequenes to be an insulator with Anderson loalization. At roomtemperature natural DNA experienes strong moleular vibration of the base pairs, witha root-mean-square displaement as high as 10% of the lattie onstant [26℄. Thereforethe properties of DNA annot be understood without taking into aount vibrations andinteration with the environment. As we will later show, also inhomogeneous sequenesan support harge transport, assisted by lattie vibrations and environment.Calulations have shown that the highest oupied moleular orbital (HOMO) of aDNA base pair resides on either guanine or adenine, whereas the lowest unoupiedmoleular orbital (LUMO) resides on the other half of the base pair, i. e. either ytosineor thymine [30,32℄. A measure for the energies of the HOMO, whih are the most relevantfor transport, are the ionization potential of the bases. For guanine it is ǫG = 7.75 eVand for adenine ǫA = 8.26 eV. The gap between HOMO and LUMO is about 2 eV [30℄.Senthilkumar et al. studied the hopping integrals tij for all possible ombinations ofneighboring base pairs [35℄. They saw for example that the overlap between a guanineand an adenine is strongly dependent on their sequene, even if they are on the samestrand. In a sequene 5'-GA-3' the hopping parameter is tGA = −0.186 eV, whereasfor the reverse sequene 5'-AG-3' the hopping parameter is just tAG = −0.013 eV. Thereason for this is the broken symmetry along the DNA axis due to the twisting of theDNA and the diretedness of bakbone. Note that this does not imply an non-hermitianHamiltonian. Forward and bakward hopping between A and G in a spei� sequene oftwo base pairs are omplex onjugates. 9



Chapter 2: Motivation: Charge transport in DNA5'-XY-3'(all in eV)X\Y G C A TG 0.119 0.046 -0.186 -0.048C -0.075 0.119 -0.037 -0.013A -0.013 -0.048 -0.038 0.122T -0.037 -0.186 0.148 -0.038Table 2.1: Hopping integrals tij taken from Ref. [35℄ and adapted to our model. The notation5'-XY-3' indiates the diretion along the DNA strand (see, e. g. Fig. 2.2).In this work, we will redue the eletroni omplexity of DNA to a simple tight-bindingmodel, whih we introdue in hapter 4. In this model we onsider one tight-binding siteper base pair, i. e. we only model the HOMO and the oupling between the HOMOs ofneighboring base pairs. We extrat the parameters for the hopping integral tij from theresults obtained by Senthilkumar et al. and adapt them to our simpli�ed model. Theresulting values for tij are given in Table 2.1.2.2. ExperimentsThe question whether the predition of Eley and Spivey (DNA being able to transportharge) an be on�rmed, aroused and still arouses the attention of many researhers inhemistry, biology, and physis. The pioneering work in this �eld was done by JaquelineBarton and her group, who measured the �uoresene of an organi hromophore. Theyfound that the �uoresene is quenhed, when the moleule was attahed to a DNAmoleule. They explained this quenhing with the harge migrating along the DNAaway from the exited moleule [36℄.A typial harge transfer experiment was onduted by Giese and oworkers [37℄. Inthis experiment a hole was injeted into a guanine donor base (labeled G22 in Fig. 2.3)by photo-hemial means. After some time the DNA strands were hemially treated,so that the strands leaved exatly at the guanine base pair that arried the hole. Usingeletrophoresis the number of DNA moleules of di�erent lengths was determined. Sinethe DNA moleules were leaved at the base pair that arried the hole, the length ofsuh a DNA setion was idential to the distane the hole had migrated. Therefore therelative number of DNA setion with a ertain length is equivalent to the ratio of holesthat migrated the orresponding distane. Thus the number of holes that have reahedthe aeptor site (GGG) was determined. Typially, donor and aeptor are separatedby a bridge of DNA bases, whih in this ase onsist only of adenine. Figure 2.3 showsthe logarithm of the yield (PGGG/PG) versus the number of intermediate adenine bases nmeasured in this experiment. The yield is the ratio of holes reahing the aeptor tripleguanine ompared to the number staying at the single donor guanine.For short intermediate bridges (n = 1, 2, 3), i. e. few adenine bases, the slope of thestraight line (logarithm of the yield versus number of bridge bases) in Fig. 2.3 is β =

0.6Å−1. This strong distane dependene is harateristi for tunneling between the10



2.2 Experiments

Figure 2.3: Logarithm of the Yield (PGGG/PG) against number of adenine bridge bases n,where PG (PGGG) is the number of holes at the donor (aeptor) site. The yieldis a measure for the harge transfer e�ieny. Clearly two regimes are visible.For short donor-aeptor distanes (n = 1, 2, 3), i. e. in the tunneling limit theslope is β = 0.6Å−1. For n ≥ 4 the line is drawn to illustrate the weak distanedependene (hopping limit). The piture is taken from [37℄.donor and the aeptor guanine through the potential barrier of the adenine base pairs.The tunneling rate dereases exponentially with the distane between the G-C basepairs and it beomes negligible if the two G-C base pairs are too far apart. For n ≥ 4the distane dependene beomes very weak, i. e. tunneling is no longer relevant. Theinterpretation is that the hole migrates via ativated, inoherent hopping also using theadenine bases as `stepping stones'.These two mehanisms were veri�ed by experiments of many groups. In partiular,experiments on long-range equilibrium harge transfer along DNA show that the domi-nant transport mehanism is ativated hopping of holes between the HOMOs of adjaentbase pairs in the DNA stak [27, 38�42℄. In the simplest ase the bridges separating thedonor and aeptor guanine bases onsist of a number of adenine bases (see Fig. 2.3),but more ompliated bridges were investigated as well. All these experiments showed aweak distane dependene for bridges longer than a few base pairs, whih is onsistentwith ativated hopping transport.The hoie of using guanine bases as donor and aeptor moleules separated by variousbridges whih mainly onsist of adenine bases is easily understood: from the ionizationpotential it is lear that the most stable position for a hole is the HOMO of a guanine base.As an aeptor a triple guanine (GGG) is hosen, that has a slightly higher ionizationpotential than the single guanine. So the triple guanine exerts a small `thermodynamifore' on the hole. In the bridge of A-T base pairs the adenine is the most relevant sine11



Chapter 2: Motivation: Charge transport in DNAits ionization potential is the losest to guanine. The idea is that in the hopping regimethe hole will hop only between guanine and adenine bases even if they are on di�erentstrands of the double helix. In their experiments Joy et al. found lear indiations forthis behavior. They proved this by replaing bridge adenine bases with another moleuleof similar strutural, but di�erent eletroni properties [43℄.For hopping transport to our, the harge �rst has to undergo a loalization. Severaltheoretial artiles argue that holes are loalized on single (guanine) bases either by sol-vation e�ets and/or strutural reorganization [44�47℄. The degree of loalization is stilla matter of debate [43℄, but many authors agree that onformational motion of the DNAis important for harge migration in DNA [48�51℄. This loalization an be interpretedas a polaron, whih is a quasi-partile onsisting of a harge and the surrounding lattiedistortion (in the next hapter we will give a short introdution into this subjet). Manyauthors have used the polaron hopping piture to model experimental results [52�54℄.It is now the most promising andidate for the transport mehanism in harge transferexperiments. It should be noted that for the study of general sequenes the ompetitionbetween hopping and superexhange tunneling has to be aounted for [37, 55�57℄.A measure for the degree of loalization is the so alled reorganization energy or polaronbinding energy ∆, i. e. the energy gain through distortion of the lattie (or polarization ofthe solvent), when an additional harge is plaed on a base pair. Olofsson and oworkersextrated reorganization energies (not aounting for solvation e�ets) from experimentsand obtained values of ∆A = 0.18 eV and ∆G = 0.47 eV for adenine and guanine basesrespetively [46℄. The DFT alulation performed by them and also by another group [47℄show values of the polaron binding energy of the same order of magnitude.In ontrast to the hemial ommunity, where the ideas of tunneling and ativated(polaron) hopping an explain the experimental �ndings and therefore the nature ofharge transfer along DNA, the sometimes ontraditory results in experiments of thephysis ommunity still give rise to ontroversial disussions. For the understanding ofthe eletroni properties of DNA these latter experiments are indispensable, sine thetransfer of harges in eletrohemial experiments is not sensitive to the details of theintrinsi eletroni struture, i. e. whether DNA has a ontinuum of eletroni states(eletroni band) or disrete levels [58℄. These harateristis an only be probed bynon-equilibrium transport experiments.To date there are only very few experiments in whih the I-V harateristis of indi-vidual DNA moleules are measured(e. g. [16, 59�68℄), mainly beause of the di�ultiesto ontat the DNA to metalli eletrodes and to ensure that only single moleules aremeasured. The �rst experiment on a single DNA moleule was performed by Braun andoworkers in 1998 [16℄. In this experiment the DNA of the bateriophage lambda with
48 502 base pairs (≈ 15 µm) was plaed between two metal eletrodes 12 µm apart usingthe reognition and self-assembly properties of DNA. For this purpose the eletrodeswhere funtionalized with single stranded segments of the used DNA moleules. Theadded DNA solution ontained the omplementary strands and therefore spontaneouslyattahed to the funtionalized eletrodes (see Fig. 2.4(a)). The sample was dried andkept at ambient onditions during the measurements, whih showed no urrent even upto a bias voltage of 10V.12



2.2 Experiments

(a) (b)Figure 2.4: (a) shemati drawing of how the λ-DNA moleules are ontated to the metaleletrodes by self-assembly and reognition. (b) �uoresene image of the DNA(light diagonal line) bridging the gap between the eletrodes (dark wide lines).The pitures are taken from [16℄.A year later Fink et al. reported nearly ohmi behavior with urrents of over 10 nA intransport measurements of bundles of few `λ'-DNA moleules with lengths of some hun-dred nanometers ontated diretly with a tungsten tip [59℄. A possible explanation forthis good ondutivity is a likely doping due to imaging with a low-energy eletron pointsoure. The �rst experiment on single, short DNA moleules was performed by Porathand oworkers in 2000 [60℄. Homogeneous DNA strands with 30 poly(dG)-poly(dC) basepairs (10.4 nm) in solution were eletrostatially trapped between two lithographiallyethed Pt eletrodes. After trapping, the sample was dried by a �ow of nitrogen. Theurrent measurements showed `semi-onduting' behavior with urrents slightly above1 nA and thresholds between 0.5 and 1 eV. The measurements were performed at dif-ferent temperatures, ranging from 4K to room temperature and always showed similarharateristis, but with stronger variations between the samples in properties like thethreshold for higher temperatures (see Fig. 2.5(a)).Xu and oworkers followed a di�erent path [64℄. They performed all of their experi-ments at room temperature in bu�er solution, driving a movable gold STM tip into a goldsubstrate and then pulling it away, onstantly measuring the urrent. DNA moleuleswith thiol linkers from the solution ould bridge the gap between STM tip and surfae andform ovalent bonds with the gold via the thiol groups. If an individual DNA moleulewas found to be trapped, I-V harateristis were measured (see Fig. 2.5(b)). They sawnearly ohmi behavior with maximum urrents of up to 150 nA for DNA moleules withsequene 5'-GCGCGCGC-3' and length of about 2.7Å. Varying the number n of GCsegments in the moleules (5'-(GC)n-3') they saw a shallow 1/length dependene of theondutane, in agreement with hopping transport.Newer experiments performed in the group of Danny Porath [65, 69℄, where single in-homogeneous DNA moleules of 26 base pairs were spanned between a gold substrateand a gold nanopartile ontated by an AFM tip using thiol linkers, showed even higherurrents of up to 220 nA at 2V. The measurements were again performed at room temper-ature under ambient onditions. They reported higher ondutivities in DNA moleules13



Chapter 2: Motivation: Charge transport in DNA

(a) (b)Figure 2.5: Current-Voltage harateristis and experimental setups of two experiments. (a)three I-V urves measured on short homogeneous DNA strands with 30 poly(dG)-poly(dC) base pairs (10.4 nm), whih were eletrostatially trapped between two�xed Pt eletrodes. Graph taken from [60℄. (b) three I-V urves measured onDNA moleules with sequene 5'-GCGCGCGC-3', whih were also eletrostati-ally trapped between two gold eletrode tips. Graph taken from [64℄.with 26 base pairs with inreasing number of G-C base pairs in the sequene. For ahomogeneous sequene only omprising A-T base pairs they even found insulating be-havior [69℄. These latter �ndings were independently supported by experiments of Igbaland oworkers [70℄. On the other hand an experiment with similar setup as in [69℄, wheresingle DNA moleules (in this ase funtionalized with trimethylenethiol linkers) werespanned between a gold substrate and a gold STM tip, showed omparable urrents forboth homogeneous poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA [67℄. The urrentsthough were quite small, only about 100 pA at 0.2V.In all of the above measurement (exept the one by Braun and oworkers), the DNAmoleules were suspended by the ontats, but otherwise free hanging. In a seond groupof experiments the DNA moleules were plaed on a substrate and either lithographiallyfabriated eletrodes and/or STM or metalized AFM tips were used for probing thetransport harateristis. For longer DNA moleules all experiments showed insulatingbehavior of the DNA, whether they investigated λ-DNA of hundred nanometers [71℄or a few mirometers [16, 72℄ or homogeneous poly(dG)-poly(dC) DNA moleules oflengths L ≥ 40 nm [73℄. An explanation for this behavior is, of ourse, the length ofthe moleules under onsideration, but the interation with the substrate might alsopromote the insulating behavior. Storm et al. showed that DNA moleules preparedon a substrate (SiO2 or mia) were �attened out on the surfae having only about onefourth of their natural height [73℄. Other onformational hanges of the DNA and theindution of defets due to interation with a substrate are also oneivable.14



2.2 ExperimentsOn the other hand short DNA moleules prepared on substrates have repeatedly shownhigh ondutivities and urrents of up to a few nanoampere [74,75℄. In their experimentShigematsu et al. prepared salmon sperm DNA on a SiO2/Si substrate and �xed it bytwo arbon nanotube (CNT) probes of a pair of nanotweezers [75℄. One of these CNTswas used as soure and another CNT attahed to an AFM tip was used as drain (seeshemati drawing in Fig. 2.6(a)). The urrent for a �xed bias of Vb = 2 V was reordedas a funtion of the soure-drain distane dCA (see Fig. 2.6(b)). The resulting distanedependene �tted well with the relation
I ∝ sinh

(
eVb

2kBT

a

dCA

) (2.1)for bulk polaron hopping [76℄, where a is the hopping distane. This indiates thatpolaron hopping is a probable mehanism for transport in DNA.

(a) (b)Figure 2.6: (a) Shemati drawing of measurement setup used by Shigematsu et al., wheretwo arbon nanotube (CNT) probes �x the DNA moleule. One of these CNTswas used as soure and another CNT attahed to an AFM tip was used as drain.(b) Dependene of the urrent for Vb = 2V on the soure-drain distane dCA. Theblak line shows a �t with equation 2.1. Pitures taken from [75℄.Yoo et al. used the same formula (Eq. 2.1) to �t their results, but instead of thedistane dependene they probed the temperature dependene of transport [62℄. Theresults obtained by Roy et al. [68℄ also show a temperature dependene in agreementwith the onept of polaron hopping. Other experiments show quite the ontrary behav-ior, i. e. quasi temperature independent urrents [60, 67℄. For a detailed omparison ofexperiments see the reviews by Endres et al. [17℄ and Porath et al. [58℄.In onlusion, some trends emerge from the experiments indiating that short DNAmoleules an arry urrents and longer moleules an not. The variane in the maximumurrents are owed partially to the di�ering environmental parameters and the di�ultyto reproduibly ouple DNA to metalli eletrodes. It seems that free hanging DNAmoleules ondut better than DNA lying on a substrate. This, of ourse, would poseadditional problems, when trying to use DNA in integrated iruits in future eletronis.The physial reason for harge transport on the other hand is not lear. Experimentswhih show strong temperature dependene suggest polaron hopping transport, or at15



Chapter 2: Motivation: Charge transport in DNAleast a strong interation with vibrations. But this temperature dependene is not seenin other experiments. Furthermore, most experiments show `semi-onduting' I-V har-ateristis, but other groups see ohmi behavior. Consequently, there is also no onlusiveevidene about the intrinsi eletroni properties of DNA.For this work, we take the observations showing strong temperature dependene andthe results of the hemial harge transfer experiments as the basis for our investigations,suggesting that vibrations and polarons play an important role also in non-equilibriumtransport through DNA.

16



3. General onepts3.1. PolaronsIn this setion we will shortly introdue the subjet of polarons in general. We start withthe onept of large polarons whih were the �rst to be investigated historially. Laterwe will ome to small polarons whih are most likely present in DNA moleules.3.1.1. Large PolaronsFirst investigations by Landau on self-trapping of eletrons pioneered the work on po-larons before the name even existed [77℄. Landau and Pekar extended their researh oneletrons strongly oupled to a polar environment, whih they desribed in a lassialontinuum model [78℄. In this model a polaron is an eletron or a hole surrounded bya harge loud from the polar ioni environment, whih is desribed by its stati ǫ andlassial high-frequeny ǫ∞ dieletri onstants, whereas the polarization is modeled by aharmoni osillator with frequeny ω. Ioni rystals, in whih the eletron/hole interatswith optial phonons, seem to ful�ll these requirements. The harge arrier wave fun-tion is modeled by a Gaussian distribution funtion with the mean squared deviation rp.The e�etive environment desription is valid only if the polaron size rp is onsiderablylarger than the lattie spaing a. When the partile moves, it drags the polarization withitself whih a�ets its energy and e�etive mass. An important measure for the ouplingstrength is the Fröhlih oupling onstant
α =

e2

4πǫ0~κ

√

m∗

2~ω
;with κ−1 =

(
ǫ−1
∞ − ǫ−1

)
.The model by Pekar et al. [78℄ predits a polaron radius rp = 1.51κaB where aB = 4πǫ0~

2

m∗e2is the Bohr radius. The ground state energy and the polaron mass are
E0 = − 0.109α2

~ω

MP ≃0.02α4m∗,where m∗ is the e�etive eletron mass due to the eletroni bands. The use of ane�etive environment is justi�ed if rp ≫ a, i. e. α ≪ ~

2m∗ωa2 . On the other hand, thephonon number has to be high to justify the lassial approah. The phonon numberis of the order 2E0

~ω
, that is 2E0

~ω
≫ 1. From this we dedue α2 ≫ 5. The above twoonditions are rarely ful�lled in reality [79, 80℄.A situation more often found in nature is that of weak-oupling large polarons with

α < 1 where due to small phonon number the quantization of the lattie vibrations has to17



Chapter 3: General oneptsbe taken into aount. Fröhlih was the �rst to investigate this regime [81℄. The so alledFröhlih Hamiltonian desribes the linear interation of a single eletron in a solid withlongitudinal optial (LO) phonons of frequeny ω. As in the model by Pekar the eletronis modeled as a free partile with e�etive mass m∗ due to non-paraboli bands. TheHamiltonian was investigated by many others thereafter, but the most aurate resultswere obtained by Feynman, who used a variational approah based on path-integrals tosolve the problem [82℄. Up to seond order in α the ground state energy and polaronmass are:
E0 = − ~ω

(
α + 0.0159α2

)

Mp =m∗
(

1 +
α

6
+ 0.0236α2

)

.The Fröhlih model an desribe the behavior of some semi-ondutors and ioni rystalswith an isotropi e�etive mass and their ondution band minimum at the Γ point. [79℄3.1.2. Small PolaronsIn the 1950s a disussion started on how to explain the very low mobility µ in somematerials. The lassial band-like transport theory did not apply, so it was suggested thatthe low mobility might be explained by hopping transport of loalized harge arriers [83℄.A little later experiments by Heikes and Johnston showed that the mobility in NiO athigh temperatures follows an ativation law. They onluded that the ioni transport inNiO was due to phonon assisted hopping [84℄.Holstein was the �rst to propose a mathematial model to onisely explain thesephenomena [85℄. He showed that due to strong eletron-phonon interation the eletronan undergo `self-trapping'. Thus transport is only possible when the eletron and thelattie distortion move together. In this model the lattie distortion, i. e. the polaron sizeis on�ned to about one lattie spaing a; this approah is therefore alled the `smallpolaron' model. Holstein ould show that at su�iently low temperatures the transportwas band-like with a strongly redued band-width
∆EP ∝ ∆E exp

(

−

(
λ

~ω

)2

coth
~ω

2kBT

)

,where ∆E is the original eletroni band-width and λ is the eletron-phonon ouplingonstant, whih will be de�ned in Eq. 3.4. At temperatures higher than the Debyetemperature the bands are too narrow and transport is a random walk of polaronhopping from site to site. The probability for suh a hop follows an ativation law
Wp ∝ exp (−Ea/kBT ), with the ativation energy Ea ∼ λ2

2~ω
.An important step in the investigation of the small polaron was done by Lang andFirsov. Sine the eletron phonon oupling λ is large it is no use to do a perturbationtheory in this parameter, so they introdued the so alled polaron unitary transformation[86℄. As a result of this transformation the eletron is `dressed' in a multiphonon loudand other small parameters arise that an be used as a basis for a perturbative treatmentor the use of the Kubo formula.18



3.2 Transport in moleular systemsNowadays the small polaron has attrated new interest as a andidate to explain thebehavior of novel high-TC superondutors but also in moleular eletronis. We willuse the onept of small polarons to investigate hopping transport in DNA. For anextensive introdution into the �eld of small polarons see books by Alexandrov [80, 83℄and Böttger [76℄.3.2. Transport in moleular systemsThe eletroni properties of a bulk ondutor an be desribed by a set of ontinuouseletroni bands. For a moleular system this is not true: the eletroni states are usuallynot ontinuous but disrete levels and the transport an be strongly a�eted by quantum-mehanial e�ets due to the small size, the oupling to the ontats and the position ofthe Fermi energy. A ruial aspet is the interation with vibration, sine moleules arerather soft and �exible and vibrations are easily exited.The transfer of an eletron from a donor to an aeptor in a moleular system istherefore driven by the aompanying nulear rearrangement in the moleule in thediretion of minimal free energy. The rate ket for suh a transfer (quantum-mehanialtunneling) proess is given by the Marus theory [87, 88℄
ket =

4π2

h
|tDA|

2
√

4πλkBT exp

[
−(δEDA − λ)2

4λkBT

]

,where tDA is the eletroni oupling between donor and aeptor, whih are separatedby a energy gap δEDA. λ is the reorganization energy, i. e. the energy desribing therearrangement of the atoms in the moleules in suh a transfer proess. The eletronioupling usually depends exponentially on the distane d between donor and aeptor
tDA ∝ exp(−βd), sine this is a usual tunneling event.If the moleule is onneted to two eletrodes the situation hanges; now the drivingfore for transport is the applied bias and we are no longer interested in a transientphenomenon like harge transfer, but in a steady state property of the system [88℄. In thissituation the eletroni oupling strengths between donor, aeptor and the eletrodesdetermine the transport [89℄. If the oupling between donor and aeptor is good andtheir energies agree, harges beome deloalized over the moleular system, whih allowsoherent transport. If the oupling to the vibrations is not too strong, the vibrationswill lead to inelasti e�ets in the transport proess, but the oherene of the transportis at least partially onserved. We all this regime `quasi'-oherent. For small enoughtemperatures (kBT ≪ ~ω) harateristi steps in the I-V urves arise, where the positionof the steps agrees with the frequeny ω of the vibrational mode that produes them.For strong oupling and high temperature, i. e. in the small polaron limit, the interationwith vibrations leads to a trapping of the harge and transport beomes a sequene ofinoherent hopping proesses. In this work we will study both regimes for the ase oftransport through DNA moleules. 19



Chapter 3: General oneptsTime and energy salesThe two limits of oherent and inoherent transport an also be desribed by respetivetime and energy sales. These time sales are the dwell time τ of the eletron on themoleule and the dephasing time τφ, desribing the time in whih the eletron loses itsphase oherene due to interation with the vibrations [88℄. The dephasing time dereaseswith temperature and eletron-vibration oupling strength. The ratio τφ/τ determinesthe dominant transport mehanism. For large ratio τφ/τ the eletron moves very fastand its motion an be deoupled from the moleular motion by the Born-Oppenheimerapproximation. The interation with the vibrations is just a perturbation to the mainlyoherent transport through the moleule. For small τφ/τ we have polaron formation andinoherent hopping transport. Transport is also governed by other internal energy salesof the system, whih are the position of the moleular levels partiipating in the transport(HOMO (highest oupied moleular orbital) and LUMO (lowest unoupied moleularorbital)), their relative position to the Fermi energy and the oupling to the eletrodes.Of ourse, the temperature kBT plays an important role in the oupation of eletronistates.One of the most important fators determining the urrent is the position of the hemi-al potential µ, desribing the energy up to whih the states are oupied. For an isolatedmoleule this is easily determined but for a moleules sandwihed between two metallieletrodes, whih usually are by far bigger than the moleule, this task beomes di�-ult. The reason for this is the harging of the moleule due to harge transfer from theeletrodes during the alignment of the hemial potential with the Fermi energy of theeletrodes. In general this harge transfer is frational, depending on the work funtionof the metal and the resulting hemial potential lies somewhere in the HOMO-LUMOgap [90℄. Unless ab initio alulations or experiments obtain reliable values, the positionof the hemial potential in the moleular system an be seen as a �tting parameter.Throughout this work we hose the hemial potential to be slightly above the HOMOstates.Transport in DNAAmoleular system like DNA onsists of various parts/moleular orbitals, whih an havedi�erent energies and oupling to eah other. Of ourse, if it is homogeneous, all energiesand ouplings are the same. In the limit τφ/τ ≫ 1 suh a homogeneous system givesrise to a band-like density of states (exept for �nite-size features) where eletrons formBloh-states whih are deloalized over the entire moleule. Transport in suh a systemis mainly oherent and transmission probabilities are high and nearly independent of thelength of the moleule. Interations with vibration will lead to inelasti ontributions tothe urrent.For inhomogeneous systems, the eletrons undergo Anderson loalization (dependingon the degree of inhomogeneity) and the transmission, still being oherent, is suppressedand dereases exponentially with the length of the moleule. A oupling of the eletronidegrees of freedom to vibrations an lead to a small but �nite broadening of the levels.More importantly, the vibrational energy an allow the eletrons to overome potential20



3.2 Transport in moleular systemsbarriers, diminishing the loalization in inhomogeneous samples and enabling transport.At least partial oherene of the transport is onserved.In the opposite limit τφ/τ ≪ 1 small polarons are formed, whih are loalized on oneor a few base pairs of the DNA, so the band piture is no longer appliable. The hargean hop between di�erent base pairs, depending on the spei� rates. The di�erenes be-tween homogeneous and inhomogeneous sequenes are more subtle than for the oherentsituation.3.2.1. Theoretial methodsAs argued in the introdution of this setion, the urrent-voltage harateristis in nano-sale systems and moleules an di�er strongly from the harateristis of bulk systems.The �rst important disovery in this �eld was done by Landauer in 1957 [21, 91℄. Hefound that for systems smaller than the eletron mean free path, i. e. in a ballisti on-dutor, transport an be desribed as a quantum mehanial sattering problem. Thesimple model system he studied onsisted only of a satterer (the moleule) sandwihedbetween two biased metalli leads. In the linear regime, i. e. for small bias, transport isharaterized by the linear ondutane g, whih at zero temperature is proportional tothe transmission T through the system
g = g0T (EF) .The proportionality fator g0 = 2e2/h is the so alled quantum of ondutane of aperfet ballisti ondutor with transmission T = 1. The transmission is alulated atthe Fermi energy EF of the leads, where the eletrons are injeted into the moleule.The transmission funtion T (E) an be obtained from the sattering matrix or, usingthe Fisher-Lee relation [92℄, diretly from the retarded and advaned Green-funtions

Gret/adv(E) of the moleule oupled to the eletrodes
T (E) = 4 tr

{
ΓL(E)Gret(E)ΓR(E)Gadv(E)

}
. (3.1)The Green funtion desribe the density of states of the system and is given by

Gret(E) =
[[

Gret
0 (E)

]−1
+ ΣL(E) + ΣR(E)

]−1

,where
Gret

0 (E) =
[
E − Hmol + i0+

]−1is the Green-funtion of the isolated moleule (for general de�nition of the Green funtionand relation between Gret and Gadv see App. A). The Hamiltonian Hmol of the moleularor mesosopi system is assumed to be known, whih of ourse is a problem of its own. Inthe next setion we will address this point. ΣL/R(E) are the self-energies of the left/righteletrode respetively. The eletrode self-energies desribe the energy ontribution tothe system/moleule due to the eletrodes. In general this ontribution is omplex anddesribes a broadening of the eletroni states, whih is equivalent to a �nite lifetime dueto the possibility of eletrons esaping from the moleule via the eletrodes. The eletrode21



Chapter 3: General oneptsself-energies are determined by the spetral densities of the eletrodes; for a �at densityof states in the eletrodes (wide band limit) they are given by ΓL/R(E) = Im
(
ΣL/R(E)

).For the urrent at �nite temperature one obtains
J =

e

4h

∫

dE [fL(E) − fR(E)]T (E) , (3.2)where fL/R(ǫ) is the Fermi funtion in the left/right lead.The Landauer formula and Fisher-Lee relation are only valid when there are no in-terations on the moleule. This of ourse is not true if we inlude vibrations intoour alulation. For the ase of an interating region between two eletrodes Meir andWingreen obtained a general formula for the urrent [93℄
J =

ie

2h

∫

dE
(

tr
{
[fL(E)ΓL(E) − fR(E)ΓR(E)]

(
Gret(E) − Gadv(E)

)}

+ tr {[ΓL(E) − ΓR(E)]G<(E)}
)

, (3.3)where G</>(E) are the `lesser' and `greater' Green funtions of the moleule oupledto the eletrodes. These Green funtions desribe the oupation of the system. Inequilibrium these are onneted to the retarded and advaned Green funtion (Gret/adv)by the �utuation-dissipation relation (see App. A). In nonequilibrium these are inde-pendent quantities and have to be alulated separately. Therefore one has to use aformalism valid also out of equilibrium, like the Keldysh formalism [94℄, or one has toapply some approximative sheme. For the non-interating ase Eq. 3.3 redues to thesimple Landauer form (Eq. 3.2).Meir and Wingreen derived their formula from a general expression for the urrent.From the ontinuity relation it is obvious that
JL = −e

d

dt
〈NL〉 = −

ie

~
〈[H, NL]〉 ,were NL is the number of eletrons in the left lead and H is the total Hamiltonian.Obviously for a steady-state situation the number of eletrons on the moleule is onstant,sine all eletrons that enter from the left leave to the right. The above two formulas arethe basis of most transport alulation for DNA so far. Some also inlude interationwith vibrations or dephasing due to oupling to a reservoir [95�97℄.Another approah for the alulation of transport quantities is the formulation of amaster equation

d

dt
Ps =

∑

s′

Ps′Ws′,s − PsWs,s′where Ps is the probability to be in some (harge) state s and Ws′,s is the rate for atransition from state s to s'. In steady state d
dt

Ps = 0. From this the urrent an beeasily obtained
I = −e

{
∑

s′

Ps′W
L
s′,s − PsW

L
s,s′

}

.
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3.2 Transport in moleular systemsHere the index L indiates that only rates are onsidered that desribe transitions wherethe harge leaves to the left lead. Again some formalism has to be used that an desribenonequilibrium situations when a a �nite bias is applied. In the most simple ase therates an be obtained from Fermi's golden rule, whih assumes that the transition froman initial state i to �nal state f is indued by a perturbation H'. The transition rate isthen given by
W =

2π

~
|〈f |H ′| i〉|

2
δ(Ei − Ef) ,where initial and �nal states have the energy Ei and Ef , respetively. As one an see,the rate from Fermi's golden rule is seond order in the perturbation. Master or rateequations are usually applied to desribe the harge transfer in hemial experiments [98,99℄, but they have also been suessfully used to desribe tunneling through mirosopiontats and in quantum dots (e. g. [100℄).Tight-binding desriptionIn the previous subsetion we have introdued several approahes for the alulation ofobservable quantities, in partiular the urrent and the ondutane. We assumed thatthe Hamiltonian, desribing the system under onsideration, was known. Of ourse, ingeneral this is not the ase. In partiular, a solution to the full many-eletron system isout of reah of todays omputational power. Thus, if a mirosopi desription of thesystem is needed, an appropriate approximative sheme has to be applied.The most ommon approximation in the desription of omplex systems is the so-alled tight-binding (TB) approah. In 1929 Bloh introdued the basi ideas of the TBsheme, whih approximates the many-eletron wave funtion by a linear ombinationof single partile `atomi' wave funtion [101℄. Throughout the years, the TB model wassuessfully used, e. g. in band struture alulation of various solid state systems [102℄.In partiular, the tight-binding sheme is often used to model eletroni properties inmoleular systems and we will also resort to it throughout this thesis. As a furtherapproximation, we will not onsider atoms as elemental building bloks for our TB de-sription but moleular orbitals that are extended over various atoms (for details seeChap. 2 and 4). The essential di�ulty of this sheme lies in the appropriate hoie ofthe TB parameters for the onsidered system.By the nature of the approximation the TB model is in general disrete, performinga sum over all atoms that are inluded in the desription. The Hamiltonian is thenharaterized by the atomi `onsite' energies ǫ of the spei� atoms/sites and the overlapof the various `atomi' orbitals. In seond quantization, where one no longer onsiderswave funtions, but oupation numbers of states, the Hamiltonian in the tight-bindingpiture has the following form:

Hel =
∑

i

ǫia
†
iai −

∑

i,j

tija
†
iaj .Here ǫi is the onsite energy of site i and tij is the so alled hopping integral whihdesribes the overlap of wave funtions between di�erent sites i and j. The inlusion ofinteration terms is formally straightforward. 23



Chapter 3: General oneptsEletron-vibration ouplingWhen studying interation with vibrations or phonons, usually the deviation from theequilibrium position of the vibrating atoms or larger entities (DNA bases) is taken to besmall. Thereby, non-linear e�ets are negleted and the interation Hamiltonian beomeslinear in the vibrational displaement. The resulting Hamiltonian for the vibration andthe eletron-vibration oupling are
Hvib =

∑

α

~ωαB†
αBα

Hel−vib =
∑

α

∑

i,j

λα
ija

†
iaj

(
B†

α + Bα

)
,where α labels the vibrational mode and B†

α + Bα is proportional to the vibrationaldisplaement. The oupling matrix element is given by
λα

ij =
∑

n

Cnα

√

~

2Mnωα

〈i| ∇Rn
H(R) |j〉 , (3.4)where Mn is the mass of the atom n with displaement oordinate Rn. The matrixelement Cnα desribes the transformation between atomi displaement and normal mode

α and H(R) is the eletroni Hamiltonian for a given position of all atoms R [88℄.The diagonal omponents of the interation Hamiltonian (i = j) desribe the polar-ization of the struture when the site is oupied by a harge, whih is re�eted in ahange in onsite energy. Often alulations are restrited to just the diagonal ompo-nents, whih is justi�ed for small overlap between neighboring states i and j. For manysituations this approximation is not justi�ed. As e. g. Starikov showed, the non-diagonal(from here on we will all them non-loal) elements of some vibrational modes in DNAare of the same order as the diagonal elements [50℄. The non-loal elements desribethe in�uene of vibrations on the probability for tunneling, whih learly hanges if e. g.the distane between the two involved sites varies. This phenomenon an be desribedas vibration assisted tunneling. In this work we will disuss both diagonal (loal) andnon-loal eletron-vibration oupling for the quasi-oherent ase, but restrit us to theloal oupling for the situation of polaron hopping.
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4. Quasi-oherent transport4.1. De�nition of the ProblemAs disussed in hapter 2, several experiments and theoretial onsiderations in the pasthave stressed the importane of the environment and vibrations on the eletron trans-fer [38, 52℄ and transport [62, 103℄. But experiments alone annot explain the physisunderlying harge transport through DNA. For an detailed understanding and interpre-tation of the experimental results, modeling and theoretial alulations are indispens-able.Numerous reent theoretial artiles addressed the eletroni transport properties ofDNA in a mirosopi approah [67, 95�97, 104�110℄. In these approahes the DNA istypially desribed within a tight-binding model for the eletroni degrees of freedomwith parameters either taken from ab-initio quantum hemistry simulations [35, 50, 111℄or motivated by a �t to experiments [96℄. The variane of qualitatively di�erent tight-binding models is large, ranging from involved all-atomi representations to models whereeah base pair is represented by only a single orbital. However, the vibrations have beentreated so far only within very simple models (if treated at all), where spei�ally onlya loal site independent eletron-vibration oupling has been taken into aount [95,96℄.While these approahes are su�ient to desribe the transition from elasti (quasi-ballisti) to inelasti (dissipative) transport they ignore the fat that the non-loaleletron-vibration oupling strength an be omparable in magnitude to the loal one [50℄.As the non-loal eletron-vibration oupling leads e�etively to a vibration-assisted hop-ping, the proper inlusion of this oupling an be important for transport through DNAwith inhomogeneous sequenes. Starikov alulated the hange in onsite energy ǫi andhopping integrals tij using a PM3 semi-empirial quantum hemistry pakage for variousdisplaements of the DNA bases assoiated with ertain vibrational modes of the DNA.He observed that ertain vibrational modes not only strongly hange the onsite energy,but also the hopping integrals, sometimes in the same order of magnitude [50℄.In this hapter we formulate a minimum model for a DNA moleule oupled to leftand right eletrodes, where the base pairs are represented by single tight-binding orbitals,with energies di�ering for Guanine-Cytosine (GC) and Adenine-Thymine (AT) pairs, asmotivated in setion 2.1. Figure 4.1 shows a shemati drawing of the situation underonsideration. The light blue retangles to both sides represent left and right eletrodeswhih are oupled to the �rst and last base. The oupling is haraterized by the spetraldensities ΓL/R. The DNA double-helix is unequivoally de�ned by the sequene of onlya single strand, sine the seond one is omplementary. We always onsider the strandstarting from left at the 5' end and running to the 3' end at the right, when desribinga ertain DNA sequene. 25



Chapter 4: Quasi-oherent transport

Figure 4.1: Shemati drawing of a DNA helix (taken from [112℄) and the tight-binding modelused to desribe its eletroni properties.
We adopt a situation of strong loal eletron-vibration interation, where the vibra-tional modes are also oupled to the surrounding environment (water or bu�er solution).This extension allows for dissipation of energy, leading to a ontinuous spetrum of thevibration with a broadened resonane. We assume that the exited vibration is extendedover the whole DNA moleule. This does not allow small polaron formation (we willdisuss this limit in the following hapters). Transport retains (at least partial) oher-ene, but there an be strong inelasti e�ets. We all this regime `quasi'-oherent, todistinguish it from both a pure ballisti and the fully inoherent polaron hopping situ-ation. An additional non-loal oupling further hanges the hopping between adjaentmoleular orbitals/tight-binding sites and allows for vibration assisted tunneling.
4.2. Model and tehniqueIn this setion we explain, how DNA oupled to biased eletrodes is modeled in the`quasi'-oherent regime, as introdued before. We will then dwell on the tehniques weused to obtain measurable quantities like the urrent.26



4.2 Model and tehnique4.2.1. HamiltonianFrom the disussion above, we arrive at the Hamiltonian H = Hel +Hvib +Hel−vib +HL +
HR + HT,L + HT,R + Hbath with

Hel =
∑

i

ǫia
†
iai −

∑

<ij>

tija
†
iaj

HT,L + HT,R =
∑

ν,r,i

[

tri c
†
νrai + tr∗i a†

icνr

]

Hvib =
∑

α

ωαB†
αBα

Hel−vib =
∑

α

∑

i

λ0 a†
iai(Bα + B†

α)

+
∑

α

∑

<ij>

λij a†
iaj(Bα + B†

α) . (4.1)The index r = L, R represents left and right eletrode. The term Hel desribes theeletrons in the moleular hain with operators a†
i , ai in a single-orbital tight-bindingrepresentation with onsite energies ǫi of the base pairs and hopping tij between neigh-boring base pairs. As mentioned above, both onsite energies and hopping depend onthe base pair sequene, e. g. the onsite energy of a Guanine-Cytosine base pair di�ersfrom the onsite energy of a Adenine-Thymine base pair. As explained in Se. 2.1, for thehopping matrix elements tij we adopted the ab initio results, from Siebbeles et al. [35℄denoted in table 2.1. For the onsite energies of guanine and adenine, we resort to theionization potentials of these bases, i. e. ǫG = 7.75 eV and ǫA = 8.26 eV, but atually onlythe di�erenes between these two energies (ǫG − ǫA = 0.51 eV) and to the Fermi energy

EF matter.The terms HL/R refer to the left and right eletrodes. They are modeled by non-interating eletrons, desribed by operators c†ν L/R, cν L/R, with a �at density of states ρe(wide band limit). The hemial details of the oupling between the moleule and theeletrodes are not the fous of this work. For our purposes it is fully haraterized by
HT,L + HT,R with tunneling amplitudes assumed to be independent of the type of basepair i and the quantum numbers of the eletrode states ν. The left lead is oupled onlyto the �rst base pair and the right eletrode is oupled only to the last base pair. Theoupling strength is then haraterized by the parameter ΓL,R = 2πρL,R

e |tL,R|2, whihleads to a level broadening of the base pair orbitals oupled to the eletrodes.The vibrational degrees of freedom are desribed by Hvib, with bosoni operators Bαand B†
α for the vibrational mode with frequeny ωα. Hel−vib ouples the eletrons on themoleule to the vibrational modes, where λ0 and λij are the strengths for the loal andnon-loal eletron-vibration oupling, respetively. Note that the vibration modes areextended over the entire DNA moleule and that the oupling of the modes to eletronsis assumed independent of the base pairs involved. This retains a `quasi'-oherent trans-port situation even in the strong oupling limit. The strength of the eletron-vibrationoupling for various vibrational modes has been omputed in Ref. [50℄ for homogeneous27



Chapter 4: Quasi-oherent transportdimers and tetramers of AT and GC pairs. Here we onsider also inhomogeneous se-quenes, for whih the eletron-vibration ouplings are not known, but we assume thatthey di�er not too muh from the values for homogeneous sequenes. As an exemplarymode we hose the `streth' mode (see Fig. 4.2) of Ref. [50℄, whih shows relatively strongoupling to both eletroni parameters for AT and GC base pairs. The values for the

Figure 4.2: Shemati drawing of the vibrational streth mode of two DNA bases. The DNAstrand runs along the z-diretion. Piture aording to [50℄.streth mode obtained by Starikov for the vibrational frequenies ω and matrix elementsin Eq. 3.4 are given by (using gij = 〈i| ∇Rn
H(R) |j〉)

~ωAT = 0.011 eV ~ωGC = 0.016 eV
gii(AT) = 0.1104 eV/Å gii(GC) = -0.2349 eV/Å
gij(AT) = 0.0820 eV/Å gij(GC) = -0.1779 eV/Å .From this one an estimate the loal and non-loal eletron-vibration oupling by assum-ing a redued mass of 118.92 g/mol for the AT and 122.69 g/mol [50℄ for the GC basepairs

λii(AT) ≈ 0.004 eV λii(GC) ≈ -0.008 eV
λij(AT) ≈ 0.003 eV λij(GC) ≈ -0.006 eV .We restrit the non-loal oupling terms to nearest neighbors, λij = λ1δi,j=i±1 and forour model we take λ0 and λ1 as parameters, independent of the base pairs involved,for whih we hoose values in rough agreement with the above estimates, i. e. λ0,1 ≈

1 − 10 meV. This allows for a qualitative disussion of the e�ets that arise from theeletron-vibration oupling in DNA.The vibrations themselves are oupled to the environment, the mirosopi details ofwhih do not matter. We model it by a harmoni osillator bath Hbath whose relevantproperties are summarized by its linear (`Ohmi') power spetrum (or spetral funtion)up to a high-frequeny ut-o� ωc [113℄. The ut-o� is neessary for onvergent results andis physially equivalent to the Debye frequeny in a solid state system. The oupling ofthe vibrations to the bath hanges the vibrations spetra from disrete (Einstein) modesto ontinuous spetra with a peak around the vibrational frequeny. This an be shownexpliitly when alulating the polarization of the vibration (the vibrational self-energydue to oupling to the bath) [114℄. Physially, the oupling to a bath allows for dissipation28



4.2 Model and tehniqueof eletroni and vibrational energy. This dissipation is ruial for the stability of themoleule in a situation where inelasti ontributions to the urrent dissipate a substantialamount of power on the moleule itself.We only onsider a single vibrational mode when performing the numerial alulations,sine we are mainly interested in the physis involved when inluding non-loal eletron-vibration oupling. The vibrational mode with resonane frequeny ω0 oupled to thebath is then desribed by a spetral density
Di(ω) = − i

∫

dteiωtθ(t)
〈{

B†(t) + B(t), B† + B
}〉

=
1

π

(
ηi(ω)

(ω − ωi)2 + ηi(ω)2
−

ηi(ω)

(ω + ωi)2 + ηi(ω)2

)

. (4.2)with a frequeny dependent broadening η(ω) whih arises from the vibration-bath ou-pling. For the 'Ohmi' bath with weak vibration-bath oupling and ut-o� ωc we onsider
η(ω) = η0 ω θ(ωc−ω), with η0 = 0.05 eV. Mathematially the rossover from the disretevibrational modes to a ontinuous spetrum of a single mode is done by substituting
∑

α →
∫

dωD(ω).4.2.2. Lang-Firsov transformationIn order to treat the limit of strong loal eletron-vibration oupling we perform theLang-Firsov unitary transformation [79, 86℄ on the Hamiltonian H . The transformationwas developed for the desription of small polarons (see Se. 3.1). Sine in this hapter weassume a global vibration, i. e. all base pairs `vibrate' together in phase, we do not havesmall polaron formation, but still an desribe inelasti e�ets arising from the strongoupling to the vibrations, whih would not arise in a diret perturbative treatment inthe eletron-vibration oupling. The transformation is de�ned by the generator funtion
S.

H̃ = eSHe−S ; S = −
∑

iα

λ0

ωα
a†

iai

[
Bα − B†

α

]
.We introdue transformed eletron and vibration operators aording to

ãi = aiχ

B̃α = Bα −
∑

i

λ0

ωα
a†

iai

χ = exp

[
∑

α

λ0

ωα

(Bα − B†
α)

]

, 29



Chapter 4: Quasi-oherent transportwhere the operator χ inorporates the interation with the vibrations and is ruial forthe desription of the inelasti e�ets. The new Hamiltonian reads (with χχ† = χ†χ = 1)
H̃ =

∑

i

(ǫi − ∆)a†
iai −

∑

<ij>

tija
†
iaj

+
∑

r,ν,i

[

tri c
†
νraiχ + tr∗i a†

iχ
†cνr

]

+ HL + HR

+
∑

α

ωαB†
αBα +

∑

α

∑

<ij>

λij a†
iaj(Bα + B†

α) + H̃ee , (4.3)where the Hamiltonian
H̃ee = −

∑

<ij>

∑

α

λ2
0

ωα

a†
iai · a

†
jaj − 2

∑

<ij>

∑

k

∑

α

λij λ0

ωα

a†
iaj · a

†
kak (4.4)desribes an e�etive vibration mediated eletron�eletron interation whih will be ne-gleted throughout this hapter. This is a reasonable approximation for the low hargearrier (hole) density in moleular systems [76℄.The purpose of the Lang-Firsov transformation is to remove the loal eletron-vibrationoupling term from the transformed Hamiltonian in exhange for the transformed oper-ators and the so-alled polaron shift

∆ =

∫

dωD(ω)
λ2

0

ω
.The polaron shift or reorganization energy desribes the lowering of the onsite energyof the eletron due to the interation with the vibration. Sine we ouple the eletronidegrees of freedom to a global vibration, ∆ is onstant for all base pairs. The non-loaleletron-vibration oupling term, however, remains unhanged and has to be dealt within a di�erent way than the loal term. There is an additional eletron-vibration ouplingdue to the operator χ in the transformed tunnel Hamiltonian from the leads. In this studywe neglet e�ets arising from this additional oupling. This is a valid approximation for

ΓL,R ≫ λ0, the usual approximation taken in the literature [96, 114℄.Green funtionsIn this setion we onsider the above Hamiltonian and use an approximative sheme todesribe the situation of �nite bias. A more rigorous treatment will be introdued inAppendix D.For the alulation of physial quantities like urrent and density of states we usethe Green funtion formalism as introdued in the previous hapter. We introdue theretarded eletron Green funtion (see App. A).
Gret

kl (t) = − iθ(t)
〈{

ak(t)χ(t), a†
l χ

†
}〉

, (4.5)where the thermal average is taken with respet to the transformed Hamiltonian H̃,whih does not expliitly inlude the loal eletron-vibration interation. By applying30



4.2 Model and tehniquethe equation of motion (EOM) tehnique we an derive a self-onsistent alulationsheme for Gret
kl (t). The EOM tehnique for an interating system generates orrelationfuntions of higher order than initially onsidered, resulting in a hierarhy of equationsthat does not lose in itself. Therefore, an appropriate trunation sheme needs to beapplied. In our ase, we lose the hierarhy on the �rst possible level negleting all higherorder Green funtions beyond the one de�ned above. In partiular, our approximationsare perturbative to �rst order in λ1, restriting our study to relatively weak non-loaleletron-vibration oupling strengths.Equation of motionThe equation of motion for an operator in the Heisenberg piture is given by

d

dt
ai(t) = i [H, ai] (t) .From the above expression the behavior of the time evolution of the operator an beobtained. This is the basis of the equation of motion tehnique. Before applying it, weseparate the retarded eletron Green funtion into two parts,

Gret
kl (t) = −iθ(t)

〈{

ak(t)χ(t), a†
l χ

†
}〉

= −iθ(t)
〈

ak(t)χ(t)a†
l χ

†
〉

︸ ︷︷ ︸

G
(1)
kl

(t)

−iθ(t)
〈

a†
l χ

†ak(t)χ(t)
〉

︸ ︷︷ ︸

G
(2)
kl

(t)

.This is useful, beause for G
(1)
kl (t) and G

(2)
kl (t) self-onsisteny equations an be derivedvia the equation of motion tehnique (EOM), but the equation of motion applied tothe retarded Green funtion itself leads to an equation ontaining not only the retardedGreen funtion, i. e. a oupled equation.The expressions of the ommutator of all fermioni operators with the Hamiltonian(Eq. 4.3) an be found quite easily, whereas the expliit derivation of [H̃, χ

] is moreinvolved and therefore shown in App. B. With these, we obtain the following expressionfor the equation of motion of G
(1)
kl (t),

∑

j

[

(i
d

dt
− ǫk)δjk + tkj

]

G
(1)
jl (t)

= δ(t)
〈

aka
†
l

〉

+ iθ(t)∆
〈

ak(t)χ(t)a†
l χ

†
〉

− iθ(t)

{
∑

j 6=k,α

λkj

〈

aj(t)
[
Bα(t) + B†

α(t)
]
χ(t)a†

l χ
†
〉

+
∑

α

λ0

[〈

ak(t)Bα(t)χ(t)a†
l χ

†
〉

+
〈

ak(t)χ(t)B†
α(t)a†

l χ
†
〉]

+
∑

α

∑

<ij>

2 λij λ0

ωα

〈

ak(t)a
†
i (t)aj(t)χ(t)a†

l χ
†
〉

+
∑

ν,r

tr∗k

〈

cr
ν(t)a

†
l χ

†
l

〉
} (4.6)
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Chapter 4: Quasi-oherent transportand a similar relation for G
(2)
kl (t),

∑

j

[

(i
d

dt
− ǫk)δjk + tkj

]

G
(2)
jl (t)

= δ(t)
〈

a†
l ak

〉

+ iθ(t)∆
〈

a†
l χ

†ak(t)χ(t)
〉

− iθ(t)

{
∑

j 6=k

λkj

〈

a†
l χ

†aj(t)
[
B(t) + B†(t)

]
χ(t)

〉

+ λ0

[〈

a†
l χ

†ak(t)B(t)χ(t)
〉

+
〈

a†
l χ

†ak(t)χ(t)B†(t)
〉]

+ (t)
∑

<ij>

2 λij λ0

ω0

〈

a†
l χ

†ak(t)a
†
i (t)aj(t)χ(t)

〉

+
∑

ν,r

tr∗k

〈

a†
l χ

†cr
ν(t)
〉
}

. (4.7)To determine expressions like 〈aj(t)Bα(t)χ(t)a†
l χ

†
〉 and similar higher order orrelationfuntions one would have to ompute the EOM for these, too. This leads to orrelatorsof ever higher order, so we trunate the hierarhy and approximate them by assuming,e. g. for the expression

〈

aj(t)Bα(t)χ(t)a†
l χ

†
〉

H̃
≈ Fα(t)

〈

aj(t)χ(t)a†
l χ

†
〉

H̃
. (4.8)The expliit expression for the funtions Fα(t) and their derivation for the various or-relators in Eqs. 4.6 and 4.7 an be found in appendix B. The approximative shemeinvolves a fatorization of vibrational and eletroni operators in the orrelation fun-tions, whih is exat for vanishing eletron-vibration oupling. Sine the strength of theeletron-vibration oupling in H̃ is proportional to λ1, this approximation is valid for nottoo large values of λ1.Expressions like 〈a†

l χ
†ak(t)a

†
i (t)aj(t)χ(t)

〉 are treated in a mean-�eld like manner,where we neglet orrelations arising from the e�etive interation of harges on di�erentbases due to non-loal eletron-vibration oupling:
〈

ak(t)a
†
i (t)aj(t)χ(t)a†

l χ
†
〉

≈
〈

ak(t)a
†
i(t)
〉〈

aj(t)χ(t)a†
l χ

†
〉

−
〈

aj(t)a
†
i(t)
〉〈

ak(t)χ(t)a†
l χ

†
〉

.This approximation is based on the same priniple as the neglet of H̃ee in the transformedHamiltonian, the small harge density in DNA.The orrelators 〈cr
ν(t)a

†
l χ

†
〉 and 〈a†

l χ
†cr

ν(t)
〉 in Eq. 4.6 and 4.7, respetively, arise fromthe oupling to the eletrodes and desribe the aording self-energy. The alulation ofthese expressions an be found in Appendix C.32



4.2 Model and tehniqueAfter Fourier transformation and rossover to the ontinuous vibrational spetrum (seeEq. 4.2) we obtain
∑

j

[(E − ǫk)δjk + tkj] G
(1)
jl (E)

=
〈

aka
†
l

〉

− ∆G
(1)
kl (E) +

∑

j

Σret,L
kj G

(1)
jl (E) +

∑

j

Σret,R
kj G

(1)
jl (E)

+

∫

dωD(ω)

{

−
∑

<ij>

〈

aja
†
i

〉 2λijλ0

ω
G

(1)
kl (E) +

∑

<ij>

〈

aka
†
i

〉 2λijλ0

ω
G

(1)
jl (E)

+
λ2

0

ω

[∫

dteiEtF1(t, ω) G
(1)
kl (t)

]

+
∑

j 6=k

λkjλ0

ω

[∫

dteiEt [F1(t, ω) − 1] G
(1)
jl (t)

]}(4.9)and
∑

j

[(E − ǫk)δjk + tkj ] G
(2)
jl (E)

=
〈

a†
l ak

〉

− ∆G
(2)
kl (E) +

∑

j

Σret,L
kj G

(2)
jl (E) +

∑

j

Σret,R
kj G

(2)
jl (E)

+

∫

dωD(ω)

{

−
∑

<ij>

〈

aja
†
i

〉 2λijλ0

ω
G

(2)
kl (E) +

∑

<ij>

〈

aka
†
i

〉 2λijλ0

ω
G

(2)
jl (E)

+
λ2

0

ω

[∫

dteiEtF2(t, ω) G
(2)
kl (t)

]

+
∑

j 6=k

λkjλ0

ω

[∫

dteiEt [F2(t, ω) − 1] G
(2)
jl (t)

]}

,(4.10)where the eletron-vibration interation is desribed by the two funtions
F1(t, ω) = (N(ω) + 1) e−iωt − N(ω)eiωt

F2(t, ω) = N(ω)e−iωt − (N(ω) + 1) eiωt ,with the Bose funtion N(ω).In the wide band limit the retarded right and left eletrode self-energies are onstantand purely imaginary,
Σret,R

jk =
∑

ν

tR∗
k gret

νR(E)tRj = −iΓRδjNδkN

Σret,L
jk =

∑

ν

tL∗
k gret

νL(E)tLj = −iΓLδj1δk1 .We an now identify
(E − ǫk)δjk + tjk + i0+ =

[
Gret

0 (E)
]−1

jk
, 33



Chapter 4: Quasi-oherent transportwhere Gret
0 (E) is the retarded Green funtion for the isolated moleule without eletron-vibration interation. The validity of this equation an easily be seen by omputingthe equation of motion for Gret(t) for the isolated moleule without eletron-vibrationoupling.In the equations above, many fators of the kind 〈ak a†

l

〉 appear. The exat value forthese is: 〈ak a†
l

〉

H̃
=
∫

dE
2πi

G<
kl(E). In order to have a deoupled system of equationswe approximate these by 〈ak a†

l

〉

H̃
≈
〈

ak a†
l

〉

H̃el

, where H̃el is the Hamiltonian for theisolated moleule (ompare Eq. 4.3).With all the above approximations we alulate the retarded Green funtion by itera-tion of the self-onsisteny equations Eq. 4.9 and 4.10. For a moleular DNA hain with
N bases the density of states then reads

A(E) = −
1

πN

N∑

i=1

Im
{
Gret

ii (E)
}

.We evaluate the urrent using the relation be Meir and Wingreen [93℄ as introdued inSetion 3.2.
I =

ie

h

∫

dǫ
(

tr
{[

fL(ǫ)ΓL − fR(ǫ)ΓR
] (

Gret(ǫ) − Gadv(ǫ)
)}

+ tr
{[

ΓL − ΓR
]
G<(ǫ)

})

, (4.11)where fL(ǫ) and fR(ǫ) are the Fermi distributions in the left and right lead, respetively.To ompute the `lesser' Green funtion G<(ǫ), we use the relation [79℄ (see also App. A)
G<(ǫ) = Gret(ǫ)

[
ΣL< + ΣR< + Σ<

vib(ǫ)
]
Gadv(ǫ) .While the lesser eletrode self-energies, suh as ΣL<, an be determined easily withinthe above approximation for any applied bias, we have to approximate the behavior ofthe lesser self-energy due to the vibrations Σ<

vib. Extending the �utuation-dissipationrelation of the equilibrium situation we write
Σ<

vib(ǫ) = −feff(ǫ)
[
Σret

vib(ǫ) − Σadv
vib (ǫ)

]
,with an e�etive eletron distribution feff = [fL(ǫ) + fR(ǫ)]/2. The expressions for

Σret
vib , Σadv

vib are obtained from the retarded Green funtion (see App. A) alulated fora given bias as explained above. Combining all terms we obtain a onise expression forthe urrent, whih an be separated into `elasti' and `inelasti' parts as
I =

2e

h

∫

dǫ [Tel(ǫ) + Tinel(ǫ)] [fL(ǫ) − fR(ǫ)] ,where we identify the `elasti' and `inelasti' transmission funtions [115, 116℄
Tel(ǫ) = 2 tr

{
ΓRGret(ǫ)ΓLGadv(ǫ)

} (4.12)
Tinel(ǫ) =

i

4
tr{(ΓR + ΓL)Gret(ǫ)

[
Σret

vib(ǫ) − Σadv
vib (ǫ)

]
Gadv(ǫ)} . (4.13)34



4.3 ResultsNote that also the `elasti' transmission depends on the e�ets of vibrations, sine theself-onsistent evaluation of the Green funtion is performed in the presene of vibrationsand environment. The inelasti ontribution an also be termed `inoherent', as typiallythe eletrons will leave the DNA at a lower energy than they enter it.4.3. ResultsIn this setion we analyze the e�et of vibrations on the eletroni properties of DNA, i.e.,we determine the density of states, the transmission and the urrent. As expliit exampleswe onsider homogeneous and inhomogeneous DNA sequenes of 26 base pairs in thepresene of a single vibrational mode as desribed in the previous setion. For simpliity,we ouple the left and right eletrodes symmetrially to the DNA, so ΓL = ΓR ≡ Γ, andwe hoose Γ = 0.1 eV. We further assume that the bias voltage Vb drops symmetriallyaross both eletrode-DNA interfaes.4.3.1. Homogeneous Poly-(GC) DNAFor a homogeneous DNA onsisting of 26 Guanine-Cytosine base pairs we obtain a band-like density of states displayed in Fig. 4.3. With the fairly small hopping element of
0.119 eV (see Tab. 2.1) for this �nite system one an still resolve the peaks due tosingle eletroni resonanes, espeially near the van-Hove-like pile up of states near theband edges. All states are deloalized over the entire system. The inset displays theelasti transmission, showing that the states have a high transmission of Tel ∼ 0.5, withthe states at the upper band edge showing the highest values. Both density of statesand elasti transmission show a strong asymmetry, whih is a diret onsequene of thenon-loal eletron-vibration oupling in this model.To further eluidate this onnetion we take a loser look at the upper and lowerband edge of the density of states (see Fig. 4.4). Without eletron-vibration oupling(solid urve) we see the eletroni resonanes of equal height, positioned at the energiesorresponding to the `Bloh'-like states of this �nite size tight-binding hain. If weinlude only loal eletron-vibration oupling (dashed line), vibrational satellite statesappear, and the spetral weight of the original eletroni resonanes dereases, onsistentwith the spetral sum rule. Note that the displayed vibration satellites are not satellitesof the displayed eletroni states, but emerge from other states at higher and lowerenergies. Indeed the di�erene in peak positions is not equal to ~ω0. Inlusion of thenon-loal oupling λ1 shifts the original eletroni resonane positions (dashed-dottedline). In the present example, with positive sign of λ1, the resonanes are shifted to the`outside', orresponding to an e�etive inrease in bandwidth; for the opposite sign of λ1the resonanes shift to the `inside'. Furthermore, a distint asymmetry of the resonanesis observed, i.e. the upper band edge states have a larger peak height than the lowerband edge states. This asymmetry in the density of states omes with a orrespondingasymmetry in the elasti transmission, see Fig. 4.3 for the overall view.As shown in Fig. 4.5 the oupling to vibrations strongly inreases the zero-bias on-dutane at low temperatures, whereas at high temperatures the ondutane slightly35
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Figure 4.3: Density of states and transmission of Poly-(GC) with 26 base pairs and the follow-ing parameters: base pair onsite energy ǫG = −0.35 eV, Fermi energy EF = 0 eV,vibrational energy ~ω0 = 0.01 eV, uto� ~ωc = 0.03 eV, linewidth Γ = 0.1 eV androom temperature kBT = 0.025 eV. The strong asymmetry of the urves withrespet to the band enter is a onsequene of the non-loal eletron-vibrationoupling λ1.
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4.3 Resultsdissipate their energy to the environment or `promote' other eletrons, thus inreasingtheir probability to hop to neighboring but energetially distant base pairs. This inelastitransmission strongly depends on the spei� states (in ontrast to the band-like trans-mission for the homogeneous sequene). As a onsequene, the inelasti transmission ofdi�erent states an di�er by several orders of magnitude. Together with the bunheddensity of states this leads to the step-like behavior for the urrent displayed in Fig. 4.7.The �rst step entered around Vb ∼ 0.7 V roughly orresponds to states with GC hara-ter, whereas the seond step at 1.4V orresponds to hybridized states with mixed AT-GCharater. Here, the GC states display a larger inelasti transmission as an be seen fromthe large non-linear ondutane peak around Vb ∼ 0.6 − 0.7 V (see inset of Fig. 4.7).The non-loal eletron-vibration oupling λ1 for this sequene leads to qualitativehange of the I-V -harateristis, depending on the details of the nature of the statesand therefore expliitly on the DNA sequene. The urrent on the lowest bias plateauis inreased relative to the ase with only loal eletron-vibration oupling, although theGC states do barely shift towards the Fermi energy. However, the inelasti transmissionof the states is slightly inreased (see inset), leading to an inreased urrent on the �rstplateau (dashed line).In ontrast, the ondutane due to states with mixed AT-GC nature is muh redued(almost by a fator of two, see middle peak in the inset of Fig. 4.7) whih leads to asmaller inrease of the urrent for the middle step. Obviously, the transmission of thesemixed states is redued by the `vibration assisted eletron hopping'. On the other hand,the last step at ∼ 2V is almost una�eted.While the hanges of the I-V -harateristis due to non-loal eletron-vibration ou-pling are relatively small for the present sequene and model parameters, the observedsensitivity of the inelasti transmission suggests that other sequenes ould display muhlarger e�ets. Furthermore, quantum hemistry alulations [50℄ suggest that the loaland non-loal eletron-vibration ouplings an be of the order of ∼ 10 meV, i.e. largerthan what we onsidered here. Inhomogeneities in the eletron-vibration oupling, notovered in the present alulation, might have a further impat.The DNA sequene we onsidered was investigated in transport experiments, and weshould ompare the experimental and theoretial results. As some important fatorsare still not well determined, a quantitative omparison is not feasible. However, weobserve both in experiment and theory roughly a `semionduting' I-V -harateristiswith (sometimes) steplike features. The size of the urrents is roughly omparable, ofthe order of ∼ 80 nA at a bias of Vb = 1 V. As the hoie of the position of the Fermienergy de�nes the size of the `semionduting' gap, this gap ould be adjusted to �tthe experiment. On the other hand, the value of the urrent for this sequene (withparameters derived from quantum hemistry alulations) an not be simply saled byhanging a single `free' parameter like the eletrode-DNA oupling Γ.For the ase of the homogeneous sequene, the urrent at a given bias (say, at Vb = 1 V)grows monotonially with inreasing Γ (as long Γ is smaller than the hopping amplitude
tij), as is expeted from quasi-ballisti Landauer-type transport. In ontrast, for theinhomogeneous sequene, the urrent is a non-monotoni funtion of Γ, see Fig. 4.8. Inpartiular, the urrent at the �rst plateau (at Vb = 1V) initially grows as we derease
Γ from the value used in the above �gures (Γ = 0.1 eV), up to a point at whih the39
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4.4 Summaryimaginary part of the vibration self energy Σvib is of the same size as Γ. This happensaround Γmax ∼ 0.01 eV. The urrent at Γmax is of order of ∼ 500 nA. If Γ is dereasedfurther, the urrent drops rapidly from the maximal value.1 On the other hand, if Γis inreased above the value Γ = 0.1 eV, the urrent also drops initially, before at verylarge Γ quasi-ballisti transport beomes dominant and the urrent inreases again (notshown in the �gure).Summarizing these results, we onlude that for the given model parameters, i.e. forvalues of Γ in the large range 1−200 meV, likely to be realisti for present-days transportexperiments in DNA, the urrent at the �rst plateau lies in the range of 50 − 500 nA.4.4. SummaryTo summarize, in this hapter we have presented a tehnique that allows the ompu-tation of eletron transport through short sequenes of DNA, inluding loal and non-loal oupling to vibrations and a dissipative environment. Using an equation-of-motionapproah we identify elasti and inelasti ontributions to the urrent. For homoge-neous DNA sequenes, the transport is dominated by elasti quasi-ballisti ontributionsthrough a band-like density of states (Fig. 4.3,4.4), whih display an asymmetry due tothe non-loal eletron-vibration oupling. The oupling to vibrations strongly enhanesthe zero-bias ondutane at low temperatures. The urrent at �nite bias above the`semionduting' gap, however, is only quantitatively modi�ed by the non-loal eletron-vibration oupling (Fig. 4.5). For inhomogeneous DNA sequenes, the transport is almostentirely due to inelasti proesses, the e�etiveness of whih is strongly sequene depen-dent (Fig. 4.6). For the onsidered example sequene the non-loal eletron-vibrationoupling qualitatively modi�es the I-V -harateristis (Fig. 4.7). We also point out thatthe urrent through inhomogeneous DNA sequenes depends non-monotonially on theeletrode-DNA oupling Γ (Fig. 4.8).

1Note that our assumption Γ >> λ0 breaks down at some point. Nevertheless, the derease of theurrent at very small Γ makes physial sense. 41





5. Inoherent polaron hopping:Fermi's Golden Rule
5.1. De�nition of the ProblemIn the previous hapter we have studied the in�uene of vibrations on the eletronitransport in DNA when some oherene of transport is retained and we do not have aself-trapping of the eletrons due to interation with the vibrations. With this transportmehanism extremely high urrent as measured in the groups of Porath or Tao [64,65℄ areexplainable. On the other hand, many experiments and ab initio alulations indiatethat small polarons are formed in DNA, as argued in Chapter 2. The atual size ofthe polaron is still ontroversially disussed, but it is at most a few bases, maybe evenrestrited to a single base. In this limit, the eletrons beome loalized and transport isa sequene of inoherent hopping proesses. The interation with vibrations is on onehand the soure of loalization, but on the other hand it provides the neessary energyto overome the barriers posed by the loalization.We model the eletroni properties of the DNA just as explained in the previous Se-tions 4.1 and 2.1. In ontrast to the previous hapter, where we onsidered vibrationsextended over the whole moleule, we now onsider loal vibrations to allow the formationof small polarons. We therefore onsider that every base pair i an vibrate independentlyfrom the other base pairs, i. e. every site is onneted to independent osillators. Thevibrational frequeny ωαi and the strength of the loal oupling to the harge density(here we only onsider diagonal eletron-vibration oupling terms) λαi an in generaldepend on the vibrational mode α and on the base pair i that is vibrating. Throughoutthis hapter we will restrit ourselves to one vibrational mode per base pair.We will evaluate the rates for polaron hopping in the spirit of what is known as the
P (E)-theory for eletron tunneling in a dissipative environment modeled by a bath ofosillators [117�119℄. Here, instead of a bath of osillators we have for eah DNA basepair one loalized vibrational mode whih, however, is broadened due to the oupling toa dissipative environment. 43



Chapter 5: Inoherent polaron hopping: Fermi's Golden Rule

Figure 5.1: Ball-stik representation of a guanine-ytosine base pair. The labeled bonds d1,
d2 and d3 are distorted the most, when the base pair is harged. The harge ismainly loalized on the guanine base (not shown). The piture is taken from [47℄.5.2. Model and tehnique5.2.1. HamiltonianTo desribe the situation disussed above, we onsider the Hamiltonian H = Hel + HL +

HR + HT,L + HT,R + Hvib + Hel−vib + Hbath, with
Hel =

∑

i

ǫia
†
iai −

∑

<ij>

tija
†
iaj

HT,L + HT,R =
∑

ν,r,i

[

trc†νrai + tr∗a†
icνr

]

Hvib =
∑

i

~ωi

(

B†
i Bi +

1

2

)

Hel−vib =
∑

i

λi a
†
iai

(

Bi + B†
i

)

. (5.1)The �rst term Hel desribes the eletrons in the DNA hain just as introdued in theprevious hapter, with onsite energies and hopping integrals for next-neighbor hoppingtaken from ab initio alulations. Also, the terms HL,R(not written expliitly, see Chap. 4)with r = L, R refer to the left and right eletrodes, with a �at density of states ρe (wideband limit). The details of the oupling between the DNA and the eletrodes are notthe fous of this work. For our purposes it is su�iently desribed by HT,L + HT,R withtunneling amplitudes assumed to be independent of the base pair i and the quantumnumbers of the eletrode states ν. The oupling strength is then haraterized by theparameter ΓL,R ∝ ρe|t
L,R|2.The vibrational degrees of freedom of base i are desribed by Hvib, with bosoni opera-tors B†

i and Bi for the mode with frequeny ωi. The oupling of the eletrons on the DNAto the vibrational modes is desribed by Hel−vib, where λi is the loal eletron-vibrationoupling strength. Here we only onsider the so-alled streth mode with frequeny
~ωi = 16 meV for a GC base pair and ~ωi = 11 meV for an AT base pair, whih ou-ple strongly to the eletrons, as shown by Starikov [50℄. Furthermore, Alexandre et al.44



5.2 Model and tehniqueshowed that in the formation of a polaron by plaing an additional harge on a guanine-ytosine base pair, the bonds with the strongest distortion, where the hydrogen bonds(labeled d2 and d3 in Fig. 5.1) between G and C [47℄. The streth mode is exatly thevibrational mode whih hanges this bond distane (see also Fig. 4.2).The oupling strengths are hosen in suh a way that the reorganization energy orpolaron shifts �t the values extrated from experiments and listed by Olofsson et al,
∆A = 0.18 eV and ∆G = 0.47 eV [46℄. These values probably underestimate the e�et ofthe solvent on the reorganization energy, but give an idea of the magnitude of energiesinvolved in the polaron formation.The vibration of eah base pair i is oupled to the loal environment, Hi,bath, themirosopi details of whih do not matter. Just as explained in the previous setion, thishanges the vibrations' spetra from disrete modes ωi to ontinuous spetra, di�erentfor both types of base pairs,

Di(ω) = − i

∫

dteiωtθ(t)
〈{

B†
i (t) + Bi(t), B

†
i + Bi

}〉

=
1

π

(
ηi(ω)

(ω − ωi)2 + ηi(ω)2
−

ηi(ω)

(ω + ωi)2 + ηi(ω)2

)

. (5.2)with frequeny dependent broadening ηi(ω). [115℄ The atual form of ηi(ω) depends onthe properties of the bath. A reasonable hoie whih assures also onvergene at low andhigh frequenies is ηi(ω) = η0
ω3

ω3
i

θ(ωc −ω) with η0 = 0.5 meV and a uto� of the order of
~ωc = 0.045 meV. The oupling to the bath introdues the dissipation, whih is ruialfor the stability of the DNA moleule in urrent arrying situations where substantialamount of heat an be produed in the DNA.5.2.2. Lang-Firsov TransformationIn order to desribe the system with strong eletron-vibration oupling we �rst applythe so-alled polaron or Lang-Firsov unitary transformation just as explained previously,but now onsidering the loal nature of the vibrations,

H̃ = eSHe−S .The generator of the Transformation is given by
S = −

∑

i

λi

~ωi

a†
iai

[

Bi − B†
i

]

.We introdue transformed eletron and vibrational operators,
ãi = aiχi

B̃i = Bi −
λi

~ωi
a†

iaiand polaron operators
χi = exp

[
λi

~ωi

(Bi − B†
i )

]

. 45



Chapter 5: Inoherent polaron hopping: Fermi's Golden RuleOperators χi with di�erent indies i at on di�erent vibrational states, therefore theyommute at all times. In terms of these quantities the Hamiltonian reads
H̃ =H̃0 + H̃ ′ (5.3)
H̃0 =

∑

i

(ǫi − ∆i)a
†
iai +

∑

i

~ωi
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1

2
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+ HL + HR (5.4)
H̃ ′ = −
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†
iajχj (5.5)

+
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trc†νraiχi + tr∗a†
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†
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] (5.6)
∆i =

∫

dωDi(ω)
λ2

i

~ω
. (5.7)In ontrast to the Hamiltonian H̃ (Eq. 4.3) of the previous hapter, here no e�etiveeletron�eletron interations H̃ee arise. The reason for their ourrene was, that weonsidered a vibration extended over the whole moleule, so eletrons ould `interat'with eah other via the vibration. The loal nature of the vibrations onsidered heredoes not lead to suh an interation. From the de�nition of the polaron shift (Eq. 5.7)we an alulate the eletron-vibration oupling strengths assuming polaron shifts andvibrational frequenies listed above

λG = 0.086 eV (5.8)
λA = 0.045 eV . (5.9)A perturbative treatment of the Hamiltonian H would not make sense, due to thestrong eletron-vibration oupling strengths, but after the Lang-Firsov transformationwe an proeed studying the e�et of strong eletron-vibration oupling in perturbationtheory in H̃ ′. The small parameters are tij/∆i and tr/∆i, whih allows trunating theperturbation expansion at lowest non-vanishing order in these parameters. From here onwe will use the shifted onsite energy ǫ̃i = ǫi − ∆i in all expressions.Rate equation and urrentAs remarked in Se. 3.1, the small-polaron theory overs two limits of transport. Atsu�iently low temperatures polarons form bands with bandwidth

W ≃ W0 exp

[

−

(
λ

~ω

)2

coth

(
~ω

2kBT

)]

,where W0 denotes the eletroni bandwidth without vibrations. [83℄ At high temperaturesthe bandwidth W dereases exponentially as the inreasing number of multi-phononproesses destroy the oherene, and the band piture eases to be valid. Transportis then aomplished by a sequene of inoherent polaron hops. A rough estimate for46



5.2 Model and tehniquethe ross-over temperature is kBT ≃ ~ω [4 ln (λ/~ω)]−1. [80℄ For the eletron-vibrationoupling strengths of interest in the present problem, room temperature is already wellabove this limit.To desribe room-temperature transport it is therefore su�ient to onsider a rateequation for the diagonal elements of the single-partile density matrix, i.e. the o-upation numbers of the sites ρl(t) =
〈

a†
l (t)al(t)

〉. These oupation numbers evolveaording to a master equation with transition rates whih we obtain in an expansionin H̃ ′ from Fermi's Golden Rule. If we onsider the rate for a hopping proess frombase pair (site) l to m, we have to take into aount that also the vibrational states mayhange. If the initial and �nal states of the oupled system are denoted by I and F , therates are
Wlm = 2π
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δ(EI − EF ).In the following the vibrational states are not expliitly onsidered. Therefore, we traeout the vibrational degrees of freedom Xl by summing over all initial vibrational statesweighted by the appropriate thermal probability and over all �nal states. Thus thetransition rate from a state with site l initially oupied and site m initially emptybeomes
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) ,where ̺l(Xl) is the probability of �nding vibration l in state Xl. Rewriting the energyonserving delta-funtion by its Fourier transform we obtain
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. (5.12)The funtion Pl(t) is known from the `P (E) theory', whih desribes tunneling in adissipative eletromagneti environment, modeled by an in�nite set of osillators. Here,47



Chapter 5: Inoherent polaron hopping: Fermi's Golden Ruleinstead of suh a bath we have broadened loal vibrational modes of two DNA basepairs involved in the hopping proess. Figure 5.2 shows the P (E) funtion and theombinations of it appearing in the rates introdued above and below. The parametersused in the alulation were introdued in the previous setion (Se. 5.2). The funtionsin Fig. 5.2 give the probability for a hopping or tunneling proess for an energy di�erene
E between initial and �nal state. The general shape is a Gaussian with maximum at
−∆ and height about ∝ ∆.

Figure 5.2: Various ombinations of P(E) funtions, where the index indiates the two typesof bases, G (guanine) and A (adenine). The ombination PAPG stands for theonvolution ∫ dE′PA(E−E′)PG(E′) and similar for the other ombinations, whihare relevant in the hopping transitions from e. g. an A base to a G base. Theused parameters were introdued in Se. 5.2, in partiular, the polaron shifts are
∆A = 0.18 eV and ∆G = 0.47 eV.The alulation for the tunneling transition between the left (L) and right (R) ele-trodes and the �rst or last site of the DNA hain l = 1 or l = N proeeds similarly,exept that one has to trae also over the eletrodes' eletroni states, while we have toonsider only the loal vibration of the one site involved. Hene we have for the rates onthe left and right juntion between eletrodes and DNA hain

W L
− =ΓL

∫
dE

2π~
(1 − fL(E))P1(ǫ̃1 − E) (5.13)

W L
+ =ΓL

∫
dE

2π~
fL(E)P1(E − ǫ̃1) , (5.14)where ΓL/R = 2π|tL/R|2ρe, fL/R(E) is the Fermi funtion in left/right lead, and P1/N(E)is the Fourier transform of P1/N(t).48



5.2 Model and tehniqueThe master equation for sites in the DNA hain thus reads
d

dt
ρl =

∑

m

[

− ρl (1 − ρm)Wlm + (1 − ρl) ρmWml

]

, (5.15)where the sum over m is restrited to nearest neighbors of l 1. For the base pair at theleft end of the hain we get
d

dt
ρ1 = − ρ1W

L
− + (1 − ρ1) W L

+

+
[

− ρ1 (1 − ρ2)W12 + (1 − ρ1) ρ2W21

]

, (5.16)and similar for the right interfae.As is obvious from Eqs. 5.15 and 5.16 the single-partile harge densities are onsid-ered to be unorrelated. This, of ourse, is only true approximatively, sine the oupa-tions of di�erent sites are e�etively linked by the hopping rates. As we only onsidernext neighbor hopping, the most important harge�harge orrelation is the one betweenneighboring sites. As we will explain in the next hapter, the orrelations an introdueanother energy sale depending on the onsidered sequene. For now we will negletthese orrelations as the most important features arise already without them.We are interested in the steady state, dρl/dt = 0, whih develops for a onstant appliedbias. After solving the resulting self-onsistent equations iteratively we an alulate thenon-equilibrium urrent through the left lead,
IL = e

[

− ρ1W
L
− + (1 − ρ1)W L

+

] (5.17)or for the right lead, whih is the same sine the urrent is onserved, IL = −IR.Disussion of the hopping ratesFor the hopping rates Eq. (5.10) the situation di�ers from the usual P (E) theory: insteadof one in�nite vibrational bath eah base pair (m and l) has its own vibration degreeof freedom and we get produts Pm(t)Pl(t), whih beome onvolutions in energy spae.The rates still satisfy detailed balane
Wlm = Wml exp

[
ǫ̃l − ǫ̃m

kBT

]

, (5.18)where ǫ̃m and ǫ̃l are the onsite energies of base pairs m and l, respetively.For large times, Pl(t) approahes a onstant, lim
t→∞

Pl(t) = Ll. Therefore it an beseparated into two terms, one deaying in time and one onstant:
Pl(t) = P̃l(t) + Ll . (5.19)1Inluding also hopping to more distant bases, one ould aount for the superexhange mehanism,dominant for guanine bases loser than three base pairs. This is, however, not important for thesequenes onsidered in this work, so it was not inluded in the numerial evaluation. 49



Chapter 5: Inoherent polaron hopping: Fermi's Golden RuleAordingly we an write
Pl(t)Pm(t) = P̃l(t)P̃m(t) + LmP̃l(t) + LlP̃m(t) + LmLl .The produt P̃l(t)P̃m(t) desribe transitions, where the number of vibrations hanges onboth sites, the next two terms desribe hanges in one of the two sites only, while thelast term desribes transitions without hanges in the vibration state. When performingthe time integration in Eq. (5.10), this last term leads to a divergene when the two siteenergies are degenerate

1

2π~

∫

dt e
i
~
(ǫ̃l−ǫ̃m)tLmLl = LlLmδ (ǫ̃l − ǫ̃m) , (5.20)sine in this situation the phenomenon of resonant tunneling ours. In this situationthe perturbation theory limited to seond order is not su�ient. Rather, one should sumup in a `ladder'-approximation an in�nite series of suh terms, leading to a result with�nite rates. [76, 120, 121℄ In the next hapter we will study the same system in moredetail using a diagrammati approah and, as we will show, this `ladder'-approximationwill give rise to the orrelation e�ets mentioned in the previous setion.Alternatively, we an phenomenologially regularize the divergene of Eq. (5.20) byformally introduing an imaginary part to the level energies ǫ̃l. This is motivated by thefat that they aquire a �nite width due to the interation with the vibrations or leads.In this way the hopping rates beome �nite. We further note that the ontribution ofthe vibration-free transitions (the onstant term of Eq. 5.20) is multiplied by the fator

LlLm. In our ase, this fator is exponentially small. This orresponds to the fat thatwe onsider the limit where polaron hopping by far dominates polaron band transport.We therefore an ignore the terms ∝ LmLl in our analysis all together, i.e. we subtratthem in Eq. (5.10). The regularized hopping rates are therefore
Wlm =

|tl,m|
2

~2

∫

dt e
i
~
(ǫ̃l−ǫ̃m)t

[

Pl(t)Pm(t) − LlLm

]

. (5.21)To give a feeling for the relationship between urrent in a system and the oupationnumbers, let us onsider two neighboring sites (1 and 2) of a system with a urrent I anda given oupation of of site 1. The rate for a hopping proess from site 1 to 2 is W12and the bakward hopping rate is W21 = W12 exp [−β∆E], where ∆E is the di�erenebetween the onsite energies of site 1 and 2. The oupation of site 2 is then given by
ρ2 =

ρ1 + I
eW12

ρ1(1 − e−β∆E) + e−β∆E
.In Figure 5.3 the oupation of site 2 is shown as a funtion of the onsite energy di�erenefor four di�erent values of I/eW12, where the oupation of site 1 is assumed to be

ρ1 = 0.9. Clearly, the oupation of site 2 is always lower if site 2 has higher energy(negative ∆E). If site 2 has lower energy, the oupation strongly depends on the urrent.For low urrent the oupation an be higher than on site 1. The urrent, of ourse, willbe determined by the applied bias and the struture of the whole system.50



5.3 Results
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Figure 5.3: Oupation of site 2 for given oupation of site 1 as a funtion of the onsite energydi�erene for four di�erent values of the urrent.5.3. Results5.3.1. Sequene e�etsUsing the rate equation we will study now the harge transport and the non-equilibriumoupation of the sites for various DNA sequenes. Both quantities depend stronglyon the spei� sequene. All DNA sequenes are `semi-onduting' sine the Fermienergy lies in the HOMO-LUMO gap, i.e. well above the HOMO states whih arrythe transport.Figure 5.4 shows the I-V harateristis for two suh sequenes, 5'-GGGGGGGG-3'(green, dash-dotted line) and 5'-GAAAAAAG-3' (blak, solid line). The �rst sequenedisplays the `semi-onduting' behavior with a gap haraterized by the distane of theFermi energy to the onsite energy of the G base (shifted by ∆G). Due to its eletronisymmetry the I-V harateristi is symmetri with respet to the applied bias. On theother hand, the seond DNA sequene shows strong retifying behavior, despite of itsseemingly symmetri sequene. The reason for this asymmetry lies in the eletroniasymmetry of the hopping amplitudes, together with the inoherene of the hoppingproesses between DNA base pairs. This an easily be understood: For positive bias thehopping `bottlenek' of the system is at the rossover from A to G at the 3' end of thestrand. There, the polaron needs to overome an energy barrier mediated by vibrationalexitations. For negative bias the `bottlenek' is at the rossover from A to G at the5' end of the strand. Due to the opposite diretion of the dominating hopping proess,with |tGA| > |tAG| (ompare Table 2.1), the urrent for negative bias is higher thanfor positive bias. Thus, inhomogeneous sequenes will in general display a retifying,semi-onduting I-V harateristi. The reti�ation e�et will be weaker for longer andmore disordered sequenes, as more `bottleneks' in either diretion appear. Note that noretifying behavior would be observed if we model the transport as a oherent transitionthrough the total length of the hain (`Landauer approah'). [96, 122, 123℄ 51
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Figure 5.4: I-V harateristis for two DNA strands with sequenes 5'-GGGGGGGG-3' (dash-dotted line) and 5'-GAAAAAAG-3' (solid line) with the following parameters:Base pair onsite energies ǫA = −0.26 eV, ǫG = +0.25 eV, polaron shifts ∆A =
0.18 eV and ∆G = 0.47 eV, Fermi energy EF = 0eV, symmetri oupling toleads with linewidths ΓL = ΓR = 0.01 eV, vibrational energies ~ωA = 11meV,
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Φi(Vb) = ǫ̃i − kBT ln

(
1

ρi(Vb)
− 1

)

. (5.22)This quantity is superior to the oupation in visualizing the non-equilibrium hargerearrangement, beause it reats sensitively to even small hanges in the oupation.Figure 5.6 shows the I-V urves for the two DNA moleules 5'-GAAAAAAG-3' (blak,solid line) and 5'-GGAAAAGG-3' (red, dashed line), and the inset shows the loal hem-ial potential Φ for the last guanine base (at the 3' end) for both sequenes. Althoughthe sequenes are very similar, the I-V harateristis di�er strongly in the maximumurrent and in the way the urrent inreases for inreasing bias voltage. The urrent ofthe seond sequene has reahed a plateau already at about Vb = −0.8 V, whereas theblak urve has not leveled o� even for Vb = −1.5V . This strong deviation from a Fermifuntion behavior is in part a onsequene of the renormalization of the tunneling ratesby the vibrations.This di�erene in the I-V harateristis is re�eted in the loal hemial potential Φ,most prominently at the last guanine base of both sequenes, as shown in the inset. Atlow bias both sequenes behave in the same way: the potential inreases equally withthe applied bias. The DNA is not onduting and therefore, the situation is similar tothe harging of a apaitor. At the drop-o� around Vb = −0.3 V, the urrent sets inand a potential drop between base pair and lead is established. In orrespondene to theurrent, the loal hemial potential for the seond sequene 5'-GGAAAAGG-3' levels53
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[
−Ea

kBT

], with a voltage dependent prefator α(V ) thatalso shows a temperature dependene for the ase poly(dG)-poly(dC) bundles. Asai [53℄has used the Kubo formula for a polaron hopping model to obtain a similar relation forthe linear response ondutivity.Our results are obtained in a non-equilibrium situation and also show a strong tem-perature dependene. An Arrhenius plot of the urrent vs. temperature shows linearbehavior, indiating that the urrent is indeed an ativated quantity (though we also ob-serve deviations from a perfet Arrhenius law). Fitting the temperature dependene ofour data by an Arrhenius law allows us to estimate the ativation energy for a given biasvoltage and polaron shift ∆. Figure 5.8 shows the ativation energy Ea obtained by this54
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6. Inoherent polaron hopping:Diagrammati approahIn the previous hapter, we developed a desription of polaron hopping in terms of a rateequation with rates obtained by golden rule arguments. This desription is restrited todiagonal omponents of the density matrix and it neglets orrelations between hargedensities of di�erent base pairs mediated by the hopping proesses. In this hapter wewill introdue a diagrammati approah for polaron hopping in one dimensional systemoupled to two biased leads. This approah is a real-time expansion on the Keldyshontour and is an extension of a tehnique developed by Böttger and Bryskin in the late1970s for bulk systems. [76℄6.1. Theory6.1.1. Real-time density matrix expansionThe Hamiltonian we onsider has been introdued in detail in the previous hapter. Westart with the form H̃ , whih was obtained after the Lang-Firsov transformation
H̃ =H̃0 + H̃ ′ (6.1)
H̃0 =

∑

i

(ǫi − ∆i)a
†
iai +

∑

i

~ωi

(

B†
i Bi +

1

2

)

+ HL + HR (6.2)
H̃ ′ = −

∑

<ij>

tij a†
iχ

†
iajχj (6.3)

+
∑

ν,r,i

[

trc†νraiχi + tr∗a†
iχ

†
icνr

] (6.4)
∆i =

∫

dωDi(ω)
λ2

i

~ω
. (6.5)To alulate quantities of interest, e. g. the oupation number 〈a†

i (t)ai(t)
〉 and theurrent in a non-equilibrium situation with applied bias, we make a real time expansionof the density matrix along the Keldysh ontour. The evolution in the interation pitureintrodues the time dependene

ai(t) =aie
−i(ǫi−∆i)t = aie

−iǫ̃it

Bi(t) =Bie
−iωit.57



Chapter 6: Inoherent polaron hopping: Diagrammati approahFrom here on we will use the shifted onsite energy ǫ̃i = ǫi − ∆i in all expressions.The single-partile density matrix of the DNA hain an be written as ρl
k(t) =

〈

a†
k(t)al(t)

〉

H̃
. We express it in the interation piture, assuming that the perturba-tion H̃ ′ is adiabatially turned on from the time t0 = −∞,

ρl
k(t) =

〈

U †

H̃0
(t,−∞)a†

kalUH̃0
(t,−∞)

〉

H̃0

e−i(ǫ̃l−ǫ̃k)t,with time evolution operator
UH̃0

(t,−∞) = T

{

exp

[

−i

∫ t

−∞

dtH̃ ′
H̃0

(t)

]}

. (6.6)A Taylor expansion of the time evolution operators in H̃ ′ de�nes a diagrammati expan-sion. The forward time-evolution operator UH̃0
(t,−∞) is expanded on the upper branhof the Keldysh ontour, whereas the bakward time-evolution operator U †

H̃0
(t,−∞) isexpanded on the lower branh (see Fig. 6.1). The index H̃0 indiates that these oper-ators are written in the interation piture. The time ordering operator `T' in Eq. 6.6

Figure 6.1: Shemati drawing of the Keldysh ontour and the forward and bakward time-evolution operators. The open and rossed irle (the lamp) represent the twooperators al and a†k, respetively, whih are evaluated at time t.(anti-time ordering operator `T̃') ensures that the di�erent times ti, arising from theTaylor expansion of the forward (bakward) time evolution operator, are ordered in theorret way along the ontour. Note, oftentimes forward and bakward time evolutionoperators are ombined and a ontour ordering operator `Tk' is introdued to ensure theorret ordering of times along the Keldysh ontour. [94, 124℄In performing the expansion in the time evolution operators, we obtain ertain operatorproduts, whih we have to average thermally. Sine H̃0 is quadrati in the fermionoperators, these an be treated using Wik's theorem. On the other hand, the vibrationaloperator produts, involving various operators χi(tj), annot be fatored. The rules forthe evaluation of these operator produts are given in Appendix E. A spei� term inthe Taylor expansion, is represented by diagram with a ertain number of verties on theupper and lower branh of the Keldysh ontour, where eah vertex is proportional eitherto tij (a hopping vertex) or triν (a tunneling vertex). The di�erent verties are onnetedby fermion and vibrational lines and belong to di�erent times ti, whih have to be (anti-)time ordered along the (lower) upper branh of the ontour.58



6.1 TheoryA feature of this expansion is that ertain diagrams are diverging even in �rst order.These diagrams an be identi�ed by so alled free setions (we will introdue the oneptof free setions below in more detail), that ut at least one pair of fermion lines, whereboth lines are assoiated with sites (the same or di�erent), that have the same onsiteenergy. This is equivalent to the situation of resonant tunneling. In suh a ase an in�nitenumber of diagrams has to be summed up in a way similar to a `ladder'-approximation [76,120, 121℄.1 Note, when onsidering only diagonal elements of the single-partile matrix,every diagram is diverging. In the derivation of the diagrammati rules listed below suha ladder summation is performed. This leads to a relation for the time derivative of thedensity matrix
d

dt
ρl

k(t) = − i (ǫl − ǫk) ρl
k(t)

+

∫ t

−∞

dt1
∑

{mi,m′
i}

[

ρm1

m′
1
(t1)W

m1l
m′

1k(t1, t) +
(

δm′
1m1

− ρm1

m′
1
(t1)
)

Vm1l
m′

1k(t1, t)

+ ρm1m2

m′
1m′

2
(t1)W

m1m2l
m′

1m′
2k(t1, t) + ρm1m2m3

m′
1m′

2m′
3
(t1)W

m1m2m3l
m′

1m′
2m′

3k(t1, t) + . . .

]

. (6.7)The important property of the irreduible bloks W and V is, that they do not diverge.Clearly, this is not a self-onsistent equation for the single-partile density matrix, as itdepends also on higher order density matries, e. g.
ρm1m2

m′
1m′

2
(t1) =

〈

U †

H̃0
(t1)a

†
m′

2
am2a

†
m′

1
am1UH̃0

(t1)
〉

. (6.8)Then, also a similar equations for the higher order density matries has to be omputed,i. e. one has to deal with an in�nite hierarhy of equations. For pratiability an appro-priate deoupling sheme has to be applied.Why does a many-partile density matrix a�et the behavior of a single-partile densitymatrix? This beomes obvious, when onsidering a hopping proess between two sites
m and n, where the two-partile density ours. Suh a hopping proess is determinedby the hopping probability, whih is represented by a seond order irreduible diagram,and the oupation of the �nal site n. The two-partile density matrix ombines theprobability to �nd the initial site m oupied and the �nal site n empty. In general, theoupation of di�erent sites is orrelated, exept for situations, where the harge densityis very low. To desribe the situation of unorrelated oupation numbers, the densitymatrix an be fatorized in a Hartree-Fok type way

ρm1m2

m′
1m′

2
≈ ρm1

m′
1
ρm2

m′
2
+ ρm1

m′
2

(

δm2m′
1
− ρm2

m′
1

)

. (6.9)This approximation was taken in the previous hapter.1For example, a seond order diagram with a diverging free setion ontributes to a similar �rst orderdiagram. This an be inorporated, by the onvolution of the �rst order blok diagram with thesingle density matrix, as in Eq. 6.7. If the seond order blok has a non-diverging free setion, thanthe �rst order blok is just multiplied by Fermi funtion. For suh situations, the density matriesin Eq. 6.7 have to replaed by Fermi funtions. For example ρm1

m′

1

→ δm′

1
m1

fm1
. 59



Chapter 6: Inoherent polaron hopping: Diagrammati approah6.1.2. Constrution of irreduible blok diagramsBelow we will state the rules for the onstrution and evaluation of irreduible blokdiagrams. The rules for pure hopping diagrams, i. e. those ontaining only verties ∝ tij ,were developed by Böttger and Bryksin [76℄. We extended their theory adding new rulesto treat diagrams with tunneling verties ∝ triν .The perturbative expansion an be visualized by the onstrution of diagrams whihare equivalent to expressions in the analyti expansion. The main ontribution to thediagrams omes from so alled irreduible bloks, whih, as the name implies, annot bedeomposed into more simple diagrams. The main feature of an irreduible blok diagramis, that it does not diverge, when integrating over the internal times ti. Irreduible bloksan be identi�ed by their property of not allowing free setions. A free setion is a vertialline drawn between the leftmost vertex and the rightmost vertex (exept for the lamp)that does not ross either a phonon line or an external fermion (tunneling) line.The rules ome in two sets: the �rst for the onstrution and labeling of possiblediagram, the seond set for the evaluation of a partiular diagram. The rules are gen-eral for all orders of perturbation theory. We give a onrete example of a third orderontribution to the blok Wm1m2l
m′

1m′
2k(t) in Fig. 6.2.1. Draw the Keldysh time ontour as a retangle whih is open to the left, orrespond-ing to t → −∞.2. For a diagram of order n we draw on the ontour n + 1 pair verties onsisting ofone open irle © (symbolizing a destrution operator) and one rossed irle ⊕(symbolizing a reation operator). All irles belonging to operators ating on themoleule (DNA) are drawn on the inside of the ontour, whereas irles belongingto eletrode operators are drawn on the outside of the ontour. Therefore, if thepair vertex is due to a tunneling proess tri,ν one irle is on the inside and theother one is on the outside of the ontour. The irles of a hopping proess areboth drawn on the inside of the ontour where the open irle is always `earlier'along the Keldysh ontour than the rossed irle. As we alulate diagrams toevaluate the density matrix, we draw one pair vertex (also alled `lamp' [76℄) atthe inside of the right vertial line of the Keldysh ontour, orresponding to time t.The other n verties are drawn at n times ti on either the upper or lower branh ofthe Keldysh ontour (where t2 is the leftmost, earliest time and t1 is the rightmost,latest time).3. Eah open irles© on the inside of the ontour has one ingoing fermion line (arrowpointing to the vertex) and eah rossed irle ⊕ has one outgoing fermion line(arrow pointing away from the vertex) whih is loally direted along the Keldyshontour.4. Complementary irles outside the ontour are pairwise onneted by a fermion linedrawn outside of the ontour. Sine this line orresponds to an eletron propagatingin eletrode r the onneted irles have to belong to the same eletrode r, otherwisethe diagram ontribution is zero.60



6.1 Theory5. The lamp is always onneted by a fermion line to the rightmost vertex (other thanthe lamp) drawn inside of the ontour. If the rightmost vertex is a hopping vertex,the fermion line is direted along the ontour. If the rightmost vertex is a tunnelingvertex, the inside irle (open or rossed) is onneted to the omplementary irleof the lamp, no matter what the diretion of the fermion line.6. The remaining unonneted inside irles have fermion lines going into (omingfrom) the region left of the diagram (t → −∞) without interseting eah other.7. Eah irle belongs to one spei� state for the moleule or the eletrode. We labelthe moleule states (sites) by latin haraters (e.g. m, m′, . . .) and the eletrodestates by Greek haraters (e.g. ν). Note that the two irles of a hopping vertexan not orrespond to the same state (site). Sine we want to alulate the densitymatrix ρl
k then the rossed irle of the lamp is assoiated with the state (site) kand the open irle orresponds to state (site) l.8. Exept for the lamp, the irles on the inside of the ontour must be onnetedby phonon lines so that the diagram has no free setion, as de�ned above. Oneirle an be onneted to more than one phonon line. All diagrams with di�erentnumber of phonon lines (but still without free setions) have to be onsidered.Only irles belonging to the same state (site) an be onneted by a phonon line.Therefore, the two irles of a hopping vertex an not be onneted.The rules for evaluating a diagram are as follows.1. A hopping vertex at time ti is assoiated with a fator

±itm′mKm′Kme−i(ǫm′−ǫm)(ti−t2) where the reation operator (rossed irle)orresponds to site label m′ and the destrution operator to the site label m (reallthat t2 is the leftmost time of the diagram). A tunneling vertex is assoiatedwith a fator ±itr∗νmKme−i(ǫν−ǫm)(ti−t2) or ±itrm′νKm′e−i(ǫm′−ǫν)(ti−t2) if the reationoperator ats on the eletrode or on the moleule, respetively. Verties on theupper half of the ontour have the minus sign, verties on the lower half of theontour have the plus sign. The fator
Km = exp

{

−
1

2

∫

dωDm(ω)

(
λm

ω

)2

(2N(ω) + 1)

}

.The lamp irles ontribute a fator e−i(ǫl−ǫk)(t1−t2), where the open irle of thelamp orresponding to the state l and rossed one orresponding to state k.2. The outside fermion lines of the eletrodes r ontribute a fator 1 − f r
ν or f r

νdepending whether they run in the diretion of the ontour or against it. Here f r
νis the Fermi funtion at energy ǫν − µr, with the hemial potential µr.3. The fermion lines entering (leaving) the irreduible blok from (to) the left arelabeled from top to bottom. The labels determine the indies of the irreduibleblok, e.g. Wm1m2l

m′
1m′

2k(t). The lines leaving the diagram orrespond to the lower labels61



Chapter 6: Inoherent polaron hopping: Diagrammati approah

Figure 6.2: A third order diagram to the rate Wm1m2l
m′

1m′
2k

(t2, t1)(primed labels in the example Fig. 6.2) whereas the lines entering the diagram fromthe left orrespond to the upper labels (unprimed labels). Sine the fermion linesare onneted to irles on the inside of the diagram (whih belonged to some state(site) j) a Kroneker fator has to be added, e.g. δm1l and δm′
1k for the example ofFig. 6.2.4. A phonon line onneting two irles both assoiated to a state (site) m has a value

F ζ
m(ti − tj) = exp {ζAm(ti − tj)} − 1 ,with

Am(t) =

∫

dωDm(ω)

(
λm

ω

)2
cos (ω [t + i~β/2])

sinh (~ωβ/2)
,where the irle at time ti is later on the ontour than the irle at time tj . Thefator ζ is determined by the type of irles the line onnets. If the irles aredi�erent ζ = +1, otherwise ζ = −1.5. Multiply with a fator (−1)M+N , where M is the number of intersetions of fermionlines on the outside of the ontour (tunneling lines) and N is the number of inter-setions of fermion lines on the inside of the ontour.6. We integrate over all internal times ti (exept t1 and t2) and sum over all eletrodestates ν and all internal moleule states i, j, exept the states assoiated with thelamp.Let us have a look at the third order example in Fig. 6.2. This diagram is partof the rate Wm1m2l

m′
1m′

2k(t2 − t1). Full lines are fermion lines and dashed lines are phononlines. For easier readability we introdue renormalized hopping and tunneling strengths
t̃m′

1m1
= tm′

1m1
Km′

1
Km1 , t̃r∗lν = tr∗lνKl and t̃rνl = trνlKl. The diagram has the value:

Wm1m2l
m′

1m′
2k(t2 − t1) =(−i)2i

∑

rν

t̃m′
2m2

t̃r∗lν t̃rνl δm1l δm′
1k δm2l (1 − f r

ν )

× e−i(ǫν−ǫl)(t1−t2)e−i(ǫl−ǫk)(t1−t2)F+
l (t2 − t1)

×

∫ t1

t2

dt3e
−i(ǫl−ǫν)(t3−t2)F−

l (t2 − t3)F
+
l (t1 − t3) .
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6.1 TheoryAs an be seen from Eqs. 6.7 and 6.10, the irreduible bloks are onvoluted with single-and many-partile density matries or orrelation funtions. The order of the labels ofthe irreduible blok rate determine the orrelation funtion it will be onvoluted with.Lines leaving the blok (primed labels) orrespond to reation operators in Eq.6.8, linesentering the blok (unprimed labels) orrespond to destrution operators. The order ofoperators from left to right orresponds to the order of the lines leaving/entering thediagram from bottom to top.For example, let us onsider some rate Wm1m2m3l
m′

1m′
2m′

3k(t2− t1) whih has the following orderof the terminals at the left of the diagram from bottom to top: m′
3, m′

2, m3, m′
1, m2, and

m1 (the primed labels orrespond to fermion lines leaving the diagram, the unprimed tolines entering the diagram as in Fig. 6.2). This rate will be onvoluted with the higherorder orrelation funtion
〈
am′

3
(t2)am′

2
(t2)a

†
m3

(t2)am′
1
(t2)a

†
m2

(t2)a
†
m1

(t2)
〉

H̃The above rules apply to the most general situation of polaron transport, where oher-ene e�ets are onsidered by inluding non-diagonal elements of the single and many-partile density matries. As explained in the previous hapter, for the situation ofstrong eletron-vibration oupling and high temperature it is su�ient to onsider onlydiagonal omponents of the density matries. In the rest of the work, we will resort tothis limit and disuss a situation of �nite bias applied to a DNA moleule, whih hasreahed steady-state. Thus, equation 6.7 for the time derivative of the single-partiledensity matrix redues to
0 =

∫ 0

−∞

dt1
∑

{mi}

[

ρm1Wm1l(t1) + (1 − ρm1)Vm1l(t1)

+ ρm1m2Wm1m2l(t1) + ρm1m2m3Wm1m2m3l(t1) + . . .

]

. (6.10)6.1.3. First and seond order diagramsIn the previous hapter we obtained the rates for hopping transport in DNA moleulesfrom golden rule arguments. Equivalently, the rate equation and the assoiated rates anbe obtained from diagram using the above rules. The advantage of this proedure is, thatno divergenes our and that orrelation e�ets are inorporated naturally, that werenot onsidered in the previous hapter. As explained before, we will restrit ourselves todiagonal omponents of the density matries. The rates are given by the eight diagramdepited in Figure 6.3 and 6.4, where Table 6.1 list the values of the diagrams. Insertingthese rates into Eq. 6.10, the rate equations 5.15 and 5.16 are obtained.Eah of the tunneling diagrams depited in Fig. 6.3 is the sum of two almost identialdiagrams arising from the rules given above, one with a vibrational line and one withoutit. This is re�eted in the fat that the generalized vibrational line (dashed line in thediagrams) has a value of F+
l (t1 − t2) + 1. Similarly, eah hopping diagram is the sumof three diagrams, one with two vibrational lines and two with a single vibrational line.63



Chapter 6: Inoherent polaron hopping: Diagrammati approah
(a) (b)
() (d)Figure 6.3: The four tunnel diagrams. The two diagrams on top of eah other are their respe-tive omplex onjugates. The full lines represent fermion lines. The dashed linerepresents the sum of all possible vibrational lines arising from the diagrammatirules, e. g. for diagram (a) it has a value F+

l (t1 − t2) + 1.

(a) (b)
() (d)Figure 6.4: The four hopping diagrams. The two diagrams on top of eah other are theirrespetive omplex onjugates. The full lines represent fermion lines. The dashedline represents the sum of all possible vibrational lines arising from the diagram-mati rules, e. g. for diagram (a) it has a value F+

l (t1 − t2)F
+
m2

(t1 − t2) + F+
l (t1 −

t2) + F+
m2

(t1 − t2).
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6.1 Theorydiagrams value Eq.6.3(a)+6.3() W r
m1l = −Γr

∫
dE
2π~

(1 − fr(E))Pl(ǫ̃l − E)δlm1 5.136.3(b)+6.3(d) V r
m1l = Γr

∫
dE
2π~

fr(E)Pl(E − ǫ̃l)δlm1 5.146.4(a)+6.4() Wm1m2l = −
|tl,m2

|2

~2

∫
dt e

i
~
(ǫ̃l−ǫ̃m2)t

[
Pl(t)Pm2(t) −K2

l K
2
m2

]
δlm1 5.216.4(b)+6.4(d) Wm1m2l =

|tm1,l|
2

~2

∫
dt e

i
~
(ǫ̃m1−ǫ̃l)t

[
Pm1(t)Pl(t) −K2

m1
K2

l

]
δlm2 5.21Table 6.1: Values for the diagrams of Fig. 6.3 and 6.4. For the evaluation of the tunnelingdiagrams the wide band limit was assumed. The index r = L/R stands for theleft/right eletrode.The value of the generalized vibrational line is therefore F+

l (t1−t2)F
+
m2

(t1−t2)+F+
l (t1−

t2) + F+
m2

(t1 − t2). In the previous hapter, the in�uene of the vibrations was desribedby the funtions Pl(t), whih were known from the `P(E)' theory. In the diagrammatirules the vibrations are desribed by funtions F
+/−
l (t). The relation between these twofuntions is given by Pl(t) = K2

l

(
F+

l (t) + 1
)

= Ll

(
F+

l (t) + 1
). In the previous hapter,the funtion Ll = K2

l was introdued for simpliity.The rates from the various diagrams are onvoluted with di�erent orrelation funtions,depending on the fermion lines leaving to the left as explained above. The diagrams pre-sented in Fig. 6.3 and 6.4 are onvoluted with orrelation funtions as listed in Table 6.2.diagrams orrelation funtion6.3(a)+6.3() 〈

a†
l al

〉

=ρl6.3(b)+6.3(d) 〈

ala
†
l

〉

=1 − ρl6.4(a)+6.4() 〈

a†
l am2a

†
m2

al

〉

=ρl − ρlm26.4(b)+6.4(d) 〈

a†
m1

ala
†
l am1

〉

=ρm1 − ρm1lTable 6.2: Diagrams and the orrelation funtions they are onvoluted with. The two-partiledensity matrix is given by ρlm =
〈

a†l ala
†
mam

〉.Inserting the rates and the assoiated orrelation funtion into Eq. 6.10 one obtainsthe rate equation for the single-partile density matrix ρl.6.1.4. Two-partile density matrixIn the previous hapter the two-partile orrelation funtions were fatorized ρlm2 ≈
ρlρm2 . In the following we will investigate whih in�uene the orrelations have onthe transport through DNA. For this we have to state equations for the two-partiledensity matries, as well. The rules for the diagrams arising from the expansion of the65



Chapter 6: Inoherent polaron hopping: Diagrammati approah
(a) (b)
() (d)Figure 6.5: Four tunnel diagrams. To eah of these diagrams there exists another that istheir respetive omplex onjugate. The full lines represent fermion lines. Thedashed line represents the sum of all possible vibrational lines arising from thediagrammati rules, e. g. for diagram (a) it has a value F+

m(t1 − t2) + 1. Note thevarious orderings of the indies on the left of the irreduible blok.
(a) (b)
() (d)Figure 6.6: Four hopping diagrams. To eah of these diagrams there exists another that istheir respetive omplex onjugate. The full lines represent fermion lines. Thedashed line represents the sum of all possible vibrational lines arising from thediagrammati rules, e. g. for diagram (a) it has a value F+

m(t1 − t2)F
+
n (t1 − t2) +

F+
m(t1 − t2) + F+

n (t1 − t2).
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6.1 Theorytwo-partile density matrix are almost idential to the ones stated above for the single-partile density matrix. The only di�erene arises from the lamp, whih now onsistsof four irles (two empty, two rossed) representing the four fermion operators of thetwo-partile density matrix. There are now two possibilities to onnet the rightmostvertex with the lamp, whih both have to be onsidered. Furthermore, not only one butthree fermion lines from the remaining terminals of the lamp leave to (enter from) theregion left of the irreduible blok without interseting eah other. The equation for thetime derivative of the two-partile density matrix has the same struture as Eq. 6.7 and6.10.The diagrams up to seond order are given in Figure 6.5 and 6.6. As for the single-partile density matrix, there are always two diagrams whih are their respetive omplexonjugates. So, only one of them is shown. The irreduible bloks, i. e. the rates, havethe same value as the ones derived previously, exept for some δ-funtions due to theadditional terminals of the lamp and the orrelators, they are onvoluted with.The rate, that every diagram (plus its omplex onjugate) represents, is listed in theseond olumn of Table 6.3. The values of these rates orrespond to the ones givenin Table 6.1. In the third olumn the orrelators are shown with whih the rates areonvoluted. In the seond setion of the table, i. e. for n = l or n = m, the relation
n̂2

l = n̂l was used, where n̂l = a†
l al is the number operator of site l. In the third setion,the three-partile orrelation funtions have been fatorized into two- and single-partileorrelation funtions to obtain losed equations. The rule for the fatorization is givenby

〈ABC〉 ≈ 〈A〉 〈B〉 〈C〉 + [〈AB〉 〈C〉 − 〈A〉 〈B〉 〈C〉]

+ [〈AC〉 〈B〉 − 〈A〉 〈B〉 〈C〉]

+ [〈BC〉 〈A〉 − 〈A〉 〈B〉 〈C〉] ,where the apital letters represent pairs of fermion operators, i. e. a†
l al. With the aboverates one obtains the following rate equation for the two-partile density matrix in theinside of the DNA moleule

d

dt
ρlm =

∑

n

{

[ρlm (1 − ρn) − ρlnρm − ρmnρl + 2ρlρmρn]Wlnl

+ [ρlm (1 − ρn) − ρmnρl − ρlnρm + 2ρlρmρn]Wmnm

+ [ρnl (1 − ρm) − ρlmρn − ρnmρl + 2ρnρmρl]Wnll

+ [ρnm (1 − ρl) − ρlmρn − ρlnρm − 2ρlρnρm]Wnmm

}

. (6.11)For a two-partile density matrix at the left juntion the rate equation has the followingform
d

dt
ρ12 =ρ12W

L
11 + (ρ2 − ρ12) V L

11

+ [ρ12 (1 − ρ3) − ρ23ρ1 − ρ13ρ2 + 2ρ1ρ2ρ3]W232

+ [ρ13 (1 − ρ2) − ρ32ρ1 − ρ12ρ3 + 2ρ1ρ3ρ2]W322 . (6.12)67
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tiapproah diagrams value orrelation funtion6.5(a)+.. W r
ll ρlm6.5(b)+.. W r
mm ρlm6.5()+.. V r

ll ρm − ρlm6.5(d)+.. V r
mm ρl − ρlm6.6(a)+.. n = l Wlml

〈

a†
l alala

†
l a

†
mam

〉

= 06.6(b)+.. n = m Wmlm

〈

a†
l a

†
mamama†

mal

〉

= 06.6()+.. n = m Wmll

〈

ala
†
l a

†
ma†

mamam

〉

= 06.6(d)+.. n = l Wlmm

〈

a†
l a

†
l alama†

mal

〉

= 06.6(a)+.. n 6= l Wlnl

〈

a†
l ala

†
mana

†
nam

〉

≈ ρlm (1 − ρn) − ρlnρm − ρmnρl + 2ρlρmρn6.6(b)+.. n 6= m Wmnm

〈

a†
l a

†
mamana

†
nal

〉

≈ ρlm (1 − ρn) − ρmnρl − ρlnρm + 2ρlρmρn6.6()+.. n 6= m Wnll

〈

a†
nala

†
mama†

l an

〉

≈ ρnl (1 − ρm) − ρlmρn − ρnmρl + 2ρnρmρl6.6(d)+.. n 6= l Wnmm

〈

a†
na

†
l alama†

man

〉

≈ ρnm (1 − ρl) − ρlmρn − ρlnρm − 2ρlρnρmTable 6.3: Values for the diagrams of Fig. 6.5 and 6.6 plus their omplex onjugates. For the evaluation of the tunneling diagrams thewide band limit was assumed. The index r = L/R stands for the left/right eletrode. In the seond setion, for the situations

n = l or n = m the relation n̂2
l = n̂l was used, where n̂l = a†l al is the number operator of site l. In the third setion, thethree-partile orrelation funtions have been fatorized into two- and single-partile orrelation funtions to obtain losedequations. 68



6.2 ResultsNote, for the two-partile density matrix the relation ρlm = ρml holds. The rateequations for single-partile density matries have the following form, similar to Eq. 5.15and 5.16,
d

dt
ρl =

∑

m

[

(ρl − ρlm)Wlml + (ρm − ρml)Wmll

] (6.13)
d

dt
ρ1 =ρ1W

L
11 + (1 − ρ1) V L

11 + (ρ1 − ρ12)W121 + (ρ2 − ρ21)W211 . (6.14)The rate equations for all other single and two-partile density matries have a similarstruture following Table 6.3. The rate equations for the single and two-partile densitymatries have to be solved simultaneously. The urrent an then be alulated usingEquation 5.17.CorrelationsTo see whih terms in the rate equation for the two-partile density matrix give rise toorrelation e�ets, we exemplary ompare Eq. 6.12 with
d

dt
[ρ1ρ2] =

d

dt
[ρ1] ρ2 + ρ1

d

dt
[ρ2]

=ρ1ρ2W
L
11 + (ρ2 − ρ1ρ2) V L

11

+ (ρ1 − ρ12) ρ2W121 + (ρ2 − ρ21) ρ2W211

+ ρ1 (ρ2 − ρ21)W212 + ρ1 (ρ1 − ρ12)W122

+ ρ1 (ρ2 − ρ23)W232 + ρ1 (ρ3 − ρ32)W322 .For the seond and last line the orresponding terms in Eq. 6.12 are easily found whenidentifying ρ12 ≡ ρ1ρ2. On the other hand, the orresponding terms for the third andfourth line are not obvious. The reason lies in the use of the identity n̂2
l = n̂l in derivingEq. 6.12, where n̂l = a†

l al is the number operator of site l (see Table. 6.1). Whenfatorizing the three-partile orrelators in the middle setion of Table. 6.1 diretly,without using the above identity, one obtains exatly the expressions in the third andfourth line of the above equation. Consequently, all hopping terms ontribute to theorrelation e�ets.6.2. ResultsIn this setion we study the I-V harateristis of short DNA moleules inluding or-relation e�ets and ompare with the results obtained in the previous hapter. Firstly,it should be noted that orrelation e�ets do not in�uene the transport properties ofhomogeneous DNA sequenes, as an be seen from Eqs. 6.13 and 6.14. In homogeneousDNA the onsite energies of all base pairs are idential therefore the hopping rates for aforward and bakward hopping proess are equal in magnitude but with opposite sign.Sine ρij = ρji holds, the two-partile density matries drop out of the equations and the69
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Chapter 6: Inoherent polaron hopping: Diagrammati approahThe seondary peaks for both positive and negative bias an be identi�ed with newenergy sales arising from the orrelations. The position of these peaks is also stronglydependent on the sequene, as will beome lear from the results for other sequenes.Changing the oupling to the eletrodes by one order of magnitude does not hangethe transport harateristis for the sequene AAAAGAAA, as the bottlenek of thesystem is the hopping to guanine on the inside of the DNA2. Astonishingly, by adding aseond guanine in the enter (AAAGGAAA, not shown), the seondary maxima vanishompletely, whereas the primary maxima remain unhanged. This indiates that theorrelations only introdue a new energy sale when a single isolated guanine is presentin the sequene. Nevertheless, the orrelations hange the transport harateristis, evenwhen no seondary maximum arises. A similar e�et is always seen when a single baseis surrounded by other bases with a di�erent onsite energy (not shown).For the sequene GAAAAAAG there are also two maxima at positive and negative bias,but for positive bias, the seond always seen, peak is strongly suppressed as ompared toAAAAGAAA. The positions of the primary peaks for GAAAAAAG agree well with thevalues for AAAAGAAA, but the positions of the seondary maxima learly di�er. Themain di�erene of GAAAAAAG to the other sequene is the dependene on the eletrodeoupling Γ. For smaller Γ the seondary maxima are strongly redued, broadened, andthe positions are shifted. This behavior is a lear indiation that these maxima arisefrom orrelations assoiated with the injetion onto the guanine base from the interfae(or the reverse proess). In ontrast, the seondary peaks for the sequene AAAAGAAAarise from orrelations assoiated with a hopping proess onto the guanine base in theenter of the sequene.If a ontrolled way to vary the oupling between DNA moleule and eletrode wereat hand, this e�et ould be easily studied experimentally. If indeed it was found, thatseondary maxima existed and were, depending on the sequene, either sensitive or insen-sitive to the eletrode oupling, then this ould be an indiation that the physis involvedin harge migration along DNA was similar to the one we desribed. It should also benoted, that by adding further guanine bases at the front and at the end of GAAAAAAG(GGAAAAGG) the seondary maxima vanish as an be seen in Fig. 6.7. As mentionedabove the same phenomena was found for AAAAGAAA.Correlation funtionTo further explain what happens when a new energy sale is introdued, we take a lookat the orrelation funtions ρij , to identify the voltage at whih the orrelations beomeimportant. In partiular, we disuss the relative orrelation ∆ρij , i. e. the quantity
∆ρij =

ρij − ρiρj

ρiρj
. (6.15)When orrelations are irrelevant ∆ρij = 0, but when orrelations exist ∆ρij is eitherpositive or negative. The in�uene of the orrelation funtion ρi,i+1 on the urrent is most2In real DNA there would be a ompeting proess, i. e. tunneling through the G between the surroundingA bases, whih is so far not onsidered in our model.72



6.2 Resultsimportant when the bases i and i + 1 have di�erent onsite energies. For equal energiesthe terms involving the orrelation funtions ρi,i+1 drop out of the rate equations for thesingle-partile density matrix (Eq. 6.13 and 6.14) as disussed above for homogeneoussequenes. In Figure 6.9 and 6.10 the harateristis of the orrelation funtions ∆ρijare displayed for the two sequenes AAAAGAAA and GAAAAAAG, respetively.In Fig. 6.9(a) the relative orrelations ∆ρ45 (AG) and ∆ρ56 (GA) are ompared withthe di�erential ondutane for the sequene AAAAGAAA. These orrelations are themost interesting as the single guanine base is at position 5 in the sequene. As indiatedby the dashed vertial lines, the orrelations set in at the same voltage Vb as the se-ondary maxima in the di�erential ondutane arise. It is therefore, reasonable to assumethat the seondary peak in the dI/dVb and the orrelations at this link are onneted.Figure 6.9(b) shows a omparison of ∆ρi,i+1 for all bases i of the sequene AAAAGAAAfor the two di�erent eletrode oupling strengths Γ = 0.01 eV and Γ = 0.001 eV at thetwo bias voltages Vb = −0.88V (top panel) and Vb = −0.68V (bottom panel). Thesevoltages agree with the seondary maxima (for both negative and positive bias voltage)in the di�erential ondutane shown in Fig. 6.8(a). As in Figure 6.8(a) for the dI/dVbthere is no di�erene between the orrelation funtions for the two eletrode ouplingstrengths.The transport bottleneks of the sequene AAAAGAAA are the transitions 4 → 5for positive and 6 → 5 for negative bias. The relative orrelations assoiated withthese transitions ∆ρ45 (∆ρ56) are negative for positive (negative) bias. For the sequeneAAAGGAAA, whih does not have a seondary maximum, the relative orrelations asso-iated with the respetive bottlenek transitions are zero. One ould therefore argue that
∆ρi,i+1 < 0 at bottleneks leads to seondary maxima in the di�erential ondutane.Unfortunately, for more ompliated sequenes this argument is too simple. For the se-quene AAAAGAAA, the `non-bottlenek' transition from guanine to adenine (5 → 6for positive and 5 → 4 for negative bias) lead to ∆ρi,i+1 > 0.For the sequene GAAAAAAG the dependene of the orrelation funtions on Γ isdi�erent. Figure 6.10(b) shows a omparison of ∆ρi,i+1 for all bases i of the sequeneGAAAAAAG for Γ = 0.01 eV and Γ = 0.001 eV. The two bias voltages Vb = −1.28V(top panel) and Vb = −1.00V (bottom panel) are hosen to agree with the seondarymaxima (for both negative and positive bias voltage) in the di�erential ondutaneshown in Fig. 6.8(b)3. The value of ∆ρ12 (∆ρ78) for negative (positive) bias voltagehanges strongly with Γ just as the seondary maxima of the di�erential ondutane(Fig. 6.8(b)). Again a strong relationship between orrelations and seondary maximain the di�erential ondutane is obvious.For positive bias the transport bottlenek of the DNA moleule is the hopping transitionfrom the adenine (base 7) to the guanine (base 8). For negative bias the bottlenek is thetransition from base 2 to base 1. As with the sequene AAAAGAAA, these bottleneksprodue negative relative orrelation (∆ρi,i+1 < 0). For all other sites i ∆ρi,i+1 = 0. InFig. 6.10(a) the relative orrelation ∆ρ12 and ∆ρ78 are ompared with the di�erential3Sine the position of the seondary maxima shift with Γ a value between the maxima for both ouplingsis hosen. 73



Chapter 6: Inoherent polaron hopping: Diagrammati approah
1

10
dI

/d
V

b (
pS

)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
V

b
 (V)

0

∆ρ
 (

lo
g.

 s
ca

le
)

∆ρ
45

∆ρ
56(a) top panel: Di�erential ondutane (log-arithmi sale) vs. bias voltage. bottompanel: orrelation funtions ∆ρ45 (red line)and ∆ρ56 (blue line) (logarithmi sale) vs.bias voltage (with Γ = 0.01 eV).

1 2 3 4 5 6 7
number of site i

-0.005

0

0.005

∆ρ
i,i

+
1

Γ=0.01eV
Γ=0.001eV

-0.05

0

0.05

0.1

∆ρ
i,i

+
1

V
b
=-0.88V

V
b
=0.68V

(b) orrelation funtion ∆ρi,i+1 with ele-trode oupling Γ = 0.01 eV (blak line) and
Γ = 0.001 eV (red line) for Vb = −0.88V(top panel) and Vb = 0.68V (bottom panel).Figure 6.9: Charateristis of DNA moleule with sequene AAAAGAAA. All parameters asin Fig. 6.7.ondutane for the sequene GAAAAAAG. The dashed vertial lines again indiate thatthe orrelations set in at the same voltage Vb as the seondary maxima in the di�erentialondutane arise (ompare to Fig. 6.9(a)).More ompliated sequenesSo far we have only disussed the in�uene of the orrelations on relatively simple DNAsequenes. For those systems, the onnetion between orrelations and urrent or dif-ferential ondutane is quite easily established. Nevertheless, the physial reason whyorrelations arise at a spei� bias voltage is not lear.For more ompliated sequenes the above disussed behavior holds also, i. e. when sin-gle guanine or adenine bases are present in the sequene an additional energy sale arise,whih is re�eted as a seondary maximum in the di�erential ondutane. Figure 6.11shows the harateristis of a DNA moleule with sequene GAATGAC, with single gua-nine (ytosine) at the ends and in the enter and a single adenine between a guanineand a ytosine. The shape of the di�erential ondutane urve (Fig. 6.11(a)) is similarto the one of AAAAGAAA. On the other hand, the fat that the seondary maximaderease strongly with the eletrode oupling Γ indiates that they arise from the or-relations at the eletrode interfaes. This is partly supported by the relative orrelation

∆ρi,i+1 shown in Fig. 6.11(b). The relative orrelations are shown for the voltages thatagree with the seondary maxima at negative and positive bias. For negative bias only
∆ρ12 6= 0, whih dereases with Γ. For positive bias ∆ρ67 < 0 but ∆ρ56 > 0, i. e. orre-lations between the guanine and adenine at positions 5 and 6 also seem to be relevantfor positive bias voltages at the seondary maximum. Nevertheless, both orrelationsderease with the oupling to the eletrodes. The in�uene of the orrelations ∆ρ56 isnot quite lear. At higher bias more orrelations arise (not shown), but a onnetion ofthese with the I-V ould so far not be established.74



6.2 Results
1

10
dI

/d
V

b (
pS

)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
V

b
 (V)

-1

-0.5

0

∆ρ

∆ρ
12

∆ρ
78(a) top panel: Di�erential ondutane (log-arithmi sale) vs. bias voltage. bottompanel: orrelation funtions ∆ρ12 (red line)and ∆ρ78 (blue line) vs. bias voltage (with

Γ = 0.01 eV).
1 2 3 4 5 6 7

number of site i

-0.4

-0.2

0

∆ρ
i,i

+
1

Γ=0.01eV
Γ=0.001eV

-1

-0.5

0

0.5

∆ρ
i,i

+
1

V
b
=-1.28V

V
b
=1.00V

(b) orrelation funtion ∆ρi,i+1 with ele-trode oupling Γ = 0.01 eV (blak line) and
Γ = 0.001 eV (red line) for Vb = −1.28V(top panel) and Vb = 1.00V (bottom panel).Figure 6.10: Charateristis of DNA moleule with sequene GAAAAAAG. All parametersas in Fig. 6.7.It an be summarized that the orrelations due to single guanine bases at the eletrodejuntions dominate the behavior of the seondary maxima with respet to Γ. Addi-tional single guanine (or adenine) bases in the enter of the sequene do not lead to Γindependent seondary maxima, as was observed for AAAAGAAA (Fig. 6.8(a)).6.2.2. Long-range vs. short-range orrelationIn the entire hapter we restrited our alulations to nearest-neighbor orrelations andignored orrelations between more distant base pairs. The inlusion of long-range orrela-tions to some degree hanges the I-V harateristis, but the essential physial e�ets arenot a�eted. Figure 6.12(a) shows the urrent and di�erential ondutane of the DNAsequene GAAAAAAG inluding and negleting long-range orrelations. The �rst stepat negative bias in the I-V harateristis is �attened out when long-range orrelationsare onsidered. This redues the primary maximum in the di�erential ondutane to ashoulder. The same happens to the seondary maximum at positive bias. For high biasvoltages the urrents inluding or negleting long-range orrelations are equal, showingthat at these voltages long-range orrelations are irrelevant.This interpretations is validated by Fig. 6.12(b), whih shows the (absolute value ofthe) relative orrelation |∆ρ1j | between the �rst and jth base as a funtion of j. Theblak line shows the distane dependene for a bias voltage Vb = −1.24 V, i. e. at theposition of the seondary maximum at negative bias. The relative orrelation dereaseexponentially with the distane � already for j = 3 the orrelations are one order ofmagnitude smaller than for j = 2. At a bias Vb = −0.56 V, where the di�erentialondutanes in Fig. 6.12(a) di�er the most, the relative orrelations derease far slowerbut still exponentially. Therefore, long-range orrelations at this bias voltage are moreimportant. Note that the data point for the eighth base di�ers from the exponential75



Chapter 6: Inoherent polaron hopping: Diagrammati approah

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
V

b
 (V)

1

10

dI
/d

V
b (

pS
)

(a) Di�erential ondutane vs. bias voltagefor ΓL/R = 0.01 eV (blak line) and ΓL/R =
0.001 eV (red line). 1 2 3 4 5 6

number of site i

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

∆ρ
i,i

+
1

Γ=0.01eV
Γ=0.001eV-0.5

0

0.5

∆ρ
i,i

+
1

V
b
=-1.00V

V
b
=0.88V

(b) orrelation funtion ∆ρi,i+1 with ele-trode oupling Γ = 0.01 eV (blak line) and
Γ = 0.001 eV (red line) for Vb = −1.00V(top panel) and Vb = 0.88V (bottom panel).Figure 6.11: Charateristis of DNA moleule with sequene GAATGAC. All parameters asin Fig. 6.7.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
V

b
 (V)

-30

-25

-20

-15

-10

-5

0

I 
(p

A
)

Long Corr
Short Corr

-2 -1.5 -1 -0.5 0 0.5 1 1.5
V

b
 (V)

0.1

1

10

dI
/d

V
b (

pS
)

(a) Current and di�erential ondutane asa funtion of applied bias. The blak linesshow the results when orrelation betweenall base pairs were inluded. The red linesshow the approximative result, where onlyorrelations between nearest neighbors wereonsidered.
2 3 4 5 6 7 8

number of second site j

1e-06

0.0001

0.01

1

lo
g(

|∆
ρ 1j

|)

V
b
=-1.28V

V
b
=-0.56V

(b) Relative orrelation between �rst and
jth base |∆ρ1j | (logarithmi sale) vs. j. Thebias voltage Vb = −1.24V and Vb = −0.56Vare hosen to agree with the position of the�rst and seond maximum at negative bias.Figure 6.12: Charateristis of DNA sequene GAAAAAAG inluding long-range orrelations.All parameters as in Fig. 6.7.

76



6.2 Results

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
V

b
 (V)

-12

-8

-4

0

4

I 
(p

A
)

Long Corr
Short Corr

-2 -1.5 -1 -0.5 0 0.5 1 1.5
V

b
 (V)

10

dI
/d

V
b (

pS
)

Figure 6.13: Current and di�erential ondutane as a funtion of applied bias for GAATGAC.The blak lines show the results when orrelation between all base pairs wereinluded. The red lines show the approximative result, where only orrelationsbetween nearest neighbors were onsidered. All parameters as in Fig. 6.7.behavior for both voltages as it is a guanine base, whereas the other six bases are adeninebases.To show that these arguments hold also for more ompliated DNA sequenes, Fig. 6.13depits the urrent and di�erential ondutane as a funtion of applied bias for the se-quene GAATGAC, whih we studied above. Here all primary and seondary maxima inthe di�erential ondutane are learly visible. The inlusion of long-range orrelationsslightly hanges the shape and height of these peaks in the di�erential ondutane, butfor high positive and negative voltages the urrent is again idential with the approxi-mation of nearest-neighbor orrelations.Non-loal eletron-vibration ouplingAs we have explained in the fourth hapter, non-loal or non-diagonal eletron vibrationoupling is also strong in DNA. Disregarding suh oupling may neglet some importantphysial e�ets. Consequently, it might be interesting to generalize our approah toinlude non-loal eletron vibration oupling. In the following we shortly sketh how thisould be done by extending the diagrammati approah desribed above.One would have to onsider the following non-loal eletron vibration oupling termas an addition to the perturbative Hamiltonian H̃ ′

∑

ij

λij a†
iχ

†
iajχj

(

Bi + B†
i + Bj + B†

j

)

. (6.16)The inlusion of this term into the diagrammati expansion is not straight forward.Firstly, a new kind of vertex with value ±iλijKiKje
−i(ǫi−ǫj)(ti−t2) is obtained. The fermionlines of the diagrams are not a�eted, but there are all kinds of new vibrational lines.These lines arise from operator produts of the kind

〈
χk(t1)χj
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)
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k(tn)

〉
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Chapter 6: Inoherent polaron hopping: Diagrammati approahwith (Bk(ti) + B†
k(ti)) at various positions in the produt. A losed formula whihdesribes the value of the vibrational lines is therefore not easily found (ompare toAppendix E).6.3. Summary and outlookIn this hapter we have developed a diagrammati approah to polaron transport in smallmoleules oupled to biased metalli eletrodes. This approah is based on a real-timeexpansion of the single-partile density matrix along the Keldysh ontour. It extendsa tehnique for polaron transport in bulk systems whih was developed by Böttger andBryskin. We have applied this tehnique to short DNA moleules with various sequenes.This diagrammati approah inludes e�ets arising from orrelations between the o-upations of di�erent base pairs, whih were not onsidered in the previous hapter.Correlations are only relevant for inhomogeneous DNA sequenes and, in general, theylead to a redution of the urrent. For sequenes whih inlude single isolated bases sur-rounded by bases with other onsite energies, a new energy sale arises. This new energysale stems from orrelations assoiated with the isolated base and leads to a seondarymaximum in the di�erential ondutane. Correlations assoiated with isolated basesin the enter of a sequene are insensitive to the oupling to the eletrodes, whereasorrelations assoiated with bases at the eletrode interfae are strongly redued for de-reased oupling to the eletrodes. A derease in the orrelations is aompanied by aredution of the seondary maxima in the di�erential ondutane. We have also shownthat orrelations between di�erent bases derease exponentially with the distane, i. e.orrelations between nearest-neighbors are the most important.There are some interesting e�ets assoiated with orrelations between di�erent basesin DNA moleules, but there remains an open question: What determines the spei�voltage, i. e. the energy sale, at whih the orrelations develop. Some simpler model hasto be found that allows more insight into the physial e�ets that govern suh orrelations.Furthermore, in real DNA there are other proesses, whih ompete with the nearest-neighbor hopping. These proesses are tunneling transitions between bases with equalonsite energies that are no further apart than two or three base pairs. The inlusion ofsuh proesses into our theoretial model would lead to a better understanding whihe�et tunneling has on hopping transport through DNA.
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7. ConlusionsIn this thesis we have studied eletroni transport through short DNAmoleules, stressingthe in�uene of base pair vibrations. Experiments and earlier theoretial investigationshave shown that vibrations are important in the eletroni transport through DNA, al-though there is still some ontroversy over the exat in�uene of vibrations. In partiular,the question whether polarons are formed in DNA is not onlusively answered, as onlysome experimental results favor the idea of polarons. Other experiments show relativelyhigh maximum urrents, whih agrees better with a (quasi)-oherent transport piture.Therefore, we have disussed transport through DNA in these two limits, by developingindependent theoretial methods to study these situations. In both these situations theDNA is desribed by a minimum tight-binding model, identifying eah base pair with onetight-binding site, with parameters taken from experiments and/or ab initio alulations.Firstly, we have investigated the quasi-oherent situation, where the oupling to vi-brations introdues inelasti ontributions to the urrent, but a partial oherene oftransport is onserved. We have developed an equation-of-motion (EOM) approah forthe single-partile Green funtion of the eletrons in the DNA, whih desribes vibra-tional e�ets arising from loal and non-loal eletron-vibration oupling. To desribethe limit of relatively strong eletron-vibration oupling we apply a unitary transforma-tion to the Hamiltonian, aneling the loal interation term. This proedure allows fora trunation of the series of higher-order Green funtions arising from the EOM. Thetrunation is physially justi�ed for small non-loal oupling. As we assume that thehemial potential of the DNA oupled to the eletrodes lies in the gap between highestoupied and lowest unoupied moleular orbital (HOMO and LUMO), DNA moleuleswill in general experiene `semionduting' I-V harateristis.We showed that homogeneous DNA sequenes have a band-like density of states withdistint eletroni resonanes due to �nite size. Additionally, vibrational satellites ariseenergetially above and below the orresponding eletroni resonane due to the loaleletron-vibration oupling. The distane of these vibrational satellites to the orre-sponding eletroni resonane agrees with integer multiples of the vibration energy, wheremore distant satellites have strongly redued spetral weights. Furthermore, the densityof states displays a strong asymmetry due to the non-loal eletron-vibration oupling,but, nevertheless, its e�et on the urrent is rather small. The transport through a ho-mogeneous DNA moleule is dominated by elasti quasi-ballisti ontributions. For �nitebias and room temperature, sattering of the eletrons with the vibrations dereases theurrent by about 30% as ompared to the vibrationless ase. On the other hand, theoupling to vibrations enhanes the zero-bias ondutane at low temperatures by severalorders of magnitude. The reason for this lies in the emergene of vibrational satellites inthe gap, whih have non-zero transmission.79



Chapter 7: ConlusionsAs inhomogeneous DNA sequenes experiene Anderson loalization, the density ofstates is highly fragmented. As for the homogeneous sequene, there are eletroni reso-nanes and vibrational satellites. For suh DNA moleules eletroni transport is almostentirely governed by inelasti proesses. That means that the energy to overome thepotential barriers in the DNA, assoiated with the inhomogeneous sequene, is providedby the base pair vibrations. We exemplary studied the sequene 5'-CAT TAA TGCTAT GCA GAA AAT CTT AG-3', whih I-V harateristis show distint steps as-soiated with the energies of either pure or hybridized states of guanine and adenine.This states an be identi�ed in the density of states at E − EF = −0.3 eV, -0.7 eV, and-0.95 eV. We ould show, that in ontrast to homogeneous DNA, the non-loal eletron-vibration oupling qualitatively modi�es the I-V harateristis for inhomogeneous DNAmoleules. In partiular, for our model sequene the transmission of the states around
E − EF = −0.7 eV was halved.Astonishingly, we found that the urrent through suh inhomogeneous DNA sequenesdepends non-monotonially on the eletrode-DNA oupling Γ. The urrent reahes amaximum value when Γ is about equal to the imaginary part of the vibrational self-energy Σvib ≈ 0.01 eV. This shows that it is not always better to maximize the ouplingof the DNA to the eletrodes and that a systemati (experimental) study of the ouplingis needed.Seondly, we studied the limit of inoherent polaron hopping transport through shortDNA moleules oupled to biased leads. The polarons are formed due to strong intera-tion between eletrons and base pair vibrations, whih are assumed to be independent ofthe vibrations of other base pairs. To desribe strong loal eletron-vibration oupling aunitary transformation is performed on the Hamiltonian, giving rise to new parametersfor a perturbative expansion. These are the hopping (tij/∆) and tunneling (tL/R

i /∆)strengths normalized by the polaron binding energy ∆, whih is ∆G = 0.47 eV and
∆A = 0.18 eV for guanine and adenine, respetively. To derive the urrent through suha system, we stated a set of rate equations for the oupation number of the variousDNA base pairs, with rates obtained from Golden Rule arguments. These rates take intoaount inelasti hopping transitions involving exitation or absorption of loal base pairvibrations.For all DNA moleules we observe semi-onduting I-V harateristis, whih are sym-metri for homogeneous and symmetri sequenes, but show retifying behavior for allnon-symmetri sequenes. The reason for this, lies in the fat that the `bottleneks' fortransport are hopping transitions, where a potential step has to be overome. Sine thesesteps are, in general, di�erent for positive or negative bias voltage they lead to di�erenturrents. We showed that the urrent thresholds are very sensitive to the onsideredsequene. For homogeneous sequenes they agree with the polaron shifted onsite energyof the orresponding base pairs, but for inhomogeneous sequenes the thresholds arenot diretly related to intrinsi energy sales. For suh DNA moleules the non-trivialharge rearrangement at �nite bias determine the exat position of the threshold, whihis somewhere in between the limits set by the onsite energies of guanine and adenine.The shape of the thresholds di�ers from the Fermi funtion form. This hange in shape isthe most prominent for the sequene `GAAAAAAG' with only single guanine base pairsat both ends, whih shows a very broad peak, whereas for other sequenes, omprising80



more than a single guanine at the ends, the thresholds are only slightly broadened. Thee�et of harge rearrangements is visualized by displaying the loal hemial potential
Φi, whih illustrates how the applied bias voltage `drops' over the entire DNA moleule.As expeted most of the voltage drops at the juntions to the eletrodes and at the`bottleneks' of the sequene.We show that the urrent for a homogeneous DNA moleule is thermally ativated witha temperature dependene following an Arrhenius-law, whih is expeted for polaronhopping transport. This result agrees well with some reent experiments. The obtainedativation energy Ea depends on the applied bias voltage and approahes the bulk polaronvalue Ea = ∆/2 for voltages above the threshold.In the third part of this thesis we have developed a general approah to polaron trans-port through mesosopi systems oupled to biased eletrodes, whih is not restrited toDNA. The approah is based on a diagrammati real-time expansion of the single partiledensity matrix along the Keldysh ontour. The onsideration of non-diagonal elementsof the single-partile density matrix allows the inlusion of oherene e�ets in the de-sription of polaron hopping. Furthermore, by nature of the diagrammati expansion,divergenes assoiated with resonant tunneling, whih where negleted in the previouspart by phenomenologial arguments, do not our. Instead, the possibility of resonanttunneling gives rise to orrelation e�ets between oupations of di�erent sites.We apply this approah to polaron hopping transport through DNA. In the limit ofstrong eletron-vibration oupling and high temperature oherene e�ets an be ne-gleted and we onsider only the diagonal elements of the single partile density matrix.In ontrast to the previous part, we now onsider orrelations between the oupation ofdi�erent sites and study when suh orrelations our and whih hanges they promotein the transport harateristis. We showed that these orrelations only a�et inhomo-geneous DNA sequenes and, in general, lead to a redution of the urrent of up to oneorder of magnitude for high voltages. Most importantly, for some DNA sequenes theyan introdue a new energy sale, whih manifests itself as an additional peak in thedi�erential ondutane. This new energy sale arises from orrelations assoiated withDNA bases in a sequene that are surrounded by bases with other onsite energies, e. g.the guanine in AAAAGAAA. At bias voltages where these relative orrelations (Eq. 6.15)start to di�er strongly from zero, the seondary maxima arise in the di�erential ondu-tane. These seondary peaks arise at voltage above the primary urrent threshold, buttheir exat position strongly depends on the onsidered DNA sequene.We �nd that orrelations whih are assoiated with isolated bases at the eletrodeinterfae (e. g. GAAAAAAG) strongly depend on the eletrode oupling strength Γ.For dereased oupling the orrelations and also the assoiated seondary peaks in thedi�erential ondutane are strongly redued. On the other hand, orrelations assoiatedwith isolated bases in the enter of a sequene (e. g. AAAAGAAA) are insensitive tothe eletrode oupling and onsequently also the seondary maxima do not vary. Thisbehavior hanges, if additional to the isolated base in the enter there are isolated basesat the eletrode juntions (e. g. GAATGAC). In suh a ase the orrelations assoiatedwith the base in the enter are also redued when the eletrode oupling is dereased.We have also shown that orrelations between nearest-neighbors are the most important,as the orrelations derease exponentially with the distane. 81



Chapter 7: ConlusionsInelasti e�ets are important to transport in DNA and an lead to di�erent behavior,depending on the strength and nature of the oupling between eletroni and vibrationaldegrees of freedom. Hopefully this work will help to interpret the results of eletronitransport experiments with short DNA moleules and lead to a deeper understanding ofthe physis involved.
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Appendix A. Useful relationsA.1. Green funtionsThe various Green funtions are de�ned by
G>

kl(t, t
′) = − i

〈

ak(t)a
†
l (t

′)
〉 (A.1)

G<
kl(t, t

′) =i
〈

a†
l (t

′)ak(t)
〉 (A.2)

Gret
kl (t, t′) = − iθ(t − t′)

〈{

ak(t), a
†
l (t

′)
}〉 (A.3)

=θ(t − t′) (G>
kl(t, t

′) − G<
kl(t, t

′)) (A.4)
Gadv

kl (t, t′) =iθ(t′ − t)
〈{

ak(t), a
†
l (t

′)
}〉 (A.5)

=θ(t′ − t) (G<
kl(t, t

′) − G>
kl(t, t

′)) , (A.6)where only three of the four Green funtions de�ned above are independent. The fourthGreen funtion is given by the relations
G>

kl(t, t
′) − G<

kl(t, t
′) =Gret

kl (t, t′) − Gadv
kl (t, t′) (A.7)

G>
kl(E) − G<

kl(E) =Gret
kl (E) − Gadv

kl (E) . (A.8)The retarded Green funtions follows the Dyson equation given by
Gret(E) =

[(
Gret

0 (E)
)−1

− Σret(E)
]−1

, with (A.9)
Gret

0 (E) =
[
E − H + i0+

]−1
, (A.10)where H is the Hamiltonian of the system.The lesser Green an be alulated from the retarded and advaned Green funtionsand the respetive self-energies by the kineti equation

G<(E) = Gret(E) [Σ<(E)] Gadv(E) , (A.11)where for the last three equations the Green funtions where assumed to be matries inthe site indies k, l.The omplex onjugate of the Green funtions read
[

G
>/<
kl (t, t′)

]∗

= −G
>/<
lk (t′, t) and [

G
>/<
kl (E)

]∗

= −G
>/<
lk (E) (A.12)

[
Gret

kl (t, t′)
]∗

= Gadv
lk (t′, t) and [

Gret
kl (E)

]∗
= Gadv

lk (E) . (A.13)In equilibrium the �utuation-dissipation relation is valid
G>

kl(E) = (1 − f(E))
(
Gret

kl (E) − Gadv
kl (E)

) (A.14)
G<

kl(E) = − f(E)
(
Gret

kl (E) − Gadv
kl (E)

)
. (A.15)83



Appendix A: Useful relationsA.2. Langreth rulesLet us onsider some ontour ordered Green funtions (A, B, C, and D) whih areevaluated at spei� times τi on the Keldysh ontour [94, 124℄. The assoiated real-time Green funtions (lesser, retarded . . . ) of produts and onvolutions of these ontourordered Green funtions are found from the Langreth rules.For easier readability we do not expliitly write out the time arguments for onvolutionswith respet to time. That implies for a onvolution on the ontour C =
∫

C
AB →

C(τ, τ ′) =
∫

C
dτ1A(τ, τ1)B(τ1, τ

′) and similar for a onvolution on the real-time axis.Contour Real-time axis
C =

∫

C

AB C< =

∫

t

[
AretB< + A<Badv

]

Cret =

∫

t

AretBret

D =

∫

C

ABC D< =

∫

t

[
AretBretC< + AretB<Cadv + A<BadvCadv

]

Dret =

∫

t

AretBretCret

C(τ, τ ′) = A(τ, τ ′)B(τ, τ ′) C<(t, t′) = A<(t, t′)B<(t, t′)

Cret(t, t′) = A<(t, t′)Bret(t, t′) + Aret(t, t′)B<(t, t′)

+Aret(t, t′)Bret(t, t′)

C(τ, τ ′) = A(τ, τ ′)B(τ ′, τ) C<(t, t′) = A<(t, t′)B>(t′, t)

Cret(t, t′) = A<(t, t′)Badv(t′, t) + Aret(t, t′)B<(t′, t)The above expressions are taken from [124℄.
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Appendix B. Boson orrelatorB.1. Commutation relation with the HamiltonianWe want to alulate the ommutator [H̃, χ], where the only relevant parts of the Hamil-tonian (Eq. 4.3) are the ones inluding vibrational operators Bα, sine χ ommutes withall fermion operators and with itself ([χ, χ] = [χ†, χ] = 0). Using the Feynman rule fordisentangling of operators
eA+B = eAeBe−

1
2
[A,B] if [A, [A, B]] = [B, [A, B]] = 0we an write

χ = exp

[
∑

α

(
λ0

ωα
Bα −

λ0

ωα
B†

α

)]

=
∏

α

exp

[
λ0

ωα

Bα −
λ0

ωα

B†
α

]

=
∏

α

exp

[
λ0

ωα

Bα

]

︸ ︷︷ ︸

Iα

exp

[

−
λ0

ωα

B†
α

]

︸ ︷︷ ︸

Jα

exp

[

−
λ2

0

2ω2
α

]

︸ ︷︷ ︸

Kα

.We now perform the ommutation
[

H̃, χ
]

=
∑

α

∏

α′ 6=α

Iα′Jα′Kα′ ·
[

H̃, IαJαKα

]

=
∑

α

∏

α′ 6=α

Iα′Jα′Kα′ ·
{[

H̃, Iα

]

JαKα + Iα

[

H̃, Jα

]

Kα

}

,sine [Iα′Jα′Kα′ ,
[

H̃, IαJαKα

]]

= 0 for α′ 6= α.Let us look at the two remaining ommutators separately.(1)
[

H̃, Iα

]

=
∑

n

1

n!

(
λ0

ωα

)n

[H̃, Bn
α]

=
∑

n

n

n!

(
λ0

ωα

)n

[H̃, Bα] Bn−1
α sine [Bα, [H̃, Bα]] = 0 .85



Appendix B: Boson orrelatorUsing
[

H̃, Bα

]

= −ωαBα −
∑

<ij>

λ1 a†
iaj and

[

H̃, Bn
α

]

= 0 for n=0 ,we obtain
[

H̃, Iα

]

=
∞∑

n=1

1

(n − 1)!
Bn−1

α

(
λ0

ωα
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[
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ωα
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−ωαBα −
∑
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iaj

}]

= Iα
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∑
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.(2)
[

H̃, Jα

]

=
∑
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1
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(
−λ0

ωα

)n

[H̃, B†n
α ]

=
∑
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n

n!

−λ0
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n

[H̃, B†
α] B†(n−1)

α sine [B†
α, [H̃, B†

α]] = 0 .Using
[

H̃, B†
α

]

= ωαB†
α +

∑

<ij>

λ1 a†
iaj and

[
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α

]
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=
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∑
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.Combining everything, we get
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Iα′Jα′Kα′ ·

{[

−λ0Bα −
∑

<ij>

λ0λ1

ωα
a†

iaj

]
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B.2 Expliit expressions for higher order orrelatorsB.2. Expliit expressions for higher order orrelatorsExpliitely, for the di�erent orrelators in the equation for G
(1)
kl (t) we have

〈

aj(t)Bα(t)χ(t)a†
l χ

†
〉

≈ −
λα

ωα
(N(ωα) + 1)(1 − e−iωαt)

〈
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l χ

†
〉

〈
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†
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l χ
†
〉

≈
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〈
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l χ

†
〉

〈
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l χ
†
〉
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(
1 + N(ωα)(1 − eiωαt)

) 〈
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l χ

†
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(2)
kl (t)

〈

a†
l χ

†aj(t)B(t)χ(t)
〉

≈ −
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ωα

(
1 + N(ωα)(1 − e−iωαt)

) 〈
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l χ

†aj(t)χ(t)
〉
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l χ
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〉

〈
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l χ
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≈
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ωα

[
(N(ωα) + 1)(1 − eiωαt) − 1

] 〈

a†
l χ

†aj(t)χ(t)
〉

.In the next setion the derivation of the �rst line in the above formulas, is shortlyskethed.Calulation of the higher order boson orrelatorsHere we sketh the approximation taken to trunate the hierarhy at the �rst leveland how the expressions listed above are alulated. The approximation we take is thefollowing
〈

aj(t)Bα(t)χ(t)a†
l χ

†
〉

H̃
≈ Fα(t)

〈

aj(t)χ(t)a†
l χ

†
〉

H̃
. (B.1)The funtion Fα(t) is obtained by onsidering a Hamiltonian H̃0 equivalent to H̃ ,but without eletron-vibration oupling terms and alulating the same higher orderorrelation funtion 〈aj(t)Bα(t)χ(t)a†

l χ
†
〉

H̃0

, where now the average is taken with respetto H̃0. Then the eletroni and vibrational orrelators fatorize,
〈

aj(t)Bα(t)χ(t)a†
l χ

†
〉

H̃0

=
〈

aj(t)a
†
l

〉

H̃el
0

〈
Bα(t)χ(t)χ†

〉

H̃vib
0

, (B.2)where H̃el
0 and H̃vib

0 are the eletroni and vibrational parts of H̃0.After some straight-forward algebra (see below) we obtain
〈
Bα(t)χ(t)χ†

〉

H̃vib
0

= Fα(t)
〈
χ(t)χ†

〉

H̃vib
0and onsequently
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l χ

†
〉

H̃0

= Fα(t)
〈
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l χ

†
〉
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Appendix B: Boson orrelatorSo, we want to �nd an expression for the orrelator 〈Bα(t)χ(t)χ†
〉

H̃vib
0
, where H̃vib

0 =
∑

α ωαB†
αBα. For this ase the time-evolution for the boson operators beome trivial

Bα(t) = Bαe−iωαt. This derivation proeeds, using ideas from [76℄. First we rewrite theorrelator and divide it into two parts.
〈
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〉
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.Now we look at Ia, where we expliitly write the density matrix ̺vib = exp
[

− β~ωαnα

]and the sum over all quantum mehanial states |nα >, i. e. the oupation numbers ofvibrational mode α,
< Ia > =
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[
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].Applying the Feynman rule for disentangling of operators (see previous setion), we anrewrite
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.using the ommutator relationship
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,the above expression beomes
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B.2 Expliit expressions for higher order orrelators
Ia now reads

Ia = Bα(t) exp
[λα

ωα
(Bα(t) − B†
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.We want to move all term ontaining B† to the left. For that we need the relation
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+ . . . .De�ning u = λα
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.We an now write an expression for < Ia >, that we an use to alulate the expliitresult,
< Ia >

= −
λα

ωα
(1 − e−iωαt)F (t)

+
K(t)

Z

∞∑

nα=0

exp
[

− β~ωαnα

]

< nα| exp
[

u B†
α

]

Bαe−iωαt exp
[

− u∗ Bα

]

|nα >

︸ ︷︷ ︸

Ib

.To alulate Ib, we state the following rules, when ating with the boson operators onthe states,
< nα|e

u B†
α =

nα∑

m=0

um

m!

[ nα!

(nα − m)!

] 1
2

< nα − m|

Bαe−iωαte−u∗ Bα|nα > =

nα−1∑

l=0

(−u∗)l

l!

[ nα!

(nα − l − 1)!

] 1
2
e−iωαt|nα − l − 1 >

< nα − m|nα − l − 1 > = δm,l+1 . 89



Appendix B: Boson orrelatorUsing these, the expression in brakets of Ib reads
< nα|e

u B†
αBαe−iωαte−u∗ Bα |nα >=

nα∑

m=0

um

m!

[ nα!

(nα − m)!

] 1
2

nα−1∑

l=0

(−u∗)l

l!

[ nα!

(nα − l − 1)!

] 1
2
e−iωαtδm,l+1 .Performing the sum over l we end up with

< nα|e
u B†

αBαe−iωαte−u∗ Bα |nα > =

nα∑

m=1

um

m!

nα!

(n − m)!

(−u∗)m−1

(m − 1)!
e−iωαt

=

nα∑

m=1

(−|u|2)(m−1)

[(m − 1)!]2
nα!

(nα − m)!
·

u

m
e−iωαt .Together with Z =

∑∞
nα=0 exp

[

− β~ωαnα

]

=
[
1 − e−β~ωα

]−1, this makes
Ib = (1 − e−β~ωα)

∞∑

nα=1

e−β~ωαnα

nα∑

m=1

(−|u|2)(m−1)

[(m − 1)!]2
nα!

(n − m)!
·

u

m
e−iωαt .Using the variable transform l = nα − 1 and k = m − 1, Ib beomes

Ib = K(t) (1 − e−β~ωα)

∞∑

l=0

e−β~ωα(l+1)

l∑

k=0

(−|u|2)k

(k!)2

(l + 1)!

(l − k)!
·

u

k + 1
e−iωαt

= K(t) (1 − e−β~ωα)e−β~ωα u e−iωαt

∞∑

l=0

l∑

k=0

e−β~ωαl (−|u|2)k

(k!)2

(l + 1)!

(l − k)!
·

1

k + 1

= K(t) (1 − e−β~ωα)e−β~ωα u e−iωαt

∞∑

l=0

∞∑

k=0

e−β~ωα(l+k) (l + k + 1)!

(l!)2(k)!
(−|u|2)l ·

1

l + 1
,where in the last step we set the upper limit of k to in�nity, together with hanging theaordant values in the formula, whih is not straight forward, but an be heked byexpliit omparison between the terms from the seond and third line. Using the identityfor the faulty (l + k + 1)! =

∫∞

0
dxxl+k+1 e−x, we obtain

Ib = K(t) (1 − e−β~ωα)e−β~ωα u e−iωαt

×

∞∑

l=0

e−β~ωαl (−|u|2)l

(l!)2(l + 1)

∫ ∞

0

dx

∞∑

k=0

xl+k+1 e−xe−β~ωαk 1

k!
︸ ︷︷ ︸

Ic

.The expression Ic an be omputed to90



B.3 Detailed balane relation
Ic =

∫ ∞

0

dx xl+1e−x
∞∑

k=0

xk e−β~ωαk 1

k!

=

∫ ∞

0

dx xl+1e−x(1−exp[−β~ωα])

= (1 − e−β~ωα)−(l+1)

∫ ∞

0

dx [x(1 − e−β~ωα)]l+1e−x(1−exp[−β~ωα]) .Using y = x(1 − e−β~ωα) and dy = dx(1 − e−β~ωα) →

Ic = (1 − e−β~ωα)−(l+2)

∫ ∞

0

dy yl+1e−y

= (1 − e−β~ωα)−(l+2)(l + 1)! .Consequently, we get
Ib =

e−β~ωα

(1 − e−β~ωα)
u e−iωαt × K(t)

∞∑

l=0

e−β~ωαl

(1 − e−β~ωα)l

(−|u|2)l

l!
︸ ︷︷ ︸

Fα(t)

= N(ωα) u e−iωαt
Fα(t) .Putting it all bak together, we �nally get

〈
Bα(t)χ(t)χ†

〉
≈ −

λα

ωα
(N(ωα) + 1)(1 − e−iωαt)

〈
χ(t)χ†

〉
.The other orrelators are alulated similarly.B.3. Detailed balane relationusing the following representation for the boson orrelator:

〈
χ(t)χ†

〉
= exp

{

−
∑

α

(
λ0

ωα

)2
cosh (ωαβ/2) − cos (ωα [t + iβ/2])

sinh (ωαβ/2)

} (B.3)
〈
χ†χ(t)

〉
= exp

{

−
∑

α

(
λ0

ωα

)2
cosh (ωαβ/2) − cos (ωα [t − iβ/2])

sinh (ωαβ/2)

} (B.4)(B.5)It is easy to show that P (E) follows the details balane relation P (−E) = e−βEP (E),where
P (E) =

∫

dteiEt
〈
χ(t)χ†

〉 (B.6)
P (−E) =

∫

dteiEt
〈
χ†χ(t)

〉 (B.7)
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Appendix B: Boson orrelatorWe verify this by writing the inverse Fourier transform for P (−E) and e−βEP (E):
∫

dE

2π
e−iEtP (−E) =

〈
χ†χ(t)

〉 (B.8)
∫

dE

2π
e−iE(t−iβ)P (E) (B.9)

= exp

{

−
∑

α

(
λ0

ωα

)2
cosh (ωαβ/2) − cos (ωα [t − iβ + iβ/2])

sinh (ωαβ/2)

} (B.10)
= exp

{

−
∑

α

(
λ0

ωα

)2
cosh (ωαβ/2) − cos (ωα [t − iβ/2])

sinh (ωαβ/2)

} (B.11)
=
〈
χ†χ(t)

〉 (B.12)Sine the �rst and last line are idential, also the details balane relation is true.
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Appendix C. Eletrode self-energyWe de�ne G1
νlr(t) = −iθ(t)

〈

cr
ν(t)a

†
l χ

†
〉 and G2

νlr(t) = −iθ(t)
〈

a†
l χ

†cr
ν(t)
〉 and alulatethe aording EOMs with the Hamiltonian from Eq. 4.4.

(

i
d

dt
− ǫν

)

︸ ︷︷ ︸

[gret(t)]−1

G1
νlr(t) = δ(t)

〈

cr
νa

†
l χ

†
〉

+
∑

j

trj

[

−iθ(t)
〈

aj(t)χ(t)a†
l χ

†
〉]

︸ ︷︷ ︸

G1
jl

(t)

(

i
d

dt
− ǫν

)

︸ ︷︷ ︸

[gret(t)]−1

G2
νlr(t) = δ(t)

〈

a†
l χ

†cr
ν

〉

+
∑

j

trj

[

−iθ(t)
〈

a†
l χ

†aj(t)χ(t)
〉]

︸ ︷︷ ︸

G2
jl

(t)

↓

G1
νlr(t) = gret

νr (t)
〈

cr
νa

†
l χ

†
〉

+

∫

dt′
∑

j

trjg
ret
νr (t − t′)G1

jl(t
′)

G2
νlr(t) = gret

νr (t)
〈

a†
l χ

†cr
ν

〉

+

∫

dt′
∑

j

trjg
ret
νr (t − t′)G2

jl(t
′)where trj is the oupling of the left, r = L (right, r = R) eletrode to the �rst, j = 1(last, j = N) base pair and gret

νr (E) = is the non-interating retarded green funtions ofthe left or right eletrode. For the wide band limit, this simpli�es to gret
νr (E) = −i2πρr

e.The so far unspei�ed equal time orrelator of the �rst equation reads
〈

cr
νa

†
l χ

†
〉

= −

∫
dE

2πi

∑

i

tri
[
gret

νr (E) G>
il (E) + g>

νr(E) Gadv
il (E)

]
. (C.1)The seond unspei�ed orrelator has the same magnitude, but with opposite sign, sinethe relation

〈

cr
na

†
l χ

†
〉

+
〈

a†
l χ

†cr
n

〉

=
〈{

cr
n, a

†
l

}

χ†
〉

= 0 (C.2)holds. As one an see from Eq. C.1 this would lead to a oupling between G1(t) and
G2(t) to other Green funtions. To have fully deoupled equations, we set both or-relators 〈cr

na
†
l χ

†
〉 and 〈a†

l χ
†cr

n

〉 to zero. This approximation is reasonable, sine theirontribution to Eq. 4.6 and 4.7 is small, at most of the order of Γr and adding G1(t) and
G2(t) in the end results in their anellation aording to Eq. C.2. The validity of thisapproximation has been heked numerially.
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Appendix D. Non-equilibriumEquation of motionIn ontrast to the method desribed in Chapter 4 for determining the transport propertiesof the moleular system, where the lesser self-energy was approximated by an e�etiveFermi funtion, we now want alulate the full non-equilibrium transport of the system.The vibration oupation an still be desribed by the equilibrium Bose-funtion, sinethe oupling to the bath relaxes the vibration fast enough into equilibrium.In non-equilibrium the distribution-funtion (G<) and the density of states (Gret)are independent of eah other. In ontrast, the �utuation-dissipation relation linksthese two in equilibrium. To alulate the non-equilibrium properties of the system wealulate the equation of motion for the ontour ordered Green funtion Gkl(τ, τ
′) =

−i
〈

TCak(τ)χ(τ)a†
l (τ

′)χ†(τ ′)
〉 For this we split the Hamiltonian (Eq. 4.3) into a partdesribing the unoupled system and a part desribing the rest, H̄ = H̄0 + H̄1, with

H̄0 =
∑

i

(ǫi − ∆)a†
iai −

∑

<ij>

tija
†
iaj

H̄1 =
∑

n,r,i

[

trinc
†
nraiχ + tr∗ina†

iχ
†cnr

]

+ H̄R + H̄L

+
∑

α

ωαB†
αBα +

∑

α

∑

<ij>

λij a†
iaj(Bα + B†

α) . (D.1)The equation of motion (EOM) then reads
∑

j

[(

i
d

dτ
− ǫk + ∆

)

δkj + tkj

]

︸ ︷︷ ︸

[G0
jl]

−1

Gjl(τ, τ
′) =δ(τ − τ ′)δkl

−i
〈

TC

[
ak(τ)χ(τ), H̄1

]
a†

l (τ
′)χ†(τ ′)

〉

︸ ︷︷ ︸

<<[akχ,H̄1]a†
l
χ†>>(τ−τ ′)

.(D.2)After rearranging we obtain
Gkl(τ, τ

′) =G0
kl(τ, τ

′) +
∑

j

∫

dτ1G
0
kj(τ, τ1) <<

[
ajχ, H̄1

]
a†

l χ
† >>(τ1−τ ′) . (D.3)
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Appendix D: Non-equilibrium Equation of motionApplying the Langreth rules we get for the retarded/advaned and lesser/greater Greenfuntion in real time
Gret

kl (t, t′) =Gret,0
kl (t, t′) +

∑

j

∫

dt1G
ret,0
kj (t, t1) <<

[
ajχ, H̄1

]
a†

l χ
† >>ret

(t1−t′) (D.4)
Gadv

kl (t, t′) =Gadv,0
kl (t, t′) +

∑

j

∫

dt1G
adv,0
kj (t, t1) <<

[
ajχ, H̄1

]
a†

l χ
† >>adv

(t1−t′) (D.5)
G

>/<
kl (t, t′) =G

>/<,0
kl (t, t′) +

∑

j

∫

dt1G
ret,0
kj (t, t1) <<

[
ajχ, H̄1

]
a†

l χ
† >>

>/<
(t1−t′)

+
∑

j

∫

dt1G
>/<,0
kj (t, t1) <<

[
ajχ, H̄1

]
a†

l χ
† >>adv

(t1−t′) (D.6)or in energy spae
Gret

kl (E) =Gret,0
kl (E) +

∑

j

Gret,0
kj (E) <<

[
ajχ, H̄1

]
a†

l χ
† >>ret

E (D.7)
Gadv

kl (E) =Gadv,0
kl (E) +

∑

j

Gadv,0
kj (E) <<

[
ajχ, H̄1

]
a†

l χ
† >>adv

E (D.8)
G

>/<
kl (E) =G

>/<,0
kl (E) +

∑

j

Gret,0
kj (E) <<

[
ajχ, H̄1

]
a†

l χ
† >>

>/<
E

+
∑

j

G
>/<,0
kj (E) <<

[
ajχ, H̄1

]
a†

l χ
† >>adv

E . (D.9)This is equivalent to the result obtained by the far more ompliated method of Niuet al [125℄. Using the Eq. (D.8) one an rewrite Eq. (D.9) to (in matrix notation)
G>/<(E) =G>/<,0(E)

[[
Gadv,0(E)

]−1
Gadv(E)

]

+ Gret,0(E) <<
[
aχ, H̄1

]
a†χ† >>

>/<
E . (D.10)The Green funtion <<

[
ajχ, H̄1

]
a†

l χ
† >>

ret/adv
E depends on G>(E) and G<(E).Therefore we have a set of oupled equations whih have to be solved self-onsistently.The Green funtion onsisting of the ommutator with H̄1 desribe the interation withthe leads, the non-loal eletron-vibration oupling and the in�uene of the strong loaleletron-vibration oupling.The ommutator with the eletrode-system Hamiltonian H̄T,L and H̄T,R give rise to

<<
[
ajχ, H̄T,L/R

]
a†

l χ
† >>ret

t = − iθ(t)

〈
{

cL/R
n (t), a†

l χ
†
l

}

χ†(t)χ(t)
︸ ︷︷ ︸

=1

〉 (D.11)
<<

[
ajχ, H̄T,L/R

]
a†

l χ
† >><

t = i

〈

a†
l χ

†cL/R
n (t) χ†(t)χ(t)

︸ ︷︷ ︸

=1

〉

, (D.12)respetively.96



To obtain the retarded self-energy due to the eletrodes we alulate the EOM forEq. (D.11). We de�ne Gret
nlr(t) = −iθ(t)

〈{

cr
n(t), a†

l χ
†
l

}〉 with r =L/R and then weompute the equation of motion for Gret
nlr(t)

i
∂

∂t
Gret

nlr(t) = δ(t)
〈{

cr
n, a†

l χ
†
}〉

︸ ︷︷ ︸

=0

+ǫnG
ret
nlr(t)

+
∑

j

trnj

[

−iθ(t)
〈

aj(t)χ(t)a†
l χ

†
〉

− iθ(t)
〈

a†
l χ

†aj(t)χ(t)
〉]

︸ ︷︷ ︸

Gret
jl

(t)

.After fourier transformation from time to energy-domain, we obtain
E Gret

nlr(E) = ǫnG
ret
nlr(E) +

∑

j

trnj Gret
jl (E)

→ Gret
nlr(E) = gret

nr (E)
∑

i

trnj Gret
jl (E) ,where gret

nr (E) is the retarded Green funtion of eletrode r = R/L.With this, the retarded eletrode self-energy beomes
Σret,r

jk =

[
∑

n

tr∗nkg
ret
nr (E)trnj

]

= −iΓr
kj . (D.13)The last equality arises in the so alled wide-band limit, where the density of states inthe eletrodes is assumed to be onstant.To solve Eq. (D.12) we alulate the EOM for G<

nlr(t) = i
〈

a†
l χ

†cr
n(t)

〉. In analogy tothe non-equilibrium derivation in the book of Haug and Jauho [124℄ (pages 162,163) weget
G<

nlr(E) =
∑

i

trni

[
gret

nr (E) G<
il (E) + g<

nr(E) Gadv
il (E)

]
,where we an identify the lesser self-energy due to oupling to left (r = L) or right(r = R) lead.

Σ<,r
jk =

∑

n

tr∗nkg
<
nr(E)trnj = if(E)2Γr

kjNote, that we used the full oupling to leads, i. e. inluding the χ-terms in H̄T,L and
HT,R.In the EOM we enounter the same types of terms whih arose in the EOM in setionbefore, e. g. 〈ak(t)Bα(t)χ(t)a†

l χ
†
〉. We treat these in the same manner, as in the previoussetion, see Eq. (4.8) and following. E�etively this is equivalent to fatorizing the97



Appendix D: Non-equilibrium Equation of motioneletroni and vibrational degrees if freedom. Is this? This is the only approximationin this theory.With these approximations the retarded and lesser orrelators read
<< [ak(t)χ(t), H1], a

†
l χ

† >>ret (E) =
∑

j

ΛkjG
ret
jl (E)

+
∑

j 6=k

λkjλ0

[
F1(G

>r
jl )(E) + F2(G

<r
jl )(E)

]

+ λ2
0 [F1(G

>r
kl )(E) + F2(G

<r
kl )(E)] (D.14)and

<< a†
l χ

†[ak(t)χ(t), H1] >>< (E) =
∑

j

ΛkjG
<
jl(E) +

∑

j

Σ<
kjG

adv
jl (E)

+
∑

j 6=k

λkjλ0F2

(
G<

jl

)
(E)

+ λ2
0F2 (G<

kl) (E) , (D.15)with the funtionals F1(G
ν
kl)(E) and F2(G

ν
kl)(E), that desribe the strong interationwith the loal vibrations

F1(G
ν
kl)(E) =

∫

dteiEt

∫

dω
D(ω)

ω

[
(N(ω) + 1) e−iωt − N(ω)eiωt

]
Gν

kl(t)

=

∫

dω
D(ω)

ω
[(N(ω) + 1)Gν

kl(E − ω) − N(ω)Gν
kl(E + ω)] (D.16)

F2(G
ν
kl)(E) =

∫

dteiEt

∫

dω
D(ω)

ω

[
N(ω)e−iωt − (N(ω) + 1) eiωt

]
Gν

kl(t)

=

∫

dω
D(ω)

ω
[N(ω)Gν

kl(E − ω) − (N(ω) + 1)Gν
kl(E + ω)] (D.17)and the de�nition

Λkj = − ∆δkj + Σret
kj +

∫

dω
D(ω)

ω

[

2
∑

i6=j

〈

aka
†
i

〉

λijλ0

− 2
∑

<ij′>

〈

aj′a
†
i

〉

λij′λ0δkj −
∑

j 6=k

λkjλ0

]

.The unommon Green funtions in Eq. (D.14) are G>r
kl (t) = θ(t)G>

kl(t) and G<r
kl (t) =

−θ(t)G<
kl(t). The variable ν in Eq. (D.16) and Eq. (D.17) stands for the various Greenfuntions in Keldysh spae.Inserting Eq. (D.14) and Eq. (D.15) into the EOM formulas (Eq. (D.7) and Eq. (D.10)respetively) and omparing the result for the lesser Green funtion (Eq. (D.10)) withthe general relation

G<(E) = G<
0 (E) + Gret

0 (E)Σret(E)Gadv(E)

+Gret
0 (E)Σ<(E)Gadv(E) + G<

0 (E)ΣadvGadv(E) ,98



we an identify
F2(G

<)(E) = Σret
vib(E)G<(E) + Σ<

vib(E)Gadv(E) . (D.18)For Gret and G< self-onsisteny equations have to be solved numerially. The otherGreen funtions an be derived from the relations given in App. A. The drawbak isthat the urrent omputed by the Meir and Wingreen formula (Eq. 3.3) is not onserved,i. e. IL 6= IR. This unphysial result is due to the approximation in alulating the bosonorrelators. Other authors using similar approahes, but without non-loal eletron-vibration oupling, do not omment on this problem although they should experiene itas well [96, 115℄.
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Appendix E. Vibrational operatorprodutsIn the perturbation expansion of the single partile density matrix ρl
k(t) =

〈

a†
k(t)al(t)

〉

H̃to order n in the perturbative Hamiltonian H̃ ′ (Eq. 6.3), one obtains up to n vibra-tional operators (equal number of χ and χ†) at di�erent times whih at upon the samevibrational states.
〈

χk(t1)χ
†
k(t2)χk(t3)χ

†
k(t4) · · ·χk(tn−1)χ

†
k(tn)

〉

H0

=
(

exp

{

−
1

2

∑

α

(
λkα

Ωkα

)2

(2N(Ωkα) + 1)

})n

× exp

{

{ζ12Ak(t1 − t2)} + TC {ζ13Ak(t1 − t3)} + · · ·

+TC {ζn−1,nAk(tn−1 − tn)}

}

,where
ζij =

{

+1 when χk(ti)χ
†
k(tj) or χ†

k(tj)χk(ti),

−1 when χk(ti)χk(tj) or χ†
k(ti)χ

†
k(tj)

.The evaluation of the operator produts proeeds similar to the derivation inApp. B.2, exept that now more funtions χk(ti) are involved. The expression TC in
TC {ζ12Ak(t1 − t2)} ensures, that t1 is later on the ontour than t2 and Ak(t1 − t2) isgiven by

Ak(t1 − t2) =
∑

α

(
λkα

ωkα

)2
[
(N(ωkα) + 1) e−iωkα(t1−t2) + N(ωkα)eiωkα(t1−t2)

]

=
∑

α

(
λkα

ωkα

)2
cos (ωkα [t1 − t2 + i~β/2])

sinh (~ωkαβ/2)
.For a orrelator with n operators χk and χ†

k ating on the same state one gets N = (n)(n−1)
2di�erent terms Ak(ti−tj) in the exponential funtion. This is due to the various operatorommutations involved in deriving the above expression.
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