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Deutsche Zusammenfassung

Die vorliegende Arbeit befasst sich mit dem elektronischen Transport durch kurze DNA
Molekiile, wobei insbesondere untersucht wurde, welchen Einfluss Vibrationen der Basen-
paare haben. Experimentelle und theoretische Arbeiten der letzten Jahre haben gezeigt,
dass Vibrationen eine wichtige Rolle beim elektronischen Transport durch DNA spie-
len. Wie diese Rolle genau aussieht, wird allerdings zur Zeit noch kontrovers disku-
tiert. Insbesondere ist nicht eindeutig geklért, ob sich Polaronen in DNA bilden, da
nur einige Experimente mit Polaronenbildung zu erklidren sind. In anderen Experi-
menten wurden hingegen relativ hohe Strome gemessen, die sich eher mit einer (quasi-)
kohédrenten Beschreibung des Transport erkldren lassen. Deshalb haben wir den elek-
tronischen Transport durch DNA genau in diesen beiden Grenzfillen untersucht. Wir
beschreiben dabei DNA Molekiile durch ein minimales tight-binding Modell, wobei jedes
DNA Basenpaar mit einem tight-binding Platz identifiziert wird. Die Parameter fiir
dieses Modell haben wir Experimenten und/oder ab initio Rechnungen entnommmen.

Im ersten Abschnitt haben wir die quasi-koh&rente Transportsituation untersucht. In
diesem Limit fiihrt die Kopplung an Vibrationen zu inelastischen Beitrigen zum Strom,
welcher zumindest teilweise seinen kohédrenten Charakter behélt. Fiir die Beschreibung
dieser Situation haben wir einen Bewegungsgleichungsansatz (equation-of-motion) fiir die
elektronische Ein-Teilchen Green-Funktion der DNA gewihlt, welcher die Vibrationsef-
fekte beriicksichtigt, die durch lokale und nicht-lokale Elektronen-Vibrationskopplung
entstehen. Um die starke Kopplung der Elektronen und Vibrationen beschreiben zu
kénnen, entfernen wir durch eine unitire Transformation genau diesen Kopplungsterm
aus dem Hamiltonoperator. Diese Prozedur erlaubt es uns, die Reihe von Green-
Funktionen hdéherer Ordnung abzubrechen, welche sich aus der Bewegungsgleichung
ergibt.  Physikalisch ldsst sich das Abbrechen der Reihe fiir eine schwache nicht-
lokale Elektronen-Vibrationskopplung begriinden. Da wir motiviert durch experimentelle
Ergebnisse annehmen, dass das chemische Potential von DNA, welche an metallische
Elektroden gekoppelt ist, in der Energieliicke zwischen héchstem besetzten und niedrig-
stem unbesetzten Molekiilorbital (HOMO und LUMO) liegt, zeigt die I-V Kennlinie ein
fiir Halbleiter charakteristisches Verhalten.

In dieser Arbeit haben wir gezeigt, dass die Zustandsdichte von homogenen DNA
Sequenzen bandartig ist, wobei aufgrund der geringen Gréfe des Systems die einzel-
nen elektronische Resonanzen sichtbar sind. Zusétzlich dazu erkennt man “Vibrations™
Resonanzen, die sich im Abstand von ganzzahligen Vielfachen der betrachteten Vi-
brationsenergie oberhalb und unterhalb der entsprechenden elektronischen Resonanz
befinden. Je weiter die “Vibrations”-Resonanzen dabei von den dazugehorigen elektroni-
schen Resonanzen entfernt sind, desto geringer ist ihr spektrales Gewicht in der Zustands-
dichte. Aufgrund der nicht-lokalen Kopplung der Elektronen und Vibrationen weist die
Zustandsdichte eine grofe Asymmetrie auf, die sich aber dennoch nur unwesentlich auf



den Strom auswirkt. Der Transport durch homogene DNA Molekiile wird durch elasti-
sche, quasi-ballistische Beitrdge dominiert. Fiir endliche Spannung und Raumtemperatur
bewirkt die Streuung von Elektronen an Vibrationen eine Verminderung des Stromes um
ca 30% im Vergleich zum vibrationslosen Fall. Andererseits fiihrt die Kopplung an Vi-
brationen bei niedrigen Temperaturen zu einer Erhohung des Leitwertes um mehrere
Grofenordnung. Das liegt daran, dass es zur Bildung von “Vibrations”-Resonanzen in
der Energieliicke kommt, die eine von Null verschieden Transmission haben.

Die Zustandsdichte von inhomogenen DNA Sequenzen ist aufgrund von Anderson
Lokalisierung stark fragmentiert, wobei es genau wie bei homogenen Sequenzen neben
den elektronischen Resonanzen zusitzliche “Vibrations”™-Resonanzen gibt. Der elektro-
nische Transport durch derartige DNA Molekiile basiert fast vollstandig auf inelastischen
Effekten, da Energie fiir die Uberwindung von Potentialbarrieren benétigt wird, welche
sich aus der inhomogenen Sequenz ergeben. Diese Energie wird von den Vibrationen der
Basenpaare bereitgestellt. Beispielhaft haben wir die Sequenz 5-CAT TAA TGC TAT
GCA GAA AAT CTT AT-3’ untersucht. Die I-V Kennlinie dieser Sequenz weist drei
Stufen auf, welche sich mit den Energien bestimmter, entweder reiner oder gemischter,
Guanin- und Adeninzusténde in Verbindung bringen lassen. Diese Zustdnden befinden
sich in der Zustandsdichte bei Energien £ — Fp = —0.3¢eV, -0.7¢eV und -0.95eV. Wir
konnten zeigen, dass im Gegensatz zu homogenen Sequenzen die /-V Kennlinie der inho-
mogenen DNA Molekiile durch die nicht-lokale Vibrationskopplung qualitativ modifiziert
wird. Insbesondere fiihrt die nicht-lokale Kopplung bei der von uns untersuchten Modell-
sequenz zu einer Halbierung der Transmission fiir die Zustédnde bei £ — EFp = —0.7eV.

Erstaunlicherweise ergab sich bei unseren Untersuchungen, dass der Strom durch in-
homogene DNA Sequenzen nicht-monoton von der Kopplung an die Elektroden (I') ab-
hingt. Fiir eine feste Spannung erreicht der Strom ein Maximum, wenn I' ungefihr
gleich dem Imaginérteil der Vibrations-Selbstenergie >, =~ 0.01 eV ist. Dieses Ergebnis
zeigt, dass es nicht unbedingt besser ist, die Kopplung an die Elektroden zu maximie-
ren, und dass eine systematische (experimentelle) Untersuchung der Elektrodenkopplung
notwendig ist.

Im zweiten Teil der Arbeit haben wir uns mit inkohdrentem Polaron-Hiipftransport
durch kurze DNA Molekiile beschéftigt, die an metallische Elektroden gekoppelt sind.
Polaronen bilden sich in DNA durch eine starke Kopplung der elektronischen Freiheits-
grade an die Vibrationen der DNA Basenpaare. Wir nehmen in unserem Modell dabei
an, dass die einzelnen Basenpaare unabhéngig voneinander schwingen kénnen. Um die
Situation starker Kopplung beschreiben zu kénnen, fiihren wir eine unitare Transforma-
tion des Hamiltonoperators durch. Dies ermoglicht eine perturbative Beschreibung des
untersuchten Problems in neuen Parametern, die sich aus der Transformation ergeben.
Diese Parameter sind die Hiipf- (¢;;/A) und Tunnelintegrale (tiL/R/A), welche durch die
Bindungsenergie der Polaronen A normalisiert wurden. Experimentelle Untersuchungen
haben fiir diese Bindungsenergien folgende Werte gefunden: fiir Guanin Ag = 0.47eV
und fiir Adenin A, = 0.18eV. Um physikalisch interessante Grofen wie den Strom zu
berechen, beschreiben wir das System durch eine Ratengleichung fiir die Besetzungszahl
der einzelnen DNA Basen. Die Raten wurden anhand von Fermis Goldener Regel berech-
net und beschreiben inkohérente Hiipfprozesse in der DNA unter der Beriicksichtigung
der Anregung oder Absorption von Basenpaar-Schwingungen.
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Fiir alle DNA Molekiile erhalten wir halbleitende I-V Kennlinien, welche fiir homogene
und symmetrische Sequenzen symmetrisch sind. Einige inhomogene Sequenzen allerdings
zeigen stark gleichrichtendes Verhalten. Der Grund dafiir liegt in den Transportengpéssen
durch Potentialstufen in der Sequenz, die nur unter Absorption von Vibrationsenergie
iiberwunden werden kénnen, d.h. die Raten fiir derartige Hiipfprozesse sind sehr gering.
Je nach Stromflussrichtung liegen die Engpésse an anderen Stellen und sind mal mehr
oder weniger “eng”, so dass sich fiir positive und negative Spannung unterschiedliche
Strome ergeben. Auferdem konnten wir zeigen, dass die Schwellspannung, bei welcher
der Stromfluss einsetzt, empfindlich von der DNA Sequenz anhéngt. Bei homogenen Se-
quenzen entspricht die Schwellspannung gerade der lokalen Energie der betrachten DNA
Basen. Bei inhomogenen Sequenzen hingegen hingt die Schwellspannung nicht direkt von
einer internen Energieskala ab, wobei die Spannungen allerdings zwischen den Werten
der homogenen Sequenzen liegen. Die Schwellspannung der inhomogenen Sequenzen ist
dabei durch die nicht-triviale Ladungsverschiebung bei endlicher Spannung bestimmt.
Der Stromanstieg der I-V Kennlinie weicht aufdem von der Form einer Fermi Funktion
ab. Diese Verdnderung ist bei der Sequenz GAAAAAAG am ausgeprigtes, welche ein
sehr breites Maximum im differentiellen Leitwert aufweist. Bei anderen Sequenzen, die
mehr als eine einzelne Guanin Base an beiden Enden haben, ist die Verbreiterung des
Maximums nur sehr gering. Die Ladungsverschiebungen werden durch die Darstellung
des lokalen chemischen Potentials ®; visualisiert. Dieses zeigt anschaulich, wie die an-
gelegte Spannung iiber die Linge des DNA Molekiil abfillt. Wie man erwarten wiirde,
fallt die meiste Spannung an den Schnittstellen zu den Elektroden und an der Trans-
portengpéssen im Inneren der DNA ab.

Wie fiir Polaronen Hiipfen zu erwarten ist, konnten wir zeigen, dass der Strom fiir
eine homogene DNA Sequenz thermisch aktiviert ist und eine Temperaturabhingigkeit
hat, die einem Arrhenius-Gesetz folgt. Dieses Ergebnis ist in Ubereinstimmung mit
einigen Experimenten der letzten Jahre. Die von uns berechnete Aktivierungsenergie F,,
héngt von der angelegten Spannung ab und néhert sich fiir Spannungen oberhalb der
Schwellspannung dem Wert E, = A/2 an, welcher fiir Polaronen im Festkorper gilt.

Im letzten Teil dieser Arbeit haben wir eine allgemeine Beschreibung fiir Polaronen-
transport in mesoskopischen Systemen entwickelt, die eine Kopplung an metallische Elek-
troden beriicksichtigt. Diese Beschreibung ist nicht auf DNA Molekiile beschrinkt. Der
von uns gewihlte Ansatz basiert auf einer diagrammatischen Echtzeit-Entwicklung der
Ein-Teilchen-Dichtematrix entlang der Keldysh-Kontour. Unter Miteinbeziehung von
Nicht-Diagonalelementen der Ein-Teilchen-Dichtematrix konnen auch Kohérenzeffekt in
der Beschreibung von Polaronentransport beriicksichtigt werden. Auferdem ergibt sich
aus der diagrammatische Entwicklung, dass Divergenzen durch resonantes Tunneln, die
im vorherigen Abschnitt aufgrund phanomenologischer Argumente vernachlissigt wur-
den, nicht mehr auftreten. Vielmehr fiihrt die Moglichkeit von resonantem Tunneln zu
Korrelationseffekten zwischen den Besetzungen von unterschiedlichen Basenpaaren.

Wir wenden diesen Formalismus auf Hiipftransport von Polaronen durch DNA an. Fiir
starke Kopplung zwischen Elektronen und Vibrationen und hohe Temperaturen konnen
Kohérenzeffekte vernachlissigt werden, so dass fiir eine korrekte Beschreibung die Diago-
nalelemente der Dichtematrix ausreichend sind. Im Gegensatz zum vorherigen Abschnitt
beriicksichtigen wir jetzt Korrelationen zwischen den Besetzungen und untersuchen, wann
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Korrelationen auftreten und welche Anderungen in den Transporteigenschaften sie her-
vorrufen. Wie wir gezeigt haben, spielen Korrelationen nur fiir die Transporteigen-
schaften von inhomogenen DNA Sequenzen ein Rolle, wobei sie dabei im Allgemeinen zu
einer Verminderung des Stroms um bis zu einer Grofenordnung fithren. Das interessantes
Ergebnis ist jedoch, dass Korrelationen bei einigen DNA Sequenzen zu einer neuen Ener-
gieskala fithren konnen, die sich in einem zweiten Maximum im differentiellen Leitwert
niederschligt. Diese neue Energieskala ergibt sich durch Korrelationen einzelner DNA
Basen, welche von anderen Basen umgeben sind, die eine andere lokale Energie besitzen,
z.B. das Guanin in der Sequenz AAAAGAAA. Fiir angelegte Spannungen, bei denen
die relativen Korrelationen (Eq. 6.15) anfangen, stark von Null abzuweichen, bilden sich
die zweiten Maxima im differentiellen Leitwert aus. Die Spannungen, bei denen dies
geschieht, liegen oberhalb der Schwellspannung, aber auch hier ist die genaue Position
stark abhéngig von der betrachteten Sequenz.

Es zeigt sich, dass Korrelationen von einzelnen Basen an den Schnittstellen mit den
Elektroden (z.B. GAAAAAAG) stark von der Kopplung an die Elektroden abhén-
gen. Fiir verminderte Kopplung I' ergeben sich schwichere Korrelationen und auch die
entsprechenden zweiten Maxima im differentiellen Leitwert sind stark verkleinert. Ko-
rrelationen von einzelnen Basen in der Mitte von Sequenzen (z. B. AAAAGAAA) sind
hingegen nicht von I' abhéngig und damit &ndern sich auch die zweiten Maxima im dif-
ferentiellen Leitwert nicht. Diese Verhalten dndert sich allerdings, wenn es zusétzliche
isolierte Basen an den Schnittstellen zu den Elektroden gibt (z. B. GAATGAC). In diesem
Fall vermindern sich auch die Korrelationen, die mit der Base im Inneren der Sequenz
verkniipft sind, wenn die Kopplung an die Elektroden verringert wird. Wir habe aufer-
dem gezeigt, dass Korrelationen zwischen nachsten Nachbarn am gréfiten sind, da die
Korrelationen exponentiell mit dem Abstand abnehmen.

Abschliefend ist zusammenzufassen, dass Vibrationen zu sehr unterschiedliche Effekten
im elektronischen Transport fiihren konnen, abhéngig von der Stérke und dem Charakter
der Kopplung. Wir hoffen, dass die vorliegende Arbeit dabei hilft, die Ergebnisse aus
Transportexperimenten an DNA Molekiilen besser zu interpretieren und zu einem tieferen
Verstidndnis der dabei relevanten Physik beitrigt.
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“I knew all the rules, but the rules did not know me...”

Eddie Vedder






1. Introduction

Since the invention of the transistor in 1948 the technological improvements in structuring
silicon have lead to increasing integration densities of computer chips, accompanied by
an increase in computational power. Where the first microprocessor in the 1970s held
only about 2000 transistors, today over 100 million CMOS (complementary metal oxide
semiconductor) transistors fit on a single commercially available computer chip. This
gain in computational power is answered by the introduction of ever more demanding
applications, driving the development of the next generation of integrated electronics
with even higher transistor densities.

The increase in integration density was so far mainly achieved by miniaturization of
the gate length of the CMOS transistors. The current sizes are in the range of some tens
to a hundred nanometers. It is clear that this trend cannot go on forever, as eventually
further downscaling of the CMOS technology will reach the atomic limit. But even before
that, for dimensions of a few nanometers, leakage currents due to quantum mechanical
tunneling will render todays transistor design useless. Additional problems arise due to
an increase in dissipated heat and growing capacitances between the components.

A way out of the dilemma is the use of novel materials that function in spite of or even
because of quantum mechanics. Molecular electronics is one of the alternatives under in-
vestigation today. The conceptual advantages of molecules are their size in the order of a
few nanometers and the possibility to parallelly synthesize moles of them by chemistry. In
contrast, the cost and the technological difficulties of structuring silicon microscopically
by ever more advanced methods are the limiting factors of todays electronics technology.
The idea to use single organic molecules as diodes was first introduced by Aviram and
Ratner in 1975 [1], but at that time the idea was just a theoretical hypothesis far from
actual accomplishment. Only with the development of the scanning probe techniques in
1980s instruments for the investigation and manipulation at the atomic and molecular
scale became available.

With the right ‘tools’ at hand researchers from different disciplines (physics, chemistry
and biology) started the quest for molecules that could be used as components in inte-
grated circuits. In the last decade this field has attracted an increasing interest as the
ability to manufacture nanoscale contacts has improved considerably.

The three main concepts used today for producing such contacts are the break-junction
technique [2,3| and the scanning probe techniques, namely STM (scanning tunneling
microscope) [4] and conducting AFM (atomic field microscope) [5]. To form a break
junction at first a free standing thin metal constriction is produced by standard electron
beam techniques. When bending the underlying substrate by pushing a rod against it,
the constriction is stretched until it finally opens. Due to the setup geometry, pushing
the rod against the substrate by a few micron will only change the size of the gap in
the constriction by a few Angstr@m. Thus, this technique allows a fairly controlled way
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of producing nanoscale contacts. The central part of STM and AFM are atomically
sharp tips. The position of these tips is controlled by either piezo actuator (STM) or by
sensitive cantilever structures (AFM). The distance of the STM tip to the conducting
sample is adjusted by measuring the magnitude of the tunneling current between tip and
sample, whereas the deflection of the AFM cantilever is controlled by monitoring a laser
beam reflected by it.

Using the above and other techniques, many different types of molecules have to date
been investigated by researchers to study their capabilities for future electronics, e.g.
carbon nanotubes [6 8] organic or biological molecules [9 12]. DNA (Deoxyribonucleic
acid) is one of these molecules. The advantages of DNA are its ‘recognition’ and ‘self-
assembly’ properties and the fact that it can be chemically synthesized in any length and
sequence desired, i. e. tailor-made to fit specific needs. Recognition describes the property
of a molecule to selectively bind only to a defined other molecule or substrate, whereas
self-assembly is the capability of molecules to form greater super-molecules under the
appropriate conditions without external aid. These properties allow the constructing of,
for example, two- or even three-dimensional networks with DNA (e. g. [13,14]), without
complicated lithographic procedures, which facilitates the incorporation into conven-
tional electronic components. These properties also make DNA molecules interesting as
scaffolds for the construction of networks from many different materials, e. g. nano par-
ticles [15] or metallic wires |[16]. Other molecules lacking this property would have to be
incorporated into electronic circuits by more complicated means, diminishing somewhat
the advantage over conventional integrated electronics.

It should be noted that the interest in electronic transport properties of DNA lies not
only in molecular electronics, but also in the role that charge migration plays in the
repair of oxidative damage (mutation) in DNA [17|. Rajski and coworkers argued that
some proteins acting as transmitter and receiver might constantly test the soundness of
the DNA by sending charges between them. A mutation of the DNA situated between
transmitter and receiver would interrupt the charge migration, thus allowing for its de-
tection and eventually its repair [18]. So, general research on transport properties of
DNA can also help to understand the mechanisms of oxidative damage and its repair.
Another aspect of the electronic properties of DNA has only emerged recently, namely
the possibility of determining the sequence of DNA by electronic means [19]. A fast
method to determine the DNA sequence would change todays medicine, as a detailed
genetic map of a patient, showing e. g. genetic mutations, would allow specific personal-
ized treatment. The current sequencing techniques are far to slow for such a task, since
the procedure involves various time consuming chemical steps, including fragmentation
of the DNA into smallest pieces. These steps are necessary, as only for very short DNA
sections the sequence can be determined in reasonable time and accuracy. Electronic se-
quencing techniques could allow for a determination of the DNA sequence without prior
fragmentation [20].

To find suitable candidates for integrated circuits, one has to fathom the response of the
(DNA) molecule to an applied bias. As for all nano-scale systems the transport properties
of molecules differ sometimes strongly from the macroscopic ones we are accustomed to.
For example, a macroscopic wire has a resistance increasing proportionally with its length
in accordance with Ohm’s law, whereas the typical resistance e. g. of an atomic gold wire



is R = 12.8 k2 independent of its length |21, 22| as long as it is shorter than the electron
mean free path. In fact, the resistance is not intrinsic to the gold wire, but it is due to the
interface between macroscopic electrode and nanoscopic wire. In a simple picture, the
electrons coming from the leads have to ‘squeeze’ into the small wire, thereby experiencing
a resistance. This means that the ‘injection’ of electrons into nanoscale system in many
cases strongly influences the transport characteristics. Therefore it is crucial how the
system, e.g. the molecule, is connected to the electrodes. Furthermore, experimental
and theoretical investigation indicate that the actual atomic contact geometry might
strongly influence the conduction properties of the molecule [19,23]. This poses major
problems on the interpretation of experimental results, as the exact contact geometries
produced e. g. by the break-junction technique is not known.

There are two possibilities how a molecule can bind to a metallic electrode: through
a covalent bond or via van-der-Waals type interaction (physisorption). Often molecules
are functionalized with thiol linkers (mainly a sulphur atom) which form strong covalent
bonds to noble metals, especially gold. Due to the strong bond, thiol linkers allow for
a quite stable configuration of electrodes and molecule, but whether these linkers form
good transport junctions is debatable. Theoretical calculations indicate that the overlap
of the electronic states responsible for transport in the electrode and the molecule is
rather poor, if a thiol linker setup is used [24].

One can imagine that macroscopic metallic electrodes coupled to a nanometer-sized
molecule will alter the properties of the molecule. Effectively, (partial) charging and
charge rearrangement on the molecule, accompanied by structural reorganization, might
occur. The chemical potential inside the molecule will be determined by the metal and it
usually lies in the gap between highest occupied and lowest unoccupied molecular orbital
(HOMO and LUMO), but often closer to the HOMO than to the LUMO [25]. For a
physical understanding of transport through molecules detailed knowledge of the nature
and influence of the contacts is needed.

For small molecules the coupling to the electrodes is dominant, but for longer molecules
(e.g. DNA), where the electron spends a considerable amount of time on the molecules
itself, its intrinsic properties become more and more relevant. For these systems in-
teractions with vibrations are important. Organic and biological molecules are usually
quite soft and at room temperature many vibrational modes can be exited. At room
temperature DNA experiences strong molecular vibration of the base pairs, with a root-
mean-square displacement as high as 10% of the lattice constant [26]. So the transport
properties of molecules, in particular DNA, cannot be understood without taking into
account these vibrations. For example, the interaction with the vibration can strongly re-
duce the coherence length and change the transport from coherent tunneling or band-like
transport to incoherent hopping.

For strong interaction with the vibration, a trapping of the charge by formation of a
small polaron is possible. A polaron is a quasi-particle consisting of a charge and the
surrounding lattice distortion. Many experiments on long-range charge transfer in DNA
molecules have shown that holes can migrate along DNA covering quite large distances
by polaron hopping |27|. Shorter distances are overcome mainly by quantum mechanical
tunneling. Experiments of the physical community probing the conduction properties of
DNA use setups that are closer to the situations in electronic circuits, i.e. DNA molecules
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contacted to electrodes. These types of experiments have not lead to a clear picture
of the physics involved in transport through DNA. The results range from insulating
behavior to ohmic I-V characteristics, from absence of temperature dependence to strong
temperature dependence. The major problem in developing a consistent description of
transport through DNA is the lack of reproducibility of the experimental results. One
reason for this is the aforementioned difficulty in producing reproducible contacts between
(DNA) molecules and metallic electrodes. Also, experimentalists use many different
approaches to study the transport characteristics of DNA| i.e. different setups (break
junctions vs. STM-tips, freely suspended molecules vs. molecule lying on a substrate) or
different sample types (single molecules vs. self-assembled monolayers). This, of course,
makes a systematic interpretation of the results very difficult. Another point that should
not remain unaddressed is the limited stability of molecules, which poses a major problem
for long-term investigations on the same molecule and, unfortunately, eventually for their
use in integrated circuits.

In this thesis, we investigate the electronic properties of DNA to shed more light on
the question if and how DNA can allow for charge transport. We focus mainly on the
influence that vibrations have on the electronic properties. For this we will discuss the two
limits mainly used to describe transport in DNA. The ‘quasi’-coherent situation, where
interactions with vibrations introduce inelastic effects, which allow for transport even
in inhomogeneous DNA sequences. On the other hand interactions with vibrations can
lead to self-localization of the electrons, changing transport to a sequence of incoherent
hopping processes.

About this thesis

In Chapter 2 we will give a short introduction to DNA, discuss its structural and elec-
tronic properties and explain the basic concepts of charge transfer in DNA. In particular,
we will explain the special electronic features of DNA arising from the primary and sec-
ondary structure, i. e. why DNA is directed and what implications that has for electronic
transport. Various experiments are discussed, which probe the electronic properties of
DNA either by chemically introducing a charge onto the DNA (charge transfer) or by
contacting it to biased electrodes (charge transport). We explain what conclusions can be
drawn from the results of these experiments and what question still remain unanswered.
In particular, the effect of polaron formation in DNA is discussed.

A general introduction to the physics of polarons is given in chapter 3 starting his-
torically with the concept of large polarons and then explaining the properties of small
polarons, which are relevant for transport in DNA. A short discussion of the general
approaches to transport phenomena in mesoscopic systems follows, explaining also the
relevant time and energy scales. The tight-binding approximation is introduced which is
used throughout this thesis.

In Chapter 4 we will discuss transport through DNA molecules coupled to biased leads
with strong inelastic contributions due to interaction with vibrational modes of the DNA
base pairs. In the considered situation the coupling to vibrations does not lead to polaron
formation so at least partial coherence of transport is retained. We focus on the influence
of an additional non-local (non-diagonal) electron vibration coupling on the transport



properties of homogeneous and inhomogeneous DNA sequences. We describe the DNA
by a tight-binding model and calculate the physical quantities of interest by equation-
of-motion theory. For a description of the nonequilibrium situation due to biasing of
the system an approximative scheme is applied. Mathematical details of the calculations
are found in Appendix B and C. We see that the inelastic contributions to the current
in inhomogeneous DNA sequences are dominant. This is obvious, since for transport to
occur, the electrons have to overcome potential barriers arising from the different energies
of the DNA base pairs. This energy is provided by the base pair vibrations, which only
allow transport in inhomogeneous sequences. Additionally a nonmonotonic dependence
of the current on the coupling to the electrodes is found; i. e. , a stronger coupling to the
electrodes (exceeding some threshold value) reduces the conductivity.

In the fifth Chapter we concentrate on the limit of incoherent polaron hopping trans-
port, where the electrons are localized due to strong local interaction with vibrational
modes of the DNA base pairs. This situation is described by a classical rate equation
with rates obtained by golden rule arguments, valid for any applied bias. The resulting
formulation is formally an extension of the so-called P(FE) theory. Due to the strong
electron-vibration coupling a straightforward calculation of the golden rule rates based
on this coupling is not possible. By performing a unitary transformation on the Hamilto-
nian the strong coupling term vanishes and a perturbative treatment becomes possible.
We investigate how the characteristics of the current voltages curves change for different
DNA sequences and how this is related to the chemical potential of the various base pairs.
We observe rectifying behavior for inhomogeneous sequences and explain the origin of
this effect. Finally, we study the temperature dependence of transport at different bias
voltages and compare to experiments.

A generalization of the approach of the fifth chapter is presented in Chapter 6. We
develop a real-time diagrammatic expansion of the single particle density matrix along
the Keldysh contour, which is not restricted to DNA, but can be applied to arbitrary
polaronic systems coupled to biased electrodes. This diagrammatic approach allows for
the inclusion of non-diagonal elements of the single particle density matrix describing
coherence effects and higher order processes. We will not consider these, but instead
focus on the influence of correlations between occupations on different base pairs on the
transport properties of DNA. We see that for inhomogeneous sequences these correlation
give rise to changes in the current voltage profile as compared to the more simple approach
in Chapter 5. We show that these changes are due to a new energy scale introduced into
the system by the correlations.

Chapter 7 concludes our investigation on the influence of vibrational modes on the
electronic transport, properties of DNA. We compare the results from the two approaches
presented in the fourth to sixth chapter and indicate how these could be distinguished
in experiments. This might help to understand which physical effect underlies transport
in DNA. A brief outlook is presented in the end. In the Appendices A, B, C, and E we
present the mathematical details involved in the calculation for this thesis, which are not
central for an understanding of our results. In Appendix D we sketch an extension of the
approach discussed in the fourth chapter, which is formally valid for all applied biases.
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2. Motivation: Charge transport in
DNA

2.1. Structural and electronic properties

Deoxyribonucleic acid (DNA) is a long polymer fiber consisting of a chain of deoxyri-
bonucleotides. A deoxyribonucleotide comprises a base, a sugar and a phosphate group.
The central part is the sugar molecule deoxyribose (see Fig. 2.1), where the prefix ‘deoxy’
indicates that the sugar has an oxygen atom less than ribose. In Fig. 2.1 the 5 carbon
atoms of the molecule are numbered 1’ to 5’, where the prime is used to distinguish
them from carbon atoms of other parts of the DNA molecule. The labeling is helpful,
since each carbon atom is specific in binding to the different entities building the DNA.
The 1’ carbon atom of the deoxyribose binds to one of four bases, guanine (G), cytosine

HO—GH, OH
S
OH H

Figure 2.1: Schematic picture of a deoxyribose molecule. The various carbon atoms are num-
bered 1’ through 5. Picture taken from [28].

(C), adenine (A) or thymine (T). Two sugar-nucleotide entities are connected by a single
phosphate group, which binds to the 3’ carbon atom of one sugar and to the 5’ carbon
atom of another (see Fig. 2.2b). This chain of sugar-phosphate groups is called the DNA
backbone, which is directed, having an unbound hydroxyl group (3’) at one end and an
unbound phosphate group (5’) at the other. Whereas the backbone molecules are the
same for every link of the DNA chain, the base connected to it (either A, G, T or C) un-
derlies no restriction, rather the genetic code of life is encrypted in the specific sequence
of these bases. Of course, in natural DNA as well adenine-thymine as guanine-cytosine
base pairs are present in great number.

In 1953 James Watson and Francis Crick discovered the three dimensional structure of
DNA by studying x-ray diffraction patterns of DNA fibers. They found that DNA forms
the today well known double helix structure by combining two chains of deoxyribonu-
cleotides, which run in opposite direction (see Fig. 2.2a). An important aspect in the
formation of the double helix is that the two strands are complementary, i.e. a guanine
base on one strand is always connected to a cytosine base on the other strand via three
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hydrogen bonds, and an adenine base is always connected to a thymine base via two
hydrogen bonds (see Fig. 2.2c¢). This property is essential for the self-reproduction of
DNA, which is the basis of cell devision, since one strand is always the matrix for its
complementary strand. The specific binding properties of two single DNA strands are the
basis of the recognition properties of DNA. It is energetically favorable to combine two
DNA strands and form the double helix structure as either two or three hydrogen bonds
are formed per base pairs. In this structure the hydrophilic phosphate groups are on the
outside of the double helix in direct contact with the water. In aqueous solution a single
strand will therefore eventually bind to another complimentary strand (self-assembly).
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Figure 2.2: Molecular structure of DNA and its bases. (a) DNA double helix in a stick diagram
with three m-orbitals and their overlap schematically depicted for the top two base
pairs. (b) backbone structure of DNA and the four bases with the strand direction
indicated by 3" and 5’. (c) the two Watson-Crick base pairs guanine-cytosine (G-
C) and adenine-thymine (A-T) in an all atom ball-stick representation. Picture
taken from [17].

Additionally to the primary structure given by the sequence of bases, the DNA also has
a secondary structure, i.e. the specific structural form of the double helix. In natural,
aqueous environment DNA is in the so called B-Form, where the distance between two
subsequent base pairs is 3.4 A and they enclose an angle of 36°. In this conformation
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the bases of the two strands are aligned to each other and orthogonal to the DNA axis.
In aqueous environment the negative charge of the phosphate groups is compensated by
positively charged counter-ions (mainly sodium, potassium or magnesium). There are
also other known secondary structures. Most common is the A-form that DNA assumes
in dry environment. In the A-DNA two neighboring base pairs enclose an angle of 33.6°
and are separated 2.3 A.

In 1962 Eley and Spivey argued that the stack of m-orbitals formed by the DNA in
its natural conformation could allow charge migration (see Fig. 2.2a) [29]. The reason
for this assumption is the aromaticity of the DNA bases, i.e. the delocalization of the
m-orbitals in the ‘aromatic’ ring structures of the bases (compare Fig. 2.2¢). An overlap
of these orbitals between neighboring bases could result in a delocalization of the orbitals
over more than one base pair. The question of how well the electrons in homogeneous
or inhomogeneous DNA molecules are delocalized is still a matter of debate, since the
effect of DNA base dynamics and the environment might be crucial. The ab initio calcu-
lations by Artacho et al. |30| for homogeneous polyG-polyC DNA showed delocalization,
however the resulting band-width was only about 40 meV. Other works also support the
idea of partial electronic delocalization in homogeneous DNA molecules [31 33|. Experi-
mentally Buchvarov and coworkers found evidence for electronic delocalization over 3 to
4 base pairs in some samples of homogeneous polyA-polyT DNA, which, they argued,
was probably enhanced by nuclear rearrangement, i. e. lattice distortion |34].

In general, a DNA molecule is not a periodic, least of all homogeneous system. Since in
inhomogeneous DNA molecules the electronic coupling between the orbitals of neighbor-
ing bases is small compared to the energy differences between these orbitals, one would
expect such DNA sequences to be an insulator with Anderson localization. At room
temperature natural DNA experiences strong molecular vibration of the base pairs, with
a root-mean-square displacement as high as 10% of the lattice constant |26]. Therefore
the properties of DNA cannot be understood without taking into account vibrations and
interaction with the environment. As we will later show, also inhomogeneous sequences
can support charge transport, assisted by lattice vibrations and environment.

Calculations have shown that the highest occupied molecular orbital (HOMO) of a
DNA base pair resides on either guanine or adenine, whereas the lowest unoccupied
molecular orbital (LUMO) resides on the other half of the base pair, i.e. either cytosine
or thymine [30,32|. A measure for the energies of the HOMO, which are the most relevant
for transport, are the ionization potential of the bases. For guanine it is e = 7.75eV
and for adenine ey = 8.26eV. The gap between HOMO and LUMO is about 2eV [30].

Senthilkumar et al. studied the hopping integrals ¢;; for all possible combinations of
neighboring base pairs [35]. They saw for example that the overlap between a guanine
and an adenine is strongly dependent on their sequence, even if they are on the same
strand. In a sequence 5-GA-3’ the hopping parameter is tga = —0.186€eV, whereas
for the reverse sequence 5’-AG-3’ the hopping parameter is just tag = —0.013eV. The
reason for this is the broken symmetry along the DNA axis due to the twisting of the
DNA and the directedness of backbone. Note that this does not imply an non-hermitian
Hamiltonian. Forward and backward hopping between A and G in a specific sequence of
two base pairs are complex conjugates.
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5-XY-3’(all in eV)
X\Y G C A T
0.119 0.046 -0.186 -0.048
-0.075 0.119 -0.037 -0.013

-0.013 -0.048 -0.038 0.122
-0.037 -0.186 0.148 -0.038

He= 00

Table 2.1: Hopping integrals ¢;; taken from Ref. [35] and adapted to our model. The notation
5-XY-3" indicates the direction along the DNA strand (see, e.g. Fig. 2.2).

In this work, we will reduce the electronic complexity of DNA to a simple tight-binding
model, which we introduce in chapter 4. In this model we consider one tight-binding site
per base pair, i.e. we only model the HOMO and the coupling between the HOMOs of
neighboring base pairs. We extract the parameters for the hopping integral ¢;; from the
results obtained by Senthilkumar et al. and adapt them to our simplified model. The
resulting values for ¢;; are given in Table 2.1.

2.2. Experiments

The question whether the prediction of Eley and Spivey (DNA being able to transport
charge) can be confirmed, aroused and still arouses the attention of many researchers in
chemistry, biology, and physics. The pioneering work in this field was done by Jacqueline
Barton and her group, who measured the fluorescence of an organic chromophore. They
found that the fluorescence is quenched, when the molecule was attached to a DNA
molecule. They explained this quenching with the charge migrating along the DNA
away from the excited molecule [36].

A typical charge transfer experiment was conducted by Giese and coworkers [37]. In
this experiment a hole was injected into a guanine donor base (labeled Goy in Fig. 2.3)
by photo-chemical means. After some time the DNA strands were chemically treated,
so that the strands cleaved exactly at the guanine base pair that carried the hole. Using
electrophoresis the number of DNA molecules of different lengths was determined. Since
the DNA molecules were cleaved at the base pair that carried the hole, the length of
such a DNA section was identical to the distance the hole had migrated. Therefore the
relative number of DNA section with a certain length is equivalent to the ratio of holes
that migrated the corresponding distance. Thus the number of holes that have reached
the acceptor site (GGG) was determined. Typically, donor and acceptor are separated
by a bridge of DNA bases, which in this case consist only of adenine. Figure 2.3 shows
the logarithm of the yield (Pggg/Pg) versus the number of intermediate adenine bases n
measured in this experiment. The yield is the ratio of holes reaching the acceptor triple
guanine compared to the number staying at the single donor guanine.

For short intermediate bridges (n = 1,2,3), i.e. few adenine bases, the slope of the
straight line (logarithm of the yield versus number of bridge bases) in Fig. 2.3 is § =

0.6A™". This strong distance dependence is characteristic for tunneling between the
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Figure 2.3: Logarithm of the Yield (Pggg/Pc) against number of adenine bridge bases n,
where Pg (Pggg) is the number of holes at the donor (acceptor) site. The yield
is a measure for the charge transfer efficiency. Clearly two regimes are visible.
For short donor-acceptor distances (n = 1,2,3), i.e. in the tunneling limit the
slope is 8 = 0.6 A" Forn > 4 the line is drawn to illustrate the weak distance
dependence (hopping limit). The picture is taken from [37].

donor and the acceptor guanine through the potential barrier of the adenine base pairs.
The tunneling rate decreases exponentially with the distance between the G-C base
pairs and it becomes negligible if the two G-C base pairs are too far apart. For n > 4
the distance dependence becomes very weak, i.e. tunneling is no longer relevant. The
interpretation is that the hole migrates via activated, incoherent hopping also using the
adenine bases as ‘stepping stones’.

These two mechanisms were verified by experiments of many groups. In particular,
experiments on long-range equilibrium charge transfer along DNA show that the domi-
nant transport mechanism is activated hopping of holes between the HOMOs of adjacent
base pairs in the DNA stack [27,38 42]. In the simplest case the bridges separating the
donor and acceptor guanine bases consist of a number of adenine bases (see Fig. 2.3),
but more complicated bridges were investigated as well. All these experiments showed a
weak distance dependence for bridges longer than a few base pairs, which is consistent
with activated hopping transport.

The choice of using guanine bases as donor and acceptor molecules separated by various
bridges which mainly consist of adenine bases is easily understood: from the ionization
potential it is clear that the most stable position for a hole is the HOMO of a guanine base.
As an acceptor a triple guanine (GGQG) is chosen, that has a slightly higher ionization
potential than the single guanine. So the triple guanine exerts a small ‘thermodynamic
force’ on the hole. In the bridge of A-T base pairs the adenine is the most relevant since

11
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its ionization potential is the closest to guanine. The idea is that in the hopping regime
the hole will hop only between guanine and adenine bases even if they are on different
strands of the double helix. In their experiments Joy et al. found clear indications for
this behavior. They proved this by replacing bridge adenine bases with another molecule
of similar structural, but different electronic properties [43].

For hopping transport to occur, the charge first has to undergo a localization. Several
theoretical articles argue that holes are localized on single (guanine) bases either by sol-
vation effects and/or structural reorganization [44 47|. The degree of localization is still
a matter of debate [43|, but many authors agree that conformational motion of the DNA
is important for charge migration in DNA [|48-51|. This localization can be interpreted
as a polaron, which is a quasi-particle consisting of a charge and the surrounding lattice
distortion (in the next chapter we will give a short introduction into this subject). Many
authors have used the polaron hopping picture to model experimental results [52 54].
It is now the most promising candidate for the transport mechanism in charge transfer
experiments. It should be noted that for the study of general sequences the competition
between hopping and superexchange tunneling has to be accounted for [37,55-57].

A measure for the degree of localization is the so called reorganization energy or polaron
binding energy A, i.e. the energy gain through distortion of the lattice (or polarization of
the solvent), when an additional charge is placed on a base pair. Olofsson and coworkers
extracted reorganization energies (not accounting for solvation effects) from experiments
and obtained values of Ay = 0.18eV and Ag = 0.47eV for adenine and guanine bases
respectively [46]. The DFT calculation performed by them and also by another group [47]
show values of the polaron binding energy of the same order of magnitude.

In contrast to the chemical community, where the ideas of tunneling and activated
(polaron) hopping can explain the experimental findings and therefore the nature of
charge transfer along DNA, the sometimes contradictory results in experiments of the
physics community still give rise to controversial discussions. For the understanding of
the electronic properties of DNA these latter experiments are indispensable, since the
transfer of charges in electrochemical experiments is not sensitive to the details of the
intrinsic electronic structure, i.e. whether DNA has a continuum of electronic states
(electronic band) or discrete levels [58|. These characteristics can only be probed by
non-equilibrium transport experiments.

To date there are only very few experiments in which the /-V characteristics of indi-
vidual DNA molecules are measured(e.g. [16,59 68|), mainly because of the difficulties
to contact the DNA to metallic electrodes and to ensure that only single molecules are
measured. The first experiment on a single DNA molecule was performed by Braun and
coworkers in 1998 [16]. In this experiment the DNA of the bacteriophage lambda with
48 502 base pairs (= 15 ym) was placed between two metal electrodes 12 ym apart using
the recognition and self-assembly properties of DNA. For this purpose the electrodes
where functionalized with single stranded segments of the used DNA molecules. The
added DNA solution contained the complementary strands and therefore spontaneously
attached to the functionalized electrodes (see Fig. 2.4(a)). The sample was dried and
kept at ambient conditions during the measurements, which showed no current even up
to a bias voltage of 10V.

12
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Figure 2.4: (a) schematic drawing of how the A-DNA molecules are contacted to the metal
electrodes by self-assembly and recognition. (b) fluorescence image of the DNA
(light diagonal line) bridging the gap between the electrodes (dark wide lines).
The pictures are taken from [16].

A year later Fink et al. reported nearly ohmic behavior with currents of over 10 nA in
transport measurements of bundles of few ‘A’-DNA molecules with lengths of some hun-
dred nanometers contacted directly with a tungsten tip [59]. A possible explanation for
this good conductivity is a likely doping due to imaging with a low-energy electron point
source. The first experiment on single, short DNA molecules was performed by Porath
and coworkers in 2000 |60|. Homogeneous DNA strands with 30 poly(dG)-poly(dC) base
pairs (10.4nm) in solution were electrostatically trapped between two lithographically
etched Pt electrodes. After trapping, the sample was dried by a flow of nitrogen. The
current measurements showed ‘semi-conducting’ behavior with currents slightly above
1nA and thresholds between 0.5 and 1eV. The measurements were performed at dif-
ferent temperatures, ranging from 4 K to room temperature and always showed similar
characteristics, but with stronger variations between the samples in properties like the
threshold for higher temperatures (see Fig. 2.5(a)).

Xu and coworkers followed a different path [64]. They performed all of their experi-
ments at room temperature in buffer solution, driving a movable gold STM tip into a gold
substrate and then pulling it away, constantly measuring the current. DNA molecules
with thiol linkers from the solution could bridge the gap between STM tip and surface and
form covalent bonds with the gold via the thiol groups. If an individual DNA molecule
was found to be trapped, I-V characteristics were measured (see Fig. 2.5(b)). They saw
nearly ohmic behavior with maximum currents of up to 150 nA for DNA molecules with
sequence 5-GCGCGCGC-3’ and length of about 2.7 A. Varying the number n of GC
segments in the molecules (5’-(GC), -3’) they saw a shallow 1/length dependence of the
conductance, in agreement with hopping transport.

Newer experiments performed in the group of Danny Porath [65,69|, where single in-
homogeneous DNA molecules of 26 base pairs were spanned between a gold substrate
and a gold nanoparticle contacted by an AFM tip using thiol linkers, showed even higher
currents of up to 220 nA at 2 V. The measurements were again performed at room temper-
ature under ambient conditions. They reported higher conductivities in DNA molecules
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Figure 2.5: Current-Voltage characteristics and experimental setups of two experiments. (a)
three I-V curves measured on short homogeneous DNA strands with 30 poly(dG)-
poly(dC) base pairs (10.4nm), which were electrostatically trapped between two
fixed Pt electrodes. Graph taken from [60]. (b) three I-V curves measured on
DNA molecules with sequence 5’-GCGCGCGC-3’, which were also electrostati-
cally trapped between two gold electrode tips. Graph taken from [64].

with 26 base pairs with increasing number of G-C base pairs in the sequence. For a
homogeneous sequence only comprising A-T base pairs they even found insulating be-
havior [69]. These latter findings were independently supported by experiments of Igbal
and coworkers [70]. On the other hand an experiment with similar setup as in [69], where
single DNA molecules (in this case functionalized with trimethylenethiol linkers) were
spanned between a gold substrate and a gold STM tip, showed comparable currents for
both homogeneous poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA [67]. The currents
though were quite small, only about 100 pA at 0.2 V.

In all of the above measurement (except the one by Braun and coworkers), the DNA
molecules were suspended by the contacts, but otherwise free hanging. In a second group
of experiments the DNA molecules were placed on a substrate and either lithographically
fabricated electrodes and/or STM or metalized AFM tips were used for probing the
transport characteristics. For longer DNA molecules all experiments showed insulating
behavior of the DNA, whether they investigated A-DNA of hundred nanometers |71]
or a few micrometers [16, 72| or homogeneous poly(dG)-poly(dC) DNA molecules of
lengths L > 40nm [73|. An explanation for this behavior is, of course, the length of
the molecules under consideration, but the interaction with the substrate might also
promote the insulating behavior. Storm et al. showed that DNA molecules prepared
on a substrate (SiOy or mica) were flattened out on the surface having only about one
fourth of their natural height [73]. Other conformational changes of the DNA and the
induction of defects due to interaction with a substrate are also conceivable.
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On the other hand short DNA molecules prepared on substrates have repeatedly shown
high conductivities and currents of up to a few nanoampere [74,75]. In their experiment
Shigematsu et al. prepared salmon sperm DNA on a SiO,/Si substrate and fixed it by
two carbon nanotube (CNT) probes of a pair of nanotweezers [75]. One of these CNTs
was used as source and another CNT attached to an AFM tip was used as drain (see
schematic drawing in Fig. 2.6(a)). The current for a fixed bias of Vj, = 2V was recorded
as a function of the source-drain distance dcy (see Fig. 2.6(b)). The resulting distance
dependence fitted well with the relation

) eV, a
I h — 2.1
o sin (QkBTd(JA) (2.1)

for bulk polaron hopping [76], where a is the hopping distance. This indicates that
polaron hopping is a probable mechanism for transport in DNA.

CNT-AFM probe
anode

cathode :

CNT probe
of nanotweezers

(a)

Figure 2.6: (a) Schematic drawing of measurement setup used by Shigematsu et al., where
two carbon nanotube (CNT) probes fix the DNA molecule. One of these CNTs
was used as source and another CNT attached to an AFM tip was used as drain.
(b) Dependence of the current for V4, = 2V on the source-drain distance dca. The
black line shows a fit with equation 2.1. Pictures taken from |75].

Yoo et al. used the same formula (Eq. 2.1) to fit their results, but instead of the
distance dependence they probed the temperature dependence of transport |62|. The
results obtained by Roy et al. |68| also show a temperature dependence in agreement
with the concept of polaron hopping. Other experiments show quite the contrary behav-
ior, i.e. quasi temperature independent currents [60,67]. For a detailed comparison of
experiments see the reviews by Endres et al. [17] and Porath et al. [58].

In conclusion, some trends emerge from the experiments indicating that short DNA
molecules can carry currents and longer molecules can not. The variance in the maximum
currents are owed partially to the differing environmental parameters and the difficulty
to reproducibly couple DNA to metallic electrodes. It seems that free hanging DNA
molecules conduct better than DNA lying on a substrate. This, of course, would pose
additional problems, when trying to use DNA in integrated circuits in future electronics.
The physical reason for charge transport on the other hand is not clear. Experiments
which show strong temperature dependence suggest polaron hopping transport, or at
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least a strong interaction with vibrations. But this temperature dependence is not seen
in other experiments. Furthermore, most experiments show ‘semi-conducting’ -V char-
acteristics, but other groups see ohmic behavior. Consequently, there is also no conclusive
evidence about the intrinsic electronic properties of DNA.

For this work, we take the observations showing strong temperature dependence and
the results of the chemical charge transfer experiments as the basis for our investigations,
suggesting that vibrations and polarons play an important role also in non-equilibrium
transport through DNA.
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3. General concepts

3.1. Polarons

In this section we will shortly introduce the subject of polarons in general. We start with
the concept of large polarons which were the first to be investigated historically. Later
we will come to small polarons which are most likely present in DNA molecules.

3.1.1. Large Polarons

First investigations by Landau on self-trapping of electrons pioneered the work on po-
larons before the name even existed |77|. Landau and Pekar extended their research on
electrons strongly coupled to a polar environment, which they described in a classical
continuum model [78]|. In this model a polaron is an electron or a hole surrounded by
a charge cloud from the polar ionic environment, which is described by its static € and
classical high-frequency e, dielectric constants, whereas the polarization is modeled by a
harmonic oscillator with frequency w. lonic crystals, in which the electron/hole interacts
with optical phonons, seem to fulfill these requirements. The charge carrier wave func-
tion is modeled by a Gaussian distribution function with the mean squared deviation .
The effective environment description is valid only if the polaron size r, is considerably
larger than the lattice spacing a. When the particle moves, it drags the polarization with
itself which affects its energy and effective mass. An important measure for the coupling
strength is the Frohlich coupling constant

2 *
e m
a= 1/—;With/<;_1: el —e ).
dreohk \ 2hw ( o )
o 47r60h2

The model by Pekar et al. |78] predicts a polaron radius r, = 1.51kap where ap = e
is the Bohr radius. The ground state energy and the polaron mass are

Ey = — 0.10902hw
Mp ~0.02a m*,

where m* is the effective electron mass due to the electronic bands. The use of an
effective environment is justified if r, > a, i.e. a < ﬁ On the other hand, the
phonon number has to be high to justify the classical approach. The phonon number
is of the order %, that is % > 1. From this we deduce a? > 5. The above two
conditions are rarely fulfilled in reality |79, 80].

A situation more often found in nature is that of weak-coupling large polarons with

a < 1 where due to small phonon number the quantization of the lattice vibrations has to
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be taken into account. Frohlich was the first to investigate this regime |81]. The so called
Frohlich Hamiltonian describes the linear interaction of a single electron in a solid with
longitudinal optical (LO) phonons of frequency w. As in the model by Pekar the electron
is modeled as a free particle with effective mass m* due to non-parabolic bands. The
Hamiltonian was investigated by many others thereafter, but the most accurate results
were obtained by Feynman, who used a variational approach based on path-integrals to
solve the problem [82]. Up to second order in « the ground state energy and polaron
mass are:

Ey = — hw (o +0.015907)
My =m* (1+ % +0.023602)

The Frohlich model can describe the behavior of some semi-conductors and ionic crystals
with an isotropic effective mass and their conduction band minimum at the I" point. [79]

3.1.2. Small Polarons

In the 1950s a discussion started on how to explain the very low mobility p in some
materials. The classical band-like transport theory did not apply, so it was suggested that
the low mobility might be explained by hopping transport of localized charge carriers |83].
A little later experiments by Heikes and Johnston showed that the mobility in NiO at
high temperatures follows an activation law. They concluded that the ionic transport in
NiO was due to phonon assisted hopping [84].

Holstein was the first to propose a mathematical model to concisely explain these
phenomena [85]. He showed that due to strong electron-phonon interaction the electron
can undergo ‘self-trapping’. Thus transport is only possible when the electron and the
lattice distortion move together. In this model the lattice distortion, i.e. the polaron size
is confined to about one lattice spacing a; this approach is therefore called the ‘small
polaron’” model. Holstein could show that at sufficiently low temperatures the transport
was band-like with a strongly reduced band-width

2
AFEp x AFE exp <— <%) coth QZwT> ,
B

where AFE is the original electronic band-width and A is the electron-phonon coupling
constant, which will be defined in Eq. 3.4. At temperatures higher than the Debye
temperature the bands are too narrow and transport is a random walk of polaron
hopping from site to site. The probability for such a hop follows an activation law
W, x exp (—E,/kgT), with the activation energy E, ~ %

An important step in the investigation of the small polaron was done by Lang and
Firsov. Since the electron phonon coupling A is large it is no use to do a perturbation
theory in this parameter, so they introduced the so called polaron unitary transformation
[86]. As a result of this transformation the electron is ‘dressed’ in a multiphonon cloud
and other small parameters arise that can be used as a basis for a perturbative treatment
or the use of the Kubo formula.
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3.2 Transport in molecular systems

Nowadays the small polaron has attracted new interest as a candidate to explain the
behavior of novel high-Tx superconductors but also in molecular electronics. We will
use the concept of small polarons to investigate hopping transport in DNA. For an
extensive introduction into the field of small polarons see books by Alexandrov [80, 83|
and Bottger |76].

3.2. Transport in molecular systems

The electronic properties of a bulk conductor can be described by a set of continuous
electronic bands. For a molecular system this is not true: the electronic states are usually
not continuous but discrete levels and the transport can be strongly affected by quantum-
mechanical effects due to the small size, the coupling to the contacts and the position of
the Fermi energy. A crucial aspect is the interaction with vibration, since molecules are
rather soft and flexible and vibrations are easily excited.

The transfer of an electron from a donor to an acceptor in a molecular system is
therefore driven by the accompanying nuclear rearrangement in the molecule in the
direction of minimal free energy. The rate k., for such a transfer (quantum-mechanical
tunneling) process is given by the Marcus theory |87, 88|

an? —(5Epa — \)?
- VAT Nk T
Ket . [tpal wAkgT exp [ T ,

where tp4 is the electronic coupling between donor and acceptor, which are separated
by a energy gap 6Epa. A is the reorganization energy, i.e. the energy describing the
rearrangement of the atoms in the molecules in such a transfer process. The electronic
coupling usually depends exponentially on the distance d between donor and acceptor
tpa o exp(—pd), since this is a usual tunneling event.

If the molecule is connected to two electrodes the situation changes; now the driving
force for transport is the applied bias and we are no longer interested in a transient
phenomenon like charge transfer, but in a steady state property of the system [88]. In this
situation the electronic coupling strengths between donor, acceptor and the electrodes
determine the transport [89]. If the coupling between donor and acceptor is good and
their energies agree, charges become delocalized over the molecular system, which allows
coherent transport. If the coupling to the vibrations is not too strong, the vibrations
will lead to inelastic effects in the transport process, but the coherence of the transport
is at least partially conserved. We call this regime ‘quasi’-coherent. For small enough
temperatures (kg7 < hw) characteristic steps in the I-V curves arise, where the position
of the steps agrees with the frequency w of the vibrational mode that produces them.
For strong coupling and high temperature, i. e. in the small polaron limit, the interaction
with vibrations leads to a trapping of the charge and transport becomes a sequence of
incoherent hopping processes. In this work we will study both regimes for the case of
transport through DNA molecules.
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Chapter 3: General concepts

Time and energy scales

The two limits of coherent and incoherent transport can also be described by respective
time and energy scales. These time scales are the dwell time 7 of the electron on the
molecule and the dephasing time 7,, describing the time in which the electron loses its
phase coherence due to interaction with the vibrations |88]. The dephasing time decreases
with temperature and electron-vibration coupling strength. The ratio 7¢/r determines
the dominant transport mechanism. For large ratio 7¢/r the electron moves very fast
and its motion can be decoupled from the molecular motion by the Born-Oppenheimer
approximation. The interaction with the vibrations is just a perturbation to the mainly
coherent transport through the molecule. For small 7¢/> we have polaron formation and
incoherent hopping transport. Transport is also governed by other internal energy scales
of the system, which are the position of the molecular levels participating in the transport
(HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular
orbital)), their relative position to the Fermi energy and the coupling to the electrodes.
Of course, the temperature kgl plays an important role in the occupation of electronic
states.

One of the most important factors determining the current is the position of the chemi-
cal potential u, describing the energy up to which the states are occupied. For an isolated
molecule this is easily determined but for a molecules sandwiched between two metallic
electrodes, which usually are by far bigger than the molecule, this task becomes diffi-
cult. The reason for this is the charging of the molecule due to charge transfer from the
electrodes during the alignment of the chemical potential with the Fermi energy of the
electrodes. In general this charge transfer is fractional, depending on the work function
of the metal and the resulting chemical potential lies somewhere in the HOMO-LUMO
gap [90]. Unless ab initio calculations or experiments obtain reliable values, the position
of the chemical potential in the molecular system can be seen as a fitting parameter.
Throughout this work we chose the chemical potential to be slightly above the HOMO
states.

Transport in DNA

A molecular system like DNA consists of various parts/molecular orbitals, which can have
different energies and coupling to each other. Of course, if it is homogeneous, all energies
and couplings are the same. In the limit 7/ > 1 such a homogeneous system gives
rise to a band-like density of states (except for finite-size features) where electrons form
Bloch-states which are delocalized over the entire molecule. Transport in such a system
is mainly coherent and transmission probabilities are high and nearly independent of the
length of the molecule. Interactions with vibration will lead to inelastic contributions to
the current.

For inhomogeneous systems, the electrons undergo Anderson localization (depending
on the degree of inhomogeneity) and the transmission, still being coherent, is suppressed
and decreases exponentially with the length of the molecule. A coupling of the electronic
degrees of freedom to vibrations can lead to a small but finite broadening of the levels.
More importantly, the vibrational energy can allow the electrons to overcome potential
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3.2 Transport in molecular systems

barriers, diminishing the localization in inhomogeneous samples and enabling transport.
At least partial coherence of the transport is conserved.

In the opposite limit 7/r < 1 small polarons are formed, which are localized on one
or a few base pairs of the DNA, so the band picture is no longer applicable. The charge
can hop between different base pairs, depending on the specific rates. The differences be-
tween homogeneous and inhomogeneous sequences are more subtle than for the coherent
situation.

3.2.1. Theoretical methods

As argued in the introduction of this section, the current-voltage characteristics in nano-
scale systems and molecules can differ strongly from the characteristics of bulk systems.
The first important discovery in this field was done by Landauer in 1957 |21,91|. He
found that for systems smaller than the electron mean free path, i.e. in a ballistic con-
ductor, transport can be described as a quantum mechanical scattering problem. The
simple model system he studied consisted only of a scatterer (the molecule) sandwiched
between two biased metallic leads. In the linear regime, i.e. for small bias, transport is
characterized by the linear conductance g, which at zero temperature is proportional to
the transmission T' through the system

9= 90T (Er).

The proportionality factor gy = 2¢*/h is the so called quantum of conductance of a
perfect ballistic conductor with transmission 7" = 1. The transmission is calculated at
the Fermi energy Ex of the leads, where the electrons are injected into the molecule.

The transmission function T'(E) can be obtained from the scattering matrix or, using
the Fisher-Lee relation 92|, directly from the retarded and advanced Green-functions
Gret/2V (B of the molecule coupled to the electrodes

T(E) = 4tr {T(E)G™(E)[R(E)G*"(E)} . (3.1)

The Green function describe the density of states of the system and is given by
_ -1
¢ () = [[GE(B)] " + Su(B) + Sn(E)|

where
GIY(E) = [E — Hyo +i07]

is the Green-function of the isolated molecule (for general definition of the Green function
and relation between G™' and G see App. A). The Hamiltonian H,,, of the molecular
or mesoscopic system is assumed to be known, which of course is a problem of its own. In
the next section we will address this point. ¥ /g (E) are the self-energies of the left /right
electrode respectively. The electrode self-energies describe the energy contribution to
the system /molecule due to the electrodes. In general this contribution is complex and
describes a broadening of the electronic states, which is equivalent to a finite lifetime due
to the possibility of electrons escaping from the molecule via the electrodes. The electrode
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Chapter 3: General concepts

self-energies are determined by the spectral densities of the electrodes; for a flat density
of states in the electrodes (wide band limit) they are given by I'y/r(E) = Im (3y/r(E)).
For the current at finite temperature one obtains

_°
~4h

where fi,/r(€) is the Fermi function in the left /right lead.

The Landauer formula and Fisher-Lee relation are only valid when there are no in-
teractions on the molecule. This of course is not true if we include vibrations into
our calculation. For the case of an interacting region between two electrodes Meir and
Wingreen obtained a general formula for the current [93|

J dE[fu(E) — fr(E)]T(E), (3-2)

1e

J=—
2h

4B (tr {[fu(E)TL(E) - fa(B)TR(E)] (G™(E) - G*(E))}
+tr{[T1(E) — T(E)] G<(E)} ). (3.3)

where G</>(E) are the ‘lesser’ and ‘greater’ Green functions of the molecule coupled
to the electrodes. These Green functions describe the occupation of the system. In
equilibrium these are connected to the retarded and advanced Green function (G*e%/2)
by the fluctuation-dissipation relation (see App. A). In nonequilibrium these are inde-
pendent quantities and have to be calculated separately. Therefore one has to use a
formalism valid also out of equilibrium, like the Keldysh formalism [94], or one has to
apply some approximative scheme. For the non-interacting case Eq. 3.3 reduces to the
simple Landauer form (Eq. 3.2).
Meir and Wingreen derived their formula from a general expression for the current.
From the continuity relation it is obvious that
d e
JL = e <NL> = h
were [Vp, is the number of electrons in the left lead and H is the total Hamiltonian.
Obviously for a steady-state situation the number of electrons on the molecule is constant,
since all electrons that enter from the left leave to the right. The above two formulas are
the basis of most transport calculation for DNA so far. Some also include interaction
with vibrations or dephasing due to coupling to a reservoir [95-97|.
Another approach for the calculation of transport quantities is the formulation of a
master equation

<[H> NL]) )

d
EPS = %: PSIWSI,S - PsWs,s’

where P; is the probability to be in some (charge) state s and Wy ¢ is the rate for a
transition from state s to s’. In steady state %PS = (0. From this the current can be
easily obtained

I=—e¢ {Z PoWk, — PSWS%S,} .
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3.2 Transport in molecular systems

Here the index L indicates that only rates are considered that describe transitions where
the charge leaves to the left lead. Again some formalism has to be used that can describe
nonequilibrium situations when a a finite bias is applied. In the most simple case the
rates can be obtained from Fermi’s golden rule, which assumes that the transition from
an initial state ¢ to final state f is induced by a perturbation H’. The transition rate is
then given by

2
W= S 8B~ By

where initial and final states have the energy E; and EY, respectively. As one can see,
the rate from Fermi’s golden rule is second order in the perturbation. Master or rate
equations are usually applied to describe the charge transfer in chemical experiments [98,
99|, but they have also been successfully used to describe tunneling through microscopic
contacts and in quantum dots (e.g. [100]).

Tight-binding description

In the previous subsection we have introduced several approaches for the calculation of
observable quantities, in particular the current and the conductance. We assumed that
the Hamiltonian, describing the system under consideration, was known. Of course, in
general this is not the case. In particular, a solution to the full many-electron system is
out of reach of todays computational power. Thus, if a microscopic description of the
system is needed, an appropriate approximative scheme has to be applied.

The most common approximation in the description of complex systems is the so-
called tight-binding (TB) approach. In 1929 Bloch introduced the basic ideas of the TB
scheme, which approximates the many-electron wave function by a linear combination
of single particle ‘atomic’ wave function [101]. Throughout the years, the TB model was
successfully used, e.g. in band structure calculation of various solid state systems |102].
In particular, the tight-binding scheme is often used to model electronic properties in
molecular systems and we will also resort to it throughout this thesis. As a further
approximation, we will not consider atoms as elemental building blocks for our TB de-
scription but molecular orbitals that are extended over various atoms (for details see
Chap. 2 and 4). The essential difficulty of this scheme lies in the appropriate choice of
the TB parameters for the considered system.

By the nature of the approximation the TB model is in general discrete, performing
a sum over all atoms that are included in the description. The Hamiltonian is then
characterized by the atomic ‘onsite’ energies € of the specific atoms/sites and the overlap
of the various ‘atomic’ orbitals. In second quantization, where one no longer considers
wave functions, but occupation numbers of states, the Hamiltonian in the tight-binding
picture has the following form:

Hel = Z EZ'CL;[CLZ‘ — Z tijagaj .
( ]
Here ¢; is the onsite energy of site 7 and t;; is the so called hopping integral which

describes the overlap of wave functions between different sites ¢ and j. The inclusion of
interaction terms is formally straightforward.
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Chapter 3: General concepts

Electron-vibration coupling

When studying interaction with vibrations or phonons, usually the deviation from the
equilibrium position of the vibrating atoms or larger entities (DNA bases) is taken to be
small. Thereby, non-linear effects are neglected and the interaction Hamiltonian becomes
linear in the vibrational displacement. The resulting Hamiltonian for the vibration and
the electron-vibration coupling are

Hvib:Zhw BB,
01 Vlb_zz)\%ajaj BT _'_B )

where a labels the vibrational mode and Bl + B, is proportional to the vibrational
displacement. The coupling matrix element is given by

a ho ‘
g = ;Cna\/ o VR HR) ) (3.4)

where M, is the mass of the atom n with displacement coordinate R,. The matrix
element C,,, describes the transformation between atomic displacement and normal mode
a and H(R) is the electronic Hamiltonian for a given position of all atoms R [88].

The diagonal components of the interaction Hamiltonian (i = j) describe the polar-
ization of the structure when the site is occupied by a charge, which is reflected in a
change in onsite energy. Often calculations are restricted to just the diagonal compo-
nents, which is justified for small overlap between neighboring states ¢ and j. For many
situations this approximation is not justified. As e.g. Starikov showed, the non-diagonal
(from here on we will call them non-local) elements of some vibrational modes in DNA
are of the same order as the diagonal elements [50]. The non-local elements describe
the influence of vibrations on the probability for tunneling, which clearly changes if e. g.
the distance between the two involved sites varies. This phenomenon can be described
as vibration assisted tunneling. In this work we will discuss both diagonal (local) and
non-local electron-vibration coupling for the quasi-coherent case, but restrict us to the
local coupling for the situation of polaron hopping.
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4. Quasi-coherent transport

4.1. Definition of the Problem

As discussed in chapter 2, several experiments and theoretical considerations in the past
have stressed the importance of the environment and vibrations on the electron trans-
fer [38,52] and transport [62,103]. But experiments alone cannot explain the physics
underlying charge transport through DNA. For an detailed understanding and interpre-
tation of the experimental results, modeling and theoretical calculations are indispens-
able.

Numerous recent theoretical articles addressed the electronic transport properties of
DNA in a microscopic approach [67,95 97,104 110]. In these approaches the DNA is
typically described within a tight-binding model for the electronic degrees of freedom
with parameters either taken from ab-initio quantum chemistry simulations |35, 50, 111|
or motivated by a fit to experiments [96]. The variance of qualitatively different tight-
binding models is large, ranging from involved all-atomic representations to models where
each base pair is represented by only a single orbital. However, the vibrations have been
treated so far only within very simple models (if treated at all), where specifically only
a local site independent electron-vibration coupling has been taken into account [95,96].

While these approaches are sufficient to describe the transition from elastic (quasi-
ballistic) to inelastic (dissipative) transport they ignore the fact that the non-local
electron-vibration coupling strength can be comparable in magnitude to the local one [50].
As the non-local electron-vibration coupling leads effectively to a vibration-assisted hop-
ping, the proper inclusion of this coupling can be important for transport through DNA
with inhomogeneous sequences. Starikov calculated the change in onsite energy ¢; and
hopping integrals ¢;; using a PM3 semi-empirical quantum chemistry package for various
displacements of the DNA bases associated with certain vibrational modes of the DNA.
He observed that certain vibrational modes not only strongly change the onsite energy,
but also the hopping integrals, sometimes in the same order of magnitude [50].

In this chapter we formulate a minimum model for a DNA molecule coupled to left
and right electrodes, where the base pairs are represented by single tight-binding orbitals,
with energies differing for Guanine-Cytosine (GC) and Adenine-Thymine (AT) pairs, as
motivated in section 2.1. Figure 4.1 shows a schematic drawing of the situation under
consideration. The light blue rectangles to both sides represent left and right electrodes
which are coupled to the first and last base. The coupling is characterized by the spectral
densities I't,g. The DNA double-helix is unequivocally defined by the sequence of only
a single strand, since the second one is complementary. We always consider the strand
starting from left at the 5’ end and running to the 3’ end at the right, when describing
a certain DNA sequence.
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Chapter 4: Quasi-coherent transport

5'-C A C o T G-3'

Figure 4.1: Schematic drawing of a DNA helix (taken from [112]) and the tight-binding model
used to describe its electronic properties.

We adopt a situation of strong local electron-vibration interaction, where the vibra-
tional modes are also coupled to the surrounding environment (water or buffer solution).
This extension allows for dissipation of energy, leading to a continuous spectrum of the
vibration with a broadened resonance. We assume that the excited vibration is extended
over the whole DNA molecule. This does not allow small polaron formation (we will
discuss this limit in the following chapters). Transport retains (at least partial) coher-
ence, but there can be strong inelastic effects. We call this regime ‘quasi’-coherent, to
distinguish it from both a pure ballistic and the fully incoherent polaron hopping situ-
ation. An additional non-local coupling further changes the hopping between adjacent
molecular orbitals/tight-binding sites and allows for vibration assisted tunneling.

4.2. Model and technique

In this section we explain, how DNA coupled to biased electrodes is modeled in the
‘quasi’-coherent regime, as introduced before. We will then dwell on the techniques we
used to obtain measurable quantities like the current.
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4.2 Model and technique

4.2.1. Hamiltonian

From the discussion above, we arrive at the Hamiltonian H = Hy+ Hyiyp, + Ha—vi, + Hy, +
Hg + HT,L + HT,R + Hyatn with

Hel = Z eiazai — Z tijajaj
) <ij>
HTJ_J + HT,R = Z [tfcirai + tf*azcw]
v,
Hvib = Z waBJ;Ba

«

Ho i, = Z Z Noala;(B, + BY)
+3 S (Bt BL). (1)

a <ij>

The index r = L, R represents left and right electrode. The term H, describes the
electrons in the molecular chain with operators aj.,ai in a single-orbital tight-binding
representation with onsite energies €; of the base pairs and hopping ¢;; between neigh-
boring base pairs. As mentioned above, both onsite energies and hopping depend on
the base pair sequence, e.g. the onsite energy of a Guanine-Cytosine base pair differs
from the onsite energy of a Adenine-Thymine base pair. As explained in Sec. 2.1, for the
hopping matrix elements ¢;; we adopted the ab initio results, from Siebbeles et al. |35]
denoted in table 2.1. For the onsite energies of guanine and adenine, we resort to the
ionization potentials of these bases, i.e. e = 7.75eV and €5 = 8.26 eV, but actually only
the differences between these two energies (eq — e = 0.51eV) and to the Fermi energy
Er matter.

The terms Hy g refer to the left and right electrodes. They are modeled by non-
interacting electrons, described by operators CZL/R, ¢y R, With a flat density of states p,
(wide band limit). The chemical details of the coupling between the molecule and the
electrodes are not the focus of this work. For our purposes it is fully characterized by
Hr1, + Hp g with tunneling amplitudes assumed to be independent of the type of base
pair 7 and the quantum numbers of the electrode states v. The left lead is coupled only
to the first base pair and the right electrode is coupled only to the last base pair. The
coupling strength is then characterized by the parameter T™® = 27plR[tLR|2 " which
leads to a level broadening of the base pair orbitals coupled to the electrodes.

The vibrational degrees of freedom are described by H,;,, with bosonic operators B,
and BL for the vibrational mode with frequency w,. Hq_.i, couples the electrons on the
molecule to the vibrational modes, where Ay and A;; are the strengths for the local and
non-local electron-vibration coupling, respectively. Note that the vibration modes are
extended over the entire DNA molecule and that the coupling of the modes to electrons
is assumed independent of the base pairs involved. This retains a ‘quasi’-coherent trans-
port situation even in the strong coupling limit. The strength of the electron-vibration
coupling for various vibrational modes has been computed in Ref. [50] for homogeneous
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Chapter 4: Quasi-coherent transport

dimers and tetramers of AT and GC pairs. Here we consider also inhomogeneous se-
quences, for which the electron-vibration couplings are not known, but we assume that
they differ not too much from the values for homogeneous sequences. As an exemplary
mode we chose the ‘stretch’ mode (see Fig. 4.2) of Ref. [50|, which shows relatively strong
coupling to both electronic parameters for AT and GC base pairs. The values for the

Z
A

Figure 4.2: Schematic drawing of the vibrational stretch mode of two DNA bases. The DNA
strand runs along the z-direction. Picture according to [50].

stretch mode obtained by Starikov for the vibrational frequencies w and matrix elements
in Eq. 3.4 are given by (using g;; = (i| Vg, H(R) |5))

hwar — 0.011eV hwage — 0.016eV
gi(AT)  — 0.1104eV/A g:(GC)  — -0.2349eV/A
9:(AT) = 0.0820eV/A 9;(GC) = -0.1779eV/A .

From this one can estimate the local and non-local electron-vibration coupling by assum-
ing a reduced mass of 118.92g/mol for the AT and 122.69 g/mol [50] for the GC base
pairs

-0.008 eV

Xii(AT)
A -0.006 eV .

0.004 eV i (GC)
i (AT) A

~ ~
~ ~
~ ~
~ ~

We restrict the non-local coupling terms to nearest neighbors, A\;; = A\10; j=;+1 and for
our model we take A\g and A; as parameters, independent of the base pairs involved,
for which we choose values in rough agreement with the above estimates, i.e. Ao; ~
1 — 10meV. This allows for a qualitative discussion of the effects that arise from the
electron-vibration coupling in DNA.

The vibrations themselves are coupled to the environment, the microscopic details of
which do not matter. We model it by a harmonic oscillator bath H,,, whose relevant
properties are summarized by its linear (‘Ohmic’) power spectrum (or spectral function)
up to a high-frequency cut-off w, [113|. The cut-off is necessary for convergent results and
is physically equivalent to the Debye frequency in a solid state system. The coupling of
the vibrations to the bath changes the vibrations spectra from discrete (Einstein) modes
to continuous spectra with a peak around the vibrational frequency. This can be shown
explicitly when calculating the polarization of the vibration (the vibrational self-energy
due to coupling to the bath) [114]. Physically, the coupling to a bath allows for dissipation
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4.2 Model and technique

of electronic and vibrational energy. This dissipation is crucial for the stability of the
molecule in a situation where inelastic contributions to the current dissipate a substantial
amount of power on the molecule itself.

We only consider a single vibrational mode when performing the numerical calculations,
since we are mainly interested in the physics involved when including non-local electron-
vibration coupling. The vibrational mode with resonance frequency wg coupled to the
bath is then described by a spectral density

Di(w) = — i/dtei“’tﬁ(t) ({B'(t) + B(t), B' + B})
1 ni(w) B ni(w)
_ ( : ) | (4.2)

T\ (w—w)+mw)? (w+w)?+n(w)?

with a frequency dependent broadening n(w) which arises from the vibration-bath cou-
pling. For the 'Ohmic’ bath with weak vibration-bath coupling and cut-off w. we consider
n(w) = now f(w. —w), with ny = 0.05eV. Mathematically the crossover from the discrete
vibrational modes to a continuous spectrum of a single mode is done by substituting

>, — [dwD(w).

4.2.2. Lang-Firsov transformation

In order to treat the limit of strong local electron-vibration coupling we perform the
Lang-Firsov unitary transformation [79,86] on the Hamiltonian H. The transformation
was developed for the description of small polarons (see Sec. 3.1). Since in this chapter we
assume a global vibration, i.e. all base pairs ‘vibrate’ together in phase, we do not have
small polaron formation, but still can describe inelastic effects arising from the strong
coupling to the vibrations, which would not arise in a direct perturbative treatment in
the electron-vibration coupling. The transformation is defined by the generator function

S.

T SHS . o ﬁT, _ Bt
H=e"He™”; S= Zwaaia,[Ba Bl .

e}

We introduce transformed electron and vibration operators according to
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Chapter 4: Quasi-coherent transport

where the operator y incorporates the interaction with the vibrations and is crucial for
the description of the inelastic effects. The new Hamiltonian reads (with yx™ = xTx = 1)

H= Z(EZ — a la; — Z t,]a a;
7 <ij>
+ Z [t: ira'zx + tr*aTXTCVri| + HL + HR

T’V’l

+§:%BZ3+§:§:Ma% o+ Bl) + He . (4.3)

a <ig>

where the Hamiltonian

SO IDIE VRTINS B B) Bk IRyt

<ij> « <ij> k «

describes an effective vibration mediated electron electron interaction which will be ne-
glected throughout this chapter. This is a reasonable approximation for the low charge
carrier (hole) density in molecular systems [76].

The purpose of the Lang-Firsov transformation is to remove the local electron-vibration
coupling term from the transformed Hamiltonian in exchange for the transformed oper-
ators and the so-called polaron shift

)\2
w

A= K/de()

The polaron shift or reorganization energy describes the lowering of the onsite energy
of the electron due to the interaction with the vibration. Since we couple the electronic
degrees of freedom to a global vibration, A is constant for all base pairs. The non-local
electron-vibration coupling term, however, remains unchanged and has to be dealt with
in a different way than the local term. There is an additional electron-vibration coupling
due to the operator y in the transformed tunnel Hamiltonian from the leads. In this study
we neglect effects arising from this additional coupling. This is a valid approximation for
'R > )y, the usual approximation taken in the literature [96,114].

Green functions

In this section we consider the above Hamiltonian and use an approximative scheme to
describe the situation of finite bias. A more rigorous treatment will be introduced in
Appendix D.

For the calculation of physical quantities like current and density of states we use
the Green function formalism as introduced in the previous chapter. We introduce the
retarded electron Green function (see App. A).

(1) == i0() ({an®x(0),alx' }) (45)

where the thermal average is taken with respect to the transformed Hamiltonian H,
which does not explicitly include the local electron-vibration interaction. By applying
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the equation of motion (EOM) technique we can derive a self-consistent calculation
scheme for G}5'(¢). The EOM technique for an interacting system generates correlation
functions of higher order than initially considered, resulting in a hierarchy of equations
that does not close in itself. Therefore, an appropriate truncation scheme needs to be
applied. In our case, we close the hierarchy on the first possible level neglecting all higher
order Green functions beyond the one defined above. In particular, our approximations
are perturbative to first order in A, restricting our study to relatively weak non-local

electron-vibration coupling strengths.

Equation of motion

The equation of motion for an operator in the Heisenberg picture is given by

d ,

%ai(t) =i[H, a] (1) .

From the above expression the behavior of the time evolution of the operator can be
obtained. This is the basis of the equation of motion technique. Before applying it, we

separate the retarded electron Green function into two parts,
Gt = i) ({an®x(®).alx'})
= —i6(t) (ar(O)x®alx") =i0(t) {alxan(t)x(1)) -

J J
~~ ~~

1 2
al (@) G (1)

This is useful, because for G,(:l)(t) and G,(fl) (t) self-consistency equations can be derived
via the equation of motion technique (EOM), but the equation of motion applied to
the retarded Green function itself leads to an equation containing not only the retarded
Green function, i.e. a coupled equation.

The expressions of the commutator of all fermionic operators with the Hamiltonian

(Eq. 4.3) can be found quite easily, whereas the explicit derivation of [ﬁ[,x} is more

involved and therefore shown in App. B. With these, we obtain the following expression
for the equation of motion of G,(:l)(t),

>, {(Z% — )0k + tkj] a3 (@)

J

— 5(t) <akaj > ERTIONN <ak(t)x(t)aj X*>

_ Z-g(t){ > <aj(t) [B.(t) + Bl(t)] X(t)alTxT>

j#ka
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and a similar relation for G,(fl)(t),

Z {(l% — €x)0jk + tka} G (t)
a, ak> +1i0(t)A <alTXTak(t)X(t)>

{Zm alxla;(t) [B(t) + BI(1)] x(1))

J#k

—if(t
g [< I ax(®)B(0)x(1)) + (el xlax(Ox(0)B' (1))
Z = )\U Ao <alTXTak(t)aZ(t)aj(t)x(t)> + th* <alTXch,(t)> } . (4.7)

v,r

To determine expressions like <aj (t)Ba(t)X(t)alTXT> and similar higher order correlation

functions one would have to compute the EOM for these, too. This leads to correlators
of ever higher order, so we truncate the hierarchy and approximate them by assuming,
e.g. for the expression

(a;()Baltyx(alx') = Falt) {as(Ox(Dalx") . (48)

The explicit expression for the functions F,(t) and their derivation for the various cor-
relators in Eqgs. 4.6 and 4.7 can be found in appendix B. The approximative scheme
involves a factorization of vibrational and electronic operators in the correlation func-
tions, which is exact for vanishing electron-vibration coupling. Since the strength of the
electron-vibration coupling in H is proportional to \;, this approximation is valid for not
too large values of \;.

Expressions like <alTxTak(t)aZ(t)aj(t)x(t)> are treated in a mean-field like manner,

where we neglect correlations arising from the effective interaction of charges on different
bases due to non-local electron-vibration coupling:

(ax(t)al (B)a;(O)x(alx")
~ (a®a(®) (aOx®alx’) = (a;(al(®)) (an®x(B)alxT)

This approximation is based on the same principle as the neglect of H, in the transformed
Hamiltonian, the small charge density in DNA.

The correlators <c£(t)ajx*> and <alTXTc’;(t)> in Eq. 4.6 and 4.7, respectively, arise from

the coupling to the electrodes and describe the according self-energy. The calculation of
these expressions can be found in Appendix C.
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After Fourier transformation and crossover to the continuous vibrational spectrum (see
Eq. 4.2) we obtain

S TIE =)o + tiy] GV (E)

J

— (ara]) — AGH (B +Zz;‘jLGﬂ +Zzgj Ra(E)

—l—/de(w){ — Z <a]a > QAZAOG )+ Z <CLkCL > 2>\Z)\0Gﬂ (E)

<iy> <t5>

+i}2 [/dteZEtF (t,w) } +Z A’“’AO U dte’™ [Fy(t,w) — 1] Gﬁ)(t)] }

(4.9)

and
STIE — e)d + ] G (E)
J

— (alar) - AGY(B) + Z Sl GE (B) + Z SERGR) ()

+/de(w){ - Z <a]a > Q)ZAOG )+ Z <aka > 2>\Zi>\0Gﬂ (E)

<ij> <ij>

f [ / dte’ P Fy(t, w) } +y A‘”AO [ / te’t [Fy(t, w) — 1] Gﬁ)(t)} } ,

JF#k

where the electron-vibration interaction is described by the two functions

Fi(t,w) = (Nw)+1)e™ — N(w)e™
Fy(t,w) = Nw)e ™ — (N(w)+1)e“!
with the Bose function N(w).

In the wide band limit the retarded right and left electrode self-energies are constant
and purely imaginary,

E;&]cgt,R _ ZtR* rot :—ZF 5]N5kN
et = Ztﬁ*g;eg = —il"0j10p1 -

We can now identify

(E — €k>5jk + tjk + ZO [Gmt( ):| "

jk ’

33



Chapter 4: Quasi-coherent transport

where Gi*(E) is the retarded Green function for the isolated molecule without electron-
vibration interaction. The validity of this equation can easily be seen by computing
the equation of motion for G™(t) for the isolated molecule without electron-vibration
coupling.

In the equations above, many factors of the kind <ak azf> appear. The exact value for

these is: <ak al> = f ngG . In order to have a decoupled system of equations

we approximate these by <ak alT> o~ <ak alT> _, where lffol is the Hamiltonian for the
H Hcl

isolated molecule (compare Eq. 4.3).

With all the above approximations we calculate the retarded Green function by itera-
tion of the self-consistency equations Eq. 4.9 and 4.10. For a molecular DNA chain with
N bases the density of states then reads

_ L ZIm{Gret

We evaluate the current using the relation be Meir and Wingreen 93] as introduced in
Section 3.2.

=" [ae(e [l — (] (G(0) ~ ()}
+tr { [~ =T G<(e)}) : (4.11)

where fi,(¢) and fr(€) are the Fermi distributions in the left and right lead, respectively.
To compute the ‘lesser’ Green function G<(€), we use the relation 79| (see also App. A)

G<(6) = G™(e) [V + TR + 55,(e)] G (e).

While the lesser electrode self-energies, such as X<, can be determined easily within
the above approximation for any applied bias, we have to approximate the behavior of
the lesser self-energy due to the vibrations X3, . Extending the fluctuation-dissipation
relation of the equilibrium situation we write

Sin(€) = —fer(e) 2V () — D3 (e)]

with an effective electron distribution feg = [fr(€) + fr(€)]/2. The expressions for
yret 324V are obtained from the retarded Green function (see App. A) calculated for
a given bias as explained above. Combining all terms we obtain a concise expression for

the current, which can be separated into ‘elastic’ and ‘inelastic’ parts as

1= [ de [Ta(0) + T ] [e0) — fu(e)]
where we identify the ‘elastic’ and ‘inelastic’ transmission functions [115,116]
Tu(e) = 2tr {TRG™ (e)T"G*(€) } (4.12)
Toa(e) = S (T + TG (0) [~ (0] (). (113)
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Note that also the ‘elastic’ transmission depends on the effects of vibrations, since the
self-consistent evaluation of the Green function is performed in the presence of vibrations
and environment. The inelastic contribution can also be termed ‘incoherent’; as typically
the electrons will leave the DNA at a lower energy than they enter it.

4.3. Results

In this section we analyze the effect of vibrations on the electronic properties of DNA| i.e.,
we determine the density of states, the transmission and the current. As explicit examples
we consider homogeneous and inhomogeneous DNA sequences of 26 base pairs in the
presence of a single vibrational mode as described in the previous section. For simplicity,
we couple the left and right electrodes symmetrically to the DNA, so ' = I'f =T, and
we choose I' = 0.1eV. We further assume that the bias voltage V}, drops symmetrically
across both electrode-DNA interfaces.

4.3.1. Homogeneous Poly-(GC) DNA

For a homogeneous DNA consisting of 26 Guanine-Cytosine base pairs we obtain a band-
like density of states displayed in Fig. 4.3. With the fairly small hopping element of
0.119eV (see Tab. 2.1) for this finite system one can still resolve the peaks due to
single electronic resonances, especially near the van-Hove-like pile up of states near the
band edges. All states are delocalized over the entire system. The inset displays the
elastic transmission, showing that the states have a high transmission of T, ~ 0.5, with
the states at the upper band edge showing the highest values. Both density of states
and elastic transmission show a strong asymmetry, which is a direct consequence of the
non-local electron-vibration coupling in this model.

To further elucidate this connection we take a closer look at the upper and lower
band edge of the density of states (see Fig. 4.4). Without electron-vibration coupling
(solid curve) we see the electronic resonances of equal height, positioned at the energies
corresponding to the ‘Bloch’-like states of this finite size tight-binding chain. If we
include only local electron-vibration coupling (dashed line), vibrational satellite states
appear, and the spectral weight of the original electronic resonances decreases, consistent
with the spectral sum rule. Note that the displayed vibration satellites are not satellites
of the displayed electronic states, but emerge from other states at higher and lower
energies. Indeed the difference in peak positions is not equal to hwy. Inclusion of the
non-local coupling A; shifts the original electronic resonance positions (dashed-dotted
line). In the present example, with positive sign of \;, the resonances are shifted to the
‘outside’, corresponding to an effective increase in bandwidth; for the opposite sign of A\,
the resonances shift to the ‘inside’. Furthermore, a distinct asymmetry of the resonances
is observed, i.e. the upper band edge states have a larger peak height than the lower
band edge states. This asymmetry in the density of states comes with a corresponding
asymmetry in the elastic transmission, see Fig. 4.3 for the overall view.

As shown in Fig. 4.5 the coupling to vibrations strongly increases the zero-bias con-
ductance at low temperatures, whereas at high temperatures the conductance slightly
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Figure 4.3: Density of states and transmission of Poly-(GC) with 26 base pairs and the follow-

ing parameters: base pair onsite energy e = —0.35eV, Fermi energy Er = 0€eV,
vibrational energy hwg = 0.01 eV, cutoff Aiw, = 0.03 eV, linewidth I' = 0.1eV and
room temperature kT = 0.025eV. The strong asymmetry of the curves with
respect to the band center is a consequence of the non-local electron-vibration
coupling A;.
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Figure 4.4: Density of states of Poly-(GC) with 26 base pairs and parameters as in Fig. 4.3.
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The solid line shows the purely electronic resonances. Inclusion of only a local
electron-vibration coupling Ao reduces the weight at the original electronic reso-
nance in favor of ‘vibrational satellites’ (dashed line). The addition of a non-local
electron-vibration coupling A1 (dash-dotted line) introduces shifts of the resonance
peaks to the ‘outside’ (changing the effective band width) as well as a strong asym-
metry in the height of the resonances.
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Figure 4.5: Zero-bias conductance and I-V-characteristics for Poly-(GC) with 26 base pairs
and parameters as in Fig. 4.3. The inclusion of vibrations increases the zero-bias
conductance at low temperatures (kg7 roughly below fwg) by several orders of
magnitude. At room temperature, however, the zero bias conductance is slightly
reduced. Inset: the I-V-characteristics shows a ‘semiconducting’ behavior at room
temperature. The non-local electron-vibration coupling A; increases both the non-
linear conductance in the gap and around the threshold, leading to a slightly
enhanced current.

decreases (dashed and dash-dotted line). This effect has been observed before, e.g. in
Ref. [95]. At low temperatures, the conductance is increased since the density of states
at the Fermi energy is effectively enhanced due to (broadened) vibrational ‘satellite’ res-
onances. The transport remains ‘elastic’, i.e. electrons enter and leave the DNA at the
same energy (first contribution to the current Eq. 4.12). At sufficiently high tempera-
tures, however, the back scattering of electrons due to vibrations reduces the conductance
in comparison to situation without electron-vibration coupling (solid line).

The inset of Fig. 4.5 shows a typical [-V-characteristic for the system. A quasi-
semiconducting behavior is observed, where the size of the conductance gap is determined
by the energetic distance of the Fermi energy to the (closest) band edge. After crossing
this threshold, the current increases roughly linear with the voltage until at larger bias
it saturates when the right chemical potential drops below the lower transmission band
edge. Small step-like wiggles due to the ‘discrete’ electronic states are visible at low
temperature (not shown), but are smeared out at room temperature. The current is
dominated by the elastic transmission, as expected for a homogeneous system.

The non-local coupling has a quantitative effect on the nature of the I-V-curve. The
zero bias conductance as well as the non-linear conductance around the threshold are
increased by close to a factor 1.2. This increase is directly related to the enhancement
of the density of states and elastic transmission around the upper band edge (see Figs.
4.3 and 4.4).
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Figure 4.6: Density of states of an inhomogeneous DNA with sequence (5-CAT TAA TGC
TAT GCA GAA AAT CTT AG-3’). We chose the following parameters: GC onsite
energy e = —0.35€eV, AT onsite energy e4 = —0.86 ¢V , Fermi energy Er = 0eV,
vibration energy hwg = 0.01eV, cutoff hw. = 0.03 eV, linewidth I' = 0.1eV and
room temperature kpT = 0.025eV. The density of states is fragmented into
‘bunches’ of strongly localized states with very low elastic transmission.

4.3.2. Inhomogeneous DNA

Inhomogeneous DNA sequences show a transport behavior which differs significantly
from that of the homogeneous Poly-(GC) sequence. As a specific example, we analyze
the sequence 5’-CAT TAA TGC TAT GCA GAA AAT CTT AG-3’ (plus complementary
strand), which has been investigated experimentally by Porath et al. |65]. The density
of states is displayed in Fig. 4.6. Rather than traces of bands it now shows discrete
‘bunches’ of states due to the disorder in the sequence. All states are strongly localized,
extending over at most a few base pairs [108|. The right-most (largest energy) bunch of
states is due to the GC base pairs. Two of these GC pairs are the only base pairs that
are directly coupled to the metallic electrodes. Note that the equilibrium Fermi level is
set at Er = 0eV, roughly 0.35eV above these states. The first states with mostly AT
character are located around —0.7¢eV.

As to be expected the elastic transmission through these localized states is extremely
low. The largest contribution to the elastic transmission stems from the AT-like states
around an energy €4 = —0.86¢eV (note that the considered sequence is AT rich). But
even these states have an elastic transmission of less than 107! for the parameters we
use. Consequently, the ‘elastic’ quasi-ballistic transmission of electrons is completely
negligible for the considered sequence.

In spite of the localization of the electron states, a rather significant current can be
transmitted, as displayed in Fig. 4.7. It is due to the inelastic contributions to trans-
port, where electrons dissipate (or absorb) energy during their motion through the DNA.
Roughly speaking, the transported electrons excite the vibrations which in turn either
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dissipate their energy to the environment or ‘promote’ other electrons, thus increasing
their probability to hop to neighboring but energetically distant base pairs. This inelastic
transmission strongly depends on the specific states (in contrast to the band-like trans-
mission for the homogeneous sequence). As a consequence, the inelastic transmission of
different states can differ by several orders of magnitude. Together with the bunched
density of states this leads to the step-like behavior for the current displayed in Fig. 4.7.
The first step centered around V}, ~ 0.7V roughly corresponds to states with GC charac-
ter, whereas the second step at 1.4V corresponds to hybridized states with mixed AT-GC
character. Here, the GC states display a larger inelastic transmission as can be seen from
the large non-linear conductance peak around V, ~ 0.6 — 0.7V (see inset of Fig. 4.7).

The non-local electron-vibration coupling A; for this sequence leads to qualitative
change of the [-V-characteristics, depending on the details of the nature of the states
and therefore explicitly on the DNA sequence. The current on the lowest bias plateau
is increased relative to the case with only local electron-vibration coupling, although the
GC states do barely shift towards the Fermi energy. However, the inelastic transmission
of the states is slightly increased (see inset), leading to an increased current on the first
plateau (dashed line).

In contrast, the conductance due to states with mixed AT-GC nature is much reduced
(almost by a factor of two, see middle peak in the inset of Fig. 4.7) which leads to a
smaller increase of the current for the middle step. Obviously, the transmission of these
mixed states is reduced by the ‘vibration assisted electron hopping’. On the other hand,
the last step at ~ 2V is almost unaffected.

While the changes of the I-V-characteristics due to non-local electron-vibration cou-
pling are relatively small for the present sequence and model parameters, the observed
sensitivity of the inelastic transmission suggests that other sequences could display much
larger effects. Furthermore, quantum chemistry calculations [50| suggest that the local
and non-local electron-vibration couplings can be of the order of ~ 10meV, i.e. larger
than what we considered here. Inhomogeneities in the electron-vibration coupling, not
covered in the present calculation, might have a further impact.

The DNA sequence we considered was investigated in transport experiments, and we
should compare the experimental and theoretical results. As some important factors
are still not well determined, a quantitative comparison is not feasible. However, we
observe both in experiment and theory roughly a ‘semiconducting’ /-V-characteristics
with (sometimes) steplike features. The size of the currents is roughly comparable, of
the order of ~ 80nA at a bias of V, = 1 V. As the choice of the position of the Fermi
energy defines the size of the ‘semiconducting’ gap, this gap could be adjusted to fit
the experiment. On the other hand, the value of the current for this sequence (with
parameters derived from quantum chemistry calculations) can not be simply scaled by
changing a single ‘free’ parameter like the electrode-DNA coupling I'.

For the case of the homogeneous sequence, the current at a given bias (say, at V,, = 1V)
grows monotonically with increasing I' (as long I" is smaller than the hopping amplitude
tij), as is expected from quasi-ballistic Landauer-type transport. In contrast, for the
inhomogeneous sequence, the current is a non-monotonic function of I', see Fig. 4.8. In
particular, the current at the first plateau (at V, = 1V) initially grows as we decrease
I’ from the value used in the above figures (I' = 0.1eV), up to a point at which the
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Figure 4.7: I-V-characteristics and differential conductance for an inhomogeneous DNA with

sequence (5-CAT TAA TGC TAT GCA GAA AAT CTT AG-3’). Parameters are
the same as in Fig. 4.6. The inclusion of a non-local electron-vibration coupling
A1 leads to changes in the conductance, depending on the nature of the relevant
state.
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Figure 4.8: Current at a bias of V3, = 1V as a function of electrode-DNA coupling I' for the
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inhomogeneous DNA with sequence (5-CAT TAA TGC TAT GCA GAA AAT
CTT AG-3’). Other parameters are the same as in Fig. 4.6. The current is a non-
monotonous function of I' and peaks around a value I';,,, where the imaginary
part of the vibration self energy X, is of the same size as I'.
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imaginary part of the vibration self energy X;, is of the same size as I'. This happens
around I',,,. ~ 0.01eV. The current at I',,,, is of order of ~ 500nA. If I' is decreased
further, the current drops rapidly from the maximal value.! On the other hand, if T
is increased above the value I' = 0.1 eV, the current also drops initially, before at very
large I' quasi-ballistic transport becomes dominant and the current increases again (not
shown in the figure).

Summarizing these results, we conclude that for the given model parameters, i.e. for
values of I' in the large range 1 —200 meV, likely to be realistic for present-days transport
experiments in DNA | the current at the first plateau lies in the range of 50 — 500 nA.

4.4, Summary

To summarize, in this chapter we have presented a technique that allows the compu-
tation of electron transport through short sequences of DNA, including local and non-
local coupling to vibrations and a dissipative environment. Using an equation-of-motion
approach we identify elastic and inelastic contributions to the current. For homoge-
neous DNA sequences, the transport is dominated by elastic quasi-ballistic contributions
through a band-like density of states (Fig. 4.3,4.4), which display an asymmetry due to
the non-local electron-vibration coupling. The coupling to vibrations strongly enhances
the zero-bias conductance at low temperatures. The current at finite bias above the
‘semiconducting’ gap, however, is only quantitatively modified by the non-local electron-
vibration coupling (Fig. 4.5). For inhomogeneous DNA sequences, the transport is almost
entirely due to inelastic processes, the effectiveness of which is strongly sequence depen-
dent (Fig. 4.6). For the considered example sequence the non-local electron-vibration
coupling qualitatively modifies the I-V-characteristics (Fig. 4.7). We also point out that
the current through inhomogeneous DNA sequences depends non-monotonically on the
electrode-DNA coupling I" (Fig. 4.8).

!Note that our assumption I' >> )\ breaks down at some point. Nevertheless, the decrease of the
current at very small I' makes physical sense.

41






5. Incoherent polaron hopping:
Fermi's Golden Rule

5.1. Definition of the Problem

In the previous chapter we have studied the influence of vibrations on the electronic
transport in DNA when some coherence of transport is retained and we do not have a
self-trapping of the electrons due to interaction with the vibrations. With this transport
mechanism extremely high current as measured in the groups of Porath or Tao [64,65| are
explainable. On the other hand, many experiments and ab initio calculations indicate
that small polarons are formed in DNA, as argued in Chapter 2. The actual size of
the polaron is still controversially discussed, but it is at most a few bases, maybe even
restricted to a single base. In this limit, the electrons become localized and transport is
a sequence of incoherent hopping processes. The interaction with vibrations is on one
hand the source of localization, but on the other hand it provides the necessary energy
to overcome the barriers posed by the localization.

We model the electronic properties of the DNA just as explained in the previous Sec-
tions 4.1 and 2.1. In contrast to the previous chapter, where we considered vibrations
extended over the whole molecule, we now consider local vibrations to allow the formation
of small polarons. We therefore consider that every base pair ¢ can vibrate independently
from the other base pairs, i.e. every site is connected to independent oscillators. The
vibrational frequency w,; and the strength of the local coupling to the charge density
(here we only consider diagonal electron-vibration coupling terms) A,; can in general
depend on the vibrational mode o and on the base pair ¢ that is vibrating. Throughout
this chapter we will restrict ourselves to one vibrational mode per base pair.

We will evaluate the rates for polaron hopping in the spirit of what is known as the
P(E)-theory for electron tunneling in a dissipative environment modeled by a bath of
oscillators [117-119|. Here, instead of a bath of oscillators we have for each DNA base
pair one localized vibrational mode which, however, is broadened due to the coupling to
a dissipative environment.
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Guanine Cytosine
(>

Figure 5.1: Ball-stick representation of a guanine-cytosine base pair. The labeled bonds dj,
do and d3 are distorted the most, when the base pair is charged. The charge is
mainly localized on the guanine base (not shown). The picture is taken from [47].

5.2. Model and technique

5.2.1. Hamiltonian

To describe the situation discussed above, we consider the Hamiltonian H = Hy + Hy, +
Hg + Hyy, + Hrr + Hyip + He—vib + Hpan, with

Hol = Z EZ'CL;[CLZ' — Z tijajaj

i <1y>

HT,L + HT,R = Z |:tTcszrai + tT*a;'rcur:|

v,ri

1
Hea, = Y hw (BZBZ-+§)

Hy_vy = Y Adla; (Bi+B¢T) : (5.1)

The first term Hg describes the electrons in the DNA chain just as introduced in the
previous chapter, with onsite energies and hopping integrals for next-neighbor hopping
taken from ab initio calculations. Also, the terms Hy, g(not written explicitly, see Chap. 4)
with = L, R refer to the left and right electrodes, with a flat density of states p. (wide
band limit). The details of the coupling between the DNA and the electrodes are not
the focus of this work. For our purposes it is sufficiently described by Hrp, + Hr g with
tunneling amplitudes assumed to be independent of the base pair ¢ and the quantum
numbers of the electrode states v. The coupling strength is then characterized by the
parameter TR oc p |t1R|2.

The vibrational degrees of freedom of base ¢ are described by H,,, with bosonic opera-
tors BiT and B; for the mode with frequency w;. The coupling of the electrons on the DNA
to the vibrational modes is described by H_.i,, where ); is the local electron-vibration
coupling strength. Here we only consider the so-called stretch mode with frequency
hw; = 16 meV for a GC base pair and Aw; = 11meV for an AT base pair, which cou-
ple strongly to the electrons, as shown by Starikov [50]. Furthermore, Alexandre et al.
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showed that in the formation of a polaron by placing an additional charge on a guanine-
cytosine base pair, the bonds with the strongest distortion, where the hydrogen bonds
(labeled dy and d3 in Fig. 5.1) between G and C [47]. The stretch mode is exactly the
vibrational mode which changes this bond distance (see also Fig. 4.2).

The coupling strengths are chosen in such a way that the reorganization energy or
polaron shifts fit the values extracted from experiments and listed by Olofsson et al,
Ax =0.18eV and Ag = 0.47eV [46]. These values probably underestimate the effect of
the solvent on the reorganization energy, but give an idea of the magnitude of energies
involved in the polaron formation.

The vibration of each base pair 7 is coupled to the local environment, H;paen, the
microscopic details of which do not matter. Just as explained in the previous section, this
changes the vibrations’ spectra from discrete modes w; to continuous spectra, different
for both types of base pairs,

Di(w) = — i / dte'6(t) ({BI(t) + B(t). B + B}
1 (( (@) - mi(w) ) , (5.2)

T\ (W —w)? Fmw)? (Wt w)? + (W)’

with frequency dependent broadening n;(w). [115] The actual form of 7;(w) depends on
the properties of the bath. A reasonable choice which assures also convergence at low and
high frequencies is n;(w) = no z—z O(w. —w) with g = 0.5 meV and a cutoff of the order of
hw. = 0.045meV. The couplinlg to the bath introduces the dissipation, which is crucial
for the stability of the DNA molecule in current carrying situations where substantial
amount of heat can be produced in the DNA.

5.2.2. Lang-Firsov Transformation

In order to describe the system with strong electron-vibration coupling we first apply
the so-called polaron or Lang-Firsov unitary transformation just as explained previously,
but now considering the local nature of the vibrations,

H=¢ He™d .

The generator of the Transformation is given by

S:—th—:ajai [Bi—BJ] )

We introduce transformed electron and vibrational operators,

a; = ;X

. \;

and polaron operators

i
;= L (B;— BD| .
X exp {hwi( z)}
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Chapter 5: Incoherent polaron hopping: Fermi's Golden Rule

Operators y; with different indices ¢ act on different vibrational states, therefore they
commute at all times. In terms of these quantities the Hamiltonian reads

H=H,+ H' (5.3)
. 1
_ T i
HO = ;(62 — Ai)aiai —+ ; hwl (BZ BZ + 5)
+ Hy, + Hy (5.4)
H == tyalxlax (5.5)
<ij>
+ Z [trciraixi + t’“*ajxjcw] (5.6)
, y
[ o)zt 57

In contrast to the Hamiltonian H (Eq. 4.3) of the previous chapter, here no effective
electron electron interactions ﬁm arise. The reason for their occurrence was, that we
considered a vibration extended over the whole molecule, so electrons could ‘interact’
with each other via the vibration. The local nature of the vibrations considered here
does not lead to such an interaction. From the definition of the polaron shift (Eq. 5.7)
we can calculate the electron-vibration coupling strengths assuming polaron shifts and
vibrational frequencies listed above

Ag = 0.086eV (5.8)
Ax = 0.045¢eV .

A perturbative treatment of the Hamiltonian H would not make sense, due to the
strong electron-vibration coupling strengths, but after the Lang-Firsov transformation
we can proceed studying the effect of strong electron-vibration coupling in perturbation
theory in H’. The small parameters are tij/A; and t"/A;, which allows truncating the
perturbation expansion at lowest non-vanishing order in these parameters. From here on
we will use the shifted onsite energy €; = ¢; — A,; in all expressions.

Rate equation and current

As remarked in Sec. 3.1, the small-polaron theory covers two limits of transport. At
sufficiently low temperatures polarons form bands with bandwidth

A\ hw
W ~ Wy exp [— (a) coth (2kBT)

where W, denotes the electronic bandwidth without vibrations. |[83] At high temperatures
the bandwidth W decreases exponentially as the increasing number of multi-phonon
processes destroy the coherence, and the band picture ceases to be valid. Transport
is then accomplished by a sequence of incoherent polaron hops. A rough estimate for
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5.2 Model and technique

the cross-over temperature is kT ~ hw [41n (\/hw)]”". [80] For the electron-vibration
coupling strengths of interest in the present problem, room temperature is already well
above this limit.

To describe room-temperature transport it is therefore sufficient to consider a rate

equation for the diagonal elements of the single-particle density matrix, i.e. the oc-

cupation numbers of the sites p(t) = <azf(t)al(t)>. These occupation numbers evolve

according to a master equation with transition rates which we obtain in an expansion
in H' from Fermi’s Golden Rule. If we consider the rate for a hopping process from
base pair (site) [ to m, we have to take into account that also the vibrational states may
change. If the initial and final states of the coupled system are denoted by I and F', the
rates are

Wlm 2W|tm|2}<F‘a Xmale}IM 5EI_EF)

In the following the vibrational states are not explicitly considered. Therefore, we trace
out the vibrational degrees of freedom X; by summing over all initial vibrational states
weighted by the appropriate thermal probability and over all final states. Thus the
transition rate from a state with site [ initially occupied and site m initially empty
becomes

2
Win = ltl® > 0(X0) [(X] Pl X

X1,X]
X Z om (X <X/ }Xm‘Xm>}
Xm, X
X 5(6[ — Em + EXl - EXLI + EXm - EX’:YL> ’

where ¢;(X;) is the probability of finding vibration [ in state X;. Rewriting the energy
conserving delta-function by its Fourier transform we obtain

Wim :%mm\?/dte?%(%—gm)tﬂ(t)Pm(t), (5.10)
where
=~ auX0) (X[ (O (0)] x2) (5.11)
B A\ cos (wt +ihB/2)
=L; exp [/ dwD;(w) (al) sinb (i3 /2) ] ,
with

L, =exp {—/del(u)) (%)2coth(hw6/2)} : (5.12)

The function Py(t) is known from the ‘P(E) theory’, which describes tunneling in a
dissipative electromagnetic environment, modeled by an infinite set of oscillators. Here,

47



Chapter 5: Incoherent polaron hopping: Fermi's Golden Rule

instead of such a bath we have broadened local vibrational modes of two DNA base
pairs involved in the hopping process. Figure 5.2 shows the P(E) function and the
combinations of it appearing in the rates introduced above and below. The parameters
used in the calculation were introduced in the previous section (Sec. 5.2). The functions
in Fig. 5.2 give the probability for a hopping or tunneling process for an energy difference
E between initial and final state. The general shape is a Gaussian with maximum at
—A and height about oc A.
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Figure 5.2: Various combinations of P(E) functions, where the index indicates the two types
of bases, G (guanine) and A (adenine). The combination P Pg stands for the
convolution [ dE'Pa(E—E')Pg(E’) and similar for the other combinations, which
are relevant in the hopping transitions from e.g. an A base to a G base. The
used parameters were introduced in Sec. 5.2, in particular, the polaron shifts are

AA = 0.18eV and AG = 0.47eV.

The calculation for the tunneling transition between the left (L) and right (R) elec-
trodes and the first or last site of the DNA chain [ = 1 or [ = N proceeds similarly,
except that one has to trace also over the electrodes’ electronic states, while we have to
consider only the local vibration of the one site involved. Hence we have for the rates on
the left and right junction between electrodes and DNA chain

wk :FL/%(l — fu(E))Pi (& — E) (5.13)
Wy :FL/%JCL(E)PI(E —&), (5.14)

where TR = 27 |tL/R|2p,  fi g (F) is the Fermi function in left/right lead, and Py /n(E)
is the Fourier transform of Py /y(t).
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5.2 Model and technique

The master equation for sites in the DNA chain thus reads

d
L :; [—pz (1 = pm) Wim + (1 = pt) pm Wt | (5.15)

where the sum over m is restricted to nearest neighbors of [ !. For the base pair at the
left end of the chain we get

d
Epl =- ,01WE + (1 —p1) WJI:

+ [— p1 (1= p2) Wia + (1 = p1) 102W21] ’ (5.16)

and similar for the right interface.

As is obvious from Eqgs. 5.15 and 5.16 the single-particle charge densities are consid-
ered to be uncorrelated. This, of course, is only true approximatively, since the occupa-
tions of different sites are effectively linked by the hopping rates. As we only consider
next neighbor hopping, the most important charge-charge correlation is the one between
neighboring sites. As we will explain in the next chapter, the correlations can introduce
another energy scale depending on the considered sequence. For now we will neglect
these correlations as the most important features arise already without them.

We are interested in the steady state, dp;/dt = 0, which develops for a constant applied
bias. After solving the resulting self-consistent equations iteratively we can calculate the
non-equilibrium current through the left lead,

]L =e —p1W_L—|—(1—p1) W_{_‘ (517)

or for the right lead, which is the same since the current is conserved, Iy, = —IR.

Discussion of the hopping rates

For the hopping rates Eq. (5.10) the situation differs from the usual P(F) theory: instead
of one infinite vibrational bath each base pair (m and [) has its own vibration degree
of freedom and we get products P,,(t)P(t), which become convolutions in energy space.
The rates still satisfy detailed balance

Wlm = Wml €xp |:€lki—B;vm:| ) (518)

where €,, and € are the onsite energies of base pairs m and [, respectively.
For large times, P,(t) approaches a constant, tlim P(t) = L;. Therefore it can be
—00

separated into two terms, one decaying in time and one constant:

P(t) = B(t) + L; . (5.19)

!Including also hopping to more distant bases, one could account for the superexchange mechanism,
dominant for guanine bases closer than three base pairs. This is, however, not important for the
sequences considered in this work, so it was not included in the numerical evaluation.
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Chapter 5: Incoherent polaron hopping: Fermi's Golden Rule

Accordingly we can write

The product Py(t)P,(t) describe transitions, where the number of vibrations changes on
both sites, the next two terms describe changes in one of the two sites only, while the
last term describes transitions without changes in the vibration state. When performing
the time integration in Eq. (5.10), this last term leads to a divergence when the two site
energies are degenerate

% dten @t L L= L1Ln6 (6 — &) (5.20)
since in this situation the phenomenon of resonant tunneling occurs. In this situation
the perturbation theory limited to second order is not sufficient. Rather, one should sum
up in a ‘ladder’-approximation an infinite series of such terms, leading to a result with
finite rates. |76,120,121| In the next chapter we will study the same system in more
detail using a diagrammatic approach and, as we will show, this ‘ladder’-approximation
will give rise to the correlation effects mentioned in the previous section.

Alternatively, we can phenomenologically regularize the divergence of Eq. (5.20) by
formally introducing an imaginary part to the level energies ¢;. This is motivated by the
fact that they acquire a finite width due to the interaction with the vibrations or leads.
In this way the hopping rates become finite. We further note that the contribution of
the vibration-free transitions (the constant term of Eq. 5.20) is multiplied by the factor
L,L,,. In our case, this factor is exponentially small. This corresponds to the fact that
we consider the limit where polaron hopping by far dominates polaron band transport.
We therefore can ignore the terms o< £,,£; in our analysis all together, i.e. we subtract
them in Eq. (5.10). The regularized hopping rates are therefore

2 .
Wim :% / dt en@=emt | P(t) P, () —Elﬁm] . (5.21)
To give a feeling for the relationship between current in a system and the occupation
numbers, let us consider two neighboring sites (1 and 2) of a system with a current I and
a given occupation of of site 1. The rate for a hopping process from site 1 to 2 is Wis
and the backward hopping rate is Wy, = Wis exp [-SAE], where AFE is the difference
between the onsite energies of site 1 and 2. The occupation of site 2 is then given by

I
p1+ eWi2

P2 = p1(1 — e—ﬁAE) 4 e—BAE "

In Figure 5.3 the occupation of site 2 is shown as a function of the onsite energy difference
for four different values of I/eW;s, where the occupation of site 1 is assumed to be
p1 = 0.9. Clearly, the occupation of site 2 is always lower if site 2 has higher energy
(negative AE). If site 2 has lower energy, the occupation strongly depends on the current.
For low current the occupation can be higher than on site 1. The current, of course, will
be determined by the applied bias and the structure of the whole system.
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Figure 5.3: Occupation of site 2 for given occupation of site 1 as a function of the onsite energy
difference for four different values of the current.

5.3. Results

5.3.1. Sequence effects

Using the rate equation we will study now the charge transport and the non-equilibrium
occupation of the sites for various DNA sequences. Both quantities depend strongly
on the specific sequence. All DNA sequences are ‘semi-conducting’ since the Fermi
energy lies in the HOMO-LUMO gap, i.e. well above the HOMO states which carry
the transport.

Figure 5.4 shows the I-V characteristics for two such sequences, 5’-GGGGGGGG-3’
(green, dash-dotted line) and 5-GAAAAAAG-3’ (black, solid line). The first sequence
displays the ‘semi-conducting’ behavior with a gap characterized by the distance of the
Fermi energy to the onsite energy of the G base (shifted by Ag). Due to its electronic
symmetry the I-V characteristic is symmetric with respect to the applied bias. On the
other hand, the second DNA sequence shows strong rectifying behavior, despite of its
seemingly symmetric sequence. The reason for this asymmetry lies in the electronic
asymmetry of the hopping amplitudes, together with the incoherence of the hopping
processes between DNA base pairs. This can easily be understood: For positive bias the
hopping ‘bottleneck’” of the system is at the crossover from A to G at the 3’ end of the
strand. There, the polaron needs to overcome an energy barrier mediated by vibrational
excitations. For negative bias the ‘bottleneck’ is at the crossover from A to G at the
5" end of the strand. Due to the opposite direction of the dominating hopping process,
with [tga] > |tag| (compare Table 2.1), the current for negative bias is higher than
for positive bias. Thus, inhomogeneous sequences will in general display a rectifying,
semi-conducting I-V characteristic. The rectification effect will be weaker for longer and
more disordered sequences, as more ‘bottlenecks’ in either direction appear. Note that no
rectifying behavior would be observed if we model the transport as a coherent transition
through the total length of the chain (‘Landauer approach’). [96,122,123|
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Figure 5.4: I-V characteristics for two DNA strands with sequences 5’-GGGGGGGG-3’ (dash-
dotted line) and 5-GAAAAAAG-3’ (solid line) with the following parameters:
Base pair onsite energies ex = —0.26eV, eg = +0.25eV, polaron shifts Ay =
0.18eV and Ag = 0.47eV, Fermi energy Erp = 0eV, symmetric coupling to
leads with linewidths I', = I'r = 0.01eV, vibrational energies hwa = 11meV,
hwg = 16meV, and room temperature kgT' = 25meV. The inset shows the
absolute value of the current on logarithmic scale. The current for the second
sequence shows rectification by a factor of ~ 200.

We now study the sequence dependence of the current threshold, or equivalently the
position of the peak in the differential conductance dI/dVi, (both differ only by a term
proportional to temperature). Figure 5.5 shows the differential conductance as a function
of the applied bias for 5 different DNA sequences 5-AAAAAAAA-3’, 5’-GAAAAAAG-
3, 5-GGAAAAGG-3’, 5-GGGAAGGG-3’, and 5'-GGGGGGGG-3’. For the homoge-
neous sequences the threshold is equal to the onsite energy of the considered base pairs
(eVi, = 265 for 5-AAAAAAAA-3" and eV}, = 2ég for 5-GGGGGGGG-3’). For the
inhomogeneous sequences the threshold lies in between the limits set by the homoge-
neous sequences, i.e. it is not determined by the internal energy scales alone. The
varying threshold is a consequence of the way the charges are rearranged along the DNA
molecule, which of course is very sensitive to the considered sequence.

As discussed above, Eqs. (5.14) describe the tunneling rate from the electrode to the
adjacent DNA base pair. The tunneling is modified by the vibrational modes which
can be excited, depending on the applied bias. This ‘renormalized’ tunneling can lead
to a very broad differential conductance peak which is very different from the usual
(derivative of) Fermi function form, as observed most prominently for the sequence 5’-
GAAAAAAG-3’. Note that there is nearly no modification on the low bias side of the
peak.

5.3.2. Local chemical potential

As discussed above, the I-V characteristic of a DNA molecule is affected by bias and
sequence dependent charge rearrangements on the DNA base pairs. For the ease of
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Figure 5.5: Differential conductance (logarithmic scale) as a function of applied bias for five
different DNA sequences with parameters as in Fig. 5.4. For the homogeneous
sequences the threshold, i.e. the position of the maximum of the differential con-
ductance, is set by onsite energy of the considered base pairs. For the inhomoge-
neous sequences, however, the threshold is not determined by the internal energy
scales alone. The sequence-dependent thresholds lie in between the limits set by
the homogeneous sequences. For some sequences (e.g. 5-GAAAAAAG-3’), the
peaks are broadened due to ‘renormalized’ tunneling.

displaying these effects, i.e, both small deviations from an occupation 1, as well as occu-
pations near 0, we introduce a local chemical potential ®;, defined by

1 1)
pi(Vp) '
This quantity is superior to the occupation in visualizing the non-equilibrium charge
rearrangement, because it reacts sensitively to even small changes in the occupation.

Figure 5.6 shows the I-V curves for the two DNA molecules 5-GAAAAAAG-3’ (black,
solid line) and 5’-GGAAAAGG-3’ (red, dashed line), and the inset shows the local chem-
ical potential ® for the last guanine base (at the 3’ end) for both sequences. Although
the sequences are very similar, the -V characteristics differ strongly in the maximum
current and in the way the current increases for increasing bias voltage. The current of
the second sequence has reached a plateau already at about V;, = —0.8 V, whereas the
black curve has not leveled off even for V;, = —1.5V. This strong deviation from a Fermi
function behavior is in part a consequence of the renormalization of the tunneling rates
by the vibrations.

This difference in the I-V characteristics is reflected in the local chemical potential P,
most prominently at the last guanine base of both sequences, as shown in the inset. At
low bias both sequences behave in the same way: the potential increases equally with
the applied bias. The DNA is not conducting and therefore, the situation is similar to
the charging of a capacitor. At the drop-off around V;, = —0.3V, the current sets in
and a potential drop between base pair and lead is established. In correspondence to the
current, the local chemical potential for the second sequence 5’-GGAAAAGG-3’ levels
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Figure 5.6: [-V curves for the two sequences 5-GAAAAAAG-3’ (solid line) and 5'-
GGAAAAGG-3’ (dashed line) (parameters see Fig. 5.4). Despite the very similar
sequences, the I-V show clear differences. The inset shows the local chemical
potential ® for the last guanine base (at the 3’ end) for both sequences at various
bias voltages. Equivalent behavior between local potential and I-V is visible

off, whereas the potential of the first sequence 5-GAAAAAAG-3’ never reaches a plateau
in the range up to Vj, = —1.5V.

To give a feeling for the total charge rearrangement Figure 5.7 shows the local chemical
potential ®; of the two DNA sequences for all base pairs ¢ and all voltages. The chemical
potential landscape also suggests how the bias voltage V}, applied to the leads drops
over the entire DNA molecule. Regions of good conductivity show almost no voltage
drop, as seen for the stretches of adenine bases in the middle of both sequences. On
the other hand most of the voltages drops at the base pairs close to the interfaces. The
potential /voltage drop over for the entire sequence 5-GAAAAAAG-3’ is less than for
5-GGAAAAGG-3’. This suggests that the the first sequence is better conducting than
the latter, which is in accordance with their -V curves (Fig. 5.6).

5.3.3. Temperature dependence and activation energy

In the experiments of Ref. [62] the current through bundles of long homogeneous DNA
molecules showed a strong temperature dependence. The data could be fitted by an

ksT |’
also shows a temperature dependence for the case poly(dG)-poly(dC) bundles. Asai [53]
has used the Kubo formula for a polaron hopping model to obtain a similar relation for
the linear response conductivity.

Our results are obtained in a non-equilibrium situation and also show a strong tem-
perature dependence. An Arrhenius plot of the current vs. temperature shows linear
behavior, indicating that the current is indeed an activated quantity (though we also ob-
serve deviations from a perfect Arrhenius law). Fitting the temperature dependence of
our data by an Arrhenius law allows us to estimate the activation energy for a given bias
voltage and polaron shift A. Figure 5.8 shows the activation energy F, obtained by this

activation law I(V) = «a(V)exp [_E‘l} with a voltage dependent prefactor a(V') that
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Figure 5.7: Local chemical potential ® for all base pairs of the DNA strand with sequence 5’-
GAAAAAAG-3’ (black lines) and 5-GGAAAAGG-3’ (red lines) at various bias
voltages and with parameters as in Fig. 5.4. The local potential drops differently
for the two sequences, implying different conduction properties.

fitting as a function of the polaron shift at three different bias voltages for a homogeneous
DNA strand with 15 GC base pairs. > The activation energy is proportional to Ag, but
the proportionality factor differs depending on the applied bias voltages. For voltages
smaller than the gap, the activation energy also includes the energy needed to overcome
the gap. For voltages above the threshold the proportionality factor between activation
energy and polaron shift is about 1/2, consistent with the high-temperature value for the
bulk polaron hopping conduction E, = 0.5A (see green/dotted line in Fig. 5.8) [76].

5.4. Summary

In this chapter we have investigated the non-equilibrium polaron hopping transport in
short DNA chains with various sequences, coupled to voltage-biased leads in the frame
of rate equations which take into account inelastic transitions in the local vibration
degrees of freedom. Our theory is formally an extension of the so-called P(F) theory
of tunneling in a dissipative electromagnetic environment. We find semi-conducting -V
characteristics with thresholds that are very sensitive to the considered DNA sequence.
For all non-symmetric sequences (which is the typical case) we observe rectifying behavior
(Fig. 5.4). The sequence dependent thresholds are not directly connected to intrinsic
energy scales (Fig. 5.5), rather they are intimately related to the non-trivial charge

2We chose to set the polaron shift in the electronic part of the Hamiltonian to zero, so that the gap
between onsite energy ég and the Fermi level is constant for all electron-vibration coupling strengths
(léc — Er| = 0.25¢V). This allows us to keep the bias voltages fixed for the range of polaron shifts
considered.

)



Chapter 5: Incoherent polaron hopping: Fermi's Golden Rule

Figure 5.8: Activation energy FE, for polaron hopping of a homogeneous DNA with 15 G-C
base pairs as a function of the polaron shift A for voltages V}, = 0.04 V (solid line),
W = 0.55V (dashed line), and V4, = 0.8 V (dash-dotted line). All other parameters
as in Fig. 5.4. For comparison, the dotted line shows the activation energy of
polaron hopping conduction in bulk at high temperatures (E, = 0.5A) |76].

rearrangement along the DNA molecule at finite bias. We have visualized this effect by
displaying the local chemical potential ®; (Fig. 5.7). As expected for polaron hopping,
the current is thermally activated with a temperature dependence following an Arrhenius-
law. The activation energy FE, is voltage dependent and approaches the bulk polaron
value E, = 1/2A (A: polaron shift) for voltages above the threshold (Fig. 5.8).
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6. Incoherent polaron hopping:
Diagrammatic approach

In the previous chapter, we developed a description of polaron hopping in terms of a rate
equation with rates obtained by golden rule arguments. This description is restricted to
diagonal components of the density matrix and it neglects correlations between charge
densities of different base pairs mediated by the hopping processes. In this chapter we
will introduce a diagrammatic approach for polaron hopping in one dimensional system
coupled to two biased leads. This approach is a real-time expansion on the Keldysh
contour and is an extension of a technique developed by Bottger and Bryskin in the late
1970s for bulk systems. |76]

6.1. Theory

6.1.1. Real-time density matrix expansion

The Hamiltonian we consider has been introduced in detail in the previous chapter. We
start with the form H, which was obtained after the Lang-Firsov transformation

H=H, + H' (6.1)
- 1
— T T
+ Hy, + Hg (6.2)
H' == tyalxle;x; (6.3)
<ij>
+ Z [trciraixi + t”*ajxjcw] (6.4)
T, N
[onie)it (65

To calculate quantities of interest, e.g. the occupation number <aj(t)ai(t)> and the
current in a non-equilibrium situation with applied bias, we make a real time expansion
of the density matrix along the Keldysh contour. The evolution in the interaction picture

introduces the time dependence

CLZ(T,) :aie—l(ﬁi—Ai)t — aie_ZEit

o7



Chapter 6: Incoherent polaron hopping: Diagrammatic approach

From here on we will use the shifted onsite energy é; = ¢; — A, in all expressions.
The single-particle density matrix of the DNA chain can be written as pl(t) =

<a£(t)al(t)>g. We express it in the interaction picture, assuming that the perturba-

tion H' is adiabatically turned on from the time ty, = —o0,
L) = (U}, (t.—00)alailig, (t,~00)) e
Pk Ho\" 00 )0 ay Ho\Y o0 i € ’

with time evolution operator

Ug,(t,—00) =T {exp {—z‘/t dtﬁﬁo(t)] } (6.6)

—o
A Taylor expansion of the time evolution operators in H’ defines a diagrammatic expan-

sion. The forward time-evolution operator Ug, (t, —o0) is expanded on the upper branch

of the Keldysh contour, whereas the backward time-evolution operator U;IO (t, —o0) is

expanded on the lower branch (see Fig. 6.1). The index H, indicates that these oper-
ators are written in the interaction picture. The time ordering operator ‘I’ in Eq. 6.6

UFID (t, —OO)

— 00

~

—0o0

U}Io(t, —00)

Figure 6.1: Schematic drawing of the Keldysh contour and the forward and backward time-
evolution operators. The open and crossed circle (the clamp) represent the two

T

operators a; and a,, respectively, which are evaluated at time ¢.

(anti-time ordering operator ‘T’) ensures that the different times ¢;, arising from the
Taylor expansion of the forward (backward) time evolution operator, are ordered in the
correct way along the contour. Note, oftentimes forward and backward time evolution
operators are combined and a contour ordering operator ‘T’ is introduced to ensure the
correct ordering of times along the Keldysh contour. [94,124]

In performing the expansion in the time evolution operators, we obtain certain operator
products, which we have to average thermally. Since f[o is quadratic in the fermion
operators, these can be treated using Wick’s theorem. On the other hand, the vibrational
operator products, involving various operators x;(t;), cannot be factored. The rules for
the evaluation of these operator products are given in Appendix E. A specific term in
the Taylor expansion, is represented by diagram with a certain number of vertices on the
upper and lower branch of the Keldysh contour, where each vertex is proportional either
to t;; (a hopping vertex) or ¢7, (a tunneling vertex). The different vertices are connected
by fermion and vibrational lines and belong to different times ¢;, which have to be (anti-)
time ordered along the (lower) upper branch of the contour.
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6.1 Theory

A feature of this expansion is that certain diagrams are diverging even in first order.
These diagrams can be identified by so called free sections (we will introduce the concept
of free sections below in more detail), that cut at least one pair of fermion lines, where
both lines are associated with sites (the same or different), that have the same onsite
energy. This is equivalent to the situation of resonant tunneling. In such a case an infinite
number of diagrams has to be summed up in a way similar to a ‘ladder’-approximation |76,
120,121]." Note, when considering only diagonal elements of the single-particle matrix,
every diagram is diverging. In the derivation of the diagrammatic rules listed below such
a ladder summation is performed. This leads to a relation for the time derivative of the
density matrix

%Pﬁg(t) = —i(e — ) pi(t)

/ dt; [ mll(t17t>+<6m’1m1_p (t ))lel(tlv)
o {memi}

I (WIS (11, 8) T (1 YW (1 1) o

mmk mm2m3 mmmk

(6.7)

The important property of the irreducible blocks W and V is, that they do not diverge.
Clearly, this is not a self-consistent equation for the single-particle density matrix, as it
depends also on higher order density matrices, e. g.

P (1) = <Uj% (t)al , amyal amlUgO(t1)> . (6.8)

Then, also a similar equations for the higher order density matrices has to be computed,
i.e. one has to deal with an infinite hierarchy of equations. For practicability an appro-
priate decoupling scheme has to be applied.

Why does a many-particle density matrix affect the behavior of a single-particle density
matrix? This becomes obvious, when considering a hopping process between two sites
m and n, where the two-particle density occurs. Such a hopping process is determined
by the hopping probability, which is represented by a second order irreducible diagram,
and the occupation of the final site n. The two-particle density matrix combines the
probability to find the initial site m occupied and the final site n empty. In general, the
occupation of different sites is correlated, except for situations, where the charge density
is very low. To describe the situation of uncorrelated occupation numbers, the density
matrix can be factorized in a Hartree-Fock type way

g g <5m2m5 - pgg) . (6.9)

This approximation was taken in the previous chapter.

m1m2 ~

iy

!For example, a second order diagram with a diverging free section contributes to a similar first order
diagram. This can be incorporated, by the convolution of the first order block diagram with the
single density matrix, as in Eq. 6.7. If the second order block has a non-diverging free section, than
the first order block is just multiplied by Fermi function. For such situations, the density matrices

in Eq. 6.7 have to replaced by Fermi functions. For example pm1 — 6m/ ma fma-
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6.1.2. Construction of irreducible block diagrams

Below we will state the rules for the construction and evaluation of irreducible block
diagrams. The rules for pure hopping diagrams, i.e. those containing only vertices o< t;;,
were developed by Bottger and Bryksin |76]. We extended their theory adding new rules
to treat diagrams with tunneling vertices oc t7,,.

The perturbative expansion can be visualized by the construction of diagrams which
are equivalent to expressions in the analytic expansion. The main contribution to the
diagrams comes from so called irreducible blocks, which, as the name implies, cannot be
decomposed into more simple diagrams. The main feature of an irreducible block diagram
is, that it does not diverge, when integrating over the internal times ¢;. Irreducible blocks
can be identified by their property of not allowing free sections. A free section is a vertical
line drawn between the leftmost vertex and the rightmost vertex (except for the clamp)
that does not cross either a phonon line or an external fermion (tunneling) line.

The rules come in two sets: the first for the construction and labeling of possible
diagram, the second set for the evaluation of a particular diagram. The rules are gen-
eral for all orders of perturbation theory. We give a concrete example of a third order
contribution to the block W2 (¢) in Fig. 6.2.

1. Draw the Keldysh time contour as a rectangle which is open to the left, correspond-
ing to t — —o0.

2. For a diagram of order n we draw on the contour n + 1 pair vertices consisting of
one open circle () (symbolizing a destruction operator) and one crossed circle €
(symbolizing a creation operator). All circles belonging to operators acting on the
molecule (DNA) are drawn on the inside of the contour, whereas circles belonging
to electrode operators are drawn on the outside of the contour. Therefore, if the
pair vertex is due to a tunneling process ¢;, one circle is on the inside and the
other one is on the outside of the contour. The circles of a hopping process are
both drawn on the inside of the contour where the open circle is always ‘earlier’
along the Keldysh contour than the crossed circle. As we calculate diagrams to
evaluate the density matrix, we draw one pair vertex (also called ‘clamp’ [76]) at
the inside of the right vertical line of the Keldysh contour, corresponding to time t.
The other n vertices are drawn at n times t; on either the upper or lower branch of
the Keldysh contour (where t5 is the leftmost, earliest time and ¢; is the rightmost,
latest time).

3. Each open circles O) on the inside of the contour has one ingoing fermion line (arrow
pointing to the vertex) and each crossed circle @ has one outgoing fermion line
(arrow pointing away from the vertex) which is locally directed along the Keldysh
contour.

4. Complementary circles outside the contour are pairwise connected by a fermion line
drawn outside of the contour. Since this line corresponds to an electron propagating
in electrode r the connected circles have to belong to the same electrode r, otherwise
the diagram contribution is zero.
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6.1 Theory

5. The clamp is always connected by a fermion line to the rightmost vertex (other than
the clamp) drawn inside of the contour. If the rightmost vertex is a hopping vertex,
the fermion line is directed along the contour. If the rightmost vertex is a tunneling
vertex, the inside circle (open or crossed) is connected to the complementary circle
of the clamp, no matter what the direction of the fermion line.

6. The remaining unconnected inside circles have fermion lines going into (coming
from) the region left of the diagram (¢ — —oo) without intersecting each other.

7. Each circle belongs to one specific state for the molecule or the electrode. We label
the molecule states (sites) by latin characters (e.g. m,m’,...) and the electrode
states by Greek characters (e.g. v). Note that the two circles of a hopping vertex
can not correspond to the same state (site). Since we want to calculate the density
matrix p! then the crossed circle of the clamp is associated with the state (site) k
and the open circle corresponds to state (site) [.

8. Except for the clamp, the circles on the inside of the contour must be connected
by phonon lines so that the diagram has no free section, as defined above. One
circle can be connected to more than one phonon line. All diagrams with different
number of phonon lines (but still without free sections) have to be considered.
Only circles belonging to the same state (site) can be connected by a phonon line.
Therefore, the two circles of a hopping vertex can not be connected.

The rules for evaluating a diagram are as follows.

1. A hopping vertex at time t; is associated with a  factor
ity I Ko 1 Em —em)(ti=t2) - where the creation operator (crossed circle)
corresponds to site label m’ and the destruction operator to the site label m (recall
that ¢ is the leftmost time of the diagram). A tunneling vertex is associated
with a factor £ith* ICe”Hevmem)timt) op 44t | JC e Uem —er)(timt2) if the creation
operator acts on the electrode or on the molecule, respectively. Vertices on the
upper half of the contour have the minus sign, vertices on the lower half of the
contour have the plus sign. The factor

o =en{ -} [aun, (22) @ve )

The clamp circles contribute a factor e~*¢—<)(t1=%2) where the open circle of the
clamp corresponding to the state [ and crossed one corresponding to state k.

2. The outside fermion lines of the electrodes r contribute a factor 1 — f] or f
depending whether they run in the direction of the contour or against it. Here f]
is the Fermi function at energy ¢, — u,., with the chemical potential p,..

3. The fermion lines entering (leaving) the irreducible block from (to) the left are
labeled from top to bottom. The labels determine the indices of the irreducible
block, e.g. Wmim2! (t). The lines leaving the diagram correspond to the lower labels

’ ’
mimbk
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Chapter 6: Incoherent polaron hopping: Diagrammatic approach

Figure 6.2: A third order diagram to the rate Wnn;”mzl (ta,t1)

(primed labels in the example Fig. 6.2) whereas the lines entering the diagram from
the left correspond to the upper labels (unprimed labels). Since the fermion lines
are connected to circles on the inside of the diagram (which belonged to some state
(site) j) a Kronecker factor has to be added, e.g. 8,1 and 0y, for the example of
Fig. 6.2.

4. A phonon line connecting two circles both associated to a state (site) m has a value

FS(t; —t;) = exp {CAn(t; —t;)} — 1, with

An(t) = / 0o Dy () (%m) cossfsh[t(;w%zb |

where the circle at time ¢; is later on the contour than the circle at time ¢;. The
factor (¢ is determined by the type of circles the line connects. If the circles are
different ( = 41, otherwise ¢ = —1.

. Multiply with a factor (—1)M*Y where M is the number of intersections of fermion

lines on the outside of the contour (tunneling lines) and N is the number of inter-
sections of fermion lines on the inside of the contour.

. We integrate over all internal times ¢; (except t; and t3) and sum over all electrode

states v and all internal molecule states i, j, except the states associated with the
clamp.

Let us have a look at the third order example in Fig. 6.2. This diagram is part
of the rate Wn";”mzl(tg — t1). Full lines are fermion lines and dashed lines are phonon
lines. For easier readablhty we introduce renormalized hopping and tunneling strengths

tmlml =
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bty my llelle, =1k and tVl = t7,K;. The diagram has the value:

W$1$2éj( 2 tl Ztm’ ma tlu o1 Omal 5m’1k Omal (1 - f;)
X e 7,(51, El)(tl tg)e—z(q Ek)(tl—tz)};vl+(t2 i tl)

t1
X / dtge Uer—e)(ts= tz)F’l_(tQ — t3)E+(t1 — tg) .
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6.1 Theory

As can be seen from Eqs. 6.7 and 6.10, the irreducible blocks are convoluted with single-
and many-particle density matrices or correlation functions. The order of the labels of
the irreducible block rate determine the correlation function it will be convoluted with.
Lines leaving the block (primed labels) correspond to creation operators in Eq.6.8, lines
entering the block (unprimed labels) correspond to destruction operators. The order of
operators from left to right corresponds to the order of the lines leaving/entering the
diagram from bottom to top.

For example, let us consider some rate ngggzgi(h —t1) which has the following order
of the terminals at the left of the diagram from bottom to top: mj, mj, ms, m), ms, and
my (the primed labels correspond to fermion lines leaving the diagram, the unprimed to
lines entering the diagram as in Fig. 6.2). This rate will be convoluted with the higher
order correlation function

(@ (t2) Oy (t2)al, (t2) Ay (t2)al,, (t2)al, (t2)) i

The above rules apply to the most general situation of polaron transport, where coher-
ence effects are considered by including non-diagonal elements of the single and many-
particle density matrices. As explained in the previous chapter, for the situation of
strong electron-vibration coupling and high temperature it is sufficient to consider only
diagonal components of the density matrices. In the rest of the work, we will resort to
this limit and discuss a situation of finite bias applied to a DNA molecule, which has
reached steady-state. Thus, equation 6.7 for the time derivative of the single-particle
density matrix reduces to

0 :/ dtl Z [pmlwmll(tl) + (1 - pml) lel(tl)

0 {ma}

+ Pmymo Winymat (t1) + pm1m2m3Wm1mzm31(tl) +o (6.10)

6.1.3. First and second order diagrams

In the previous chapter we obtained the rates for hopping transport in DNA molecules
from golden rule arguments. Equivalently, the rate equation and the associated rates can
be obtained from diagram using the above rules. The advantage of this procedure is, that
no divergences occur and that correlation effects are incorporated naturally, that were
not considered in the previous chapter. As explained before, we will restrict ourselves to
diagonal components of the density matrices. The rates are given by the eight diagram
depicted in Figure 6.3 and 6.4, where Table 6.1 list the values of the diagrams. Inserting
these rates into Eq. 6.10, the rate equations 5.15 and 5.16 are obtained.

Each of the tunneling diagrams depicted in Fig. 6.3 is the sum of two almost identical
diagrams arising from the rules given above, one with a vibrational line and one without
it. This is reflected in the fact that the generalized vibrational line (dashed line in the
diagrams) has a value of F;"(t; — ¢2) + 1. Similarly, each hopping diagram is the sum
of three diagrams, one with two vibrational lines and two with a single vibrational line.
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Figure 6.3: The four tunnel diagrams. The two diagrams on top of each other are their respec-

tive complex conjugates. The full lines represent fermion lines. The dashed line
represents the sum of all possible vibrational lines arising from the diagrammatic
rules, e. g. for diagram (a) it has a value F}" (t; — t2) + 1.
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Figure 6.4: The four hopping diagrams. The two diagrams on top of each other are their
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respective complex conjugates. The full lines represent fermion lines. The dashed
line represents the sum of all possible vibrational lines arising from the diagram-
matic rules, e. g. for diagram (a) it has a value F* (t; —t2)Fh (t1 — o) + F (t1 —
ta) + Ff, (t1 — ta).



6.1 Theory

diagrams value Eq.
6.3(a)+6.3(c) Wr, = —rrfmu—fr( NEP(E — E)dpm, 5.13
6.3(b)+6.3(d) V2, =T"[E f(E)P(E — &)dim, 5.14
6.4(a)-6.4(C) Wiy = — 2l fdteh W)t [Py(£) Py () — K2K2, ] Gy 5.21
6.4(b)+6.4(d) Winmyt = mﬂ' [dter (@)t [P ($)P(t) — K2, K?] 6y 5.21

Table 6.1: Values for the diagrams of Fig. 6.3 and 6.4. For the evaluation of the tunneling
diagrams the wide band limit was assumed. The index r = L/R stands for the
left /right electrode.

The value of the generalized vibrational line is therefore F}" (t1 —t2) )t (t1 —to) + F} (1 —
ty) + F,; (t1 —t3). In the previous chapter, the influence of the vibrations was described
by the functions P,(¢), which were known from the ‘P(E)’ theory. In the diagrammatic
rules the vibrations are described by functions Fl+/_(t). The relation between these two
functions is given by P,(t) = K7 (F;"(t) + 1) = £, (F;*(t) + 1). In the previous chapter,
the function £; = K7 was introduced for simplicity.

The rates from the various diagrams are convoluted with different correlation functions,
depending on the fermion lines leaving to the left as explained above. The diagrams pre-
sented in Fig. 6.3 and 6.4 are convoluted with correlation functions as listed in Table 6.2.

diagrams correlation function
6.3(a)+6.3(c) <alTal> =
6.3(b)+6.3(d) <alal> —1-p,

6.4(a)+6.4(c) <ajam2ain2al> =Pl — Plms

6.4(b)+6.4(d) <a1malajaml> s — Pt

Table 6.2: Diagrams and the correlation functions they are convoluted with. The two-particle

density matrix is given by pp, = <alTalainam>.

Inserting the rates and the associated correlation function into Eq. 6.10 one obtains
the rate equation for the single-particle density matrix p;.

6.1.4. Two-particle density matrix

In the previous chapter the two-particle correlation functions were factorized pp,, ~
PiPmy- In the following we will investigate which influence the correlations have on
the transport through DNA. For this we have to state equations for the two-particle
density matrices, as well. The rules for the diagrams arising from the expansion of the

65



Chapter 6: Incoherent polaron hopping: Diagrammatic approach

t2 n t1 t2 n t1
e O e —O
m —s(J)=—=———— | ——( )= ————
m A =3
| Pt ot
[ D [ D
(a) (b)
—&A T
m \ m m m
v A o G ot
[ [ Bl
(c) (d)

Figure 6.5: Four tunnel diagrams. To each of these diagrams there exists another that is

their respective complex conjugate. The full lines represent fermion lines. The
dashed line represents the sum of all possible vibrational lines arising from the
diagrammatic rules, e. g. for diagram (a) it has a value Ff (¢t —t2) + 1. Note the
various orderings of the indices on the left of the irreducible block.
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Figure 6.6: Four hopping diagrams. To each of these diagrams there exists another that is
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their respective complex conjugate. The full lines represent fermion lines. The
dashed line represents the sum of all possible vibrational lines arising from the
diagrammatic rules, e.g. for diagram (a) it has a value F}f(t1 — t2)Ff (t1 — t2) +
Fh(ti—ta) + Ff (t1 — ta).



6.1 Theory

two-particle density matrix are almost identical to the ones stated above for the single-
particle density matrix. The only difference arises from the clamp, which now consists
of four circles (two empty, two crossed) representing the four fermion operators of the
two-particle density matrix. There are now two possibilities to connect the rightmost
vertex with the clamp, which both have to be considered. Furthermore, not only one but
three fermion lines from the remaining terminals of the clamp leave to (enter from) the
region left of the irreducible block without intersecting each other. The equation for the
time derivative of the two-particle density matrix has the same structure as Eq. 6.7 and
6.10.

The diagrams up to second order are given in Figure 6.5 and 6.6. As for the single-
particle density matrix, there are always two diagrams which are their respective complex
conjugates. So, only one of them is shown. The irreducible blocks, i.e. the rates, have
the same value as the ones derived previously, except for some d-functions due to the
additional terminals of the clamp and the correlators, they are convoluted with.

The rate, that every diagram (plus its complex conjugate) represents, is listed in the
second column of Table 6.3. The values of these rates correspond to the ones given
in Table 6.1. In the third column the correlators are shown with which the rates are
convoluted. In the second section of the table, i.e. for n = [ or n = m, the relation
lez = n; was used, where n; = alTal is the number operator of site [. In the third section,
the three-particle correlation functions have been factorized into two- and single-particle
correlation functions to obtain closed equations. The rule for the factorization is given

by

(ABC) = (A) (B) (C) + [(AB) (C) = (4) (B) (C)]
+[(AC) (B) = {4) (B) (C)]
+[(BC)(A) = {A) (B) (O],

where the capital letters represent pairs of fermion operators, i.e. alTal. With the above
rates one obtains the following rate equation for the two-particle density matrix in the
inside of the DNA molecule

d
Eplm - Z { [le (1 - pn) — PinPm — PmnPl + 2Ple,0n] Wlnl

+ [le (1 - pn) — PmnPl — PinPm + 2Ple,0n] Wmnm
+ [pnl (1 — pm> — PimPn — PnmpPl + 2pnpmpl] Wnll

For a two-particle density matrix at the left junction the rate equation has the following
form

d
P =p1Wii + (p2 — p12) Vi
+ [p12 (1 — p3) — pasp1 — p1sp2 + 2p1p2ps) Wasa

+ [p13 (1= p2) — paap1 — praps + 2p1p3p2] Wano - (6.12)

67



Chapter 6: Incoherent polaron hopping: Diagrammatic approach

diagrams value  correlation function
6.5(a)+c.c. W} Pim
5(b)+c.c. Wr..  Pim
6.5(c)+c.c. i Pm = Pim
5(d)+c.c. |74 — Pim
6.6(a)+c.c. n=1 Wy <al aa, amam> =0
6.6(b)+c.c. n=m Wyum <a al amama al> 0
6.6(c)+c.c. n=m W <alal al a amam> =0
6.6(d)+c.c. n=1  Wium <a ajaamal, al> =0
6.6(a)+c.c. n £l Wiy <a aal,anal am> (L= pn) = pinPm = PPt + 2p1pmpPn
6.6(b)+c.c. nZm  Winm <a al ananal al> (1 = pn) = PmnPr — PinPm + 201PmPn
6.6(c)+c.c. n#Fm Wy <aT aal, ama) an> (L= pm) = PrmpPr = PrmPr + 200 Pmpr
6.6(d)+c.c. n£1 Waimm <a2a}alamajnan> 2 Pam (1= p1) = PimPn — PinPm — 2010nPm

Table 6.3: Values for the diagrams of Fig. 6.5 and 6.6 plus their complex conjugates. For the evaluation of the tunneling diagrams the
wide band limit was assumed. The index r = L/R stands for the left/right electrode. In the second section, for the situations
n =1 or n = m the relation ﬁl2 = n; was used, where n; = azral is the number operator of site [. In the third section, the
three-particle correlation functions have been factorized into two- and single-particle correlation functions to obtain closed

equations.
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Note, for the two-particle density matrix the relation p;,, = p,u holds. The rate
equations for single-particle density matrices have the following form, similar to Eq. 5.15
and 5.16,

d
= ; [(Pl — Pim) Wimi + (Pm — pmi) Winai (6.13)
d
prid =piWii + (1= p1) VI + (p1 = p12) Wazr + (p2 — par) Wan - (6.14)

The rate equations for all other single and two-particle density matrices have a similar
structure following Table 6.3. The rate equations for the single and two-particle density
matrices have to be solved simultaneously. The current can then be calculated using
Equation 5.17.

Correlations

To see which terms in the rate equation for the two-particle density matrix give rise to
correlation effects, we exemplary compare Eq. 6.12 with

o =% ol e+ 012 (]
at pP1p2 T P1] P2 Pldt P2

=p1paWii + (p2 = prp2) Vi
+ (p1 — pr2) p2 Wi + (p2 — p21) p2Wonr
+ p1 (P2 — pa1) Waiz + p1 (p1 — p12) Wiz
+ p1 (P2 — pa3) Wasa + p1 (p3 — p32) Waaa -

For the second and last line the corresponding terms in Eq. 6.12 are easily found when
identifying p12 = p1p2. On the other hand, the corresponding terms for the third and
fourth line are not obvious. The reason lies in the use of the identity n7 = 7; in deriving
Eq. 6.12, where n; = alTal is the number operator of site [ (see Table. 6.1). When
factorizing the three-particle correlators in the middle section of Table. 6.1 directly,
without using the above identity, one obtains exactly the expressions in the third and
fourth line of the above equation. Consequently, all hopping terms contribute to the
correlation effects.

6.2. Results

In this section we study the I-V characteristics of short DNA molecules including cor-
relation effects and compare with the results obtained in the previous chapter. Firstly,
it should be noted that correlation effects do not influence the transport properties of
homogeneous DNA sequences, as can be seen from Eqgs. 6.13 and 6.14. In homogeneous
DNA the onsite energies of all base pairs are identical therefore the hopping rates for a
forward and backward hopping process are equal in magnitude but with opposite sign.
Since p;; = pj; holds, the two-particle density matrices drop out of the equations and the
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Figure 6.7: (a) Differential conductance (logarithmic scale) as a function of applied bias for
two DNA sequences including (solid lines) and neglecting (dashed lines) correlation
effects. (b) Corresponding I-V characteristics of the two solid curves in (a). All
results are obtained with the following parameters: base pair onsite energies ep =
—0.26eV, eq = +0.25eV, polaron shifts Ay = 0.18eV and Ag = 0.47eV, Fermi
energy Frp = 0eV, symmetric coupling to leads with linewidth I't, = I'r = 0.01eV,
vibrational energies hws = 11 meV, hiwg = 16 meV, and room temperature kg1 =
25meV.

occupation and consequently the current, only depends on the single-particle densities.
The I-V curves are therefore identical with or without correlation effects.

Throughout this chapter we will present various results which include correlations ef-
fects, i. e. when the single- and two-particle density matrix are calculated by simultaneous
numerical iteration of the corresponding rate equations. The number of rate equation for
the two-particle density matrices increases quadratically with the number of DNA bases,
leading to numerical difficulties in the calculations for large systems. We therefore con-
sider only nearest-neighbor correlation functions p; ;41 (unless indicated differently), as
they have the most important influence on the transport properties of the DNA. This is
obvious as only these two-particle density matrix elements directly enter in the rate equa-
tions for the single-particle density matrix (Eqgs. 6.13 and 6.14). The other two-particle
correlation functions only indirectly enter through the rate equation for the two-particle
density matrix. In a later part of this chapter we will explicitly show the validity of this
assumptions, as the correlation functions of more distant base pairs only slightly change
the results. The main physical effects remain unchanged.

6.2.1. Correlation effects

Figure 6.7(a) shows a comparison of the differential conductance with (full lines) and
without (dashed lines) correlation effects for the sequences GAAAAAAG (black lines)
and GGAAAAGG (red lines). The dashed curves are identical to the ones presented
in Fig. 5.5 of the previous chapter. Figure 6.7(b) displays the corresponding [-V' char-
acteristics for the situation with correlation effects. For both sequences the current at
negative bias is reduced by about an order of magnitude when correlation effects are
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Figure 6.8: Differential conductance as a function of applied bias for DNA molecules with
sequence AAAAGAAA (a) and GAAAAAAG (b) for two different electrode cou-
pling strengths I'r, ;g = 0.01eV (black lines) and I't, /g = 0.001eV (red lines). For
AAAAGAAA there is only a very weak dependence on I', g, in particular the sec-
ondary peak at high positive and negative bias is not effected. For GAAAAAAG
the secondary maxima are strongly lowered and broadened for smaller I'y, )g. The
primary maxima are only weakly affected. All parameters as in Fig. 6.7.

considered as can be estimated from the area under the differential conductance curves.
For positive bias (not shown) the reduction is only about a factor of 2. As discussed in
the previous chapter the position of the current threshold, i.e. the primary maximum
in the differential conductance, is not determined by an internal energy scale alone, but
also by the specific charge rearrangements in the DNA. This is also seen for the case of
correlations, where the position of the conductance peak has slightly shifted to lower bias
voltages, as compared to the uncorrelated results. The most prominent change, though,
is the additional secondary maximum in the dI/dV;, of the sequence GAAAAAAG, when
correlation effects are considered. Without correlation effects the differential conduc-
tance only shows a very broad single peak. This indicates that a new energy scale is
introduced into the system by the correlation.

Additional energy scale

In the following we will show some situations in which secondary peaks in the differential
conductance or likewise steps in the /-V characteristics arise. Figure 6.8 shows the differ-
ential conductance df/dV}, as a function of applied bias V}, for two DNA molecules with
sequences AAAAGAAA (6.8(a)) and GAAAAAAG (6.8(b)) for two different electrode
coupling strengths I't g = 0.01eV and ', )g = 0.001eV. For the sequence AAAAGAAA
we can identify two maxima in the differential conductance for positive and negative bias,
respectively —at Vj, = —0.9V, -0.55V,0.46 V, and 0.7V. The primary peak or threshold
indicates the voltage at which the current sets in. As discussed in the previous chap-
ter, the position of the the primary peak is not given by an internal energy scale alone.
Rather the position is determined by internal energies and the way the charges rearrange
for an applied bias voltage, which depends very sensitively on the DNA sequence.
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The secondary peaks for both positive and negative bias can be identified with new
energy scales arising from the correlations. The position of these peaks is also strongly
dependent on the sequence, as will become clear from the results for other sequences.
Changing the coupling to the electrodes by one order of magnitude does not change
the transport characteristics for the sequence AAAAGAAA, as the bottleneck of the
system is the hopping to guanine on the inside of the DNA2. Astonishingly, by adding a
second guanine in the center (AAAGGAAA, not shown), the secondary maxima vanish
completely, whereas the primary maxima remain unchanged. This indicates that the
correlations only introduce a new energy scale when a single isolated guanine is present
in the sequence. Nevertheless, the correlations change the transport characteristics, even
when no secondary maximum arises. A similar effect is always seen when a single base
is surrounded by other bases with a different onsite energy (not shown).

For the sequence GAAAAAAG there are also two maxima at positive and negative bias,
but for positive bias, the second always seen, peak is strongly suppressed as compared to
AAAAGAAA. The positions of the primary peaks for GAAAAAAG agree well with the
values for AAAAGAAA, but the positions of the secondary maxima clearly differ. The
main difference of GAAAAAAG to the other sequence is the dependence on the electrode
coupling I'. For smaller I the secondary maxima are strongly reduced, broadened, and
the positions are shifted. This behavior is a clear indication that these maxima arise
from correlations associated with the injection onto the guanine base from the interface
(or the reverse process). In contrast, the secondary peaks for the sequence AAAAGAAA
arise from correlations associated with a hopping process onto the guanine base in the
center of the sequence.

If a controlled way to vary the coupling between DNA molecule and electrode were
at hand, this effect could be easily studied experimentally. If indeed it was found, that
secondary maxima existed and were, depending on the sequence, either sensitive or insen-
sitive to the electrode coupling, then this could be an indication that the physics involved
in charge migration along DNA was similar to the one we described. It should also be
noted, that by adding further guanine bases at the front and at the end of GAAAAAAG
(GGAAAAGAQG) the secondary maxima vanish as can be seen in Fig. 6.7. As mentioned
above the same phenomena was found for AAAAGAAA.

Correlation function

To further explain what happens when a new energy scale is introduced, we take a look
at the correlation functions p;;, to identify the voltage at which the correlations become
important. In particular, we discuss the relative correlation Ap;;, i.e. the quantity
Ap;; = i — Pk (6.15)
PiPyj
When correlations are irrelevant Ap;; = 0, but when correlations exist Ap;; is either
positive or negative. The influence of the correlation function p; ;1 on the current is most

?In real DNA there would be a competing process, i. e. tunneling through the G between the surrounding
A bases, which is so far not considered in our model.
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important when the bases ¢ and ¢ + 1 have different onsite energies. For equal energies
the terms involving the correlation functions p;;1; drop out of the rate equations for the
single-particle density matrix (Eq. 6.13 and 6.14) as discussed above for homogeneous
sequences. In Figure 6.9 and 6.10 the characteristics of the correlation functions Ap;;
are displayed for the two sequences AAAAGAAA and GAAAAAAG, respectively.

In Fig. 6.9(a) the relative correlations Apy; (AG) and Apss (GA) are compared with
the differential conductance for the sequence AAAAGAAA. These correlations are the
most interesting as the single guanine base is at position 5 in the sequence. As indicated
by the dashed vertical lines, the correlations set in at the same voltage V}, as the sec-
ondary maxima in the differential conductance arise. It is therefore, reasonable to assume
that the secondary peak in the dI/dV; and the correlations at this link are connected.
Figure 6.9(b) shows a comparison of Ap; ;1 for all bases i of the sequence AAAAGAAA
for the two different electrode coupling strengths I' = 0.01eV and I' = 0.001 eV at the
two bias voltages Vi, = —0.88 V (top panel) and V;, = —0.68 V (bottom panel). These
voltages agree with the secondary maxima (for both negative and positive bias voltage)
in the differential conductance shown in Fig. 6.8(a). As in Figure 6.8(a) for the dI/dV},
there is no difference between the correlation functions for the two electrode coupling
strengths.

The transport bottlenecks of the sequence AAAAGAAA are the transitions 4 — 5
for positive and 6 — 5 for negative bias. The relative correlations associated with
these transitions Apys (Apsg) are negative for positive (negative) bias. For the sequence
AAAGGAAA, which does not have a secondary maximum, the relative correlations asso-
ciated with the respective bottleneck transitions are zero. One could therefore argue that
Apiiy1 < 0 at bottlenecks leads to secondary maxima in the differential conductance.
Unfortunately, for more complicated sequences this argument is too simple. For the se-
quence AAAAGAAA, the ‘non-bottleneck’ transition from guanine to adenine (5 — 6
for positive and 5 — 4 for negative bias) lead to Ap; ;11 > 0.

For the sequence GAAAAAAG the dependence of the correlation functions on I' is
different. Figure 6.10(b) shows a comparison of Ap; ;. for all bases i of the sequence
GAAAAAAG for I' = 0.01eV and I" = 0.001eV. The two bias voltages V;, = —1.28V
(top panel) and V;, = —1.00V (bottom panel) are chosen to agree with the secondary
maxima (for both negative and positive bias voltage) in the differential conductance
shown in Fig. 6.8(b)®. The value of Apjs (Apzg) for negative (positive) bias voltage
changes strongly with I' just as the secondary maxima of the differential conductance
(Fig. 6.8(b)). Again a strong relationship between correlations and secondary maxima
in the differential conductance is obvious.

For positive bias the transport bottleneck of the DNA molecule is the hopping transition
from the adenine (base 7) to the guanine (base 8). For negative bias the bottleneck is the
transition from base 2 to base 1. As with the sequence AAAAGAAA, these bottlenecks
produce negative relative correlation (Ap; ;1 < 0). For all other sites i Ap; ;41 = 0. In
Fig. 6.10(a) the relative correlation Ap;, and Aprg are compared with the differential

3Since the position of the secondary maxima shift with I a value between the maxima for both couplings
is chosen.
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bias voltage (with I' = 0.01 eV).

Figure 6.9: Characteristics of DNA molecule with sequence AAAAGAAA. All parameters as
in Fig. 6.7.

conductance for the sequence GAAAAAAG. The dashed vertical lines again indicate that
the correlations set in at the same voltage V}, as the secondary maxima in the differential
conductance arise (compare to Fig. 6.9(a)).

More complicated sequences

So far we have only discussed the influence of the correlations on relatively simple DNA
sequences. For those systems, the connection between correlations and current or dif-
ferential conductance is quite easily established. Nevertheless, the physical reason why
correlations arise at a specific bias voltage is not clear.

For more complicated sequences the above discussed behavior holds also, i. e. when sin-
gle guanine or adenine bases are present in the sequence an additional energy scale arise,
which is reflected as a secondary maximum in the differential conductance. Figure 6.11
shows the characteristics of a DNA molecule with sequence GAATGAC, with single gua-
nine (cytosine) at the ends and in the center and a single adenine between a guanine
and a cytosine. The shape of the differential conductance curve (Fig. 6.11(a)) is similar
to the one of AAAAGAAA. On the other hand, the fact that the secondary maxima
decrease strongly with the electrode coupling I' indicates that they arise from the cor-
relations at the electrode interfaces. This is partly supported by the relative correlation
Ap; i+1 shown in Fig. 6.11(b). The relative correlations are shown for the voltages that
agree with the secondary maxima at negative and positive bias. For negative bias only
Apyo # 0, which decreases with I'. For positive bias Apg; < 0 but Apsg > 0, i.e. corre-
lations between the guanine and adenine at positions 5 and 6 also seem to be relevant
for positive bias voltages at the secondary maximum. Nevertheless, both correlations
decrease with the coupling to the electrodes. The influence of the correlations Apsg is
not quite clear. At higher bias more correlations arise (not shown), but a connection of
these with the -V could so far not be established.
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Figure 6.10: Characteristics of DNA molecule with sequence GAAAAAAG. All parameters
as in Fig. 6.7.

It can be summarized that the correlations due to single guanine bases at the electrode
junctions dominate the behavior of the secondary maxima with respect to I'. Addi-
tional single guanine (or adenine) bases in the center of the sequence do not lead to I'
independent secondary maxima, as was observed for AAAAGAAA (Fig. 6.8(a)).

6.2.2. Long-range vs. short-range correlation

In the entire chapter we restricted our calculations to nearest-neighbor correlations and
ignored correlations between more distant base pairs. The inclusion of long-range correla-
tions to some degree changes the I-V characteristics, but the essential physical effects are
not affected. Figure 6.12(a) shows the current and differential conductance of the DNA
sequence GAAAAAAG including and neglecting long-range correlations. The first step
at negative bias in the I-V characteristics is flattened out when long-range correlations
are considered. This reduces the primary maximum in the differential conductance to a
shoulder. The same happens to the secondary maximum at positive bias. For high bias
voltages the currents including or neglecting long-range correlations are equal, showing
that at these voltages long-range correlations are irrelevant.

This interpretations is validated by Fig. 6.12(b), which shows the (absolute value of
the) relative correlation |Apy;| between the first and jth base as a function of j. The
black line shows the distance dependence for a bias voltage V}, = —1.24V, i.e. at the
position of the secondary maximum at negative bias. The relative correlation decrease
exponentially with the distance — already for j = 3 the correlations are one order of
magnitude smaller than for j = 2. At a bias V}, = —0.56V, where the differential
conductances in Fig. 6.12(a) differ the most, the relative correlations decrease far slower
but still exponentially. Therefore, long-range correlations at this bias voltage are more
important. Note that the data point for the eighth base differs from the exponential

75



Chapter 6: Incoherent polaron hopping:

Figure 6.11:

Figure 6.12: Characteristics of DNA sequence GAAAAAAG including long-range correlations.
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6.2 Results

Figure 6.13: Current and differential conductance as a function of applied bias for GAATGAC.
The black lines show the results when correlation between all base pairs were
included. The red lines show the approximative result, where only correlations
between nearest neighbors were considered. All parameters as in Fig. 6.7.

behavior for both voltages as it is a guanine base, whereas the other six bases are adenine
bases.

To show that these arguments hold also for more complicated DNA sequences, Fig. 6.13
depicts the current and differential conductance as a function of applied bias for the se-
quence GAATGAC, which we studied above. Here all primary and secondary maxima in
the differential conductance are clearly visible. The inclusion of long-range correlations
slightly changes the shape and height of these peaks in the differential conductance, but
for high positive and negative voltages the current is again identical with the approxi-
mation of nearest-neighbor correlations.

Non-local electron-vibration coupling

As we have explained in the fourth chapter, non-local or non-diagonal electron vibration
coupling is also strong in DNA. Disregarding such coupling may neglect some important
physical effects. Consequently, it might be interesting to generalize our approach to
include non-local electron vibration coupling. In the following we shortly sketch how this
could be done by extending the diagrammatic approach described above.

One would have to consider the following non-local electron vibration coupling term
as an addition to the perturbative Hamiltonian H’

]
The inclusion of this term into the diagrammatic expansion is not straight forward.
Firstly, a new kind of vertex with value :i:z')\ileilee_i(fi—éj)(ti_t2) is obtained. The fermion

lines of the diagrams are not affected, but there are all kinds of new vibrational lines.
These lines arise from operator products of the kind

(uta)s (Bult) + BL(t)) ()t (1) (6.17)

(
o X (taet) <Bk(tn_1) + B;i(%—l)) Xl(tn»m
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with (Bg(t;) + Bj(t;)) at various positions in the product. A closed formula which
describes the value of the vibrational lines is therefore not easily found (compare to
Appendix E).

6.3. Summary and outlook

In this chapter we have developed a diagrammatic approach to polaron transport in small
molecules coupled to biased metallic electrodes. This approach is based on a real-time
expansion of the single-particle density matrix along the Keldysh contour. It extends
a technique for polaron transport in bulk systems which was developed by Bottger and
Bryskin. We have applied this technique to short DNA molecules with various sequences.
This diagrammatic approach includes effects arising from correlations between the oc-
cupations of different base pairs, which were not considered in the previous chapter.
Correlations are only relevant for inhomogeneous DNA sequences and, in general, they
lead to a reduction of the current. For sequences which include single isolated bases sur-
rounded by bases with other onsite energies, a new energy scale arises. This new energy
scale stems from correlations associated with the isolated base and leads to a secondary
maximum in the differential conductance. Correlations associated with isolated bases
in the center of a sequence are insensitive to the coupling to the electrodes, whereas
correlations associated with bases at the electrode interface are strongly reduced for de-
creased coupling to the electrodes. A decrease in the correlations is accompanied by a
reduction of the secondary maxima in the differential conductance. We have also shown
that correlations between different bases decrease exponentially with the distance, i.e.
correlations between nearest-neighbors are the most important.

There are some interesting effects associated with correlations between different bases
in DNA molecules, but there remains an open question: What determines the specific
voltage, i.e. the energy scale, at which the correlations develop. Some simpler model has
to be found that allows more insight into the physical effects that govern such correlations.
Furthermore, in real DNA there are other processes, which compete with the nearest-
neighbor hopping. These processes are tunneling transitions between bases with equal
onsite energies that are no further apart than two or three base pairs. The inclusion of
such processes into our theoretical model would lead to a better understanding which
effect tunneling has on hopping transport through DNA.
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In this thesis we have studied electronic transport through short DNA molecules, stressing
the influence of base pair vibrations. Experiments and earlier theoretical investigations
have shown that vibrations are important in the electronic transport through DNA, al-
though there is still some controversy over the exact influence of vibrations. In particular,
the question whether polarons are formed in DNA is not conclusively answered, as only
some experimental results favor the idea of polarons. Other experiments show relatively
high maximum currents, which agrees better with a (quasi)-coherent transport picture.
Therefore, we have discussed transport through DNA in these two limits, by developing
independent theoretical methods to study these situations. In both these situations the
DNA is described by a minimum tight-binding model, identifying each base pair with one
tight-binding site, with parameters taken from experiments and/or ab initio calculations.

Firstly, we have investigated the quasi-coherent situation, where the coupling to vi-
brations introduces inelastic contributions to the current, but a partial coherence of
transport is conserved. We have developed an equation-of-motion (EOM) approach for
the single-particle Green function of the electrons in the DNA, which describes vibra-
tional effects arising from local and non-local electron-vibration coupling. To describe
the limit of relatively strong electron-vibration coupling we apply a unitary transforma-
tion to the Hamiltonian, canceling the local interaction term. This procedure allows for
a truncation of the series of higher-order Green functions arising from the EOM. The
truncation is physically justified for small non-local coupling. As we assume that the
chemical potential of the DNA coupled to the electrodes lies in the gap between highest
occupied and lowest unoccupied molecular orbital (HOMO and LUMO), DNA molecules
will in general experience ‘semiconducting’ /-V characteristics.

We showed that homogeneous DNA sequences have a band-like density of states with
distinct electronic resonances due to finite size. Additionally, vibrational satellites arise
energetically above and below the corresponding electronic resonance due to the local
electron-vibration coupling. The distance of these vibrational satellites to the corre-
sponding electronic resonance agrees with integer multiples of the vibration energy, where
more distant satellites have strongly reduced spectral weights. Furthermore, the density
of states displays a strong asymmetry due to the non-local electron-vibration coupling,
but, nevertheless, its effect on the current is rather small. The transport through a ho-
mogeneous DNA molecule is dominated by elastic quasi-ballistic contributions. For finite
bias and room temperature, scattering of the electrons with the vibrations decreases the
current by about 30% as compared to the vibrationless case. On the other hand, the
coupling to vibrations enhances the zero-bias conductance at low temperatures by several
orders of magnitude. The reason for this lies in the emergence of vibrational satellites in
the gap, which have non-zero transmission.
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As inhomogeneous DNA sequences experience Anderson localization, the density of
states is highly fragmented. As for the homogeneous sequence, there are electronic reso-
nances and vibrational satellites. For such DNA molecules electronic transport is almost
entirely governed by inelastic processes. That means that the energy to overcome the
potential barriers in the DNA, associated with the inhomogeneous sequence, is provided
by the base pair vibrations. We exemplary studied the sequence 5’-CAT TAA TGC
TAT GCA GAA AAT CTT AG-3’, which I-V characteristics show distinct steps as-
sociated with the energies of either pure or hybridized states of guanine and adenine.
This states can be identified in the density of states at £ — Fr = —0.3€eV, -0.7eV, and
-0.95eV. We could show, that in contrast to homogeneous DNA, the non-local electron-
vibration coupling qualitatively modifies the I-V characteristics for inhomogeneous DNA
molecules. In particular, for our model sequence the transmission of the states around
E — Ey = —0.7eV was halved.

Astonishingly, we found that the current through such inhomogeneous DNA sequences
depends non-monotonically on the electrode-DNA coupling I'. The current reaches a
maximum value when I' is about equal to the imaginary part of the vibrational self-
energy i, ~ 0.01eV. This shows that it is not always better to maximize the coupling
of the DNA to the electrodes and that a systematic (experimental) study of the coupling
is needed.

Secondly, we studied the limit of incoherent polaron hopping transport through short
DNA molecules coupled to biased leads. The polarons are formed due to strong interac-
tion between electrons and base pair vibrations, which are assumed to be independent of
the vibrations of other base pairs. To describe strong local electron-vibration coupling a
unitary transformation is performed on the Hamiltonian, giving rise to new parameters
for a perturbative expansion. These are the hopping (¢;;/A) and tunneling (t?/R/A)
strengths normalized by the polaron binding energy A, which is Ag = 0.47eV and
A = 0.18¢eV for guanine and adenine, respectively. To derive the current through such
a system, we stated a set of rate equations for the occupation number of the various
DNA base pairs, with rates obtained from Golden Rule arguments. These rates take into
account inelastic hopping transitions involving excitation or absorption of local base pair
vibrations.

For all DNA molecules we observe semi-conducting I-V characteristics, which are sym-
metric for homogeneous and symmetric sequences, but show rectifying behavior for all
non-symmetric sequences. The reason for this, lies in the fact that the ‘bottlenecks’ for
transport are hopping transitions, where a potential step has to be overcome. Since these
steps are, in general, different for positive or negative bias voltage they lead to different
currents. We showed that the current thresholds are very sensitive to the considered
sequence. For homogeneous sequences they agree with the polaron shifted onsite energy
of the corresponding base pairs, but for inhomogeneous sequences the thresholds are
not directly related to intrinsic energy scales. For such DNA molecules the non-trivial
charge rearrangement at finite bias determine the exact position of the threshold, which
is somewhere in between the limits set by the onsite energies of guanine and adenine.
The shape of the thresholds differs from the Fermi function form. This change in shape is
the most prominent for the sequence ‘GAAAAAAG’ with only single guanine base pairs
at both ends, which shows a very broad peak, whereas for other sequences, comprising
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more than a single guanine at the ends, the thresholds are only slightly broadened. The
effect of charge rearrangements is visualized by displaying the local chemical potential
®;, which illustrates how the applied bias voltage ‘drops’ over the entire DNA molecule.
As expected most of the voltage drops at the junctions to the electrodes and at the
‘bottlenecks’ of the sequence.

We show that the current for a homogeneous DNA molecule is thermally activated with
a temperature dependence following an Arrhenius-law, which is expected for polaron
hopping transport. This result agrees well with some recent experiments. The obtained
activation energy F, depends on the applied bias voltage and approaches the bulk polaron
value E, = A/2 for voltages above the threshold.

In the third part of this thesis we have developed a general approach to polaron trans-
port through mesoscopic systems coupled to biased electrodes, which is not restricted to
DNA. The approach is based on a diagrammatic real-time expansion of the single particle
density matrix along the Keldysh contour. The consideration of non-diagonal elements
of the single-particle density matrix allows the inclusion of coherence effects in the de-
scription of polaron hopping. Furthermore, by nature of the diagrammatic expansion,
divergences associated with resonant tunneling, which where neglected in the previous
part by phenomenological arguments, do not occur. Instead, the possibility of resonant
tunneling gives rise to correlation effects between occupations of different sites.

We apply this approach to polaron hopping transport through DNA. In the limit of
strong electron-vibration coupling and high temperature coherence effects can be ne-
glected and we consider only the diagonal elements of the single particle density matrix.
In contrast to the previous part, we now consider correlations between the occupation of
different sites and study when such correlations occur and which changes they promote
in the transport characteristics. We showed that these correlations only affect inhomo-
geneous DNA sequences and, in general, lead to a reduction of the current of up to one
order of magnitude for high voltages. Most importantly, for some DNA sequences they
can introduce a new energy scale, which manifests itself as an additional peak in the
differential conductance. This new energy scale arises from correlations associated with
DNA bases in a sequence that are surrounded by bases with other onsite energies, e. g.
the guanine in AAAAGAAA. At bias voltages where these relative correlations (Eq. 6.15)
start to differ strongly from zero, the secondary maxima arise in the differential conduc-
tance. These secondary peaks arise at voltage above the primary current threshold, but
their exact position strongly depends on the considered DNA sequence.

We find that correlations which are associated with isolated bases at the electrode
interface (e.g. GAAAAAAG) strongly depend on the electrode coupling strength T
For decreased coupling the correlations and also the associated secondary peaks in the
differential conductance are strongly reduced. On the other hand, correlations associated
with isolated bases in the center of a sequence (e.g. AAAAGAAA) are insensitive to
the electrode coupling and consequently also the secondary maxima do not vary. This
behavior changes, if additional to the isolated base in the center there are isolated bases
at the electrode junctions (e.g. GAATGAC). In such a case the correlations associated
with the base in the center are also reduced when the electrode coupling is decreased.
We have also shown that correlations between nearest-neighbors are the most important,
as the correlations decrease exponentially with the distance.
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Chapter 7: Conclusions

Inelastic effects are important to transport in DNA and can lead to different behavior,
depending on the strength and nature of the coupling between electronic and vibrational
degrees of freedom. Hopefully this work will help to interpret the results of electronic
transport experiments with short DNA molecules and lead to a deeper understanding of
the physics involved.
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Appendix A. Useful relations

A.1. Green functions

The various Green functions are defined by

At t) = < {(af(1)) (A1)
Gialt, ) =i (af ()ax(t)) (A.2)
Gt t) =—i0(t —t') <{ }> (A.3)

=0(t — 1) (Gt )— le( 1)) (A.4)
G (8,1 =io — ) ({an(t).al(t)}) (A.5)
—0(t' — 1) (G5 (t, 1) — GR (1, 1) (A.6)

where only three of the four Green functions defined above are independent. The fourth
Green function is given by the relations

Gu(t,t) — Gt t) =Gy (t.t) — G (t.1) (A.7)
Gu(E) — Gu(E) =Gi(B) - Gii*(E) . (A.8)
The retarded Green functions follows the Dyson equation given by
G (E) = [(GBCt(E))_l - th(E)]_l , with (A.9)
G¥Y(E) = [E— H+i0"] ", (A.10)

where H is the Hamiltonian of the system.
The lesser Green can be calculated from the retarded and advanced Green functions
and the respective self-energies by the kinetic equation

G<(E) = G™(E) [Z5(E)] G*"(B) | (A.11)

where for the last three equations the Green functions where assumed to be matrices in
the site indices k, [.
The complex conjugate of the Green functions read

[G;/ﬂt,t')r — G/t 1) and [G>/<(E)r = —G/N(B) (A.12)
[Gret( )} Gadv( ) and [Gret( )} Gadv( ) (A13)
In equilibrium the fluctuation-dissipation relation is valid
n(E) =1 - f(B)) (Gi'(B) - Gii*(E)) (A.14)
a(E) =~ f(E) (Gif(B) - Gi(B)) (A.15)
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A.2. Langreth rules

Let us consider some contour ordered Green functions (A, B, C, and D) which are
evaluated at specific times 7; on the Keldysh contour |94, 124|. The associated real-
time Green functions (lesser, retarded . ..) of products and convolutions of these contour
ordered Green functions are found from the Langreth rules.

For easier readability we do not explicitly write out the time arguments for convolutions
with respect to time. That implies for a convolution on the contour C' = fc AB —
C(r,7') = [, dnA(r,71)B(r1,7') and similar for a convolution on the real-time axis.

Contour Real-time axis

C:/AB C<:/[AretB<+A<Badv:|
C t
Cret — /AretBrct
t
D = / ABC D< — /[AretBretcv< _I_AretB<Cadv_|_A<Badvcadv:|
C t

Drot — /AretBretcret
t

C(r,7) = A(r,7)B(r,7) C<(t,t') = A<(t,t")B=(t,t")
C™(t, ') = AS(t, 1) B**(t,t') + A™'(¢,t")B=(t,t')
_'_Arot (t, t/>Bret (t, t/)
C(r,7) = A(r,7)B(7', 1) C=(t,t') = A~(t,t")B~(t',t)
Cot(t,t') = A<(t,t) B (', t) + A (t,t")B<(t', 1)

The above expressions are taken from |124].
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Appendix B. Boson correlator

B.1. Commutation relation with the Hamiltonian

We want to calculate the commutator [ﬁ[, x|, where the only relevant parts of the Hamil-
tonian (Eq. 4.3) are the ones including vibrational operators B,, since y commutes with
all fermion operators and with itself ([x, x] = [x',x] = 0). Using the Feynman rule for
disentangling of operators

eAtB = ¢AeBem34Bl if [A (A, B]] = [B,[A, B]] = 0

we can write

= HeXp [&Ba _ Do Bl}
Wa w

67

2
= | | exp [&Ba] exp [—ﬁBl} exp [—2)\—02] .
We We w2

AN 7 7

X = exp [Z (%Ba — ?B;)

g '

I Ja Ko

We now perform the commutation

[ﬁ[,x} = S foJwKe - [FI, IaJaKa]

a o#Fa

= S twdwKe - {[H Ia] T K+ 1, [H Ja] Ka} :

a o'#Fa

since [IO/JO/KO/, [}NI,IaJaKaH =0 for o/ # a.
Let us look at the two remaining commutators separately.

(1)
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Appendix B: Boson correlator

/

Using
[fI,Ba} = —waBa—Z)\lalTaj and
<ij>
[}N[,BZ} = 0 for n=0,
we obtain
_ 00 A n—1 _)\
— -1 0 0 1
na) = St ()3 (- Dol
n=1 L <17>
AoA
= —Xo B — Z 071 azaj
<ij> @ i
(2)
- 1 /=X\" .~
i, Ja} = Y = (22) (@, B
[ ; n! ( Wa ) : o)
A" .
= S LT F B BIOD since [BY[H,Bi]]=0.
~ n! w,
Using
[Ij[,BL] = waBZy—i—Z)\lajaj and
<ij>
[I—NI,BZY"] = 0 forn=0,
we obtain
5 o0 _)\ n—1 _)\
] - o ()2 e+ St
n=1 <ij>
AoA
= J, —)\OBIY— Z%ajaj] .
<ij> ¢
Combining everything, we get
[ﬁx] = ST 1w duKa { B —ZAOM f ]IJK
) _ We, 1 Wy aJalla
a o#o <ij>
AoA
+]aJaKa _)\OBlz_ Z - ;raj }
<ij> ¢
AoA1 t AoA1
_ Z{ SR DE - T3] PO EWE D
« <ij> <uy>

86




B.2 Explicit expressions for higher order correlators

B.2. Explicit expressions for higher order correlators

Explicitely, for the different correlators in the equation for G,gll)(t) we have
)\a —iw,
(a®Ba(x(®alx’) & =22 (N(wa) + D1 = ) {a,()x(B)alxT)

(asBLON@T) = 2N @)1= ) (el
A

(aOX@BLBal') = = (1+ Nwa) (1 = 1) (a;(Ox(Balx")

Wa
and for Gl(j) (1)

Ao

(el ()BUXO) = =2 (14 Nwa)(1 =) (afxTa; (0)x())
(alxa, (B Dx(1)) ~ 2

W—Z(N(wa) + 1)(1 = et <a§ x*aj(t)x(t)>
)\a

(alxla; (X B(E) ) ~ = [(N(wa) + 1)(1 = ) = 1] (alxTa;(t)x(1)) -

Wa

In the next section the derivation of the first line in the above formulas, is shortly
sketched.

Calculation of the higher order boson correlators

Here we sketch the approximation taken to truncate the hierarchy at the first level
and how the expressions listed above are calculated. The approximation we take is the
following

(a;®BaOx®alx')  ~ Fult) (asOx(alx") . (B.1)

The function F,(t) is obtained by considering a Hamiltonian H, equivalent to H,
but without electron-vibration coupling terms and calculating the same higher order

correlation function <aj(t)Ba(t)X(t)alTXT> _, where now the average is taken with respect
Ho

to f]o. Then the electronic and vibrational correlators factorize,

(s®BaOxBaix") ;= (as(0)al) . (BalXOX) g (B.2)

Ho

where HS' and HY™ are the electronic and vibrational parts of Hy.
After some straight-forward algebra (see below) we obtain

<Ba(t)X(t)XT>ggib = Fu(t) <X(t)XT>[~{(\)/ib

and consequently

(aOBuOX(BaixT) . = Fult) (a,(00x()afx")
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Appendix B: Boson correlator

So, we want to find an expression for the correlator <Ba(t)X(t)XT>ﬁviba where fIOVib =
0

>, waBl B,. For this case the time-evolution for the boson operators become trivial
B, (t) = Bye~ ™!, This derivation proceeds, using ideas from [76]. First we rewrite the
correlator and divide it into two parts.

(Ba(t)x(Ox)
— < Buft)exp | 3 2 (Bult) — Bl (o) exp [ - 3 2 (B - BL)] >
= T <[22 (B0t - BLo)] exv | - 2250~ B >
v 0 ’
x < Bu(t) exp [)\—Z(Ba(t) - B;(t))} exp [— %(Ba - BL)] >

Now we look at Ia, where we explicitly write the density matrix o.;, = exp [ — ﬂhwana}

and the sum over all quantum mechanical states |n, >, i.e. the occupation numbers of
vibrational mode «,

1 o
<la> = Enzzjoexp [—ﬂhwana]

X < nalBalt) exp [22(Balt) ~ BL®)] exp [~ 22(Ba— B Ina >

e} «

with Z =3 _ exp [— ﬁhwana].
Applying the Feynman rule for disentangling of operators (see previous section), we can
rewrite

exp [&(Bae_i“at — Bjyei“’“t)} exp [— %(Ba — BL)} =
2

A Aa , Aa » Aa Ao
exp [— w—;] exp [— w—BLe’““t] exp [M—Bae ’““t] exp [W—BL] exp [— —Ba] .

using the commutator relationship

Ao , Ao
exp [—Bae_“"“t} exp [—Btﬂ -
W Wa
N\ Ao Ao :
exp [ (—) e_“’at} exp [—Btﬂ exp [—Bae_’w“t} ,
We We We
the above expression becomes
Mt . Ao
exp [—(Bae_’““t - Ble“’at)} exp [— (B, — BL)]
(0% wa
Ao\ . A . A .
— o Sta 1— —zwat] [_OCBT]__ zwat} |:——aBa1— —iwat
e [ (22) (= ep [228 00— e exp [ - 221 - e
K(t)
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B.2 Explicit expressions for higher order correlators

Ia now reads

T = Ba(t) exp [22(Ba(t) = BL0)] exp [ - 22 (8. - BY)]

e} «

Aa . Ay p
— K(t) Ba(t) exp [—B(L(l _ ezwat>:| exp |:_ —Ba(l —e zwat):| )
Wa W
We want to move all term containing BT to the left. For that we need the relation
Aa T iwat
Bty o0 [2 40— )] -
Wa

e}
«

Ao , Aa , p A, '
exp [ Z2BL(1 = ¢ [ exp | = ZEBI (1 e Buem e exp [ Z2BL (1L - o)
Wa Wa,

J

Bae_i““t _ ;(1 _ 6—iwat)

Way

which was derived using

A

e 1 1 Ta e
SBeS = B+ [S,B] +5 [S, [S,BH o
Defining u = 2=(1 — e™="), we can write

Ia = —u"K(t) exp [u Bl} exp [— u” Ba}

+K(t) exp [u BL] B,e "t exp [ —u* Ba} :

We can now write an expression for < Ia >, that we can use to calculate the explicit
result,

< Ila>
>\a —iwat
= — (=™
K(t) & .
% Z exp [— ﬁfwana] < ny|exp [u BL} Boe " exp [— u* Ba} [ng > .
Na=0
b

To calculate 1D, we state the following rules, when acting with the boson operators on
the states,

Bl m Ng! 3
< ngletve = —[7} < N — M
(ng —m)!

1

na—1 *\1 | 1
. * —U na. 3
Bae—zwate—u Ba|na> — § : ( ) [(n _l_l)']Ze zwat|na_l_1 >

<Ng—mng —1l—1> = 1 -
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Appendix B: Boson correlator

Using these, the expression in brackets of [, reads

i PR
< ngletPaByeWetemw Bapy > —

i ﬁ [nia'} 2 "i_:l (—u*)! [ Ng! ] %e_i“’“té
m—0 m' (na - m)' —o l' (na _ l _ 1)' m,l+1 -

Performing the sum over [ we end up with

' Na m | (_ *)m—l )

i . u Ne! u

< nglePoByemWele™ Bep, > = — = e el
ol “ “ m! (n—m)! (m—1)!

m=1

"Za (—‘UP)(m_l) N g —iwat

2 [m — D (e —m)l m"

Together with  Z =3 _ exp [— 6hwana] = [1 — e Phwe] _1, this makes

e—iwat )

00 Mo U 2)(m—1 ’)’La! u
To=(1=e7fe) 3 et ) ([(7|n |-)1>!]2) (n=m)l m

na=1 m=1

Using the variable transform | =n, — 1 and k =m — 1, Ib becomes

00 !

B _ —\u\ l+1)! U
Ib = K(t)(1—ewn))y " mfhoeltsn) Z (s ot
1=0 k=0 '

_ _ — I+1)! 1
—  K($) (1 — e Bwa)g—Bhwa o, p—iwat Bhwat ( u>)* ( )
() (1 = em)e Zze B2 (=R kt1

=0 k=0
_ _ i N (I+k+1 1
= () (1 e et 55 o0 e P
=0 k=0

where in the last step we set the upper limit of k£ to infinity, together with changing the
accordant values in the formula, which is not straight forward, but can be checked by
explicit comparison between the terms from the second and third line. Using the identity
for the faculty  (I+k+1)! = [;° dea"™ ! e~ we obtain

Ib = K(t) (1— e—ﬁﬁwa) —Bhwa , p—iwat

— Bhwal |U| ) > = I+k+1 -z —ﬁhwakl
X Ze QL l—l—l) dx;x e Te o

J

~~

Ic

The expression Ic can be computed to
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B.3 Detailed balance relation

— —Bhwak
Ic = /0 dz o'+ Z e —'
— /OO dx xl—i—le—x(l—exp[—ﬁma})
0
— (1 . e—ﬁhwa)—(l-l-l)/ dr [LU(l . e—ﬁhwa)]l—l—le—x(l—oxp[—,@hwa]) )
0

Using y = 2(1 — e #™) and dy = dz(1 — e Phwe) —

Je — (1_6—5ma)—(1+2) /OodyyHl
0

= (1 — e PMa)y=t2 (4 1)1,

Consequently, we get

. iat e el (—uf?)!
b = Ty v x K(t ; QT
Falt)

= N(wg)ue “F(t).
Putting it all back together, we finally get

(BaOX(OX) ~ =22 (Vo) + (1 = &) (x0T

The other correlators are calculated similarly.

B.3. Detailed balance relation

using the following representation for the boson correlator:

() = exp {_ 5 ( Ao ) cosh (waf3/2) — cos (wh [t +6/2) } (B3)

Wa sinh (wa/3/2)
(x'x(t)) =exp {_ 3 (2_2) cosh (waﬁ/zﬂ:(zzs 5(7;) [t —i5/2]) } (B.4)

(B.5)

It is easy to show that P(FE) follows the details balance relation P(—FE) = e P P(E),
where

P(E) = / dte™ (x(t)x") (B.6)
P(—E) = / dte® (M (t)) (B.7)
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Appendix B: Boson correlator

We verify this by writing the inverse Fourier transform for P(—F) and e P P(E):

/ge—iEtp(—E) = <XTX(t)> (B.8)
e d N (Ao cosh (wa3/2) — cos (wa [t — iB +iB/2))
E p{ ; (Wa) sinh (w,/3/2) } (B.10)
o ] (20 cosh (waB/2) — cos (wa [t — i8/2])
: p{ ;(wa) sinh (wq,3/2) } (B.11)
= XX (B.12)

Since the first and last line are identical, also the details balance relation is true.
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Appendix C. Electrode self-energy

We define G!, (t) = —if(t )< " (t)a, XT> and G2, (t) = —if(t) <alTXTc£(t)> and calculate
the according EOMs with the Hamiltonian from Eq. 4.4.

d

(i%—eu) L) = 8(1) <c a1X> Zt[ < (t)x(t)ajxfﬂ
o~ 2

g7t (¢ Gh()

(%_) 2. = 5t) (afx'e)) + Zt’“[ ) (alxa;(0x(®)]
AU

7

[gret ()]~ a2(1)

L) = g <czaj><*> / dtZt”gmtt—t G (1)
50 = g (alx'e) /dtztrgrett_tc:()

where t7 is the coupling of the left, » = L (right, r = R) electrode to the first, j = 1

(last, j = N) base pair and ¢'*(E) = is the non-interacting retarded green functions of

the left or right electrode. For the wide band limit, this simplifies to ¢’**(E) = —i27mpL.
The so far unspecified equal time correlator of the first equation reads

(alx) == [ 32 S U EGHB) + GBIGE]. (€

The second unspecified correlator has the same magnitude, but with opposite sign, since

the relation
<c’"aTXT> + <a}x*c;> = <{c;,a}} XT> =0 (C.2)

holds. As one can see from Eq. C.1 this would lead to a coupling between G'(¢) and
G?(t) to other Green functions. To have fully decoupled equations, we set both cor-

relators <c;al XT> and <a;XTcz> to zero. This approximation is reasonable, since their

contribution to Eq. 4.6 and 4.7 is small, at most of the order of I'" and adding G'(¢) and
G*(t) in the end results in their cancellation according to Eq. C.2. The validity of this
approximation has been checked numerically.
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Appendix D. Non-equilibrium
Equation of motion

In contrast to the method described in Chapter 4 for determining the transport properties
of the molecular system, where the lesser self-energy was approximated by an effective
Fermi function, we now want calculate the full non-equilibrium transport of the system.
The vibration occupation can still be described by the equilibrium Bose-function, since
the coupling to the bath relaxes the vibration fast enough into equilibrium.

In non-equilibrium the distribution-function (G<) and the density of states (G™")
are independent of each other. In contrast, the fluctuation-dissipation relation links
these two in equilibrium. To calculate the non-equilibrium properties of the system we
calculate the equation of motion for the contour ordered Green function Gy(1,7") =

—i <Tcak(7)x(7’)aj(T’)XT(T/)> For this we split the Hamiltonian (Eq. 4.3) into a part
describing the uncoupled system and a part describing the rest, H = Hy + H;, with

H, :Z(e a a; — Z tlja a;

) <t5>
H, = Z [tfn ¢t ax +taly cm} + Hg + Hj,
+ZwaBB + ) Njalaj(B.+ BY) . (D.1)
a <ij>

The equation of motion (EOM) then reads

> szi — e+ A) Sii + tk]} Ga(r. ) =8(r — 7))

J .

—i <TC [ar(7)x(7), Hi] a;[(T/)XT(’T,)> .

<< I:(lk;X,Hl]al XT>>(7.77_/)

(D.2)

After rearranging we obtain

Gu(r, ™) =G (7,7') + Z/dTngj(T, ) << [ajx, H] alx! >> () (D.3)
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Appendix D: Non-equilibrium Equation of motion

Applying the Langreth rules we get for the retarded /advanced and lesser/greater Green
function in real time

Git(t, 1) =GOt 1) +Z / At GO (t ) << [agx, Hi] ajx" >>f ) (D.4)

Gl (t,t) =G0 (1, ) + Z / At G50 (1) << [ayx, Hi] alxt >>3 ) (D.5)

G/ (1) =G7/ <", 1) +Z / dt G (t, 1) << [apx, Hn] alxT >>(/%,,
+Z/dt1G>/<0 (t,t1) << [ajx, H] alx >>"(“tdlV m  (D.6)

Or in energy space

GiH(E) =GeY( +ZGmt0 ) << lajx, Hi] afx" >>% (D.7)

GV (B) =G +ZGadVO ) << [ajx, Hi] afx" >>%" (D.8)

G,Z/<(E) :G,j/<0 )+ ZGrCtO ) << [a,jX,Hl} alTXT >>E/<
ZG>/<O ) << [a;x, Hi] alX f>sadv (D.9)

This is equivalent to the result obtained by the far more complicated method of Niu
et al [125]. Using the Eq. (D.8) one can rewrite Eq. (D.9) to (in matrix notation)

G>/<(E) :G>/<’O(E) “Gadv,O(E)}_l Gadv(E)}
+ G*(B) << [ax Hl] > 2/< ) (D.10)

The Green function << [a;x, Hi] alx ! >>r§t/adv depends on G~ (F) and G<(F).
Therefore we have a set of coupled equations which have to be solved self-consistently.
The Green function consisting of the commutator with H; describe the interaction with
the leads, the non-local electron-vibration coupling and the influence of the strong local
electron-vibration coupling.

The commutator with the electrode-system Hamiltonian HTL and HT7R give rise to

<< [ayx, Hre] afx! >>1"'=—i0(1) <{c5/R<t>, aix } x*<t>x<t>> (D-11)
=1
<< [ayx, Hopm] afx' >>5 = <aszCL/R(t) XT(t)X(t)> , (D.12)
=1
respectively.
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To obtain the retarded self-energy due to the electrodes we calculate the EOM for
Eq. (D.11). We define G'St(t) = —if(¢ )<{c;(t),agxg}> with » =L/R and then we

nlr

compute the equation of motion for G5t (¢)

o) = o) ({alx'})
A

+€ng£7i(t)

#358 [-000 (aOx@al) — ioo) (o 0x(0)]

Gret (t)

After fourier transformation from time to energy-domain, we obtain
EGHE) = aGilB)+ 36, G
— GIE) = gHE) L, G

where ¢'°*(E) is the retarded Green function of electrode r = R/L.
With this, the retarded electrode self-energy becomes

ret,r % ret
ij [E :tnkgnr

The last equality arises in the so called wide-band limit, where the density of states in
the electrodes is assumed to be constant.
To solve Eq. (D.12) we calculate the EOM for G5, (t) = z'<alTXTc;(t)>. In analogy to

the non-equilibrium derivation in the book of Haug and Jauho [124] (pages 162,163) we
get

= il . (D.13)

i Ztm [95(B) G (E) + g5 (B) G (B)]

where we can identify the lesser self-energy due to coupling to left (r = L) or right
(r = R) lead.

S5 = ) g () = if(B)2T,

n

Note, that we used the full coupling to leads, i.e. including the y-terms in Hryy, and
HT,R-

In the EOM we encounter the same types of terms which arose in the EOM in section
before, e. g. <ak(t)Ba(t)x(t)alTXT>. We treat these in the same manner, as in the previous

section, see Eq. (4.8) and following. Effectively this is equivalent to factorizing the
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Appendix D: Non-equilibrium Equation of motion

electronic and vibrational degrees if freedom. Is this? This is the only approximation
in this theory.
With these approximations the retarded and lesser correlators read

<< [an(®)x(t), Hu], ajx >>™ (E) :ZAM i (E)

+ 3" Mgho [FUGT)(E) + FolG5)(E)]
Jj#k
X [FGE) + F(CIE)]  (D.14)
and

<< alxl (X0, 1] >>< (B) =3 MG5i(B) + 3 S5 G (E)

+3 Mo (G5) (EB)
J#k
+ N2 (GR) (B) (D.15)
with the functionals F,(GY,)(E) and Fo(GY,)(E), that describe the strong interaction
with the local vibrations

A = [ae [ @ (vw) + 1 e - N )

:/dw¥ [(N(w)+1)G(E —w) — Nw)Gy(E + w)] (D.16)

FoG)(E) = / drei®! / a2 [N ()e — (N(w) + 1) €] G (0)

- [P veieuE -0 - (e +DGuEL] )

and the definition

D
Akj = — Aék] -+ Ezzt —+ /dW# [2 Z <aka;'r> )‘ij>\0
i#£]

_9 Z <aj/aj> Aijr AoOkj — Z >\kj>\0] .

<ij’> ik
The uncommon Green functions in Eq. (D.14) are G/ (t) = 0(t)Gg(t) and G5 (t) =
—0(t)Gy;(t). The variable v in Eq. (D.16) and Eq. (D.17) stands for the various Green
functions in Keldysh space.
Inserting Eq. (D.14) and Eq. (D.15) into the EOM formulas (Eq. (D.7) and Eq. (D.10)
respectively) and comparing the result for the lesser Green function (Eq. (D.10)) with
the general relation

G(B) = G§(E)+ Gy (B)S™ (E)G*" (E)
G (B)SF (B)G™ (B) + GF (B)S™ G (),
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we can identify
Fo(G)(E) = S5 (E)GS(E) + B3, (B)G*(B) . (D.18)

For G™" and G= self-consistency equations have to be solved numerically. The other
Green functions can be derived from the relations given in App. A. The drawback is
that the current computed by the Meir and Wingreen formula (Eq. 3.3) is not conserved,
i.e. I, # Ig. This unphysical result is due to the approximation in calculating the boson
correlators. Other authors using similar approaches, but without non-local electron-
vibration coupling, do not comment on this problem although they should experience it
as well [96, 115].
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Appendix E. Vibrational operator
products

In the perturbation expansion of the single particle density matrix p(¢) = <a,t(t)al (t)> i
H

to order n in the perturbative Hamiltonian H (Eq. 6.3), one obtains up to n vibra-
tional operators (equal number of x and ') at different times which act upon the same
vibrational states.

(et (2 (ta)xk (1) xelta X)) =

(exp {—% > (g—’z) (2N (Qa) + 1)})
X €xXp { {C12Ak(t1 - tQ)} + TC {C13Ak(t1 - tg)} -+ ..
FTo {Grtadaltans = t)} }.

where
G = +1 when xx(t:)x4 (1) or X (t5) xa(ts),
T =1 when xe(t)xi(t;) or X (t)xk(t5)
The evaluation of the operator products proceeds similar to the derivation in
App. B.2, except that now more functions x(¢;) are involved. The expression T¢ in
Te {C12Ak(t; — t2)} ensures, that ¢; is later on the contour than ty and Ag(t; — t3) is
given by

Moo ) 2 . .
Ak‘(tl - t2) - Z (i) [(N(Wka) _l_ 1) e_lwka(tl_tQ) _I_ N(W}ga)ezwka(tl_tz)}

-y (A,m)Q COS (Wha [t1 — Lo + 1h53/2))
- Wka sinh (hwkaﬂ/Q) )
For a correlator with n operators y; and XL acting on the same state one gets N = w
different terms Ay (t; —t;) in the exponential function. This is due to the various operator
commutations involved in deriving the above expression.
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