

Heiko Koziolek

Parameter Dependencies
for Reusable Performance Specifications
of Software Components

The Karlsruhe Series on Software Design and Quality

Volume 2

Chair Software Design and Quality
Faculty of Computer Science
Universität Karlsruhe (TH)

and

Software Engineering Division
Research Center for Information Technology (FZI), Karlsruhe

Editor: Prof. Dr. Ralf Reussner

Parameter Dependencies
for Reusable Performance Speci-
fications of Software Components

by
Heiko Koziolek

Dissertation, University of Oldenburg,
Department of Computer Science, 2008

Impressum

Universitätsverlag Karlsruhe
c/o Universitätsbibliothek
Straße am Forum 2
D-76131 Karlsruhe
www.uvka.de

Dieses Werk ist unter folgender Creative Commons-Lizenz
lizenziert: http://creativecommons.org/licenses/by-nc-nd/2.0/de/

Universitätsverlag Karlsruhe 2008
Print on Demand

ISSN: 1867-0067
ISBN: 978-3-86644-272-6

http://www.uvka.de
http://creativecommons.org/licenses/by-nc-nd/2.0/de/

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem . 3
1.3 Existing Solutions . 5
1.4 Contributions . 6
1.5 Validation . 9
1.6 Overview . 10

2 Software Components and Performance: Basics and State-of-the-Art 13
2.1 Component-based Software Engineering 14

2.1.1 Introduction . 14
2.1.2 Software Components . 15
2.1.3 Software Architecture . 19
2.1.4 Component-based Development Process 21

2.2 Model-Driven Software Development 23
2.2.1 Introduction . 24
2.2.2 Modelling Core Concepts . 24
2.2.3 Transformations . 29

2.3 Performance Engineering . 31
2.3.1 Introduction . 31
2.3.2 Performance Modelling . 34
2.3.3 Software Performance Engineering 39
2.3.4 Performance Meta-Models . 40

2.4 Component-Based Performance Engineering 42
2.4.1 Motivation . 42
2.4.2 Factors Influencing Performance of Software Components . . 44
2.4.3 Requirements for Component Performance Specification . . . 45

I

2.5 Related Work . 47
2.5.1 Component-Based Performance Prediction Approaches 48
2.5.2 Other Component-Based Performance Analysis Approaches . 59
2.5.3 Usage Modelling . 64

2.6 Summary . 69

3 Basics of the Palladio Component Model 71
3.1 Palladio Development Process Model 72

3.1.1 Developer Roles . 72
3.1.2 QoS-Driven Development Process 74

3.2 PCM Meta-Model . 79
3.2.1 Overview . 79
3.2.2 Interfaces, Data Types, and Components 80
3.2.3 Context Model . 86
3.2.4 Composition . 87
3.2.5 Resource Model, Allocation . 90

3.3 Random Variables . 93
3.3.1 Motivation . 93
3.3.2 Basic Properties of Random Variables 95
3.3.3 Constant Random Variables in the StoEx-framework 96
3.3.4 Discrete Random Variables in the StoEx-framework 97
3.3.5 Continuous Random Variables in the StoEx-framework 99
3.3.6 Stochastic Expressions . 102

3.4 Summary . 108

4 Behavioural Models for Users and Components in CBSE 109
4.1 Parameter Abstractions . 109

4.1.1 Motivation . 110
4.1.2 Parameter Characterisation . 112
4.1.3 Parameter Characterisation in the PCM 115
4.1.4 Implications of Parameter Abstractions 122

4.2 Usage Model . 123
4.2.1 Meta-Model: Abstract Syntax and Informal Semantics 124
4.2.2 Example . 126
4.2.3 Discussion . 128

4.3 Resource Demanding Service Effect Specification 129
4.3.1 Meta-Model: Abstract Syntax and Informal Semantics 130

II

4.3.2 Example . 142
4.3.3 Comparison to Related Work 144
4.3.4 Limitations . 145
4.3.5 Discussion . 148

4.4 Mapping PCM instances to QPNs . 150
4.4.1 Introduction . 150
4.4.2 Usage Model Semantics . 153
4.4.3 RDSEFF Semantics . 162
4.4.4 Limitations and Assumptions 169

4.5 Summary . 170

5 Generating RDSEFFs from Java Code 171
5.1 Motivation . 171
5.2 Techniques for Automatic Performance Model Generation 172
5.3 A Hybrid Approach for Reverse Engineering RDSEFFs from Code . 178
5.4 Static Analysis: Mapping Java Code to RDSEFFs 180

5.4.1 Location of External Service Calls 181
5.4.2 Location of Resource Usages 182
5.4.3 Control Flow Transformation 184
5.4.4 Abstraction-Raising Transformation 185
5.4.5 Establishing Parameter Dependencies 186

5.5 Java2PCM Implementation . 188
5.6 Java2PCM Case Study: CoCoME . 190
5.7 Summary . 194

6 Model-Transformation from Software Domain to Performance Domain 197
6.1 Model-Transformation Process . 197
6.2 Dependency Solver . 199

6.2.1 Input and Output . 199
6.2.2 Model Traversal . 202
6.2.3 Solving Dependencies . 204
6.2.4 Context Wrapper . 206
6.2.5 Computational Complexity . 207

6.3 Transformation to Stochastic Regular Expressions 209
6.3.1 Overview . 209
6.3.2 Background . 210
6.3.3 Syntax and Semantics . 211

III

6.3.4 Overall Sojourn Time Solution 213
6.3.5 Mapping from PCM Instance to StoRegEx 215
6.3.6 Assumptions . 217

6.4 Transformation to Layered Queueing Networks 218
6.4.1 Overview . 218
6.4.2 Background . 219
6.4.3 Syntax and Semantics . 220
6.4.4 Solution Techniques . 227
6.4.5 Mapping from PCM instances to LQN 228
6.4.6 Comparison PCM/LQN . 238

6.5 Summary . 241

7 Experimental Evaluation 243
7.1 Types of Validations . 243
7.2 Validations for Parametric Dependencies 245
7.3 Type-I-Validation . 247

7.3.1 Setting: Questions, Metrics, Assumptions 247
7.3.2 MediaStore . 249
7.3.3 Results . 255
7.3.4 Sensitivity Analysis . 261
7.3.5 Discussion . 263

7.4 Type-II-Validation . 264
7.4.1 Setting: Questions, Metrics, Assumptions 264
7.4.2 Experiment Design . 266
7.4.3 Results . 272
7.4.4 Threats to Validity . 277
7.4.5 Conclusions . 279

7.5 Summary . 280

8 Conclusions 281
8.1 Summary . 281
8.2 Benefits . 285
8.3 Future Work . 286

8.3.1 Short Term Future Work . 286
8.3.2 Long Term Future Work . 289

A Contributions and Imported Concepts 293

IV

297B Mathematical Definitions
B.1 Probability Theory . 297

B.1.1 Probability Space . 298
B.1.2 Measurable Functions . 298
B.1.3 Random Variable . 299
B.1.4 Real-valued Random Variable 299
B.1.5 Probability Mass Function . 299
B.1.6 Probability Density Function 300

B.2 Petri-Nets . 301
B.3 Scheduling Disciplines . 307

V

VI

List of Figures

1.1 Model-Driven Performance Prediction 3

2.1 Forms of Software Components [CD01] 16
2.2 Component-Based Development Process [CD01] 22
2.3 Modelling and DSLs [SVC06, p.56] . 25
2.4 Model Transformations [SVC06, p.60] 30
2.5 Markov Chains . 34
2.6 Queueing Network . 36
2.7 Stochastic Petri Net . 37

3.1 QoS-Driven Component-Based Development Process [KH06] 74
3.2 Component-Based Development Process: Specification Workflow (De-

tailed View) . 75
3.3 Component-Based Development Process: QoS Analysis Workflow (De-

tailed View) . 77
3.4 Palladio Component Model: Parts and Analysis Models 79
3.5 PCM Repository (meta-model) . 81
3.6 Interface (meta-model) . 82
3.7 Example Instances: Interface, Data types 82
3.8 Component, Role, Interface (meta-model) 83
3.9 Component Types (meta-model) . 84
3.10 Example Instances: Components . 85
3.11 System and Composite Component (meta-model) 88
3.12 Composed Structure (meta-model) . 89
3.13 Example Instances: Composite Component 89
3.14 Resource Model, Allocation (meta-model) 91
3.15 Example Instance: Resource Environment, Allocation 93
3.16 Probability Mass Functions (meta-model) 98
3.17 Examples for pmfs in the StoEx-framework 98

VII

3.18 Probability Density Functions (meta-model) 100
3.19 Example: pdf-discretisation with fixed intervals 101
3.20 Example: pdf-discretisation with variable intervals 103
3.21 Random Variable and Stochastic Expressions Grammar (meta-model) 104

4.1 Influences on QoS-relevant Component Behaviour by Parameters . . 111
4.2 Variable Usage (meta-model) . 115
4.3 Examples for Variable Characterisations 116
4.4 Classes containing Variable Usage (meta-model) 118
4.5 Required Characterisations (meta-model) 122
4.6 Usage Model (meta-model) . 124
4.7 Usage Model (Example) . 127
4.8 Resource Demanding SEFF (meta-model) 131
4.9 The Problem of Backward References 137
4.10 RDSEFF (Example) . 142
4.11 HQPN Instance as a Result of a Mapping from a PCM Instance . . . 151
4.12 Mapping PCM2QPN: Closed Workload 154
4.13 Mapping PCM2QPN: Open Workload 155
4.14 Mapping PCM2QPN: ScenarioBehaviour 156
4.15 Mapping PCM2QPN: Branch . 156
4.16 Mapping PCM2QPN: Loop . 157
4.17 Mapping PCM2QPN: Delay . 158
4.18 Mapping PCM2QPN: EntryLevelSystemCall 158
4.19 QPNs resulting from mapping a PCM Usage Model (Example) 161
4.20 Mapping PCM2QPN: InternalAction 163
4.21 Mapping PCM2QPN: ExternalCallAction for system external service 165
4.22 Mapping PCM2QPN: SetVariableAction 166
4.23 Mapping PCM2QPN: Fork Action . 166
4.24 Mapping PCM2QPN: AcquireAction 167
4.25 Mapping PCM2QPN: ReleaseAction 168
4.26 QPNs resulting from mapping a PCM RDSEFF (Example) 169

5.1 Reverse Engineering and Performance Prediction 178
5.2 Java2PCM: Classifying External Service Calls 182
5.3 Java2PCM: Method Inlining . 186
5.4 Substituting Local Variables in Expressions 187
5.5 Java2PCM: Design Excerpt . 189

VIII

5.6 Extract from the CoCoME Software Architecture 191
5.7 CoCoME Service markProductsUnavailableInStock 192
5.8 Comparison of manual and automated reconstruction 193

6.1 Model Transformation Process Model 198
6.2 Computed Usage Context . 200
6.3 Computed Usage Context . 201
6.4 DSolver: Traversing a PCM Instance 202
6.5 DSolver: Solving Parametric Dependencies (1/2) 204
6.6 DSolver: Solving Parametric Dependencies (2/2) 205
6.7 Stochastic Regular Expressions in Ecore (meta-model) 215
6.8 Mapping from PCM instance to SRE 216
6.9 LQN meta-model (generated from XML-Schema) 221
6.10 LQN-Tasks Illustration [Woo02] . 222
6.11 Phases in LQNs Illustration [FMW 07] 224
6.12 Simple LQN Example with 3 Layers 226
6.13 Two Alternatives for a PCM to LQN Mapping 229
6.14 Mapping PCM2LQN: ProcessingResourceSpecification . . . 230
6.15 Mapping PCM2LQN: ClosedWorkload 231
6.16 Mapping PCM2LQN: OpenWorkload 231
6.17 Mapping PCM2LQN: EntryLevelSystemCall 232
6.18 Mapping PCM2LQN: Delay . 232
6.19 Mapping PCM2LQN: Branch . 233
6.20 Mapping PCM2LQN: Loop . 234
6.21 Mapping PCM2LQN: ResourceDemandingSEFF 235
6.22 Mapping PCM2LQN: InternalAction 236
6.23 Mapping PCM2LQN: ForkAction 236
6.24 Mapping PCM2LQN: PassiveResource 237
6.25 Mapping PCM2LQN: AcquireAction 237
6.26 Mapping PCM2LQN: ReleaseAction 238

7.1 Evaluating Model-Based Prediction Methods 244
7.2 Media Store, Static View and Deployment 250
7.3 Media Store, Sequence Diagram Use Case 1 251
7.4 Media Store, RDSEFFs . 252
7.5 Media Store, Linear Regression . 253
7.6 Response Time MediaStore Setting 1 256

IX

7.7 Response Time MediaStore Setting 2 257
7.8 Response Time MediaStore Setting 1 258
7.9 Response Time MediaStore Setting 2 258
7.10 Layered Queueing Network for the MediaStore 259
7.11 Response Time (Mean Values) . 260
7.12 Sensitivity Analysis: Media Store Usage Model 262
7.13 Sensitivity Analysis: Media Store System 262
7.14 Sensitivity Analysis: Media Store Resource Environment 263
7.15 Design of the Experiment . 267
7.16 Screenshot PCM-Bench . 271
7.17 Box plots of the overall time needed by the students in the experiment

sessions . 275
7.18 Breakdown of the duration for analysing the original system 276

A.1 Authors of PCM Packages . 294
A.2 Authors of PCM Transformations . 295

B.1 Queueing Place and its Shorthand Notation [Kou06] 303
B.2 Subnet Place and its Shorthand Notation [BBK94] 305

X

List of Tables

2.1 Component-Based Performance Prediction Approaches 49
2.2 Comparison of Service Performance Specifications 60

3.1 Component Context relevant for QoS Prediction 86
3.2 Context Model Implementation in the PCM 87

4.1 Service Parameter Dependencies in CB-Performance Prediction Meth-
ods . 145

6.1 Comparison PCM/LQN . 239
6.2 Comparison PCM/LQN Solvers . 241

7.1 File size distribution (Setting1) . 254
7.2 Deviation of the predicted response times 272
7.3 Correct Rankings of the Design Alternatives 273
7.4 Duration for the Predictions (mean values, in minutes) 275

XI

Abstract

Despite the increasing computational power of modern computers, many large, dis-
tributed software systems still suffer from performance problems today. To avoid
design-related performance problems, model-driven performance prediction meth-
ods analyse the response times, throughputs, and resource utilisations of systems
under development based on design documents before and during implementa-
tion. For component-based software systems, existing prediction methods neglect
the performance influence of different usage profiles (i.e., the number of requests
and the included parameter values) in their specification languages, which limits
their prediction accuracy. This thesis proposes new modelling languages and ac-
cording model transformations, which allow a reusable description of usage profile
dependencies in component-based software systems. The thesis includes an exper-
imental evaluation, which shows that predictions based on the newly introduced
models can support design decisions for scenarios, whose performance is influenced
by different usage profiles.

Zusammenfassung

Trotz der ständig ansteigenden Leistung moderner Rechner leiden auch heute noch
viele verteilte, betriebliche Anwendungssysteme unter Performance-Problemen.
Eine häufige Ursache dafür sind Defizite im Entwurf der Software solcher Sys-
tem. Um diese Defizite zu vermeiden, analysieren modellgetriebene Performance-
Vorhersageverfahren die Antwortzeiten, Durchsätze und Ressourcenauslastungen
von neu zu entwickelnden Systemen schon bevor bzw. während ihrer Imple-
mentierung auf Basis von Entwurfsdokumenten. Existierende Vorhersageverfahren
für komponentenbasierte Softwaresystemen vernachlässigen dabei performance-
relevante Einflüsse durch unterschiedliche Benutzungsprofile (bestehend aus der
Anzahl von Anfragen und deren enthaltenen Parameterwerten). Durch diese Un-
genauigkeit bei der Modellierung sinkt die Vorhersagegenauigkeit dieser Verfahren.
Daher schlägt diese Dissertation neue Modellierungssprachen und darauf auf-
bauende Modelltransformationen vor, die eine wiederverwendbare Beschreibung
von Benutzungsprofilabhängigkeiten in komponentenbasierten Softwaresystemen
erlauben. Mit einer experimentellen Untersuchung zeigt diese Arbeit, dass Vorher-
sagen basierend auf den neuen Modellen Entwurfsentscheidungen von Software-
Architekten insbesondere in solchen Fällen unterstützen können, in denen Be-
nutzungsprofile die Performance geplanter Systeme beeinflussen.

XII

Acknowledgements

Although a PhD thesis has only one author, there are actually many people involved
in its creation. I’d like to thank the people, who were influential to my research
during the last three years and enabled me to write this thesis.

First of all, I thank my parents for their absolute support over the years, which
greatly contributed to my work. Second, my supervisors Ralf Reussner and Wil-
helm Hasselbring enabled me to conduct my research and provided professional
support. Ralf laid the foundation for my research, put lots of confidence in me, and
created a very enjoyable and fruitful working atmosphere. Willi managed the grad-
uate school I participated in and provided feedback during our PhD seminars and
reading groups.

The members of the DFG-group Palladio and the Chair Software Design & Qual-
ity (SDQ) from the University of Karlsruhe helped me through many discussions,
which shaped my topic and greatly increased the quality of my research. Espe-
cially Steffen Becker and Jens Happe had a major influence on my work. Our chal-
lenging discussions, mutual detailed feedback, constructive criticism, and respect-
ful teamwork were a tremendous help for me. Viktoria Firus, Klaus Krogmann, and
Michael Kuperberg from Palladio and SDQ, as well as Thomas Goldschmidt, Hen-
ning Groenda, Christoph Rathfelder, and Johannes Stammel from Forschungszen-
trum Informatik helped me with their comments during PhD seminars, their paper
reviews, and their ideas during our research meetings.

I supervised two diploma students, who each provided their piece of the puzzle
to my thesis. Thomas Kappler improved my concepts for code analysis and created
a prototypical tool. Anne Martens managed the experimental evaluation conducted
for this thesis and put lots of effort into making it a success. I thank both of them for
their dedication.

During the last three years, I was part of the Graduate School ”Trustsoft” at the
University of Oldenburg. This created many opportunities for discussions and let
me meet many interesting researchers. I thank all members of Trustsoft for their sup-
port, especially Marko Boskovic, Simon Giesecke, Henrik Lipskoch, Roland Meyer,
Astrid Rakow, Matthias Rohr, Christian Storm, Timo Warns, Ira Wempe, Daniel
Winteler, and Manuela Wüstefeld.

Furthermore, I was lucky to discuss my topic with many great researchers. At the
risk of leaving someone out, I especially thank Antonia Bertolino, Egor Bondarev,
Ivica Crnkovic, Alexandre Fioukov, Vincenzo Grassi, Ian Gorton, Moreno Mar-

XIII

zolla, Marcus Meyerhöfer, Raffaela Mirandola, Sven Overhage, Iman Poernomo,
Antonino Sabetta, Heinz Schmidt, Connie Smith, Clemens Szyperski, and Murray
Woodside.

Finally, I’d like to thank Jorge Cham, the author of PhD-comics, for letting PhD
students all over the world bear grad school life with a smile and being a great
source for procrastination.

XIV

Chapter 1

Introduction

The following introduction will motivate the need for a new modelling method for
component-based performance engineering (Chapter 1.1) and then describe the spe-
cific problem tackled in this thesis in detail (Chapter 1.2). Afterwards, it will point
out the deficits of existing solution approaches to this problem (Chapter 1.3), before
it lists the scientific contributions of this thesis (Chapter 1.4). Finally, the introduc-
tion will sketch the experimental validation conducted for this thesis (Chapter 1.5).

1.1 Motivation

For more than 30 years, the performance of computer systems has doubled every
24 month (Moore’s Law, [Moo65]). Many engineers believe that this trend will
continue in the near future [Kan03]. Although processors become faster at an ex-
ponential pace, performance problems are still prevalent in many large software
systems [WFP07]. Recently, a survey of IT executives reported that 50% of the in-
vestigated companies had encountered performance problems with at least 20% of
their applications [Com06].

Insufficient performance in large software system is often caused by design
flaws [Smi02]. For example, in April 2007 it was reported [hn07] that the develop-
ment of SAP’s software solution for medium-sized businesses (A1S) caused prob-
lems because of insufficient performance. The estimated overall development costs
for the project were between 300 and 400 million Euros. An early implementation of
the system was only able to handle up to 10 concurrent users instead of the targeted
1000 concurrent users because of design flaws that prevented the system from using
different servers.

1.1. MOTIVATION

Many software developers have a ”fix-it-later” attitude [Smi02] towards the per-
formance of their systems. They first focus on implementing the system’s function-
ality without regarding performance requirements. Later, they test and optimise
the performance after they have completed the implementation [SMF 07]. How-
ever, if performance problems of a system result from design flaws, re-design and
subsequent re-implementation can become very expensive. Williams et al. [WS03]
estimate the costs for re-design due to performance problems in late development
stages to several million US-dollars even in typical mid-sized software projects.

Additionally, it is often not possible to overcome performance problems with ad-
ditional hardware (”kill-it-with-iron”), because a software architecture can exhibit
bottlenecks preventing the performance to scale up linearly with the available hard-
ware [Smi02]. Such systems do not benefit from the increasing computational power
of new hardware systems projected by Moore’s Law.

Model-driven performance prediction [BDIS04] proposes a substantially less ex-
pensive solution to this problem [WS03]. This method (cf. Fig. 1.1) uses software
models (e.g., in UML [Obj07b]) and lets developers annotate them with performance
properties based on estimations or measurements (e.g., with the UML SPT pro-
file [Obj05b]). Transformation tools then map these annotated software models to
performance models, such as queueing networks or Petri nets. These approaches are
called ”model-driven” instead of ”model-based”, because they automate the trans-
formation process.

For the resulting performance models different solvers based on mathematical
analysis or simulation are available. They derive performance metrics, such as the
response time, throughput, or resource utilisation, given a certain workload. Due
to the involved estimations and the uncertainty during early development stages,
these are not guaranteed real-time predictions. Nevertheless, software architects can
use the prediction results to assess the maximum performance of a system during
design and identify bottlenecks without an implementation.

Since the advent of component-based software engineering (CBSE) [SGM02],
researchers propose performance prediction methods specifically for component-
based systems [BGMO06]. A software component is a contractually specified
building block for a software system with explicit provided and required inter-
faces [SGM02]. Component developers shall specify the performance of their com-
ponents individually, which limits the complexity and therefore the effort for mod-
elling. Software architects shall compose these specifications isomorphically to the
desired architecture and then derive performance metrics from the resulting model

2

1.2. PROBLEM

Software Model

Annotated
Software Model

Performance
Model

Performance
Metrics

Estimations /
Measurements

Transformation

Analysis /
Simulation

Feedback

Encapsulation
into Tools

Figure 1.1: Model-Driven Performance Prediction

supported by tools [BM04a, WW04]. As in other engineering disciplines, these
methods shall enable reasoning on the properties of a system based on the prop-
erties of its individual parts [RPS03].

However, specifying the performance properties of a software component is not
trivial [BGMO06]. Component developers cannot make assumptions on how the
component will be composed with other components [FBH05], thus they do not
know how required services will influence the performance properties of their com-
ponents. They do not know the hardware resources and properties of the middle-
ware in the customer’s environment [WVCB01]. They cannot foresee contention de-
lays, if a component is used concurrently or runs in parallel with other applications
on the same hardware [BGMO06]. Finally, component developers do not know how
the component will be used by clients, which can alter the execution time [HMW04].

While recognising each of these influence factors on the performance of a soft-
ware component, this thesis especially focusses on the latter factor, i.e., the problem
of reflecting usage dependencies in component performance specifications.

1.2 Problem

Component developers shall specify the performance of their components, but do
not know how clients will use them. They implement a component against inter-
face specifications [SGM02], which provide no information how often and with

3

1.2. PROBLEM

what parameter values clients will use it. The usage profile (i.e., the number of
requests and the included parameter values) can alter performance properties sig-
nificantly [HMW04]. For example, the execution time of a component processing
items in a list heavily depends on the size of the list. Some clients might use only
small lists, while others use large lists. In some systems, a low number of clients
might use the component infrequently, while in other systems, many clients use it
constantly. Software components are meant for reuse in different contexts, therefore
highly variable usage is possible [SGM02].

Input parameters do not only alter a component’s use of hardware resources,
they can also change the interaction with required services [HMW04]. Calling a
component service with different parameter values can lead to different required
services being called. In other cases, the number of calls to the same required ser-
vice can depend on input parameters. The component developer’s performance
specification has to reflect this, as calls to required services alter the response times
perceived at a component’s provided interfaces.

The parameter values of clients calling a component can also alter the parameter
values the component uses to call required services. This is for example common
if a component is used in a pipe-and-filter pattern, where it receives some input,
transforms it, and then submits it to another component. Furthermore, the return
values from calls to required services add to the usage profile of a component and
might again alter resource usage or usage of other required services. As the input
parameters by clients, component developers cannot make assumptions on the re-
turn values of calls to required services.

Parameter values can also alter the internal state of a component [HMW04].
Depending on its internal state, a component can again use resources or required
services differently. Therefore, a component performance specification language
should provide facilities to express the internal state of a component in dependency
to parameter values.

Developing a modelling language for component performance specification that
includes usage profile dependencies has to consider the tradeoff between model
expressiveness and tractability [Jai91]. Complex models are often not suited for per-
formance predictions, because they suffer from state space explosion, which leads
to mathematical intractability. Therefore, performance models should be as abstract
as possible, while on the other hand still be sufficiently detailed to allow accurate
predictions.

4

1.3. EXISTING SOLUTIONS

1.3 Existing Solutions

To solve the problems described before, component developers need a modelling
language that allows the specification of performance properties in dependency to
parameter values. The specification must be a function allowing the characterisation
of parameter dependencies both to resources usages and calls to required services.
Existing approaches for component performance specification and prediction are
either (i) related to complexity theory, or (ii) based on UML, or (iii) use their own
notations.

A performance specification language for software components based on com-
plexity theory has been proposed by Sitaraman et al. [SKK 01]. According to this
approach, component developers shall use extended Big-O notations to specify the
algorithmic complexity of component services. While including parameter depen-
dencies to resource usages, this approach models performance on a very high ab-
straction level. It is not possible to get quantitative performance metrics, such as
execution time, from the resulting specifications, but only the complexity class. This
information is usually not sufficient for software architects, who want to evaluate
performance requirements. The approach also neglects calls to required services
and their parameterisation.

Many model-driven performance prediction approaches for monolithic system
are based on the UML and the UML SPT profile [Obj05b] standardised by the Object
Management Group (OMG). While the UML supports modelling software compo-
nents, there is no special support for component performance specifications. The
SPT profile does not include a notion of input/output parameter values, there-
fore it is generally not possible to express parameter dependencies. The CB-SPE
method [BM04a] is a performance prediction approach for component-based sys-
tems based on the UML SPT profile and does not deal with parameter dependen-
cies.

Other approaches for component-based performance prediction use proprietary
notations (e.g., [HMW04, WW04, BdWCM05, EFH04]). Hamlet et al. [HMW04]
tackle the problem of parameter propagations, but use a very restricted component
model and for example do not parameterise resource demands. Wu et al. [WW04]
use the Component-based Modelling Language (CBML), which is based on layered
queueing networks. It does not include a notion of parameters from component in-
terfaces. Bondarev et al. [BdWCM05] propose a specification language based on the
ROBOCOP component model [GL03]. It allows parameterisation of resource usages

5

1.4. CONTRIBUTIONS

and calls to required services, but models only constant parameter values instead of
probability distributions, which restricts expressiveness. Eskenazi et al. [EFH04] pa-
rameterise models in an ad-hoc manner, which limits their reusability. None of these
proprietary approaches has produced industry-relevant tools.

Several other prediction approaches have modelled the performance proper-
ties of component-based software systems (e.g. [GM01, HMSW02, Kou06, CLGL05,
LFG05]. However, these approaches have different notions of software components,
use monolithic models, or do not target reusable specifications. Some of these ap-
proaches also heavily rely on performance measurements and require a prototype
implementation of the architecture.

The usage of software systems by clients is modelled differently in different ar-
eas of computer science. In performance engineering [Jai91], often only the number
of users concurrently present in the system is modelled explicitly. The influence of
parameter values is usually not expressed explicitly, as many approaches include
execution times for a fixed set of parameter values in their models. In software test-
ing, developers sometimes use an operational profile [Mus93], which simply assigns
call probabilities to the functions of a system. In reliability engineering, some ap-
proaches use Markov usage models [WP93], which model call sequences and their
probabilities. None of these approaches explicitly deals with parameter values.

Concluding, existing performance modelling languages only provide limited
support for modelling usage profile dependencies. Therefore, their expressiveness
and their prediction accuracy is limited in situations where the usage profile influ-
ences performance properties.

1.4 Contributions

This thesis proposes the following contributions to the body of knowledge in soft-
ware engineering:

• RDSEFF Modelling Language: The resource demanding service effect specifi-
cation (RDSEFF) is a new modelling language to abstractly describe the perfor-
mance properties of software component services. It explicitly allows the spec-
ification of resource demands and required service calls in dependency to ab-
stract parameter characterisations. Therefore, it is more expressive than former
modelling languages for component performance and enables more accurate
predictions. It has been implemented as a meta-model and become part of the

6

1.4. CONTRIBUTIONS

Palladio Component Model (PCM) [RBH 07], which is based on the concept of
parameterised contracts introduced by Reussner et al. [RPS03]. A mapping to
queueing Petri nets (QPN) specifies the performance-related semantics of the
RDSEFF language. This model has been published in [BKR07, KBH07, BKR08].

• Usage Modelling Language: The PCM Usage Model is a modelling language,
which describes the user interaction with a component-based system. It specif-
ically targets performance predictions and allows the specification of the work-
loads and parameter characterisations supplied by users. It is more expres-
sive than Markov usage models. The Usage Model is implemented as a meta-
model and part of the PCM. It has been published in [BKR07, BKR08].

• Parameter Characterisation Model: This thesis introduces a new method for
characterising parameter values. The parameter characterisation model added
to the PCM allows modelling parameter values and parameter meta-data with
random variables. Therefore, domain experts can model the interaction of
large user groups with a software system in a stochastic manner. It is more
expressive than using constant parameter values in the performance mod-
els. To solve the parameter dependencies in RDSEFFs the so-called Stochas-
tic Expression Framework [RBH 07] allows calculating arithmetic operations
on random variables. The characterisation model has first been published in
[KHB06] as an extension to the UML SPT profile, and later became part of the
PCM [RBH 07, BKR08].

• QoS-Driven Component-based Development Process Model: The PCM tar-
gets a specific development process model derived from the component-based
development model by Cheesman et al. [CD01]. As part of this thesis, this
model has been extended for performance prediction. It introduces the con-
cept of dividing the performance meta-model among the different roles de-
veloping a component-based software system. This allows restricted, domain-
specific modelling languages for specific developer roles, which only capture
the information available to an individual role. Therefore, the roles can mod-
els their parts of a system independently. Other than similar process models, it
explicitly includes the roles of the component deployer and the domain expert
(published in [KH06]).

• Extensions to the SRE-Model: As a performance model capable of deriving
response time prediction from PCM instance, the Palladio research group has

7

1.4. CONTRIBUTIONS

developed the Stochastic Regular Expression (SRE) model [FBH05]. It is able
to handle general distributed execution times from PCM instances, but only
supports single user scenarios. In this thesis, the model has been extended
with a new loop concept (published in [KF06]), which allows more accurate
predictions. Furthermore, a model transformation from PCM instances to SRE
instances has been implemented as part of this thesis (published in [KBH07]).

• Model Transformation to LQNs: To connect an analytical solver for multi-
user scenarios to the PCM, this thesis provides a mapping of PCM instances
to layered queueing networks (LQN) [FMN 96]. LQNs are a popular perfor-
mance model for distributed systems. They do not support predictions in-
volving general distribution functions, but their analytical solver is substan-
tially more efficient than a simulation of PCM instances (cf. [Bec08]) but it only
allows mean-value analysis. Besides the additional solver, the mapping de-
veloped in this thesis also allows comparing the expressiveness of the PCM
language with the LQN language. The mapping has been implemented proto-
typically and validated with the model of a distributed system. This work has
not been published yet.

• RDSEFF Generation with Java2PCM: For implemented software compo-
nents, an automation of the performance modelling process is desirable. It
is possible to partially derive RDSEFFs from source code using static code
analysis. This enables fast model creation and lowers the barrier to use the
proprietary PCM modelling language. In the context of this thesis, a pro-
totypical analysis of Java code has been implemented, which creates RD-
SEFF models from Java source files (Java2PCM) [Kap07]. It automatically
performs the RDSEFF’s abstractions on arbitrary Java code given the compo-
nent boundary specifications. It does not derive resource demands, which
required dynamic analysis. A validation on a larger component-based system
(CoCoME [RRMP08]) shows, that the tool is capable of reducing the manual
effort for modelling substantially, while providing the same prediction accu-
racy with the generated models (published in [KKKR08]).

Notice that the concept of usage profile propagation using parameter depen-
dencies developed in this thesis is not restricted to performance modelling. It is
possible to analyse other compositional QoS-attributes (e.g., reliability, availability)
with only small adaptions of the modelling language (also see [HMW04]). Different
QoS-attributes could be combined in a single specification language to analyse their

8

1.5. VALIDATION

dependencies (e.g., performability analysis). This has not been attempted in this
thesis and is regarded as future work.

This work is related to the PhD theses of Steffen Becker [Bec08], Jens
Happe [Hap08], and Klaus Krogmann. Appendix A shows the relationships be-
tween these works.

1.5 Validation

To evaluate the claimed benefits of the proposed modelling languages and
model transformations, they have been implemented and applied on distributed,
component-based systems.

The implementation of the PCM meta-models uses the Ecore modelling lan-
guage from the Eclipse Modelling Framework (EMF) [Eclb] as a meta-meta-model.
OCL constraints in the PCM meta-model specify rules for well-formedness of PCM
model instances. Becker [Bec08] has implemented several graphical model editors
with the Graphical Modelling Framework (GMF) [Eclc] to create the individual parts
of a PCM instance (e.g., RDSEFF, Usage Model, etc.).

Besides the PCM, also the performance models SRE and LQN have been im-
plemented as Ecore meta-models as part of this thesis. The implementation of the
model transformations from PCM instances to these models uses the Java program-
ming language. Also a tool for removing parameter dependencies from RDSEFF
instances (called Dependency Solver) and the SRE solver have been implemented
in Java. The solution of LQN instances relies on existing LQN solvers by the RADS
research group from Carleton University, Canada [Rea].

The implementation of the languages enabled the modelling and analysis of
component-based systems to assess the achievable prediction accuracy. It is not
possible to formally prove that analysis results with the models correctly predict the
performance of the implemented system. During early development stages, the in-
formation encoded in the model instances is still subject to uncertainty. Therefore,
predictions based on the models only demonstrate the principle feasibility of reach-
ing certain performance goals under the assumption that the implementation does
not change the design of the system significantly. To assess prediction accuracy, this
thesis contains prediction results based on models and compares them with mea-
surement results based on implementations.

For this thesis, the performance of the so-called ”Media Store” system has been
predicted in a case study (published in [KBH07]). It is an artificial, but representative

9

1.6. OVERVIEW

component-based system, which resembles the functionality of a simple version of
Apple’s iTunes Music Store [App]. As a large, distributed system, it is in the range
of systems targeted by the PCM. The Media Store allowed analysing the benefits of
the newly introduced parameterisation concept to performance specifications. Later
in this thesis, the architecture is analysed with two different usage profiles and the
prediction results are compared to measurement results of an implementation of the
store based on Java EE. The deviation between predictions and measurements was
below 10 percent.

To assess the sensitivity of the Media Store to changes in the modelled param-
eters, this thesis also includes a sensitivity analysis of the architecture. Different pa-
rameter values (e.g., file sizes, number of users, etc.) were varied individually, and
the performance was predicted in each case. The analysis showed that the architec-
ture is most sensitive to the number of users, as a higher number of users quickly
increases the response times of the system. Other parameters, such as the file sizes
or the speed of the hardware resources are less influential.

In order to assess the practicability of the method and tools developed in this
thesis, additionally a controlled experiment was conducted [Mar07]. It complemented
the validation of the introduced modelling languages. After extensive training, 19
computer science students modelled different component-based systems using the
graphical PCM model editors. They predicted the performance of these systems for
different usage profiles. The study showed that most students were able to achieve a
decent prediction accuracy, but that the tools for modelling parameter dependencies
still need improvement.

A validation of the modelling features and transformations introduced in this
thesis on a system from industry is still missing and regarded as future work.

1.6 Overview

This thesis is structured as follows:

• Chapter 2 introduces basics in the areas of component-based software engi-
neering (Chapter 2.1), model-driven software development (Chapter 2.2), and
performance engineering (Chapter 2.3) needed for the comprehension of the
later concepts. It defines the most important terms from these areas as under-
stood in this thesis. Chapter 2.4 connects these different areas, and explains the
specifics of component-based performance engineering. In particular, it lists

10

1.6. OVERVIEW

several requirements for a component performance specification language.
Afterwards, Chapter 2.5 surveys related work to this thesis and classifies it
according to the requirements established in the former subsection. It looks
in detail at the performance specification languages of related approaches and
discusses their concepts for reflecting usage profile dependencies.

• Chapter 3 provides specific background for the context of the developed mod-
elling languages. In Chapter 3.2, it gives an overview of the Palladio Com-
ponent Model (PCM), i.e., the parts not contributed in this thesis involving
component and interface specification as well as resource environment mod-
elling. Chapter 3.3 explains some basics about random variables and proba-
bility distributions, because the behavioural description languages introduced
in the following section heavily rely on them. It also includes the Stochastic-
Expression framework of the PCM, which allows the specification of prob-
ability distributions in PCM instances and provides boolean and arithmetic
operations to describe parameter dependencies.

• Chapter 4 describes the behavioural modelling languages contributed to the
PCM by this thesis. Chapter 4.1 details on the parameter characterisation
model, Chapter 4.2 on the PCM Usage Model, and Chapter 4.3 on the RDSEFF.
Each of these Chapters contains a description of the respective meta-model,
informal semantics of each meta-class, and example meta-model instances. Fi-
nally, Chapter 4.4 maps PCM instances to hierarchical QPNs to formally de-
scribe the performance-related semantics of the newly introduced behavioural
modelling languages and provides two examples.

• Chapter 5 first motivates the need for automatic generation of performance
models (Chapter 5.1) and then surveys several methods (Chapter 5.2) includ-
ing static code analysis, dynamic analysis, prototyping, program slicing, and
symbolic execution. Then, in Chapter 5.3, it introduces a hybrid approach con-
sisting of static code analysis and dynamic analysis for the generation of RD-
SEFFs from code. The static code analysis part of this approach has been im-
plemented during this thesis. Chapter 5.4 explains its main tasks. It maps arbi-
trary Java code to RDSEFF instances and performs different abstractions on the
source. The section concludes with a small case study, where the Java2PCM
tools implementing the static code analysis has been applied on a component-
based system.

11

1.6. OVERVIEW

• Chapter 6 is concerned with model transformations from the software domain
to the performance domain. After illustrating the transformation process in
Chapter 6.1, it describes a preliminary step of the transformation in this thesis,
i.e., the solving of parameter dependencies in PCM instances, in Chapter 6.2.
Chapter 6.3 explains the SRE model and its solution and defines a mapping
from PCM instances to SRE instances. Finally, Chapter 6.4 describes layered
queueing networks (LQN) in depth and shows a mapping from PCM instances
to LQN instances.

• Chapter 7 includes the experimental evaluations described previously. Chap-
ter 7.3 describes the Media Store architecture and the case study based on it. It
additionally includes a sensitivity analysis of this system. The controlled ex-
periment investigating the practicability of the PCM is the topic of Chapter 7.4.
It explains the design of the study, its conduction, and its results.

• Chapter 8 concludes the thesis. It provides a summary of the thesis’ scientific
contributions and their benefits to model-driven performance prediction. The
section also lists open questions not tackled in this thesis, which are subject to
future research.

12

Chapter 2

Software Components and
Performance: Basics and
State-of-the-Art

The models introduced in this thesis allow the specification of performance prop-
erties of component-based software systems and aim at increasing the performance
prediction accuracy for such systems. This Chapter lays the foundation of the thesis.
It explains basics from the different areas touched by this thesis, which are necessary
to comprehend and evaluate the later introduced models and transformations.

Chapter 2.1 explains important concepts of component-based software engineer-
ing (CBSE). It clarifies the notion of software component, software architecture, and
the component-based development process. Chapter 2.2 introduces basic terms of
model-driven software development (MDSD), such as domain, meta-model, model,
and model transformation. Chapter 2.3 briefly surveys the area of performance en-
gineering (PE). It describes performance metrics, performance analysis methods,
and performance models.

After an isolated description of the different areas in Chapter 2.1-2.3, Chapter 2.4
combines their concepts and explains the specifics of component-based performance
engineering based on modelling. In particular, it lists the different performance-
related influence factors on software components and derives a number of require-
ments for a specification language for component performance.

Many other approaches have tried to tackle the problem of component-based
performance engineering. Chapter 2.5 classifies related work and specifically analy-
ses the usage profile dependencies modelling capabilities of the proposed methods.

2.1. COMPONENT-BASED SOFTWARE ENGINEERING

2.1 Component-based Software Engineering

This section briefly surveys CBSE and defines the most important terms from this
area used in this thesis. Chapter 2.1.1 motivates CBSE and gives some background
on the development of the discipline. Chapter 2.1.2 defines the notion of software
component, before Chapter 2.1.3 discusses composing components to software ar-
chitectures. Chapter 2.1.4 finally describes the component-based development pro-
cess.

2.1.1 Introduction

Motivation The use of independently manufactured components to build com-
plex systems is common in many engineering disciplines [HC01]. For example, in-
troducing components to car manufacturing by Henry Ford as a prerequisite for
an assembly line in the early 20th century was a major factor to help cars become
a mainstream good. Components allow a division of work between component
manufactures and component assemblers, thereby reducing the complexity of their
individual tasks and shortening overall production time.

In software engineering, a major goal for the use of software components besides
the division of work is reusability [SGM02, p.12]. Other than hardware components,
software components can easily be copied, therefore it is desirable to implement
a certain functionality once and then reuse it in many different contexts by copy-
ing the implementation. Besides reusability, decomposing a system into replaceable
components prepares the system for change, as individual parts can be exchanged
more easily with newer versions [CD01, p.2]. This is especially beneficial in the IT
industry, where systems are evolving and technologies are changing at a rapid pace.

Because of the targeted reuse, software components are usually more thoroughly
tested than other software, therefore potentially increasing the quality of a compo-
nent system [Wey98]. Furthermore, assembling a system from prefabricated compo-
nents allows compositional reasoning on the properties of the system based purely
on the specifications of individual components [RPS03]. This can for example be
used to determine extra-functional properties, such as performance, reliability, or
security of a component-based system, without writing any code.

History The idea to decompose software systems into replaceable parts is as old
as software engineering itself. McIlroy et al. [MBNR68] proposed the term ’software
component’ at the 1968 NATO conference on software engineering. As a result, he

14

2.1. COMPONENT-BASED SOFTWARE ENGINEERING

later included pipe and filters into the Unix operating system as a first implementa-
tion of the concept. In 1986, Brad Cox [Cox86] proposed ’software ICs’ as a modern
concept of software components and started to create an infrastructure and market
for them. However, his proposal failed due to the fundamental differences between
hardware components and software components, which have an immaterial nature
and require different economics.

Component-based Software Engineering (CBSE) gained widespread attention
during the 1990ths, when it became obvious that Object-Oriented Programming
(OOP) [Mey97] had failed to effectively support reuse of software parts. Clemens
Szyperski’s book ”Component Software” [SGM02] describes CBSE as the next step
beyond OOP and was influential in establishing the terms and concepts of this
area. CBSE gained attention from the software industry, where several compo-
nent models, such as Microsoft’s COM [Cor], Sun’s EJB [EJB07], and the OMG’s
CCM [Obj06b], appeared to support the implementation of component-based sys-
tems.

Many promises of CBSE still have to be realised. The anticipated component
marketplaces [SGM02, pp.18], where software developers shall purchase and ex-
change software components to rapidly build large systems, have not become real-
ity as there is still limited reuse of software components across different companies.
Compositional reasoning about the properties of systems based on component spec-
ifications is still an active research area that up-to-date has not produced industry
relevant methods or tools [Gru07].

2.1.2 Software Components

In order to clarify the notion of a software component as understood in this thesis,
this subsection provides a definition and explains some of the fundamental concepts
regarding software components.

As an advancement of object-oriented technology, software components adhere
to the same principles as software objects [Mey97]:

• State: A software object may have an encapsulated internal state, which de-
scribes the data stored in it.

• Behaviour: A software object can be used and its state can be manipulated via
functions accessible by clients.

• Identity: A software object has a unique identity regardless of its internal state.

15

Component
Specification

Component
Implementation

Installed
Component

Component
Object

* 1
realisation

* 1
installation

* 1
instance

2.1. COMPONENT-BASED SOFTWARE ENGINEERING

Software components extend these principles and shift emphasis to the speci-
fication instead of the implementation [CD01, pp.3]. Components have explicitly
declared provided and required interfaces. Clients can access components only
through their provided interfaces. Component can access other components only
through their own required interfaces. There is a clear separation between the spec-
ification of a software component via its interfaces, and its implementation via code.
With the publicly declared interfaces, it is possible to easily replace a component im-
plementation by another one, which complies to the same component specification
(i.e., it implements and requires the same interfaces).

1

*
supportedInterface

Component
Interface

Figure 2.1: Forms of Software Components [CD01]

The notion of a software component is often confused in the literature, because
of the different forms a component can have. Cheesman et al. [CD01, pp.4-7] dis-
tinguish between four different forms (Fig. 2.1). The component specification consists
of a set of component interfaces, which declare the services provided by the com-
ponent to clients and the services required by the component from its environment.
Component developers can write different component implementations for the same
component specification. This is a piece of code that implements the functionality
specified in the provided interfaces by using services from the required interfaces.

A single component implementation can lead to multiple installed components.
An installed component is assembled with other components and deployed on a
platform. The component acquires its state only at runtime, when it is referred to as
a component object. There may be multiple component objects for the same installed
component resulting from multiple processes running in parallel. Each component
object has a unique identity.

As an example for a large software component, consider a text editor applica-
tion [CD01, pp.6-7]. Its component specification could be a textual description of
its interfaces on a piece of paper at the developers’ company. The developers have
coded the text editor and compiled it into an executable, which is the component im-

16

2.1. COMPONENT-BASED SOFTWARE ENGINEERING

plementation. Users can install this executable on many different machines, thereby
creating many different installed components. On a single machine, a user can start
the text editor twice, for example to edit two different files in parallel. This creates
two different component objects of the same installed component.

The often cited definition of a software component by Szyperski [SGM02] from
the 1996 workshop on component-oriented programming is often misinterpreted
in the literature as it uses the term ’software component’ synonymously with the
term ’component specification’. It does not refer to the other forms of a software
component described above. Nevertheless, the definition by Szyperski is also the
one used in this thesis:

Definition 1 Software Component [SGM02, p.41]
A software component is a unit of composition with contractually specified inter-
faces and explicit context dependencies only. A software component can be de-
ployed independently and is subject to composition by third parties.

As a unit of composition, a software component needs to be connectable to other
components as a single entity. To enable composition, it has contractually specified
interfaces, which refers to provided services of the component. According to Szyper-
ski [SGM02, p.53], they should be specified after the design-by-contract princi-
ple [Mey92]. This implies that there is a pre-condition and a post-condition specified
for each provided service. The contract states that if a client fulfills the pre-condition
of a service, then the component guarantees its post-condition. Explicit context de-
pendencies refers to required interfaces, which declare services of other components
invoked by the component when executing its implementation. It can also refer to a
certain platform standard the component requires to be deployed on [SGM02, p.44].

Besides this technical part, the definition’s second sentence refers to the market-
related part of a software component [SGM02, p.41]. Independent Deployment refers
to the fact that a software component needs to be self-contained and sufficiently sep-
arated from other components so that it remains replaceable. Composition is carried
out by third parties, which refers to the separation between component developers
and component assemblers, which also requires an exact definition of the provided
and required interfaces.

There are several other component properties not explicitly included in Szyper-
ski’s definition. Besides a list of signatures for the provided or required services, a
component interface may also include a protocol specification that constrains valid
call sequences of the services [BJPW99], which is a special case of the design-by-

17

2.1. COMPONENT-BASED SOFTWARE ENGINEERING

contract principle. For example, a component for manipulating files may require
clients to first call a service ’OpenFile’, before it allows editing the file by calling
other services.

A component implementation may be black-box or white-box, which refers to the
visibility of the implementation to its clients [SGM02, p.40]. Black-box component
implementations do no expose code to the clients thereby adhering to the principle
of information hiding. As black-box components are usually delivered as binary
code or bytecode, it is possible to retrieve additional information about their imple-
mentation using tools analysing these artefacts.

White-box component implementations allow clients to view and also edit the
code. In general, it is desirable to have black-box components to ensure full replace-
ability. If clients know the code of a white-box component they could rely on certain
implementation details of the component, which would disallow replacement of the
component by another implementation.

There are also mixed forms of grey-box components, which reveal only parts of
their implementations, and glass-box components, which let users only view the
code but forbid editing. For performance predictions, black box component speci-
fications are not sufficient, because they do not contain information about resource
usage of component services. This thesis will introduce a modelling language to
describe grey box views of software components, which includes resource demands
and the order of calls to required services.

Components should only be usable via delegation, but not by inheritance. This
is essentially a white-box adaptation technique, because it makes the inheriting ob-
ject dependent on its parent [Reu01b]. The developer of the inheriting object needs
to know specifics of the base class and might rely on its implementation details to
avoid mistakes while overriding methods. Furthermore, the inherited classes can
access the state of their base class. Therefore, this inheritance is considered a white-
box adaptation technique. It also leads to the ’fragile base class’ problem [SGM02]:
if a base class is changed, it could require all inheriting children to recompile. There-
fore, it is not desirable to use inheritance to define new components.

Component developers can create component implementations using any pro-
gramming paradigm as long as they provide the functionality defined in its pro-
vided interfaces. A component can for example be written using object-oriented
techniques, or using functional programming techniques. It is furthermore possible
to declare component assemblies as new components by defining a new component
specification for the component assembly (’composite component’).

18

2.1. COMPONENT-BASED SOFTWARE ENGINEERING

The granularity of a component, i.e., the amount of functionality bundled in a
component, is variable [SGM02, p.45-46]. It mainly influences the context depen-
dencies of a component. If a component developer aims for maximum reuse, as of-
ten done in object-oriented programming, everything is excluded from the compo-
nent except its prime functionality. However, this is problematic as it leads to a sub-
stantial increase of the component’s context dependencies, which makes it hard to
use the component, because it requires to set-up a large amount of additional com-
ponents. Szyperski refers to the phenomenon as ”Maximum reuse limits use”, and
recommends to find a balance between component leanness (for maximum reuse)
and component robustness (for maximum use).

Components are different from software modules [Par72], which in contrast are
not contractually specified and do not contain explicit required interfaces, which
limits their replaceability. Other than abstract data types (ADT) [LZ74], components
describe their dependencies explicitly.

One aim of this thesis is to provide a modelling language for performance speci-
fication of component implementations. These specifications are highly parameter-
isable for different contextual influences to software components (for example user
inputs or the deployment platform), which alter their performance properties and
cannot be determined by the component developer during specification. Such spec-
ifications are an important prerequisite to enable compositional reasoning on the
properties of a component-based system at design time.

2.1.3 Software Architecture

Assembling components and deploying them in an execution environment yields a
software architecture. The methods and models proposed in this thesis aim at im-
proving the design of software architectures, by enabling software architects to as-
sess different design alternatives quantitatively with respect to performance. There-
fore, the following provides some basic concept and terms centering around soft-
ware architectures.

A definition of the term software architecture is given by the IEEE standard 1471-
2000:

Definition 2 Software Architecture [IEE00]
The fundamental organisation of a system embodied in its components, their re-
lationships to each other, and to the environment, and the principles guiding its
design and evolution.

19

2.1. COMPONENT-BASED SOFTWARE ENGINEERING

Cheesman et al. [CD01] provide a more refined view of a software architecture
composed out of software components and distinguish between a system architec-
ture and a component architecture. The system architecture is the structure of parts
that together make up a complete software system, which includes the responsibili-
ties of these parts, their interconnections, and possibly also the appropriate technol-
ogy. It may consist of multiple architectural layers, for example in Java EE [Sun] the
user interface (e.g. implemented with Java Server Pages), the user dialogs holding
the state of user interaction (e.g., implemented with Java Beans), the system services
representing the business logic (e.g., J2EE session beans), and business services en-
suring persistency (e.g., J2EE entity beans).

Included in this system architecture is the component architecture, which refers
only to the set of application-level (excluding user interfaces and persistency) com-
ponents, their structural relationships and their behavioural dependencies. In the
former example this would refer only to the server part of the application. The
component architecture is rather a logical concept independent from technical re-
alisation. It includes the bindings between components called connectors, and is
often expressed in UML component diagrams. When the term software architecture
is used in this thesis, it usually refers to the component architecture, and not the
system architecture.

Multiple views are used to describe different aspects of a software architec-
ture [CBB 03]:

• Static View: shows the software components and their bindings, for example
expressed in a UML component diagram.

• Dynamic View: shows the interaction of components in specific use cases, for
example expressed in UML sequence diagrams.

• Deployment View: shows the mapping of components to hardware resources,
for example expressed in a UML deployment diagram.

Having an explicitly documented software architecture instead of just source
code bears several advantages [CBB 03]. It bridges the gap between requirements
and code and divides a system into a limited set of manageable components. It can
be the basis for discussions between different stakeholders of a software system.
During design of a software architecture, reusing existing components can be con-
sidered systematically. A software architecture also simplifies project management,
planning, cost estimation, division of work and might enable offshore development.

20

2.1. COMPONENT-BASED SOFTWARE ENGINEERING

Finally, a carefully designed software architecture can be the basis for assessing the
quality attributes of the final software system before implementation.

For the last point, there are qualitative and quantitative methods for assessing
software architecture quality. Qualitative methods, such as SAAM [KBWA94] or
ATAM [KKC00], require developers to define critical scenarios of a software ar-
chitecture and assess them in group meetings. The results are for example critical
points in the architecture or a list of required changes. Quantitative methods require
developers to build formal models for software architectures and analyse them via
mathematical methods or simulation. The results are for example the expected mean
response time of a use case or the mean time to failure of a software component. The
method introduced in this thesis is a quantitative method.

2.1.4 Component-based Development Process

Component-based software development follows a different process than classical
procedural or object-oriented development [SGM02]. The task of developing soft-
ware artefacts is split between the role of the component developer, who develops
individual components, and the software architect, who assembles those compo-
nents to form an application.

Cheesman and Daniels [CD01] have proposed a component-based development
process model based on the Rational Unified Process (RUP). It describes the spec-
ification and implementation of a component-based software system. The model
focusses on the development process that is concerned with creating a working system
from requirements and neglects the concurrent management process that is concerned
with time planning and controlling.

The Palladio Component Model described in the Chapter 3 and 4 of this thesis
explicitly targets this process model. Because the model does not include the analy-
sis of extra-functional properties, Chapter 3.1 will introduce an according extension
to the model.

Fig. 2.2 illustrates the original main process by Cheesman et al. Each box rep-
resents a workflow. The thick arrows between boxes represent a change of activity,
while the thin arrows characterise the flow of artefacts between the workflows. The
workflows do not have to be traversed linearly (i.e., no waterfall model). Backward
steps into former workflows are allowed. The model also allows an incremental or
iterative development based on prototypes. The included workflows are:

• Requirements: The business requirements coming from customers are for-

21

2.1. COMPONENT-BASED SOFTWARE ENGINEERING

Requirements

Specification Provisioning Assembly

Test

Deployment

Business Concept
Model

Use Case
Models

Component Specs &
Architecture

Business
Requirements

Existing Assets
Technical

Constraints
Components

Use Case
Models

Applications

Tested
Applications

Legend
Workflow
Change of Activity
Flow of Artifact

Figure 2.2: Component-Based Development Process [CD01]

malised and analysed during this workflow. It produces a business concept
model and a use case model. The former is a conceptual model of the busi-
ness domain and creates a common vocabulary between customers and de-
velopers. The latter describes the interaction between users (or other external
actors) with the system. It establishes the system boundaries and a set of use
cases that shall fulfill the functional requirements.

• Specification: During specification, the component-based software architec-
ture is designed. The business concept model and the use case model are
input from the requirements to this workflow. Additionally, technical con-
straints, which might have been revealed during provisioning, can be input to
the specification workflow after initial iterations of the process model. Soft-
ware architects identify components and specify them and their interactions
during specification. They usually interact with component developers dur-
ing this workflow or rely on existing component specifications. The output
artefacts of this workflow are complete component specifications and the com-
ponent architecture.

• Provisioning: Compared to classical development processes, the provisioning
workflow resembles the classical implementation workflow. However, one of

22

2.2. MODEL-DRIVEN SOFTWARE DEVELOPMENT

the assets of component-based development is reuse, i.e., the incorporation of
components developed by third parties. During the provisioning workflow
’make-or-buy’ decisions are made for individual components. Components
that cannot be purchased from third-parties have to be implemented accord-
ing to the specifications from the corresponding workflow. Consequently, the
provisioning workflow receives the component specifications and architecture
as well as technical constraints as inputs. The output of this workflow are
implemented software components.

• Assembly: Components from the provisioning workflow are used in the as-
sembly workflow. Additionally, this workflow builds up on the component
architecture and the use case model. The components are assembled according
to the assembly model during this workflow. This might involve configuring
them for specific component containers or frameworks. Furthermore, for inte-
grating legacy components, it might be necessary to write adapters to bridge
mismatching interfaces. Once all components are assembled, the complete ap-
plication code is the output of this workflow.

• Test: The complete component-based application is tested according to the
use case models in this workflow in a test environment. Once the functional
properties have been tested in the test environment, the application is ready
for deployment in the actual customer environment.

• Deployment: During deployment, the tested application is installed in its ac-
tual customer environment. The term deployment is also used to denote the
process of putting components into component containers, but here the term
refers to a broader task. Besides the installation, it might be necessary to adopt
the resource environment at the customer’s facilities or to instruct future users
of the system with the new functionality.

2.2 Model-Driven Software Development

Many of the concepts and abstractions for component-based performance engineer-
ing developed for this thesis have been encoded into meta-models. Instances of
these meta-models describe component-based software architectures and their per-
formance properties. Therefore, the following subsection explains the basic terms
and concepts of model-driven software development (MDSD) (including model,

23

2.2. MODEL-DRIVEN SOFTWARE DEVELOPMENT

meta-model, model transformation, etc.), which are necessary to understand the
following chapters.

2.2.1 Introduction

MDSD aims at describing software systems at higher abstraction levels, which shall
be more suitable to manage the increasing complexity in modern software appli-
cations. This approach is in line with former developments in computer science,
which introduced assembler languages to raise the abstraction level from machine
languages and then higher programming languages to raise the abstraction level
from assembler languages. MDSD tries to shift the focus of software development
from code written in higher programming languages to models. Model transforma-
tions shall generate code from these models, just as compilers transform high-level
code to machine code.

To support MDSD and create an industry standard of its core concepts, the OMG
started the Model-Driven Architecture (MDA) initiative in 2001 [KWB03]. Although
the MDA became popular, there are still other approaches to MDSD, such as gen-
erative programming [CE00], Microsoft’s Software Factories initiative [GSCK04], or
product line engineering [CN02]. Like these approaches the MDA can be seen as a
special flavor of MDSD. In this thesis, MDA concepts such as platform-independent
and platform-specific models do not play a major role. Therefore, the following
description of the main concepts follows a more general approach as in [SVC06].

2.2.2 Modelling Core Concepts

Stahl et al. [SVC06] describe the fundamental concepts of modelling and the rela-
tionships between these concepts (Fig. 2.3). Modelling is always conducted within
a certain domain and involves a meta-model to create models. The following de-
scribes the different terms in Fig. 2.3 in detail. It uses counterparts from the MDA
initiative and from the modelling approach underlying the later introduced Palladio
Component Model to provide examples for the terms.

Domain Any modelling approach is tied to a specific domain.

Definition 3 Domain [SVC06]
A domain is a bounded field of interest or knowledge.

24

2.2. MODEL-DRIVEN SOFTWARE DEVELOPMENT

Meta Meta
Model

Meta
Model

Abstract
Syntax

Static
Semantics

Formal
Model

DSL

Modelling
Language

Concrete
Syntax

Semantics

Domain

<<instanceof>>

<<instanceof>>

respects

gets meaning
from

specified based on

describes
relevant

concepts of

<<synonym>>

specified
based on

Subdomain

0..*

Figure 2.3: Modelling and DSLs [SVC06, p.56]

There may be different kinds of domains, for example professional domains or
technical domains. An example for a professional domain would be ”banking”,
which includes concepts like customer, account, accounting entry, and balance. An
example for a technical domain would be ”Enterprise Java” with concepts like ses-
sion bean, deployment descriptor and application server. There may also be sub-
domains describing parts of a domain, which are suited for an own modelling lan-
guage.

The MDA initiative uses a technical domain, which is rather coarse-grained, it is
”software development”. In this thesis and for the PCM, the domain is also techni-
cal, but it is more focussed than in the MDA and can be called ”component-based
performance engineering”. Later, this thesis shows the division of the PCM into
several modelling languages, which target subdomains of specific developer roles
in component-based performance engineering, such as the component developer, or
the software architect.

Meta-Model A meta-model structures the domain and formalises its concepts. It
can be considered as an ontology for the domain.

The meta-model defines which models developers can create, in other words it

25

2.2. MODEL-DRIVEN SOFTWARE DEVELOPMENT

Definition 4 Meta-model [met07]
A meta-model is a precise definition of the constructs and rules needed for creating
semantic models.

is the grammar for the language of models in a domain. The models are instances
of the meta-model. A meta-model is needed for automation, such as model trans-
formation or code generation.

In MDA, the main meta-model for software development is the UML2 meta-
model. There are also several profiles for UML, which include meta-models for
specific domains and extend UML2 meta-model. Examples are profiles for CORBA
systems, performance modelling, or software testing. In this thesis, the meta-model
is the Palladio Component Model, which is introduced in Chapter 3 and extended
in Chapter 4. It formalises concepts of the domain component-based performance
engineering.

Meta-Meta-Model The meta-model itself has a meta-model, which is called meta-
meta-model.

Definition 5 Meta-Meta-Model [SVC06]
A meta-meta-model defines the concepts available for meta-modelling.

In general the term meta is relative, as there can be arbitrary many meta-levels.
In the MDA, the meta-meta-model is called Meta Object Facility (MOF) [Obj06c] and
the UML2 meta-model is defined in MOF. Instead, the PCM’s meta-meta-model is
Ecore, an implementation of a subset of MOF called Essential MOF (EMOF). Ecore
is part of the Eclipse Modeling Framework (EMF) [Eclb]. This meta-meta-model
has been chosen because of its limited complexity and because of extensive tool
and community support. Whenever meta-model parts of the PCM are shown in
the remainder of this thesis, they are Ecore instances. Ecore allows the definition of
packages, classes, attributes, operations, data types, references etc.

Abstract and Concrete Syntax A meta-model compasses an abstract syntax that
specifies the language’s structure.

For example in Java, the abstract syntax tree of a Java program would be a repre-
sentation of a word of the Java language in abstract syntax. In XML, the DOM tree
created by parsing an XML document is the abstract syntax. Usually, developers do
not use the abstract syntax directly to specify words of the language. Instead, they

26

2.2. MODEL-DRIVEN SOFTWARE DEVELOPMENT

Definition 6 Abstract Syntax [FOL08]
Abstract syntax is a representation of data which is independent of machine-
oriented structures and encodings and also of the physical representation of the
data (called ”concrete syntax” in the case of compilation).

Definition 7 Concrete Syntax [FOL08]
The concrete syntax of a language including all the features visible in the source
program such as parentheses and delimiters. The concrete syntax is used when
parsing the program or other input, during which it is usually converted into some
kind of abstract syntax tree.

use a more convenient, so-called concrete syntax. This is a notation for developers
to create models that are instances of meta-model. In Java, the concrete syntax is the
usual program code, which is accepted by the parser. In XML, the tags and values
used in an XML document form the concrete syntax. It is possible to have multiple
concrete syntaxes for the same abstract syntax, for example a textual and a graphical
notation.

In the MDA, the abstract syntax of the UML2 meta-model is a MOF instance
diagram. As a concrete syntax, usually the diagrams (e.g., class diagrams, sequence
diagrams, etc.) defined in the UML standard are used. However, each UML diagram
could also be expressed in abstract syntax using MOF. In this thesis, the abstract
syntax of PCM instances can be given using Ecore. As concrete syntax, there are
tree-like representations of PCM instances via editors generated with EMF and also
graphical representations from graphical editors implemented for PCM instances
using the Graphical Modeling Framework (GMF) [Eclc].

Static Semantics Besides an abstract syntax, a meta-model also includes a defini-
tion of static semantics.

Definition 8 Static Semantics [Mey90]
Static semantics describe structural constraints that cannot be adequately captured
by syntax descriptions.

For example, in programming languages, a typical example for such a well-
formedness constraint is that each variable has to be declared before using it. Notice,
that the static semantics do not refer to the meaning of the meta-model classes, but
only to the well-formedness of instances.

27

2.2. MODEL-DRIVEN SOFTWARE DEVELOPMENT

In MDA, developers express static semantics of meta-models using the Object
Constraint Language (OCL). This is a declarative language, which refers to the ab-
stract syntax of the UML2 meta-model. In the PCM, also OCL expressions are used
to specify the static semantics. These expressions are defined on the Ecore model.

Definition 9 Semantics [SVC06]
Semantics give meaning to the modellable elements and indicate the entities they
represent.

Semantics Semantics are either intuitively clear or well-documented (for exam-
ple in natural language). Semantics can also be given by describing a mapping to
another language with formal semantics. This can for example be applied for math-
ematically related languages.

In the MDA, the semantics of UML2 are only given informally in natural lan-
guage in the UML specification. In this thesis, the semantics of the PCM are first
described textually in natural languages. Later, in Chapter 4.4, a mapping from
PCM instances to queueing Petri nets (QPNs) is defined to capture the performance-
related aspects of the PCM formally. For QPNs in turn, mappings to Colored Petri
Nets, and finally to simpler mathematical structures like stochastic processes have
been defined in the literature (also see Appendix B.2).

Domain-Specific Language (DSL) Developers use DSLs to model the key ele-
ments of a domain and formally express them.

Definition 10 Domain-Specific Language [vDKV00]
A domain-specific language (DSL) is a programming language or executable spec-
ification language that offers, through appropriate notations and abstractions, ex-
pressive power focused on, and usually restricted to, a particular problem domain.

A DSL consists of a meta-model, a concrete syntax, and dynamic semantics. The
term ’modelling-language’ is often used synonymously with DSL. A DSL is usually
accompanied by a (graphical) editor, which supports entering model instances for
the meta-models in concrete syntax [SVC06].

In the MDA, the UML2 meta-model together with the diagram notation and the
semantics described informally in the UML specification forms a DSL for software
development. There are many UML modelling tools, which support drawing UML
diagrams, therefore they support the concrete UML syntax.

28

2.2. MODEL-DRIVEN SOFTWARE DEVELOPMENT

For the PCM, there is the idea to split the meta-model into four distinctive DSLs,
each one for a different developer role, such as component developer or software
architect. For each of these DSLs, a concrete syntax in form of a graphical represen-
tation of the formal models is available. There are individual graphical editors for
each modelling language. This allows the different developer roles to work inde-
pendently from each other.

Model Models are instances of meta-models and are the artefacts developer create
to build an abstraction of a software system for some specific goal (e.g., documenta-
tion, communication, formal verification).

Definition 11 Model [Sta73]
A formal representation of entities and relationships in the real world (abstraction)
with a certain correspondence (isomorphism) for a certain purpose (pragmatics).

A model needs a DSL and is specified using concrete syntax. For example, a Java
program is an instance of the Java language, thus a model for the Java grammar.

In the MDA, models are instances of the UML2 meta-model (UML2 models) and
describe structural or behavioural aspects of software systems for documentation
and communication purposes. Sometimes these models are also subject to model
transformations, which generate program code or other models. In the PCM, mod-
els are PCM instances created via the graphical editors for the DSLs. They describe
structural and behavioural aspects of component-based software architecture with
a special focus on their performance properties. PCM instances can be transformed
into general performance prediction models, which do not include the notion of a
software component.

2.2.3 Transformations

Model transformations process models for different purposes [SVC06]. They may
generate source code from models or transform them into other models for specific
analysis methods on the model level. The transformation rules can only refer to
the meta-model constructs.There are generally model-to-code and model-to-model
transformations, although model-to-code transformations can be viewed as a spe-
cial form of model-to-model transformations. Model-to-code transformations how-
ever usually do not need a target meta-model, because they directly create text files

29

2.2. MODEL-DRIVEN SOFTWARE DEVELOPMENT

in a specific syntax. These model-to-code transformations are however irrelevant
for this thesis.

Model2Model
Transformation

Meta
Model

Formal
Model

<<instanceof>>

Target Meta Model 1..*

Source Meta Model 1..*

Target 1..*

Source 1..*

Figure 2.4: Model Transformations [SVC06, p.60]

Model-to-model transformations (Fig. 2.4) create a new model from a source
model. Normally, the target model is based on a different meta-model than the
source model, otherwise the transformation is referred to as an in-place transfor-
mation. A model-to-model transformations describes a mapping from source meta-
model elements to target meta-model elements.

In the MDA, Query/View/Transformations (QVT) [Obj06d] is the standard for
model transformations standardised by the OMG. It is divided into a declarative
part (QVT Relations) and an imperative part (QVT Operational Mappings). While
several engines for QVT Operational Mappings have been created, there are only
very few implementations of QVT Relations, as the standard is still quite new.

Besides QVT, there are many other model transformation languages, which have
been classified by Czarnecki and Helsen [CH06]. For example, there are visitor-
based, template-based, or graph-grammar based approaches.

Chapter 6 of this thesis describes two model-to-model transformations to map
PCM instances to different performance models. Due to the immaturity of the
QVT implementations and the complexity of the transformations, which involve
mathematical operations to bridge semantic differences between source and target
meta-models, the transformations in this thesis have been implemented using the
Java programming languages. Using special model visitors provided by EMF, these
transformations process PCM instances and create new target models conforming
to meta-models of the performance model, which are like the PCM implemented in
Ecore.

30

2.3. PERFORMANCE ENGINEERING

2.3 Performance Engineering

The meta-models developed in this thesis target at modelling the performance prop-
erties of component-based systems. They shall help component developers to spec-
ify the performance of their implementations, so that software architects can build
a performance model for the whole system, which enables performance predictions
and the assessment of the performance of different design alternatives. The area of
Performance Engineering [Jai91] has a long history in computer science and offers
different methods to evaluate the performance of computer systems.

This subsection gives a short overview on some central concepts in performance
engineering to make the reader familiar with the context of the methods and models
proposed in this thesis. Chapter 2.3.1 briefly describes the most important metrics
for performance and explains the three principal methods for performance eval-
uation. Chapter 2.3.2 surveys some of the classical performance models, such as
queueing networks and stochastic Petri nets. While these classical models center
around modelling hardware resources of a system, the Software Performance En-
gineering (SPE) approach initiated by Smith [Smi90] emphasises the influence of
software on performance properties and is discussed in Chapter 2.3.3. Recently, sev-
eral performance meta-models have been proposed in the literature, as it is the goal
to create an ontology for performance modelling [Cor05]. Chapter 2.3.4 briefly de-
scribes these models, as they are loosely related to the Palladio Component Model.

2.3.1 Introduction

Performance Metrics In computer science, the term ’performance’ is often used as
a collective term to characterise the timing behaviour and resource efficiency of a
hardware/software system. Performance properties of a system can be quantified
with different performance metrics. The most important ones are response time,
throughput, and resource utilisation [Jai91]. Many other performance metrics are
simply derivates from these three main metrics.

The response time of a system refers to the time the system needs to process re-
quests from the user’s point of view. A low response time ensures that users can
access the functionality of a system without delays interrupting their workflows.
Response time can be defined differently depending on the start- and end-point of
a request. Sometimes it is the time between issuing a request and receiving the full
answer. Other approaches define the response time as the time between issuing a
request and the system starting to answer the request. This is a user-oriented met-

31

2.3. PERFORMANCE ENGINEERING

ric, and some systems guarantee certain maximum response times with a so-called
service level agreement (SLA).

The throughput of a system refers to the rate at which a system handles requests.
It is usually measured in tasks per time unit [ISO03]. Besides throughput for the
whole system, also the throughput of single resources is sometimes interesting for
performance analysis. Many performance evaluation studies aim at determining the
system capacity (i.e., the maximum throughput of a system for a given maximum
response time). This metric is interesting for system developers, who desire a large
throughput to serve as many customers as possible.

The resource utilisation refers to the ratio of busy time of a resource by the total
elapsed time of a measurement period. For example, if a CPU processes requests for
68 seconds during a 100 second measurement period, its resource utilisation is 68
percent. The resource, which exhibits the highest utilisation is called the ’bottleneck’
of the system and is usually the starting point when adapting a system for increasing
its performance. This metric is mainly interesting for performance analysts and
system admins, who want to ensure a balanced use of the available resources. If
resources are fully utilised over a longer time period, the response time of the system
may degrade. On the other hand, if the system resources are constantly underused,
their potential processing power is essentially wasted.

Performance Evaluation Methods To assess the performance metrics explained
above, there are three different classes of methods: analytical modelling, simula-
tions, and measurements [Jai91].

Analytical modelling involves creating performance models (such as queuing net-
works, stochastic Petri nets, or stochastic process algebras, cf. Chapter 2.3.2) and
deriving performance metrics by solving the underlying Markov chains mathemat-
ically using exact methods or heuristics. Performance analysts can determine the
parameters for such models (e.g., the service demand times for different resource,
the number of users concurrently present in the system, or the probabilities of ac-
cessing specific resources) via measurements on existing system or via estimations
based on experience with similar systems. Measurements can also be performed on
prototypes of a system, so that the values can be determined during early develop-
ment stages.

The advantages of analytical models are quick creation compared to simulations,
fast analysis, and low costs [Jai91]. Using analytical models, performance analysts
can easily investigate trade-offs, for example for using different resources. The dis-

32

2.3. PERFORMANCE ENGINEERING

advantages of analytical models are the strong assumptions underlying these mod-
els, which often do not hold in realistic systems leading to inaccurate predictions.

Simulation also involves creating a model of a system, which is often based on
queueing networks. There are several simulation frameworks available for different
programming languages, which enable creation of simulation models. Other than
using mathematical techniques to derive performance metrics, simulation involves
executing the models repeatedly to imitate the performance properties of the mod-
elled system. This is not performed in real-time, but the simulation simply adds
the time consumed by a request on different resources and calculates waiting delays
due to resource contention with other requests (event-driven execution), which is
usually much quicker than actually executing the real system.

The advantages of simulations are that they can be conducted during any de-
velopment stage, and that they do not impose any assumptions on the modelled
system behaviour as the mathematical models do. Simulation models can be arbi-
trarily detailed, whereas analytical models often suffer from state space explosion
in non-trivial cases. The disadvantages of simulation are the potentially high costs
to build a detailed simulation model and the longer execution times compared to
analytical solutions to get sufficiently accurate performance metrics [Jai91].

Measurements require executing the system under analysis and monitoring its
performance properties using profiling tools or benchmarks. This requires an im-
plementation of the system or at least a prototype [BCC 05]. Thus, measurements
usually are only conducted during late development stages. Besides a system imple-
mentation, performance analysts have to reproduce the typical workload of using
the system and provide a realistic target hardware environment, so that the mea-
sured metrics are representative for the actual system performance.

As advantages, measurements are usually very accurate and more convincing
for management than the results of analytical models or simulations. As disad-
vantages, measurements are costly because measurement facilities have to be set
up, the workload has to be reproduced, and hardware has to be procured. Perfor-
mance analysts can conduct measurements only during late development cycles,
when discovering performance problems might require expensive re-designs or re-
implementations if the architecture is the root of these problems. Trade-off analyses
are hard to perform with measurements, because different hardware would have to
be purchased and set up, which is usually not affordable or desirable.

In this thesis, both analytical models and simulation are used to derive perfor-
mance metrics from models. In Chapter 7, measurement on prototypical implemen-

33

2.3. PERFORMANCE ENGINEERING

tations of component-based systems are used to validate the predictions made with
analytical and simulative predictions.

2.3.2 Performance Modelling

The following briefly overviews some of the most important classical performance
models. For brevity, this section abstains from formal definitions, but uses simple
examples to give the reader an initial idea of the formalisms. More details about
these formalisms can for example be found in [BH07]. For these models, analytical
and simulative solvers are available to derive performance metrics.

Markov Chains A Markov chain is a discrete-time stochastic process with the
Markov property [Tri01]. The Markov property means that choosing the next state in
the chain depends only on the current state and not on any previous states. Markov
chains have been successfully used for performance evaluation of computer sys-
tems. Most of the other performance modelling formalisms can be transformed into
Markov chains using state space generation techniques [BH07].

s0 s1

s2

s3

1.0

0.1

0.01

0.98

1.0

1.0
{fail}

{succ}

{try}

s0 s1 s2 s3

{empty} {full}3/2 3/2 3/2

333

(a) DTMC (b) CTMC

Figure 2.5: Markov Chains

There are discrete-time Markov chains (DTMC), where the state space and the
time for changing states is discrete, and continuous-time Markov chains (CTMC),
where the state space is discrete, but the transition from a given state to another can
occur at any instant of time [Tri01]. Markov chains can be visualised as directed
graphs were the vertices represent states and the edges represent transitions and are
labelled with transition probabilities (DTMC, Fig. 2.5(a)) or transition rates (CTMC,
Fig. 2.5(b)). However, for calculations, Markov chains are usually represented by a
transition matrix (DTMC) or a so-called infinitesimal generator matrix (CTMC). In
the examples depicted above, the DTMC represents the behaviour of a user logging

34

2.3. PERFORMANCE ENGINEERING

into a system, and the states of the CTMC represent the current length of a queue in
front of a processor.

There are different solution techniques for Markov chains depending on the type
of the chain. If a Markov chain has an absorbing state that cannot be left anymore
once it is reached (e.g., s3 in Fig. 2.5(a)), transient analysis techniques are used. If
a Markov chain only contains recurrent states, i.e., states, where the process will
return to eventually with a probability of 1 (e.g. as in Fig. 2.5(b)), steady state prob-
abilities can be calculated. These express the probability of being in a certain state if
the process runs infinitely long. From these steady state probabilities other perfor-
mance metrics can be derived.

Calculating steady state probabilities involves solving linear equation systems.
Because Markov chains for realistic system are usually very large, there are sev-
eral heuristic solutions techniques, which are able to provide approximate solutions
the large linear equations systems, because exact solutions cannot be computed ef-
ficiently. Because of their low abstraction level, Markov chains are seldom spec-
ified manually in performance engineering. Instead, high level formalisms, such
as queueing networks or stochastic Petri nets, are used for specification and corre-
sponding Markov chains are generated from them using tools.

In the context of this thesis, Chapter 2.5.3 briefly discusses so-called Markov us-
age models. Furthermore, in Chapter 6.3, a transformation from the PCM into a
special kind of semi-Markov chain will be described.

Queueing Networks Queueing theory has been applied to computer systems for
performance engineering already since the 1970th [Smi01]. In fact, most recent per-
formance prediction methods use queueing networks (QN) as performance analysis
model [BDIS04]. A QN consists of a number of service centers, which usually repre-
sent the hardware resources in a computer system. Each service center (also called
queueing system) consists of a server and a queue (cf. Fig. 2.6).

Service centers have different attributes, which are usually expressed in
Kendall’s notation [LZGS84]. This notation has the form A B S K N Disc, where

• A is the inter-arrival time distribution for requests to a server

• B is the service time distribution (i.e., for the processing time of each request)

• S is the number of servers

• K is the system capacity

35

2.3. PERFORMANCE ENGINEERING

CPU HD

Queue Server

Arrivals Depatures

k

k

Figure 2.6: Queueing Network

• N is the calling population

• Disc is the service discipline (e.g., FCFS, Round Robin, etc., cf. Appendix B.3).

There are also standard abbreviation for the time distributions (for A and B),
such as M for a Markovian (i.e., exponential) distribution, G for a general distribu-
tion, or PH for a phase-type distribution. Often, approaches simply use the short
notation A B S to characterise the service centers. Important kinds of service cen-
ters, which allow analytical calculations of different mean-value performance met-
rics, are for example M M 1, M M m, M M , or M G 1.

There are QNs with closed workloads (i.e., a fixed number of request circulate
in the system), and open workloads (i.e., the number of requests is not fixed and
requests depart from the system after finishing execution). For a special, restricted
class of QNs, so-called product form QNs, it is possible to calculate performance
indices without generating and solving the associated Markov chain. Therefore, ef-
ficient solution algorithms, e.g., the Convolution Algorithm and Mean-Value Anal-
ysis (MVA), have been developed for these kinds of QNs [BH07].

In general, many kinds of QNs with efficient mathematical solutions are based
on hard assumptions about the modelled systems [Jai91]. Such assumptions for ex-
ample include exponentially distributed service times or an infinite user population.
These assumptions do not hold for realistic systems. Queueing models with weaker
assumptions are usually mathematically intractable and can only be simulated to
derive approximated performance indices.

The PCM usage model introduced in Chapter 4.2 models the user population
in a system like QNs using open or closed workloads. The PCM resource model
uses G G 1 service centers that require simulations for multi-user cases. In Chap-
ter 6.4, a model transformation maps PCM instances to so-called Layered Queueing
Networks (LQN), which include modelling software entities.

36

2.3. PERFORMANCE ENGINEERING

Stochastic Petri Nets One problem of QNs in terms of performance modelling is
that they support concurrently interacting requests only poorly, because they do
not provide special mechanisms for synchronisation [BH07]. Therefore, it is not
possible to model such situations, which often occur in realistic systems. However,
Petri nets offer simple mechanisms to synchronise concurrent requests via shared
places. As ordinary Petri nets do not contain any timing information needed for
expressing execution times, several proposals have been made to augment Petri nets
with timing annotations since 1980.

p0 p1

p2

p3

t1

t2

t4

t3

t5

Figure 2.7: Stochastic Petri Net

A Petri net consists of a set of places (representing state) and transitions (repre-
senting activities). Places and transitions are connected via arcs (cf. Fig. 2.7). Places
may contain tokens (representing requests), which can be moved through the nets
by firing the transitions. The current distribution of tokens on the places of a Petri
net is called marking. A formal definition of a Petri net is given in Appendix B.2.

Stochastic Petri nets (SPN) may contain timed transitions, which are annotated
by a firing rate that specifies a parameter of the exponential distribution of the time
span between subsequent firings of the transition. Thus, SPNs allow performance
analysts to model the timing behaviour of a system. Generalised Stochastic Petri
Nets (GSPN) additionally may contain immediate transitions, which are annotated
by a firing weight that specified the probability that the transition will be fired, if
multiple transitions are enabled at the same time. Using immediate transitions,
performance analysts can model the behaviour of a system with stochastic means
instead of being limited to deterministic behaviour.

To derive performance indices from SPNs, either analytical techniques or simu-
lation are available. Analytical techniques construct the so-called reachability graph
from a SPN, which is a labelled transition system, where each state represents a pos-

37

2.3. PERFORMANCE ENGINEERING

sible marking of the net. With the firing rates, this is a CTMC, which can be solved
using Markov chain solution techniques. Instead, simulations execute an SPN, i.e.,
starting from an initial marking, they move tokens through the net by firing the
transitions. After a simulation run reaches a predefined stop criteria, various per-
formance indices can be derived from the simulations data.

SPNs have similar assumptions as Markov chains. They only allow exponen-
tially distributed firing rates, other probability distribution have to be approximated
using phase-type distributions. Another limitation of SPNs is the cumbersome mod-
elling of service centers as in QNs, which are useful representations of hardware
resources. Therefore, extensions such as Queueing Petri nets [Bau93] (QPN) have
been introduced.

In the context of this thesis, PCM usage models and RDSEFF will be mapped to
QPNs in Chapter 4.4 to specify their performance-related formal semantics.

Stochastic Process Algebra Another formalism for performance modelling is a
Stochastic Process Algebra (SPA) [BH07]. SPAs contain explicit operators with for-
mally defined semantics to compose different models to larger models. This is sup-
ported by QNs and SPNs only implicitly with no formal semantics. Using an SPA
allows specifying multiple processes, which run in parallel and interact with each
other, via simple composition. This is also advantageous to reuse existing process
specification in different system models.

SPAs build on classical process algebras, such as Millner’s Calculus of Commu-
nicating Systems (CCS) [Mil89] and Hoare’s Communicating Sequential Processes
(CSP) [Hoa85]. While these formalisms focus on assessing functional correctness of
a system for example by showing the absence of deadlocks, SPAs extent them with
stochastic and timing information to also allow deriving performance properties.

There are several Markovian SPAs, which feature exponential distributions for
timing delays, such as TIPP [GHR92], EMPA [BG98], and PEPA [Hil96]. Some
other calculi also incorporate general distributions for delays, such as MODEST
[BDHK06], IGSMP [BG02] and GSMPA [BBG97]. However, the latter do not offer
numerical solutions for deriving performance indices if general distributions are
used and must be analysed using simulations.

In the context of this thesis, no SPAs are used, although the SREs introduced in
Chapter 6.3 can be seen as a simple form of an SPA with generally distributed timing
annotations. Happe [Hap08] is currently extending this formalism.

38

2.3. PERFORMANCE ENGINEERING

2.3.3 Software Performance Engineering

Because QNs and other performance models account for software performance only
implicitly, Connie Smith initiated the Software Performance Engineering (SPE) ap-
proach during the 1980th [Smi90]. In QNs, software behaviour is usually condensed
to the service demand of a request to a hardware resource, which is a single value
per request. There is no direct representation of the software architecture and the
control flow through the system, as QNs focus on hardware resources.

Besides the shift from hardware-centric models to mixed software/hardware
models, Smith also postulates to conduct performance evaluation as early as pos-
sible during the life-cycle of a system [Smi90, Smi02]. In the software industry, to-
days prevalent approach to software development is to first ensure the functional
properties of a system. Developers often care for the non-functional properties such
as performance and reliability only during late development cycles when code arte-
facts are available for measurements. This so-called ’fix-it-later’ approach is prob-
lematic, if performance problems are the result of a poorly designed architecture.
When they are found after the system is already implemented, this might require
expensive redesigns and coding.

To counter the ’fix-it-later’ approach, the SPE methodology enables software de-
velopers to rapidly create simple models for analysing the performance properties
of newly designed systems as early as possible, even if some details are still un-
known. Steps of the method include (i) the definition of performance goals, (ii) the
identification of key performance scenarios, (iii) the creation of a software execution
model, (iv) the creation of a system execution model, and finally (v) performance
analysis and revising the models.

Performance goals include performance-related requirements of a system and
shall guide the creation of models. For example, a performance goal could be a
maximum response time for a certain functionality, or a minimum number of users
the system needs to handle concurrently without performance degradation. These
performance requirements are also called service-level agreements (SLA). To keep
the modelling effort low, SPE encourages only modelling performance-critical user
scenarios, i.e., use cases that are likely to suffer from performance problems.

In SPE, software architects or performance analysts create a software execution
model for each of the identified performance-critical user scenarios. This is an an-
notated control flow graph, which models the requests to different objects or com-
ponents to carry out each step of the scenario. Additionally, the performance an-
alyst annotates each node in the control flow graph with its demand for hardware

39

2.3. PERFORMANCE ENGINEERING

resources (e.g., a certain number of CPU instructions, or the number of hard disk ac-
cesses). Initially, this model can be coarse grain, as many details of the system might
still be unknown. It can be refined during later development stages, for example if
certain parts of the architecture have been implemented and can be measured.

The performance analyst also specifies a so-called overhead matrix, which in-
cludes timing values for the different kind of resource demands used in the anno-
tated control flow graph. For example, it could specify the time to execute a CPU
instruction or to access a hard disk. The matrix can be used to adjust specific per-
formance values during performance analysis, for example to assess the impact of a
faster CPU on the overall performance.

Multiple scenarios modelled as annotated control flow graphs can be combined
to form a system execution model. From this fully specified model, tools can gen-
erate a QN, which can be solved with analytical techniques for single scenarios,
or simulation for multiple concurrent scenarios. The SPE-ED tool accompanying
the SPE methodology supports this [Smi02]. The resulting performance metrics are
end-to-end response time for scenarios, throughput, and utilisation of different re-
sources.

While the method proposed in this thesis is based on similar considerations
as the SPE methodology (e.g., early design-time prediction, emphasis on soft-
ware), there are also several differences between SPE and Palladio. SPE does not
target component-based software systems, although applying the method on a
component-based system is possible. However, the resulting SPE models are not
reusable, as they lack the required parameterisation. Furthermore, these models
may be on a higher abstraction level than the component architecture, therefore it is
not possible to deduce individual component performance specification from them.
Introducing a new component into a system design would require performance an-
alysts to recreate the performance model from scratch.

2.3.4 Performance Meta-Models

Recently, researchers have proposed several meta-models, which include concepts
of the SPE domain. They are specifically designed to enable and simplify model
transformations. Among them are the UML SPT profile [Obj05b], the SPE-meta-
model [SLC 05], the Core Scenario Model (CSM) [PW06], and KLAPER [GMS07b].
There is also a new UML profile in development called MARTE [Obj07a]. Cortel-
lessa [Cor05] even asked, whether there will be a common software performance

40

2.3. PERFORMANCE ENGINEERING

ontology based on these meta-models, which would provide a standardised set of
concepts of the domain. However, this is still subject to research.

Although these meta-models have different goals than the Palladio Component
Model, their elements and concepts were influential in defining the PCM. The fol-
lowing briefly discusses the SPT profile, CSM, and KLAPER and their relation to the
PCM.

UML SPT The UML SPT profile [Obj05b] is an extension to the UML, which en-
ables developers to add performance related information to UML models. The aim
is to reuse existing design documents and augment them with performance annota-
tions. These annotated models shall be input for model transformations, which map
them to performance models, such as QN, SPNs, or SPAs. Results from solving these
models shall be feed back into the UML models, therefore the SPT profile includes
corresponding annotations to save performance metrics from analysis tools.

The SPT meta-model for the performance domain is based on the General Re-
source Modeling (GRM) Framework, which distinguishes between different types
of resources, such as active and passive resources. Software developers can spec-
ify scenarios consisting of several steps, which produce load onto the modelled re-
sources. Furthermore, they may specify the workload of a scenario (e.g., the number
of concurrent users). The SPT meta-model does not contain control flow constructs,
as these shall be modelled with UML, for example by using activity diagrams or
sequence diagrams.

This meta-model does not specifically target component-based system, and
there is no support for creating models for individual software components. Mar-
zolla [Mar04] has implemented a QN-based simulation for UML models annotated
according to the SPT profile. Several other approaches use the profile for perfor-
mance modelling [BDIS04].

CSM The Core Scenario Model (CSM) [PW06] is directly connected to the UML
SPT profile. As UML designers may use different kinds of diagrams for expressing
the performance properties of their systems (e.g., activity diagrams, sequence dia-
grams, collaboration diagrams, etc.), CSM aims at providing a common intermedi-
ate model as the target for mapping the different annotated UML diagrams. Model
transformations to the performance domains (e.g., to QNs, SPNs, SPAs) then only
have to be defined for the intermediate model instead of for each UML diagram.

Other than the SPT profile, CSM explicitly model control flow as sequences, al-

41

2.4. COMPONENT-BASED PERFORMANCE ENGINEERING

ternatives, loops, and forks. Furthermore, it adds acquire and release actions for
passive resources and allows specifying message sizes for invocations, which is so
far not possible with the SPT profile. While CSM has an entity ’Component’, this
does not model a software component in the sense of Szyperski, as it is instead a
special passive resource.

Like the SPT profile, CSM does not target reusable models for individual com-
ponents.

KLAPER The Kernel Language for Performance and Reliability Analysis
(KLAPER) [GMS05, GMS07b] is another intermediate language to simplify model
transformations. With such a language, the number of model transformations for N

input models in the software design domain to M target models in the performance
domain shall be reduced from N M to N M . KLAPER targets component-based
systems, but is not meant to be a specification language used by developers, but
only by model transformation tools.

KLAPER includes a unified concept for software components and hardware re-
sources (i.e., they are treated equally). This distorts Szyperski’s component notion,
as a hardware resource is usually not contractually specified and does not require
other resources. However, KLAPER aims at enabling to integrate different com-
ponent performance specification based on different notations, such as annotated
UML models or OWL-S [MBH 04]. There are several model transformation from
KLAPER to Markov chains or extended queueing networks, but the transformations
from UML to KLAPER have not been finished so far. KLAPER has been extended
for reconfigurable architectures [GMS07a].

While some of the concepts used in KLAPER also appear in the PCM, both ap-
proaches follow different directions. KLAPER shall only be used by model trans-
formation tools, whereas the PCM shall be used an input language for different
developer roles.

2.4 Component-Based Performance Engineering

2.4.1 Motivation

CBSE requires different performance modelling techniques than conventional SE
in order to exploit the advantages of components. The following distinguishes be-
tween component-based systems with replaceable parts built by separated devel-

42

2.4. COMPONENT-BASED PERFORMANCE ENGINEERING

oper roles, and monolithic systems built by a single developer role. Monolithic sys-
tems may use other structuring mechanisms than componentry and be programmed
with any programming paradigm just as components themselves.

Conventional software performance engineering techniques mostly focus on
performance modelling and prediction for monolithic systems and require a sin-
gle developer role (i.e., a performance analyst) to be able to model the whole system
[Smi02]. While these techniques in principle also work with white-box component-
based systems, they are limited for black-box component-based systems and cannot
exploit the component paradigm for division of work and more accuracy.

For component-based systems, it is desirable that individual component devel-
opers specify the performance of their components and put these specifications into
public repositories. Software architects can then compose these specifications iso-
morphically to the component implementations in the software architecture to con-
duct design-time performance predictions.

This has several potential benefits over conventional, system-wide performance
modelling. The work for performance modelling is divided to different developer
roles, who each contribute information from their domain. Component performance
specifications can potentially be more accurate, because they may result from mea-
suring an implementation instead of estimating execution times for designed, but
yet unimplemented parts. Because of the intended reuse, components can be ex-
tensively tested and even performance-tuned. The experience from former uses of
the component might refine the performance models. Furthermore, at least partial
automatic model generation from existing component implementations is possible
(cf. Chapter 5).

However, it is not easy for component developers to specify the performance
of a software component, because they cannot make any assumptions on external
influencing factors. A component performance specification therefore needs to be
parametrisable for different contexts to become reusable for different software ar-
chitects.

The potential higher accuracy of individual component performance models also
has a drawback, as it might bloat these specification so much that the resulting sys-
tem models become mathematically intractable for analysis methods. Also simu-
lation techniques can only handle a certain amount of complexity. Thus, a perfor-
mance specification language needs to find a good abstraction from precise com-
ponent performance behaviour. It needs to be abstract enough to enable analysis
methods on the one hand, but on the other hand allow accurate predictions.

43

2.4. COMPONENT-BASED PERFORMANCE ENGINEERING

To identify the right abstraction level, first the factors influencing the perfor-
mance of software components need to be analysed.

2.4.2 Factors Influencing Performance of Software Components

The following lists several factors influencing the performance of a software com-
ponent.

• Implemented Algorithms: Component developers can implement the func-
tionality specified by an interface differently. For example, when implement-
ing a component for sorting lists, one component developer could use the bub-
ble sort algorithm, while another component developer could use the quick
sort algorithm. The two components would exhibit different execution times
running on the same resources and given the same inputs.

• Service Parameters and Internal State: Clients can invoke component services
with different input parameters. The execution time of a service can change
depending on the values of the input parameters. For example, if a compo-
nent service for sorting lists is invoked with a short list, its execution time is
shorter than if it would be called with a long list. Besides input parameters
of provided services, components may also receive parameters as the result
of calls to required services. The values of these parameters can also influence
the execution time of a service. Furthermore, components can have an internal
state from initialisation or former executions, which changes execution times.

• Performance of Required Services: When a component service invokes re-
quired services, their execution time adds up to its own time. Therefore, the
overall execution time of a component service depends on the execution time
of required services.

• Resource Contention: A software component typically does not execute as
a single process in isolation on a given platform. Usually, processes of other
applications are running in parallel or the component itself is accessed concur-
rently by multiple threads. Concurrently executed software processes produce
contention on the resource of the underlying platform. For example, if mul-
tiple processes are executed on a single-core processor, the operating system
scheduler queues requests and manages the order of execution. Therefore, the
induced waiting times for accessing limited resources add up to the execution
time of a software component.

44

2.4. COMPONENT-BASED PERFORMANCE ENGINEERING

• Deployment Platform: A software component can be deployed to different
platforms. A deployment platform may include several software layers (e.g.,
component container, virtual machine, operating system, etc.) and hardware
(e.g., processor, storage device, network, etc.). Depending on the speed of
hardware resources, the scheduling disciplines of operating systems, and fea-
tures of the middleware, the execution time of a software component can
change significantly.

2.4.3 Requirements for Component Performance Specification

A component performance specification language for reusable specifications must
be defined from the viewpoint of the component developer. During specification
of a component, the component developer has no information about components
connected to its required interfaces, its deployment platform, or parameter values
passed to its provided services by clients. Because of this, the component developer
has to provide a parameterised specification, which makes the influences by these
external factors explicit.

Because a component can provide multiple services, which clients can possibly
use independently, a component performance specification consists of a set of ser-
vice performance specifications. For each provided service of a component, the com-
ponent developer must provide a service performance specification. To be accurate,
it has to include the following features:

• Time Consumption: As the execution times of individual component services
in a software architecture add up to the overall execution time perceived by
users, each component service has to specify its contribution to the overall ex-
ecution time. However, component developers cannot directly specify service
execution times using measurements, because such measurements would de-
pend on their own deployment platform. On a different deployment platform,
the provided services might exhibit different execution times, therefore such a
specification would be inaccurate.

As component developers do not know during specification on which deploy-
ment platform their components will be deployed, they have to specify the
time consumption as a resource demand. For example, component develop-
ers can specify the processor resource demand as the number of CPU cycles
needed. The number of CPU cycles does not refer to a timing value, however

45

2.4. COMPONENT-BASED PERFORMANCE ENGINEERING

it can only be converted into a timing value once the processing rate in terms
of CPU cycles per second is known.

• Memory Consumption: Besides processing time, component services con-
sume memory during execution. To derive memory-related performance met-
rics from a component-based performance model it is necessary that each
component service specifies its memory consumption. For deriving execution
time-related performance metrics, memory consumption is often negligible.

• Access of Active Resources: A component service can access different active
resources, such as a processor or a storage device, during execution. Each of
these resource can become the bottleneck of the system. To find such bottle-
necks, it is necessary that each component service specifies resource demands
for each accessed active resource.

• Access of Passive Resources: Besides active resources, a component service
might also acquire and release passive resources, such as semaphores, threads
from a pool, buffers, etc., during execution, which might lead to waiting delays
due to contention with other concurrently executed services. Thus, a service
performance specification should make such accesses explicit, so that the re-
sulting contention effects can be investigated through analysis or simulation.

• Calls to Required Services: As described in the previous section, the execu-
tion time for executing required services adds up to the overall execution time
of a service. The component developer does not know the execution time of
required services, because it is unknown which components will provide these
services if the component is used by third parties. However, the component
developer must make calls to required services explicit in the service perfor-
mance specification, so that their contribution to the overall execution time can
be taken into account.

• Control Flow: The order of accessing resources or calling required service by
a component service might change the resource contention in a component-
based system. Therefore, for an accurate performance specification, a service
performance specification should include the control flow between resource
accesses and calls to required services in terms of sequences, alternatives,
loops, and forks.

46

2.5. RELATED WORK

• Parameter Dependencies: As described in the previous section, the values of
service parameters can change the time or memory consumption of a service,
its accesses to active or passive resources, the amount of calls to required ser-
vices as the control flow. Because the actual parameter values used by clients
are unknown during component specification, component developers need to
specify properties such as time or memory consumption in dependency to ser-
vice parameter values.

• Internal State: If a component holds an internal state (in terms of the values of
global, i.e., component-wide variables) during execution this state can influ-
ence the properties described above just like service parameters. Therefore, a
component performance specification should include a notion of internal state,
if it influences performance properties significantly.

Besides these performance-related properties, service performance specifications
need to be composable isomorphically to the components in the software archi-
tecture and the specifications by different vendors need to be compatible to build
an architectural model. Additionally, service performance specifications potentially
have to abstract from the actual performance behaviour of a component, to remain
analysable by performance solvers. The component developer creating a service
performance specification must make a trade-off between the accuracy of the speci-
fication and its analysability.

Service performance specifications should not refer to network devices. Network
communication in component-based systems should only happen between compo-
nents when calling required services, but not inside components. Otherwise, a soft-
ware component would not be a unit of deployment, if it would require multiple
servers connected by network devices.

2.5 Related Work

This section surveys related work in the area of component-based performance pre-
diction and usage modelling. Several other approaches have created reusable per-
formance models for software components, but none of them has become common
software industry practice. Chapter 2.5.1 introduces six performance prediction ap-
proaches, which tackle the problem of component-based performance modelling.
The emphasis in this phase is on usage modelling and parameter dependencies in

47

2.5. RELATED WORK

these approaches. A comparison of these approaches to the newly introduced mod-
elling language in this thesis follows after its description in Chapter 4.3.3.

Many other performance prediction methods besides these six approaches have
been proposed, which analyse the performance of component-based systems. How-
ever, they are only loosely related to this thesis, as they use different component no-
tions, do not aim a reusable performance specifications, or simply use conventional,
monolithic performance models for the prediction. Chapter 2.5.2 briefly surveys
these approaches.

This thesis also introduces a new modelling language to describe user behaviour
(opposed to software behaviour). There are hardly any related approaches into this
direction in the field of performance engineering. However, so-called ”operational
profiles” and ”Markov usage models” from the area of software testing and reliabil-
ity prediction are similar to the new modelling language. Therefore, Chapter 2.5.3
provides an overview of other models for user behaviour proposed in software en-
gineering.

Additionally, this thesis contributes a static code analysis approach to generate
performance models from code, and two transformations from newly introduced
models to the performance domain. The related work for these two areas is dis-
cussed in Chapter 5.2 and 6 respectively.

2.5.1 Component-Based Performance Prediction Approaches

The following approaches propose performance prediction methods for component-
based software architectures and create reusable component performance specifica-
tions (Table 2.1). The last column in this table refers to the features of the Palladio
Component Model, which will be described in detail in Chapter 3 and 4. The follow-
ing describes the related approaches in detail and tries to classify their component
performance specification according to the requirements stated in Chapter 2.4.3. Af-
ter the description of each approach, Table 2.2 summarises these requirements for
each approach for easy comparison.

CB-APPEAR Eskenazi and Fioukov have introduced the APPEAR method in their
dissertation [EFH04, EF04]. The goal of this method is to create a prediction model
for arbitrary software entities (not necessarily software components) using simula-
tion, measurement, and statistical methods. The resulting model can be used by
software architects to predict the performance of systems, where the corresponding

48

2.5. RELATED WORK

Name CBͲAPPEAR CBML CBͲSPE Hamlet RESOLVEͲP ROBOCOP PALLADIO
Literature [EF04,�EFH04] [Wu03,�WMW03,�

WW04]
[BM04a,�BM04b] [HMW01,�

HMW04]
[SKK01] [BdWCM05,�

BCdW06a,�
BCdW06b,�
BCdK07]

[BKR08]

Domain Distributed�
Systems

Distributed�
Systems

Distributed�
Systems

General General Embedded�
Systems

Distributed�
Systems

Design�Model Annotated�Control�
Flow�Graph

CBML/LQN UML�Sequence�
and�Deployment�
Diagrams�+�SPT

Ͳ Ͳ ROBOCOP PCM

Performance�Model Execution�Graph�+�
QN

LQN Execution�Graph�+�
QN

Execution�Graph Ͳ Task�Tree QN,�Capra,�SRE,�
LQN

Model�Transformation Ͳ Ͳ CͲCode�with�XMI�
Input/Output

Ͳ Ͳ RTIE�(adͲhoc) Java�(adͲhoc)

Performance�Model�Solver Analytical,�
Simulative

Analytical,�
Simulative

Analytical Analytical Ͳ Simulative Analytical,�
Simulative

Prediction�Feedback�into�Design�
Model

Ͳ 9 Ͳ Ͳ Ͳ Ͳ (9)

Automated�Exploration�of�Design�
Alternatives

Ͳ Ͳ Ͳ Ͳ Ͳ (9) Ͳ

Case�Study Toy�Example�(Car�
Navigation�
System)

Toy�Example�
(Generic�3ͲTier�
Arch.)

Toy�Example�
(Software�
Retrieval�System)

Toy�Example�
(Unspecified�Java�
Methods)

Toy�Example�
(Stack)

Industry�System�
(MPEG4�Decoder,�
etc.)

Toy�Example�(3Ͳ
Tier�Arch.:�
MediaStore)

Implementation�Support Ͳ Ͳ (Code�Generation�
of�UML�tool)

Ͳ Ͳ Ͳ Java/EJB�Code�
Generation

Tool�Support Ͳ Jlqndef,�LQNS,�
LQSiM

CBͲSPE�Tool�Suite�
(incl.�ArgoUML,�
RAQS)

Ͳ Ͳ RTIE PCMͲBench

Current�Status Completed�in�
2004

Completed�in�
2004

Abandoned�in�
2005

Active�(2007) Abandoned�in�
2004

Active�(2007) Active�(2007)

Table 2.1: Component-Based Performance Prediction Approaches

software entity is reused in a slightly adapted way. In [EF04], they describe which
changes to the software entity are allowed to keep the prediction model valid.

The APPEAR method has also been extended to be applied on component-based
systems [EFH04], and will be referred as CB-APPEAR in the following. The problem
scenario described by the authors is slightly different from the other component-
based performance prediction approaches. The approach requires an implementa-
tion of all components within an architecture to enable measurements. Software
architects or performance analysts carry out these measurements and build perfor-
mance prediction models for each component service. The resulting models could
in principle be reused in other architectures, which use the same components or
slightly adapted versions of them. However, this is not intended nor described by
the authors, as they focus on making predictions for the systems they have built the
models from.

The notion of a software component is similar to Szyperski’s definition, as CB-
APPEAR components have provided and required interfaces with multiple ser-
vices [EF04, p.150]. The approach does not consider composite components, but
only assemblies of components bounded by connectors (i.e., the component model
is not hierarchical). There is no formally defined meta-model for the component

49

2.5. RELATED WORK

specification and also no tool support to create such specifications. In their case
studies, the authors use the COVERS simulation framework [BKR95] to build simu-
lation models.

The CB-APPEAR process consists of three steps: (i) creating a prediction model
for individual component operations (i.e., a set of instructions executed by a compo-
nent), (ii) creating an annotated control flow graph for single component services,
and (iii) creating and simulating a full application model, which may include exe-
cuting individual component services concurrently.

For creating the prediction models for single component operations in the first
step, a performance analyst identifies performance-relevant parameters (not nec-
essarily from the component interfaces). Then the component is executed mul-
tiple times (without concurrency) using a large set of use cases. With execution
time measurements from these test runs, the performance analysts builds a formula
based on statistical regression methods. The formula includes the formerly iden-
tified performance-relevant parameters as variables. This parameterised time con-
sumption specification does not refer to different resources, such as CPU or hard
disk and also does not include the use of passive resources.

In the second step, the performance analyst builds an annotated control flow
graph for each component service, whose nodes model either component opera-
tions with the time consumption formula from the former step, or calls to other
component services. Supported control flow constructs are sequence, alternative,
and loops. Forks that model concurrent control flow inside a component service are
not allowed. The approach also explains determining parameter dependencies for
branch probabilities and loop iteration numbers. However, the parameters in these
dependencies need not refer to service parameters, but refer to the performance-
relevant parameters determined in the former step.

Once the performance analyst has modelled all control flow graphs they are con-
nected to each other in a so-called activity composition in the third step. The per-
formance analysts also defines the execution frequency of the services (i.e., an open
workload). The resulting model can be used as input for analysis or simulation
solvers depending its underlying assumptions. There is no standard procedure for
solving the models, as the authors leave this to the choice of the performance an-
alyst. In a case study [BMdW 04], the authors determine the schedulability and
worst-case execution times of a component-based car navigation system.

The approach supports parameter dependencies for branch probabilities, loop
iteration numbers and resource demands. However, these dependencies are de-

50

2.5. RELATED WORK

termined ad-hoc and their validity in other scenarios is unclear. It is also unclear,
whether the resulting service performance specifications can be reused. Memory
consumption is considered by the approach verbally, but not explicitly demon-
strated. There is no account for internal state of component or passive resources.

CBML The Component-Based Modelling Language (CBML) is an extension to
LQNs to make parts of LQN models replaceable. It has first been introduced by Mc-
Mullan [McM01] as a BNF-grammar and later been implemented as an XML schema
by Wu et al. [WMW03, WW04]. Wu’s Master thesis [Wu03] describes CBML in de-
tail. LQNs have already been mentioned in Chapter 2.3.2 and will be described in
detail in Chapter 6.4.

LQNs include a concept called ”task”, which expresses the behaviour and re-
source demands of a software entity (details in Chapter 6.4). CBML uses tasks as
software components and adds a so-called slot around them. A slot may contain a
number of interfaces representing the provided or required services of a software
component (called ”in-port” and ”out-port”). CBML therefore uses the component
concept of UML2, where components consist of interfaces associated with a port.
Slots make the CBML components replaceable with other CBML components con-
forming to the same slots. Using slots, CBML components can also be nested to
express composite components.

Besides a ”task”, a CBML component may also contain a set of processors, where
the task gets executed. These processors inside components are rather placeholders,
which have to be bound to actual processors in the LQN surrounding the compo-
nent once the component is plugged into a slot. Therefore, a slot contains different
types of bindings. It can bind ports to each other to connect a CBML component to an
architecture. It can bind processors to each other to specify that a component uses
a specific processor. And finally, a binding may contain a set of parameters, where
values are bound to parameter names.

Parameters in CBML components usually do not refer to the input parameters
of component services (which cannot be expressed in CBML), but rather to arbi-
trary performance attributes of a CBML component. For example, they can be used
to adjust the thread pool size for a component or to adjust its resource demands.
Thus, they reveal additional internals of a component besides the service interface.
The values of these parameters are of type String, therefore it is difficult to make a
type-conform assignment if different performance attributes (e.g., real number for
resource demands, integer for thread pool size) inside a component are parame-

51

2.5. RELATED WORK

terised. The parameterisation of control flow properties, such as branch probabili-
ties or loop iteration number is not mentioned in this approach.

Besides slots, bindings, and parameters, CBML inherits all other modelling con-
cepts from LQNs. Time consumptions in LQNs are resource demands to processors,
their amount is specified by mean values of exponential distributions. Memory con-
sumptions are not supported by LQNs. LQNs can model active as well as passive re-
sources, and may include control flow concepts such as sequence, alternative, loop,
and fork. LQNs are particularly useful to model asynchronous communication in
distributed services, as they include special concepts for this. LQNs do not consider
any data values or internal state of software entities.

The CBML language builds on the resource function capture approach by Wood-
side et al. [WVCB01], which aims at determining parameterised resource demands.
It uses a testbed to repeatedly execute software components with different parame-
ters and measures their execution times and calls to required services. Using statis-
tical regression techniques on the measurement results yields functions for resource
demands. These functions could be used in combination with CBML, which is how-
ever not shown in the respective case studies [WW04].

CB-SPE The Component-Based Software Performance Engineering (CB-SPE) ap-
proach by Bertolino and Mirandola [BM04a, BM04b] uses UML extended with the
SPT profile [Obj05a] as design model and queueing networks as analysis model. The
CB-SPE framework tries to adhere to standards such as the UML component defi-
nition and the SPT profile where possible and uses freely available modelling tools
(ArgoUML) and performance solvers (RAQS). The approach is divided mainly into
two layers: the component layer and the application layer.

The component layer lets component developers specify the performance of their
components and put these specifications into publicly accessible repositories for
software architects. The performance specification is a function PerfCi

Sj envpar

for a component Ci and a list of services Sj . Perf is a performance index, such as
an execution time or communication delay. With a list of environment parameters
(envpar), which for example can refer to network bandwidth, CPU speed, etc., the
function can be adjusted by software architects for different platforms. The list of
services Sj includes provided and required services. Therefore, component devel-
opers can also specify the resource demand requested from required services. The
parameterisation does not involve service input or output parameter, but only refers
to properties of resources. It is not possible to specify what required services specific

52

2.5. RELATED WORK

provided services will call. In the application layer, the software architect performs
three steps: component pre-selection, modelling/annotation, and analysing the re-
sults of the performance solvers. For pre-selection among functionally equivalent
components, the software architect instantiates the Perf function retrieved from a
repository with the current platform parameters and weights the resulting perfor-
mance indices according to specific performance goals (e.g., max. throughput, min.
response time, etc.). For example, if the software architect is more interested in
analysing response times, the corresponding performance index may be weighted
higher than other performance indices. This enables selection of a matching compo-
nent.

In the second step, the software architect models the control flow through the
planned component-based software architecture using UML sequence diagrams.
This might be hard to realise using black-box components, because the visible com-
ponent interfaces and the provided performance indices by the component devel-
oper are insufficient to determine which required services will be called. Besides the
control flow, the software architect annotates the sequence diagram with the perfor-
mance indices from the component developer. For example, the execution time of
a provided service is included into the model using a PAStep annotation from the
UML SPT profile and using the performance index calculated from the function pro-
vided by the component developer. Additionally, the software architect creates de-
ployment diagrams to model the resource environment and annotates the included
resources for example with scheduling disciplines according to the SPT profile.

The complete model, which consists of sequence and deployment diagrams, is
then input for the CB-SPE tool, which generates SPE execution graphs (EG, cf. Chap-
ter 2.3.3) or queueing networks (QN, cf. Chapter 2.3.2) from them. Using an own
EG solver, performance metrics for single-user scenarios can be determined. Us-
ing the RAQS QN solver, performance metrics for multiple-user scenarios can be
determined from the model.

The performance model mainly inherits from the UML SPT profile. The profile
supports arbitrary distribution functions for specifying time consumptions, but the
QN solver can only handle mean values of exponential distributions. CB-SPE has
no support for determining memory consumption. The control flow modelling is
realised with sequence diagrams, thereby supporting sequences, alternative, loops,
forks, and also asynchronous communication.

A problematic feature in CB-SPE is the fact that the software architect needs to
specify the control flow through the architecture instead of the component devel-

53

2.5. RELATED WORK

opers specifying the control flow of their individual components. If the software
architect replaces one component by another, the whole architecture has to be spec-
ified again. In addition, there is no possibility to specify concurrency inside compo-
nents. The parametric dependencies supported by CB-SPE remain rather fuzzy, as
the authors refer to other approaches to determine appropriate performance indices
for software components. There is no support for modelling internal state, and a
component can only use a single resource.

Besides the modelling deficits, it remains unclear, which elements of the UML
SPT profile can be used by the software architect, as the QN solver does not support
the whole expressiveness of the profile (e.g., general distribution functions for tim-
ing values or some of the scheduling disciplines). Nowadays, the CB-SPE tool suite
based on ArgoUML is rather outdated and no longer supported by the authors.

Hamlet The approach by Hamlet et al. is no classical performance modelling ap-
proach, but originates from the area of software testing. It was first proposed for
reliability prediction of component-based systems [HMW01], and later for perfor-
mance prediction [HMW04]. The authors try to create a fundamental theory of
software composition, which enables reasoning on different properties such as cor-
rectness, reliability, performance, security etc. based on specification of individual
components.

Although the authors reference Szyperski’s component definition, they use their
own very restricted component definition to reduce the complexity of the theory.
A software component in this approach is a mathematical function with a single
integer parameter. If a component is composed to another component, it sends its
output (the result of computing the function) to the other component, which uses it
as input. Therefore, component composition always follows a pipe-and-filter pat-
tern in this method.

The method of performance prediction for systems composed of such compo-
nents consists of several steps. First, after implementing a component, each compo-
nent developer specifies a set of subdomains for it. A subdomain is a subset of the
component’s input domain. The component developer should specify each subdo-
main in a way that calling the component with any parameter from this subdomain
yields a similar execution time. For example, in the most trivial case, the component
developer simply divides a component’s input domain into two subdomains, one
for slow execution time, one for fast execution times.

Second, the component developer measures the execution time for invoking the

54

2.5. RELATED WORK

component with parameters from each subdomain and stores the measurement re-
sult for each subdomain in a repository. From this repository, software architects can
retrieve these measurements and also the components. The authors do not consider
that component developer may use a different deployment platform than the soft-
ware architect, therefore the measurements by the component developers may be
invalid for the software architect’s deployment platform. They also do not spread
execution time onto different resources (e.g., CPU, hard disk) and ignore passive
resources.

In a third step, the software architect specifies an operational profile consisting
of a probability for each subdomain of the first (pipe-and-filter pattern assumed)
component in the planned architecture. Then, the software architect retrieves the
desired components for the architecture from the repository and executes the first
component using the specified operational profile. For each subdomain of the first
component, this results in a probability of calling a particular subdomain of the
second component. Using these probabilities, the second component can be execute
to determine how it propagates the requests.

If the probabilities for calling each subdomain in the architecture have been mea-
sured, the execution time of the overall architecture can be determined by adding
the measured execution times from the component developers weighted by the call
probabilities. Besides sequential composition, Hamlet et al. also show in [HMW04]
how this approach can be applied for components called conditionally (alternative)
or iteratively (loop). The whole approach is not restricted to execution times of
components, but can be applied to reliability, security, safety, correctness, and other
properties.

The approach only specifies time consumption as constants and does not con-
sider distribution functions. It does not consider memory consumption. There are
no explicit parameter dependencies in this approach, and components cannot exe-
cute concurrently. Branch probabilities or loop iteration number have to be deter-
mined via measurements for each prediction.

The most critical aspect of this approach is the execution of the components by
the software architect to determine the propagation of inputs. This requires the
software architect to deploy the components of the whole component-based system
in advance to conduct the prediction. This is not desirable, because it reduces the
approach to performance testing and invalidates the value of the created models.

As the authors point out, it is crucial to determine ”good” subdomains for this
approach to yield accurate predictions. Techniques from black-box testing are sug-

55

2.5. RELATED WORK

gested for this, but it is usually not possible to test the component for all possible
input value to gain an accurate subdomain partitioning.

Hamlet is one of the few authors, who investigates stateful software components
and the impact of the internal state on performance properties. The approach sug-
gests to model internal state as additional inputs to a component’s input domain.
However, this might easily lead to a combinatorial explosion of the number of re-
quired test cases. Therefore, it is recommended to use system-wide internal state
only if absolutely necessary, and treat stateful components with formal analysis in-
stead of testing.

RESOLVE-P Sitaraman et al. [SKK 01] have proposed a dialect of the RESOLVE
specification and implementation language [EHL 94] for software components to
additionally express performance properties. The following will refer to this ap-
proach as ”RESOLVE-P” (P for performance). The authors tackle the challenge of
component performance specification from the perspective of computational com-
plexity theory.

Their aim is to provide specifications of the time and memory consumption of
component services in a refined big O-notation. They want to make assertions about
the asymptotic form of time and memory consumption and later formally verify
those assertions. It is not intended to derive for example accurate response times or
resource utilisations as in the other approaches described before.

The component notion of RESOLVE-P is rather related to modules and objects.
The authors use a generic stack object to illustrate their approach. There are no ex-
plicit required interfaces or calls to other components in their examples. RESOLVE
specifies the functionality of a component with a list of service signatures and a pre-
and post-condition for each service.

As problem motivation, the author point out that classical big-O notations are
not helpful for generic components with polymorphic data types. For example,
specifying the time consumption to copy a generic stack S with O S (linear com-
plexity), where S is the current size of the stack, is inaccurate, because the elements
within the stack might be complex objects such as trees, which could require loga-
rithmic or polynomial complexity for copying. Therefore, Sitamaran et al. propose
to first extend classical big-O notations, which are defined on the domain of natural
numbers, to arbitrary mathematical spaces. However, in their examples they still
use natural numbers for their big-O notations.

The specification of time and memory consumption of a component is bound to

56

2.5. RELATED WORK

a particular component implementation. In [SKK 01], each provided service of the
example stack specifies its time consumption and memory consumption.

The specified time consumptions for the stack operations are functions involv-
ing the time consumptions for initialising and destroying the inner elements of the
stack. They are therefore more refined than a classical big-O notation, which would
not take the structure of inner elements into account. It is not defined whether the
time consumptions can be specified as constants or distribution functions. The time
consumption does not refer to different active resources. The approach also does not
account for passive resources. Because of the missing calls to required services and
the single assumed resource, there is also no control flow reflected in these specifi-
cations.

For memory consumption, the authors propose an adapted big-O notation,
which includes a fixed coefficient. For example, a memory specification in O 2n

would be in a different class than O 3n in the proposed notation, while in classical
big-O notation both specification would fall into the linear complexity class. The
authors motivate this adapted big-O notation by claiming that the coefficient often
has a significant impact on the memory consumption, which would be inaccurately
expressed by the classical notation.

The approach still remains abstract and only serves to explain some problems
with classical big-O notations on a generic stack. Without the account for different
resources and the missing required interfaces, the component notion is rather lim-
ited. The example performance specification of the stack refers to the internal state
of the component (the stack size). Therefore, this is one of the few approaches that
includes the influence of the internal state on the performance of the component
albeit in a limited fashion.

ROBOCOP Bondarev et al. [BMdW 04, BdWCM05, BCdW06a, BCdW06b] have
developed a performance prediction approach for the ROBOCOP component model
[Gel] aiming at analysing embedded systems.

The component definition of ROBOCOP is mostly in line with Szyperski’s def-
inition, however it uses different terms than established (for example, a ”compo-
nent” is called ”service”). This description uses the established terms, however.
Components have provided and required interface including multiple service signa-
tures. Composite components are not supported. Besides a functional specification,
ROBOCOP also provides a resource specification and a behaviour specification for
each component and couples an executable implementation with the specification.

57

2.5. RELATED WORK

The process of performance prediction is carried out by component developers
and software architects. Component developers provide parameterised specifica-
tions of their component and put them into a repository. Software architects retrieve
these models and themselves model an application scenario consisting of a com-
ponent assembly and a number of performance-critical usage scenarios. They also
instantiate the parameters specified by the component developers.

For the prediction, the tool Real-Time Integration Environment (RTIE) compiles
the application scenario, component resource models, and component behaviour
models and converts them into a so-called task tree. RTIE then simulates the exe-
cution of a specific scenario and creates a task execution timeline as output, which
illustrates the response time, blocking time, number of missed deadlines of each
task, and utilisation of each resource.

All ROBOCOP model elements use constant values instead of random variables
to specify for example resource demands or component behaviour. There are no
stochastic annotations, as the model always reflects a single request through the
architecture. Therefore, the control flow specification for example does not contain
branching points with probabilistic branches, as a deterministic program always
chooses a single branch.

The component developer can specify the time consumption of a component
service as a fixed time value for a processor or a network. There is no support
for platform-independent resource demands. The component developer can also
specify the memory consumption of a component service by defining the amount
of memory claimed and the duration of the claiming. There is always a single CPU
time, a single network time, and a single memory consumption for each service, and
it is for example not possible to specify a CPU access after a memory access. Access
to passive resources besides memory is supported by specifying critical regions.

Calls to required services may be executed synchronously or asynchronously.
ROBOCOP also supports specifying input parameters for calls to required services.
As control flow constructs, only sequences and loops (with constant iteration num-
bers) are supported. There are neither branches nor forks, as the service behaviour
is always only a single run through the architecture and ROBOCOP does not allow
concurrency inside components.

The approach is particularly strong on specifying parameter dependencies (de-
scribed in [BdWCM05, BCdW06b]). In this area, it is most related to the parameter
dependency model proposed in this thesis. Component developers can specify re-
source demands, loop iteration numbers, and input parameters to required services

58

2.5. RELATED WORK

in dependency to a service’s input parameter values. When software architects later
provide values for the parameters, RTIE can solve the parameter dependencies.

ROBOCOP allows only integers to specify parameter values. There is no support
for other data type values or random variables. However, it is possible to specify a
minimum and a maximum parameter value to define a range. In [BCdW06b], it is
also possible to specify the byte size of a parameter or the number of elements if it
models an array. The model also supports specifying component-wide parameter
values, which can be used by all behavioural specifications of its services. They can
be used to express a configuration of a component and can be seen as a static internal
state model.

ROBOCOP only supports dependencies to input parameter values and neglects
output parameter values, which could be the result of calling required services.
Therefore the possible specification of component interaction is rather limited, as
components can exchange data only into a single direction. In [BCdW06b], the
model has been extended to also allow the specification of return values for each
call to a required service. However, the concrete return value is usually unknown
to the component developer specifying the component. It can also not be supple-
mented automatically by tools by taking the values from other components once
the component is placed in an architecture, because the service specification lacks a
facility to set return values.

Conclusion Concluding, Table 2.2 again compares the service performance speci-
fications of the prediction approaches described before.

None of the approaches supports all the requirements stated in the former sec-
tion. All approaches include some form of parameterisation, but only RESOLVE-P
and ROBOCOP explicitly support the specification of dependencies to parameters
declared in component interfaces. Other approaches, such as CBML or CB-SPE do
allow a variation of certain performance attributes (such as thread pool sizes or
resource processing rates) and consider this as parameterisation. As they do not
include component interfaces specifying signatures with input and output parame-
ters, they do not support the specification of dependencies to these parameters.

2.5.2 Other Component-Based Performance Analysis Approaches

There are many other approaches, which analyse, model, measure, or predict the
performance of component-based software systems (survey in [BR06]) besides ap-

59

2.5. RELATED WORK

Name CBͲAPPEAR CBML CBͲSPE Hamlet RESOLVEͲP ROBOCOP PALLADIO
Literature [EF04,�EFH04] [Wu03,�WMW03,�

WW04]
[BM04a,�BM04b] [HMW01,�

HMW04]
[SKK01] [BdWCM05,�

BCdW06a,�
[BKR08]

BCdW06b,�
BCdK07]

Time�Consumption PlatformͲDep.�
Overall�Run�Time�

PlatformͲIndep.�
Resource�

PlatformͲIndep.�
Resource�

PlatformͲDep.�
Overall�Run�Time�

Extended�OͲ
Notation

PlatformͲDep.�
Overall�Run�Time�

PlatformͲIndep.�
Resource�

(Constant) Demands�(Exp.�
Dist,�Mean�Value)

Demands�(Exp.�
Dist,�Mean�Value)

(Constant) (Constant) Demands�(Gen.�
Dist.,�pdf)

Memory�Consumption 9 Ͳ Ͳ Ͳ Extended�OͲ
Notation

Constant Ͳ

Access�of�Active�Resources Ͳ 9 9 Ͳ Ͳ 9�(only�CPU,�
network)

9

Access�of�Passive�Resources Ͳ�(only�memory) 9 Ͳ�(only�spec.,�no�
analysis)

Ͳ Ͳ 9 9

Calls�to�Required�Services ? Asynch/Synch Asynch/Synch Synch Ͳ Asynch/Synch Synch
Control�Flow Sequence,� Sequence,� Ͳ�(Control�Flow� Ͳ�(Control�Flow� Ͳ Sequence,�Loop Sequence,�

Alternative,�Loop Alternative,�Loop,� specified�by�SA) specified�by�SA) Alternative,�Loop,�
Fork Fork

Parametric�Dependencies������(see� (9)�(for�branchs� Not�for�service� Not�for�service� Ͳ��(Input� (9)�(limited�to� (9)�(limited�to� 9
Section�4.3.4�for�more�detail) and�loops,�yet� parameters parameters Propagation�via� time/memory� constant�input�

purpose� Measurements) consumption) parameters)
unknown)

Internal�State Ͳ Ͳ Ͳ Ͳ��(Treatment�as� (9)�(limited�to� Ͳ�(Constant� Ͳ�(Component�
additional�Input) time/memory� Configuration� Parameter)

consumption) Parameters)

Table 2.2: Comparison of Service Performance Specifications

proaches for monolithic systems (survey in [BDIS04]). However, these component-
based approaches are only loosely related to this thesis, as they use different def-
initions of software components, simply provide special measurement facilities
without modelling, or rely on different underlying assumptions. Many of these
approaches do not aim at reusable performance models for components, but in-
stead just analyse the performance of component-based systems with conventional,
monolithic modelling methods without exploiting the component paradigm.

For completeness, the following briefly surveys these approaches to delimit them
from the formerly described approaches and the work presented in this thesis. This
should help the reader not to confuse these approaches with the more specific re-
lated work for the same problem as in this thesis, which has been presented before.
The following approaches can be broadly categorised into model-based methods
(M1-M6) and measurement-based methods (M7-M15) and are described in chrono-
logical order of their appearance in the following. Many of these methods are also
described in the survey by Becker et al. [BR06].

Model-based Methods M1. Gomaa and Menasce [GM01] create performance
models for component-based systems using UML class diagrams annotated with
a proprietary XML-based notation. They put special emphasis on modelling com-
ponent interaction patterns, such as client/server, synch/asynch connectors, as a

60

2.5. RELATED WORK

well as single/multi-threaded servers. However, they build a single model for a
whole system instead of individual, replaceable parts for single components. They
explicitly model probabilities for calling required services after invoking provided
services, and consider the size of network messages for the performance prediction.
There is no parameterisation of the modelled values, which renders them useless
for reusability. They map the resulting model to a queueing network and solve it
analytically.

M2. Hissam et al. [HMSW02, HMSW03] present a method called Prediction En-
abled Component Technology (PECT), which is based on the COMTEK component
technology. They determine certifiable component performance specification using
measurements on a stable resource environment and applying statistical methods.
The author demonstrate the applicability of their approach with a soft real-time la-
tency prediction for a CD player. This approach remains rather abstract and generic,
as it uses simple performance specifications and does not provide a detailed descrip-
tion of the case study.

M3. Zschaler et al. [Zsc04, RZ07, Zsc07] focus on the specification of perfor-
mance properties of software components, but do not carry out performance pre-
dictions. The authors are more interested in developing a formal model for per-
formance specifications, which can be checked statically on component assemblies.
The authors use different notations including CQML+ [Aag01] and Z specifications,
which however do not include control flow or parameter dependencies.

M4. The UML SPT profile [Obj05b] and its successor the UML MARTE pro-
file [Obj07a] allow the annotation of arbitrary UML elements with performance
properties. Combined with the UML2 component model, developers could use
these profiles to create performance specification of software components. How-
ever, as pointed out in [KHB06], the UML and both profiles provide no facilities to
model the values of service parameters and specify parameter dependencies needed
for reusable performance models based on them. In general, the UML targets object-
oriented design and monolithic architectures and provides limited support for re-
placeable, reusable models of software components [BKR08].

M5. DiMarco et al. [DI04, DiM05] use UML2 component diagrams and sequence
diagrams annotated according to the UML SPT profile to model the performance
of a component-based system. Software architects may compose the specifications
by component developers. The model allows a parameterisation for the number
of users inside a system, but is bound to the limitations of UML SPT as described
above (i.e. there is no notion of dependencies to service parameters). The authors

61

2.5. RELATED WORK

generate a multi-chain queueing network from the model, which they solve using
numerical techniques.

M5. Grassi et al. [GMS05, GMS07a, GMS07b] have developed the Kernel Lan-
guage for Performance and Reliability Analysis (KLAPER), which explicitly tar-
gets component-based systems. However, the goal of this language is not to create
reusable models for individual software components, but to provide an intermedi-
ate language to ease the implementation of model transformations. Chapter 2.3.4
further describes this language.

M6. Kounev [Kou06] presents a capacity planning study of a component-based
software system (SPECjAppServer2004). Kounev measures the performance prop-
erties of an implementation of the system, and builds a performance model based
on them. The model is a Queueing Petri-Net (QPN, also see Appendix B.2). How-
ever, although Kounev models and measures a component-based system, the com-
ponent structure is not reflected in the resulting performance model. Components
in this approach are application servers and databases. The method is not specific
for component-based systems, just applied on such a system as a case study.

Measurement-based Methods M7. Cecchet et al. [CMZ02] conduct an intensive
measurement study of an EJB-based system called RUBIS. They use different ap-
plication server and point out factors, such as container- and bean managed per-
sistence, which significantly influence the performance and scalability. They es-
pecially focus on application servers and their configuration parameters and find
that the contribution of individual EJBs to the overall execution time is marginal.
Although there is no building of a performance model in this study, it provides
interesting hints on important factors, which should be included in an accurate pre-
diction model for J2EE applications.

M8. Yacoub [Yac02] also conducts a measurement study of a component-based
system. The approach is more general and not tied to a particular middleware plat-
form, such as J2EE or .NET. It explicitly considers black-box components and the
needed monitoring proxies for their interfaces to make measurements. The author
also discusses the automation of the approach, but does not provide a formalisation
of the concepts or tool support.

M9. Denaro et al. [DPE04] target early design time performance predictions for
J2EE applications, but use prototyping instead of modelling. They argue that in-
dividual components have little impact on the overall performance and that the
middleware causes the longest execution times. Based on this assumption, they

62

2.5. RELATED WORK

generate component stubs from a given software design, which can be deployed
different application servers. The resulting prototype application can be monitored
for its performance properties, which the author claim is sufficient to assess the real
applications performance properties during an early design phase.

M10. Diaconescu et al. [DMM04] propose a measurement approach for
J2EE/EJB systems, which they have integrated into their COMPAS framework. It
uses a proxy layer to instrument EJBs and set up monitoring facilities. The overall
goal of this approach to detect performance problems in a component-based system
during runtime and then adapt the system to ensure certain service level agree-
ments. Therefore the system can be considered as self-healing. The approach uses
replication of components to adapt the systems on high load levels. There is no
model building is this approach.

M11. Chen et al. [CGLL02, CLGL05] investigate the performance influencing
factors of CORBA, COM+, and J2EE systems. As an example, they analyse a J2EE
server with a bottom-up testing approach. The method requires developers to cre-
ate a minimal application consisting of a simple EJB with a read and a write service
and a database system, which includes a single database table. Using this prototyp-
ical spike, they measure reading or writing to the database through the EJB. With
the measurement results, they build a simple formula, which parameterises the re-
sponse time of the application over the number of available server threads and the
number of concurrent requests. This formula allows determining the optimal setting
for the size of the application server’s thread pool.

M12. Liu et al. [LFG05] also analyse the performance of J2EE systems during
early development stages. Their approach uses simple performance models, which
are built based on measurements. The approach divides the modelling effort into
two parts: (i) benchmarking an application server on a given hardware platform to
create an application independent performance profile, and (ii) creating a descrip-
tion of the application and completing it with performance annotations obtained
from additional measurements. The authors do no create reusable models for in-
dividual components, but a single model for the whole application. The resulting
application model is a simple queueing network including a request queue, a con-
tainer queue and a data source queue, where the service demands are determined
from the description of the application. The model allows determining the best per-
sistency strategy and assessing the scalability of the application.

63

2.5. RELATED WORK

2.5.3 Usage Modelling

Besides a component performance specification language with parameter depen-
dencies, this thesis also proposes a new language (called PCM usage model) to
model user behaviour and the values of input parameters (Chapter 4.2). It is aligned
with the component performance specification language, as both are part of the
PCM.

There are hardly any comparable usage models in the area of performance engi-
neering. Many performance prediction methods use formal models, such as queue-
ing networks, which model user behaviour only implicitly. They contain user arrival
rates or the user population and the service demand for each service center in the
queueing network thereby mixing user behaviour with system behaviour. However,
some of the recent performance prediction methods model user behaviour explicitly
with annotated UML diagrams. One of the following paragraphs briefly describes
and evaluates such usage models based on the UML.

Approaches from other areas than performance engineering, such as reliability
engineering and software testing, model user behaviour explicitly. The PCM usage
model has adopted concepts from these approaches, therefore they qualify as related
work. Thus, the following will describe Operational Profiles and Markov Usage
Models used in these areas. This overview has also been published in an extended
version in [Koz05].

Operational Profile John Musa has advocated the use of operational profiles to
guide software testing [Mus93]. A formal definition has been given by Hamlet (Def-
inition 12).

Definition 12 Operational Profile [HMW04]
Let a software system have n major functions that exhaust the input space D, thus
it has the functional subdomains S1, S2, ..., Sn, where D 1 Si. An Operational
Profile is a vector p1, p2, ..., pn with Σn

i 1pi 1 and gives probabilities pi that
input will fall into Si, i.e., the probability is pi that the ith function will be used.

In this case, a software system is viewed as a black-box providing several services
(synonymous to functions) to the user. The operational profile simply assigns a
probability to each of these services based on their anticipated or already measured
usage. With an operational profile, testing can focus on the services with the highest
probabilities, as they contribute the most to the overall system reliability.

64

n
i

2.5. RELATED WORK

Musa [Mus93] described the practice of using operational profiles at AT&T and
sketched a five-step process to define such a profile for larger systems. In each step,
the profile is successively refined and the result of step five is the operational pro-
file. The process begins with specifying a customer profile for the user groups or
institutions that will use the system. In the second step, each customer probability
is broken down into a user profile, which assigns probabilities for the different types
of users of the customer (e.g., admins, regular users). In the third step, each user
probability is broken down in to a system-mode profile, which assigns probabilities
according to different system modes (e.g., overload mode, normal operation). Each
system mode can again have several functions, therefore the forth step provides a
functional profile.

Up to this point, the profiles do not refer to implementation artefacts, but only
design artefacts. Functions can be implemented by (possibly multiple) operations,
thus the final step refines the functional profile to an operational profile. The result-
ing operational profile, which typically can include several hundred operations, is
then input for test case selection (also see [AW95]). The occurrence probabilities of
the profiles can be determined from experience with similar systems, via monitoring
if the system is already running, or simply via estimations, which however might
be inaccurate.

Woit [Woi94] deems operational profiles insufficient if a system holds a state, and
the occurrence probabilities depend on this state and the call history. She specifically
targets testing software modules, which encapsulate a state. Also, Markov usage
models are not sufficient in this case, because they capture only the dependency to
the current state but not to the call history. Woit therefore defines a new model,
which captures execution history of user calls, so that a new call probability can
be determined given a particular call history. As this model recognises context-free
languages, it is more expressive than operational profiles or Markov usage models.
She also covers test case generation and reliability estimation from this model in her
PhD thesis, but an industry case study is missing and the applicability for non-trivial
systems is unknown.

Voas [Voa98, Voa99, Voa00] has argued that using operational profiles for soft-
ware testing tends to neglect seldom used, but critical operations. An extreme ex-
ample would be the emergency procedure in a nuclear power plant, which would
hardly be tested based on its occurrence probability when using an operational pro-
file. Furthermore, Whittaker and Voas [WV00] discuss that developer often falsely
estimate actual user behaviour, because they do not correctly anticipate how users

65

2.5. RELATED WORK

will execute a system. Using operational profiles does not account for concurrently
running processes or data present in the system, which might invalidate testing re-
sults and reliability estimations based on them.

Recently, Gittens [GLB04] has proposed an extended operational profile, which
also includes a specification of the data used by the system in addition to the classi-
cal operational profile. It does however neglect call histories. Simmons has recently
reported on some best practices in determining operational profiles [Sim06].

As already stated, operational profiles neglect call histories, current state, and
also input parameters to functions. These factors may all have an influence on the
performance or reliability of a software system, and therefore should be included in
such a model.

Markov Usage Model To express sequences of service invocations by users, Whit-
taker et al. [WP93] have proposed modelling the usage of a system with discrete
finite Markov chains. A formal definition has been given by Gutjahr et al. (Defini-
tion 13).

Like operational profiles, Markov usage models describe the behaviour of users
and treat the software system as a black-box. The approaches using these models
should not be confused with other approaches, which model the control between
software components as Markov chains. Whittaker and Poore [Whi92, WP93, WT94]
first used Markov usage models for test case generation and statistical software test-
ing. They were later integrated into the cleanroom software engineering approach
[MDL87, PTLP99].

For determining the transition probabilities of the Markov chain, which are also
called ”usage profile”, the same methods as for operational profiles shall be applied.
If a running system is available, current user behaviour can be monitored to measure
the transition probabilities. If the system is still under development, the transition
probabilities must be estimated based on experience. If no experience is available, a
uniform distribution for transition probabilities has to be assumed.

Wohlin and Runeson [WR94] propose an extended, hierarchical Markov usage
model, which allows reusing the Markov chains for using particular services, if
they are used multiple times in a scenario. This allows reducing the state space
of the Markov chain, thereby increasing tractability. Menasce et al. [MAFM99] used
a Markov usage model in a performance modelling context and modelled the be-
haviour of website users. They evaluated logs of webservers to determine transition
probabilities. Farina et al. [FFO02] show how to reduce the state space of Markov

66

2.5. RELATED WORK

Definition 13 Markov Usage Model [Gut00]
A Markov Usage Model is a Markov chain with a unique initial state, symbol-
izing program invocation, a unique final state, symbolizing program termination,
and other states symbolizing intermediate usage or processing state of the program
under consideration. The Markov chain can be represented by a directed graph
G V, A , and a function p : V V 0, 1 with the following properties:

• V 1, ..., n is a set of nodes, representing the program states (e.g., program
invocation, program termination, input/output screens).

• A is a set of arcs, representing state transitions which always correspond to
specific operations of the program. An arc from state i to state j is denoted by
the ordered pair i, j . Multiple arcs between i and j are not allowed.

• p i, j is the transition probability from state i to state j, if i, j is an arc. Oth-
erwise, we set p i, j 0. The transition probabilities satisfy the conditions
0 p i, j 1 and Σ1

j 0p i, j 0.

The values p i, j can be represented in a comprehensive form by a matrix p i, j i,j

It is always supposed that state 1 is the initial state and state n is the final state. State
n is assumed to be an absorbing state, i.e., it cannot be left anymore: p n, n 1 and
p n, j 0 for j n. Furthermore, it is assumed that each node i V is reachable
from node 1, i.e., there is a directed path in G from node 1 to node i.

67

2.5. RELATED WORK

usage models by using stochastic automata networks instead.
Doerner et al. [DG00] describe several problems when using Markov usage mod-

els. The number of loop iterations for repetitive user behaviour is always geomet-
rically distributed in a Markov usage model, which is however not representative
of reality. It is not possible to model consumer/producer situations, which occur
frequently in reality. Furthermore, Markov usage model do not model parameter
values supplied by users explicitly.

There are also several approaches that model the interactions between soft-
ware components instead of the transition between user states with Markov chains
[GPT01]. These methods consider the transition probabilities between components
as the usage profile [RSP03]. They aim at reliability prediction for component-
based software architectures. The methods proposed by Cheung [Che80] and Reuss-
ner [RSP03] are among them. They assume that component behaviour follows a
plain Markov chain, which is however violated by many existing software compo-
nents. Furthermore, they assume that the transition probabilities can be determined
via measuring an implementation of an architecture, which contradicts the idea of
model-driven predictions before implementation.

Usage Modelling in UML Software developers can use UML use case and activ-
ity diagrams to model user behaviour. With the UML SPT profile [Obj05b], they can
annotate use cases with workloads and use activity diagrams to model user arrival
rates and usage scenarios. The profile also allows annotating actions from activity
diagrams with probabilities or waiting delays to capture user behaviour in a proba-
bilistic way. Furthermore, UML2 activities include object nodes to model data flow
and express transferring parameters between actions. Therefore the UML provides
expressiveness to model usage for performance predictions.

However, specifying usage with UML has at least two disadvantages. First, the
language is still limited in its expressiveness, as it is not possible to model the size
or values of parameters, which can have a significant impact on performance. It is
furthermore not possible to model loop iteration numbers with probability distribu-
tions, because the SPT profile allows only constants for the number of repetitions of
an action. Marzolla [Mar04] describes some of the difficulties and limitations when
modeling with the SPT profile. Even the upcoming UML MARTE profile [Obj07a]
will not solve these issues.

The second disadvantage of using UML for specifying usage is its inherent com-
plexity. The current UML2 specification spans over more than 1000 pages, the UML

68

2.6. SUMMARY

SPT specification has more than 250 pages. Even if it is not necessary to comprehend
the whole specification to model usage for performance predictions, a profound
knowledge of UML activities and the SPT profile is necessary. Therefore, it is hardly
possible for persons without a technical background to model user behaviour in the
UML.

However, the usage of a system is mainly determined by non-technical factors,
therefore domain experts have to provide the needed information. In current prac-
tice, software developers interview domain experts for the expected usage of a sys-
tem and capture this information in models. It is desirable that domain experts can
create usage models themselves with a restricted, domain-specific language without
having to learn the intricates of UML, which includes many constructs outside their
domain.

2.6 Summary

This chapter has presented the foundations of this thesis. As the thesis contributes
in the area of component-based performance engineering, Chapter 2.1 explained the
basics of CBSE. It defined and described both software components and software ar-
chitecture and described a process model to developer component-based systems.
Chapter 2.2 then described model-driven software development, because this the-
sis introduces new modelling languages. It defined concepts such as meta-model,
domain specific language, and model transformation. Chapter 2.3 contained basics
about performance engineering. It described common performance metrics and per-
formance analysis methods. Furthermore, it included a brief overview of different
kinds of performance models.

Chapter 2.4 then brought together the three formerly described areas and de-
scribed the motivation and intricates of component-based performance engineer-
ing. In particular, it established a list of requirements for a performance specifi-
cation language for software components. Finally, Chapter 2.5 analysed existing
approaches for component-based performance modelling according to the require-
ments. It pointed out that the existing method provide limited support for specify-
ing usage profile dependencies.

69

2.6. SUMMARY

70

Chapter 3

Basics of the Palladio Component
Model

This thesis proposes new models for user and component behaviour reflecting the
performance influence of input and output parameters as part of a usage profile.
These models are embedded into the Palladio Component Model (PCM), which is
well suited to express these influences as it also targets context independent specifi-
cation of software components. It was chosen over annotated UML models, because
it specifically models component-based architectures, has standardised semantics, is
designed for model-transformations, and involves less complexity. Besides user and
component behaviour, this model can describe different types of components, their
connections, hardware/software resources, and component allocation to resources
in order to enable performance predictions.

Before introducing the new modelling languages for user and component be-
haviour in Chapter 4, this chapter will first give an overview of basic concepts of the
PCM. Chapter 3.1 introduces the Palladio development process model. Chapter 3.2
provides an overview of the PCM meta-model, and describes all parts except the
behavioural specification languages. To specify performance properties and param-
eter dependencies the PCM uses random variables. As they are a prerequisite for
the behavioural languages, Chapter 3.3 includes basic concepts of random variables
and their realisation in the PCM.

3.1. PALLADIO DEVELOPMENT PROCESS MODEL

3.1 Palladio Development Process Model

As part of this thesis, the development process model by Cheesman et al. [CD01] (cf.
Chapter 2.1.4) has been augmented to explicitly include QoS specification and de-
sign time prediction (published in [KH06]) This extended version is also the targeted
process model for the Palladio Component Model. The following will describe the
participating developer roles (Chapter 3.1.1) and the actual process model (Chap-
ter 3.1.2).

3.1.1 Developer Roles

Early Quality-of-Service (QoS) analysis of a component-based architectures depends
on information from different developer roles. The following briefly discusses the
responsibilities of the participating roles.

• Component Developers are responsible for the specification and implemen-
tation of components. They develop components for a market as well as per
request. To enable QoS analyses, they need to specify the QoS properties of
their components without knowing a) to which other components they are
connected, b) on which hardware/software platform they are executed, and
c) which parameters are used when calling their services (cf. Chapter 2.4.3).
Only such a specification enables independent third party analyses.

• Software Architects lead the development process for a component-based ap-
plication. They design the software architecture and delegate tasks to other
involved roles. For the design, they decompose the planned application spec-
ification into component specifications. Software architects can select existing
component specification from repositories to plan including them into the ap-
plication. If no existing specification matches the requirements for a planned
component, a new component has to be specified abstractly. Software archi-
tects can delegate this task to component developers. Additionally, software
architects specify component connections thereby creating an assembly model
(cf. Chapter 3.2.4). After design, software architects are responsible for pro-
visioning components (i.e., decide to make or buy components), assembling
component implementations, and directing the tests of the complete applica-
tion.

• System Deployers specify the resources, on which the planned application

72

3.1. PALLADIO DEVELOPMENT PROCESS MODEL

shall be deployed. Resources can be hardware resources, such as CPUs, stor-
age devices, network connections etc., as well as software resources, such as
thread pools, semaphores, or database connection. The result of this task is
a so-called resource environment specification (cf. Chapter 3.2.5). With this in-
formation, the platform-independent resource demands from the component
specifications can be converted into timing values, which are needed for QoS
analyses. For example, a component developer may have specified that a cer-
tain action of a component service lasts 1000 CPU cycles. From the resource
environment specification of the system deployer it would now be known how
many cycles the corresponding CPU could execute per second. Besides re-
source specification, deployers allocate components to resources. This step
can also be done during design on the model-level by creating a so-called al-
location model (cf. Chapter 3.2.5). Later in the development process, during
the deployment stage, system deployers are responsible for the installation,
configuration, and start up of the application.

• Domain Experts participate in requirement analysis, since they have special
knowledge of the business domain. They are familiar with the users’ work
habits and are therefore responsible for analysing and describing the user be-
haviour. This includes specifying workloads with user arrival rates or user
populations and think times. In some cases, these values are already part of
the requirement documents. If method parameter values have an influence
on the QoS of the system, the domain experts should characterise these val-
ues to make predictions more accurate. The outcome of the domain experts’
specification task is a so-called usage model (cf. Chapter 4.2).

• QoS Analysts collect and integrate information from the other roles, extract
QoS information from the requirements (e.g., maximal response times for use
cases), and perform QoS analyses by using mathematical models or simula-
tion. Furthermore, QoS analysts estimate missing values that are not provided
by the other roles. For example, in case of an incomplete component specifica-
tion, the resource demand of this component has to be estimated. Finally, they
assist the software architects to interpret the results of the QoS analyses. It is
the goal of component-based QoS prediction methods to automated the tasks
of this role as much as possible.

73

3.1. PALLADIO DEVELOPMENT PROCESS MODEL

3.1.2 QoS-Driven Development Process

The following integrates the formerly described roles into a component-based de-
velopment process model featuring QoS analysis (cf. Fig.3.1). The process model
inherits the workflows requirements, provisioning, assembly, test, and deployment from
the original model by Cheesman and Daniels [CD01] (described in Chapter 2.1.4).
The workflow ”specification” has been slightly modified to explicitly include the in-
teraction between component developer and software architect and the specification
of extra-functional properties (details follow).

Business

Requirements

Specification QoS-Analysis Provisioning Assembly

Test

Deployment

Business Concept
Model

Use Case
Models

QoS
Results Component Specs &

Architecture

Requirements

Existing Assets
Technical Constraints Components

Use Case
Models

Applications

Tested
Applications

Deployment
Diagrams

Legend
Workflow
Change of Activity
Flow of Artifact

Figure 3.1: QoS-Driven Component-Based Development Process [KH06]

The workflow ”QoS Analysis” has been added to the model. Component speci-
fications, the architecture, and use case models are input to the QoS analysis work-
flow. During this workflow, deployers provide models of the resource environment
of the architecture, which contain specifications of extra-functional properties. The
domain expert takes the use case models, refines it, and adds QoS-relevant infor-
mation, thereby creating a complete usage model suitable for QoS predictions. Fi-
nally, the QoS-Analyst a) combines all of the models, b) estimates missing values, c)
checks the models validity, d) feeds them into QoS predictions tools, and e) prepares
a pre-evaluation of their predictions, which is targeted at supporting the design de-
cisions of the software architect. More detail about the QoS analysis workflow fol-
lows below. Outputs of the QoS analysis are pre-evaluated results for QoS metrics,
which can be used during specification to adjust the architecture, and deployment

74

3.1. PALLADIO DEVELOPMENT PROCESS MODEL

diagrams that can be used during deployment to allocate components to different
resources.

Specification Workflow The specification workflow (Fig. 3.2, right column) is car-
ried out by the software architect. The workflows of the software architect and
the component developers influence each other. Existing components (e.g., from
a repository) may have an impact on the inner component identification and compo-
nent specification workflow, as the software architect can reuse existing interfaces
and specifications. Vice versa, newly specified components by the software architect
serve as input for the component requirements analysis of component developers,
who design and implement new components.

Component Repository

Component Requirements
Analysis

Functional Property
Specification

Extra-Functional Property
Specification

Component Implementation

Requirements

Interfaces
Internal Dependencies

QoS Relevant
Information

Binary Component
and Specification

Component Identification

Component Interaction

Component Specification

Interoperability Check

Initial Component
Specs & Architecture

Service Effect
Specification

Optimised Component
Specs & Architecture

Business
Type
Model

Business
Concept Model

Use Case
Model

Initial Interfaces

Interface
Signatures

Interface
Protocols

Existing
Interfaces

and Assets

Component
Requirements &

Interface Signatures

Service Effect
Specifications &

Interface
Protocols

S
pe

ci
fic

at
io

n

Technical
Constraints

Results of QoS
Metrics

Initial Component
Specs & Architecture

Initial Component
Specs & Architecture

Figure 3.2: Component-Based Development Process: Specification Workflow (De-
tailed View)

75

3.1. PALLADIO DEVELOPMENT PROCESS MODEL

The component developer’s workflow is only sketched here, since it is per-
formed separately from the software architect’s workflows. If a new component
needs to be implemented, the workflow of the component developer (Figure 3.2)
can be assumed to be part of the provisioning workflow according to Cheesman
and Daniels [CD01].

Any development process model can be used to construct new components as
long as functional and extra-functional properties are specified properly. First, com-
ponent developers have to conduct a component requirement analysis. It is succeeded
by functional property specification and then extra-functional property specification. The
functional properties consist of interface specifications (i.e., signatures, pre/post-
condition, protocols) and descriptions of internal dependencies between provided
and required interfaces. Additionally, descriptions of the functionality of compo-
nent services have to be made. Extra-functional, QoS-relevant information includes
for example resource demands, reliability values, and data flow specifications. Fi-
nally, after component implementation according to the specifications, component de-
velopers put the binary implementations and the specifications into repositories,
where software architects retrieve and assess them for their architectures.

The specification workflow of the software architect consists of four inner work-
flows. The first two workflows (component identification and component interaction)
are adapted from [CD01] except they explicitly model the influence on these work-
flows by existing components. During the component specification, the software ar-
chitect additionally gets existing interface and service effect specifications [Reu01b]
as input. Both are transferred to a new workflow called interoperability check. In this
workflow, interoperability problems are solved and the architecture is optimised.
For example, functional parametrised contracts [RS02] can be computed. The out-
puts of the specification workflow are an optimised architecture and component
specifications with refined interfaces.

QoS Analysis Workflow During QoS analysis, the software architecture is refined
with information on the deployment context, the usage model, and the internal
structure of components. Figure 3.3 shows the process in detail.

The deployer starts with the system environment specification based on the soft-
ware architecture and use case models. Given this information, the required hard-
ware and software resources and their interconnections are derived. As a result, this
workflow yields a description of the resource environment, for example, a deploy-
ment diagram without allocated components or an instance of the resource environ-

76

3.1. PALLADIO DEVELOPMENT PROCESS MODEL

Allocation

QoS Requirement
Annotation

QoS Information Integration

Q
oS

 A
na

ly
si

s

System Model
Transformation

System Environment
Specification (incl. QoS

Attributes)
Use Case Analysis

Usage Model Refinement

Use Case Models

Scenarios
(Activity Charts)

Annotated System
Architecture

Fully QoS Annotated
System Architecture

QoS Evaluation
Model

QoS
Metrics

Results for
QoS Metrics

Component
Architecture

Component Specs &
Architecture Use Case Models

Refined
User

Model

System
Environment

Business
Requirements

QoS Evaluation

Deployment
Diagrams

Component QoS
Specification

(Data Dependencies,
Resource Consumption)

Annotated
Deployment
Diagrams

Figure 3.3: Component-Based Development Process: QoS Analysis Workflow (De-
tailed View)

77

3.1. PALLADIO DEVELOPMENT PROCESS MODEL

ment model. Instead of specifying a new resource environment, the deployer can
also use the descriptions of existing hardware and software resources. Moreover, a
set of representative system environments can be designed if the final resource en-
vironment is still unknown. For QoS analysis, detailed information on the resources
modelled in the environment are required.

During the allocation workflow, the system deployer maps component specifica-
tions from the architecture specification to the hardware resources defined in the
system environment specification. The result of this workflow is input for the QoS
information integration.

The domain expert refines the use case models from the requirements during
the use case analysis workflow. A description of the scenarios for the users is cre-
ated based on an external view of the current software architecture. The scenarios
describe how users interact with the system and what dependencies exist in the
process. Usage models (Chapter 4.2) can be used to describe such scenarios. The
scenario descriptions are input to the usage model refinement. The domain expert an-
notates the descriptions with, for example, branching probabilities, expected size of
different user groups, expected workload, user think times, and parameter charac-
terisations.

As the central role in QoS analysis, the QoS analyst integrates the QoS relevant
information, performs the evaluation, and delivers the feedback to all involved par-
ties. In the QoS requirement annotation workflow, the QoS analyst maps QoS require-
ments to direct requirements of the software architecture. For example, the maxi-
mum waiting time of a user becomes the upper limit of the response time of a com-
ponent’s service. For this, the QoS analyst selects QoS metrics, like response time or
probability of failure on demand, which are evaluated during later workflows.

During QoS information integration, the QoS analyst collects the specifications
provided by the component developers, deployers, domain experts, and software
architects, checks them for soundness, and integrates them into an overall QoS
model of the system. In case of missing specifications, the QoS analyst is respon-
sible for deriving the missing information by contacting the respective roles or by
estimation and measurement. The system specification is then automatically trans-
formed into a prediction model (Chapter 6).

The QoS evaluation workflow either yields an analytical or simulation result. QoS
evaluation aims, for example, at testing the scalability of the architecture and at
identifying bottlenecks. The QoS analyst performs an interpretation of the results,
comes up with possible design alternatives, and delivers the results to the software

78

3.2. PCM META-MODEL

architect. If the results show that the QoS requirements cannot be fulfilled with
the current architecture, the software architect has to modify the specifications or
renegotiate the requirements.

3.2 PCM Meta-Model

3.2.1 Overview

The formerly described developer roles shall use the Palladio Component Model
(PCM) to model their parts of a component-based system. The PCM is a meta-model
for specifying component-based software architectures. The Palladio research group
has developed the PCM since 2003. Concepts of the model are rooted in Reussner’s
PhD thesis [Reu01a]. A technical report [RBH 07] provides recent documentation
of the PCM’s implementation.

[Happe2007]

[Becker2007]

[Koziolek2007]

User Behaviour Model
(Usage Model)

Component Specifications
(Interfaces + RDSEFFs)

<<User>>

Assembly Model
(System)

Deployment Model
(Allocation)

<<Component
Developer>>

part of

part of

part of

pa
rt

of

<<Software
Architect>>

<<System
Deployer>>

<<Domain
Expert>>

PCM
Instance

Mod
el-

to-
Mod

el
Stochastic Regular Expressions

Model-to-Code

Layered Queueing Networks

Stochastic Process Algebra: Capra

EQN Simulation

Performance Protoype

Java Code Skeletons

Model-to
-M

odel

Model-to-CodeModel-to-CodeModel-to-Model

Figure 3.4: Palladio Component Model: Parts and Analysis Models

The PCM meta-model consists of four restricted, domain specific modelling lan-
guages, which target four developer roles (Fig. 3.4).

• Component developers specify interfaces, data types, and components.

• Software architects compose the resulting components.

• System deployers model resources and the allocation of components to re-
sources.

79

3.2. PCM META-MODEL

• Domain experts describe user behaviour.

Each role uses a modelling language restricted to the concepts of its domain
[KH06]. The role concept is aligned with the Palladio development process model
introduced before. Component developers can specify components independently
from software architects. System deployers only refer to the software architects’
system, and may work independently from component developers and domains
experts. Domain experts provide usage models independently from system deploy-
ers.

After specifying a complete model by combining the individual models from the
different developer roles, software architects may use automated model transfor-
mations to exploit the model (Fig. 3.4). For performance prediction, model-2-model
transformations create stochastic regular expressions (SRE) or queueing networks
(QN) from the model. This thesis describes the transformation to SREs (Chapter 6.3)
and to LQNs (Chapter 6.4) and solving these formalisms.

Becker’s thesis [Bec08] additionally describes three model-2-text transformation
of the PCM into an EQN-simulation model for performance predictions, into Java
code skeletons for implementation, and into a so-called performance prototype for
performance testing. Happe’s thesis [Hap08] includes a mapping to a stochastic
process algebra named Capra, which enables efficient performance predictions for
different multi-user scenarios based on a hybrid approach of analysis and simula-
tion.

Following this overview of the PCM, the next three subsections will provide
more detail on several parts of the specification language. Chapter 3.2.2 describes
modelling components, interfaces, data types, and repositories. Chapter 3.2.3 intro-
duces the PCM’s context model for modelling environmental influences to compo-
nents. Chapter 3.2.4 shows how to compose components to create composite com-
ponents and systems. Chapter 3.2.5 explains the PCM’s resource modelling and
component allocation.

3.2.2 Interfaces, Data Types, and Components

Interface specification and component composition in the PCM are concepts needed
to understand the context of the behavioural model for components (RDSEFF) intro-
duced in Chapter 4.3. As elaborated in Chapter 3.1, the PCM targets the following
modelling process: Component developers deposit component, interface, and data
type specifications (i.e., models) into repositories, where software architects can re-

80

3.2. PCM META-MODEL

trieve them to build systems, which fulfil specific customer requirements.

Repository

+datatypes 0..*

DataType
+interfaces 0..* +components 0..*

Interface Provides
ComponentType

Figure 3.5: PCM Repository (meta-model)

PCM Repositories (Fig. 3.5)1 contain interfaces, data types, and components
(as ProvidesComponentType in the figure, described later) as first class entities.
This means, that these entities may exist on their own without depending on an-
other entity. For example, an interface can be specified in a repository without a
component providing or requiring it. A data type can be specified without an in-
terface using it. RDSEFFs are part of the component specification and therefore also
included in PCM repositories. However, they are no first-class entities, as they al-
ways depend on a particular component specification.

Interfaces & Data Types Component developers can specify PCM interfaces with
(i) a list of service signatures and (ii) a protocol constraining valid call sequences.
As protocols are not relevant for performance prediction, they will not be described
here (details in [Reu01a]).

Signatures in the PCM are rooted in CORBA IDL (Fig. 3.6) [Obj06a]. They contain
an ordered list of parameters, each conforming to a specific data type, an unordered
list of exception types, and a return type. Parameters have a modifier declaring
them as input (IN), output (OUT), or input/output (INOUT) parameters.

Each parameter in a signature conforms to a specific data type. PCM data types
are either primitive, collection, or composite types. Several fixed primitive types
have been specified (e.g., INT, BOOL, STRING, DOUBLE). The PCM interface def-
inition language does not restrict developers to a specific programming language,
but provides common data types in a repository so that different component de-
velopers can refer to the same types. Collection data types model sets of elements
of a specific data type. They may be used to model data structures such as arrays,
bags, lists, trees, hash maps, etc. They contain an inner type, so that the elements

1Note that the classes in this diagram are meta-classes from the PCM. The EClass stereotype of
the ECore language has been omitted for clarity.

81

3.2. PCM META-MODEL

+parentInterface

+interfaces

0..*

0..*

+innerDeclaration

0..*

+parameters

Parameter

Collection
DataType

Composite
DataType

<<enumeration>>
Primitive

TypeEnum

InnerDeclaration

0..*

+signatures

0..*

0..*

INT
STRING
BOOL
CHAR
DOUBLE
LONG
BYTE

+datatype

1

+datatype

1

0..* 0..1

+returnType
DataTypeSignature

serviceName : String

Interface

+innerType 1

exceptionName : String
exceptionMessage : String

+exceptions

0..*
ExceptionType

Repository

modifier:ParameterModifier

Primitive
DataType

type : PrimitiveTypeEnum

<<enumeration>>
Parameter
Modifier

NONE
IN
OUT
INOUT

Figure 3.6: Interface (meta-model)

contained in the collection have a common data type. Composite data types consist
of an arbitrary number of inner elements each conforming to a different data type.
Records, structs, etc. can be modelled with composite data types.

<<Repository>>

<<Interface>>
MyInterface

void method1(INOUT FILE par)
INT method2()

<<CollectionDataType>>
name = „FILE“
innerType = „BYTE“

<<CompositeDataType>>

name = „MP3FILE“

<<PrimitiveDataType>>
type = „BYTE“

<<InnerDeclaration>>
name = „header“
datatype = „STRING“

<<InnerDeclaration>>
name = „content“
datatype = „FILE“

Figure 3.7: Example Instances: Interface, Data types

An example repository helps to illustrate PCM interfaces and data types
(Fig.3.7)2. The interface MyInterface exists on its own and is so far not connected to
a particular component. It contains two services (method1, method2), which specify
input parameters and return values. The primitive data type BYTE uses the pre-
specified BYTE to define a data type. The collection data type FILE contains this
primitive data type as its inner elements and is thus an array of bytes. Finally, the
collection data type MP3FILE includes two inner declarations: a ”header” of the
data type STRING and a ”content” of the formerly specified collection data type
FILE.

The QoS properties of a service are not part of the interface specification, as they

2The diagram shows an instance of the PCM meta-model with UML as the concrete syntax.
Classes are stereotyped with the corresponding PCM meta-classes they instantiate.

82

3.2. PCM META-MODEL

depend on a particular component implementing the service, while the interface
must remain independent from component implementation. Component develop-
ers can model them as part of components with RDSEFFs (Chapter 4.3).

Components Components are black-box entities with contractually specified in-
terfaces [SGM02]. Therefore, components are mainly specified by their relation
to interfaces, which is described in the following. Components do not contain
interfaces, as interfaces exist on their own and are per se not part of compo-
nents. A component (ProvidesComponentType) is an InterfaceProviding-

RequiringEntity (Fig. 3.8), which contains a set of so-called roles (Provided-
Role or RequiredRole).

If a component contains a ProvidedRole referring to an interface I , it means
it implements the interface. If the component’s environment provides all required
services of this implementation, the component can provide the services specified in
interface I . Clients can call the component for the specified services. A Required-

Role within a component can have different meanings depending on the compo-
nent type, as described further below. For basic components, it means the compo-
nent requires the services in the interface referenced by the role, as its own service
implementations call these services.

0..* +requiredRoles

+requiredInterface

0..*

+providedInterface

0..*

Interface
ProvidingEntity

Interface
RequiringEntity

InterfaceProviding
RequiringEntity

ProvidedRole RequiredRole
0..*+providedRoles

Provides
ComponentType

Interface

Figure 3.8: Component, Role, Interface (meta-model)

The PCM supports three types of components (namely ProvidesComponent-

Type, CompleteComponentType, ImplementationComponentType), which
differ in the obligation to their roles (Fig. 3.9). The different types reflect differ-
ent stages in a component’s development life cycle. They include different kinds of
usage profile dependent QoS specifications and are therefore described in the fol-
lowing.

For components of a ProvidesComponentType, only ProvidedRoles are
mandatory, while RequiredRoles are optional. A component of a Provides-

83

3.2. PCM META-MODEL

0..1

*

implementation
ComponentType

implementation
ComponentType

*

0..1

*

*
parentComplete
ComponentType

*

* parentProvides
ComponentType

Provides
ComponentType

Complete
ComponentType

Implementation
ComponentType

Basic
Component

Composite
Component

Figure 3.9: Component Types (meta-model)

ComponentType can, but does not need to contain RequiredRoles. For a devel-
oper implementing the component it is not mandatory to use the referenced services
to stay type conform. The component developer may also use additional required
services. This models the knowledge during a very early development stage of a
software component, when it is known that a certain functionality is needed, but it
is still unclear which other components are needed to fulfill this functionality.

To specify the performance of a ProvidesComponentType component, the
component developer can make no references to external services or the internal
behaviour as they are still unknown. Therefore, the component developer can-
not provide a behavioural specification such as a RDSEFF of the component’s ser-
vices. Instead, a ProvidesComponentType component can contain a single QoS-
Annotation, which only specifies an execution time and may only depend on the
input parameters of the provided services.

The obligation to roles changes for CompleteComponentTypes. They contain
mandatory ProvidedRoles and mandatory RequiredRoles: A component de-
veloper implementing this type of component may not use more required roles than
specified by the CompleteComponentType to remain type conform. The depen-
dencies between provided and required roles remain unspecified and may differ in
different component implementations. Software architects may give Complete-

ComponentType as a requirements specification to component developers. The
performance specification of a CompleteComponentType component is a QoS-

Annotation like for the ProvidesComponentType.

84

3.2. PCM META-MODEL

ImplementationComponentTypes are CompleteComponentTypes, but
additionally fix the dependencies between provided and required roles with a ser-
vice effect specification (details in [Reu01a]). This type describes a particular im-
plementation and is further subdivided into BasicComponents and Composite-

Components.
BasicComponents are atomic building blocks and cannot be further decom-

posed into subcomponents. They encapsulate their content and contain an abstract
behavioural description (RDSEFF, see Chapter 4.3) for each provided service to spec-
ify its performance.

Component developers can build CompositeComponents by composing
BasicComponents or other CompositeComponents (see Chapter 3.2.4). They
are containers of other components and do not provide any additional functional-
ity on their own. A CompositeComponent’s performance specification can be
derived by composing the inner components’ RDSEFFs.

<<Repository>>

<<Composite
Component>>

D
<<Provided

ComponentType>>
A

<<Complete
ComponentType>>

B

<<Basic
Component>>

C

<<ProvidedRole>> <<RequiredRole>>

<<Interface>>
MyInterface

void method1(FILE par)
INT method2()

<<Interface>>
YourInterface

BOOL method3(char par)

Figure 3.10: Example Instances: Components

As an example, the repository in Fig. 3.10 contains a basic component C, which is
connected to the interface MyInterface in a providing role and to the interface Your-
Interface in a requiring role. The repository also contains a still unfinished com-
ponent A of a provided component type, which does not specify required services.
The complete component type component B includes connections to provided and
required interfaces. The component needs to implement the services specified in the
provided interface and use only the services specified in the required interface along
the way. Finally, the composite component D is composed out of inner components,
which are encapsulated within it and are not visible to a software architect or other
component developer composing the component.

85

3.2. PCM META-MODEL

3.2.3 Context Model

The PCM features a so-called context model, which includes information about a
component’s binding, allocation, and usage. While component developers supply
individual component specification, further information about each component in
an architecture is necessary for QoS predictions. This information is only available
after component implementation and cannot be supplied by the component devel-
oper. Therefore, the PCM allows separate creation of the context model by other
developer roles or tools.

Before describing the context-model’s implementation in the PCM, first the gen-
eral concept shall be explained. The context-model includes manually specifiable
and computable parts (Tab. 3.1).

Assembly Context Allocation Context Usage Context
Specified x Horizontal Composition:

Binding to other
Components

x Vertical Composition:
Encapsulation in
Composite Components

x Allocation
to Hardware Resources
x Configuration
o Component
o Container
o Concurrency
o Communication
o Security
o ͙

x Usage
at System Boundaries
o User Arrival Rate
o Number of Users
o Request Probabilities
o Parameter Values

Computed x Parametric Contracts
o Provided/Required

Services
o Provided/Required

Protocols
o ͙

x Allocation-dependent
QoS Characteristics
o Timing Values

for Resource
Demands

o ͙

x Usage
inside Components
o Branch Probabilities
o Loop Iteration

Numbers
o Input/Output

Parameters

Table 3.1: Component Context relevant for QoS Prediction

The assembly context refers to a component’s binding to other components. The
manually specifiable part includes both the connections to other components via
provided and required interfaces and the containment relationship between verti-
cally composed components. The computable part refers to the parametric con-
tracts introduced by Reussner [Reu01a]. For example, they allow to restrict the set
of required services of a component if certain provided services are not needed. A
BasicComponent can have multiple assembly contexts in the same architecture. In
this case, each assembly context refers to a copy of the same component implemen-
tation.

The allocation context refers to a component’s binding to hardware/software
resources. It requires manual specifications of a component’s allocation and con-

86

3.2. PCM META-MODEL

figuration options related to hardware and software resources. Tools can compute
allocation-dependent QoS characteristics of a component by combining information
from the component specification and the hardware environment. For example, a
resource demand provided by a component developer can be transformed into a
timing value, if the speed of the underlying hardware resource is known. A Basic-

Component can have multiple allocation context in the same architecture, in which
case each allocation context refers to a copy of the same component implementation
running on different resources.

The usage context refers to a component instance’s usage by clients. For PCM in-
stances, only the user behaviour at the system boundaries needs to be specified. This
includes the number of users, which services they call, and what parameter values
they supply. Tools can then propagate these values to each component specifica-
tion in the architecture and compute individual component usage including branch
probabilities, loop iteration numbers, and parameter values. Chapter 6.2 explains
this in detail.

Tab. 3.2 depicts the specification responsibilities for the manually specified parts
of the context-model and includes references to descriptions of the respective parts
in the PCM meta-model in this thesis. The computable parts of the context-model
are not part of the PCM meta-model, as they depend on the desired analysis method.
In this thesis, the so-called Dependency Solver (Chapter 6.2) performs the necessary
computation of allocation context and usage context information. Notice that the
computation of parametric contracts is currently not implemented.

Assembly Context Allocation Context Usage Context
Specified x Specification by

Software Architect
x Section 3.2.4

x Specification by
System Deployer
x Section 3.2.5

x Specification by Domain
Expert (Usage Model)

x Section 4.2
Computed x No Implementation

Available
x cf. [140]

x Computed by
Dependency Solver

x Section 6.2

x Computed by
Dependency Solver

x Section 6.2

Table 3.2: Context Model Implementation in the PCM

3.2.4 Composition

Software architects compose components to build systems, and component devel-
opers compose components to build composite components. Therefore, the PCM
has a unified concept of design-time composition, as both roles specify a so-called

87

3.2. PCM META-MODEL

ComposedStructure (Fig 3.11). Software architects build a System model as a
special ComposedStructure, which defines the boundaries of the system under
study. A System contains provided and required roles as it is an Interface-

ProvidingRequiringEntity. However, system ProvidedRoles can only be
used by UsageModels (Chapter 4.2), but not by other components. In the same
manner, system RequiredRoles do not use other components explicitly, as it is as-
sumed that these components lie outside the system boundaries (e.g., web services).
It is however possible to specify an input-parameter dependent time-consumption
for such services. Opposed to this, the ProvidedRoles and RequiredRoles of
CompositeComponents can connect to other components.

+system
1

InterfaceProviding
RequiringEntity

System

Composed
Structure

Allocation Composite
Component

Figure 3.11: System and Composite Component (meta-model)

A ComposedStructure (Fig. 3.12) stores the interconnection between a set of
components. It does not directly contain components, but AssemblyContexts,
which reference components. With this indirection, AssemblyContexts allow us-
ing multiple deployment instances (i.e., not runtime instances) of the same compo-
nent type within the same system. A ComposedStructure contains a number of
AssemblyConnectors to bind the roles of two component instances, each refer-
encing a providing assembly context and a requiring assembly context. Addition-
ally, they reference the involved ProvidedRole and RequiredRole, which they
connect.

As ComposedStructures do not include additional functionality besides the
functionality of their embedded components, they have to delegate calls to their in-
terfaces to interfaces of embedded components. In the same manner, calls of their
embedded components to required services have to be delegated to the Composed-
Structures required interfaces. Therefore, ComposedStructures contain
a number of ProvidedDelegationConnectors and RequiredDelegation-

Connectors, which connect outer roles with inner roles.
Consider the composite component A in Fig 3.13, which is a composed struc-

88

3.2. PCM META-MODEL

+providedDelegationConnectors +innerProvidedRole 1

1+outerProvidedRole

+innerRequiredRole 1

1+outerRequiredRole

0..*

+requiredDelegationConnectors

0..*

Composed
Structure AssemblyContext

Assembly
Connector

+childContexts
0..*

+assemblyConnectors
0..*

Provides
ComponentType

+encapsulatedComponent
1

0..*

+componentParameterUsage

VariableUsage +requiringChild
1

+providingChild
1

ProvidedRole

RequiredRole
1

+requiredRole

1
+providedRole ProvidedDelegation

Connector

RequiredDelegation
Connector

Figure 3.12: Composed Structure (meta-model)

<<CompositeComponent>>
A

<<BasicComponent>>

B

<<BasicComponent>>

C

<<BasicComponent>>

D

<<Provided
Delegation
Connector>>

<<Assembly
Connector>>

<<ProvidedRole>>

<<RequiredRole>>

<<Required
Delegation
Connector>>

<<Provided
Interface>>

<<Required
Interface>>

<<AssemblyContext>>

<<AssemblyContext>>

<<AssemblyContext>>

Figure 3.13: Example Instances: Composite Component

89

3.2. PCM META-MODEL

ture. It contains three assembly contexts referencing the components B, C, and D.
The provided interfaces of the composite component are bound to inner provided
interfaces with provided delegation connectors, while the required interface of the
embedded component D is bound to the composite component’s required interface
via a required delegation connector. The required role of B is connected to the pro-
vide role of D through an assembly connector. Furthermore, the required role of C
is also connected to the provided role of D with an assembly connector.

3.2.5 Resource Model, Allocation

For performance prediction it is essential to model the resource environment of a
system, as the resource are a major influence factor on the perceived responsiveness
and throughput of an application. A PCM System containing a set of assembled
components models only the software side of an application, and needs to be aug-
mented with a resource environment model and the allocation of components to
resources.

In UML, deployment diagrams provide means to specify component deploy-
ment. In the PCM, resource modelling and component allocation (i.e., assigning
components to resources during design time) are tasks of the system deployer role.
Therefore, the PCM provides a domain specific language for the system deployer. It
allows modelling resources and allocating components to these resources. This lan-
guage includes resource attributes such as processing rates of processors or latencies
of network resources. It enables software architects to analyse the responsiveness of
their system for resources with different attributes and to answer sizing questions
(i.e., what hardware is needed to ensure a certain performance?).

In CBSE, resource modelling differs from resource modelling in monolithic ar-
chitectures, because of the independent component specification by different devel-
opers. When component developers specify the performance of their components,
they can and should not know the concrete resource instance a component will be
using to keep their specification independent from a specific context. Thus, the PCM
introduces the concept of abstract ResourceTypes, which component developers
reference when specifying resource demands in their RDSEFFs (Chapter 4.3). A
ResourceType represents a class of resources (e.g., CPU, hard disk, LAN connec-
tion) without specifying concrete properties of the resources (e.g., processing rate,
throughput, latency), which are unknown during component design time.

ResourceTypes reside in so-called ResourceRepositories (Fig. 3.14). A

90

1

3.2. PCM META-MODEL

1

+resourceContainer

11

+assemblyContext

0..* +allocationContext

0..*

+availableResourceTypes

0..* ResourceTypeResource
Repository

Processing
ResourceType

CommunicationLink
ResourceType

Resource
Environment

ResourceContainer LinkingResource

Allocation

AllocationContext

ProcessingResource
Specifciation

CommunicationLink
ResourceSpecification

0..*

1 1

processingRate : ProcessingRate
schedulingPolicy : SchedulingPolicy

throughput : Throughput
linkLatency: Latency

0..* 1
+fromResourceContainer

+toResourceContainer
10..*

AssemblyContext

<<enumeration>>
SchedulingPolicy

DELAY
PROCESSOR_SHARING
FCFS

System

+childComponents 0..*

+system +targetResourceEnvironment

Figure 3.14: Resource Model, Allocation (meta-model)

fixed resource type repository is needed for the specification of resource demands,
so that different component developers refer to the same resource classes. The PCM
currently supports two kinds of ResourceTypes: ProcessingResourceTypes
to model CPUs and storage devices, and CommunicationLinkResourceTypes

to model network connections. Additionally, the PCM provides a standard minimal
ResourceRepository, which contains CPU, HD, and LAN ResourceTypes.
Component developer must use this repository when referencing resources in their
RDSEFFs.

Besides the abstract resource type specification, the PCM allows a con-
crete ResourceEnvironment specification for system deployers (Fig. 3.14). A
ResourceEnvironment consist of a number of ResourceContainers repre-
senting computers and a number of LinkingResources representing network
connections between ResourceContainers.

Each ResourceContainer may contain a number of concrete resources (i.e.,
instances of resource types). These resource type instances are called Processing-

ResourceSpecification in the PCM. They are attributed with a processing rate
(e.g., CPU-cycles/sec, bytes read/sec, etc.), and a SchedulingPolicy. The PCM
supports delay, first come first serve (FCFS), and processor sharing (PS) scheduling
(also see [LZGS84]). A resource with delay scheduling does not possess a queue
and processes each request instantaneously. Therefore, delay resource do not cause
contention delays. Resources with FCFS scheduling have a queue for each incom-
ing request, and process them in the order of their arrival. Processor sharing is an

91

3.2. PCM META-MODEL

idealised form of round robin scheduling with zero context switch times and unlim-
itedly small time slices. For example, a system deployer can represent a CPU with a
PS scheduling policy and a processing rate of 3 billion cycles per second, and a hard
disk with a FCFS scheduling policy and a processing rate of 30 MB/sec.

Notice, that a ResourceContainer can contain at most one resource instance
per resource type (e.g., one CPU instance per CPU type). This is necessary, so that
behavioural component specifications can reference resource types unambiguously.
It is however possible to specify multi core CPU types.

Each LinkingResource connecting ResourceContainers may include
several CommunicationLinkResourceSpecifications. These reference
CommuncationLinkResourceTypes and are attributed with a latency and a
throughput. The latency specifies the round trip delay for a network packet on
the link (e.g., 200 ms). The throughput specifies the number of bytes, which can
be transferred through the link in a second (e.g., 100 Gigabit). For example, a sys-
tem deployer may specify a Gigabit-LAN connection with a latency of 0.5 ms and a
throughput of 1000 Gigabit.

System deployers can model new resource environments, which are not yet re-
alised in hardware, or model existing resource environments to check whether a
component-based architecture could be deployed into a legacy environment while
still providing adequate performance. So far, the PCM ResourceEnvironment

only includes hardware resources. This will be improved in the future to also rep-
resent middleware resources and performance-relevant characteristics of operating
systems.

With a ResourceEnvironment specification and a System provided by
the software architect, the system deployer can allocate components from the
System to ResourceContainers within the ResourceEnvironment. A PCM
Allocation (Fig. 3.14) consists of a number of AllocationContexts, which es-
tablish the connection between an AssemblyContext and a ResourceContai-

ner. Providing an AllocationContext for a component instance embedded
in an AssemblyContext means that the component accesses the Processing-

ResourceSpecifications within the referenced ResourceContainer. Be-
cause the ResourceTypes are uniquely referenced within a Resource-

Container, tools can determine the concrete ProcessingResourceSpecifi-

cation for a specific ResourceType referenced by the component’s RDSEFF.
The example in Fig. 3.15 contains two resource containers including a CPU and

a HD, and a CPU respectively. The containers are connected via a FastEthernet

92

3.3. RANDOM VARIABLES

<<Allocation
Context>>

<<LinkingResource>>
processingRate = 100 Mbit/s
latency = 20 ms

<<ResourceContainer>>
name = „Server1"

<<ResourceContainer>>
name = „Server2"

<<Assembly
Context>>

A

<<Assembly
Context>>

B

<<Assembly
Context>>

C

<<ProcessingResource
Specification>>

HD
processingRate = 20 MB/s

schedulingPolicy = FCFS

<<ProcessingResource
Specification>>

CPU
processingRate =
2.4*10^9 cycles/s

schedulingPolicy = PS

<<ProcessingResource
Specification>>

CPU
processingRate =
3*10^9 cycles/s

schedulingPolicy = PS

<<Allocation
Context>>

<<Allocation
Context>>

Figure 3.15: Example Instance: Resource Environment, Allocation

connection. The system deployer has allocated the components A and B to Server1
and the component C to Server2.

3.3 Random Variables

3.3.1 Motivation

The modelling languages introduced in the following subsections use random vari-
ables to describe user and component behaviour. Random variables allow not only
constant values (e.g., 3 loop iterations), but also probabilistic values (e.g., 2 loop iter-
ations with a probability of 0.4 and 3 loop iterations with a probability of 0.6). They
are well-suited for capturing uncertainty when modelling systems during early de-
velopment stages. The following motivates the necessity and usefulness of mod-
elling with random variables, because of the uncertainty of user behaviour, compo-
nent behaviour, resource demands, and execution environment.

Domain experts can only approximate expected user behaviour when creating us-
age models. For the domain of distributed and web-based business information
systems, the exact number of customers using the system at a given point in time is
usually unknown. Domain experts can describe them with statistical means. Fur-

93

3.3. RANDOM VARIABLES

thermore, they can model the behaviour of users in terms of invoked component
services and input parameters more detailed with random variables instead of less
expressive constant values.

User behaviour influences component behaviour, which therefore is also subject
to uncertainty. User input propagates through component-based software archi-
tectures and influences the control and data flow between components. A service
invoked by a user may call other components with different parameter values de-
pending on its own parameter values or values returned by other components. For
example, a component service might call a required service in a loop, whose number
of iterations depends on the size of a collection it receives as an input parameter. A
larger number of concurrent calls increases the perceived response time of a service
because of contention delays.

Besides this uncertainty introduced by user behaviour, component developers
often cannot specify the execution times of software components with certainty as
explained in the following. The RDSEFF language introduced in Chapter 4.3, which
allows specifying resource demands of component services, abstracts from the source
code of a software component. It potentially combines a large number of program
statements into a single resource demand specification, whose amount is therefore
not exact, but uncertain. It is more accurately described by a random variable in-
stead of a constant value. The abstraction from program code is necessary to keep
the model analysable and to retain the component developer’s intellectual proper-
ties, who does not want to expose the algorithms used in the implementation.

Another factor introducing uncertainty into the models is the components’ exe-
cution environment, which spans middleware, application servers, virtual machines,
operating systems, and hardware. For performance predictions, the execution envi-
ronment is a major influencing factor on the perceived response times and through-
put of a component-based system [LFG05]. Developers might not know several
properties of the execution environment during early development stages (e.g., size
of thread pools, type of application server, hardware configuration, etc.). Other
properties are even non-deterministic and occur on hardly predictable occasions
(e.g., garbage collection, forced component restarts, etc.). The targeted domain of
distributed systems usually does not use real-time execution platforms, therefore
there are no hard upper bounds for execution times of components.

For these four performance-relevant factors, which are subject to uncertainty
during early development stages, it is useful to express performance annotations
in component models with random variables. Such annotations include but are not

94

3.3. RANDOM VARIABLES

limited to loop iteration number, resource demands, parameter values, user arrival
rates, etc.

The following subsections define random variables and describe their use in the
PCM, where they have been packaged in the so-called Stochastic Expression (StoEx)
framework. Chapter 3.3.2 provides a formal definition of random variables and
their probability distribution. Chapter 3.3.3 briefly shows different supported data
types for constant random variables, before Chapter 3.3.4 describes the use of dis-
crete random variables in the StoEx-framework. Chapter 3.3.5 deals with continu-
ous random variables and their realisation. They are useful to model timing values.
Finally, Chapter 3.3.6 presents the syntax and semantics of the expression language
underlying the StoEx-framework, which allows boolean, compare, and arithmetic
operations with random variables.

3.3.2 Basic Properties of Random Variables

Informally, a random variable maps outcomes of a random experiment to values.
For example, rolling a dice twice and adding the results yields a random variable
with the range 2, 3, ..., 12 . Mathematically, a random variable (Appendix B.1.3) is a
measurable function X (Appendix B.1.2) from a probability space (Appendix B.1.1)
into a measure space (Appendix B.1.1). Typically, real-valued random variables are
used (Definition 14).

Definition 14 Real-valued Random Variable
Let Ω,A, P be a probability space and R,A be a measure space withA being the
Borel σ-algebra. An A,A -measurable function X : Ω R is a real-valued random
variable mapping a real number X ω to each element ω Ω, if

r R : ω X ω r A

meaning that the set of all results below a certain value must be an event.

The results of X ω (i.e., the real numbers, for example, in a coin toss, a 0 for
heads and 1 for tails) are often not important, and are therefore sometimes not pre-
sented explicitly. More interesting is the probability distribution PX A : R 0, 1

induced on the range of X by the probability measure P of the probability space
Ω,A, P . It is given by

1A P X A , A APX

95

3.3. RANDOM VARIABLES

which is the probability measure P for the inverse image of the outcomes of X .
This induced distribution gives probabilities for the outcomes of a random ex-

periment. For example, when rolling a dice twice, the probability of getting a 2 as
2 3the sum of results is P X P 1 P 1 111 .

The cumulative distribution function (CDF) completely describes the probability
distribution of a real-valued random variable:

66 36

Definition 15 Cumulative Distribution Function
Let Ω,A, P be a probability space, X : Ω R be a real-valued random variable,
and t R. The function FX t : R 0..1 with

t P ω Ω X ω tFX

P X t

is called cumulative distribution function or the probability distribution function
of X .

If the CDF of a random variable is known, it is possible to compute the probabil-
ity, that the random variables takes values between two real numbers:

P a X b P X b P X a b aFX FX

For example, when throwing a single dice, the probability of getting a number
between 3 and 5 is P 2 X 5 F 5 F 2 5

6
2
6

3
6

1
2
.

The StoEx-framework supports constant, discrete, and continuous random vari-
ables, which will be described in the following.

3.3.3 Constant Random Variables in the StoEx-framework

A constant random variable adopts only a single value (i.e., X ω c, ω Ω). It is
a special case of a discrete random variable. The PCM supports the following types
of constant random variables:

• integer, named IntLiteral4

• real, named DoubleLiteral

• boolean, named BoolLiteral

3P X r is a short-hand notation for P ω Ω : X ω r for some r R.
4Refer to Fig. 3.21 for the realisation of these types in the StoEx-framework meta-model.

96

3.3. RANDOM VARIABLES

• enum, named EnumLiteral

Developers can use constant random variables to assign fixed values to param-
eters of their models (e.g., the number of loop iterations executed by a component
service, user input parameters, user population, etc.), although these are not able to
express uncertainty and might make the models less accurate.

3.3.4 Discrete Random Variables in the StoEx-framework

A random variable is called discrete, if it only adopts a finite or countable infinite set
of values. For example, the number of loop iterations and the population of users
in a closed workload are expressed as discrete random variables in the PCM. Non-
constant, discrete random variable adopt different values and allow more expressive
modelling than constant random variables.

Their probability distribution is a probability mass function (pmf). A pmf gives
the probability that a discrete random variable (with a finite or countable infinite
sample space) is exactly equal to some value:

Definition 16 Probability Mass Function
Let Ω,A, P be a probability space and X be a discrete random variable taking
values on a countable sample space S R. Then the probability mass function

0, 1 of X is given bypX : R

P X x r P ω , x S, r R, ω ΩX ωxpX
0, x R S

This defines pX x for all real values, including the ones, x can never adopt. Their
probability is always zero.

The StoEx-framework supports the following event spaces Ω for discrete random
variables:

• N, for integer values, with a pmf denoted as IntPMF

• R, for real values, with a pmf denoted asDoublePMF

• B, for boolean values, with a pmf denoted as BooleanPMF

• En, for enumerations, with a pmf denoted as EnumPMF

97

3.3. RANDOM VARIABLES

Random variables map these event spaces to real-valued measure spaces. In
the context of the StoEx-framework this actual mapping is not important, as PCM
analysis and simulation tools only need the corresponding pmfs for their compu-
tations involved in performance predictions. Therefore, the StoEx-framework only
stores the pmfs of discrete random variables (Fig. 3.16). It is an ordered list or an
unordered set of Samples. A Sample has a value representing an element from the
sample space (of type Integer, Double, Boolean, or Enumeration) and a probability.

0..*
+samples

ProbabilityMassFunction
ProbabilityFunction

orderedDomain : Boolean

Sample<T>
value : T
probability : Double

Figure 3.16: Probability Mass Functions (meta-model)

Furthermore, the StoEx-framework defines a concrete textual syntax for in-
stances of ProbabilityMassFunctions and implements a lexer and parser for it.
The textual syntax offers a convenient way for developers to enter Probability-
MassFunctions into tools. It first uses the kind of the pmf (IntPMF, DoublePMF,
etc.) as a keyword, and then includes a list of value/probability pairs enclosed in
parenthesis.

IntPMF[(2;0.3)(3;0.5) EnumPMF[(’sorted’;0.8)
(4;0.1)(5;0.1)] (’unsorted’;0.2)]

0.8

Enumeration

Probability
0.8

Integer

Probability

0.70.7
0.60.6
0.50.5
0.40.4
0.30.3

0.2 0.2
0.1 0.1

1 2 3 4 5 6 7 8 sorted unsorted

(a) Integer pmf (b) Enumeration pmf

Figure 3.17: Examples for pmfs in the StoEx-framework

Fig. 3.17 depicts two examples. Each contains the textual syntax of the pmfs
at the top and a corresponding graphical syntax at the bottom. The first pmf
(Fig. 3.17(a)) is of type integer, and for example models the number of loop itera-
tions in a component behaviour specification, or the characterisation of values of
some integer parameter. The second pmf (Fig. 3.17(b)) is of type enumeration, and

98

3.3. RANDOM VARIABLES

characterises the structure of a collection data type as sorted (80 percent probability)
or unsorted (20 percent probability).

The StoEx-framework does not restrict developers to modelling special discrete
distributions like geometrical or binomial distributions. Instead, it allows modelling
any kind of discrete distribution. This is useful, as discrete probability distributions
in distributed systems often do not follow standard distributions. Therefore, ap-
proximating such distributions with standard distributions might lead to inaccurate
performance predictions. A specific example of such a situation follows in Chap-
ter 4.3.

3.3.5 Continuous Random Variables in the StoEx-framework

A random variable is called continuous, if it adopts an uncountable infinite number
of values. The probability distribution of a continuous random variable is given by
a probability density function (pdf). A pdf represents a probability distribution in
terms of intervals:

Definition 17 Probability Density Function
A non-negative Lebesgue-integrable function fX : R R is called probability den-
sity function of the random variable X , if

b

a

fX x dx P a X b

for any two numbers a and b, a b. The total integral of fX x has to be 1 (i.e.,
x dx 1).fX

The probabilities of single results for a continuous random variable are zero for
each result. For a pdf f x , it is only possible to give probabilities for an interval
a, b around x. The pdf definition states that the probability of a continuous random

variable X taking values between a and b is the integral of f x with the limits a and
b.

In the PCM context, developers may use continuous random variables to model
timing values and resource demands. For example, they do not specify the proba-
bility for an execution time being exactly 2.0 seconds long, but its probability for the
time being between 2.0 and 3.0 seconds. This is adequate, because the probability
of an execution time being exactly 2.0 seconds with an arbitrary number of decimal
places is theoretically and practically zero.

99

3.3. RANDOM VARIABLES

0..*

+samples

ProbabilityDensityFunction

BoxedPDF

ProbabilityFunction
ContinuousSample
value : Double
probability : Double

SamplePDF
distance : Double
values : List

Figure 3.18: Probability Density Functions (meta-model)

Standard pdfs include for example uniform and normal distributions. To not re-
strict developers to these pdfs with standard distributions, it is desirable to support
non-standard pdfs. For these pdfs, it is hard to find a closed form (i.e., a formula
describing the pdf). Therefore, the StoEx-framework handles pdfs in a discretised
form. Instead of storing the probability density, the StoEx-framework stores the
probabilities of intervals of the pdf, which are given by the intervals’ integrals. There
are different ways to determine appropriate interval sizes, and the StoEx-framework
realises two of them (Fig. 3.18). SamplePDFs use a fixed interval size called ”dis-
tance” and store a list of probabilities each for a single interval. BoxedPDFs use a
variable interval size and store a list of samples each with the right limit of the in-
terval and the interval’s probability. The following explains the rational behind the
two variants.

Sampled Probability Density Function SamplePDFs partition a pdf’s domain
into N N intervals denoted by the set I . Each interval has the same width d R

(for ”distance”). The interval i 1
2

d, i 1
2

d defines the ith element (i 1, ..., N) in
I . Assuming a pdf’s domain always being greater or equal to zero, the first interval

0, 1
2
d . The probability pi associated to each interval i is its mean(i 0) is set to

value i d, which minimises computational errors from the discretisation. Therefore,
a SamplePDF stores a set of N probabilities with pi defined as:

b

f x dx, limb for i 0, andpi 1
2

d,i
1
2

i d

b

0

f x dx, limb 1
2

for i 0.pi

To illustrate the fixed interval pdf discretisation, Fig. 3.19 provides an example.
The function’s domain is partitioned into several intervals each with a width d. The
discretisation associates probabilities of the fixed intervals to multiples of d (1d, 2d,
3d, etc.). Each of these values gets the probability of the integral of the interval

100

3.3. RANDOM VARIABLES

i 1
2

d, i 1
2

d around it. For example, the value 3d (i.e., i 3) gets the probability
of the interval’s 2.5d, 3.5d integral, which is the striped area under the graph.

x

f(x)

1d 3d d

Figure 3.19: Example: pdf-discretisation with fixed intervals

SamplePDFs with fixed interval sizes are useful to implement arithmetic oper-
ations, which combine two pdfs. With the same distance d for each pdf, there are
efficient convolution algorithms (Chapter 3.3.6). SamplePDFs are only used inter-
nally by analysis tools and are not specified directly by developers when modelling
a system. Therefore, the StoEx-framework does not offer a concrete textual syntax
for SamplePDFs. Developers can only specify BoxedPDFs. However, tools visual-
ising the results of response time predictions always use SamplePDFs as basis for
the result, because they are the output of the analysis tools.

Boxed Probability Density Function BoxedPDFs divide a pdf’s domains into a
set of intervals with variable sizes. Variable interval sizes sometimes offer a bet-
ter pdf approximation using fewer values than fixed interval sizes. For example,
pdfs with wide, almost constant parts on one hand and a few sharp peaks on the
other hand would require a large number of fixed intervals for the constant parts
using SamplePDFs. Instead, using BoxedPDFs, these large constant parts could be
combined into a single large interval, while the sharp peaks could be easily approx-
imated in detail with a number of few small intervals. This is especially convenient
for developers entering pdfs into tools, because they have to specify a much smaller
number of intervals without losing accuracy.

A BoxedPDF partitions a pdf’s domain into a set I of N N non-overlapping
intervals, so that there are no gaps between these intervals. That is

101

3.3. RANDOM VARIABLES

Ji, Jj I; Ji Jj; i, j 1, ..., N (non-overlapping),
and
• Ji Jj

• 0, x for x R (no gaps).J I

To assert these two properties, a BoxedPDF specifies each interval only with its
right hand limit assuming that the left hand limit is the former interval’s right hand
limit or zero. This results in a list IX with an ordered set of xi, so that x1 x2

... xN . Then the i-th interval is xi 1, xi for i 1 and 0, xi for i 1. The
probability pi for the i-th interval is

xN 1

pi

b

xi 1

f x dx, limb xi
, for i 1, and

pi

b

0

f x dx, limb x1 , for i 1.

Fig. 3.20 contains an example of a BoxedPDF. It shows the concrete textual syn-
tax for BoxedPDFs on top and below the corresponding graphical visualisation.
The textual syntax uses DoublePDF as a keyword (the sample space is always R,
i.e., double for continuous random variables), and includes a set of pairs with the
right hand limit of each interval and its probability enclosed in parenthesis. The
specified BoxedPDF has discretisised the given pdf with five intervals starting from
zero to a maximum value of x 93. The wide, almost constant area is approxi-
mated by a single box, where a SamplePDF would have specified a large number of
intervals.

3.3.6 Stochastic Expressions

The former subsections dealt with single random variables to model different un-
certain properties of component-based systems. Besides single random variables,
it is often desirable to specify a random variable as a combination of several other
random variables using arithmetic or boolean operations. Especially for expressing
dependencies between multiple properties (e.g., a parameter value influencing a re-
source demand), developers need to specify mathematical operations on random
variables.

For example, a developer should be able to multiply a timing value giving as
a random variable for a certain service execution by a factor, to model that differ-
ent (faster or slower) hardware executes the service, so that it is possible to answer

102

3.3. RANDOM VARIABLES

DoublePDF[(10.0;0.0)(73.0;0.6)
(79.0;0.2)(84.0;0.13)(93.0;0.07)]

x

f(x)

10 73 79 84 93

Figure 3.20: Example: pdf-discretisation with variable intervals

hardware sizing questions. As another example, RDSEFFs (Chapter 4.3) use boolean
guards on control flow branches of services, which reference parameter value char-
acterisations as random variables (Chapter 4.1). Therefore, it is necessary to com-
pare random variables to model boolean guards.

Therefore, the StoEx-framework [RBH 07] includes a meta-model with a textual,
concrete syntax to combine multiple random variables with different operations
(e.g., addition, multiplication) to define new random variables. Fig. 3.21 depicts
the meta-model and thus illustrates the abstract syntax of the so-called ”Stochastic
Expression Language” implemented by the StoEx-framework. RandomVariables
contain their specification both as a string (attribute specification) and as a de-
rived attribute, which yields an instance of the Expression meta-class possibly
being a large object tree realising the abstract syntax tree of the stochastic expres-
sion. Developers enter the string representation into tools, from which the lexer and
parser of the StoEx-framework create the object representation used for computa-
tions or model-transformations.

An Expression can be an Atom (cf. Fig. 3.21 bottom), or a com-
plexer, composed term (cf. middle part) involving different mathematical op-
erations. Atoms are literals representing constant random variables (Int-
Literal, DoubleLiteral, BoolLiteral, StringLiteral, discrete or con-
tinuous random variables (ProbabilityFunctionLiteral), variable references
(Variable, cf. Chapter 4.1), parenthesis to define precedences within term expres-
sions (Parenthesis), or a predefined function (FunctionLiteral).

103

11

1

1

3.3. RANDOM VARIABLES

elseExpression ifExpression

RandomVariable

Expression

BooleanExpression

Comparison

Term

Product

Power

Atom

NumericLiteral BoolLiteral Variable

BooleanOperation
Expression

FunctionLiteral

Probability
FunctionLiteral

StringLiteral

IfElseExpressionIfElse

condition

1

left right

1

Compare
Expression

left right

1

<<enumeration>>
BooleanOperations

AND
OR
XOR

Term
Expression

Unary

Product
Expression

Power
Expression

Not
Expression

Negative
Expression

<<enumeration>>
CompareOperations

GREATER NOTEQUAL
LESS LESSEQUAL
EQUAL GREATEREQUAL

<<enumeration>>
TermOperations

ADD
SUB

<<enumeration>>
ProductOperations

MULT
DIV
MOD

operation :
BooleanOperations

operation :
CompareOperations

operation :
TermOperations

operation :
ProductOperations

left 1

right

1

left 1

right

1

base
1

exponent
1

inner
1

inner

1

Parenthesis

IntLiteral DoubleLiteral Abstract
NamedReference
referenceName : String

1

+id value: Boolean

value: Integer value: Double

value: String

id : String

parameters

0..*

1

innerExpression

specification : String

expression1

Probability
Function

function 1

Figure 3.21: Random Variable and Stochastic Expressions Grammar (meta-model)

104

C

3.3. RANDOM VARIABLES

The underlying type system restricts the boolean, compare, and arithmetic oper-
ations to certain operands. For example, boolean operations are only allowed with
boolean operands, while arithmetic operations are only allowed with numerical and
probability function literals. The following describes the semantics for all operations
allowed by the type system.

Boolean Operations Boolean operations (, , xor) are only valid for boolean ran-
dom variables. Let A and B be two independent boolean random variables (i.e.,
A : B R, B : B R). In the following, P A is a short-hand notation for
P A true . Let C , C , Cxor be boolean random variables defined as C A B ,

A B , and Cxor A xor B . The probabilities of these events can be com-
puted as

P C P A B P A P B

P A xor B P A 1 P B 1 P A P BP Cxor

P C P A B P A P B P A B

In the StoEx-framework, these operations can be used for ProbabilityMass-
Functions with a boolean domain (BoolPMF). A BoolLiteral can be expressed
as boolean random variable D with either P D 1 for true or P D 0 for false.

Compare Operations Compare operations (, , , , ,) are valid for discrete
or continuous random variables.

Discrete Random Variables: Let X and Y be two independent discrete random
variables. Let A1 be a boolean random variable defined as A X Y . The
probabilities of this event can be computed as

P A P X x, Y X
x

x

x

P X x, Y x

P X x P Y x .

Analogously, the probabilities of the boolean random variables A X Y ,
A X Y , A X Y , A X Y , A X Y are given by

105

3.3. RANDOM VARIABLES

P A P X x P Y x

P A P X x P Y x

x

x

P A P X x P Y x
x

P A P X x P Y x
x

P A P X x P Y x
x

Notice, that these comparison operations are also valid for constant random vari-
ables. Therefore they define comparisons between constants and discrete random
variables.

Arithmetic (Term and Product) Operations Arithmetic operations (, , , , %)
are defined for discrete and continuous random variables.

Discrete Random Variables [Tri01]: Let X and Y be independent, discrete random
variables. Let Z be a discrete random variable defined as Z X Y . The proba-
bility of the event X Y t can be computed as

P Z t P X x, X Y t
x t

P X x, Y t x
x t

P X x P Y t x .
x t

Thus, the pmf for the sum of X and Y is given by

t t t x .x pYpZ pX pXY

x t

The included sum is also called discrete convolution. Analogously, the pmfs for
Z X Y , Z X Y , Z X Y can be computed:

t t x tx pYpZ pX pXY

x t

t
t t , x 0, pX z z 0 for all z Ωx pYpZ pX pX pZY

x
x t

x
pXt t , t 0, pX z z 0 for all z Ωx pYpZ pX pZ

Y t
x t

106

3.3. RANDOM VARIABLES

These computations are also valid for constant random variables (e.g., Y ω c,
for all ω Ω). Notice, that some discrete random variables used in the PCM must
not become negative (e.g., random variables for loop iteration numbers). Analysis
methods need to check before computing the difference between two random vari-
ables X and Y , whether the largest i with pY i 0 is smaller than the smallest j

with pX j 0, so that the subtraction does not result in negative values. If the
division of two random variables results in sample points outside the domain N, the
corresponding values have to be rounded to yield a valid new random variable.

Continuous Random Variables [Tri01]: Let X and Y be two independent, con-
tinuous random variables with the densities fX and fY . Let Z be a continu-
ous random variable defined as Z X Y and A be a subset of R

2 given by
A x, y x y z . The distribution function of the Z can be computed as

P Z z P X Y A

A

fX x fY y dx dy (because of the independence)

z x

fX x fY y dx dy (definition of A)

z

fX x fY t x dx dt (y t x)

z

fZ1 t dt

Thus, the density of Z X Y is given by

fZ z fX x fY z x dx, z .

This integral is also called the convolution of fX and fY . Analogously, the densi-
ties for Z X Y , Z X Y , Z X Y can be computed:

z x z dx, zx fYfZ fX

z
z dx, z , x 0x fYfZ fX

x

x
z dx, z , z 0.x fYfZ fX

z

Power and modulo operations are undefined for probability distributions.

107

3.4. SUMMARY

3.4 Summary

This chapter has set the context for the PCM extensions introduced in the next chap-
ter. It described the targeted process model of the PCM, which proposes a division
of the modelling task for a component-based software architecture to different de-
veloper roles. The process model is based on the process model by Cheesman et al.
and adds a QoS analysis workflow. The PCM is aligned with this process model,
i.e., it is divided into several domain-specific modelling languages for its developer
roles. The meta-model allows describing interfaces and different types of software
components as well as hardware resources, which are important for performance
analysis. The PCM includes a special context model, which stores information for
each component, which is necessary for performance predictions but cannot be spec-
ified by the component developer, such as the composition to other components, the
allocated resources, and its usage. Finally, the behavioral description languages de-
scribed in the next chapter rely on stochastic characterisation of user and component
behaviour. Therefore this chapter has explained the basics of random variables, in-
cluding discrete and continuous distribution functions. The StoEx framework pro-
vides means to combine individual random variables with boolean, compare, and
arithmetic operators, which is necessary to specify the parameter dependencies de-
scribed in the next chapter.

108

Chapter 4

Behavioural Models for Users and
Components in CBSE

This chapter introduces extensions to the formerly described Palladio Component
Model, which enable developers to model user and component behaviour. The
extension particularly focusses on making the influence of the usage profile (i.e.,
the number of requests and the included parameter values) on the performance of
component-based system explicit.

Chapter 4.1 motivates the need for a parameter characterisation model that ab-
stractly models the performance-relevant properties of service parameters. The pro-
posed extension for the PCM is used by both of the following modelling languages.
Chapter 4.2 introduces the PCM usage modelling language for describing user be-
haviour. Chapter 4.3 presents the Resource Demanding Service Effect Specification
(RDSEFF) modelling language for describing performance-relevant component be-
haviour. While these chapters describe the semantics of the languages with natural
language, Chapter 4.4 defines their semantics formally with a mapping to queueing
Petri nets.

4.1 Parameter Abstractions

Parameter abstractions are an important part of the user and component be-
havioural specification languages, which will be introduced in Chapter 4.2-4.3. Be-
fore using them in these languages, this section will first motivate their need and
then provide an overview of modelling them in the PCM.

4.1. PARAMETER ABSTRACTIONS

4.1.1 Motivation

Signatures of component interfaces specify formal parameters of component ser-
vices. Furthermore, a component may include global (i.e., component-wide) vari-
ables, which may further parameterise all services of the component. There are three
categories of parameters:

• Input Parameters: Clients (i.e., users or other components) pass input parame-
ters when calling a component’s service. This service uses these parameters to
carry out its computations. In a service signature, these parameters can have
an IN or INOUT modifier (Chapter 3.2.2).

• Output Parameters: Each component service has one return value and may
additionally have several parameters with OUT or INOUT modifiers in its sig-
nature (Chapter 3.2.2). A component service returns values of these parame-
ters to the caller, where they might influence further component behaviour.

• Global Parameters: Each component can have global, internal parameters,
which are not declared in its interfaces, because they should stay hidden from
clients. Each service implemented by the component may use them. Therefore,
they additionally parameterise services.

For each formal parameter declared in a signature, component clients provide
actual values instantiating the declared data types when calling the service. These
actual parameter values can influence the service’s QoS properties significantly. In
particular, they can alter the following four QoS-relevant parts of component be-
haviour (Fig. 4.1):

• Resource Demands:1 A service can alter its resource demands depending on
parameters, which alters response times. A resource is a hardware device such
as a CPU or hard disk. For example, the time for the execution of a service
that allows uploading files to a server depends on the size of the files that

size(inputFile)are passed as input parameters (i.e., resource demand x HD-throughput,

where x is some constant overhead per call). In this case, the parameter alters
the demand issued to the storage device.

1In an RDSEFF, component developers specify resource demands instead of timing values to keep
the specification context-independent (i.e., not bound to a specific resource environment). Refer to
Chapter 4.3 for details.

110

4.1. PARAMETER ABSTRACTIONS

<<Resource
Container>>

<<Resource
Container>>

<<Assembly
Context>>

A

1. Resource
Demands

<<Assembly
Context>>

B

2. Inter-Component
Control Flow

4. Component
Internal State

3. Inter-Component
Data Flow

Figure 4.1: Influences on QoS-relevant Component Behaviour by Parameters

• Inter-Component Control Flow: A component service pass the control flow
to different other components depending on parameter values. For example, a
component service might provide clients access to a number of databases, thus
communicating with several database interfaces as required services. This ser-
vice could call different required services depending on the input parameter
passed to it (e.g. requests for large files get directed to DB1 while requests for
small files get directed to DB2). Another example could be a component ser-
vice having a collection parameter, which would call another component’s ser-
vice subsequently for each item in the array. In this case, an input parameter
changes inter-component control flow. Notice, that intra-component control
flow should be abstracted in a behavioural component specification to retain
the black-box principle.

• Inter-Component Data Flow: A service can pass different parameters to its
required services depending on its own parameters. Furthermore, a service
can receive different parameters from a required service depending on passed
input parameters. If two interacting components are deployed on different
servers, these parameters have to be transferred via network connections,
which has an impact on performance. For example, a software architect can
arrange multiple components in a pipe-and-filter pattern, so that the output of
one component is the input of the next component. If large data packets are
transferred between these components over network connections with limited
bandwidth, the perceived responsiveness of the whole system will decrease.

111

4.1. PARAMETER ABSTRACTIONS

• Component Internal State: A service can store the value of a received param-
eter as part of the component’s internal state. Consider a component allowing
users to log into a system, which stores user sessions as global variables. The
later behaviour of other services of this component in terms of control flow
propagation and resource demand could depend on which user is currently
logged in. Thus the QoS properties of the component are related to the inter-
nal parameter, which was created when the user logged into the system.

Because of these influences, the behavioural dependencies on parameters should
be included into component QoS specifications. However, as elaborated in Chap-
ter 2.5, many existing performance prediction approaches and component specifica-
tion languages disregard the influence of parameter values.

In CBSE, component developers can and should not know how clients use their
components. When they create performance specifications of their components,
they need to include explicit dependencies on parameters. Domain experts can then
model actual values supplied by users of a formal parameter. With this informa-
tion, tools can solve the dependencies in the specifications. With explicit parametric
dependencies, the component performance specifications produced by component
developers remain context-independent (i.e., from a specific usage) and reusable.

Notice that for a performance prediction model, domain experts do not have
to model an actual parameter for each formal parameter, but only for parameters
significantly influencing performance properties. Many parameters do not influ-
ence performance properties and therefore component developers do not have to
include dependencies to them into their component performance specifications.
Component developers have to assess, which parameters are performance-relevant.
With the reduced number of parameters, the performance prediction model remains
analysable. By neglecting performance-irrelevant parameters, it does not lose accu-
racy. As a side-effect, the component performance specifications stays abstract and
preserves the component developer’s intellectual properties.

4.1.2 Parameter Characterisation

There are several requirements to create expressive parameter characterisations for
performance prediction:

• Value and Meta-Data: Domain experts can directly characterise parameter
values (e.g., anInt.VALUE = 1 or aString.VALUE = ’foo’) or provide

112

4.1. PARAMETER ABSTRACTIONS

descriptive meta-data about a parameter. Especially for performance pre-
diction, a parameter’s value is often not suitable for analysis. For exam-
ple, if a component writes a file to a disk, its size in bytes is needed (e.g.,
aFile.BYTESIZE = 100) instead of its value to calculate the execution time
of the disk. As another example, a component developer needs to spec-
ify the resource demand of a component service iterating over a collection
in dependency to the number of elements contained in the collection (e.g.,
aCollection.NUMBER OF ELEMENTS = 5). In such cases, the actual value
of the parameter is not useful for the performance model. For collection or
composite parameters, it is in general impractical to specify their actual value
instead of meta-data.

• Random Variables: Besides using constants to characterise parameter values
or meta-data, it is often more expressive to use discrete random variables and
their probability distributions. For example,

aNumber.VALUE = IntPMF[(1;0.2)(2;0.5)(3;0.3)]

characterises the value of parameter aNumber with a pmf, meaning that users
instantiate aNumber with ”1” with a 20 percent probability, ”2” with a 50 per-
cent probability, and so on (Chapter 3.3). Instead of integers, a domain expert
can use other data types, for example enums:

aName.VALUE = EnumPMF[(’A’;0.2)(’B’;0.5)(’C’;0.3)]

Furthermore, random variables are also useful to characterise meta-data, for
example:

aCollection.NUMBER OF ELEMENTS = IntPMF[(10;0.3)(20;0.7)]

Using random variables makes parameter modelling more expressive and cov-
ers the uncertainty of domain experts when describing the usage of a system
during early development stages. It is furthermore a convenient way to spec-
ify parameter characterisation variations for larger user groups, so that not a
single constant parameter characterisation needs to be provided for each user.

113

4.1. PARAMETER ABSTRACTIONS

• Subdomain grouping: The domain of a parameter value or meta-data is usu-
ally very large. For example, integer values may range over 264 1 values,
strings are usually only limited by the available memory. As in black box test-
ing, it is necessary for performance models to partition large domains into a
manageable number of subdomains. For example,

aNumber.VALUE = IntPMF[([INT MIN-0;0.2)([1-INT MAX;0.8)]

231 1, 231partitions the integer domain into two subdomains , 0 and 1 .
The same is possible for strings:

aName.VALUE = EnumPMF[(’Starts with A’;0.2)(’Starts with B’;0.5)(’Starts with C’;0.3)]

partitions the string domain into four subdomains: three for starting strings
with different letters, and a forth, implicit subdomain for all other strings with
a probability of zero. Subdomains or ranges can also be defined for meta-data.
For performance prediction, parameter domains should be partitioned in such
a way, that parameter values of a single partition lead to similar performance
behaviour (also see Chapter 4.1.4).

• Extensible Meta-Data: The kinds of meta-data specifications need to be
fixed in any component performance meta-model, so that different compo-
nent developers can refer to meta-data unambiguously and tools may au-
tomatically evaluate the specifications. However, besides BYTESIZE and
NUMBER OF ELEMENTS, there is further (and potentially unlimited more) pos-
sible meta-data about parameters, which may influence the performance of
a software component. For example, if a component service implements a
quicksort algorithm, its resource demand depends on whether the collection
to be sorted is already presorted or not. Such a structural property needs to
be expressed as an additional meta-data attribute. Therefore, any performance
specification language should provide a mechanism to create new parameter
characterisation types and store them globally in repositories, where different
component developers can refer to them.

114

4.1. PARAMETER ABSTRACTIONS

4.1.3 Parameter Characterisation in the PCM

Variable Usage The PCM tries to realise the four requirements described above.
In the PCM, a VariableUsage realises a parameter characterisation (Fig. 4.2). It
consists of a parameter name (AbstractNamedReference) and a number of char-
acterisations (VariableCharacterisation).

+subdomains

0..1

+subdomain 0..*

+subdomainsSpecifications

0..*
1

+innerReference

+variableCharacterisation

0..*

+namedReference

1

VariableUsage

NamespaceReference VariableReference

<<enumeration>>
Variable

CharacterisationType
VALUE
BYTESIZE
NUMBER_OF_ELEMENTS
OTHER

+specification 1
RandomVariable
specification : String

VariableCharacterisation

type : VariableCharacterisationType

AbstractNamed
Reference

referenceName : String

Repository

SubdomainEnum

EnumLiteral
value : String

name : String
isOrdered : Boolean

Figure 4.2: Variable Usage (meta-model)

Parameter names (e.g., aNumber) are strings (attribute referenceName of
VariableReference). These names may include a namespace declaration (e.g.,
namespace1.namespace2.aNumber), which is needed because of the possible data
type nesting within collection and composite data types. For example, a domain ex-
pert can provide a VariableUsage for each inner declaration of a composite data
type. In this case, the composite data type’s name is the NamespaceReference,
and the inner declaration’s names are the VariableReferences. For example, in
the variable name x.y.z, x and y are NamespaceReferences (representing com-
posite data types), while z is a VariableReference.

A VariableCharacterisation contains a RandomVariable’s specifica-
tion. Parameter characterisation types are included as so-called Variable-

CharacterisationTypes. The PCM directly supports VALUE, BYTESIZE, and
NUMBER OF ELEMENTS, because these are common characterisation types. Example
instances of different parameter characterisations are given in Fig. 4.3.

Additionally, the PCM provides a mechanism to include further parameter char-
acterisations. VariableCharacterisations with the type OTHER (and only
these) reference a so-called SubdomainEnum (Fig. 4.2). Its name is the keyword for
a new parameter attribute (e.g., ”MP3-BITRATE”). It contains a number of Enum-
Literals partitioning this parameter attribute’s domain into a finite number of

115

4.1. PARAMETER ABSTRACTIONS

:Parameter

parameterName = „id“

+type

:PrimitiveDataType

type = INT

:Parameter

parameterName = „aFile“

+type

:CollectionDataType
name = „FILE“
innerType = BYTE

:Parameter

parameterName = „aList“

+type

:CollectionDataType
name = „LIST“
innerType = DOUBLE

:VariableReference

referenceName = „id“

+namedReference

:VariableUsage

+variableCharacterisation

:VariableCharacterisation

type = VALUE
specification =
IntPMF[(1;0.2)(2;0.5)(3;0.3)]

:VariableReference

referenceName = „aFile“

+namedReference

:VariableUsage

+variableCharacterisation

:VariableCharacterisation

type = BYTESIZE
specification =
IntPMF[([100-200];0.5)
(201-300;0.5)]

:VariableReference

referenceName = „aList“

+namedReference

:VariableUsage

+variableCharacterisation

:VariableCharacterisation

type =
NUMBER_OF_ELEMENTS
specification = 100

(a) VALUE (b) BYTESIZE (c) ELEMENTS

Figure 4.3: Examples for Variable Characterisations

subdomains (e.g., ”128Kbps”, ”192Kbps”, ”256Kbps”, ”other”). Component devel-
opers need to include such SubdomainEnums into PCM Repositories, so that
different component developers can use them by referencing the corresponding
Repository in their specifications.

The subdomains introduced by a SubdomainEnum should represent element
sets of the parameter characterisation’s domain for which a similar behaviour in
terms of performance is expected. This partitioning must span the whole domain.
Therefore, including an ”other” subdomain, subsuming all elements not included
in a specific subdomain, into such a partitioning is often useful. It is further possible
to specify whether the set of subdomains is ordered. An ordered set of subdomains
enables subsuming subdomains to simplify specifications. For example, a compo-
nent developer could specify that a service behaves differently for MP3 files with a
bitrate of smaller than ”256Kbps”, thereby combining the subdomains of ”128Kbps”
and ”192Kbps”.

With a subdomain specification, domain experts can characterise parameters
(e.g., with ”MP3-BITRATE”) by providing the specification of a discrete random
variable EnumPMF, where the random variable’s range is the set of specified subdo-
mains. For example, a domain expert could specify the bitrate of users’ MP3 files
as:

116

4.1. PARAMETER ABSTRACTIONS

aFile.MP3-BITRATE = EnumPMF[(’’128Kbps’’;0.3)(’’192Kbps’’;0.3)(’’256Kbps’’;0.3)(’’other’’;0.1)]

The mechanism for introducing new parameter characterisations is flexible, so
that component developers can include different performance influencing factors of
parameters into their specifications. The PCM’s design cannot foresee all possible
parameter characterisations in advance.

An example for a parameter characterisation specifically for collections would
be a SubdomainEnum called ”SORTING” with the subdomains ”sorted” and ”un-
sorted”. It could be used for accurately specifying the performance of component
sorting services, which alter their behaviour depending on the sorting degree of col-
lections passed to them as parameters (e.g., quicksort). A domain expert could spec-
ify whether collections supplied by component clients are sorted or not, thereby re-
fining the performance specification and enabling more accurate prediction results.

Another parameter characterisation could be the parameter’s data type, in case
a subtype is passed as a parameter to a service, which expects a supernate as pa-
rameter. For example, a service drawing arbitrary graphical objects changes its per-
formance depending on the different kinds of graphical objects passed to it. It can
draw rectangles faster than circles. To make an accurate performance specification,
the set of possible subtypes needs to be finite and explicitly specified. A component
developer could introduce a SubdomainEnum named ”GRAPHICSTYPE” with the
subdomains ”circle”, ”rectangle”, ”polygon”, etc. In the behavioural performance
specification of a component service, the developer could refer to these subdomains
and specify a different resource usage for each of them. The domain expert could
provide different probabilities for each kind of graphical object.

Uses of Variable Usage in the PCM Developers can attach VariableUsages to
different elements in PCM instances. Not only domain experts, but also software
architects and component developers may model VariableUsages in their re-
spective domain specific languages. The following provides an overview on how
parameter characterisations are included in the PCM (Fig. 4.4).

In a component-based system, input parameters may either be supplied by users
or other systems when invoking services at the system boundaries or by compo-
nent services when calling required services. Therefore, in the PCM, EntryLevel-
SystemCalls from the UsageModel (Chapter 4.2) and ExternalCallActions

from the RDSEFF (Chapter 4.3) contain VariableUsages.

117

4.1. PARAMETER ABSTRACTIONS

+componentParameterUsage

0..*

+assemblyContext

1

VariableUsage

ExternalCallAction

AssemblyContext

UsageModel

EntryLevel
SystemCall

SetVariableAction Synchronisation
Point

SystemExternal
ServiceOutput QoSAnnotation

+inputParameterUsage
0..*

+outputParameterUsage

0..*

+inputParameterUsage
0..*

+outputParameterUsage

0..* +configParameterUsage 0..*

+userData

0..*

+localVariableAssignments

0..*

+synchResult

0..*

System

ResourceDemandingSEFF

UserData

+userDataParameterUsage

0..*

+childContexts
0..*

+expectedExternalOutputs 0..*

+externalOutputs
0..*

+steps

0..*

+steps

0..*

Specified by Domain Expert

Specified by Software Architect

Specified by Component Developer

Implementation
ComponentType

Figure 4.4: Classes containing Variable Usage (meta-model)

The PCM allows to attach VariableUsages characterising output pa-
rameters at various locations: In the UsageModel, EntryLevelSystem-

Calls can contain output parameter characterisations coming from the sys-
tem. In RDSEFFs, ExternalCallActions, SetVariableAction, and
SynchronisationPoints: can contain output VariableUsages. Chapter 4.3
will explain them in detail. Furthermore, a system may receive output parame-
ter values from other systems. The software architect can characterise these values
with a QoSAnnotation and its contained SystemExternalServiceOutputs.

Component Parameters For global parameters, the PCM provides a special way of
modelling, which is explained in the following. The internal state of a component
can influence its performance significantly. For performance models, the elements of
component internal state can be perceived as an additional input parameters to each
of the component’s services. Component developers could specify dependencies
between internal state and resource demands or component behaviour.

Modelling component internal state accurately can easily complicate perfor-
mance models so much that they become intractable: A component may hold an
internal state for each user requesting services. In web-based systems, this is often

118

4.1. PARAMETER ABSTRACTIONS

referred to as a user session. As performance models often aim at analysing systems
with a high number of concurrent users, storing the internal state of all components
for all users quickly becomes problematic. For example, in a component-based sys-
tem with 10 components and 1000 concurrent users, an analysis tool would have to
store 10000 internal state entities.

Additionally, the internal state of each component may consist of a large number
of variables. For example, the contents of a whole database can be perceived as the
internal state of a database component. Consider only 10 variables for each internal
state, and above example expands to 100000 variables to store.

Furthermore, each service invocation may potentially alter the variables’ values
(i.e., each of the 100000 values). The state space of a component can be very large.
Therefore, modelling internal state and state changes accurately for industrial size
systems is impractical, because the resulting models quickly become analytically
intractable.

The PCM does not support modelling components at runtime, when they hold a
specific internal state. It aims at design-time performance predictions, and abstracts
from specifics of component runtime instances. At the lowest abstraction level, PCM
Systems model components at deployment time, i.e., there may be multiple de-
ployment (but not runtime) instances of a single component type, which are each
encapsulated by an AssemblyContext (Chapter 3.2.4).

To include a notion of internal state for a performance model, this work intro-
duces static component parameter abstractions. Developers can attach such abstrac-
tions to any component (in an AssemblyContext) and extend the input domains
of each of the component’s services.

To create an abstraction from runtime state and keep the performance model
tractable, the specification of these component parameter characterisation’s random
variables are equal for all users. Equal component parameter characterisations for
large user groups are a strong abstraction from reality. However, in a single use
case, which is usually the boundary of a performance prediction, it is sometimes
sufficient to approximate the contents of a database as equal for all users. It is pos-
sible to model static component parameter abstractions with random variables, so
that developers can express a certain degree of uncertainty.

Additionally, services cannot change static component parameter abstractions as
they are assumed to stay constant for a specific performance analysis scenario (e.g.,
a use case). Unchangeable component parameter characterisations (i.e., no state
changes, fixed random variable) in a scenario are another strong abstraction from

119

4.1. PARAMETER ABSTRACTIONS

reality. It might not hold for transactional scenarios, where different component
states in a single use case can influence perceived performance characteristics heav-
ily. However, in some scenarios it is sufficient to express internal state as constant
for the purpose of performance prediction.

The PCM supports specifying component parameters at the following locations,
which mainly differ in the developer role, who is responsible for the specification
(Fig. 4.4):

• ImplementationComponentType: A component developer can attach a
number of VariableUsages to ImplementationComponentTypes. On
the one hand, these parameter characterisations publish the names of all possi-
ble component parameters with their AbstractNamedReferences. On the
other hand, they contain VariableCharacterisations, which model de-
fault characterisations (i.e., random variables) of the component parameter.
These default characterisations are valid for each AssemblyContext, which
references the ImplementationComponentType.

For composite components, the VariableUsages of the inner Assembly-
Contexts are not visible from the outside, because it is implementation
specific, that the component is composed from inner components. How-
ever, component developers can use the VariableUsages of Composite-
Components to delegate to inner VariableUsages. For example, compos-
ite component A contains an inner component B, which publishes a compo-
nent parameter named B.X . The developer of the composite component can
attach a component parameter A.Y to the composite component and charac-
terise the inner component parameter with B.X.VALUE = A.Y.VALUE. This
is possible, because B.X is visible to the component developer, who assembles
the composite component, but not to the software architect using the compo-
nent. The software architect using the composite component can then provide
a characterisation for A.Y.VALUE, which will be delegated to B.X.VALUE.

• AssemblyContext: A software architect can overwrite the component de-
veloper’s default component parameter characterisations when building a
System. Therefore, the software architect attaches a VariableUsage to an
AssemblyContext. It uses the same AbstractNamedReference as the
component developer used for the default characterisation, but provides a
new VariableCharacterisation with a different random variable spec-
ification. Component parameter characterisations provided by software archi-

120

4.1. PARAMETER ABSTRACTIONS

tects refer to technical concepts and may for example be configuration parame-
ters of a component. These parameters characterisations are usually not prob-
abilistic. For example, a software architect may overwrite a component param-
eter characterisation, which activates or deactivates the component’s logging
mechanism, which influences the component’s performance.

• UserData: A domain expert can also overwrite the component developer’s
default component parameter characterisations. Other than the software archi-
tect, the component parameter characterisations used by the domain expert re-
fer to non-technical concepts and may for example model user data (i.e., global
component data, which refers to the business aspects of the system). Do-
main experts model these component parameter abstractions in the Usage-

Model, which contains a set of UserData. Each UserData entity references
an AssemblyContext and contains a VariableUsage. As for the software
architect, this VariableUsage uses an AbstractNamedReference equal to
one specified by the component developer for the component included in the
AssemblyContext. The VariableCharacterisation of this Variable-
Usage overwrites the component developer’s default characterisation. For ex-
ample, a domain expert could use such a non-technical component parameter
to characterise the number of customers. This parameter could be related to
the size of a database table, so that the execution time for searching the table
would change in dependency to the parameter.

Inner Characterisations The PCM provides the key word INNER for parameters
with a collection data type. It allows an additional characterisation of the inner
elements of a collection, besides characterising the collection itself. For example, the
following characterisation specifies the byte size distribution of all inner elements
in a collection:

aCollection.INNER.BYTESIZE = IntPMF[([0-9];0.3)([[10-19];0.3)([20-30];0.4)]

It means that each contained file’s byte size is distributed between 0 and 30 bytes
with the given probabilities. The inner element is a representative for all elements
within a collection. It is included for convenience reasons, so that developers may
characterise inner elements without providing a single characterisation for each in-
ner element.

Characterisations of INNER elements in collections lead to stochastic dependen-
cies between two occurrences of this characterisation. For example, if a component

121

+characterisations

4.1. PARAMETER ABSTRACTIONS

developer uses an INNER characterisation on two successive occasions in a control
flow when specifying component performance, the characterisation of the second
occurrence is stochastically dependent on the characterisation of the first occurrence,
if none of the calls manipulates the characterisation.

Due to the mathematical complexity (i.e., state space explosion) when evaluat-
ing stochastically dependent variables, the tools solving the specifications INNER al-
ways assume stochastic independence between successive uses of INNER. The only
exception are CollectionIteratorActions (Chapter 4.3), for whose body be-
haviour stochastic dependence is assumed.

4.1.4 Implications of Parameter Abstractions

Different component developers have to agree across component boundaries, which
parameter characterisation types they use in their specifications.

If a component A calls a service of component B, then the developer of A needs
to know what parameter characterisations types were used in the specification of
B. This is necessary to ensure that a system model is completely specified, and
tools can resolve all parameter dependencies. Consider a service specification of B,
where a resource demand is specified in dependency to the BYTESIZE of parameter
x, but component A has only specified a VALUE of x. The specification is incomplete,
as tools cannot resolve the parameter dependency on the resource demand in B,
because the BYTESIZE specification of x is missing from component A.

<<enumeration>>
Variable

CharacterisationType
VALUE
BYTESIZE
NUMBER_OF_ELEMENTS
OTHER

+namedReference

1
0..*

Interface

Required
Characterisation

type: VariableCharacterisationType

AbstractNamed
Reference

referenceName : String

Signature
serviceName : String

+signature
1

Figure 4.5: Required Characterisations (meta-model)

Therefore, component developers need to specify the expected characterisa-
tion types for each parameter of a service signature in the interface, because in-
terfaces do not depend on components and are a contractual agreement among
different component developers. In the PCM, developers can use Required-

Characterisations (Fig. 4.5) in Interfaces to specify needed characterisation

122

4.2. USAGE MODEL

both for developers implementing the component as well as for clients using the
component. These characterisations contain an AbstractNamedReference (see
also Fig. 4.2), which represents the name of the characterised parameter.

Besides specifying required parameter characterisations in interfaces, it is fur-
thermore desirable to derive the needed subdomains for the parameter characterisa-
tions in the UsageModel from a complete System specification. This helps domain
experts in specifying their variable characterisations, as they get hints for which
parameter subdomains they have to provide probabilities. For example, if a com-
ponent service S changes its behaviour depending on a input parameter X taking
values below zero (X 0) and larger than zero (X 0), this construct defines two
subdomains for which probabilities have to be provided.

It is therefore possible to implement algorithms traversing a fully specified sys-
tem and tracing the needed subdomain specifications back to the usage model or
component parameters. However, this has not been realised in this work and is
subject to future work.

4.2 Usage Model

The usage of a software system by external clients has to be captured in models to
enable model-driven performance predictions. Here, the term usage refers to work-
load (i.e., the number of users concurrently present in the system), usage scenarios
(i.e., possible sequences of invoking services at system provided roles), waiting de-
lays between service invocations, and values for parameters and component con-
figurations. Chapter 2.5.3 has already discussed different approaches for modelling
software system usage including operational profiles, Markov usage models, and
UML.

This work introduces a new usage specification language, which (i) provides
more expressiveness for characterising parameter instances than previous models,
but (ii) at the same time is restricted to concepts familiar to domain experts to create
a domain specific language. The language is called PCM usage model. Chapter 4.2.1
introduces its abstract syntax and explains its design rationale. Chapter 4.2.2 pro-
vides an example PCM usage model. Chapter 4.2.3 briefly discusses the relationship
to similar modelling languages.

123

4.2. USAGE MODEL

4.2.1 Meta-Model: Abstract Syntax and Informal Semantics

Fig. 4.6 shows the meta-model of the PCM usage model specified in Ecore. The
usage model consists of a number of concurrently executed usage scenarios and a
set of global user data specifications. Each usage scenario includes a workload and
a scenario behaviour. The usage model specifies the whole user interaction with
a system from a performance viewpoint. The following will explain each of the
included concepts.

1 +assemblyContext

+outputParameterUsage
0..*

1..* +usageScenario

+workload

1

+scenarioBehaviour

1

+actions
0..* 0..1

+predecessor
0..1

+successor

+branchedBehaviour
1

0..* +branchTransitions

+inputParameterUsage
0..*

UsageModel

UsageScenario

Scenario
Behaviour Workload

ClosedWorkload OpenWorkloadAbstract
UserAction Loop

EntryLevel
SystemCall

VariableUsage

Start Stop

Branch

BranchTransition
branchProbability : EDouble

1

+bodyBehaviour

Signature

+signature 1

ProvidedRole

+providedRole 1

RandomVariable
specification : String

population : Integer

Delay

Repository

+interArrivalTime

1

+thinkTime

1

1

+userDelay

+iterations

1

UserData

+userDataParameterUsage 0..*

0..*
+userData

Assembly
Context System

StochasticalExpressions

Figure 4.6: Usage Model (meta-model)

A Workload specifies the usage intensity of a system, which relates to the num-
ber of users concurrently present in the system. The PCM usage model adopts this
concept from classical queueing theory [LZGS84]. The specified workloads can di-
rectly be used in queueing networks or easily be mapped to markings in stochastic
Petri nets. Workloads can either be open or closed:

• OpenWorkload: Specifies usage intensity with an inter-arrival time (i.e., the
time between two user arrivals at the system) as a RandomVariable with an
arbitrary probability distribution. It models that an infinite stream of users

124

4.2. USAGE MODEL

arrives at a system. The users execute their scenario, and then leave the sys-
tem. The user population (i.e., the number of users concurrently present in a
system) is not fixed in an OpenWorkload.

• ClosedWorkload: Specifies directly the (constant) user population and a
think time. It models that a fixed number of users execute their scenario, then
wait (or think) for the specified amount of think time as a RandomVariable,
and then reenter the system executing their scenario again. Performance ana-
lysts use closed workloads to model scenarios, where the number of users is
known (e.g., a fixed number of users in a company).

The algorithms used to analyse queueing networks differ depending on whether
open or closed workloads are modelled [LZGS84]. Some special queueing networks
can only be analysed given a particular workload type (open or closed). Notice,
that it is possible to specify a usage model with open workload usage scenarios and
closed workload usage scenarios at the same time. Open and closed workloads can
be executed in parallel when analysing the model.

A ScenarioBehaviour specifies possible sequences of executing services pro-
vided by the system. It contains a set of AbstractUserActions, each referencing
a predecessor and successor (except the first and last action), thereby forming a se-
quence of actions. Chapter 4.3.1 explains why it is advantageous to model control
flow in this way, as the same principle is used in the RDSEFF language. Concrete
user actions of the usage model are:

• Branch: Splits the user flow with a XOR-semantic: one of the included
BranchTransitions is taken depending on the specified branch probabil-
ities. Each BranchTransition contains a nested ScenarioBehaviour,
which a user executes once this branch transition is chosen. After execution
of the complete nested ScenarioBehaviour, the next action in the user flow
after the Branch is its successor action.

• Loop: Models a repeated sequence of actions in the user flow. It contains
a nested ScenarioBehaviour specifying the loop body, and a Random-

Variable specifying the number of iterations.

• EntryLevelSystemCall: Models the call to a service provided by a sys-
tem. Therefore, an EntryLevelSystemCall references a ProvidedRole of
a PCM System, from which the called interface and the providing component

125

4.2. USAGE MODEL

within the system can be derived, and a Signature specifying the called ser-
vice. Notice, that the usage model does not permit the domain expert to model
calls directly to components, but only to system roles. This decouples the
System structure (i.e., the component-based software architecture model and
its allocation) from the UsageModel and the software architect can change
the System (e.g., include new components, remove existing components, or
change their wiring or allocation) independently from the domain expert, if
the system provided roles are not affected. EntryLevelSystemCalls may
include a set of input parameter characterisations and a set of output parame-
ter characterisations (as described in Chapter 4.1.3).

• Delay: Represents a timing delay as a RandomVariable between two user
actions. The Delay is included into the usage model to express that users do
not call system services in direct successions, but usually need some time to
determine their next action. User delays are for example useful, if a perfor-
mance analyst wants to determine the execution time for a complete scenario
behaviour (instead of a single service), which needs to include user delays.

So far, ScenarioBehaviours do not include forks in the user flow (i.e., split-
ting the flow with an AND semantic), as it is assumed that users always act sequen-
tially.

Besides UsageScenarios, the UsageModel includes a set of UserData to
characterise data used in specific assembly contexts in the system. This data is
the same for all UsageScenarios, i.e., multiple users accessing the same com-
ponents access the same data. This UserData refers to component parameters of
the system publicized by the software architect (Chapter 4.1.3). The domain expert
characterises the values of component parameters related to business concepts (e.g.,
user specific data, data specific for a business domain), whereas the software archi-
tect characterises the values of component parameters related to technical concepts
(e.g., size of caches, size of a thread pool, configuration data, etc.).

4.2.2 Example

To complete the description, Fig. 4.7 contains an example instance of the PCM usage
model. The illustration uses a concrete syntax similar to UML activity diagrams,
because the abstract syntax of this model instance is more complex and less in-
tuitive. Each graphical element contains a stereotype (enclosed in angle brackets,

126

4.2. USAGE MODEL

Metaclass) indicating the corresponding meta-class from the usage model.
Keep in mind that there is no relation in this example to the UML meta-model, de-
spite using a similar graphical representation.

<<Delay>> <<EntryLevel
SystemCall>> <<EntryLevel

SystemCall>>

<<ScenarioBehaviour>>
<<Loop>>

<<EntryLevel
SystemCall>>

<<ScenarioBehaviour>>
<<EntryLevel
SystemCall>>

<<EntryLevel
SystemCall>>

<<ScenarioBehaviour>>

<<Delay>>

<<Branch>>

<<EntryLevel
SystemCall>>

<<UserData>>
<<VariableUsage>>
referenceName = var1
type = VALUE
specification = 17
assemblyContext = id1
<<VariableUsage>>
referenceName = var2
type = BYTESIZE
specification = 26
assemblyContext = id2

<<RandomVariable>>
iterations.specification =
IntPMF[(10;0.3)(20;0.7)]

<<Signature>>
serviceName = Y

<<RandomVariable>>
userDelay.
specification = 7 seconds

<<ClosedWorkload>>
population = 100
<<RandomVariable>>
thinkTime.specification =
IntPMF[(4;0.8)(5;0.2)]

<<UsageScenario>>

<<OpenWorkload>>
<<RandomVariable>>
interArrivalTime.
specification =
IntPMF[(20;0.1)(25;0.9)] <<BranchTransition>>

branchProbability = 0.4

<<BranchTransition>>
branchProbability = 0.6

<<UsageScenario>> <<InputVariableUsage>>
referenceName = inputVar
type = VALUE
specification = X

<<UsageModel>>

<<Provided
Role>>

<<Signature>>
serviceName = Y
<<Parameter>>
modifier = IN
name = inputVAR

Figure 4.7: Usage Model (Example)

The example in Fig. 4.7 contains at least one representative instance for each
meta-class from the usage model (compare with Fig. 4.6). It depicts a usage model
with two usage scenarios and a user data specification containing two variable us-
ages. A usage model may have an arbitrary number of usage scenarios. However,
the analytical tractability of the model decreases when increasing the number of
scenarios.

The domain experts has specified that the first usage scenario in the upper area
of Fig. 4.7 executes as closed workload with 100 concurrent users (user population).
Each user enters the scenario, executes all actions, and then waits for the think time
specified as a IntPMF, before reentering the scenario again at the first action.

The first action of this scenario is a call to a service provided by the sys-
tem. The call includes an characterisation for an input parameter of the service
(inputVar.VALUE = X). Domain experts can use different characterisation types

127

4.2. USAGE MODEL

as described in Chapter 4.1.3 and use probability distributions for the values as de-
scribed in Chapter 3.3.

The second action of this scenario is a delay and specifies that each user waits
exactly 7 seconds, before executing the next action. The user might for example
read the screen output of the previous action for 7 seconds, before clicking a button
that invokes the next action. The scenario concludes with a loop containing a call
to a system service, which is invoked repetitively. According to the loop iterations
specification, the user calls it either 10 times with a probability of 0.3 and 20 times
with a probability of 0.7.

The second usage scenario in the lower area of Fig. 4.7 is executed as open work-
load. Users repeatedly arrive at the system and start invoking the scenario. The
domain expert has specified an inter arrival time of 20 seconds with a probability of
0.1 and 25 seconds with a probability of 0.9. After executing the chain of actions in
the scenario, each users exits the system and vanishes.

The first action of the second usage scenario is a branch. It contains two branch
transitions each including a branch probability. It models a user choice with stochas-
tic means, specifying that the users decides for the actions of the first transition with
a probability of 0.4 or for the actions of the second transition with a probability of
0.6. The inner behaviours of both branch behaviours contain a call to a service pro-
vided by the system followed by a delay. Further, necessary annotations for these
user actions have been omitted for clarity.

After executing one of the branched behaviours, each user executes another en-
try level system call in this scenario. When the system returns after executing the
action, the user exits the system and does not return. Because of the unlimited num-
ber of arriving users in an open workload scenario, however, new users enter the
system constantly.

4.2.3 Discussion

Notice, that unlike other behavioural description languages for performance pre-
diction (e.g., [PW04, SLC 05, GMS05]), the PCM usage model specifically models
user behaviour and for example does not refer to resources. Other performance
meta-models mix up the specification of user behaviour, component behaviour, and
resources, so that a single developer role (i.e., a performance analyst) needs to spec-
ify the performance model. Opposed to this, the PCM targets a division of work for
multiple developer roles (cf. Chapter 3.1).

128

4.3. RESOURCE DEMANDING SERVICE EFFECT SPECIFICATION

Furthermore, none of the other performance meta-models support explicit ser-
vice parameter modelling. While CSM [PW04] includes a meta-class Message to
specify the amount of data transferred between two steps in the performance model,
and KLAPER [GMS05] allows the specification of parameter values in principle,
none of these language uses the information to parameterise resource demands or
component behaviour. Additionally, they do not provide the information readily
analysable by MDSD tools.

4.3 Resource Demanding Service Effect Specification

This subsection introduces a new behavioural description language (RDSEFF) for
component services, which is specifically designed for performance analysis. To
predict the performance of a component-based system, it is useful to have such a
modelling language for individual services instead of a monolithic model for the
whole architecture, because it exploits benefits of CBSE, such as reusability, change-
ability, higher accuracy, and division of work (Chapter 2.4).

Component developers specify RDSEFFs for basic components and put them
into repositories, where software architects can retrieve them and compose them
into architectures (Chapter 3.1). RDSEFFs allow a parameterisation for the perfor-
mance influencing factors (Chapter 2.4.2), which are outside the component devel-
oper’s control. This factors include the performance of required services, the values
of service parameters, and the performance of the deployment platform.

A special feature of RDSEFFs is the parameterisation for different usage profiles,
which has been added as part of this thesis’ contribution and allows a more ex-
pressive specification than other languages (cf. Chapter 2.5.1). RDSEFFs provide
modelling elements to specify dependencies between characterisations of input (or
component) parameters as part of the usage profile. Furthermore, they allow mod-
elling resource demands, branch conditions, loop iterations numbers, and param-
eters passed to required services in dependency to parameter value characterisa-
tions. Thus, an RDSEFF can be easily adapted for different usage profiles, because it
changes the modelled performance attributes (such as resource demands, branch
probability, etc.) when automatically solving the specified dependencies (Chap-
ter 6.2) with different input parameter characterisations.

The internal state of a component is a result of its usage, but it is not modelled in
an RDSEFF. RDSEFFs describe the behaviour of an individual service, whereas in-
ternal state of a component may be referenced by different services of a component

129

4.3. RESOURCE DEMANDING SERVICE EFFECT SPECIFICATION

and needs to be specified component-wide. The PCM uses component parameters
(Chapter 4.1.3) to provide an abstraction from a component’s internal state. Com-
ponent developers, domain experts, and software architects can use them to specify
parametric dependencies in RDSEFFs.

The following first describes the abstract syntax of the RDSEFF’s meta-model
and informally describes its semantics (Chapter 4.3.1). Afterwards, an example
instance of the RDSEFF meta-model illustrates its modelling capabilities (Chap-
ter 4.3.2). Chapter 4.3.3 compares the parameter dependency modelling of RDSEFFs
to related work, before Chapter 4.3.4 lists several limitations of the language. Chap-
ter 4.3.5 discusses the application of RDSEFFs in software engineering practice.

4.3.1 Meta-Model: Abstract Syntax and Informal Semantics

Fig. 4.8 shows the meta-model of the PCM RDSEFF specified in Ecore. Notice
that some meta-classes (e.g., VariableUsage, RandomVariable) are duplicated
in this diagram (but not in the model) to avoid visual clutter. The following
will describe the underlying concepts of each meta-class in detail. A Resource-

DemandingSEFF is a special type of ServiceEffectSpecification [RFB04]
and additionally inherits from ResourceDemandingBehaviour. Therefore, first
these two classes will be explained.

Service Effect Specification Models the effect of invoking a specific service of a ba-
sic component [RFB04]. Therefore, it references a Signature from an Interface,
for which the component takes a ProvidedRole, to identify the described service.
This class is abstract and SEFFs for specific analysis purposes need to inherit from
this class. A BasicComponent may have an arbitrary number of SEFFs. It can have
multiple SEFFs of a different type for a single provided service. For example, one
SEFF can express all external service calls with no particular order, while another
one includes a restricted order, or still another one expresses resource demands of
the service.

While different SEFF types have been proposed, the only type currently in-
cluded in the meta-model is the ResourceDemandingSEFF for performance pre-
diction. Different types of SEFFs should not contradict each other if the languages
are equally powerful. For example, the order of allowed external service calls should
be the same for each SEFF type modelling sequences of such calls if the modelling
languages have the same expressiveness.

130

4.3. RESOURCE DEMANDING SERVICE EFFECT SPECIFICATION

+outputParameterUsages 0..*

1

+requiredResource

0..*

+passiveResource

1

0..* +resourceToRelease

+synchronisingBehaviours

1

+branches 0..*

0..*+out 0..* +in

+role 1

0..1
0..1

+successor

+predecessor

1

0..*

+describedService

+serviceEffectSpecification 0..*

+specification 1

BasicComponent

ServiceEffect
Specification

ResourceDemandingSEFF

ResourceDemanding
Behaviour

AbstractAction
0..*

+steps

Signature
serviceName : String

RandomVariable
specification : String

AbstractResource
DemandingAction

ExternalCallAction

VariableUsage

+calledService

0..*

1

StartAction StopAction InternalAction

ParametricResource
Demand

0..* +resourceDemand

AcquireAction

ReleaseAction

Processing
ResourceType

Passive
Resource

0..* +resourceToAcquire

1

1

SetVariableAction

0..* +local

BranchAction AbstractLoopAction ForkAction

ResourceDemanding
Behaviour

AbstractBranch
Transition

Guarded
BranchTransition

+branchCondition

1
Probabilistic

BranchTransition
branchProbability : Double

1
+branchBehaviour

LoopAction CollectionIterator
Action

1+bodyBehaviour +asynchronousForkedBehaviours 0..*
+iterationCount
1

Parameter
parameterName : String

1

1

1

RandomVariable
specification : String

Forked
Behaviour

1 +numberOfReplicas

Synchronisation
Point

VariableUsage

Role

+synchronousForkedBehaviours 0..*

Figure 4.8: Resource Demanding SEFF (meta-model)

131

4.3. RESOURCE DEMANDING SERVICE EFFECT SPECIFICATION

SEFFs are part of a component and not part of an interface, because they are
implementation dependent. The SEFFs of a CompositeComponent are not repre-
sented in the meta-model and can be derived automatically by connecting the SEFFs
of the encapsulated components of its nested AssemblyContexts. Different SEFFs
of a single component access the same component parameter specifications. That
means that parameter dependencies to the same component parameters in different
SEFF types refer also to the same characterisations.

Resource Demanding Behaviour Models the behaviour of a component service
as a sequence of internal actions with resource demands, control flow constructs,
and external calls. Therefore, the class contains a chain of AbstractActions. The
emphasis in this type of behaviour is on the resource demands attached to internal
actions, which mainly influence performance analysis (details follow later).

Each action in a ResourceDemandingBehaviour references a predecessor and
a successor action. Exceptions are the first and last action, which do not reference a
predecessor and a successor respectively. A behaviour is valid, if there is a continu-
ous path from the first to last action, which includes all actions. The chain must not
include cycles.

To specify control flow branches, loops, or forks, component developers need to
use special types of actions, which contain nested inner ResourceDemanding-
Behaviours to specify the behaviour inside branches or loop bodies. Any
ResourceDemandingBehaviour can have at most one starting and one finishing
action.

AbstractActions model either a service’s internal computations or calls to
external (i.e., required) services, or describe some form of control flow alteration
(i.e., branching, loop, or fork). The following first clarifies the notions of internal
and external actions, whose meta-classes both inherit from AbstractAction:

Internal Action Combines the execution of a number of internal computations by
a component service in a single model entity. It models calculations inside a com-
ponent service, which do not include calls to required services. For a desired high
abstraction level, an RDSEFF has only one InternalAction for all instructions
between two calls to required services. A high abstraction level is needed to keep
the model tractable for mathematical analysis methods. However, in principle it is
also possible to use multiple InternalActions in direct succession to model on a
lower abstraction level and enable more accurate predictions.

132

4.3. RESOURCE DEMANDING SERVICE EFFECT SPECIFICATION

To express the performance-relevant resource interaction of the modelled com-
putations, an InternalAction contains a set of ParametricResourceDemands
(described below), each directed at a specific ProcessingResourceType. An
InternalAction may have at most one resource demand for each Processing-

ResourceType. Analysis or simulation tools sequentialise the set of demands and
put load on the referenced resources one after another.

InternalActions provide an abstraction from the complete behaviour (i.e.,
control and data flow) of a component service, as they can hide different possible
control and data flows not affecting external service calls and express their resource
demands as a single stochastic expression (cf. Chapter 3.3.6). This abstraction un-
derlies the assumption that the resource demands of a number of instruction can be
captured sufficiently accurate enough in one such expression.

Parametric Resource Demand Specifies the amount of processing requested from
a certain type of resource in a parametrised way. It assigns the demand specified as
a RandomVariable to an abstract ProcessingResourceType (e.g., CPU, hard
disk) instead of a concrete ProcessingResourceSpecification (e.g., 5 Ghz
CPU, 20 MByte/s hard disk). This keeps the RDSEFF independent from a specific
resource environment, and makes the concrete resources replaceable to answer siz-
ing questions.

The demand’s unit is equal for all ProcessingResourceSpecifications
referencing the same ProcessingResourceType. It can for example be ”WorkU-
nits” for CPUs [Smi02] or ”BytesRead” for hard disks. Each Processing-

ResourceSpecification contains a processing rate for demands (e.g., 1000
WorkUnits/s, 20 MB/s), which analysis tools use to compute an actual timing value
in seconds. They use this timing value for example as the service demand on a ser-
vice center in a queueing network or the firing delay of a transition in a Petri net. As
multiple component services might request processing on the same resource, these
analytical or simulation models allow determining the waiting delay induced by
this contention effect.

Besides this parameterisation over different resource environments,
ParametricResourceDemands also parameterise over the usage profile.
For this, the stochastic expression specifying the resource demand can contain
references to the service’s input parameters or the component parameters. Upon
evaluating the resource demand, analysis tools use the current characterisation of
the referenced input or component parameter and substitute the reference with

133

4.3. RESOURCE DEMANDING SERVICE EFFECT SPECIFICATION

this characterisation in the stochastic expression. Solving the stochastic expression,
which can be a function involving arithmetic operators (Chapter 3.3.6), then yields
a constant or probability function for the resource demand.

As an example for solving the parameterisation over resource environment and
usage profile, consider an RDSEFF for a service implementing the bubblesort algo-
rithm. It might include a CPU demand specification of n2 2000 WorkUnits derived
from complexity theory (n2) and empirical measurements (2000). In this case n refers
to the length of the list the algorithm shall sort, which is an input parameter of the
service. If the current characterisation of the list’s length is 100 (as the modelled
usage profile), analysis tools derive 1002 2000 12000 WorkUnits from the spec-
ification, thus resolving the usage profile dependency. If the CPU Processing-

ResourceSpecification the service’s component is allocated on then contains
a processing rate of 10000 WorkUnits/s, analysis tools derive an execution time of
12000 WorkUnits 10000 WorkUnits/s = 1.2 s from the specification, thus resolving
the resource environment dependency.

The stochastic expression for a ParametricResourceDemand depends on the
implementation of the service. Component developers can specify it using com-
plexity theory, estimations, or measurements. However, how to get data to define
such expressions accurately is beyond of the scope of this thesis. Woodside et al.
[WVCB01] and Krogmann [Kro07] present approaches for measuring resource de-
mands in dependency to input parameters. Meyerhoefer et al. [ML05] and Ku-
perberg et al. [KB07] propose methods to establish resource demands independent
from concrete resources. For the scope of this thesis, it is assumed that these meth-
ods have been applied and an accurate specification of the ParametricResource-
Demand is available.

ExternalCallAction Models the invocation of a service specified in a required in-
terface. Therefore, it references a Role, from which the providing component can be
derived, and a Signature to specify the called service. ExternalCallActions
model synchronous calls to required services, i.e., the caller waits until the called
service finishes execution before continuing execution itself. The PCM allows mod-
elling asynchronous calls to required services by using an ExternalCallAction

inside a ForkedBehaviour (described later).
ExternalCallActions do not have resource demands by themselves. Com-

ponent developers need to specify the resource demand of the called service in the
RDSEFF of that service. The resource demand can also be calculated by analysing

134

4.3. RESOURCE DEMANDING SERVICE EFFECT SPECIFICATION

the providing component. This keeps the RDSEFF specification of different com-
ponent developers independent from each other and makes them replaceable in an
architectural model.

ExternalCallActionsmay contain two sets of VariableUsages specifying
input parameter characterisations and output parameter characterisations respec-
tively. VariableUsages for input parameters may only reference IN or INOUT
parameters of the call’s referenced signature. The random variable characterisation
inside such a VariableUsagemay be constants, probability distribution functions,
or include a stochastic expression involving for example arithmetic operations. The
latter models a dependency between the current service’s own input parameters
and the input parameters of the required service.

All characterisations for input parameters of a required service form a part of
the usage profile of that service. The dependencies between input parameter char-
acterisation of the calling service and input parameter characterisation of the called
service are not unique for a specific usage context, but are valid for all possible usage
contexts. This kind of specification is more expressive as for example the specifica-
tion approach by Hamlet et al. [HMW04], where such a dependency always needs
to be measured for specific test cases.

VariableUsages for output parameters assign variable characterisations re-
turned by the external call to local variable names. When different External-
CallActions to the same required service occur, each of them can use unique local
variable names to memorise the different output parameter characterisations. This
enables referring to the output parameters of different external service calls to the
same service unambiguously in the RDSEFF afterwards.

The characterisations referenced in the stochastic expressions of the right hand
side of such assignments may only be from OUT parameters, INOUT parameters,
or return values (keyword: serviceName.RETURN) of the called service’s signa-
ture, but not from IN parameters. The RDSEFF of the external service will set the
specifications of those characterisations. Notice, that it is not the RDSEFF of the
calling service, which sets those characterisations. However, it is possible to spec-
ify stochastic expressions involving arithmetic operations on such characterisations.
These operations then model calculations inside the calling service performed after
executing the external call, but not calculations performed in the called service.

If the system deployer allocates the respective components of the calling ser-
vice and the called service to different ResourceContainers, an External-

CallAction automatically produces load on the network device connecting these

135

4.3. RESOURCE DEMANDING SERVICE EFFECT SPECIFICATION

ResourceContainers. Analysis tools can calculate the amount of data trans-
ferred over the network by summing up all input or output parameter characterisa-
tions, which refer to the byte size of a parameter. The RDSEFF needs no additional
specification of the transferred data’s byte size.

Set Variable Action Assigns a variable characterisation to an OUT parameter, IN-
OUT parameter, or return value of the service. It ensures that performance-relevant
output parameter characterisations of a component service are specified to use them
to parameterise the calling RDSEFF. A SetVariableAction must only use output
parameters on the left hand side of the assignment and must not use input parame-
ter or local variable names, because input parameters cannot be returned and local
names should not be exposed to adhere the black box principle. The action is only
intended to allow proper data flow modelling (i.e., output parameter passing) be-
tween different component services, but not to reveal additional internals of the
service the current RDSEFF models. Thus, the assigned characterisation is not ac-
cessible in subsequent actions of the current RDSEFF.

Notice, that the stochastic expression used in this assignment must characterise
the result of the whole computation of the current service. For non-trivial compo-
nents, this requires a substantial stochastic approximation based on manual abstrac-
tion. However, recall that not the actual result of a component service needs to be
specified, but only its performance-relevant attributes. For example, to model the
return value of a component service compressing a file, using its file size divided by
the compression factor as the stochastic expression is usually sufficient, while the
value of the compressed file is not of interest in a performance model.

Multiple SetVariableActions assigning to the same output parameter might
occur at different locations of the control flow in an RDSEFF. In the case of se-
quences, loops, and fork, the last assignment overwrites the former assignments
and gets transferred back to the calling RDSEFF. Therefore, analysis tools may ig-
nore the former assignments. In the case of using a SetVariableAction in two
different branches of a BranchAction, only the assignment in the chosen branch
is valid and gets transferred back to the caller.

Control Flow The RDSEFF defines the control flow between internal and external
actions with the predecessor/successor relationship between AbstractActions

to model sequential executions. Additionally, special actions for branching, loops,
and forks allow other kinds of control flow. Other than flowcharts or UML activity

136

4.3. RESOURCE DEMANDING SERVICE EFFECT SPECIFICATION

<<InternalAction>>
a

<<InternalAction>>
b

<<InternalAction>>
c

<<InternalAction>>
d

<<InternalAction>>
a

<<InternalAction>>
b

<<InternalAction>>
c

(a) Intertwined Con- (b) Loop with Multi-
trol Flow ple Entry Points

Figure 4.9: The Problem of Backward References

diagrams, the RDSEFF language (as well as the usage model language) requires de-
velopers to make the branching, loop, fork bodies explicit using nested Resource-

DemandingBehaviours.
It disallows backward references in the chain of AbstractActions, which are

basically goto statements and can lead to ambiguities and difficult maintainabil-
ity. For example, this might lead to intertwined control flows as in the example in
Fig. 4.9(a), where both the sequences ’abcabcdbcd’ and ’abcdbcabcd’ could be occur
if each backward reference is executed once, which might lead to different execution
times.

Backward references also allow the specification of loops with multiple entry
points as in Fig. 4.9(b). This is not desirable, as the number of loop iterations can-
not be specified directly in these cases, which is however necessary for accurate
performance prediction. If a developer would specify that each backward link in
Fig. 4.9(b) is executed only once, both sequences ’ababc’ and ’abcababc’ would be
possible although they would have different execution times, as ’a’ is executed three
times in the latter case.

To avoid such ambiguities, control flow in the PCM RDSEFF and usage model
must be specified without backward references in the chain of AbstractActions.
Branches, loops, forks, and their respective bodies have to be made explicit in the
specification using nested ResourceDemandingBehaviours (also see Fig. 4.10
for an example in concrete syntax).

137

4.3. RESOURCE DEMANDING SERVICE EFFECT SPECIFICATION

Branch Action Splits the RDSEFF control flow with an XOR-semantic,
meaning that the control flow continues on exactly one of its attached
AbstractBranchTransitions. The RDSEFF supports two different kinds
of branch transitions, GuardedBranchTransitions, and Probabilistic-

BranchTransitions. RDSEFFs do not allow to use both kinds of transitions on
a single BranchAction. Analysis or simulation tools must select exactly one tran-
sition based on the included guard or probability, before continuing at a Branch-
Action.

Guarded Branch Transition Provides a link between a BranchAction and a
nested ResourceDemandingBehaviour, which includes the actions executed in-
side the branch. It uses a guard, i.e. a boolean expression specified by a Random-
Variable, to determine whether the transition is chosen. If the guard evaluates to
true, the branch is chosen, otherwise if the guard evaluates to false another branch
transition must be chosen.

The guard may contain references to the service’s input parameters or compo-
nent parameters. A component developer can specify complex boolean expressions
by using the AND, OR, and NOT operations provided by the StoEx framework. As
the domain expert may have characterised the parameters used in a guard with
probability distributions, it might happen that a guard does not evaluate to true
or false with a probability of 1.0. For example, the specification can express that a
guard evaluates to true with a probability of 0.3, and to false with a probability of
0.7. In any case, the probabilities of the individual guards attached to all Guarded-
BranchTransitions contained in a BranchAction must sum up to 1.0.

There is no predefined order in evaluating the guards attached to a Branch-

Action. This differs from programming languages such as C or Java, where the
conditions on if/then/else statements are evaluated in the order of their appear-
ance in the code. Such programming languages allow overlapping branching condi-
tions (for example, if (X<10) //... else if (X<20) // ...), which are
not allowed for the guards in GuardedBranchTransitions, because the miss-
ing order specification would lead to ambiguous boolean expressions and enable
more than one guard to become true. If X would have the value 5, both condi-
tions would evaluate to true if they would be used directly as guards in Guarded-

BranchTransitions. The correct specification of the guards in this case would be
X.VALUE 10 and X.VALUE 10 AND X.VALUE 20.

Guards might lead to stochastic dependencies when evaluating variable charac-

138

10

4.3. RESOURCE DEMANDING SERVICE EFFECT SPECIFICATION

terisations inside a branched behaviour. For example, if the guard X.VALUE

had formerly evaluated to true, and the RDSEFF uses X.VALUE inside the branched
behaviour, the sample space of the random variable specifying the characterisation
must be restricted, as the event that X takes a values greater than 10 cannot occur
anymore. Therefore its probability is zero. Any variable characterisation always
needs to be evaluated under the condition that all guards in the usage scenario’s
path to it have evaluated to true.

Probabilistic Branch Transition Like a GuardedBranchTransition, this tran-
sition provides a link between a BranchAction and a nested Resource-

DemandingBehaviour, which includes the actions executed inside the branch.
But instead of using a guard, it specifies a branching probability without param-
eter dependencies. Analysis tools may directly use it to determine the transition
where the control flow continues. The probabilities of all ProbabilisticBranch-
Transitions belonging to a single BranchAction must sum up to 1.0.

Although a probabilistic choice at a branch usually does not happen in a com-
puter program, ProbabilisticBranchTransitions provide a convenient way
of modelling in case the actual parameter dependency is too hard to determine or
too complex to integrate into a guard. It can also be useful for newly designed
components, where the parameter dependency on the control flow guard is still be
unknown.

However, this construct potentially introduces inaccuracies into the performance
model, because it does not reflect the influence of input parameters. Therefore, pre-
dictions based on this model can be misleading, if the used input parameters would
result in different branching probabilities. The component developer cannot foresee
this, when specifying the RDSEFF using ProbabilisticBranchTransitions.

Fork Action Splits the RDSEFF control flow with an AND-semantic, meaning that
it invokes several ForkedBehaviours concurrently. This action is subject to re-
search by Happe [Hap08], therefore the following description might be outdated.
ForkActions allow both asynchronously and synchronously forked behaviours.

Synchronously ForkedBehaviours execute concurrently and the control flow
waits for each of these behaviours to terminate before continuing. Each Forked-

Behaviour can be considered as a program thread. All parameter characterisations
from the surrounding RDSEFF are also valid inside the ForkedBehaviours and
can be used to parameterise resource demands or control flow constructs. The pa-

139

4.3. RESOURCE DEMANDING SERVICE EFFECT SPECIFICATION

rameter characterisations are the same in each ForkedBehaviour. Component
developers can use a SynchronisationPoint to join synchronously Forked-

Behaviours and specify a result of the computations with its attached Variable-

Usages.
Asynchronously ForkedBehaviours also execute concurrently, but the control

flow does not wait for them to terminate and continues immediately after their in-
vocation with the successor action of the ForkAction. Therefore, there is no need
for a SynchronisationPoint in this case. It is furthermore not possible to refer
to results or output parameters of asynchronously ForkedBehaviours in the rest
of the RDSEFF, as it is unclear when these results will be available.

Loop Action Models the repeated execution of its inner ResourceDemanding-
Behaviour for the loop body. The number of repetitions is specified by a random
variable evaluating to integer or an IntPMF. The number of iterations specified
by the random variable always needs to be bounded, i.e., the probabilities in an
IntPMF for iteration numbers above a certain threshold must be zero [KF06]. Oth-
erwise, it would be possible that certain requests do not terminate, which would
complicate performance analyses.

The stochastic expression defining the iteration random variable may include
references to input or component parameters to model dependencies between the
usage profile and the number of loop iterations. Notice, that loop actions should
only be modelled if the loop body contains either external service calls or resource
demands directed at special resources. Otherwise, control flow loops in component
behaviour should be abstracted by subsuming them in InternalAction, which
combine a number of instructions. The influence of different iterations length of
such internal loops need to be reflected stochastically by the random variable speci-
fying the ParametricResourceDemand of that InternalAction.

Other than Markov chains, RDSEFFs do not specify control flow loops with an
re-entrance and exit probability on each iteration. Such a specification binds the
number of loop iterations to a geometrical distribution, which reflects reality only in
very seldom cases. For example, a loop with a re-entrance probability of 0.9 and an
exit probability of 0.1, would result in 1 loop iteration with a probability of 0.9, 2 loop
iterations with a probability of 0.9 0.9 0.81, 3 loop iterations with a probability of
0.9 0.9 0.9 0.729, and so on. But in many practical cases, the number of iterations
is a constant, or the probability for higher iteration numbers is higher than for lower
ones. This cannot be expressed directly via a Markov chain (also see [DG00]).

140

4.3. RESOURCE DEMANDING SERVICE EFFECT SPECIFICATION

Inside the ResourceDemandingBehaviour of LoopActions, it is assumed
that random variables are stochastically independent. This is not true in reality, and
for example leads to wrong predictions if the same random variable is used twice in
succession inside a loop body. In this case, the second occurrence is stochastically
dependent to the first occurrence, as the value does not change between two oc-
currences. Therefore, component developers should be aware of such inaccuracies
when using random variables twice inside the body behaviour of a LoopAction.

Collection Iterator Action Models the repeated execution of its inner Resource-
DemandingBehaviour for each element of a collection data type. Therefore it con-
tains a reference to an input parameter of the service’s signature, which must be of
type CollectionDataType. The NUMBER OF ELEMENTS must be specified from
the outside of the component, either by another RDSEFF or by an usage model call-
ing this service. It can be of type integer or IntPMF.

Besides the source of the number of iterations, CollectionIteratorActions
differ from LoopAction only in their allowed stochastic dependence of random
variables inside the loop body’s ResourceDemandingBehaviour. If the same
random variable occurs twice in such a loop body, analysis tools must evaluate the
second occurrence in stochastic dependence to the first occurrence. This complicates
the involved calculation and might lead to the intractability of the model, therefore
component developers should use CollectionIteratorActions with care and
only include them if they expect that the prediction results would be vastly inaccu-
rate without it.

Passive Resource BasicComponents can contain a number of Passive-

Resources, such as semaphores, thread pools, database connection pools, etc. (also
see [Hap08]). Passive resources can for example encapsulate the access to critical ar-
eas. They contain a limited number of items, which have to be acquired to carry out
certain calculations, and later be released again.

In an RDSEFF, component developers can specify an AcquireAction, which
references a passive resource types. Once analysis tools execute this action, they
decrease the amount of items available from the referenced passive resource type
by one, if at least one item is available. If none item is available, because other,
concurrently executed requests have acquired all of them, analysis tools enqueue
the current request (first-come first-serve scheduling policy) and block it’s further
execution. One of the other concurrent requests then needs to execute a Release-

141

4.3. RESOURCE DEMANDING SERVICE EFFECT SPECIFICATION

Action, which then again increases the number of available item for the given pas-
sive resource type, before the current request can continue.

Acquisition and release of passive resources happen instantaneously and do not
consume any time except for waiting delays before actual acquisition. Resource
locking may introduce deadlocks when simulating the model, however, for perfor-
mance analysis with the PCM it is assumed that no deadlocks occur. Otherwise,
the model first needs to be fixed accordingly before carrying out the performance
prediction.

4.3.2 Example

The example in Fig. 4.10 illustrates a simple RDSEFF instance. It uses a concrete
syntax similar to UML activity diagrams. Each graphical element denotes its meta-
class with an included stereotype, i.e., the name of the meta-class enclosed in angle
brackets. Although the graphical visualisation resembles annotated UML activity
diagrams for higher intuition, there is no relation to the UML meta-model. Using
the abstract syntax, i.e., an object graph of the meta-classes, would result in a more
complex and less intuitive visualisation of the model.

<<InternalAction>> <<ExternalCallAction>>

<<SetVariableAction>>

<<AcquireAction>> <<ReleaseAction>>

<<PassiveResource>>
name = „Semaphore“

<<Processing
ResourceType>>

name = „CPU“

<<Parametric
Resource
Demand>>
specification = X.VALUE * 100

<<InternalAction>>

<<ResourceDemanding
Behaviour>>

<<InternalAction>>

<<ResourceDemanding
Behaviour>>

<<BranchAction>>
<<GuardedBranchProbability>>
specification = X.VALUE < 0

<<GuardedBranchProbability>>
specification = X.VALUE >= 0

<<InternalAction>>

<<ResourceDemanding
Behaviour>>

<<LoopAction>>

iterations =
input.VALUE + 2

<<InternalAction>>

<<ResourceDemanding
Behaviour>>

<<InternalAction>>

<<ResourceDemanding
Behaviour>>

<<ForkAction>>

<<VariableUsage>>
referenceName = inputVar
type = VALUE
specification = Y.VALUE

<<VariableUsage>>
referenceName = localVar
type = BYTESIZE
specification =
call.RETURN.BYTESIZE

<<VariableUsage>>
referenceName =
service.RETURN
type = VALUE
specification = Z.VALUE

<<ResourceDemandingSEFF>>

<<Signature>> <<Role>>

Figure 4.10: RDSEFF (Example)

The figure shows most of the formerly introduced RDSEFF elements condensed
in a single model instance. The RDSEFF’s control flow starts in the lower left corner
with an AcquireAction. It references a PassiveResource named ”Semaphore”,

142

4.3. RESOURCE DEMANDING SERVICE EFFECT SPECIFICATION

i.e., the component service requests an instance of this resource when executing this
action.

Once the service has obtained the semaphore, it executes an InternalAction.
It references a ProcessingResourceType named CPU. The service requests pro-
cessing by the CPU. The RDSEFF only refers to the resource type, but not to a
concrete resource instance. When the system deployer later allocates the com-
ponent of the service to a ResourceContainer, the ProcessingResource-

Specification inside that ResourceContainer, which references the same
ProcessingResourceType is used by the InternalAction.

All resource types and passive resources must already be available (i.e., spec-
ified and referable) to the component developer, when defining an RDSEFF. For
ProcessingResourceTypes, this requires the availability of a ResourceType-
Repository, whose contents are agreed on between component developers and
system deployers. Component developers specify PassiveResources as part of
a BasicComponent. Therefore, a BasicComponent with the provided Passive-

Resources needs to be available before defining an RDSEFF referencing it.
The InternalAction in the example uses a ParametricResourceDemand

to specify the requested amount of processing from the referenced resource type.
This resource demand is parametric both for the usage profile (it can reference input
parameter characterisations) and the resource environment (it specifies platform-
independent demands).

An ExternalCallAction follows the InternalAction. It references the
called service’s Signature, which is part of an Interface (Chapter 3.2.2),
and a RequiredRole, which is part of the component specification (Chap-
ter 3.2.2). During later composition, the software architect will bind the referenced
RequiredRole to the ProvidedRole of another component using an Assembly-
Connector. Then, the RDSEFF invoked by this ExternalCallAction can be de-
termined by following the AssemblyConnector to determine the connected com-
ponent and retrieving its RDSEFF for the referenced Signature.

In the example, the component developer has attached two VariableUsages

to the ExternalCallAction. The first specifies an input parameter characterisa-
tion. It expresses, that ”VALUE” of the parameter ”inputVar” from the referenced
Signature is characterised as ”Y.VALUE”. ”Y” can be of any data type and its
”VALUE” can for example be characterised with a probability distribution (Chap-
ter 3.3). The second VariableUsage is an output parameter characterisation. The
introduced variable ”localVar” get assigned with a variable characterisation pro-

143

4.3. RESOURCE DEMANDING SERVICE EFFECT SPECIFICATION

duced by the called RDSEFF. ”localVar.BYTESIZE” is set to the byte size of the called
service’s return value (”call.RETURN.BYTESIZE”). Thus, the component developer
can later use ”localVar” in the RDSEFF to reference to this characterisation.

After the InternalAction and ExternalCallAction, a ReleaseAction

frees the formerly acquired PassiveResource. Therefore, the model expresses
that the service no longer holds the corresponding semaphore, which is now again
available for acquisition by other services.

The ReleaseAction is followed by a chain of different control alterations. First,
the BranchAction splits the control flow with an XOR semantic, i.e., it executes ex-
actly one of the included behaviours. The choice depends on the GuardedBranch-
Transition, which include a parameter dependency and check whether the value
of input parameter ”X” is less or greater than zero. The resource demands of the
InternalActions within the branched behaviours have been omitted in this fig-
ure for clarity.

Following the BranchAction, the LoopAction models a repetitive execution
of the included behaviour. The component developer has specified the number
of iterations with a dependency to an input parameter (”input.VALUE+2”). Alter-
natively, component developers may use CollectionIteratorActions, which
also iterate over their inner behaviour, but reference an input parameter of a collec-
tion data type, and execute one iteration for each element of the collection.

The following ForkAction splits the control flow with an AND semantic, i.e.,
it executes each of the included behaviours concurrently. In this case the invoca-
tion of the inner behaviours is asynchronous and the service directly continues with
the following SetVariableAction and does not wait for the inner behaviours to
terminate. The SetVariableAction finally characterises the return value of the
modelled service and assigns ”Z.VALUE” as the specification of its random variable.

4.3.3 Comparison to Related Work

As already discussed in Chapter 2.5.1, there are several other component-based
performance prediction approaches, which all feature their own component perfor-
mance specification languages. As the RDSEFF language has now been described in
detail, it is possible to conduct a more detailed comparison to these approaches.

As a main contribution of this work are the parameter dependencies introduced
into the RDSEFF language, Table 4.1 contains the capabilities of the different mod-
elling languages to express such dependencies. CB-SPE and Hamlet do not include

144

4.3. RESOURCE DEMANDING SERVICE EFFECT SPECIFICATION

a notion of service parameters declared in interfaces and therefore do not model
parameter dependencies. However, these approaches allow changing attributes of
the resulting performance model and consider this as parameterisation. CB-SPE is
based on the UML-SPT profile, which does not model service parameters.

Name CBͲAPPEAR CBML CBͲSPE Hamlet RESOLVEͲP ROBOCOP PALLADIO
Literature [EF04,�EFH04] [Wu03,�WMW03,�

WW04]
[BM04a,�BM04b] [HMW01,�

HMW04]
[SKK01] [BdWCM05,�

BCdW06a,�
[BKR08]

BCdW06b,�
BCdK07]

Resource�Demand 9 (9) Ͳ Ͳ (9) 9�(constant) 9
Branch�Probability (9) Ͳ Ͳ Ͳ Ͳ Ͳ 9
Number�of�Loop�Iterations (9) Ͳ Ͳ Ͳ Ͳ (9) 9
Number�of�Forked�Branches Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ
Input�Parameter Ͳ Ͳ Ͳ Ͳ Ͳ 9�(constant) 9
Output�Parameter Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ 9
External�Call�Input Ͳ Ͳ Ͳ Ͳ Ͳ 9�(constant) 9
External�Call�Output Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ 9
Internal�State Ͳ Ͳ Ͳ Ͳ Ͳ Ͳ�(Comp.�Par.) Ͳ�(Comp.�Par.)
Passive�Resource�Capacity Ͳ 9 Ͳ Ͳ Ͳ Ͳ 9
Number�of�Component�
Replications

Ͳ 9 Ͳ Ͳ Ͳ Ͳ Ͳ

Table 4.1: Service Parameter Dependencies in CB-Performance Prediction Methods

CB-APPEAR does include resource demands parameterised over service inputs.
The authors also use parameterised branch conditions and loop iteration number,
however only in an ad-hoc manner without a strict deviation between component
developer and software architect. CBML allows changing attributes of the resulting
performance model and explicitly supports component parameters for the capacity
of passive resources and the number of replications. However, as the slots repre-
senting interfaces in this approach do not contain a notion of service parameters, no
dependencies to such parameters can be specified.

The ROBOCOP performance prediction approach supports explicit parameter
dependencies on resource demands, loop iteration numbers, and input parameters.
It does not support output parameter dependencies, and branch conditions referring
to parameter values. Furthermore, it only uses constant integers to specify parame-
ter values, whereas the PCM supports random variables with arbitrary distribution
functions for more expressiveness.

4.3.4 Limitations

There are still several limitations that restrict the modelling capabilities of the RD-
SEFF language and therefore the prediction accuracy of the resulting models:

• Limited Internal State: As formerly discussed, internal component state can
heavily influence performance properties in certain situations. The PCM uses

145

4.3. RESOURCE DEMANDING SERVICE EFFECT SPECIFICATION

an abstraction from actual internal state in form of the so-called component
parameters. These parameters are constant across different usage scenarios
and equal for all users to avoid state space explosion. This abstraction is useful
to model several practically relevant situations as demonstrated in the case
study in Chapter 7.3. However, a more accurate modelling of internal state is
necessary for other scenarios.

• No Scopes for Stochastic Dependencies: The RDSEFF language and the cor-
responding analysis algorithms assume stochastic independence between the
random variables used in a RDSEFF. However, if an RDSEFF uses a random
variable for a parameter characterisation twice (e.g., for two external calls),
both uses are stochastic dependent on each other, because the parameter value
does not change between two occurrences. Therefore, performance prediction
in such situations leads to inaccurate results with the current PCM version.
The CollectionIteratorAction has been introduced to circumvent this
problem for loop bodies. Its concept could be generalised to allow arbitrary
scopes in RDSEFFs, where random variables are evaluated assuming stochas-
tic dependence. However, this might lead to state space explosion and requires
further research.

• No Component-Internal Reuse: Multiple services of a single software compo-
nent might internally reuse functionality of the component. This is comparable
to private methods in object-oriented programming, which can be accessed by
different methods inside a class. RDSEFFs do not support such component-
internal subroutines, because they try to abstract from component internals
as much as possible. To model the performance influence of such internal
functionality, the respective InternalActions have to be replicated in the
RDSEFFs of each of the component services using them. It might be useful
to introduce concepts to reuse such internal functionality, so that it has to be
modelled only once. However, this might result in a too low abstraction level
in the model instances, so that they expose too much of the component inter-
nals, which violates the black-box principle.

• Limited Component-internal Concurrency: As already mentioned, mod-
elling component-internal concurrency is still immature in the RDSEFF mod-
elling language. So far, it supports several low-level construct, such as syn-
chronous and asynchronous forked behaviours. However, it is unclear how

146

4.3. RESOURCE DEMANDING SERVICE EFFECT SPECIFICATION

data dependencies between these forked behaviours can be expressed suffi-
ciently. For the future, it would also be desirable to have higher level mod-
elling constructs resembling well-known concurrency patterns. This could
substantially lower the effort to model complex concurrency situations.

• No Support for Pro-Activity: The PCM follows a synchronous call-and-return
semantic for calls between components. Every component has to be invoked
from the outside and it is not possible that component service call other com-
ponents autonomously. However, such pro-active components do exist in re-
ality, therefore RDSEFFs should include constructs to model them.

• No Support for Memory Consumption: RDSEFFs only support resource de-
mands to processing resources, such as CPUs or hard disk, and to passive
resources, such as semaphores. There is no support for specifying memory
consumptions by a component service. It is desirable to make predictions for
the memory consumption of a component-based software architecture, so that
the hardware can be sized accordingly.

• Other QoS attributes: While RDSEFFs so far focus on performance modelling,
other compositional QoS attributes, such as reliability and availability could be
included into the modelling language. It would further be possible to conduct
combined prediction for performance and reliability to assess the performabil-
ity of a component-based system.

Overcoming the limitations of RDSEFFs listed above involves extending the lan-
guage. This should be done with care as a higher complexity of the language might
also lead to more complex model instances, which could become difficult to simu-
late or intractable for mathematical analyses. Furthermore, the component princi-
ples of independent deployment and information hiding should be adhered to when
adding new features. The tradeoff between the complexity of the language and the
resulting models versus the accuracy of predictions needs to be analysed with care.

Notice, that the PCM has further limitations (e.g., static architectures, limited
network support, etc.), which are not listed here, because they do not concern the
RDSEFF language but other parts of the model, such as the System or Resource-
Environment.

147

4.3. RESOURCE DEMANDING SERVICE EFFECT SPECIFICATION

4.3.5 Discussion

After the description of the RDSEFF’s core concepts, an example, and a list of limi-
tations, the following discusses some RDSEFF features and properties:

Grey-Box View RDSEFFs induce a grey-box specification of a software component
(also see Chapter 2.1.2). On one hand, they provide additional information about
component internals besides the interfaces and are thus no black-box specification.
On the other hand, they abstract from the component’s source code and algorithms
and are thus no white-box specification. This violation of the black-box principle,
which is usually demanded from software components [SGM02], is necessary to
create a reusable performance model.

However, RDSEFFs limit the additionally revealed information about compo-
nent internals to elements necessary for performance analysis. They do not reveal
local variables of component services, because parameter dependencies in RDSEFFs
may only refer to input parameters specified in the provided interface. The algo-
rithms implemented by the component are highly abstracted and mostly subsumed
in single internal actions. An RDSEFF only reveals control flow that alters the se-
quence of executing required services. Therefore, the intellectual properties to the
source code by a component developer are not affected when an RDSEFF is pub-
lished.

Furthermore, in many cases software architects do not need to understand RD-
SEFFs of existing components, because they operate on a higher abstraction level
of the model and only refer to components. Performance analysis tools exploit RD-
SEFFs and might point to components, which are a bottleneck, prompting software
architects to ask the corresponding component developers to fix the components
and provide new RDSEFFs.

Variable Abstraction Level The standard abstraction from the source code in-
duced by an RDSEFF has already been described. All instructions between two
external service calls should be combined into a single internal action, whose para-
metric resource demand should compactly express the demand of these instructions
with stochastic means. However, this abstraction level is only a guidance for com-
ponent developers to avoid state space explosion during performance analysis. It is
not enforced by the PCM.

In contrast, component developers could use multiple internal actions in suc-
cession and model the control flow between them without having an External-

148

4.3. RESOURCE DEMANDING SERVICE EFFECT SPECIFICATION

Action. As an extreme case, an internal action could be used for each code in-
struction, which would result in a model without an abstraction therefore being as
complex as the source code. This more fine-granular modelling potentially makes
the performance model more accurate. However, it can easily lead to intractable
specifications and revelation of intellectual properties.

Up to this point, a better abstraction level (with higher accuracy but still tractabil-
ity) than the standard abstraction level described above is unknown. More research
into this direction is needed. It might depend on the component’s size, which ab-
straction level is useful. More complex components could require a lower abstrac-
tion level to make accurate predictions. Different components could require differ-
ent RDSEFFs with different abstraction levels.

Smith et al. [Smi02] have stated that the Pareto principle (aka. 80/20 rule) applies
to the execution times of software. From experience, it is known that roughly 80
percent of the execution time are consumed by only 20 percent of the underlying
code. Therefore, a component developer needs to identify these 20 percent and
provide less abstract RDSEFF parts for them, while abstracting the other 80 percent
as much as possible. Empirical studies need to investigate whether this is feasible.
Profiling techniques used for RDSEFF generation could support the step.

Information Sources A lot of information is necessary to create an RDSEFF accu-
rately modelling the performance properties of a component service. It is debatable
whether such a complex model is useful in practice, where developers often cannot
spend much time on performance modelling. However, complete manual mod-
elling of RDSEFFs should only be necessary if a component developer designs a
new component. For already implemented components, RDSEFFs should be gener-
ated as far as possible from existing development artifacts, such as functional design
documents, code, test cases, and performance measurements. Chapter 5 sketches a
hybrid approach combining static code analysis and profiling techniques to gener-
ate RDSEFFs from code. A static code analysis to partially create RDSEFFs has been
implemented as part of this thesis (also described in Chapter 5).

Third-Party Reuse RDSEFFs are specifically designed for third-party reuse. Com-
ponent developers shall submit RDSEFFs of their components to public repositories,
where software architects retrieve them to build system models. While this pro-
cess model is theoretically advantageous over classical approaches without reuse,
its success in practise still needs to be proved. Marketplaces for software compo-

149

4.4. MAPPING PCM INSTANCES TO QPNS

nents have long been envisioned and researched [SGM02], however until today the
software industry has not realised them. It is therefore questionable whether public
repositories for component performance models can be achieved in practise in the
near future.

4.4 Mapping PCM instances to QPNs

The following introduces a mapping from the PCM to Hierarchical Queueing Petri
Nets (HQPN) [BBK94] to formally specify the performance-related behavioural se-
mantics of PCM instances. Chapter 4.4.1 first motivates the use of HQPNs, before
explaining the general structure of the HQPN resulting from a transformation of
a PCM instance and listing basic assumptions of the mapping. Chapter 4.4.2 then
describes the mapping of PCM usage model fragments to HQPN fragments and
provides a comprehensive example. Finally, Chapter 4.4.3 describes the mapping of
PCM RDSEFF fragments to HQPN fragments and also illustrates the mapping to an
example.

4.4.1 Introduction

Motivation The model transformation described in the next subsections uses
HQPNs [BBK94] as target model. It is intended to give performance-related con-
cepts in the newly introduced behavioural modelling languages formal semantics.
The mapping does not give formal semantics to component-related concepts, such
as PCM interfaces or PCM roles, because they have no counterparts in the perfor-
mance domain.

Appendix B.2 provides a step-wise introduction into HQPNs and includes for-
mal definitions of different kinds of Petri nets, on which the HQPN definition (Def.
21) is based on. The following assumes that the reader is familiar with the HQPN
formalism.

HQPNs directly support many concept from PCM instances, e.g., control flow,
synchronisation, timing, queueing, and parameter dependencies with the Petri net
colours. Therefore, it is less complicated to specify the mapping from PCM instances
to HQPN instances as it would be with other formalisms like SPAs or QNs.

Although existing solvers for HQPNs (cf. [BBK95, KB06]) could be used to pre-
dict the performance of the resulting models, this has not been done in this work
as an implementation of the mapping is future work. This chapter only shows that

150

4.4. MAPPING PCM INSTANCES TO QPNS

it is possible to map PCM instances to HQPNs, which shall clarify the meaning of
performance-related PCM concepts.

However, to predict the performance of PCM instances, Becker [Bec08] has im-
plemented a model-transformation to a discrete-event simulation framework called
”SimuCom”. SimuCom uses similar semantics as the HQPN mapping defined in
the following, but is not rooted in a specific formal performance model (e.g., SPA,
SPN). Nevertheless, the Java code implementing the simulation follows the seman-
tics presented in the following. Thus, performance predictions with SimuCom are
assumed to yield the same results as using existing HQPN solvers.

General HQPN Structure for a PCM Instance Fig. 4.11 depicts the structure of
the mapping from a valid PCM instance to a HQPN. The mapping transforms
each Workload, ScenarioBehaviour, and ResourceDemandingBehaviour in
a specific AssemblyContext into a QPN subnet. The resulting HQPN includes
one layer of Workload subnets and an arbitrary amount of layers of Scenario-
Behaviour and ResourceDemandingBehaviour subnets. Fig. 4.11 depicts only
two layers for the latter.

Workload

Usage
Model Subnet:

Scenario
Behaviour

color VarSpec = product string * string;
color VarList = list VarSpec;
color CompParList = list VarSpec;
color LoopList = list int;
color GuardList = list string;
color TokenId = int;

color TokenData = product VarList *
CompParList * LoopList * GuardList *
TokenId;

Resource
Demanding

Service
Effect Fusion Set:

Specification Processing
ResourceSubnet:
Specification

Demanding
Behaviour

Resource

Figure 4.11: HQPN Instance as a Result of a Mapping from a PCM Instance

The HQPN represents each user in the UsageModel or each request inside the

151

4.4. MAPPING PCM INSTANCES TO QPNS

System with a single token. The token’s colour is a complex data type named
TokenData (Fig. 4.11, right hand side), which contains:

• VarList: a list of currently valid parameter characterisations (as a tuple (’ref-
erence name’, ’specification’)) including possibly input/output characterisa-
tions

• CompParList: a list of currently valid parameter characterisation specified as
component parameters by the domain expert, software architect, component
developer.

• LoopList: a list of loop iteration numbers. When a token enters a loop in the
usage model or in an RDSEFF, the loop iteration number is added to the list.
It represents the number of iterations a token must still execute in the current
loop upon each completed loop iteration.

• GuardList: a list of branching guards, which currently have evaluated to
true. The net uses them to calculate probability distributions with stochastic
dependencies.

• TokenID: a unique ID for each token. It is used merge tokens again after
splitting and firing them into subnets.

In the following, an instance of data type TokenData is called a = (varList,

compParList, loopList, guardList, tokenId). The mapping from PCM
elements to these data types preserves parameter dependencies from PCM instances
in the Petri net. It includes them in the firing weights of transitions or service de-
mands for queueing places. If a token representing a request passes a transition
with a parametric firing weight, the actual weight without parameter dependencies
can be determined by using the current parameter characterisations encoded in the
token’s colour. The functions for realising this are coded in Standard ML [MTH90],
which is commonly used for coloured Petri nets [Jen92]. The following subsections
will describe this in detail.

The mapping transforms ProcessingResourceSpecifications (i.e., CPU,
HD, etc.) of a PCM instance into queueing places, which have the scheduling poli-
cies specified in the PCM instance. As different RDSEFFs access the same resources,
the mapping uses fusion sets (Appendix B.2) to merge queueing places representing
a single resource in different QPN subnets.

152

4.4. MAPPING PCM INSTANCES TO QPNS

While the PCM supports the specification of general distribution functions,
HQPNs only support exponentially timed transitions. However, the mapping uses
phase-type distributions (e.g., Coxian or hyper-exponential distributions [BH07]) to
approximate the general distribution functions. In the following, a function Ph x is
assumed to convert any distribution function x into a phase-type distribution, which
can be used in the net. For example, to express a Coxian distribution, multiple ex-
ponential distributions (e.g., in timed transitions) need to be executed in sequence.
For hyper-exponential distributions multiple exponentially timed transitions can be
executed in sequence and parallel. It is assumed that this mapping does not alter
the performance properties of the model significantly.

Stochastic expressions as described in Chapter 3.3.6 can contain arithmetic oper-
ations, such as addition, multiplication, etc. The mapping described in the following
does not include a definition of these operations in Standard ML. Chapter 3.3.6 has
already described the semantics of these operations. As the goal of the mapping is
to provide semantics for PCM concepts, an implementation of the operations in the
Petri net language has been omitted.

4.4.2 Usage Model Semantics

This subsection describes the mapping from usage model fragments to QPN
fragments and subnets. It will subsequently explain the mapping for Closed-
Workload, OpenWorkload, ScenarioBehaviour, Branch, Loop, Delay, and
EntryLevelSystemCall. Thus, this part of the mapping includes all classes from
the meta-model (cf. Fig. 4.6) and is complete. To map a complete PCM instance to
a HQPN, the individual mappings can be combined. The example presented at the
end of this subsection will illustrate that.

To specify the mapping, a figure is given for each of the meta-classes with a usage
model instance on the left hand side and the corresponding QPN on the right hand
side. The figure uses the concrete syntax for both formalisms instead of the abstract
syntax for a compact illustration.

Closed Workload The HQPN represents each workload of a PCM instance as a
dedicated QPN. A ClosedWorkload is mapped according to Fig. 4.12. The starting
place p1 is a timed queueing place and initially contains as many tokens as specified
in the PCM instance as user population (M0 X , with X being the number of
users). The queue of p1 is q1

p1

G G IS, making the place a delay node with infi-

153

4.4. MAPPING PCM INSTANCES TO QPNS

nite server scheduling. The place p1 simulates the user think time, which is mapped
to the service demand of each user token at this place: μ1 TokenData Ph Y ,
where Y is the think time specification. The function Ph x is assumed to transform
any distribution function x into a phase-type distribution.

PCM QPN

a

a1

a

a
t1

t2

p1

pid1

<<ScenarioBehaviour>>
GUID = id1

<<ClosedWorkload>>
population = X
thinkTime.specification = Y

M0(p1) = X’a
M0(p2) = 1’b
M0(pid1) = 0
q1 = G/G/ /IS

1(TokenData) =
Ph(Y)
w1(t1)=w2(t2)=1
a1 = ([], [], [], [], id)

p2

id

id+1

Figure 4.12: Mapping PCM2QPN: Closed Workload

The mapping adds a unique user ID id to the token in the definition of a1. The net
uses this ID later to direct tokens to different places. The id for the current token is
retrieved from the place p2, and incremented afterwards. Thus each token gets a new
number. Place p2 is part of a fusion set with all other places for user id generation in
all subnets for workloads.

t1 fires each user token into a QPN subnet place pid1, which represents the
ScenarioBehaviour directly contained in the current UsageScenario. Because
the mapping uses GUID of the PCM’s ScenarioBehaviour specification, it is un-
ambiguous. After returning from the subnet, t2 fires each token again into the timed
queueing place p1, so that it can again execute the ScenarioBehaviour after the
specified think time.

Open Workload The mapping for an OpenWorkload in Fig. 4.13 is similar to the
mapping for the ClosedWorkload, except that not a fixed number of tokens circu-
lates in the net, but that tokens are created by t1 and later destroyed by t2. t1 is a
timed transition with a firing delay Ph X derived from the inter-arrival time speci-
fication of the PCM instance. Because t1 creates an unlimited number of tokens, this
can lead to unlimited queue lengths, if one of the service times of a queueing place
is longer than the inter-arrival time.

The mechanism of invoking the ScenarioBehaviour corresponding to the
OpenWorkload is the same as for ClosedWorkloads. a1 is the same variable in-

154

4.4. MAPPING PCM INSTANCES TO QPNS

PCM QPN

<<ScenarioBehaviour>>
GUID = id1

<<OpenWorkload>>
interArrivalTime = X

w1(t1)= Ph(X)
w2(t2)= 1
M0(p2) = 1'b
M0(pid1) = 0
a1 = ([], [], [], [], id)a

t1

t2

pid1

a1p2

id

id+1

Figure 4.13: Mapping PCM2QPN: Open Workload

stance as before and initialises the variable characterisations. Opposed to Closed-
Workloads however, t2 immediately destroys each token, which returns from the
subnet representing the ScenarioBehaviour.

Notice that for all following places p (except for places representing Passive-

Resources) used in the illustrated QPNs, M0 p 0, i.e., the initial number of
tokens is zero. Only a place of the QPN for a ClosedWorkload contains a number
of tokens initially, all other places are empty.

Scenario Behaviour Invoking a ScenarioBehaviour as depicted in Fig. 4.14
does not change the behaviour of the net performance-wise. It is a structuring mech-
anism without changing variable instances or consuming time. Each token fired into
a subnet place referring to a QPN subnet via the ScenarioBehaviour’s GUID,
gets inserted into the input-place of the subnet. t1 then immediately fires the token
into the place pid2, which represents the first action of the behaviour identified by its
GUID. It can be a Branch, Loop, Delay, or EntryLevelSystemCall.

As in [BBK94], the subnet for a ScenarioBehaviour contains a place to count
the actual population inside the subnet. This ensures that not more tokens than en-
tered before can be fired out of a subnet place. After a token reaches the final action
of the ScenarioBehaviour represented by place pid3 in the QPN, t2 fires the to-
ken into the output-place of the subnet, where it is ready to be fired into successive
places of the subnet place.

Branch Mapping Branches with branched behaviours from a usage model in-
stance to a QPN is straight-forward (Fig. 4.15), as there is a direct counterpart for
each PCM element in the QPN. The branch probabilities pi from the branch transi-

155

2

4.4. MAPPING PCM INSTANCES TO QPNS

PCM QPN id1

a
t1

INPUT OUTPUT

ACTUAL
POPULATION

[…]
pid2 pid3

t2

a a

a<<AbstractUserAction>>
GUID = id2

<<ScenarioBehaviour>>
GUID = id1

<<AbstractUserAction>>
GUID = id3

[…]

M0(pid2) = M0(pid3) = 0
w1(t1)=w2(t2)=1

Figure 4.14: Mapping PCM2QPN: ScenarioBehaviour

tions in the PCM directly translate to the firing weights of the immediate transitions
ti, for 2 i n. Each branch behaviour is represented as a subnet place with the
corresponding GUID in the QPN. After completing one of the branch behaviours, ti
fire the token into the starting place of the Branch’s successor action (wi 1;ti

i n). None of the forward and backward incidence functions in this QPN
change the variable a, as they pass through the current instance.

PCM QPN

[…]

a
a

a
a a

a
a

a

t2 t’2

tn t’n

M0(pidi)=0
w(ti)=pi, w(t’i)=1; 2 i n

pid2

pidn

pid1 pidn+1<<Branch>>
GUID = id1

<<ScenarioBehaviour>>
GUID = id2

<<BranchTransition>>
branchProbability = p2

<<BranchTransition>>
branchProbability = pn

<<ScenarioBehaviour>>
GUID = idn

[…]

<<AbstractUserAction>>
GUID = idn+1

Figure 4.15: Mapping PCM2QPN: Branch

Loop Fig. 4.16 shows the mapping of a Loop with a body behaviour to a QPN.
First, a1 draws a sample from the loop iteration distribution function (i.e., an
IntPMF) from the PCM instance, and adds the resulting integer to a list of loop
iteration integers. This is list of integers instead of a single integer, because loop can
be executed recursively nested, and the token needs to memorise all current loop

156

4.4. MAPPING PCM INSTANCES TO QPNS

counter. The firing of the transitions t2 and t3 depends on whether the first element
in the list of loop iteration integers (i.e., the current loop counter) is zero. If it is not
zero, t2 fires the current token into the subnet place pid2, which indicates that the
ScenarioBehaviour with GUID id2 representing the loop gets executed once.

PCM QPN

<<ScenarioBehaviour>>
GUID = id2

a2 a2

t1

t2

t3

a a1

a3

a4

a2

a2

t4pid1

pid3

pid2

p1

<<Loop>>
GUID = id1

iterations.specification = X

<<AbstractUserAction>>
GUID = id3

a = (varList, compParList, loopList, guardList, tokenID)
a1 = (varList, compParList, drawSample(X)::loopList,
guardList, tokenID)
a2 = (varList, compParList, i::loopList, guardList, tokenID)
a3 = (varList, compParList, i-1::loopList, guardList, tokenID)
a4 = (varList, compParList, loopList, guardList, tokenID)
w1(t1) = w4(t4) = 1
w2(t2) = if i>0 then 1 else 0;
w3(t3) = if i=0 then 1 else 0;

Figure 4.16: Mapping PCM2QPN: Loop

After its execution, the token returns from the subnet place and t4 fires. Then, a3

decrements the current loop counter by one and t2 and t3 again check whether the
counter has reached zero. If the counter finally reaches zero, t3 fires and a4 removes
the counter from the list of loop iteration integers. The token then is fired to the
starting place representing the successor of the current Loop (pid3).

Delay A timed queueing place pid1 represents the Delay from a PCM instance
in a QPN (Fig. 4.17). Its queue qid1 G G IS is a delay queue with infinite
server scheduling. The actual delay time X is mapped to the service demand of
this place μid1 TokenData Ph X . As before, Ph x is a function transforming
the distribution function specified by X into a phase-type distribution. X must not
include parameter dependencies (see Chapter 4.2.1).

Entry Level System Call Mapping EntryLevelSystemCalls (Fig. 4.18) re-
quires solving parametric dependencies, because the input parameter characteri-
sation of such a call may depend on formerly recorded output parameter character-
isations from other EntryLevelSystemCalls in the token’s variable binding.

The immediate transition t1 fires whenever a token is available in pid1 (i.e.,
w1 1). It adds a token to both pid5 and pid2,id3. The place pid5 is used to mem-t1

157

<<VariableUs
referenceName R
type = S
Specification = T

<<VariableUsa
referenceName = R
type = S
Specification = T

 <<Variable
referenceName = R
type = S
Specification = T

Output
<<VariableUsage>>
referenceName = R
type = S
Specification = T

Input
<<VariableUsage>>
referenceName = U
type = V
Specification = W

4.4. MAPPING PCM INSTANCES TO QPNS

PCM QPN

t1

pid1

M0(pid1) = M0(pid2) = 0
w1(t1)=1
qid1 = G/G/ /IS

id1(TokenData) = Ph(X)

pid2

a a
<<Delay>>
GUID = id1

userDelay.specification = X

<<AbstractUserAction>>
GUID = id2

Figure 4.17: Mapping PCM2QPN: Delay

<<EntryLevelSystemCall>>
GUID = id1

<<AbstractUserAction>>
GUID = id4

<<Provided
Role>>

<<ProvidedDelegation-
Connector>>

<<Assembly
Context>>
GUID=id2

age>>
= i

i

i

<<VariableUsage>>
referenceName = Li
type = Mi
Specification = Ni

Usage>>
i

i

i

<<VariableUsage>>
referenceName = Oj
type = Pj
Specification = Qj

i

i

i

Output
<<VariableUsage>>
referenceName = Xm
type = Ym
Specification = Zm

i

i

i

Input
<<VariableUsage>>
referenceName = Ul
type = Vl
Specification = Wl

<<Signature>>
<<Resource
Demanding

SEFF>>
GUID = id3

<<Implement
ationCompo
nentType>>

ge>>
i

i

i

<<VariableUsage>>
referenceName = Rk
type = Sk
Specification = Tk

t2 pid4

pid2,id3

a5

t1pid1

a
a

w1(t1)= 1
w2(t2)= if tokenId3=tokenId4 then 1 else 0;

a = (varList, compParList, loopList, guardList, tokenId);
a2 = (solveDepsInList([„U1.V1",“W1“, …, „Un.Vn“,“Wn“], varList),
solveDepsInList([„L1.M1“,“N1“, …, „Lo.Mo“,“No“],varList)::
solveDepsInList([„O1.P1",“Q1“, …, „Op.Pp“,“Qp“],varList)::
solveDepsInList([„R1.S1",“T1“, …, „Rq.Sq“,“Tq“], varList),
loopList, guardList, tokenId)

a3 = (varList3, compParList3, loopList3, guardList3, tokenId3)
a4 = (varList4, compParList4, loopList4, guardList4, tokenId4)

a5 = (solveDepsInList([„X1.Y1",“Z1“, …, „Xr.Yr“,“Zr“],
varList3)::varList3, compParList3, loopList3, guardList3, tokenId3);

a2

a

a4

pid5

Figure 4.18: Mapping PCM2QPN: EntryLevelSystemCall

158

4.4. MAPPING PCM INSTANCES TO QPNS

orise the users currently executing the called RDSEFF, whereas pid2,id3 is a subnet
place representing an RDSEFF (id3) within a specific assembly context (id2). The
original token a gets forwarded to pid5.

a2 prepares the current token for firing into the RDSEFF subnet place. It adds
the input parameter characterisations (reference Ul) and the component parameter
characterisations from domain experts (reference Li), software architects (reference
Oj), and component developers (reference Ri) to the token’s data. The characterisa-
tion can include dependencies to other parameter characterisations, thus a2 calls the
function solveDepsInList (Listing 4.1, in Standard ML [MTH90]), which resolves
those dependencies, before adding them to the token’s data.

This function simply substitutes variable characterisations from the list varList

of formerly recorded output parameter characterisations of other EntryLevel-
SystemCalls. Thus, solveDepsInList tokenises each varSpec, which represents
a stochastic expression representing the parameter dependency from the PCM in-
stance. This yields a list of strings, for example ”a + b” gets tokenised to ”a”, ”+”,
”b”. With this list, solveDepsInList calls the function solveDeps and also forwards
the output parameterisation (z).

solveDeps (Listing 4.1) iterates over the list of strings and, upon finding a vari-
able name also present in the passed list of output parameter characterisations, sub-
stitutes the current string with the variable specification (varSpec) of that characteri-
sation. This ensures that the current bindings of output parameter characterisations
are used in the stochastic expressions for the input parameter characterisation of the
current EntryLevelSystemCall if corresponding parameter dependencies had
been specified.

The resulting stochastic expressions do not contain any variable names, but only
random variables according to Chapter 3.3 as operands. The actual solution of the
resulting stochastic expressions, which may involve arithmetic operations, yields a
single random variable useful in the Petri net. The semantics of this solution have
already been described in Chapter 3.3.6 and are not given here in Standard ML for
brevity.

t1 fires a token into the subnet place pid2,id3, which represents the called
ResourceDemandingSEFF in a specific AssemblyContext. The mapping deter-
mines this RDSEFF from the PCM instance (cf. Fig. 4.18) by using the Provided-
Role referenced by the EntryLevelSystemCall, which is provided by the PCM
System. With the ProvidedRole, the ProvidedDelegationConnector and
the corresponding AssemblyContext can be determined. Its encapsulated com-

159

4.4. MAPPING PCM INSTANCES TO QPNS

ponent contains a set of RDSEFFs, which each reference a signature. Matching the
referenced Signature from the EntryLevelSystemCall then yields the called
RDSEFF (Fig. 4.18).

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

(* initiates solving parametric dependencies for a list of stochastic

solveDepsInList : list VarSpec * list VarSpec -> list VarSpec

(* termination condition *)

fun solveDepsInList (nil,z) = nil

(* take the first element from the first list *)

| solveDepsInList ((varName,varSpec)::t, z) =

(* solve deps for first element, then continue with rest *)

(varName,solveDeps(tokens(varSpec),z))::solveDepsInList(t,z)

(* substitutes the strings in the list of the first parameter with *)

(* variable specifications from the second parameter *)

solveDeps : list string * list VarSpec -> string

(* termination condition *)

fun solveDeps (nil,t) = nil

(* could not resolve dependency, use original value *)

| solveDeps (s1::s, nil) = s1

| solveDeps (s1::s, (varName, varSpec)::t) =

(* found dependency *)

if compare(s1,varName) = EQUAL

(* substitute s1 with the current spec assigned to *)

(* the variable with the same name and continue with *)

(* the rest of the tokens *)

then varSpecˆsolveDeps(s,(varName,varSpec)::t)

(* no dependency found so far, *)

(* continue searching for the current varName with *)

(* the rest of the VarSpecs, and for the other tokens *)

(* again with all VarSpecs *)

else solveDeps(s1,t)ˆsolveDeps(s,(varName,varSpec)::t)

expressions *)

Listing 4.1: Functions for Solving Parametric Dependencies

The specifications of a3 and a4 forward tokens to the transition t2. This transi-
tion fires if a token with a tokenId matching one of the tokens waiting in pid5 re-
turns from the RDSEFF subnet (i.e., w2 t2 if tokenId3 = tokenId4 then 1 else 0;). It
then fires a token into place pid4. a5 adds the specified output variable usages (ref-
erence Xi) to the list varList3 of currently valid parameter characterisations again
using the solveDepsInList function, because the output variable characterisations
may include parameter dependencies. Notice that a5 also removes the component
parameter characterisations by using compParList3 instead of compParList4.

This concludes the mapping to QPN fragments from usage model parts within a
PCM instance.

Example As an example for an HQPN resulting from mapping a PCM usage
model, Fig. 4.19 shows an excerpt of the HQPN resulting from transforming the

160

4.4. MAPPING PCM INSTANCES TO QPNS

usage model in Chapter 4.2.2. The illustration contains four of the actually seven
QPN subnets created by the mapping. The nets resulting from the branch and loop
behaviours have been omitted for brevity.

p1

p2

INPUT OUTPUTACTUAL
POPULATION

p3

p4

p5

ENTRY LEVEL SYSTEM CALL DELAY LOOP

SCENARIO BEHAVIOUR

C
LO

S
E

D
 W

O
R

K
LO

A
D

p7

p8 p9

INPUT OUTPUTACTUAL
POPULATION

SCENARIO BEHAVIOUR

p6

O
P

EN
 W

O
R

KL
O

AD

BRANCH ENTRY LEVEL SYSTEM CALL

Figure 4.19: QPNs resulting from mapping a PCM Usage Model (Example)

The net contains a QPN subnet for the ClosedWorkload in the upper left cor-
ner, which (using place p2) calls the QPN subnet for the corresponding Scenario-
Behaviour in the upper right corner of the figure. That subnet again calls further
subnets not shown here with the places p3 (RDSEFF) and p5 (Loop Behaviour). The
queueing place p4 realises the Delay from the example.

Furthermore, the net includes a QPN subnet for the usage scenario with the
OpenWorkload (lower left corner of the figure). With its place p6, it calls the subnet
on the lower right corner of the figure, which represents the ScenarioBehaviour
of this usage scenario. The subnet-places p7 and p8 represent the branched be-
haviour, and the subnet-place p9 the RDSEFF called by the EntryLevelSystem-
Call in this ScenarioBehaviour.

161

4.4. MAPPING PCM INSTANCES TO QPNS

4.4.3 RDSEFF Semantics

The following describes the mapping from RDSEFF fragments to QPN fragments
and subnets. As the mapping is partially similar to the mapping of usage
models, the following only describes the mapping rules for action meta-classes,
which differ from the usage model mapping. This includes InternalAction,
ExternalCallAction, SetVariableAction, ForkAction, AcquireAction,
and ReleaseAction. For other action meta-classes (i.e., ResourceDemanding-
Behaviour, BranchAction, LoopAction, and CollectionIteratorAction,
the following will briefly sketch their mapping, which is similar to mappings from
the usage model meta-classes.

In particular, the mapping of ResourceDemandingBehaviours is comparable
to the mapping of the usage model’s ScenarioBehaviours. It results in a QPN
subnet with an input, output, and actual population place (as in Fig. 4.14).

Furthermore, the mapping for BranchActions and LoopActions is similar
to the mapping of the usage model’s Branch and Loop respectively (Fig. 4.15
and 4.16). If a BranchAction includes GuardedBranchTransitions, first the
function solveDepsInList needs to be executed on the included branch conditions,
then the branch condition is added to the token’s guardList. By solving the re-
sulting stochastic expression respecting the formerly evaluated branch conditions
(see Chapter 4.3.1), the mapping can then determine the branch probabilities. Also
the loop iterations specifications in LoopActions need to be processed by the
solveDepsInList function, because they might include parametric dependencies in
RDSEFFs. CollectionIteratorActions are mapped equally to LoopActions,
i.e. the mapping does not respect stochastic dependencies included in their loop
bodies as explained in Chapter 4.3.1.

The following describes the mapping for the other RDSEFF action meta-classes,
i.e., InternalAction, SetVariableAction, ForkAction, AcquireAction,
and ReleaseAction.

Internal Action An InternalAction can contain multiple Parametric-

ResourceDemands, which each reference a certain ProcessingResource-

Type. The ResourceContainer the component is deployed on needs to
have a ProcessingResourceSpecification referring to such a Processing-
ResourceType.

The mapping determines the current RDSEFF’s ResourceContainer via
the AssemblyContext and the AllocationContext referencing it. As there

162

4.4. MAPPING PCM INSTANCES TO QPNS

is at most one ProcessingResourceSpecification referring to a specific
ProcessingResourceType inside a container, the mapping is unambiguous.

The mapping to QPNs (Fig. 4.20) produces a single queueing place pidi for each
ProcessingResourceSpecification with the GUID idi. There is no counter-
part for the ProcessingResourceTypes in the QPNs, as they are only used to
create the link to the ProcessingResourceSpecifications.

PCM QPN

<<InternalAction>>
GUID = id1

<<AbstractAction>>
GUID = idn+1

<<Processing
ResourceType>>

<<Processing
ResourceType>>

<<ResourceContainer>>
<<ProcessingRe-

sourceSpecification>>
GUID = id2

processingRate = V2
schedulingPolicy = S2

<<ProcessingRe-
sourceSpecification>>

GUID = idn
processingRate = Vn
schedulingPolicy = Sn

[…]

[…]

<<Parametric
Resource
Demand>>
specification = Xn

<<Parametric
Resource
Demand>>
specification = X2

[…] pid2pid1

[…]
pidn pidn+1

a a

a

a1 a a

at1 t2

t’2

a

tn

t’n

w1(t1) = 1;
wi(ti) = if tokenId1=tokenId2 then 1 else 0;
wi(t’i) = 1- wi(ti); 2 i n
a = varList, compParList, loopList,
guardList, tokenId);
a1 = (varList, compParList, loopList,
guardList, tokenId1);
a2 = (varList, compParList, loopList,
guardList, tokenId2);
qidi = G/G/1/Si;

idi(TokenData) =
Ph(solveDepsInList(Xi, b) / Vi);

a a2 a2[…]

pid1_2 pid1_n

Figure 4.20: Mapping PCM2QPN: InternalAction

The queueing places pidi are of type G G 1 and adopt the same scheduling
policy (i.e., First Come First Serve, Processor Sharing, or Infinite Server) as the
ProcessingResourceSpecifications they are representing. The mapping
creates such a queueing place for each ParametricResourceDemand, thus in the
complete HQPN there are multiple queueing places each representing the same pro-
cessing resource.

To correctly imitate the behaviour of such a resource, these multiple places for a
single processing resource are part of a fusion set. If a transition fires a token into
such a place, it is also fired into all other places of the fusion set (i.e., the token is
replicated). This ensures that the queues of these places contain copies of the same
tokens and the contention delays can be determined correctly respecting all other
tokens requesting service from the same resource.

This also implies that the net has to destroy the replicated tokens after the re-

163

4.4. MAPPING PCM INSTANCES TO QPNS

source has served them and only forward the tokens originating from the current
RDSEFF. The transitions t2, ..., tn (cf. Fig. 4.20) are responsible for the destruc-
tion of replicated tokens, where n denotes the number of ProcessingResource-
Specification the RDSEFF accesses. The net memorises the requests from the
RDSEFF to a resource with the places pid1 i. Matching the tokenIds from the memo-
rised tokens and the tokens departing from the queueing place pidi decides whether
the net destroys a departing token with the transition ti or whether the token gets
forwarded using the transition ti. Thus, all replicated tokens from firing into a fu-
sion set are removed again and cannot alter the behaviour of the current QPN’s
RDSEFF.

The QPN mapping sequentialises the resource demands specified in the RDSEFF
and processes them one after another. If a component service uses resources in par-
allel, component developers must make this explicit in the RDSEFF using a Fork-
Action and multiple InternalActions.

The resource demands in RDSEFFs map to the service demand of the corre-
sponding queueing places, i.e., μidi TokenData Ph solveDepsInList Xi, b ,
where Xi relates to the ParametericResourceDemand and Vi relates to the
processingRate of the accessed resource. First, the mapping resolves parametric
dependencies with the solveDepsInList function. Then, it divides the demand by
the processing rate of the ProcessingResourceSpecification. This yields the
actual time distribution requested by the component service for computing on the
resource. As before, the function Ph x

Vi

maps the time distribution to a phase-type
distribution. After all resource demands have been processed, a token continues
with the place created for the successor action of the InternalAction.

External Call Action The mapping for ExternalCallActions distinguishes
two cases: either the call is directed at another component or the call is directed at a
system external service. In the first case, the mapping is almost equal to the mapping
of EntryLevelSystemCalls (Fig. 4.18). Instead of deriving the called RDSEFF
via the system ProvideRoles as in the mapping for EntryLevelSystemCalls,
the mapping follows the RequiredRoles of the current component, gets the corre-
sponding AssemblyConnector, and takes its providing AssemblyContext (also
see Chapter 3.2.4). This AssemblyContext encapsulates a component, from which
the RDSEFF can be determined. As the rest of the mapping is equal to the mapping
of EntryLevelSystemCalls (cf. Fig. 4.18), a further description is omitted here
to avoid redundancy.

164

Output
<<VariableUsage>>
referenceName = R
type = S
Specification = T

Input
<<VariableUsage>>
referenceName = U
type = V
Specification = W

<<Variable
referenceName = R
type = S
Specification = T

4.4. MAPPING PCM INSTANCES TO QPNS

In the second case (i.e., the call is directed at a system external service), the map-
ping for ExternalCallActions is different compared to EntryLevelSystem-

Calls. Fig. 4.21 depicts the mapping, which is similar to the mapping for Delays
from the usage model.

<<ExternalCallAction>>
GUID = id1

<<AbstractAction>>
GUID = id2

<<ProvidedRole>>

i

i

i

Output
<<VariableUsage>>
referenceName = Xk
type = Yk
Specification = Zk

i

i

i

Input
<<VariableUsage>>
referenceName = Uj
type = Vj
Specification = Wj

<<Signature>>

<<SystemSpecified
ExecutionTime>>

<<SpecifiedOutput
ParameterAbstraction>>

Usage>>
i

i

i

<<VariableUsage>>
referenceName = Ri
type = Si
Specification = Ti

<<Random
Variable>>
specification = Q

t1

pid1

w1(t1)=1
qid1 = G/G/ /IS

id1(TokenData) = Ph(Q)

a = (varList, compParList, loopList, guardList,
tokenId);

a1 = (solveDepsInList([„X1.Y1",“Z1“, …,
„Xn.Yn“,“Zn“],varList::
solveDepsInList([„R1.S1",“T1“, …,
„Rm.Sm“,“Tm“],
[„U1.V1",“W1“, …, „Ur.Vr“,“Wr“])::varList,
compParList, loopList, guardList, tokenId);

pid2

a a1

Figure 4.21: Mapping PCM2QPN: ExternalCallAction for system external service

For system external services PCM instances contain no RDSEFFs, but a System-
SpecifiedExecutionTime with a random variable specification Q. Using the
ProvidedRole and Signature referenced from the ExternalCallAction,
the mapping determines the corresponding SystemSpecifiedExecutionTime,
which also references these model elements. The random variable specification
Q is used as a demand for the timed queueing place pid1 using the function
μid1 TokenData Ph Q . Ph x determines a phase type distribution for any dis-
tribution function x.

Finally, the mapping has to include the SpecifiedOutputParameter-

Abstraction into the token’s varList. There are two parameter dependencies in
this case, which the mapping resolves using the function solveDepsInList. First,
the VariableUsages of the SpecifiedOutputParameterAbstraction may
depend on the input parameter characterisations of the ExternalCallAction.
Then, the output parameter characterisations of the ExternalCallAction in turn
depend on the SpecifiedOutputParameterAbstractions.

165

<<VariableUs
referenceName = U
type V
Specification = W

4.4. MAPPING PCM INSTANCES TO QPNS

Set Variable Action These actions specify characterisations of output parameters
of a RDSEFF. In the QPN for the RDSEFF, these characterisations must be added
to the current token’s variable list b. The mapping (Fig. 4.22) recognises that the
characterisation may include parameter dependencies. Therefore, it calls function
solveDepsInList, before adding the output variable characterisations to the current
token’s variable list.

PCM QPN

<<SetVariableAction>>
GUID = id1

<<AbstractAction>>
GUID = id2

age>>
i

 = i

i

<<VariableUsage>>
referenceName = Ri
type = Si
Specification = Ti

t1

pid1 pid2

a a1

w1(t1) = 1;
a = (varList, compParList, loopList,
guardList, tokenId);
a1 = (solveDepsInList([„R1.S1",“T1“, …,
„Rn.Sn“,“Tn“], varList)::varList,
compParList, loopList, guardList,
tokenId);

Figure 4.22: Mapping PCM2QPN: SetVariableAction

Fork Action As ForkActions are subject to research by Happe [Hap08], the map-
ping described here (Fig. 4.23) only includes a simple example of an asynchronous
fork, where forked behaviours do not join after termination. Happe’s thesis details
on the semantics for synchronous forks and replication.

PCM QPN

<<ForkAction>>
GUID = id1

<<Forked
Behaviour>>

GUID = id2

<<Forked
Behaviour>>

GUID = idn

[…]

<<AbstractAction>>
GUID = idn+1

[…]

a a2

a

a
t1

w(t1) = 1;
w(ti) = 1; 2 i n;
a = (varList, compParList,
loopList, guardList, tokenId);
ai = (varList, compParList,
loopList, guardList, tokenId^’i’);

pid2

pidn

pid1

an

t2

ti

tn
pidn+1

ai a

Figure 4.23: Mapping PCM2QPN: Fork Action

166

4.4. MAPPING PCM INSTANCES TO QPNS

The transition t1 fires a copy of the current token into each QPN subnet place
pidi representing the ForkedBehaviours. These behaviours are treated equally
to ResourceDemandingBehaviours. Upon firing t1, the mapping does not alter
the values of the current token’s variable except for the user ID h, where it attaches
the number i of the forked behaviour. This ensures that the copied tokens have
unique user IDs and can correctly use queueing places representing Processing-
Resources without interfering each other.

After finishing the execution of the ForkedBehaviours, i.e., arriving at the
output place of the respective QPN subnets, the net destroys the copied tokens using
the transitions t2, ..., tn. Concurrently to the ForkedBehaviours, the net continues
execution at the successor action of the ForkAction represented by the place pidn 1.

Acquire/Release Action AcquireAction and ReleaseAction of RDSEFFs
handle the locking of passive resources, such as semaphores, thread instances, or
database connections. The mapping to QPNs produces a dedicated place for each
passive resource and initialises it with as many tokens as are specified as its capacity
in the PCM instance (Fig. 4.24-4.25). The colour of these tokens is irrelevant, as they
need not to be distinguished. Therefore, the colour is called X , and its instances are
called x in the following.

PCM QPN

<<AcquireAction>>
GUID = id1

<<PassiveResource>>
GUID = id2

capacity = n

<<AbstractAction>>
GUID = id3

pid1 pid3

pid2

t1
a a

x

M0(pid2) = n
w(t1) = 1
a = (varList, compParList, loopList,
guardList, tokenId);

Figure 4.24: Mapping PCM2QPN: AcquireAction

The AcquireAction (Fig. 4.24) leads to a QPN that blocks tokens in place pid1

until tokens are also available in place pid2, in which case the immediate transition
t1 can fire. It destroys the x-token and forwards the a-token without changes. After-
wards the token continues with the successor action of the AcquireAction.

167

4.4. MAPPING PCM INSTANCES TO QPNS

PCM QPN

<<ReleaseAction>>
GUID = id1

<<PassiveResource>>
GUID = id2

capacity = n

<<AbstractAction>>
GUID = id3

pid1 pid3

pid2

t1
a a

x

M0(pid2) = n
w(t1) = 1
a = (varList, compParList, loopList,
guardList, tokenId);

Figure 4.25: Mapping PCM2QPN: ReleaseAction

The ReleaseAction (Fig. 4.25) is represented by a QPN, which creates an x-
token with the immediate transition t1 and fires it to the place representing the
passive resource pid2. Now other tokens may acquire this instance of the passive
resource again.

Example As an example for an HQPN resulting from mapping a PCM RDSEFF,
Fig. 4.26 shows an excerpt of the HQPN resulting from transforming the RDSEFF
example in Chapter 4.3.2. The figure contains only the QPN subnet representing
the topmost ResourceDemandingBehaviour, while neglecting the nested loop
or branch behaviours.

As any QPN subnet, this subnet contains an input and output place and a place
counting the ”actual population” (left side of the figure). After being fired from the
input place, a token waits until it can acquire a token from place p1, which repre-
sents a passive resource. Then, it executes an InternalAction with a resource
demand to a CPU, which the QPN represents with the queuing place p2. The subnet
place p3 links to the subnet representing the RDSEFF called by the ExternalCall-
Action after the InternalAction. After completing the call, tokens release the
formerly acquire passive resource, therefore the net fires a token into p1, where it
can be acquired by subsequent requests.

The ReleaseAction is followed by a BranchAction with two branched be-
haviours, represented by the subnet-places p4 and p5. The subnet-place p6 stands
for the loop behaviour executed by the LoopAction executed after the Branch-
Action. After executing the loop, the transition after p7 represents control fork
from the RDSEFF. It fires tokens into the subnet-places p8 and p9, which have been

168

4.4. MAPPING PCM INSTANCES TO QPNS

p2

p3

p4

p5

p6

p1
INPUT

OUTPUT

ACTUAL
POPULATION

p8

p9

p7

R
E

S
O

U
R

C
E

 D
E

M
A

N
D

IN
G

 B
EH

AV
IO

U
R

BRANCH ACTION LOOP ACTION FORK ACTION SET VARIABLE ACTION

ACQUIRE ACTION INTERNAL ACTION EXTERNAL CALL ACTION RELEASE ACTION

Figure 4.26: QPNs resulting from mapping a PCM RDSEFF (Example)

created by the mapping for the ForkedBehaviours. Finally, the second to last
transition of the net realises the SetVariableAction of the RDSEFF, before a to-
ken is fired into the output place and the control flow is returned to the caller of the
RDSEFF.

4.4.4 Limitations and Assumptions

The mapping from a PCM instance to a HQPN as described before bears some limi-
tations discussed in the following:

• Approximation with Phase-Type Distributions: The mapping assumes that it
is possible to accurately approximate the PCM’s general distribution functions
with phase-type distributions [BH07]. The prediction error introduced by this
approximation remains to be quantified.

• Stochastic Independence: The mapping assumes stochastic independence be-
tween the random variables used in the PCM instance. Other than the seman-
tics of the simulation SimuCom [Bec08], it does not draw samples of the ran-
dom variables for resource demands or parameter abstractions and propagates

169

4.5. SUMMARY

them through the architecture. Instead, the mapping includes the random
variables into the data carried by each token. The assumption of stochastic
independence allows using analytical methods to solve the model. However,
it can lead to inaccuracies if a model contains several of these dependencies
(e.g., if a parameter characterisation is used twice to produce a resource de-
mand).

• Unsupported PCM Features: The mapping does not support INOUT parame-
ters in RDSEFFs, as well as composite components, or incomplete components,
such as ProvidedComponentTypes and CompleteComponentTypes. In-
cluding these features remains future work.

4.5 Summary

After the initial description of the PCM in Chapter 3, this section has described ex-
tensions to the model, which aim at reflecting the influence of the usage profile
on the performance of a component-based system. Chapter 4.1 introduces a new
method for modelling input, output, and global parameters. It allows modelling
performance relevant aspects of such parameters using random variables and is
used both by the PCM usage model and the PCM RDSEFFs. The usage model from
Chapter 4.2 allows a description of user behaviour at the system boundaries. Do-
main experts can model this behaviour with stochastic models, which are able to
express the uncertainty during early development stages. For including parameter
dependencies into the specification of software components, Chapter 4.3 has intro-
duced the RDSEFF language, which allows such dependencies for branch probabil-
ities, loop iteration number, resource demands, and parameters passed to required
services of a component. If all components in an architecture are modelled with
this language, the usage profile of each individual component can be determined
automatically. Chapter 4.4 complemented the former informal description of the
modelling languages with a mapping to HQPNs to capture the performance-related
behaviour of PCM instances formally.

170

Chapter 5

Generating RDSEFFs from Java Code

5.1 Motivation

The PCM RDSEFFs language introduced in Chapter 4.3 allows specifying the per-
formance properties of a software component’s service in a parametrised way.

For new component services, which are planned for a new architecture but not
yet realised, component developers have to create the RDSEFF specification man-
ually. They have to model the expected control flow for the RDSEFF and estimate
resource demands as well parameter dependencies on branches, loops, and external
service calls. Estimations can result from experience with similar systems, measure-
ment of prototypes, or simply guesswork. Smith et al. [Smi02] provide many hints
for obtaining useful estimations for such models.

For existing component services, which have already been implemented in code,
generating RDSEFFs at least partially appears possible. Tools can retrieve infor-
mation needed for an RDSEFF from existing development artifacts, such as design
documents, source code, or already conducted performance measurements. Fur-
thermore, tools can execute existing software components and measure their perfor-
mance properties. In the case of existing software components, the PCM supports
analysing changing usage profiles and answering sizing questions.

Automated creation of performance specification has several potential benefits
over manual RDSEFF specifications for existing code. Automatic generation of RD-
SEFFs is less time-consuming than manual specification, especially for large soft-
ware components. The resulting models are less error-prone, because of the missing
human influence, as shown later in a case study. Furthermore, they can be more
accurate, because the included information does not rely on uncertain estimations,

5.2. TECHNIQUES FOR AUTOMATIC PERFORMANCE MODEL GENERATION

but on actual measurements. Giving component developers tools to automatically
create performance models from their components could also overcome their inhi-
bitions about performance modelling because of the expected high effort. Thereby,
model-based performance analysis could become more prevalent.

Notice, that it is not sufficient to execute a component service in a specific hard-
ware environment, with specific input parameters, and specific external services
and measure the time it spends on each resource to create a parametrised RDSEFF.
The RDSEFF is intended for reuse in different environments and is parameterised
over all external influence factors. Therefore it requires executing a component
service over a range of input parameters to reveal the parametric dependencies
between the inputs, resource demands, external service calls, and component be-
haviour. While it is effortless to create non-parametrised RDSEFFs of component
services for a specific environment by simple execution and measurement, the re-
sulting specification would not be suitable for third-party reuse as it would not con-
tain parametric dependencies.

There are several possible approaches for automatic generation of performance
models for existing components, ranging from static code analysis and dynamic
program analysis to symbolic execution. Chapter 5.2 provides an overview of these
approaches and discusses related work. For PCM RDSEFFs, a hybrid reverse en-
gineering approach involving static code analysis and dynamic program analysis
has been proposed [KKKR08]. Chapter 5.3 sketches its process model and provides
pointers to already completed work for this process.

In the scope of this work, a static code analysis has been implemented as an
Eclipse plug-in called Java2PCM [Kap07]. It is capable to derive initial RDSEFF
structures from arbitrary Java code. Chapter 5.4 describes the mappings from Java
code to RDSEFFs supported by Java2PCM, before Chapter 5.5 provides an overview
on its implementation. The application of Java2PCM on a larger component-based
software architecture in Chapter 5.6 evaluates its correctness and proposed benefits.

5.2 Techniques for Automatic Performance Model
Generation

This section lists several techniques useful for automatic performance model gener-
ation and discusses their benefits and drawbacks.

172

5.2. TECHNIQUES FOR AUTOMATIC PERFORMANCE MODEL GENERATION

Design Model Analysis For existing software components, design documents
(e.g., UML diagrams) are often available, which could be exploited for the gen-
eration of performance models. In fact, many approaches targeting the genera-
tion of formal performance models (such as queueing networks, stochastic pro-
cess algebras, stochastic petri nets, etc.) from UML diagrams have been pro-
posed [BDIS04, CDI01].

These approaches require performance-related annotations (e.g., resource de-
mands, loop iteration numbers, branch probabilities) on the often purely functional
models to perform their transformations into performance models. Woodside et
al. call these additional annotations ”completions” [WPS02]. The UML SPT profile
[Obj05b] or the UML MARTE profile [Obj07a] offer UML extensions to specify such
annotations.

Usually, manual specification of these annotations involving estimations [Smi02]
is assumed, because these approaches target early life-cycle performance analysis,
where no source or binary code is available that could provide the needed informa-
tion. Therefore, model-based performance prediction methods do not offer support
for automatic generation of performance annotations based on measurements, but
require performance modelers to include measured data into annotations by hand.

In general, using existing functional design models for automatic performance
model generation is limited, because of the missing required annotations. Only con-
trol flow structures from such models are useful for performance models. Another
drawback of using design models are potential inconsistencies between design and
source code, which leads to inaccurate performance models.

Static Code Analysis If an existing software component is available as source code
(or byte code), static code analysis is possible. It can involve parsing the source code
and operating on its abstract syntax tree to derive information needed for perfor-
mance models. As for design model analysis, source code analysis provides control
flow structures, however without inconsistencies between design and implemen-
tation. The resulting control flow model is complete, whereas dynamic program
analysis (black box testing) might not find certain branches, which are not reached
because of the chosen input parameters.

Additionally, constant (i.e., fixed in code) loop iteration numbers and constant
values for parameters of external service calls can be determined via static source
code analysis. In simple cases, the analysis can also recognise dependencies be-
tween input parameters and control flow guards, loop iterations, or external service

173

5.2. TECHNIQUES FOR AUTOMATIC PERFORMANCE MODEL GENERATION

calls by tracing parameters through code. It is however limited for more difficult
dependencies involving complicated computations or polymorphism. In general,
the halting problem underlies static code analysis, and the iteration numbers of ar-
bitrary loops and the values of parameters are not determinable with this method.

Resource demands are in general not determinable via static code analysis as
they require the execution of code. It is however possible to determine that cer-
tain resources are used by code, for example by identifying API calls directed at
resources such as hard disks or network devices.

In the area of reverse engineering [Kos05], there are many approaches and com-
mercial tools (IBM RSA, Borland Together) deriving UML models from source code.
However, these methods and tools mainly focus on the reconstruction of functional
models and do not provide advanced support for deriving performance related in-
formation. Furthermore, these tools do not abstract from the control flow of a soft-
ware component as RDSEFFs do by combining multiple statements into a single
internal action. Control flow models resulting from the static analysis of current
reverse engineering approaches would be too fine-granular for a performance anal-
ysis.

In the area of performance engineering, no known approach utilises static code
analysis for the generation of parametrised performance models. Many perfor-
mance prediction methods only support models for a specific context and do not aim
at reusable models, which require parameterisation. For such throw-away models,
executing the code with specific input parameters on a specific machine to deter-
mine performance properties is easier and more accurate than static code analysis.

Program Slicing A special form of static code analysis is program slicing [Wei81,
Tip94]. A program slice is a code excerpt, which potentially affects the values of
a variable at a specific location in a program. The location or point of interest is
called slicing criterion, which is usually specified in combination with the program’s
variables, which are of interest. There is a distinction between static slicing, which
does not make assumptions on input parameters, and dynamic slicing, which is
performed for a given test case.

Originally, Weiser designed program slicing for debugging [Wei81], because if
an incorrect value of a variable is detected at some point of the program, the corre-
sponding bug is likely located within the program slice for this variable. Program
slicing has also been used for parallelisation, program differencing and integration,
software maintenance, testing, reverse engineering, and compiler tuning [Tip94].

174

5.2. TECHNIQUES FOR AUTOMATIC PERFORMANCE MODEL GENERATION

In the context of automatic performance model generation, program slicing is
potentially useful to determine parameter dependencies between, for example, con-
trol flow guards using local variable names and input parameters. The program
slice would be the basis to define the parameter dependency or derive some ab-
straction of it to use in RDSEFFs, if it is too complex. However, this work does not
investigate the use of existing program slicing approaches for this task and regards
it as future work.

Dynamic Program Analysis Dynamic program analysis includes executing an ex-
isting software component and measuring its resource demands and the amount of
external service calls. It is also called performance analysis or profiling. Component
execution requires the availability of all required services. Therefore, either actual
components implementing the required services must be available, or some kind of
test-bed needs to be created, which intercepts call to these services and simulates
their behaviour.

Dynamic analysis has several benefits. It can potentially determine all infor-
mation needed for a performance model including control flow structure, resource
demands, and parameter dependencies. Furthermore, dynamic analysis is possi-
ble even if no component source code is available, therefore it is the only method
supporting the analysis of black box components.

As a drawback, it is not trivial to generate a parametrised performance model
(such as an RDSEFF) via dynamic analysis. To parametrise the specification for dif-
ferent usage profiles, it involves testing component services for their whole input
parameter space, which is infeasible in general. To parameterise for different hard-
ware resources, it requires testing on different systems. To parameterise for different
external services, it involves testing the execution over the whole output domain of
external services.

Woodside et al. [WVCB01] have proposed a dynamic analysis approach to de-
termine resource demands of software components parametrised for different usage
profiles, which they call ”resource functions”. This approach includes executing a
component service numerous times with varying input parameters while measur-
ing execution times. They use statistical methods such as linear regression and re-
gression splines to create the resource functions from the measured execution times.
However, the resource functions in this approach are not parametrised over differ-
ent hardware and require a reference platform. Furthermore, the approach does not
consider output parameters of external services influencing component behaviour.

175

5.2. TECHNIQUES FOR AUTOMATIC PERFORMANCE MODEL GENERATION

Meyerhöfer et al. [MN04, MV05] provide a testbed for measuring the execution
times and memory consumptions of EJBs. They furthermore sketch a method of
measuring resource demands independent from a specific platform [ML05], which
involves partitioning the resource demand of a component service into several seg-
ments and benchmarking each segment on each platform of interest to be able
to derive the actual resource demand. However, their resource demands are not
parametrised for different usage profiles.

Symbolic Execution A special form of dynamic program analysis is symbolic ex-
ecution [Kin76]. It executes existing software components using variables (called
”symbols”) as input parameters instead of concrete values. Upon reaching control
flow branches with guards over the input parameters, symbolic execution uses the
guards to produce a formula over the input parameters. Solving such formulas can
determine whether specific code statements can be reached at all to assess program
correctness.

Although mainly used in the context of model checking and program verifica-
tion to recognise deadlocks or dead code blocks, symbolic execution could also be
used to determine the parameter dependencies on branches, loops, and external
service calls for RDSEFFs. It would also be useful to determine the full control flow
structure of a component, because the techniques is able to achieve a full path cov-
erage of given code. As symbolic execution with variables as inputs complicates
the processing overhead when executing a component, it is generally not suited to
determine accurate resource demands with this method.

A drawback of symbolic execution is its scalability, as it is limited when
analysing large components. In the context of NASA’s Java Pathfinder project,
Visser et al. [VHBP00, KPV03] have reported symbolic execution on components
with up to 10000 lines of code. To handle more complex components, Sen et al.
[SMA05] have proposed combining symbolic execution with generating concrete
random values (”concolic testing”) to reduce the complexity of the formulas result-
ing from symbolic execution.

In general, symbolic execution is successful when working with integer or real
number input parameters, but it is limited if code statements involve other data
types or even polymorphism, because the resulting formulas cannot be solved easily
then.

Parizek et al. [PPK06] have used Java Pathfinder to analyse whether given Java
code complies to a behaviour protocol specification, which expresses component

176

5.2. TECHNIQUES FOR AUTOMATIC PERFORMANCE MODEL GENERATION

service behaviour similarly to RDSEFFs, but does not contain parameter dependen-
cies. The approach could determine violations of the protocols, if the code reached
a service call not present in the protocol specification.

Prototype Testing Several researchers have investigated prototype construction
and measuring to rapidly generate accurate performance models during early de-
velopment stages, if no implementation is available.

Hrischuk et al. [HRW95] propose using a prototype, which includes the control
flow logic (i.e., the interaction of objects) of an object-oriented system, while neglect-
ing other computations inside objects. Execution of the prototype for different usage
scenarios yields different program traces, which include the number of statements
executed and their resource demands. This measurement data is the basis for con-
structing an annotated control flow graph, which is then transformed into a Layered
Queueing Network. The LQN needs to be completed for missing parameters, such
as the hardware specification. It is doubtful, if such an approach would be useful
to construct RDSEFFs, because it involves the execution of pre-defined scenarios,
whereas parametrised RDSEFFs need executions representable for all possible us-
age scenarios of a component service.

Denaro et al. [DPE04] target modelling the performance of J2EE systems. Their
main assumption is that the code of individual components has little impact on
the overall performance of a distributed application, because the main processing
overhead shall result from the middleware. They select performance-critical usage
scenarios from design documents and then generate stubs for each involved com-
ponent. Using workload generators and generated persistent data, these stubs can
be executed after being deployed on the target J2EE platform. They directly use
the measurement data from this setting to determine the performance properties
of a proposed architectural design without construction of a specific performance
model. They claim that their method is advantageous over pure middleware bench-
marking, because it additionally includes application logic. This method may work
for simple components with a business logic not critical for performance, but fails
to include the processing overhead of component with more complex calculations.

The approach by Liu et al. [LFG05] combines manual application models with
benchmark results from measuring a J2EE platform. The authors make the same
assumption as Denaro et al. and emphasise the performance influence by compo-
nent containers. They use design documents such as activity diagrams to determine
the amount container functions (e.g., create a JavaBean, store a JavaBean) processed

177

5.3. A HYBRID APPROACH FOR REVERSE ENGINEERING RDSEFFS FROM
CODE

by a given design and then use a generic benchmark to determine the execution
times of theses functions for a given J2EE container. The data is input for a simple
queueing network model of the container infrastructure, which can then be used for
capacity planning. This approach is interesting for RDSEFF generation because it
targets container independent resource demands for the application models, which
are similar to the platform independent resource demands in RDSEFFs.

5.3 A Hybrid Approach for Reverse Engineering RD-
SEFFs from Code

The reverse engineering process proposed for generating RDSEFFs from Java source
code combines static and dynamic analysis in a hybrid approach [KKKR08]. It tries
to leverage the benefits of both approaches, i.e., using accurate control flow struc-
tures and initial parameter dependencies from static code analysis and resource de-
mands from dynamic analysis. Using a platform-independent abstraction, such as
the number of byte code instructions needed, the resource demands shall addition-
ally be parametrised over the underlying resource environment. The process model
depicted in Fig. 5.1 is generic and could be used with different source code types,
tools, performance models, and performance analysis or simulation methods.

Manual
Spec.

AST +
Component
Boundaries

Source Code

Repeated
ProfilingBinary Code

RDSEFF
Structure

Platform-Independent
Resource
Demands

Instr. Code +
TestBed

Abstract Syntax
Tree (AST)

RDSEFF

Instrumentation
+ TestBed

Config.

Component
Detection Parsing Java2PCM

Architectural
Model

Performance
Metric

Test Results Analysis

Decision
Support

Merging

RDSEFF

Com-
position

Deployment+
Simulation Analysis

Static Analysis

Dynamic Analysis

Performance Prediction

C
om

pi
la

tio
n

1.1 1.2 1.3

2.1 2.2 2.3

3.33.43.5

3.1

3.2

Component Detection

Figure 5.1: Reverse Engineering and Performance Prediction

178

5.3. A HYBRID APPROACH FOR REVERSE ENGINEERING RDSEFFS FROM
CODE

The process in Fig. 5.1 starts with static analysis, which first parses given code
to an abstract syntax tree (1.1). Then reverse engineering must identify component
boundaries (1.2) in this representation of potentially a whole architecture. This is
challenging if the code under study is written in an object-oriented language such
as Java, which per se does not support the component paradigm. For this step of
design recovery, there exists a large body of research [Kos05]. For identifying PCM
components, Chouambe [Cho07] has implemented a component detection tool for
arbitrary Java code, which uses different code coupling metrics to identify compo-
nents among classes.

The component boundaries resulting from the previous step are input to another
static code analysis, which produces initial RDSEFF structures with statically deter-
minable performance annotations (1.3). This code analysis was implemented in a
tool called Java2PCM for the scope of this thesis (also see the diploma thesis from
Kappler [Kap07]). Chapter 5.4-5.6 will described it in more detail.

In parallel to static analysis, the proposed process also performs dynamic analysis
on existing software components (Fig.5.1). Upon the time of writing, there is still no
implementation of this step into tools, therefore the following sketches the planned
approach. Dynamic analysis instruments the code with measurement probes and
sets up a test-bed to execute the component under analysis (2.1). This involves gen-
erating dummy-components for external services, which are not available as code,
and defining a set of test cases with representative parameter values for the follow-
ing execution. With the completed test environment, repeated profiling for all test
cases produces measurement data for resource demands and external service calls,
which needs to be stored for later analysis (2.2). The overhead for measuring must
be excluded from the data.

Resource demands should not be measured as timing values, but as some ab-
stract measure (such as CPU cycles, byte code instruction, or generic work units),
to produce resource demand parameterisable for different platforms. Kuperberg et
al. investigate the possibilities for platform-independent resource demands [KB07].
The analysis of the measurement results from component execution (2.3) targets de-
riving dependencies between control flow guards, the amount of external services
calls, resource demands and input parameter values. In many cases, linear regres-
sion is sufficient to derive a function for resource demands over input parameters
from the measured data (see for example [KBH07]). Woodside et al. [WVCB01] used
regression splines to determine more complex dependencies in multiple recorded
execution times. Krogmann [Kro07] proposes using genetic algorithms on the data

179

5.4. STATIC ANALYSIS: MAPPING JAVA CODE TO RDSEFFS

to identify even more complicated patterns.
To complete the reverse engineering process for RDSEFFs, tools shall merge the

RDSEFF structure from static analysis with the platform-independent resource de-
mands and additional parameter dependencies from dynamic analysis to get full
RDSEFFs (3.1). Afterwards, component developers can put these RDSEFFs into
public repositories, where software architects can retrieve them and use them for
composition with other (possibly manually specified) RDSEFFs (3.2) to model a
component-based software architecture (3.3). With a full PCM instance, QoS ana-
lysts may use the analysis and simulation techniques from [BKR07] and Chapter 6
to conduct performance predictions (3.4) and derive decision support (3.5).

5.4 Static Analysis: Mapping Java Code to RDSEFFs

This section describes the second static code analysis step from the previous subsec-
tion, which has been implemented as an Eclipse plug-in called Java2PCM [Kap07].
It will first describe how Java2PCM performs a static code analysis using the Eclipse
framework and explain the results of the analysis. Afterwards, it explains the dif-
ferent concepts of the transformation from Java code to PCM instances in detail. Fi-
nally, the following two subsections briefly discuss its implementation and present
a case study of applying Java2PCM to a larger component-based architecture.

Once installed in Eclipse, Java2PCM offers a new context-menu entry ”Gener-
ate RDSEFF” when right-clicking a Java package, class, or method in the IDE. Af-
ter choosing this menu entry, Java2PCM uses the Eclipse Java Development Tools
(JDT) to parse the selected code and create an abstract syntax tree (AST). It then uses
an AST visitor class from JDT, which was extended to produce RDSEFFs elements
from Java code fragments. For each element found in the AST, it executes a specific
transformation trying to derive as much information for the RDSEFF from code as
possible, which will be detailed in the following subsections.

Java2PCM accesses the factories from the PCM’s EMF implementation to pro-
duce RDSEFF elements and adds them to an object tree representing a PCM
Repository. After traversing the whole AST, a serialisation of the object tree to
an XML document stores the Repository to a file. As the included RDSEFFs still
lack resource demands and might contain invalid parameter dependencies, compo-
nent developers have to correct and complete them manually via the PCM-bench
editors. Software architects can then use completely edited file for adding the in-
cluded RDSEFFs into their architectural models.

180

5.4. STATIC ANALYSIS: MAPPING JAVA CODE TO RDSEFFS

It is not trivial to map Java code to RDSEFF instances, because each language de-
scribes the behaviour of a component on a different abstraction level. The RDSEFF’s
abstraction level is substantially higher than Java code and focusses on external ser-
vice calls and resource demands. In contrast, Java code does not provide external
service calls as classes do not contain explicit required interfaces, and also does not
make all resource usages explicit.

The following describes the tasks performed by Java2PCM: location of external
service calls (Chapter 5.4.1), location of resource usage (Chapter 5.4.2), control flow
transformation (Chapter 5.4.3), abstraction-raising transformations (Chapter 5.4.4),
and establishing parameter dependencies (Chapter 5.4.5).

5.4.1 Location of External Service Calls

When selecting a Java package, class, or method for generating an RDSEFF, the com-
ponent boundaries are not clear. Java classes do not have explicit provided and re-
quired interfaces, although the set of public methods could be interpreted as the
provided interface and the set of import statements as required interfaces. While
only public methods can be invoked from the outside, not all of them might qualify
as provided services, which complicates the identification of the provided interface.
Import statements of classes specify which classes or packages outside the current
class are required, but they do not distinguish between API calls, component inter-
nal, and component external calls, and are therefore not suited as required interface.

In the future, Java2PCM shall use a dedicated component detection approach
[Cho07], which provides component boundaries as additional input to Java2PCM
besides the selected code. However, its implementation and integration is still miss-
ing. In the current implementation, Java2PCM makes default assumptions on the
component boundaries explained in the following and lets the user configure them
further.

To identify provided interfaces, Java2PCM provides two alternatives. In the first
alternative, which is the default setting, Java2PCM simply interprets every public
method of a class as a provided service and includes it into a single provided inter-
face for the class, which is interpreted as a component. In the second alternative,
which is a configurable option, Java2PCM interprets only methods implementing
services of explicitly declared interfaces as provides services and generates PCM
provided interfaces for each implemented Java interface.

To identify required interfaces, Java2PCM per default regards every method call,

181

5.4. STATIC ANALYSIS: MAPPING JAVA CODE TO RDSEFFS

Figure 5.2: Java2PCM: Classifying External Service Calls

which is directed outside of the current package and not directed to the Java API, as
a call to an external service. It generates a single required interface in this case and
adds all found external service calls as required services. It is furthermore possible
to also remove methods calls to sub-packages of the current package from the list
of external service calls via a configuration option and treat them as component
internal method calls.

As another option, after invocation, Java2PCM initially traverses the AST of the
parsed selected code and assembles a list of all included method invocations. It
then provides the user a selection dialog depicting the method invocations as a fold-
out tree grouped by packages (Fig. 5.2). The user can select complete packages or
individual methods calls and classify them as external. Java2PCM then treats all
unselected methods as component internal and does not create ExternalCall-

Actions for them.

5.4.2 Location of Resource Usages

In RDSEFFs, component developers attach resource usages to InternalActions.
These reference a resource type and specify the resource demand as a random vari-
able. In principle, RDSEFFs allow the specification of resource demands on different
abstraction levels. For example, for each statement of Java code a single Internal-
Action with a unique resource demand could be created. However, this is not
desirable, because it would make the model too complex, which might lead to its

182

5.4. STATIC ANALYSIS: MAPPING JAVA CODE TO RDSEFFS

intractability when using analysis or simulation tools.
Java2PCM tries to create RDSEFFs with a higher abstraction level by combining

all statements between two identified external service calls into single Internal-
Actions and creating a combined CPU demand with an amount of zero for them
per default. The actual demand (e.g., 1000 CPU cycles) is hardly determinable via
static code analysis and must be supplemented manually or by dynamic program
analysis. While each statement in Java code potentially also uses main memory,
Java2PCM ignores memory usage as the PCM so far does not support analysis facil-
ities for it.

Besides CPU and memory usage, static code analysis can determine that code
accesses other resources (e.g., storage devices, networks, or passive resources). There-
fore, it can create additional resource demands (with zero amount) referencing other
resource types than the CPU to make the resulting RDSEFFs more accurate. Espe-
cially accessing comparably slow storage and network devices changes the perfor-
mance of a component service significantly and needs to be included in an accurate
performance model.

In Java code, developers usually specify accesses to other resources by using the
Java API. For example, they use classes and methods from the package java.io.
A problem for the static code analysis is that these packages abstract from concrete
underlying resources. The data source and destination of an I/O stream is poly-
morphic and can only be determined at run time. It can for example be a file on a
hard disk, a file in main memory, or a network socket. Therefore, Java2PCM creates
an abstract I/O resource demand for method invocations directed at the java.io-
package and leaves it to the component developer to specify concrete resources.
Besides the java.io-package, Java2PCM also creates I/O resource demands for
calls to java.sql, java.util.logging, java.util.zip, java.imageio, and
javax.sql, which use java.io internally.

Accesses to network devices are a special case for the static code analysis creating
RDSEFFs. While they can be identified in code via calls to the java.net-package,
the PCM does not allow components to access network devices internally (RDSEFFs
may not reference CommunicationResourceTypes). As system deployers can
allocate each component only to a single ResourceContainer, components must
communicate with other components in different resource containers via external
service calls. Then, the PCM analysis and simulation tools automatically produce
load onto the network device connecting both resource containers. They calculate
the byte size of the load by summing up the byte size of the parameter characterisa-

183

5.4. STATIC ANALYSIS: MAPPING JAVA CODE TO RDSEFFS

tions passed to the external service call. As the analysis and simulation tools handle
this internally, it is not reflected in the RDSEFF specification. Therefore, Java2PCM
ignores network accesses in Java code.

So far, Java2PCM does not support passive resource usage. An extension into
this direction is future work. In fact, the Java API makes the use of many passive
resources explicit, as there are dedicated classes for thread pools, semaphores, and
monitors. Java2PCM could use calls to these classes in the code to create passive
resources as well as acquire/release actions.

5.4.3 Control Flow Transformation

Java2PCM transforms Java control flow statements into RDSEFF control flow ele-
ments. Namely, it supports branches, loops, and forks. Notice, that this transforma-
tion only occurs, if the Java control flow elements include either external service calls
or resource demands to devices other than the CPU in their enclosed code blocks.
Otherwise, Java2PCM ignores Java control flow statements to create a higher ab-
straction level in the resulting RDSEFFs.

if/else and switch/case statements specify control flow branches in Java
code. Java2PCM maps if/else statements to RDSEFF BranchActions and uses
the Java boolean expressions to create GuardedBranchTransitions with corre-
sponding guards. It furthermore traces the local parameters included in boolean
expression back to input parameters (details in Chapter 5.4.5). As the guards in
GuardedBranchTransitions need to be mutually exclusive, Java2PCM adds the
negated version of each previous boolean expression to the successive guards in RD-
SEFFs.

Java2PCM maps the case statements enclosed by a switch statement to indi-
vidual GuardedBranchTransitions with ResourceDemandingBehaviours

for the statements after each case statement. Java allows case-blocks, which not
end with a break statement and then also executes the code of the following case-
block until it reaches a break statement. Java2PCM recognises these situations and
duplicates the statements inside the following case-block into the previous case-
block and creates the corresponding actions for them.

Java2PCM maps for and while statements to RDSEFF LoopActions. While
the number of iterations of Java loops are defined via boolean expressions for abort-
ing, RDSEFF loops directly specify the number of iterations as random variables,
which might include input parameter characterisations. Therefore, Java2PCM tries

184

5.4. STATIC ANALYSIS: MAPPING JAVA CODE TO RDSEFFS

to determine the number of loop iterations from the code. It recognises simple cases,
such as statements like for(i=0;i<X;i++), where it uses X.VALUE as the num-
ber of iterations. Furthermore, it recognises iterations over collection, as it checks
whether the loop expression in the code contains an Iterator object, then derives
the corresponding collection Y, and then uses Y.NUMBER OF ELEMENTS as the num-
ber of iterations. Java2PCM also deals with Java loops containing an external service
call inside their loop expressions, and adds an ExternalCallAction to the loop
body behaviour.

However, in general Java2PCM cannot determine the number of loop iterations
for arbitrary Java loops as the halting problem underlies static code analysis. If,
for example, the loop expression is manipulated inside the loop body, it is usually
impossible to derive the number of iterations or the resulting changes to variables
statically. If none of the methods for detecting the number of iterations from above is
applicable, Java2PCM at least traces the variables inside Java loop expressions back
to input parameters (Chapter 5.4.5) and includes the result into the specification
of the RDSEFF loop iteration number as a comment. This may give component
developers, who complete the RDSEFF specification manually, a hint on how to
estimate the actual number of iterations. For the future, dynamic program analysis
additionally shall assist in determining the number of iterations.

For control flow forks (i.e., thread invocations), Java2PCM detects the use of ob-
jects of classes derived from java.lang.Thread or classes implementing the in-
terface java.lang.Runnable. It maps the Thread.start() statement to an
RDSEFF ForkAction. Afterwards, it uses the statements inside the overwritten
method run() of the object to create the RDSEFF ForkedBehaviour.

5.4.4 Abstraction-Raising Transformation

Besides the combination of multiple statements into single InternalActions and
the omission of control flow statements, which do not include nested external ser-
vice calls, as described above, Java2PCM performs several additional transforma-
tions, which aim at raising the resulting RDSEFF’s level of abstraction.

Java2PCM tries to combine nested branch and loop statements in direct suc-
cession. This for example occurs if an if-statement is directly nested inside an-
other if-statement without any external service calls in between. Java2PCM recog-
nises such situation and combines the included boolean expressions. For example,
Java2PCM transforms a statement if(X){if(Y){}} into a single BranchAction

185

5.4. STATIC ANALYSIS: MAPPING JAVA CODE TO RDSEFFS

with a GuardedBranchTransition containing the guard specification X AND Y.
The same is possible for nested loops. For example, if Java2PCM finds a statement
like for(X){for(Y){}}, where X and Y are the recognised loop iteration numbers,
it creates a single LoopAction with X*Y as the specified number of iterations.

Furthermore, Java2PCM supports in-line expansion of local methods for RD-
SEFFs. While Java supports structuring large segments of code into different lo-
cal methods (i.e., methods often classified as private), RDSEFFs do not provide
such substructures. The use of local methods is an implementation detail aiming
at reuse and maintainability, but does not change the performance properties of the
code. Therefore, their representation inside RDSEFFs is not necessary. Whenever
Java2PCM finds a local method call it continues analysis at the local method and
attaches external service calls and important resource accesses inside it to the previ-
ously created RDSEFF structure.

1 public void printList(List <String > paramElements) {
2 printHelper(paramElements);
3 }
4

5 private void printHelper(List <String > elements) { 1 public void printList(List <String > paramElements) {
6 List <String > listCopy = elements; 2 List <String > listCopy = paramElements;
7 for (String curElem : listCopy) { 3 for (String curElem : listCopy) {
8 System.out.println(curElem); 4 System.out.println(curElem);
9 } 5 }

10 } 6 }

(a) Before (b) After

Figure 5.3: Java2PCM: Method Inlining

Fig. 5.3 provides an example for method inlining. The code of the local method
printHelper is included into the method printList after in-line expansion. This
transformation also works recursively in case local methods again call other local
methods.

5.4.5 Establishing Parameter Dependencies

As described in Chapter 4.3, RDSEFFs may contain parameter dependencies for
guard expressions, loop iterations numbers, resource demands, and parameter char-
acterisations passed to ExternalCallActions. The stochastic expressions (Chap-
ter 3.3.6) specifying these dependencies may only include references to input pa-
rameters, but not to local variables. Local variables should not be visible in an RD-
SEFF, which should not reveal additional information from the implementation of
the component and only refer to information specified in interfaces.

However, when Java2PCM finds boolean branch or loop conditions in Java

186

5.4. STATIC ANALYSIS: MAPPING JAVA CODE TO RDSEFFS

source code, these may contain references to local variables. Consider the for-
statement in line 7 of Fig. 5.3(a). It iterates over a local collection called listCopy.
Thus, the number of elements in this collection specify the number of iterations for
the loop. Java2PCM needs to include them into the stochastic expression specifying
the number of loop iterations in the RDSEFF. But Java2PCM cannot use the name
listCopy as it is internal. It can only refer to the input parameter paramElements
of the public method printList, which is converted into a provided service.

Therefore, Java2PCM traces the assignments involving input parameters
throughout the code and can then substitute references to local variables in found
Java expressions with expressions involving only input parameters references. In
the former example, the mapping is straight-forward, as the number of loop itera-
tions can be traced back to the input parameter paramElements and Java2PCM can
use paramElements.NUMBER OF ELEMENTS for the stochastic expression defin-
ing the parameter dependency on the number of loop iterations.

Algorithm 1: Expand service parameters in expression exp

Input: A Java expression exp as string
Output: The expression with variables replaced to show affecting

parameters

foundParameters = {}
intermediateV ariables = {}
foreach simple variable name var in exp do

if var is a service parameter then
foundParameters = foundParameters ∪ {var}

else
assignedExp = get expression assigned to var
oldFoundParameters = foundParameters

Call procedure recursively with argument exp← assignedExp

/* foundParameters changed ⇒ var is connected to
parameter */

if oldFoundParameters �= foundParameters then
intermediateV ariables = intermediateV ariables ∪ {var}

end
foreach variable interV ar in intermediateV ariables do

exp = replace interV ar in exp by the expression assigned to interV ar
end

Figure 5.4: Substituting Local Variables in Expressions

Fig. 5.4 depicts the algorithm that Java2PCM uses when finding an expression in
Java code, which is relevant for the RDSEFF and includes local variable references.
Before executing the algorithm, Java2PCM has recorded all variable assignments
up to this point of the code. With the algorithm, Java2PCM substitutes all local
variable names with there current assignments. Because these assignments may
again contain local variable names, Java2PCM executes the algorithm recursively

187

5.5. JAVA2PCM IMPLEMENTATION

until the assignments refer to service parameters.
Java2PCM executes the algorithm on the former example as follows: the input

expression exp is listCopy. As listCopy is a simple (i.e., local) variable name,
Java2PCM executes the algorithm’s first loop. listCopy is not a service (i.e., in-
put) parameter, thus the Java2PCM enters the else branch. The formerly recorded
expression currently assigned to listCopy is elements from Fig. 5.3(a) line 6.
Thus assignedExp is elements. Now, Java2PCM executes the algorithm recur-
sively using elements as input expression exp. As this is again no input param-
eter, assignedExp now takes the currently recorded assignment for elements as
its value, which is paramElements (see Fig. 5.3(a) line 2). Because this is an in-
put parameter, it is added to foundParameters. When the recursive calls then re-
turn and continue their execution after their invocation, the set foundParameters

has changed, and listCopy and elements are added to intermediateV ariables.
Afterwards they are replaced by their assigned expressions so that exp becomes
paramElements.

Because the algorithm substitutes the left hand side of a variable assignment
statement with the right hand side, it produces correct stochastic expressions only
in simple cases. However, these case may include arithmetic operations (+,-,*,/)
and boolean operations (&&,). In cases, where the expression contains for exam-
ple method invocations, the produced stochastic expression will not be syntactically
correct. If input parameters are involved in complex calculations, a whole program
slice can be included in the resulting expression. Nevertheless, the included in-
formation is useful for the component developer, who has to provide syntactically
correct expressions by hand. Therefore, Java2PCM adds the produced expression
as a comment to the PCM stochastic expression, which shall specify the parameter
dependency, to assist the component developer in manual specification.

5.5 Java2PCM Implementation

Java2PCM’s implementation follows three design goals: (i) separation of Java code-
related parts and PCM model-related parts to allow their independent evolution, (ii)
configurability of the analysis process to let users define the resulting RDSEFF’s ab-
straction level, and (iii) Eclipse integration to reuse existing assets and allow seam-
less integration with other PCM tools.

Fig. 5.5 shows the design of Java2PCM, which realises the first design goal, the
separation between Java parts and PCM parts. It is a pipe-and-filter architecture

188

5.5. JAVA2PCM IMPLEMENTATION

+rdFactory

CodeAnalyser

CodeAnalyser
ASTVisitor

AST2SEFF
Translator SeffBuilder

AnalysisDirector

Block
RelevancyCheck

ASTVisitor

ServiceCall
Classifier

Variable
Expression

Tracer

StoEx
Generator

Code2Model
Repository

+visitor +translator +builder

+analyser

+checker +classifier +tracer +stoexGenerator +repository

+translator +builder

Resource
DemandFactory

de.uka.ipd.sdq.
pcm.seff.

SeffFactory

+seffFactory

org.eclipse.jdt.
core.dom.
ASTParser

+parser
+seffFactory

org.eclipse.jdt.
core.dom.
ASTVisitor

org.eclipse.emf.
ecore.EFactory

Figure 5.5: Java2PCM: Design Excerpt

with the CodeAnalysisASTVisitor producing input for the AST2SeffTrans-
lator, which again produces input for the SeffBuilder. The CodeAnalyser-
ASTVisitor handles Java code and is decoupled from the SeffBuilder, which
produces PCM model instances.

The CodeAnalyserASTVisitor inherits from Eclipse JDT’s ASTVisitor and
is an implementation of the visitor design pattern [GHJV95, pp.331]. After pars-
ing the Java code selected by the user in Eclipse, it traverses its abstract syntax tree
(AST), and notifies the AST2SeffTranslator upon visiting leafs in the tree. It in-
vokes a second visitor BlockRelevancyCheckASTVisitor for each Java code
block, which searches for external service calls and resource accesses according
to the classification strategy configured by the user and stored in ServiceCall-

Classifier. If such a pre-analysed Java code block does not contain such calls or
resource accesses, Java2PCM excludes it from the analysis and RDSEFF build pro-
cess. If new versions of Java appear, only the CodeAnalysisASTVisitor needs
to be maintained or replaced.

The AST2SeffTranslator performs the mapping from Java elements to PCM
elements. It uses the VariableExpressionTracer to establish parameter depen-
dencies as described in Chapter 5.4.5. Furthermore, it uses the StoexGenerator to
translate some Java expressions to syntactically correct PCM stochastic expressions.
For example, it translates a Java expression collection.size() to the PCM
stochastic expression collection.NUMBER OF ELEMENTS. The translator notifies
the SeffBuilder, which produces PCM model instances.

The SeffBuilder [GHJV95, pp.97] encapsulates invocations of PCM factories
[GHJV95, pp.87] and therefore decouples other classes of Java2PCM from the PCM.

189

5.6. JAVA2PCM CASE STUDY: COCOME

It uses the class Code2ModelRepository to produce an initial PCM Repository

with primitive data types, interfaces, components, and empty RDSEFFs. After-
wards, it invokes the SeffFactory from the PCM’s EMF implementation to create
PCM elements, such as BranchActions, ParametericResourceDemands etc.

The second design goal, the configurability of the tool, is realised via a wizard for
the classification of method invocations into internal and external calls and a prefer-
ences dialog for configuration of global options. Chapter 5.4.1 describes the wizard’s
functionality. The preferences dialog is integrated into the Eclipse preferences as a
separate page. It allows enabling (i) the automatic classification of external service
calls, (ii) the automatic creation of InternalActions between ExternalCall-

Actions, and (iii) classifying only methods implementing services from interfaces
as provided services. Furthermore, it offers changing the output path and enabling
verbose logging for debugging purposes.

Java2PCM is an Eclipse plug-in, thus realising the third design goal, Eclipse in-
tegration. It reuses existing Eclipse functionality, such as selection of code, wizards,
preferences dialogs, Java code parsing via JDT, Java AST traversal via extended JDT
functionality, progress bars, logging to the console. It shall later be integrated into an
integrated environment for the reverse engineering of Java code to PCM instances.

5.6 Java2PCM Case Study: CoCoME

During development Java2PCM was tested with several artificial examples ensur-
ing the proper analysis of Java code and proper generation of syntactically correct
PCM instances as output. For the final system test, a case study with a realistic
component-based system implemented in Java was conducted. As a manually pro-
duced PCM instance of this system was available, it was possible to compare it’s RD-
SEFFs to RDSEFFs generated with Java2PCM. This enabled assessing Java2PCM’s
claimed benefits, i.e., less time consumption and less erroneous model instances
than manual modelling, while not altering prediction accuracy.

The system under study, which is called CoCoME (Common Component Mod-
elling Example, [RRMP08]), manages a supermarket chain by providing billing and
storage information and allowing the exchange of goods between different stores.
Its specification contains more than 20 software components and 8 use cases. The
specification includes a set of UML component and sequence diagrams, textual de-
scriptions, and performance annotations according to the UML SPT profile [Obj05b].
CoCoME’s Java implementation consists of 5200 lines of code in 97 classes and 40

190

5.6. JAVA2PCM CASE STUDY: COCOME

packages. Although implementing a component-based design, the code is not based
on a particular component-based programming model such as EJB or the Spring
framework and uses plain Java code instead. Therefore, it is suited for evaluating
Java2PCM, which also supports plain Java code.

The case study focusses on use case 8 of CoCoME. This use case allows stores
running out of specific goods to query other stores for the availability of these goods.
If such a query is successful (i.e., another store has an amount of the desired goods
above a certain threshold), CoCoME initiates a shipping procedure delivering the
goods to the querying store. The use case only involves interacting services and
does not exhibit user participation. It includes network communication between
different store servers and the main enterprise server and involves computing a list
of stores nearest to the querying store.

Product
Dispatcher

Store Facade

Reporting

Application

Enterprise

Persistence

Data

CashDeskLineStore Server

Enterprise Server

Store

Figure 5.6: Extract from the CoCoME Software Architecture

Fig. 5.6 depicts parts of CoCoME architecture participating in this use case.
Multiple store servers interact with a single enterprise server, which manages the
overall storage information of the supermarket. The components Application,
CashDeskLine, and Data are composite components, consisting of nested inner
components. The CoCoME specification provides a detailed description of the use
case with plain text, a sequence diagram, and performance annotations [RRMP08,
pp.12].

Java2PCM generated 10 RDSEFFs from the Java implementation of CoCoME for
this use case after manual classification of method calls as internal and external. The
produced RDSEFFs included CPU and I/O resource demands set to zero and ini-

191

5.6. JAVA2PCM CASE STUDY: COCOME

1 public void markProductsUnavailableInStock(
2 ProductMovementTO requiredProductsAndAmount)
3 throws RemoteException, ProductNotAvailableException {
4 PersistenceContext pctx = persistmanager.getPersistenceContext();
5 TransactionContext tx = null;
6 try {
7 tx = pctx.getTransactionContext();
8 tx.beginTransaction();
9

10 Iterator<ProductAmountTO> productAmountIterator =
11 requiredProductsAndAmount.getProducts().iterator();
12 ProductAmountTO currentProductAmountForDelivery;
13 while(productAmountIterator.hasNext()) {
14 currentProductAmountForDelivery = productAmountIterator.next();
15 StockItem si = storequery.queryStockItem(
16 requiredProductsAndAmount.getDeliveringStore().getId(),
17 currentProductAmountForDelivery.getProduct().getBarcode(),
18 pctx);
19 if(si == null) {
20 throw new RuntimeException(<...>);
21 }
22 // set new remaining stock amount:
23 si.setAmount(si.getAmount() -
24 currentProductAmountForDelivery.getAmount());
25 System.out.println(<...>);
26 }
27 tx.commit();
28 } catch (RuntimeException e) {
29 <...>
30 }
31 }

(a) Java Code
Figure 5.7: CoCoME Service markProductsUnavailableInStock

External
Call Action

Internal
Action

Internal
Action

External
Call Action

Internal
Action

Internal
Action

Service
= getPersistenceContext

Service
= queryStockItem

CPU-Demand
= 1 Units

CPU-Demand
= 0 Units

CPU-Demand
= 10 Units

Iterations
= requiredProductsAndAmount.NUMBER_OF_ELEMENTS

CPU-Demand
= 0 Units

markProducts
UnavailableInStock

(b) RDSEFF

tial parameter dependencies. Fig. 5.7 illustrates one of the generated RDSEFFs and
its corresponding Java code. The RDSEFFs contains two ExternalCallActions,
which Java2PCM derived from the code lines 4 and 15. Furthermore, it has a loop
iterating over a collection (from code line 13). Java2PCM traced the iterator back
to the input parameter requiredProductsAndAmount and set a parameter de-
pendency for the number of loop iterations (requiredProductsAndAmount.-
NUMBER OF ELEMENTS).

The InternalActions result from code not containing external service calls.
Java2PCM generate CPU resource demands with an amount of zero for these ac-
tions. For this case study, they were completed manually with information from the
performance annotation specification of this use case [RRMP08, pp.19]. In the future
this step shall be automated by determining the resource demands automatically via
dynamic program analysis.

To enable running the simulation [BKR07], a manually specified Resource-

Environment, System, Allocation, and UsageModel were added to the RD-
SEFFs to complete a full PCM instance. The whole specification process includ-
ing running Java2PCM and debugging the models took 4 hours compared to the
40 hours formerly needed for the fully manually specified model of this use case.
Running the simulation yielded a large amount of measures for this use case’s end-
to-end response time. Fig. 5.8 visualises them as a cdf (dark line). The predicted

192

5.6. JAVA2PCM CASE STUDY: COCOME

measures’ median was 6200 ms. The same figure also shows the predicted mea-
sures for the manually built model from [KR08] (bright line). Their median is at
6150 ms. Both curves are widely overlapping, therefore the prediction results are
very similar. This shows that it was possible to achieve roughly the same prediction
results with generated models and the manually specified models. Notice that both
cdfs are only predictions and there is no comparison to actual measurements with
an implementation, because the purpose of this case study was not to assess the
prediction accuracy achievable with the available information, but only to compare
predictions with manual and semi-automatic specified models given the same type
of input information.

Figure 5.8: Comparison of manual and automated reconstruction

Besides the quantitative prediction results, having a manual and a generated
specification enabled comparing them qualitatively. The generated models were
structurally more complete than the manually specified ones, because several
abstractions had been made during manual specification by hand for example
by merging some InternalActions or omitting unimportant ExternalCall-
Actions. While the generated models did contain more InternalActions, this
did not change the prediction results, because their resource demands were set to
zero and only the manually added amounts influenced the predictions.

Java2PCM could trace parameter dependencies correctly only in very few cases,
because they often included complex calculations with method calls, which were
not directly convertible to PCM stochastic expressions. However, the program slices

193

5.7. SUMMARY

generated by Java2PCM’s parameter tracing, which were included as comments into
the corresponding stochastic expressions, gave hints for the manual abstraction of
the dependencies. This considerably sped up the modelling procedure.

Still, the Java2PCM’s implementation has several open issues: It does not trace
output parameter characterisations so far. There is no support for composite compo-
nents yet, which shall later be provided by the component detection tool run before
Java2PCM. Java2PCM does not support tracing parameter dependencies correctly,
if they contain nested method calls (e.g., foo().bar().foobar()). Furthermore,
Java2PCM only works with primitive and collection data types and does not deal
correctly with composite data types. Finally, Java2PCM’s integration into the tool
chain envisioned for the complete reverse engineering approach (Chapter 5.3) is
missing.

There are also some general limitations, which restrict static code analysis and
require the combination with dynamic program analysis. The halting problem pre-
vents from determining loop iteration numbers or dependencies to loop iteration
numbers in the general case. Only simple cases of determining loop iteration num-
bers are supported by Java2PCM. Polymorphism involves data types only known
during run time, therefore limiting static analysis. Using native code instead of the
Java API might lead to resource demands or external call actions not determinable
by a static analysis plainly for Java code.

5.7 Summary

This chapter tackled the problem of automatic performance model generation from
implemented software components. First, it briefly survey different methods suit-
able for model generation from code including static code analysis, program slicing,
dynamic analysis, symbolic execution, and prototyping. Afterwards, this chapter
proposed hybrid approach consisting of static and dynamic analysis to create RD-
SEFFs from arbitrary Java code. The static code analysis part of this process was
implemented for this thesis in the tool Java2PCM. This tool creates initial RDSEFFs
from Java code, while applying the formerly described abstractions of RDSEFFs.
Java2PCM is able to correctly reconstruct control flow structures in many cases, but
cannot determine resource demands, which must be added later via dynamic anal-
ysis. This approach was evaluated by creating RDSEFFs for the COCOME architec-
ture, which were suitable for performance predictions after some manual additions.
While Java2PCM significantly reduced the effort for creating the models, the subse-

194

5.7. SUMMARY

quent performance prediction with these models achieved an accuracy comparable
to the manually specified models.

195

5.7. SUMMARY

196

Chapter 6

Model-Transformation from Software
Domain to Performance Domain

6.1 Model-Transformation Process

To conduct a performance prediction with a PCM instance and derive performance
metrics such as response time, throughput, and resource utilisation, a transforma-
tion into a performance model (such as a queueing network, stochastic process alge-
bra, or stochastic Petri net) is necessary. This work does not introduce a new perfor-
mance model, but implements transformations into existing performance models to
reuse existing analytical solvers and simulation methods. This chapter will describe
these transformations and the corresponding model solvers.

Before transforming a PCM instance into a performance model, tools have to re-
solve the included parametric dependencies, which have been added to the model
in this work. Parametric dependencies enable different developer roles to specify
their models independently. However, most known performance models do not
support parametric dependencies as they focus on the timing aspects of a system.
The QPNs used in Chapter 4.4 to specify the semantics of the PCM are an excep-
tion. However, as explained before their analysability is limited due to their high
expressiveness.

In order to reuse efficient solvers for existing performance models, this work first
solves parametric dependencies present in a PCM instance by combining the infor-
mation from component developers, software architects, system deployers, and do-
main experts. Fig. 6.1 depicts the process of this model transformation. The first
step, i.e., the solution of parametric dependencies, does not depend on the targeted

6.1. MODEL-TRANSFORMATION PROCESS

Full PCM
Instance

+
Computed

Usage Contexts
+

Computed
Allocation
Contexts

Stochastic
Regular

Expression

Performance
Results

Visualisation
(Histogram)

Expression-
Solver

JFreeChart

Layered
Queueing
Network

Performance
Results

LQNS
LQNSim

Other
Performance

Model

Performance
Results VisualisationSolver Charting

Engine

Full PCM
Instance

(including
Repository,

System,
Resource

Environment,
Allocation,

Usage Model)

Dependency
Solver

PCM2StoReg

PCM2LQN

[…]

Automated Model Transformation and Performance Analysis

Figure 6.1: Model Transformation Process Model

performance model, and is therefore the same regardless of the performance model
transformation. Chapter 6.2 describes in detail the tool DependencySolver that
implements this step. As depicted in Fig. 6.1, it uses so-called ”computed contexts”
to store the information that results from solving parametric dependencies.

After solving parametric dependencies, different performance model transfor-
mations are possible. The developer role responsible for conducting the perfor-
mance prediction must choose a suitable performance model. The selection can
depend on the desired performance metrics. For example, if a performance analyst
is interested in distribution functions for response time, a performance model sup-
porting such functions must be used. The selection can also depend on the time
available for the prediction. For example, if management has granted the perfor-
mance analysts a larger time frame for the prediction, a performance model with
a precise, but long-running simulation solver can be selected instead of a possibly
less accurate, but fast analytical solver. Jain [Jai91] discusses the general benefits
and drawbacks of different performance models and solvers. Becker et al. [BKR08]
compare different solvers for PCM instances.

In the context of this work, transformations into two performance models have
been implemented. The first is a transformation into stochastic regular expres-
sions, which support response time predictions with arbitrary distribution func-
tion, but are only applicable in single-user scenarios (Chapter 6.3). The second
is a transformation into LQNs, which support multi-user scenarios, but are lim-
ited to exponential distribution functions and mean-value analysis (Chapter 6.4).
Happe [Hap08] defines a transformation from PCM instances with solved depen-
dencies into a stochastic Process algebra.

198

6.2. DEPENDENCY SOLVER

The model transformations in context of this work have been implemented us-
ing Java and the Eclipse Modelling Framework [Eclb]. No specific model transfor-
mation engine (e.g., based on QVT, ATL) was used due to immature tool support.
Because of the involved mathematical calculations, a transformation using QVT
would have to use black box implementations (in Java) outside the model trans-
formation language for efficiency reasons. Furthermore, the transformations do not
rely on an intermediate performance modelling language (such as CSM [PW06] or
KLAPER [GMS07b]), because these languages include too hard assumptions and so
far have limited tool support.

6.2 Dependency Solver

The DependencySolver (DS) is a tool to substitute parameter names inside PCM
stochastic expressions with characterisations originating from the usage model. In
the usage model, the domain expert has to specify a variable characterisation (e.g., a
constant or probability distribution) for each RequiredCharacterisation spec-
ified by component developers in Interfaces (see Chapter 4.1.4).

The DS propagates these characterisations through all elements of a PCM in-
stance and inserts them into guard specifications, parametric loop iterations, para-
metric resource demands, and parameter usages specified by the component de-
veloper. Then, it solves the resulting stochastic expressions, so that they become
constant values or probability distributions, and stores them, so that they can be
used for a transformation into a performance model.

This subsection first describes the expected input and produced output of the DS.
Then, it describes the traversal of PCM instances, which depends on the evaluated
parameter characterisations. Finally, it shows the process of solving dependencies,
before giving an example.

6.2.1 Input and Output

As input, the DS expects a valid PCM instance, i.e., all developer roles must have
contributed their part of the model. As output, the DS produces a set of so-
called ComputedUsageContexts and ComputedAllocationContexts. These
are decorator models [Ecla] for the PCM instance and store stochastic expressions
resulting from solving the parametric dependencies. Transformations from PCM
instances to performance models use these stochastic expressions to create per-

199

6.2. DEPENDENCY SOLVER

formance model annotations, for example for branch probabilities or resource de-
mands.

The DS creates a ComputedUsageContext (Fig. 6.2) for each usage of an RD-
SEFF in an AssemblyContext. This means that the DS produces two different
ComputedUsageContexts if the same RDSEFF in the same AssemblyContext
is invoked twice with different parameter characterisations. A ComputedUsage-

Context stores BranchProbabilities, LoopIterations, and a set of param-
eter characterisations.

0..*
+parameterCharacterisations

0..*
+parameterCharacterisations

+externalCallOutput
0..*0..*

+externalCallInput
1
+output

1
+input

1
+loopAction

0..*
+loopIterations

+branchTransition
1

+branchProbabilities
0..*

1

+assemblyContext +usageContexts 0..*

context::
ComputedUsage

context::Computed
UsageContext

context::
LoopIteration

context::Branch
Probability

context::Ex-
ternalCallInput

context::Ex-
ternalCallOutput context::Input context::Output

pcm:Assembly
Context

pcm:External
CallAction

pcm::
VariableUsage

pcm::Abstract
BranchTransition

pcm::Abstract
LoopAction

+parameterCharacterisations
0..* 0..*

+parameterCharacterisations

+specification

1

+externalCallAction

1

+externalCallAction

1

pcm::Random
Variable

branchProbability:Double

Figure 6.2: Computed Usage Context

A BranchProbability results from a solving parametric dependency in a
GuardedBranchTransition or simply from copying the branch probability from
a ProbabilisticBranchTransition. A LoopIteration holds a pmf for the
number of loop iterations and results from solving parametric dependencies to
stochastic expressions specifying loop iterations (for LoopActions) or by using
the number of elements characterisation of an input parameter (for Collection-
IteratorActions).

The ComputedUsageContext distinguishes between different kinds of param-
eter characterisations (Fig. 6.2):

• Input holds solved characterisations of IN and INOUT parameters of the cur-
rent RDSEFF’s service.

• Output holds solved characterisations of OUT and INOUT parameters of the
current service, if the component developer has set them in an RDSEFF with
SetVariableActions.

200

6.2. DEPENDENCY SOLVER

• ExternalCallInput stores solved characterisations for IN and INOUT pa-
rameters of a specific ExternalCallAction in the current RDSEFF.

• ExternalCallOutput stores solved characterisations for OUT and INOUT
parameter of a specific ExternalCallAction in the current RDSEFF.

These parameter characterisations are not useful in a performance model, but
transformations to performance models use them to retrieve the correct Computed-
UsageContext from all computed contexts when traversing the PCM instance, be-
cause an Input and the current AssemblyContext determine it unambiguously
as explained above. When comparing two Inputs, their included Variable-

Usages are compared to each other.
The DS stores resource demands with solved dependencies in Computed-

AllocationContexts. This is a separate model from the ComputedUsage-

Contexts, because the source of information is the component developer, software
architect, domain expert, and the system deployer, whereas the source of informa-
tion for ComputedUsageContexts are only the component developer, software
architect, and the domain expert. Furthermore, the model for solved resource de-
mands may change in the future, if a more refined resource model is introduced.

+randomVariable 11+parametricResourceDemand

0..* +resourceDemands

+allocationContexts 0..*

context::Com-
putedAllocation

context::Computed
AllocationContext

context::Computed
UsageContext

pcm::Allocation
Context

context::
ResourceDemand

pcm::Parametric
ResourceDemand

pcm::
RandomVariable

1

+usageContext +allocationContext

1

Figure 6.3: Computed Usage Context

The ResourceDemands in ComputedAllocationContexts result from sub-
stituting variable references in a ParametericResourceDemand with parameter
characterisations, dividing the resulting specification by the processing rate of the
referenced ProcessingResourceSpecification and then solving the whole
stochastic expression. The result is a pdf specifying the processing time demanded
from a particular resource by a particular InternalAction.

201

6.2. DEPENDENCY SOLVER

6.2.2 Model Traversal

The DS implements two visitors, which traverse the PCM instance given as in-
put and produce the ComputedUsageContexts and ComputedAllocation-

Contexts when arriving at the final actions of RDSEFFs. Fig. 6.4 sketches the
traversal process involving a usage scenario and several RDSEFFs. The thick ar-
rows indicate the invocation of another visitor for an RDSEFF upon arriving at an
EntryLevelSystemCall or ExternalCallAction.

<<Usage Scenario>>

Figure 6.4: DSolver: Traversing a PCM Instance

The first visitor traverses all usage scenario instances of the usage model in-
cluded in the PCM instance. Upon arriving at an EntryLevelSystemCall,
it solves dependencies on its input parameter characterisations, creates a new
ComputedUsageContext, and adds the solved characterisations to its Input.

If the domain expert has specified an EntryLevelSystemCall inside a Loop,
the DS creates only a single ComputedUsageContext for this call. The PCM for-
bids parameter characterisation to be bound to the iteration number of a loop, there-
fore the input parameter characterisations for such calls inside a loop do not change.
Thus, the DS only needs to create a single ComputedUsageContext in this case.

202

6.2. DEPENDENCY SOLVER

The usage scenario visitor uses the provided role referenced by the Entry-

LevelSystemCall to determine the called AssemblyContext and the corre-
sponding RDSEFF. It then creates a second visitor for RDSEFFs and initiate it’s ex-
ecution on the first action of this RDSEFF. If this visitor arrives at an External-

CallAction, it finds a ComputedUsageContext for the RDSEFF corresponding
to this external call or creates a new one. Just as the usage model visitor, it solves the
parameter dependencies on input parameter characterisations and adds them to the
ComputedUsageContext’s Input. Afterwards, it continues traversing the next
RDSEFF.

If the RDSEFF visitor arrives at a SetVariableAction it solves dependencies
on the attached variable characterisations and adds them to the current Computed-
UsageContext’s Output. If the return value or output parameter had been
characterised by a SetVariableAction before (for example in a sequence or
loop), the visitor overwrites the old characterisation. SetVariableActions in-
side ForkedBehaviours are not supported so far due to the immaturity of the
ForkAction. If SetVariableActions occurs in different branched behaviours,
the visitor uses the formerly computed branching probability to derive a pmf char-
acterising the return value or output parameter before adding it to the Output.

The RDSEFF visitor traverses all ResourceDemandingBehaviours of
AbstractBranchTransitions even if their probability is zero. As in the us-
age model, the RDSEFF visitor traverses ResourceDemandingBehaviours inside
loops only once. Finally, if the RDSEFF visitor arrives at the final action of an RD-
SEFF, it saves the current ComputedUsageContext and continues the traversal at
the ExternalCallAction in the calling RDSEFF, which originally invoked the
RDSEFF.

It switches back to the ComputedUsageContext of that RDSEFF and uses the
Output from the former ComputedUsageContext to solve parametric dependen-
cies on output parameter characterisations of the ExternalCallAction. The
visitor then adds these solved characterisations to the ExternalCallOutput of
the current ComputedUsageContext. When traversing subsequent actions, these
characterisations in addition to the Input characterisations may be used to solve
parametric dependencies in stochastic expressions as described in the following.

203

6.2. DEPENDENCY SOLVER

6.2.3 Solving Dependencies

In addition to solving dependencies within input and output parameter charac-
terisations, the RDSEFF visitor of the DS resolves parametric dependencies within
branching guards, parametric loop iteration numbers, and parametric resource de-
mands. It substitutes parameter references used by component developers with
variable characterisations provided by domain experts or other component devel-
opers. Fig. 6.5-6.6 depict an example of this process, which in this case includes 6
steps.

Step 1 Step 2 Step 3

InternalAction

LoopAction

External
CallAction

demand =
17 + a.VALUE * 25

iterations = c.NoE

inputVarUsage =
d.BYTESIZE * 2

guard =
b.VALUE < 10

guard =
b.VALUE >= 10

BranchAction

[…]

[…] RDSEFF
Visitor

<<ComputedUsageContext>>
a.VALUE = 2
b.VALUE = IntPMF[(2;0.3)(15;0.7)]
c.NUMBER_OF_ELEMENTS = 22
d.BYTESIZE =
IntPMF[(700;0.5)(800;0.2)(900;0.3)]

InternalAction

LoopAction

External
CallAction

demand =
17 + a.VALUE * 25

iterations = c.NoE

inputVarUsage =
d.BYTESIZE * 2

guard =
b.VALUE < 10

guard =
b.VALUE >= 10

BranchAction

[…]

[…]

RDSEFF
Visitor

<<ComputedUsageContext>>
a.VALUE = 2
b.VALUE = IntPMF[(2;0.3)(15;0.7)]
c.NUMBER_OF_ELEMENTS = 22
d.BYTESIZE =
IntPMF[(700;0.5)(800;0.2)(900;0.3)]

InternalAction

LoopAction

External
CallAction

demand =
67

iterations = c.NoE

inputVarUsage =
d.BYTESIZE * 2

guard =
b.VALUE < 10

guard =
b.VALUE >= 10

BranchAction

[…]

[…]

RDSEFF
Visitor

<<ComputedUsageContext>>
a.VALUE = 2
b.VALUE = IntPMF[(2;0.3)(15;0.7)]
c.NUMBER_OF_ELEMENTS = 22
d.BYTESIZE =
IntPMF[(700;0.5)(800;0.2)(900;0.3)]

Figure 6.5: DSolver: Solving Parametric Dependencies (1/2)

In step 1, all model annotations contain parametric dependencies, and the RD-
SEFF visitor (indicated by the large arrow) is located at the predecessor action of
the InternalAction. In step 2, the RDSEFF visitor has moved downwards to
the InternalAction and now solves the parametric dependency in the attached
ParametricResourceDemand. It substitutes the variable reference a.VALUEwith
the (solved) parameter characterisation in the current ComputedUsageContext’s
Input or ExternalCallOutput.

In the example the ComputedUsageContext contains the characterisation 2 for
a.VALUE. Therefore, substituting the variable reference yields a stochastic expres-
sion 17+2*25. Using the operations defined in Chapter 3.3.6 such an expression can
be solved to a constant or a probability function if it involves probability distribu-

204

6.2. DEPENDENCY SOLVER

Step 4 Step 5 Step 6

demand =
67

[…]
demand =
67

[…]
demand =
67

[…]

InternalAction InternalAction InternalAction

LoopAction

probability =
0.3

probability =
0.7

BranchAction

RDSEFF
Visitor

<<ComputedUsageContext>>
a.VALUE = 2
b.VALUE = IntPMF[(2;0.3)(15;0.7)]
c.NUMBER_OF_ELEMENTS = 22
d.BYTESIZE =
IntPMF[(700;0.5)(800;0.2)(900;0.3)]

probability =
0.3

probability =
0.7

LoopAction

BranchAction

<<ComputedUsageContext>>
a.VALUE = 2
b.VALUE = IntPMF[(2;0.3)(15;0.7)]
c.NUMBER_OF_ELEMENTS = 22
d.BYTESIZE =

LoopAction

probability =
0.3

probability =
0.7

BranchAction

External
CallAction

iterations = c.NoE

inputVarUsage =
d.BYTESIZE * 2

[…]

iterations = 22

inputVarUsage =
d.BYTESIZE * 2

External
CallAction

[…]

RDSEFF
Visitor

IntPMF[(700;0.5)(800;0.2)(900;0.3)]

External
CallAction

iterations = 22

inputVarUsage =
IntPMF[(1400;0.5)
(1600;0.2)
(1800;0.3)]

[…] RDSEFF
Visitor

<<ComputedUsageContext>>
a.VALUE = 2
b.VALUE = IntPMF[(2;0.3)(15;0.7)]
c.NUMBER_OF_ELEMENTS = 22
d.BYTESIZE =
IntPMF[(700;0.5)(800;0.2)(900;0.3)]

Figure 6.6: DSolver: Solving Parametric Dependencies (2/2)

tions. In this example, it results simply in the constant 67. As explained before, the
DS also includes the referenced resource’s processing rate and the expression above
by it. In this example the processing rate is simply 1.0, therefore the DS resolves
the ResourceDemand of the ComputedAllocationContext for this Internal-
Action to the constant 67, which is depicted in step 3. This resource demands can
later be used in a performance model, for example as the service demand at a service
center in a queueing network.

In step 3, the RDSEFF visitor processes the guard specifications of the Guarded-
BranchTransitions of the BranchAction. The ComputedUsageContext con-
tains a pmf for b.VALUE. The RDSEFF visitor can map the contained probabilities
(0.3, 0.7) directly to the branch probabilities, as visible in step 4. Branch probabili-
ties can later be used in a performance model, for example as the firing weight of a
stochastic Petri net.

In step 4 and step 5, parametric dependencies on loop iterations numbers and
parameter usages are solved in the same manner as explained above.

Fig. 6.1 illustrates the algorithm for solving parametric dependencies. It gets the
ComputedUsageContext and a Variable as input, and returns a solved stochas-
tic expression as output. First, it retrieves all input parameter characterisations
and output parameter characterisations from former external calls of the RDSEFF
and puts them into a list (line 7-9). Then, it searches the list for the Variable-

205

6.2. DEPENDENCY SOLVER

Usage given as input by using its full qualified name (line 11-22). If found (line
13), this VariableUsage may contain multiple characterisation (e.g., BYTESIZE
and NUMBER OF ELEMENTS). Therefore, the algorithm checks whether the needed
characterisation is specified (line 16). If this is the case, the algorithm retrieves its
stochastic expression as given in the ComputedUsageContext and returns it.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Input:

ComputedUsageContext ctx // current computed usage context

Variable variableToSolve // variable found in a stochastic expression

Output:

Expression // resolved stochastic expression

List varList = new ArrayList();

varList.addAll(computedUsageContext.getInput()); // add inputs

varList.addAll(computedUsageContext.getExternalCallOutput()); //

String wantedVariableName = getFullName(variableToSolve);

for (VariableUsage ctxVar : varList){

String currentVariableName = getFullName(ctxVar);

if (currentVariableName.equals(wantedVariableName)){

List varCharList = ctxVar.getVariableCharacterisation();

for (VariableCharacterisation ctxVarChar : varCharlist) {

if (ctxVarChar.getType() == variableToSolve.getType()){

return ctxVarChar.getExpression();

}

}

// error message: variable characterisation missing in usage

}

}

// error message: variable missing in usage context

add former outputs

context

Listing 6.1: Solving Parametric Dependencies

Afterwards the RDSEFF visitor needs to solve the stochastic expression resulting
from substituting the variable reference. The semantics of this solution are given in
Chapter 3.3.6.

6.2.4 Context Wrapper

For convenient implementation of model transformations in Java from PCM in-
stances to performance models, the DS provides a so-called ContextWrapper.
It hides all specified and computed context models from the transformation and
assists the traversal of a PCM instance. A transformation can instantiate a new
ContextWrapper upon visiting an EntryLevelSystemCall or External-

CallAction as it is specific for each RDSEFF call.
Listing 6.2 illustrates a part of the services provided by the ContextWrapper.

Transformations must instantiate a ContextWrapper initially when visiting the

206

6.2. DEPENDENCY SOLVER

first EntryLevelSystemCall by calling its constructor and passing a reference to
the current PCM instance, which already includes the specified contexts as well as
the computed contexts from a former run of the DS. Thus, from an EntryLevel-

SystemCall and the given PCM instance, the ContextWrapper can retrieve the
called assembly context, allocation context, computed usage context, and computed
allocation context internally.

The ContextWrapper also includes functions to retrieve the RDSEFF called by
an EntryLevelSystemCall or ExternalCallAction, which a transformation
needs to continue traversing a PCM instance. These functions (getNextSEFF) hide
the context-dependent traversal through the model via delegation and assembly
connectors from the transformation.

1 // Functions assisting the traversal of a PCM instance

2 public ContextWrapper(EntryLevelSystemCall elsa, PCMInstance pcm);

3 public ContextWrapper getContextWrapperFor(EntryLevelSystemCall elsa);

4 public ContextWrapper getContextWrapperFor(ExternalCallAction eca);

5 public ServiceEffectSpecification getNextSEFF(EntryLevelSystemCall elsc);

6 public ServiceEffectSpecification getNextSEFF(ExternalCallAction eca);

7
8 // Functions producing annotations for performance models

9 public double getBranchProbability(AbstractBranchTransition abt);

10 public ManagedPMF getLoopIterations(AbstractLoopAction ala);

11 public ManagedPDF getTimeConsumption(ParametricResourceDemand prd);

12 public ManagedPDF getDelayOnLinkingResource(ExternalCallAction eca,

13 CommunicationLinkResourceSpecification clrs);

Listing 6.2: API of the Context Wrapper

When a model transformation visits RDSEFF actions, it may call the Context-
Wrapper for performance annotations, such as branch probabilities, loop iteration
numbers, or timing values. This information is not contained in the parametrised
RDSEFF, but only in the computed contexts. The ContextWrapper retrieves the
information from the computed contexts given for example an AbstractBranch-

Transition or ParametricResourceDemand.

6.2.5 Computational Complexity

The following estimates the time and memory requirements for running the DS
on a PCM instance, which depends on the number of contexts it has to compute.
Therefore, the following first estimates the maximum number of ComputedUsage-
Contexts and ComputedAllocationContexts for a given PCM instance.

For estimating the number of ComputedUsageContexts, let R be the number
of RDSEFFs of the PCM instance, CassCtx the maximal number of assembly contexts

207

6.2. DEPENDENCY SOLVER

per component, and I the maximal number of invocations of a specific RDSEFF with
different input parameter characterisations. Then, the maximal number of created
ComputedUsageContexts for a PCM instance is:

R ICcompUsgCtx CassCtx

Each invocation I with different input characterisations influences the Input

of a ComputedUsageContext, therefore a new ComputedUsageContext needs
to be created. The number of ComputedUsageContexts depends on the number
of assembly contexts, because the same RDSEFF with the same input in different
assembly contexts may receive different ExternalCallOutput from connected
components, which then changes the ComputedUsageContext.

The number of ComputedUsageContexts does not depend on the number of
loop iterations specified in RDSEFFs, because the PCM does not allow input pa-
rameter characterisations of ExternalServiceCalls to change within a loop.
Therefore, multiple invocations of an ExternalServiceCall within a loop in-
side a RDSEFF do not increase I , which increases only for different input parameter
characterisations. Furthermore, the number of ComputedUsageContexts does
not depend on the number of allocation contexts of a component, because the in-
formation inside a ComputedUsageContext, such as loop iteration numbers and
branch probabilities, does not depend on the ResourceContainer a component
is allocated on.

For estimating the number of ComputedAllocationContexts, let CallCtx be
the maximal number of allocation contexts per assembly context. Then, the maximal
number of ComputedAllocationContext for a PCM instance is:

CcompAllCtx CcompUsgCtx CallCtx

The number of ComputedAllocationContexts depends on the Computed-
UsageContext, because ParametricResourceDemands may include parame-
ter characterisations. It depends on the number of allocation contexts, because the
processing rate of the referenced resources is used for the calculation of Resource-
Demands inside ComputedAllocationContexts.

However, in the current version of the PCM, CallCtx is always 1, as a concept
for replication is missing and it is not possible to allocate an AssemblyContext

to different resource containers. Therefore, the maximum number of Computed-
AllocationContexts is the same as the maximum number of ComputedUsage-
Contexts.

208

6.3. TRANSFORMATION TO STOCHASTIC REGULAR EXPRESSIONS

The calculation of a computed allocation or usage context may lead to a limited
number of convolutions when solving stochastic expressions that include opera-
tions on probability distribution functions. A straight-forward implementation of
a discrete convolution has a computational complexity of O N2 , where N is the
number of sampling points in the involved distribution functions. As shown in
[FBH05], Fast Fourier transformation provides an efficient way of computing a con-
volution, because the computational complexity reduces to O N in the frequency
domain. However, the Fourier transformation from the timing into the frequency
domain has a complexity of O Nlog N . Thus, the total cost of a convolution is in
O Nlog N using Fast Fourier transformation.

Let X be the maximum number of convolutions involved in creating a computed
context for a PCM instance. Then, the total complexity of executing the DS on an
arbitrary PCM instance is in:

O CcompUsgCtx CcompAllCtx XNlog N

It can be assumed that the number of computed contexts, as well as the number
of convolutions is much smaller than the number of sampling points of the involved
probability distribution function:

N

This reduces computational complexity to O Nlog N

CcompUsgCtx, CcompAllCtx, X

.

6.3 Transformation to Stochastic Regular Expressions

6.3.1 Overview

The Stochastic Regular Expression (SRE) model is an analytical performance model
in the class of semi-Markov processes [Tri01]. It consists of a discrete time Markov-
chain (DTMC) to model state transitions, but the sojourn time in each state can fol-
low arbitrary probability distributions instead of being limited to exponential dis-
tributions as in Markov chains. Furthermore, SREs are hierarchically structured and
do not allow cycles in the embedded DTMC for more accurate predictions. Chap-
ter 6.3.3 will provide the syntax and semantics of SREs, afterwards Chapter 6.3.4
shows how to compute overall sojourn times with SREs.

Only a partial transformation of PCM instances to SREs is possible, because of
the model’s limited expressiveness. The transformation is straight-forward, as the

209

6.3. TRANSFORMATION TO STOCHASTIC REGULAR EXPRESSIONS

control flow modelling of PCM instances and SREs are closely aligned. Chapter 6.3.5
will describe the transformation PCM2SRE.

While allowing accurate predictions by supporting arbitrary distribution func-
tions for timing values, SRE are limited to analysing single-user scenarios. They
do not include queues or control flow forks, and cannot express contention effects
due to concurrent requests. However, they provide a fast method of producing per-
formance predictions during early development stages, as they are usually more
quickly solved than running a simulation. Chapter 6.3.6 discusses the assumptions
underlying SREs in detail. The SRE model will be used for a performance prediction
in a case study in Chapter 7.3.3.

6.3.2 Background

The Palladio group has developed SREs for several years. Reussner et al. extended
the service effect finite state machines from [Reu01a] with transition probabilities
and reliability measures to Markov chains [RPS03] and conducted reliability predic-
tions for component-based software systems. Later, Reussner et al. [RFB04] added
arbitrary timing delays to the model to conduct performance predictions, thereby
creating semi-Markov chains . Firus et al. [FBH05] increased the efficiency of the
solution algorithm by using Fast Fourier Transformations to calculate the involved
convolutions. Happe [Hap04] converted the semi-Markov chains into SREs to en-
able an easy implementation of the solution algorithm. Koziolek et al. [KF06] ex-
tended the model to allow an arbitrary distributed number of loop iterations, thus
removing the former restriction to a geometrically distributed number of iterations.

In order to remove the restriction to sequences, alternatives, and loops in the
control flow, Happe et al. [HKR06] introduced an initial concept to express forks,
which also includes the available number of processors into the prediction. How-
ever, this extension suffered from hard assumptions and worked only in restricted
cases. For example, it does not reflect accesses to memory busses, cache thrash-
ing, or automatic core switching on multi-core CPUs. Currently, Happe [Hap08] is
extending the SRE model to a full stochastic process algebra, which supports con-
tention effects and concurrent behaviour. In this thesis, there is no description of
SRE concepts concerning concurrent behaviour. The focus here is on control flow
including only sequences, alternatives, and loops. For the expression of concurrent
behaviour, the interested reader is referred to [Hap08].

210

6.3. TRANSFORMATION TO STOCHASTIC REGULAR EXPRESSIONS

6.3.3 Syntax and Semantics

The definition of SREs is based on semi-Markov processes and related to stochastic
process algebras. First, the syntax and the semantics are defined formally, before
a discussion of the model follows. The syntax of a SRE is given by the following
definition:

Definition 18 Stochastic Regular Expression
Let a be a terminal symbol from an alphabet Σ, let P and Q be non-terminal sym-
bols, π 0, 1 be a probability, and l : R 0, 1 be a pmf for a number of loop
iterations. Then, the syntax of a Stochastic Regular Expression (SRE) is defined by
the following grammar in BNF:

lP : a P Q P Pπ Q

In addition, each terminal symbol a has an associated random variable Xa charac-
terised by a pdf fa t , which defines a sojourn time. For each l i pmf defining a
number of loop iterations, it must hold that N N0 : i N : l i 0, which
bounds the number of loop iterations.

The semantics of SREs are given as follows:

• Symbol (a): models a sojourn time given by the random variable Xa. It repre-
sents the time consumption needed for some operation of a software system.

• Sequence (P Q): models that first P is executed, afterwards Q is executed. The
dot can be omitted when writing an SRE. It represents the time consumption
of successive operations of a software system.

• Alternative (P π Q): models that either P is executed with probability π or
that Q is executed with probability 1 π. It represents time consumption for
some operation of a software system selected based on a probabilistic choice.

• Loop (P l): models that P is executed once with probability l 1 , or twice
with probability l 2 , or n-times with probability l n . It represent the time
consumption of an operation of a software system, which is executed repeti-
tively.

The model focuses on the time consumption of software systems. It does not dis-
tinguish between different resources. Therefore it does not directly enable to derive

211

6.3. TRANSFORMATION TO STOCHASTIC REGULAR EXPRESSIONS

system-oriented performance metrics, such as resource utilisation. However, it al-
lows predicting the overall execution time of a service or software system as an
arbitrary distribution function by combining the pdfs of individual symbols as de-
scribed in the next chapter.

Expressing time consumption of distributed information systems with arbitrary
distribution functions is desirable, because such systems often exhibit a complex be-
haviour due to many influencing factors, such as the hardware, operating system,
middleware, concurrently running software, different usages, external services con-
nected via the Internet etc. Their time consumption is often not adequately captured
with mean values and standard deviations or even common probability distribu-
tions, such as an exponential or Erlang distributions (also see [BR06]).

Predicted timing values for a software system as arbitrary distribution functions
provide more information to a performance analyst. They may help identifying
patterns in the responsiveness of a software system and provide rationale to direct
the search for causes of performance problems.

Besides using arbitrary distribution functions, the model expresses the control
flow in a software system in a structured manner by using regular expressions.
Unlike plain Markov chains, regular expressions do not allow arbitrary cycles in
the control flow. They require to make all control flow loops explicit by using the
Kleene star operator. This forbids for example loops with multiple entrance points
or intertwined behaviour.

It furthermore enables directly specifying the number of loop iterations, whereas
Markov chains model loops with control flow cycles (i.e., backward references) and
a reentry probability p and an exit probability 1 p. This only indirectly expresses
the number of loop iterations and binds them to a geometrical distribution, which
almost never reflects behaviour of realistic software systems well [DG00, KF06].

For accurate modelling, SREs allow expressing the number of loop iterations
with pmfs having arbitrary distribution functions. However, the number of itera-
tions needs to be bounded, so that the modelled time consumption is finite and that
passage time metrics can be determined from the model. Other common perfor-
mance models, such as the execution graphs by Smith et al. [Smi02] or UML models
annotated according to the SPT profile [Obj05b], only allow mean values for the
number of loop iterations.

212

6.3. TRANSFORMATION TO STOCHASTIC REGULAR EXPRESSIONS

6.3.4 Overall Sojourn Time Solution

SREs allow the prediction of an overall sojourn time for the modelled time con-
sumptions, for example to gain the end-to-end response time of a usage scenario
as a distribution function. The following describes the individual computations in-
volved in this process.

As defined before, the sojourn time of a terminal symbol a is the random vari-
able Xa, which is characterised by a pdf fa t . The pdfs’ of all terminal symbols in a
SRE are assumed independent and identically (iid) distributed, which is necessary
for the later computations. To add the execution time of a terminal symbol to the
overall execution time consider the following. If Xt is the random variable for the
already evaluated terminal symbols when a P begins, then the overall execution
time is Xt : Xt , when a finishes. Afterwards, a P behaves like P at time X ,Xa t

meaning that the evaluation of a is completed.
Let XP be the iid random variable denoting the execution time of the expression

P , which is characterised by the pdf fP t . Then the random variable for the exe-
cution time of a sequence P Q is the sum of the random variables denoting their
execution times:

XQXP Q XP

Because XP and XQ are iid, their characterising pdfs can be convoluted to get
the pdf characterising the execution time of the sequence [Tri01, RFB04]:

t ,fP Q t fP fQ

An alternative expression P π Q models that either P is executed with proba-
bility π or Q is executed with probability 1 π. Let u u be a sample from the pdf
of the uniform distribution u x between zero and one. Then the random variable
for the execution time of the alternative expression is given by [Tri01, RFB04]:

XP , if 0 u π
.XP πQ

XQ, if π u 1

The pdf of an alternative expression is the weighted sum of the single pdfs:

πfP t 1 π fQ t

l

fP πQ t

A loop expression P models that P is executed i times in a row according
to the pmf l i X i . Let Fl x be the cdf of l i and u u again be aPl

213

6.3. TRANSFORMATION TO STOCHASTIC REGULAR EXPRESSIONS

sample from the pdf of the uniform distribution u x between zero and one. Then
the random variable for the execution time of the loop expression is given by [KF06]:

XP l

0 0 u Fl 0

XP,1 Fl 0 u Fl 1

XP,1 XP,2 Fl 1 u Fl 2
...

XP,1 XP,2 . . . XP,N Fl N 1 u Fl N

with N N0 the last value with l N 0 and l j 0 j N0, j N . XP,i is the ith
instance of random variable XP . The pdf of a loop expression is the weighted sum
over a number of sequences:

N i

t l i tl fPfP
1i 0 j

As an example for the computations, consider the SRE P a cl, which
involves a sequence, an alternative, and a loop. Let l 1

0.4 b

0.1 and l 2 0.9, so that
the number of loop iterations for executing c is bounded to a maximum of 2. The
pdf of the overall sojourn time is given by the pdf

2 i

0.4 t 0.6 t l i tfP fbfa fc

1i 0 j

To implement this solution technique, the involved continuous pdfs need to be
approximated with discrete pmfs. The SamplePDF described in Chapter 3.3.5 pro-
vides a solution for this. The implementation of the solver developed in the context
of this thesis (SRE-Solver) builds the binary abstract syntax tree of a given SRE,
where the leafs represent terminal symbols and all inner nodes represent the opera-
tions sequence, alternative, and loop.

The SRE-Solver traverses the abstract syntax tree bottom-up with a visitor and
performs above’s operations for sequence, alternative, and loop on each inner node
by using the children’s pdfs as operands. Once the visitor reaches the root node, it
has determined the overall sojourn time of the whole SRE.

The SRE-Solver uses SamplePDFs to approximate the involved pdfs. For their
convolution, it uses Fast Fourier Transformation, which reduces the computational
complexity to O NlogN , where N is the number of sampling points used [FBH05].

214

6.3. TRANSFORMATION TO STOCHASTIC REGULAR EXPRESSIONS

6.3.5 Mapping from PCM Instance to StoRegEx

For model transformation and implementing the SRE-Solver, there is an Ecore im-
plementation of the SRE meta-model (Fig. 6.7). The mapping from a PCM instance
with computed contexts to an SRE instance Fig. 6.8 requires a number of restrictions
on the PCM instance to be applicable, as the SREs cannot express several concepts
of the PCM. Branches may contain only two branch conditions. The PCM instance
must not include forks, passive resource locking (acquisition/release), or multiple
resource demands on a single internal action. Furthermore, the mapping ignores
scheduling policies of processing resources, as SREs only support non-concurrent
single user scenario, where resource queues requiring scheduling are unnecessary.

1

+leftRegExp

1
+sojournTime

1
+iterations

1

+leftOption

+regexp

1

Stochastic
Regular

Expression

NonTerminal
Symbol

Terminal
Symbol Sequence

Alternative Loop ProbabilityMass
Function

SamplePDF

1

+rightOption

Option

probability : Double 1

+rightRegExp

1
+regExp

Figure 6.7: Stochastic Regular Expressions in Ecore (meta-model)

The mapping processes both usage scenarios and RDSEFFs. Fig. 6.8 only de-
picts the mapping from RDSEFF instances, as the mapping for usage scenarios is
very similar. The mapping directly copies branch probabilities and iteration num-
ber from the ComputedUsageContexts to the SRE instance. Resource demands
from the ComputedAllocationContexts become the sojourn times of SRE ter-
minal symbols. No further conversion is needed.

The mapping is implemented in Java using a visitor for usage scenarios and a
visitor for RDSEFFs. It uses the context wrapper to access information from the com-
puted contexts. The visitors build up an SRE instance while traversing the model. It
is then passed to the SRE-Solver, which is described in the previous section.

215

6.3. TRANSFORMATION TO STOCHASTIC REGULAR EXPRESSIONS

PCM SRE

:InternalAction :InternalAction
:Terminal
Symbol :Sequence

:Sequence

:Terminal
Symbol

[…]

[…]

:Branch
Action

:AbstractBra
nchTransition

:ResourceDema
ndingBehaviour

:AbstractBra
nchTransition

:ResourceDema
ndingBehaviour

Alternative

Sequence

:Loop
Action

:ResourceDema
ndingBehaviour

:Loop

:Sequence

[…]

:ProbabilityMass
Function

:Branch

[…]

:Sequence :Sequence

[…]

:Option
probability = p1

:Option
probability = p2:BranchProbability

specification= p1

:BranchProbability
specification= p2

:Iterations
specification= IntPMF

Loop

:InternalAction

:ParametricResourceDemand :ResourceDemand
specification= DoublePDF

:Terminal
Symbol :SamplePDF

Symbol

[…][…][…]

[…]

[…]
[…]

Figure 6.8: Mapping from PCM instance to SRE

216

6.3. TRANSFORMATION TO STOCHASTIC REGULAR EXPRESSIONS

6.3.6 Assumptions

The SRE model is a rather restricted performance model and does not exploit the
full expressiveness of the PCM. Several assumptions underlay this model, which
may limit its applicability in certain situations:

No concurrency: The model is not capable to express any kind of concurrent be-
haviour. It does not allow neither control flow forks of single requests, nor resource
contention or passive resource possession for multiple requests. This is the most
severe restriction of the model, and it has several implications. Performance an-
alysts can apply SREs only for single-user scenarios, whereas in practice the vast
majority of performance-critical use cases are multi-user scenarios, where resource
contention can lead to the violation of performance goals.

However, the model is capable of making a first, precise prediction for single-
user scenarios. The missing contention overheads simplify the model to a great
extent and enable a straight-forward model solution even for arbitrarily distributed
sojourn times. Other than a simulation that uses sampling and repeated execution
to approximate the distribution functions, the SRE-Solver uses the complete dis-
tribution function for its computations. Therefore, a simulation may exclude certain
improbable outliers in the distribution functions, which would only occur during
very long simulation runs. The SRE-Solver includes such outliers in the predic-
tion making it more accurate.

The single-user scenario solution for SRE models is related to the software exe-
cution model proposed by Smith et al. [Smi02]. They use a similar behavioural de-
scription, but only use constant values for execution times and loop iteration num-
bers. Their model does support control flow forks, but assumes a single available
processor for each thread (i.e. no contention) and no influence to the execution time
due to memory accesses. Smith et al. point out that their model is useful to study
the initial feasibility of a design, before using more advanced solvers, which support
resource contention. SREs should be used in the same manner.

Independent Random Variables The random variables used to specify the so-
journ times in SREs need to be independent and identically distributed to enable
convolution of the pdfs. This assumption might not hold in some realistic cases. For
example, if two subsequent specified execution times model operations by the same
resource, these times can be stochastically dependent. For example, if the resource
is in overload mode, both random variables would be influenced.

217

6.4. TRANSFORMATION TO LAYERED QUEUEING NETWORKS

Furthermore, the SRE model does not allow execution times to change over time.
This might occur, if a component or system has a warm-up phase leading to slower
execution times, which is followed by normal operation phase leading to normal
execution times. However, for a quick feasibility study of an initial design this as-
sumption might be negligible.

Markov property The embedded DTMC in the SRE model has the so-called
Markov property, i.e., the probability of going from state i to state j in the next step
is independent of the path to state i. This property simplifies analytical methods,
but it might not hold in realistic use cases. The SRE model weakens this assumption
for loops, because it does not allow cycles in the Markov chain. Therefore, inside a
loop, the probability of going from state i to state j is not independent of the path
to i, but it depends on the number of already executed iterations. This can lead to
more accurate predictions (cf. Chapter 7.3).

However, the Markov property is still present in SREs for branches. The model
assumes that previous analysis methods, such as the Dependency-Solver, have
evaluated parameter dependencies on branch probabilities while incorporating vi-
olation to the Markov property and adjusting the model accordingly.

6.4 Transformation to Layered Queueing Networks

6.4.1 Overview

The Layered Queueing Network (LQN) model is a performance model in the class of
extended queueing networks. It is a popular model with widespread use [BDIS04].
Like the PCM, it specifically targets analysing the performance of distributed sys-
tems. While ordinary queueing networks model software structures only implicitly
via resource demands to service centers, LQNs model a system as a layered hier-
archy of interacting software entities, which produce demands for the underlying
physical resources such as CPUs or hard disks. Therefore, LQNs reflect the struc-
ture of distributed systems more naturally than ordinary queueing networks. In
particular, they model the routing of jobs in the network more realistically.

In the context of this work, a model transformation from PCM instances (with
computed context models) to LQNs has been implemented. The transformation of-
fers at least two advantages: First, it enables comparing the concepts of the PCM
with concepts of LQNs, which can be considered as a state-of-the-art performance

218

6.4. TRANSFORMATION TO LAYERED QUEUEING NETWORKS

model. Second, the transformation makes the sophisticated analytical solvers and
simulation tools for LQNs available to the PCM. Other than SREs, LQNs support
concurrent behaviour, different kinds of workloads, asynchronous interactions, and
different scheduling strategies. Therefore, it is possible to derive performance met-
rics such as resource utilizations and throughput from PCM instances, which is not
possible with SREs. However, LQNs are restricted to exponential distributions and
mean-values analysis as discussed later.

This section will first provide some background about LQNs and their develop-
ment in recent years (Chapter 6.4.2). Then, it will describe the syntax and (infor-
mal) semantics of LQNs using the LQN meta-model and several examples (Chap-
ter 6.4.3). Chapter 6.4.4 briefly describes two performance solvers for LQNs, before
Chapter 6.4.5 presents the mapping from PCM instances to LQN instances. Finally,
Chapter 6.4.6 compares the PCM model with the LQN model, as well as the existing
PCM solvers with two available LQN solvers.

6.4.2 Background

LQNs have been developed by the Real-Time and Distributed Systems Group at
Carleton University, Ottawa, for more than 20 years. The first papers by Woodside
et al. [Woo84, WNHM86] about the ”active server model” included in LQNs date
back to 1984. The term Stochastic Rendezvous Network (SRVN) was introduced in
1989 [Woo89] to differentiate the model from queueing networks with flat resource
modelling. In 1991, Petriu et al. [PW91] introduced a new solution method for
SRVN called Task-Driven Aggregation (TDA), which was based on decomposition
of the underlying Markov model. An efficient, heuristic solver (The Method of Lay-
ers, MOL) for hierarchically layered systems was introduced by Rolia et al. [RS95]
in 1995, where also the term Layered Queueing was first coined. Meanwhile, the
SRVN model was extended with multiple entries, phases, and requests that skip
certain layers [WNPM95, NWPM95]. Franks et al. [FMN 96] combined the MOL
and SRVN to create Layered Queueing Networks in 1996 and later added parallel
operations within tasks [FW98].

LQNs have been applied for example to web servers [DFJR97], distributed
data base systems [SW97], telecommunication systems [SPJN98], network routers
[MW00], Enterprise Java systems [XOWM06], systems with replication [OFWP05],
peer-to-peer systems [WWL04], and a distributed gaming platform [VDTD07]. Re-
cent research focused on the derivation of LQNs from UML models [PS02] and Use

219

6.4. TRANSFORMATION TO LAYERED QUEUEING NETWORKS

Case Maps [PW02], as well as the design of an intermediate language [PW04] to sim-
plify transformation between UML models and LQNs or other performance models.
Extensions to LQNs to specifically support component-based systems have already
been discussed in Chapter 2.5.1.

6.4.3 Syntax and Semantics

This subsection describes the syntax and informal semantics of LQNs and pro-
vides a small example. Fig. 6.9 depicts the Ecore LQN meta-model generated using
EMF [BSM 03] from the LQN XML schema definition available at [Rea]. The main
elements of LQNs are processor, task, entity, activity, and precedence as explained
in the following:

Processor An LQN consists of a number of ProcessorTypes, which represent
physical resources, such as processors and hard disks. LQN activities (described
below) use processors to consume time. A processor cannot issue requests to other
entities, therefore it is only a server and cannot be a client.

Each processor has a single request queue with a particular Scheduling-

Type. The LQN solvers support several scheduling disciplines: first-come first-
serve, processor sharing, priority preemptive resume, random, head-of-line, proces-
sor sharing head-of-line, and processor sharing priority preemptive resume (cf. Ap-
pendix B.3 for more details). The quantum attribute of ProcessorType is needed
only for the LQN simulation solver, which approximates processor sharing schedul-
ing with round-robin scheduling and therefore needs this time slice specification.

It is possible to specify an attribute multiplicity for a processor. It models
the number of service centers available for the ProcessorType’s single request
queue. On the other hand processors can have an attribute replication. In this
case, besides the service centers, also the number of queues is multiplied. Both
attributes may be combined to specify replication of multi-core processors.

Finally, performance modelers can use the speedFactor attribute to model a
constant speed-up or slow-down of the processor. All demands by activities are
then multiplied by this factor. This enables investigating the impact of introducing
a faster CPU or hard disk into the system.

Task Each ProcessorType may contain a number of TaskTypes. Tasks are
the main modelling elements in LQNs and can be used to represent various real-

220

6.4. TRANSFORMATION TO LAYERED QUEUEING NETWORKS

LQNCoreType ProcessorType

+multiplicity : NonNegativeInteger
+name : String
+quantum: SrvnFloat
+replication : NonNegativeInteger
+scheduling : SchedulingType
+speedFactor : SrvnFloat

TaskType

+activityGraph : TaskOptionType
+multiplicity : NonNegativeInteger
+name : String
+priority : NonNegativeInteger
+queueLength : NonNegativeInteger
+replication : NonNegativeInteger
+scheduling : TaskSchedulingType
+thinkTime: SrvnFloat

TaskActivityGraph EntryType

+name : String
+openArrivalRate : SrvnFloat
+priority : NonNegativeInteger
+semaphore : SemaphoreType
+type : TypeType

ActivityGraphBase PhaseActivities

+task 1..*

+entry 1..*
1 +replyEntry

1..* +replyActivity

PrecendenceType

0..1+entryPhaseActivities

+activity1..31..* +activity

0..*

CallListType

+forwarding 0..*

0..*
+synchCall +asynchCall

0..*

+callList
+synchCall

0..*

0..*

+asynchCall

+callList 0..*

0..* +synchCall 0..* +asynch

+precedence 0..*

ActivityListType

AndJoinListType

SingleActivity
ListType

ActivityLoop
ListType

OrListType

+activity

1..*

+activity 1..* +activity1..*

0..1
+postAND +preOR

0..1

+preAND
0..1

0..1
+post

+pre

0..1

+postLOOP
0..1

+postOR
0..1

Activity
OrType

+prob : String

Activity
LoopType

+count : SrvnFloat

ActivityType

+name : String

ReplyEntryType

+name : String

ReplyActivityType

+name : String

ActivityDefType

+boundToEntry : String

ActivityDefBase

+name : String
+callOrder : CallOrderType
+hostDemandCvsq : SrvnFloat
+hostDemandMean : SrvnFloat
+maxServiceTime : SrvnFloat
+thinkTime : SrvnFloat

ActivityPhasesType

+phase : PhaseType

AsynchCallType

+dest : String
+fanin : Int
+fanout : Int

SynchCallType

+dest : String
+fanin : Int
+fanout : Int

MakingCallType

+dest : String
+fanin : Int
+fanout : Int

EntryMakingCallType

+prob : SrvnFloat

1 +taskActivities

+processor

1..*

<<enum>>
TypeType

+PH1PH2
+GRAPH
+NONE

<<enum>>
CallOrderType

+STOCHASTIC
+DETERMINISTIC
+LIST

<<enum>>
SemaphoreType
+wait
+signal

ActivityMaking
CallType

+callsMean : SrvnFloat

<<enum>>
SchedulingType

+fcfs
+ps
+pp
+rand
+hol
+psHol
+psPp

<<enum>>
TaskOptionType

+YES
+NO

<<enum>>
Task

Scheduling
Type

+ref
+fcfs
+pri
+hol
+burst
+poll
+inf
+semaphore

Figure 6.9: LQN meta-model (generated from XML-Schema)

221

6.4. TRANSFORMATION TO LAYERED QUEUEING NETWORKS

life entities. This includes customers, software servers, software components, ser-
vices of hardware resources, passive resources such as buffers and semaphores, or
databases. Tasks can call other tasks and be invoked from other tasks, i.e., they can
act both as a client and as a server. Therefore, tasks were formerly also known as ”ac-
tive server”. The term ’task’ has been taken from the Ada programming language,
where it represents a process.

Common
Queue

Requests for
e1, e2, ...

Thread
Pool

Task

Entries
e1 e2 e3

Second Phase After
Sending Reply

Reply Message

Figure 6.10: LQN-Tasks Illustration [Woo02]

Fig. 6.10 illustrates the basic structure of a task. The notation is similar to Use
Case Maps [BC96], i.e., thick black arrows indicate the control flow of requests
through the task. A task consists of a number of entries (EntryType) and has a sin-
gle request queue. An entry is the starting point for a service the task provides. Re-
quests to the task are added to the task’s request queue, which is either unlimited or
has a limited length specified by the attribute queue-length. The task serves the
request according the TaskSchedulingType. Supported scheduling disciplines
are first-come first-serve, priority preemptive resume, head-of-line, burst, poll, and
infinite server (cf. Appendix B.3 for more details).

Usually, a task serves only a single request at a time. But, setting the
multiplicity attribute higher than 1 is interpreted as the task having a thread
pool with the specified capacity. This enables serving multiple requests in paral-
lel. Furthermore, with the replication attribute it is possible to make copies of
the request queue. In this case, requests get assigned to the different queues in a
round-robin fashion. Once a request has obtained a thread instance, it executes the
activities within the requested entry. The thread can send a reply message back to

222

6.4. TRANSFORMATION TO LAYERED QUEUEING NETWORKS

the client and then enter a second phase of asynchronous execution, which does not
reply to the client (details follow below).

During the execution of an entry, its included activities may call other tasks. The
set of tasks in an LQN is structured into layers. A task in a particular layer may
only request service from tasks in lower layers, but not upper layers. However, it
is possible to send reply messages to upper layers. This constraint makes the graph
of tasks acyclic and avoids deadlocks among requests [Woo02]. Furthermore, the
layering is not strict, i.e., tasks may skip layers and for example directly call tasks at
the lowest layer.

A task can represent a customer of the system. In this case, the task only serves as
a client issuing requests, but not as a server receiving requests. Such tasks are called
”reference tasks” and are specified by setting the TaskSchedulingType to ’ref’.
The attribute multiplicity then models the user population and the attribute
thinkTime models the delay each user waits before again issuing a request after
returning from former requests. This reflects the modelling of a closed workload in
an ordinary queueing network. Performance modelers can specify open workloads
by using the openArrivalRate attribute of the class EntryType (cf. Fig. 6.9).

A task can also represent a semaphore to generically model passive resources. In
this case, the semaphore task always contains two entries ”SIGNAL” and ”WAIT”
and has the TaskSchedulingType semaphore. Other tasks can call the ”SIG-
NAL” entry with synchronous or asynchronous requests. The ”WAIT” entry, how-
ever, may only be called with synchronous requests. Once the ”WAIT” entry has ac-
cepted a request, it accepts no further requests until the ”SIGNAL” entry processes
a request. It is possible to invoke both entries from different tasks. Furthermore,
using the multiplicity attribute counting semaphores can be realised.

The sequence of activities executed by entries of a task are usually specified using
EntryActivityGraphs, so that each entry has its own activity graph. However,
EntryActivityGraphs are not supported by the current version of the available
solvers. Instead, they only support TaskActivityGraphs (cf. Fig. 6.9), which
specify a single activity graph for a whole task. These TaskActivityGraphs have
been used for the model transformation from PCM instances to LQNs as explained
in Chapter 6.4.5.

Entry An EntryType represents the starting point for a service provided by a
task. For example, it models services provided by a web server or services of a
hardware resource (e.g., read/write for a hard disk). Entries accept either only syn-

223

6.4. TRANSFORMATION TO LAYERED QUEUEING NETWORKS

chronous or asynchronous requests, but not both. In the case of synchronous re-
quests, an entry either generates a reply itself, which it transfers back to the calling
client, or forwards the request to another task using an EntryMakingCallType,
which then in turn generates the reply for the calling client.

If an entry synchronously serves a request by itself, its behaviour consists of
several phases (Fig. 6.11). After a task has received a request from a client and
selected it from the request queue, an entry serves the client, i.e., it consumes time on
the underlying resources. During this, the client blocks and waits for a reply. Upon
finishing the first phase, the entry sends a reply back to the client, so it can continue
execution. In parallel, an entry can then perform an arbitrary number of additional
phases, which include calls to other tasks or time consumption of resources. These
additional phases are performed autonomously from the client.

Phase 1 Phase 2 Phase 3

Time

Layers Client

Server
Receive Reply

rendezvous
delay

Figure 6.11: Phases in LQNs Illustration [FMW 07]

The phases are intended to model common behaviour in distributed systems,
where servers return the control back to the client as early as possible to increase
the responsiveness of the system. For example, a database commit is well mod-
elled with phases, as it returns the control back to the user if the operation is pos-
sible, and then performs the operation asynchronously from the client in the back-
ground [Woo02]. Notice that the current LQN solvers restrict the number of phases
to a maximum of 3.

The behaviour of an entry (or task), i.e., the sequence of execution steps, can
be specified either via PhaseActivities (attribute type=PH1PH2), an Entry-

ActivityGraph (attribute type=GRAPH) or an TaskActivityGraph (attribute
type=NONE). A PhaseActivity is a short hand notation for the phases above
(Fig. 6.11) and models a sequential execution of a single activity for each of the up
to three phases. The graphs, which are either attached to entries or tasks, model
the control flow using sequences, alternatives, loops, and forks with Precedence-

Types.

224

6.4. TRANSFORMATION TO LAYERED QUEUEING NETWORKS

Activity An activity (ActivityDefBase) consumes time on a processor or calls
other tasks. For modelling time consumption, activities either specify a mean ser-
vice time (attribute hostDemandMean) or the coefficient of variation for the service
time (attribute hostDemandCvsq), which is the variance of the service time divided
by the square of the mean. LQNs assume that the service time is exponentially dis-
tributed.

For modelling calls to other tasks, activities contain ActivityMakingCall-

Types for single requests or CallListTypes for multiple requests. The call order
of these requests may either be deterministic or stochastic (attribute callOrder).
A deterministic call order implies issuing the exact number of specified requests to
the underlying tasks. A stochastic call order implies issuing a random number of
requests to the underlying tasks with the specified mean value (attribute calls-

Mean). LQNs assume a geometrically distributed number of stochastic requests.
For an synchronous call an entry must generate exactly one reply, so that the

client can continue execution. When using TaskActivityGraphs as done here,
ReplyActivityType can be used to explicitly declare an activity inside a graph
as the reply activity. Its name attribute is then the same as the name attribute the
reply activity (i.e., the reference is established via string matching). When using
PhaseActivities, the reply is implicitly generated after the first phase activity
completes.

Precedence PrecedenceTypes connect activities to each other in sequences,
branches, loops, or forks to form a control flow graph. They are split into ’pre’-
precedences to join or merge activities and ’post’-precedences to branch or fork ac-
tivities.

Using a ’pre’-precedence, it can be specified that an activity follows exactly one
other activity in a sequence (SingleListActivityType), that an activity waits
for all previous activities before continuing execution (AndJoinListType), or that
an activity waits for only a single of all previous activities (ActivityListType).

Using a ’post’-precedence, it can be specified that an activity is followed by ex-
actly one other activity (SingleListActivityType), by one of a list of activities
with a given probability (OrListType), by all of a list of activities (Activity-
ListType), or by a repetition of the following activities (ActivityLoopList-
Type). It is assumed that the number of loop iterations follows an geometrical dis-
tribution with the mean value given by the attribute count. It is not possible to have
replies from activities inside a loop, because the number of iterations is random.

225

6.4. TRANSFORMATION TO LAYERED QUEUEING NETWORKS

Example Fig. 6.12 shows an LQN example instance using the common concrete
graphical syntax for LQNs to illustrate the concepts explained above. The figure
shows tasks as large parallelograms and processors as circles. Rectangles within
entries represent activities. The replication of tasks or processors is indicated via
multiple parallelograms or circles on top of each other.

CE
[10]

Customer[5]

Customer
Processor

E1
[2]

DE
[0.05]

Database

Database
Processor

E2 E3
[0.2]

AppServer
Processor

+

&
A2

[0.5]
A3

[0.3]

A4
[0.09]

A5
[1.2]

A6
[0.002]

A1
[0.01]

ApplicationServer

(0.08) (0.22) (0.7)

(1)

(3)

0.85 0.15

(1)

Figure 6.12: Simple LQN Example with 3 Layers

The example models a simple three tier architecture with a client layer, an ap-
plication server layer, and a data base layer. In this example, each layer has only
a single task. The Customer task runs on the Customer processor and is replicated
5 times, therefore modelling a closed workload with a user population of 5. The
think time is 10 seconds given in the CE-entry in square brackets. Clients call three
different entries of the Application Server task running on the AppServer Processor
with the given probabilities.

Its entries E1 and E3 are specified using phase activities, while entry E2 is spec-
ified with an entry activity graph. E1 consumes 2 time units on the AppServer Pro-
cessor and then returns to the client without calls to other tasks. E2 includes an ac-
tivity graph consisting of several activities connected via OR or AND precedences.
A2 is the return activity of the entry and sends a reply message back to the client.
The activities A3 and A6 both consume time on the AppServer Processor and issue
requests to the Database task. Additionally, the entry E3 requests service from the
Database task.

226

6.4. TRANSFORMATION TO LAYERED QUEUEING NETWORKS

Each call of the DE-entry of the Database task takes 5 time units. The Database
executes on a replicated Database Processor, i.e., a multiprocessor system. The struc-
ture of this LQN is strictly hierarchical, lower layers do not issue requests to upper
layers.

6.4.4 Solution Techniques

Multiple solution techniques have been developed to derive performance metrics,
such as response times, throughput, and resource utilisation, from LQNs, as de-
scribed in Chapter 6.4.2. Currently, the LQN tool suite contains two different
solvers: the analytical solver LQNS and the simulation tool LQSIM. These solvers
are the result of combining some of the formerly developed techniques (e.g., MOL,
TDA, cf. Chapter 6.4.2). Both solvers use the same input format and produce similar
outputs in human-readable text or XML. The outputs contain for example mean ser-
vice time per task or activity, service time variance per task or activity, throughput
per task, and utilisation per processor, task, and phase.

LQNS LQNS [Fra99] is an analytical solver combining the strength of the SRVN
solver [WNPM95] and the MOL solver [RS95]. It decomposes an LQN into several
separate queueing networks and solves these sub-models individually using mean
value analysis (MVA) [RL80].

MVA is a popular and efficient solution algorithm for product-form queueing
networks. This is a very restricted class of queueing networks, which for example
requires exponentially distributed service times, a fixed user population, and service
rates only dependent on the number of customers at a service center. Features such
as simultaneous resource possession or fork/join interaction violate these assump-
tions. The former makes the service rates of different service centers dependent on
each other, while the latter changes the user population in the net.

SRVN and MOL provide heuristic solutions to analyse queueing networks that
include these advanced features by decomposing them into simpler sub-models
and then performing approximate instead of exact MVA on them. MOL in par-
ticular uses the Linearizer algorithm [CN82] to estimate the queue lengths in the
sub-models. The results of these heuristics are in many cases sufficiently accurate
[Fra99].

The solvers then use the MVA results from each sub-model to adapt the MVA
parameters of other sub-models they are connected to. Afterwards, MVA is car-

227

6.4. TRANSFORMATION TO LAYERED QUEUEING NETWORKS

ried out again in an iterative process. The process either stops when a user-defined
maximum number of iterations has been reached or when the results converge to a
user-defined interval.

The SRVN solver and the MOL solver supported several different features,
which later have been combined in LQNS. For example, the MOL solver supported
the processor sharing scheduling discipline and was able to analyse multi-servers,
but was restricted to closed workloads. Instead, the SRVN solver included open
workloads, but was restricted to single servers and did not support processor shar-
ing. LQNS supports all of these features as detailed in [Fra99].

LQSIM LQSIM is a discrete-event simulation framework for LQNs. It was for-
merly called ParaSRVN and uses the ParaSol simulation environment [Nei91]. As
a simulation approach, it imposes the fewest restrictions on the input models, but
usually takes longer to execute than the analytical solvers.

LQSIM creates simulations objects from tasks, processors, and queues of an LQN
using a library provided by ParaSol. It creates lightweight threads for requests and
uses them to simulate the execution of the modelled system. During execution,
LQSIM collects statistics on throughput and delays of each thread. Once it reaches a
user-specified confidence interval, it stops the simulation and prints out the results
for several performance metrics, such as response times, throughput, and resource
utilisation. Other than LQNS, LQNSIM can additionally provide a service time dis-
tribution including a histogram in text form for a specific entry in its results.

6.4.5 Mapping from PCM instances to LQN

The transformation PCM2LQN maps PCM instances with computed contexts
(Chapter 6.2) to LQN instances. The resulting LQNs are valid input for the solvers
LQNS and LQSIM. This subsection describes the rationale behind the mapping, the
actual transformation for PCM elements to LQN elements, and the technical reali-
sation of the mapping.

Rationale There are at least two alternatives for mapping from PCM instances to
LQNs (Fig. 6.13). The first alternative is to resolve the parameter dependencies in a
PCM instance using the Dependency Solver (Chapter 6.2) and then map the result-
ing PCM instance including the computed contexts to an LQN instance. The sec-
ond alternative is to map a PCM instance including parameter dependencies to an

228

6.4. TRANSFORMATION TO LAYERED QUEUEING NETWORKS

instance of the Component-Based Modelling Language (CBML), which is an exten-
sion for LQNs to support modelling software components [WMW03, WW04] (also
see Chapter 2.5.1). The resulting CBML instances can then be assembled into an
LQN instance.

PCM with
Parameter

Dependencies

PCM without
Parameter

Dependencies
LQN

PCM with
Parameter

Dependencies
CBML LQN

Dependency
Solver

PCM2LQN

Direct
Mapping

Assembly

Chosen
Alternative

Figure 6.13: Two Alternatives for a PCM to LQN Mapping

In this work, the first alternative has been chosen for the following reasons.
While CBML also features a parameterisation, it only supports global parameters
similar to the concept of component parameters introduced in Chapter 4.1.3. The
values of these parameters can only be specified as strings. Therefore, it is not ap-
propriate to map the PCM stochastic expressions to them. Furthermore, the CBML
parameterisation does not support parameterising branch conditions or resource de-
mands, which may occur in PCM instances. Therefore, a mapping to CBML would
only be partial in terms of parameter dependencies.

PCM2LQN uses a PCM instance with computed contexts as input and thus does
not preserve parameter dependencies in the LQN mapping. PCM2LQN does not
map to certain LQN elements, because they are not supported by the available LQN
solvers. For example, the solvers do not support EntryActivityGraphs, which
would be the natural choice for mapping RDSEFFs. Instead, PCM2LQN uses Task-
ActivityGraphs for mapping RDSEFFs.

Mapping PCM Resources PCM2LQN transforms PCM elements as follows.
BasicComponents, CompositeComponents, and ResourceContainers are
not reflected in the LQN resulting from the models. They are merely container
classes for RDSEFFs and ProcessingResourceSpecifications and do not
have counterparts in the performance domain.

The basis for the resulting LQN are processors, which form
the leafs of the resulting LQN acyclic graph or tree. Thus, each
ProcessingResourceSpecification in a PCM instance is transformed

229

6.4. TRANSFORMATION TO LAYERED QUEUEING NETWORKS

p : ProcessorType

multiplicity = 1
name = a_Processor
quantum = 0.001
replication = 1
scheduling = d
speedFactor = c

prs : Processing
ResourceSpecification

id = a
name = b
processingRate = c
schedulingPolicy = d

c e

pcm:PCM lqn:LQN

t : TaskType

activityGraph = NO
multiplicity = c
name = a_Task
replication = 1
scheduling = FCFS
thinkTime = 0.0

e : EntryType
name = a_Entry
openArrivalRate = 0.0
type = PH1PH2

ProcessingResourceSpecification

Figure 6.14: Mapping PCM2LQN: ProcessingResourceSpecification

into an LQN processor with a multiplicity of 1 (Fig. 6.14). Its processing-rate
directly translates to the processor’s speed-factor. PCM2LQN can directly map
the FCFS and processor sharing scheduling disciplines in the PCM to the respective
LQN SchedulingTypes. However, infinite server scheduling (called DELAY) in
the PCM cannot be mapped, as their is no counterpart in SchedulingTypes.
For using the processor sharing scheduling discipline, the LQSIM solver needs a
quantum specification, which is not available in the PCM. PCM2LQN sets it to
0.001 by default, because LQSIM expects a value greater than zero.

PCM2LQN also generates a task with a dummy entry for each processor. This
is necessary, because an LQN model is invalid for the LQN solvers if a proces-
sor is never used by any task. After transforming all ProcessingResource-
Specifications to LQN processors, PCM2LQN processes PCM usage models.

Mapping PCM Workloads A ClosedWorkload becomes an LQN reference task
with a multiplicity equaling the PCM user population (Fig. 6.15). The think time
of the PCM usage model gets the thinkTime of the task. Additionally, PCM2LQN
creates an LQN entry for the PCM ScenarioBehaviour corresponding to this
workload. The user actions in the ScenarioBehaviour are mapped to LQN ac-
tivities in a TaskActivityGraph connected to this task. Furthermore, PCM2LQN
generates a dummy processor for the created reference task, because each task must
run on a processor. In this case, the activities created for PCM user actions, which
do not request processing from resources, will not request any processing from this
processor.

Each OpenWorkload becomes an LQN task with FCFS scheduling and a think
time of zero (Fig. 6.16). The scheduling discipline is irrelevant as the task will
not receive but only generate requests. Like for the closed workload, PCM2LQN
creates an LQN entry with an associated TaskActivityGraph to represent the
ScenarioBehaviour. The inter-arrival time of the open workload gets mapped

230

6.4. TRANSFORMATION TO LAYERED QUEUEING NETWORKS

cw :
ClosedWorkload
id = a
name = b
population = c
thinkTime = d

p : ProcessorType

multiplicity = 1
name = a_Dummy
quantum = 0.001
replication = 1
scheduling = FCFS
speedFactor = 1.0

c e

pcm:PCM lqn:LQN

t : TaskType

activityGraph = YES
multiplicity = c
name = a
replication = 1
scheduling = ref
thinkTime = E(d)

tag : Task
ActivityGraph

e : EntryType
name = a_Entry
openArrivalRate = 0.0
type = NONE

us :
UsageScenario

sb : Scenario
Behaviour

ClosedWorkload

Figure 6.15: Mapping PCM2LQN: ClosedWorkload

to the openArrivalRate of this LQN entry. The rate is the reciprocal value of the
inter-arrival time’s expected value. As for the closed workload, PCM2LQN gener-
ates a dummy processor for the task representing the open workload.

p : ProcessorType

multiplicity = 1
name = a_Dummy
quantum = 0.001
replication = 1
scheduling = FCFS
speedFactor = 1.0

c e

pcm:PCM lqn:LQN
t : TaskType

activityGraph = YES
multiplicity = 1
name = a
replication = 1
scheduling = ref
thinkTime = 0.0

tag : Task
ActivityGraph

e : EntryType
name = a_Entry
openArrivalRate = 1/E[c]
type = NONE

ow :
OpenWorkload

id = a
name = b
interArrivalRate = c

us :
UsageScenario

sb : Scenario
Behaviour

OpenWorkload

Figure 6.16: Mapping PCM2LQN: OpenWorkload

Mapping PCM User Actions EntryLevelSystemCalls in PCM instances
model calls to the system. PCM2LQN creates an ActivityDefType with an
attached synchronous ActivityMakingCallType for each of these entry calls
(Fig. 6.17). The latter invokes the entry of the task representing the called RDSEFF.
The former contains a zero hostDemandMean and a zero thinkTime, as it is as-
sumed in the PCM that such calls do not consume any time. PCM2LQN adds the
created activity to the TaskActivityGraph of the current ScenarioBehaviour.
Additionally, it adds a PrecedenceType with two SingleActivityListTypes
to the task activity graph to connect the activity with its successor.

PCM2LQN maps user Delays in PCM instances to LQN ActivityDefTypes

(Fig. 6.18). The PCM user delay is a pdf modelling the waiting or thinking of a
user. As the LQN only allows constant values for timing annotations, PCM2LQN
calculates the expected value E c of the user delay c and uses it as the think-

Time of the ActivityDefType. The activity modelling the user delay produces
no additional demands to any resources (hostDemandMean = 0.0). PCM2LQN
adds the activity to the TaskActivityGraph created for the current Scenario-

231

6.4. TRANSFORMATION TO LAYERED QUEUEING NETWORKS

e : EntryLevel
SystemCall

id = a
name = b
signature = sig pr1 :

Precedence
Type

salt1 : Single
ActivityListType
activity = a

pre
salt2 : Single

ActivityListType
activity = e

post

synchCall

adt :
ActivityDefType

name = a
hostDemandMean = 0.0
thinkTime = 0.0

amct : Activity
MakingCallType

dest = c_f_Entry
callsMean = 1.0

c e

pcm:PCM lqn:LQN

successor
a : Abstract
UserAction

id = e

r : Resource
DemandingSEFF

id = c
describedService = sig

ac : Assembly
Context

id = f

bc : Basic
Component

encapsulated
Component

pr : ProvidedRole outerPro-
videdRole

childComponentContext

pr : ProvidedDele
gationConnector

providedRole

serviceEffectSpecifications

EntryLevelSystemCall

Figure 6.17: Mapping PCM2LQN: EntryLevelSystemCall

Behaviour. It also creates a PrecedenceType as explained before for the Entry-
LevelSystemCall node to connect the activity to its successor.

d : Delay
id = a
name= b
userDelay = c

successor

a : Abstract
UserAction

id = d

adt :
ActivityDefType

name = a
hostDemandMean = 0.0
thinkTime = E(c)

pr1 :
Precedence

Type

salt1 : Single
ActivityListType
activity = a

pre
salt2 : Single

ActivityListType
activity = d

postc e

pcm:PCM lqn:LQN

Delay

Figure 6.18: Mapping PCM2LQN: Delay

If the usage scenario contains a Branch, PCM2LQN transforms it into LQN
elements as depicted in Fig. 6.19. It creates a single ActivityDefType with
zero hostDemandMean and zero thinkTime, which reflects initiating the branch.
This activity gets connected to the newly created PrecedenceType pr1. It in-
cludes a OrTypeList, which contains an ActivityOrType referencing the ac-
tivity created later to represent the Start actions of the branched Scenario-

Behaviour (name=a). This transformation is carried out for each Branch-

Transition. The probabilities of a BranchTransition can directly be mapped
to the prob attribute. PCM2LQN merges the branched control flows using a second
PrecedenceType pr2. It includes a list of ActivityListTypes, which reference
the Stop actions of the branched ScenarioBehaviours and connects them to the
successor action of the Branch.

232

6.4. TRANSFORMATION TO LAYERED QUEUEING NETWORKS

b : Branch

bt : Branch
Transition

branchProbability = p

sb : Scenario
Behaviour st : Start

id = a

sp : Stop

id = b

pr1 :
Precedence

Type

pr2 :
Precedence

Type

salt : Single
ActivityListType
activity = branch

ActivityDefType
postOr

pre

successor
a : Abstract
UserAction

id = c

adt :

name = branch
hostDemandMean = 0.0
thinkTime = 0.0

salt : Single
ActivityListType
activity = c

alt : Activity
ListType

name = b

postpreOr

c e

pcm:PCM lqn:LQN

Branch

olt :
OrListType

activity
aot : Activity

OrType
name = a
prob = p

Figure 6.19: Mapping PCM2LQN: Branch

The mapping for BranchActions in RDSEFFs is almost the same as the map-
ping for Branches in usage models and will not be depicted here for brevity. In-
stead of directly mapping the branch probabilities of the BranchTransitions,
PCM2LQN then accesses the computed usage contexts via the ContextWrapper
(Chapter 6.2.4) to retrieve the probability resulting from solving parameter depen-
dencies. Furthermore, the mapping adds the GUID of the current Assembly-
Context to the name attributes of the created LQN elements. Otherwise, the map-
ping is the same.

If a usage scenario contains a loop, PCM2LQN creates a new task with an ac-
cording processor, entry, and task activity graph for the loop body (Fig. 6.20). This
is a workaround, because LQN ActivityLoopTypes do not support arbitrary be-
haviour inside loop bodies, but only a sequence of activities which are called re-
peatedly. As PCM instances support arbitrary behaviour inside loop bodies, the
mapping creates a new task for a PCM loop body, which then contains a Task-

ActivityGraph allowing arbitrary behaviour.
To invoke the loop body, the mapping creates an ActivityMakingCallType

in the current TaskActivityGraph that issues a number of synchronous calls to
the newly created task according to the attribute callsMean. PCM2LQN uses the
expected value E c if the number of loop iterations in the PCM instance was a pmf
c for this attribute. The execution of a loop does not create any additional resource
demands or think times.

The mapping for LoopActions and CollectionIteratorActions from
RDSEFFs is almost the same as the mapping of Loops of the usage model. In that
case, PCM2LQN retrieves the number of loop iterations from the computed usage
context via the ContextWrapper (Chapter 6.2.4) instead of directly using the at-

233

6.4. TRANSFORMATION TO LAYERED QUEUEING NETWORKS

synchCall

sb : Scenario
Behaviour st : Start

id = e

sp : Stop

id = g

successor
a : Abstract
UserAction
id = d

l : Loop
id = a
name = b
iterations = c

adt :
ActivityDefType

name = a
hostDemandMean = 0.0
thinkTime = 0.0

pr1 :
Precedence

Type

salt1 : Single
ActivityListType
activity = a

pre
salt2 : Single

ActivityListType
activity = d

post

p : ProcessorType

multiplicity = 1
name = a_Dummy
quantum = 0.001
replication = 1
scheduling = FCFS
speedFactor = 1.0

t : TaskType

activityGraph = YES
multiplicity = 1
name = a
replication = 1
scheduling = FCFS
thinkTime = 1

amct : Activity
MakingCallType

dest = a_Entry
callsMean = E(c)

c e

pcm:PCM lqn:LQN

tag : Task
ActivityGraph

e : EntryType
name = a_Entry
openArrivalRate = 0.0
type = NONE

successor

a : Abstract
UserAction
id = f

Loop

Figure 6.20: Mapping PCM2LQN: Loop

tribute iterations, and adds the GUID of the current AssemblyContext to the
created LQN elements. Otherwise the mapping is the same, and therefore not de-
picted here.

Mapping PCM RDSEFFs After transforming an EntryLevelSystemCall,
PCM2LQN maps the corresponding RDSEFF in the specific AssemblyContext to
a new task with a corresponding processor, entry, and task activity graph for the in-
cluded ResourceDemandingBehaviour (Fig. 6.21). Notice that for this mapping,
all created LQN elements with a name attribute contain the AssemblyContext

GUID f in their name value. If the same RDSEFF is used in another Assembly-
Context, the corresponding LQN elements get created again with different name
values.

The created processor for the RDSEFF is again a dummy processor to make the
resulting LQN valid, but will not be used by the activities created for the actions
inside the RDSEFF, as they use the formerly created processors from Processing-

ResourceSpecifications. The ActivityDefType PCM2LQN creates for the
StartAction of the RDSEFF’s ResourceDemandingBehaviour gets connected
to the entry of the newly created task (cf. attribute boundToEntry). PCM2LQN
uses the activity created for the StopAction of the behaviour to map it to the
ReplyActivity. The newly created PrecedenceType connects the Start-

Action to its successor action in a sequence.
PCM InternalActions may contain multiple ParametricResource-

Demands. Multiple resource demands by an InternalAction are represented

234

6.4. TRANSFORMATION TO LAYERED QUEUEING NETWORKS

st : Start
Action

id = a

sp : Stop

p : ProcessorType

multiplicity = 1
name = d_f_Processor
quantum = 0.001
replication = 1
scheduling = FCFS
speedFactor = 1.0

e : EntryType

name = d_f_Entry
openArrivalRate = 0.0
type = GRAPH

t : TaskType

activityGraph = YES
multiplicity = 1
name = d_f_Task
replication = 1
scheduling = FCFS
thinkTime = 0.0

tag : Task
ActivityGraph re : ReplyEntry

name = d_f_Entry

ra : ReplyActivity

name = c_f

pr1 :
Precedence

Type

salt1 : Single
ActivityListType
activity = a_f

pre
salt2 : Single

ActivityListType
activity = b_f

post successor

a : Abstract
Action

id = b

adt :
ActivityDefType

name = a_f
hostDemandMean = 0.0
boundToEntry = d_Entry

c e

pcm:PCM lqn:LQN

ResourceDemandingSEFF

ac : Assembly
Context

id = f

bc : Basic
Component

encapsulated
Component

Action
id = c

rd : Resource
DemandingSEFF

id = d

Figure 6.21: Mapping PCM2LQN: ResourceDemandingSEFF

by a sequence of activities in the LQN. PCM2LQN creates a new entry in the task
created earlier for the corresponding ProcessingResourceSpecification (id
= g) to express a ResourceDemand in the LQN (Fig. 6.22). This entry includes a
PhaseActivities with a single ActivityPhasesType for the first phase. Fur-
ther phases are not supported by the PCM. The phase’s hostDemandMean attribute
is assigned to the expected value E x if the ResourceDemand specification in the
RDSEFF was a pdf or pmf x. If x was a constant, the value is used directly. After
creating the new entry to reflect the resource demand, PCM2LQN creates a syn-
chronous ActivityMakingCall in the current RDSEFF to call this entry (calls-
Mean = 1.0).

The mapping of forks in RDSEFFs resembles the former mapping of branches.
So far, PCM2LQN only supports synchronous forks inside an RDSEFF. PCM2LQN
creates an ActivityDefType for a ForkAction with zero hostDemandMean

and zero thinkTime. The StartAction of each synchronously forked Forked-

Behaviour then gets inserted to an ActivityListType modelling the successor
activities (postAND) of the activity created for the fork. The StopAction of each
ForkedBehaviour gets inserted into an AndJoinListType, which models wait-
ing for all forked threads to finish before continuing execution. The successor ac-
tivity of this list is the activity created for the successor of the ForkAction in the
RDSEFF.

RDSEFFs may also include AcquireActions and ReleaseActions to model

235

6.4. TRANSFORMATION TO LAYERED QUEUEING NETWORKS

activity

p : Parametric
ResourceDemand

i : InternalAction

id = a
name = b

successor
a : Abstract

Action
id = e

p : Parametric
ResourceDemand
id = c
describedService = sig

prt : Processing
ResourceType

id = g

prs : Processing
ResourceSpecification

id = g

resourceDemand

c e

pcm:PCM lqn:LQN

pr1 :
Precedence

Type

salt1 : Single
ActivityListType
activity = a_f

pre
salt2 : Single

ActivityListType
activity = e_f

post

synchCall

adt :
ActivityDefType

name = a_f
hostDemandMean = 0.0
thinkTime = 0.0

amct : Activity
MakingCallType

dest = c_f_Entry
callsMean = 1.0

e : EntryType

name = c_f_Entry
openArrivalRate = 0.0
type = PH1PH2

ph :
PhaseActivities

apt : Activity
PhasesType

hostDemandMean = E(x)
phase = 1 entryPhaseActivities

t : TaskType

name = g_Task

entry

Internal Action

r : Resource
DemandingSEFF

ac : Assembly
Context

id = f

bc : Basic
Component

<<Computed
AllocationContext>>

rd : ResourceDemand
specification = x

Figure 6.22: Mapping PCM2LQN: InternalAction

f : ForkAction
id = a

pr1 :
Precedence

Type

pr2 :
Precedence

Type

aot : Activity
ListType

name = b_f

salt : Single
ActivityListType
activity = a_f

postAndpre

adt :
ActivityDefType

name = a_f
hostDemandMean = 0.0

salt : Single
ActivityListType
activity = d_f

a : AndJoin
ListType

name = c_f

post preAnd

c e

pcm:PCM lqn:LQN
successor

a : Abstract
Action

id = d

s : Synchro-
nisationPoint

fb : Forked
Behaviour

sp : Stop
Action

id = c

st : Start
Action

id = b

Fork Action

r : Resource
DemandingSEFF

ac : Assembly
Context

id = f

bc : Basic
Component

Figure 6.23: Mapping PCM2LQN: ForkAction

236

6.4. TRANSFORMATION TO LAYERED QUEUEING NETWORKS

the possession of passive resources. PCM2LQN maps each PassiveResource

of a BasicComponent to a new task (Fig. 6.24). It has the scheduling discipline
semaphore supported by LQNs as described in the previous subsection. This
task includes two EntryTypes signal and wait to allow acquisition and release
of the underlying passive resource. PCM2LQN maps the capacity of the PCM
PassiveResource to the multiplicity attribute of the created task. As the
PCM capacity c is a RandomVariable, PCM2LQN uses the expected value E c

in the LQN.

b : Basic
Component

passiveResource
pr : Passive
Resource

id = a
capacity = b

p : ProcessorType

multiplicity = 1
name = a_Processor
quantum = 0.001
replication = 1
scheduling = FCFS
speedFactor = 1.0

c e

pcm:PCM lqn:LQN

e : EntryType

name = a_Wait
openArrivalRate = 0.0
type = NONE
semaphore = wait

t : TaskType

activityGraph = NO
multiplicity = E(b)
name = a_Task
replication = 1
scheduling = semaphore
thinkTime = 0.0

e : EntryType

name = a_Signal
openArrivalRate = 0.0
type = NONE
semaphore = signal

PassiveResource

Figure 6.24: Mapping PCM2LQN: PassiveResource

For the AcquireActions and ReleaseActions in RDSEFFs, PCM2LQN cre-
ates ActivityMakingCallTypes, which issue requests for the task formerly
created for the PassiveResource (Fig. 6.25 and 6.26). The activities created
for AcquireActions call the wait-Entry, while the activities created for the
ReleaseActions call the signal-Entry. Again the activities are connected to the
activity created for the successor actions with a PrecedenceType.

a : AcquireAction

id = a

pr : Passive
Resource

id = b
capacity = c

successor a : Abstract
Action

id = d

pr1 :
Precedence

Type

salt1 : Single
ActivityListType
activity = a_f

pre post

synchCall
salt2 : Single

ActivityListType
activity = d_f

adt :
ActivityDefType

name = a_f
hostDemandMean = 0.0
thinkTime = 0.0

amct : Activity
MakingCallType

dest = b_Wait
callsMean = 1.0

c e

pcm:PCM lqn:LQN

AcquireAction

r : Resource
DemandingSEFF

ac : Assembly
Context

id = f

bc : Basic
Component

Figure 6.25: Mapping PCM2LQN: AcquireAction

Technical Realisation PCM2LQN creates instances of an LQN meta-model in
Ecore. It has been generated with EMF from the LQN-XML schema provided with

237

6.4. TRANSFORMATION TO LAYERED QUEUEING NETWORKS

r : ReleaseAction

id = a

pr : Passive
Resource

id = b
capacity = c

successor a : Abstract
Action

id = d

pr1 :
Precedence

Type

salt1 : Single
ActivityListType
activity = a_f

pre post

synchCall
salt2 : Single

ActivityListType
activity = d_f

adt :
ActivityDefType

name = a_f
hostDemandMean = 0.0
thinkTime = 0.0

amct : Activity
MakingCallType

dest = b_Signal
callsMean = 1.0

c e

pcm:PCM lqn:LQN

ReleaseAction

r : Resource
DemandingSEFF

ac : Assembly
Context

id = f

bc : Basic
Component

Figure 6.26: Mapping PCM2LQN: ReleaseAction

the LQN tools (Version 3.12, cf. [Rea]). PCM2LQN uses an PCM instance with com-
puted contexts as input and traverses it using three EMF-visitors for the PCM us-
age model, RDSEFFs, and the resource environment. During traversal, it creates
instances of the LQN meta-model classes. The visitors use the ContextWrapper
described in Chapter 6.2.4 to access the computed contexts and to navigate between
the different submodels.

Once the visitors have traversed the whole PCM instance, an object represen-
tation of the LQN instance has been created. Using the XML serialisation built in
EMF, PCM2LQN then saves this representation to an XML file. As the solvers do
not support the XML format as input, the tool lqn2xml of the LQN tools can be
used to convert the XML file back to an older file format based on an EBNF gram-
mar that the solvers accept. Running the solvers then generates the textual output
described in Chapter 6.4.4. A graphical visualisation of the results as in the Palladio
tools would require parsing the solver output, which is considered future work.

6.4.6 Comparison PCM/LQN

Comparing the PCM with the LQN model points out the benefits and deficits of
each approach and yields pointers for future work. The comparison in this chapter
is subdivided to features of the meta-models (Tab. 6.1) and features of the existing
solvers (Tab. 6.2).

Notice that the comparison of the meta-models uses the PCM with computed
contexts instead of the parameterised PCM. The parameterisation of the PCM for
different usage profiles and the subdivision of the model for different developer
roles can not or only partially be mapped to LQNs. Such a comparison between
the parameterised PCM and LQNs would be unfair, as both models aim at differ-

238

6.4. TRANSFORMATION TO LAYERED QUEUEING NETWORKS

ent goals. The PCM specifically aims at component-based systems and reusable
specifications, whereas LQNs aims at arbitrary distributed systems with a focus on
behaviours efficiently analysable by QN solvers. Therefore, only the performance
modelling concepts such as resources, software behaviour, and communication are
compared in Tab. 6.1.

Feature PCM with Comp. Ctx. (Ecore) LQN (XSD)
Resource Demand Distribution General Exponential
Loop Iteration Distribution General Geometrical
Number of External Calls Deterministic/Stochastic Deterministic/Stochastic
Stochastic Dependencies Limited: CollIterAction No
Workloads
Behaviour
Active Components
Request Queue for Components
Thread Pools
Replication of Components

Open/Closed/Multi
Seq/Alt/Loop/Fork
No
No
Limited
Yes (n AllCtx)

Open/Closed/Multi
Seq/Alt/Loop/Fork
Yes
Yes
Yes
Yes

Communication
Forwarding
Phases
Service Centers
Replication of Servers
Number of Resource Services
Scheduling Disciplines

Synch/(Asynch)
No
No
Single Server
No
1 per Resource
PS, IS, FCFS

Synch/Asynch
Yes
Yes
Multi Server
Yes
n per Resource
PS, PP, HOL, FCFS, RAND

Recursive Service Calls
Dynamic Architecture
Exceptions/Failure Behaviour

No
No
No

No
No
No

Concrete Syntax Proprietary (UML-like) Proprietary (Acyclic Graph)

Table 6.1: Comparison PCM/LQN

The PCM supports general distribution functions for resource demands and loop
iterations numbers, whereas LQNs only support exponential and geometrical distri-
butions respectively. This might be inaccurate for many distributed systems. How-
ever, because of this assumption, LQNs can be quickly solved using analytical meth-
ods. As evidenced by the case studies referenced in Chapter 6.4.2, the mean values
of the resulting exponential distributions are sufficient to make a rough performance
prediction.

With CollectionIteratorActions, the PCM includes a limited concept for
reflecting stochastic dependencies. However, this is so far only supported by the
SimuCom solver, not by the SRE-Solver. LQNs do not support stochastic dependen-
cies and assume independent random numbers.

Workload and behaviour specification are similar in the PCM and in LQNs,
but LQNs additionally support active components, request queues with different
scheduling disciplines in front of software entities, and have a more convenient

239

6.4. TRANSFORMATION TO LAYERED QUEUEING NETWORKS

support for modelling thread pools. Active components initiate requests to other
components or resources themselves without being invoked by users or other com-
ponents. This cannot be specified in the PCM. PCM components do not have re-
quests queues, as there queueing only happens at processing resources. Modelling
thread pools is easy in LQNs by simply modifying the multiplicity attribute of
tasks. While it is possible to model thread pools in the PCM, the necessary acquire
and release of threads needs to be modelled explicitly in each RDSEFF included in
a components, whereas in LQNs this is done automatically.

The support for concurrent control flow is more advanced in LQNs than in the
PCM. Asynchronous behaviour is supported by the PCM only indirectly using asyn-
chronous ForkActions inside RDSEFFs. All ExternalCallAction in the PCM
are synchronous calls. LQNs support concepts like forwarding and phases, which
have no counterparts in the PCM. Furthermore, LQN processors support replica-
tion (i.e., multiple service centers each having an own queue) and multi-servers
(i.e., multiple service centers having a single queue), whereas the PCM so far only
supports single service centers with a single queue.

LQN processors support multiple services. For example, a processor modelling a
hard disk may provide two services ”read” and ”write” with different performance
characteristics, which would be expressed in the LQN using two different tasks.
This is not possible in the PCM as each resource can only provide a single service.
Finally, LQN resources support more scheduling disciplines than the PCM. How-
ever, these scheduling disciplines are simplified compared to real schedulers found
in todays operating systems and are chosen because they are specifically supported
by the queueing network solvers. For the PCM an extension to realistic Windows
and Linux schedulers is planned [Hap08].

Some features are neither supported by the PCM nor by LQNs. This includes
recursive calls to component services, dynamic architectures with changing compo-
nent wiring or changing resource environments, and support for failure behaviour,
which may have an impact on the perceived performance. These features are point-
ers for future work.

The concrete syntax of both meta-models as supported by the graphical model
editors is proprietary. The PCM uses a notation similar to UML component dia-
grams and annotated activity graphs, whereas LQNs use an acyclic graph for the
tasks and processors, and control flow graphs inside tasks for activities. For the
future, a textual concrete syntax for PCM RDSEFFs is planned, which for example
shall simplify specifying parametric dependencies.

240

6.5. SUMMARY

For both the PCM and LQNs, an analytical solver and a simulation solver are
available (Tab. 6.2). However, the analytical solver for PCM instances (SRE) does
not support concurrent behaviour and is restricted to providing response times for
single user cases as general distribution functions. SimuCom, the simulation solver
for PCM instances, supports concurrent behaviour. It can handle multi-class work-
loads and G G 1 queues. So far it is restricted to PS, IS, and FCFS scheduling dis-
ciplines. SimuCom’s output includes general distribution functions for response
time, throughput, and queue lengths, as well as mean values for utilisation. The
distribution functions can be visualised graphically.

Feature SRE [KBH07] SimuCom [BKR07] LQNS [Fra99] LQSIM [WNPM95]
Workload
Queues
Scheduling Disc.

-
-
-

Open/Closed/Multi
G/G/1
PS, IS, FCFS

Open/Closed/Multi
M/M/n
PS, PP, HOL,
FCFS, RAND

Open/Closed/Multi
M/M/n
RR, PP, HOL,
FCFS, RAND

Response Time
Throughput
Utilisation
Queue Length

Gen. Dist.
-
-
-

Gen. Dist.
Gen. Dist.
Mean
Gen. Dist.

Mean + Variance
Mean
Mean
-

Mean + Variance
Mean
Mean
-

Result Feedback
into Source Model

- Yes (Annotation
Model)

Yes (XML) Yes (XML)

Table 6.2: Comparison PCM/LQN Solvers

The LQN solvers support mostly similar features except for the G G 1 queues.
Both support analysing multi-class workloads. They can handle M M n queues
with up to five different scheduling disciplines. LQSIM does not support processor
sharing, but includes round-robin scheduling instead, for which it needs an addi-
tional time quantum specification not needed for LQNS. Both solvers only support
predicting mean values plus variances for the different performance metrics. A spe-
cial feature of the solvers is the result feedback into the XML source model. This for
example includes annotating throughput directly to activities inside an LQN.

6.5 Summary

This chapter presented several model transformations from model of the software
modelling domain to models of the performance domains. To resolve the parame-
ter dependencies in a PCM, the Dependency Solver performs a transformation on a
parameterised PCM instance given a usage model from the domain expert. It prop-
agates inputs specified in the usage model through the system and creates a set of
so-called computed contexts for each component, which store information such as

241

6.5. SUMMARY

branch probabilities, resource demands, and loop iteration numbers. Running the
Dependency Solver is a preliminary step before running other model transforma-
tions.

The transformation to SREs allowed mapping PCM instances to a semi-Markov
model, which enables fast analysis of single-user scenarios. A specific benefit of the
model are the general distribution functions it produces as output for predicted ex-
ecution times. The transformation to LQNs mapped PCM instances to an extended
queueing network model suitable for single- and multi-user scenarios. The LQN
solvers can quickly predict the performance of an architecture, but provide only
less expressive mean values instead of distribution functions as results. The latter
transformation also allowed comparing the PCM to LQN. While LQNs are better
suited for asynchronous communication than the PCM, their main drawback is the
restriction to exponentially distributed timing values. Both models do not support
dynamic architectures, failure behaviour, and recursive component calls. The fol-
lowing chapter will use all transformations and performance solvers in a case study.

242

Chapter 7

Experimental Evaluation

This chapter describes the experimental evaluation of the modelling languages and
performance analysis methods introduced in Chapter 4 and 6. First, Chapter 7.1
explains different types of empirical validations. Chapter 7.2 lists the empirical val-
idations conducted in the context of this thesis. Chapter 7.3 then describes a case
study applying the modelling languages and transformations developed for this
thesis on a distributed system in detail. The validation compares predictions based
on the models created with the new modelling languages with measurements taken
from an implementation of the modelled system to assess the prediction accuracy.
Finally, Chapter 7.4 reports the results of a controlled experiment with 19 computer
science students, who used the developed modelling languages and tools to conduct
performance predictions.

7.1 Types of Validations

It is not possible to formally prove that predictions with the models will accurately
reflect the performance properties of the real system. First, designers create the
models as abstract representations of the system, so that they are manageable and
mathematically tractable. The introduced abstraction distorts the accuracy of the
predictions. Second, programmers add information and detail to the system when
using the models to create an executable implementation, which might alter the sys-
tem’s performance properties. Therefore, this chapter only demonstrates the princi-
ple possibility to make accurate prediction based on the new modelling languages,
if the available input data for annotating the models is accurate enough and the
implementation process does not change the modelled performance significantly.

7.1. TYPES OF VALIDATIONS

Laboratory Field

Type I

Type II

Type III

External
Validity

Figure 7.1: Evaluating Model-Based Prediction Methods

There are different forms of evaluations (cf. Fig. 7.1) for model-based prediction
methods:

• Type I (Feasibility): This is the most simple form of evaluation, where the
authors of a method conduct the predictions supported by a tool. It requires
an implementation of the model language and the analysis tools. A Type-I
study involves comparing predictions with the models with measurements
from an implementation of the system. The performance annotations used
in the model may either be derived based on estimations or measurements,
whereas measurements usually increase the prediction accuracy. This study
ensures that the analysis or simulation method for the prediction delivers ac-
curate results under the assumption that its inputs were accurate (examples
in [LFG05, Kou06, KBH07]).

• Type II (Practicability): Type-II studies evaluate the practicability of a method,
when it is used by the targeted developers instead of the method’s authors.
This includes investigating the maturity of the accompanying software tools
and the interpretability of the results delivered by the tools. Type-II studies can
also check, whether third parties are able to estimate performance annotations
with sufficient accuracy. Such a study may involve students or practitioners.
It is desirable to let multiple users apply the method to reduce the influence of
the individual and gain general results (examples in [BMMI04, KF05, Mar05]).

• Type III (Cost-Benefit): This form of evaluation is a cost-benefit analysis. Ap-
plying a prediction method leads to higher up front costs for modelling and
analysis during early stages of software development. Model-based prediction
methods claim that these higher costs are compensated by the reduced need
for revising the architecture after implementation or fixing the code. A Type-III

244

7.2. VALIDATIONS FOR PARAMETRIC DEPENDENCIES

study checks this claim by conducting the same software project at least twice,
once without applying the prediction method and accepting the costs for late
life-cycle revisions, and once with applying the prediction method thereby in-
vesting higher up front costs. Comparing the respective costs for both projects
enables assessing the benefit of a prediction method in terms of business value.
Due to the high costs for such a study, it is very seldom conduced (preliminary
example in [WS03]).

The external validity of an experimental evaluation refers to the generalisability
of the findings to different situations. The results for a study with a low external
validity do not hold if the method is applied under slightly different conditions. One
main influence factor for the external validity is the system under study. For a high
external validity, the analysis of one or more realistic systems instead of specially
created example systems is preferable. If the authors of a method create their own
example systems under laboratory conditions, they choose specific systems, which
emphasise the benefits of their method.

However, field experiments with industry systems are expensive and time con-
suming. In model-based performance prediction, many researchers analyse their
own example systems, which they design so that they represent realistic systems.
Whether these systems are indeed representative for a realistic setting needs to be
judged by other researchers or practitioners.

7.2 Validations for Parametric Dependencies

Several Type-I evaluations and one Type-II evaluation involving different labora-
tory example systems have been conducted in the context of this thesis. A Type-III
evaluation of the prediction method as well as an application on an industrial-sized
system is subject to future work. The different conducted Type-I studies focus on
specific parts of the modelling languages and analysis methods contributed in this
thesis:

• Web Server: In [KF06], a prototypical web server implemented in C-Sharp
served as an evaluation example for the predicting the performance using
SREs (cf. Chapter 6.3). The study analysed sequences, probabilistic control
flow branches, and, in particular, loops involving arbitrarily distributed time
consumptions. The new loop concept involving arbitrary distributed number

245

7.2. VALIDATIONS FOR PARAMETRIC DEPENDENCIES

of iterations was successfully evaluated against common geometrically dis-
tributed number of iterations. The web server had been developed in the Pal-
ladio group as a student project and had already been used for experimental
evaluations in [Koz04, Hap04, Mar05].

• Web Audio Store: The study in [KHB06] featured the so-called WebAudioS-
tore as an evaluation example for the newly introduced parameterisation of
RDSEFFs. This system was modelled after typical online music stores and in-
cluded a usage scenario that allowed users to upload MP3 files via the Internet
to a database server. It was modelled using UML and an extended version of
the SPT profile [Obj05b] and implemented in C-Sharp. Furthermore, an SRE
model of the system was implemented manually. The evaluation compared
the predicted response time distribution for the upload use case with mea-
surements from the implementation and attested a low deviation. The study
in [BKR07] later used the same system, but modelled it with the PCM and per-
formed a simulation of the model instead of SRE analysis. The results were
comparable to those in [KHB06].

• Client/Server App: In [HKR06], the SRE model was extended to allow con-
current control flow. This allowed modelling thread invocations in single user
cases. For evaluation, a simple client/server system was set up, which in-
cluded a server component offering several functions to a client component
which invoked them concurrently. This restricted, abstract setting allowed
more control of the system under analysis. The functions implemented dif-
ferent algorithms, such as quicksort, Fast Fourier Transformation (FFT), prime
number generation, and Mandelbrot-set calculations. While the model was ca-
pable to make predictions in cases with limited memory access, the predictions
failed when the algorithms made many memory accesses.

• Media Store: In [KBHR08], the MediaStore system was used for evaluating
input and output parameter characterisations as well as component parame-
ters (Chapter 4.1.3). It is an extension of the WebAudioStore system with more
components and a use case for downloading a set of files from a database.
Because it features many concepts introduced in this thesis, the evaluation in-
volving this system will be presented in the following subsections in detail.

While all of the analysed systems are small compared to industry-size applica-
tions, they are modelled after typical distributed systems, which are in the target

246

7.3. TYPE-I-VALIDATION

domain of the PCM. They include performance annotations, which could in princi-
ple be similar in larger systems. Evaluations involving industrial size applications
are however beyond the scope of this thesis and must be considered future work.

7.3 Type-I-Validation

7.3.1 Setting: Questions, Metrics, Assumptions

The goal of the empirical study described in the following is to assess the benefits of
parameterisation concepts introduced in this thesis to the PCM. Therefore, it shall
answer the following questions:

• Q1: What is the prediction accuracy of the method?

• Q2: Can the method successfully support the decision for a design alternative?

• Q3: Are the results of different performance solvers comparable?

• Q4: How sensitive is an architectural model for changing parameter values?

The prediction accuracy refers to the deviation between predicted performance
metrics using models, and measured performance metrics from an implementation.
As the PCM and its solvers support distribution functions for performance metrics,
there is no straightforward way to assess the deviation as it would be with mean val-
ues. Therefore, this evaluation uses statistical goodness-of-fit tests to compare the
distribution functions of predictions and measurements. Additionally, point estima-
tors complete the comparison. The hypothesis for Q1 is that a Kolmogorov-Smirnov
test [MJ51] will attest no difference between predicted and measured performance
metric distributions and that the deviation of the point estimators is below 30 per-
cent as in other performance prediction approaches.

The PCM specifically targets the support of design decisions of a software ar-
chitect by quantifying the performance properties for different proposed design al-
ternatives. The following study does not include multiple design alternatives, but
compares using the same architecture with different usage profiles, as the newly
introduced parameterisation enables this. The architecture is analysed in two differ-
ent settings and a service level agreement (SLA) will be evaluated for both settings.
The different usage profiles are, however, comparable to different design alterna-
tives. The hypothesis for Q2 is that the method will successfully predict whether
the system will violate the defined SLA under the given usage profiles.

247

7.3. TYPE-I-VALIDATION

As introduced in Chapter 6, there are several solvers available for PCM instances,
which have individual benefits and deficits. The SRE model and SimuCom aim
at producing distribution functions as performance indices, whereas the analytical
LQN solver and the LQN simulation provide mean values. However, all solvers
should predict the similar mean values, which should be ensured by a correct im-
plementation of the corresponding model transformations. This fact is analysed
with Q3. The hypothesis is that the mean values response time predictions from the
different solvers do not differ by more than ten percent.

PCM models offer many parameters, which the software architect or perfor-
mance analyst can adapt during model-based predictions to analyse different trade-
offs. For example, the software architect could increase the number of concurrent
users or try to decrease the size of data packets transferred over a network. The
model under analysis may react differently upon changing different parameters, as
the overall performance metrics may be more sensitive to certain parameters. The
hypothesis for the according question Q4 is that the MediaStore system is most sen-
sitive to changing the number of users and that there are only linear relationships
between changing individual parameter values and the overall performance metrics
in this example.

There are several assumptions underlying the following case study, which shall
be stated in advance to help the reader assess the validity of the results:

• Resource demands are timing values: While RDSEFFs allow the specifica-
tion of platform-independent resource demand functions for component op-
erations, this feature has not been used in the MediaStore example. With
the processing rate of the corresponding processing resource from the PCM
resource environment, such platform-independent resource demands can be
transformed into platform-dependent timing values. However, in the follow-
ing timing values are used directly as resource demands and the processing
rate of each resource is 1.0.

• Performance annotations are derived using measurements: It is assumed
that all components of the architecture are already implemented and thus
performance annotations such as resource demands can be determined via
measuring these implementations. In reality, software architects may com-
bine these measurement-based models with purely estimation-based models
for new components, which have not already been implemented. The esti-
mations included in that case might lower the prediction accuracy. However,

248

7.3. TYPE-I-VALIDATION

the following case study shall not evaluate the developers’ estimation skills,
therefore measurements are assumed.

• Linear regression is sufficient for parametric dependencies: The MediaStore
system includes several resource demands, which are parameterised over in-
put parameters. For example, the resource demand for transferring a file over
a network link depends on its byte size. It is assumed here that all parameter
dependencies are based on linear relationships, which can be determined via
several measurements and linear regression analysis. In reality, these relation-
ships might not be linear in all cases.

• No explicit middleware overhead in the model: As all performance annota-
tions for the model are obtained by measuring the execution times of individ-
ual components on the target middleware and target resource environment,
their is no need for explicit model of middleware performance as this is al-
ready included implicitly within the measured execution times. This is only a
restriction for simplicity of the setting analysed here. Becker’s thesis [Bec08]
explicitly deals with the influence of middleware features when using PCM
models.

• The usage model accurately reflects realistic workload: It is assumed that the
workload and parameter values of the users modelled in the PCM instance
are a realistic representative of the actual workload when running the imple-
mented system. Therefore, for the measurements, the workload modelled in
the PCM instance was reproduced using load drivers. In reality, the modelled
workload might differ from the workload in reality.

7.3.2 MediaStore

The MediaStore system is a web-based online shop for different kinds of media
files, such as audio or video files. The functionality is similar to Apple’s iTunes
store [App], where users can listen to, download, and purchase a vast variety of
music files. Fig. 7.2 shows a combined static and deployment view of the MediaS-
tore architecture.

The architecture consists of a client tier, an application server tier, and a database
tier. The client tier represents the users’ computers, which access the store via the
Internet. The application server is the open-source variant of Sun’s Glassfish appli-
cation server (used because of full EJB3 compliance) and hosts a number of compo-

249

7.3. TYPE-I-VALIDATION

WebBrowser MediaStoreWebGUI

User
ManagementSoundProcessing

Billing

Encoding

Digital
Watermarking

AudioDB

Community
Services

Podcast InternetRadio

Equalizer

Accounting UserDB

DBAdapter

<<ResourceContainer>>
Client

<<ResourceContainer>>
Application Server

<<ResourceContainer>>
DBServer1

<<ResourceContainer>>
DBServer2

<<LinkingResource>>
throughput = 1000
unit = MBit/s

<<LinkingResource>>
throughput = 1
unit = MBit/s

<<VariableUsage>>
StoredFiles.NUMBER_OF_ELEMENTS
StoredFiles.INNER.BYTESIZE

<<VariableUsage>>
probIncludeID.VALUE
probIncludeText.VALUE

Figure 7.2: Media Store, Static View and Deployment

nents implementing the store’s business logic. There are two MySQL databases con-
nected to the application server via Gigabit Ethernet (1000 MBit/s). One database
(UserDB) stores all customer data, while the other database (AudioDB) stores the
media files.

Fig. 7.3 shows a dynamic view of the MediaStore architecture, in particular use
case 1, where a user downloads a set of files from the store. Via the web browser, the
user provides the WebGUI component with a query that results in a set of media files
from the database. After forwarding the query to the MediaStore component, the
store searches the AudioDB component for the requested files. The matching files
are then transferred back to the MediaStore component.

For copy protection, the MediaStore adds a digital watermark to each file. With
the watermark, which is unrecognisable by the user, the store can for example add
the current user’s ID to the files. If the respecting files would appear elsewhere
on the Internet, for example in file sharing services, the user who downloaded the
files from the store, could be tracked down with the water mark. The component
DigitalWatermarking carries out the actual watermarking of the media files. It
can be configured to include additional texts, such as lyrics or subtitles, into the files
as digital watermarks. This component processes single files, therefore the Media-
Store component calls it for each file that was requested by the user in a loop
(Fig. 7.3). After completing the watermarking, the system sends all files to the user.

Fig. 7.4 depicts the RDSEFFs of the components MediaStore, Digital-

Watermarking, and AudioDB. In this case, each component provides only a single

250

7.3. TYPE-I-VALIDATION

UC1: Watermarking

WebGUI Media
Store

Water-
marking AudioDBDB

Adapter

dowload(Files)
queryDB(Files)

getFiles()

ListOfFiles
ListOfFiles

Loop watermark(File)

WMFile

addID

ListOfWMFiles
<<VariableUsage>>
probIncludeID = 1.0
probIncludeLyrics = 0.2

<<VariableUsage>>
StoredFiles.NUMBER_OF_ELEMENTS
StoredFiles.INNER.BYTESIZE

Figure 7.3: Media Store, Sequence Diagram Use Case 1

service and thus has a single RDSEFF. There are several parametric dependencies in
these specifications, as described in the following.

The service download of the component MediaStore forwards the user’s the
file request to the database via an external service call. Its input parameter charac-
terisation (in this case the number of requested files) depends on the user request
(desiredFiles.NUMBER OF ELEMENTS). The watermarking component is called
from this service for each requested file in a loop with a CollectionIterator-
Action. Thus, the number of loop iterations is the number of requested files.
The input parameter characterisation for the external call watermark depends on
the sizes of the files returned formerly from the external call queryDB. A Set-

VariableAction sets the return value of this service (i.e., the set of files requested
by the user), which depends on the file sizes returned by the watermarking compo-
nent.

The service getFiles of the component AudioDB realises searching the
database for the set of requested files and transferring these files from the hard disk
to main memory. Thus, its RDSEFF contains two InternalActions with para-
metric resource demands. The execution time for searching the database depends
on the number of files stored in it. Here, it has been approximated with a sim-
ple linear functions, which was determined by measuring the time for searching in
the MySQL database using different numbers of stored files. Fig. 7.5 shows these
measurements and the according linear regression. The same technique has been

251

7.3. TYPE-I-VALIDATION

<<ExternalCallAction>>
queryDB

<<CollectionIteratorAction>>

<<External
CallAction>>

watermark

<<SetVariableAction>>

<<InternalAction>>
search

<<SetVariableAction>>

<<ParametricResourceDemand>>
specification = „1.49E-6 *
StoredFiles.NUMBER_OF_ELEMENTS
+ 0.0096“
<<ProcessingResourceType>>
name = „HD“

<<InternalAction>>
addID

<<InternalAction>>
addText

<<SetVariableAction>>

probIncludeID

1-probIncludeID

probIncludeText

1-probIncludeText

<<VariableUsage>>
fileToMark.BYTESIZE

<<Parameter>>
desiredFiles

<<RDSEFF>>
MediaStore.download

<<RDSEFF>>
AudioDB.getFiles

<<VariableUsage>>
filesIDs.NUMBER_OF_ELEMENTS

<<RDSEFF>>
DigitalWatermarking.

watermark

<<VariableUsage>>
filesToMark.BYTESIZE

<<ParametricResourceDemand>>
specification = „fileToMark.BYTESIZE *
5.11E-9
<<ProcessingResourceType>>
name = „CPU“

<<VariableUsage>>
desiredFiles.NUMBER
_OF_ELEMENTS

<<InternalAction>>
getFiles

<<ParametricResourceDemand>>
specification = „4.0E-8 *
desiredFile.BYTESIZE + 0.08“
<<ProcessingResourceType>>
name = „HD“

Figure 7.4: Media Store, RDSEFFs

252

7.3. TYPE-I-VALIDATION

applied to determine the parametric resource demand for the second Internal-

Action, which reads the files from hard disk.

0,00

0,10

0,20

0,30

0,40

0,50

10 30 50 70 90 110 130 150 170 190 210 230 250

Ti
m

e
[s

]

1000 Stored Files

Measurement Linear Regression Slope: 1.49 * 10-6 Axis Intercept: 0.096

Figure 7.5: Media Store, Linear Regression

Also the service watermark of the component DigitalWatermark includes
a parametric resource demand, because the execution time for the watermarking
algorithm depends on the size of the files processed. The linear equation was again
determined by measuring the execution time of the algorithm on the target platform
using different file sizes.

Notice, that the content of the database has been modelled as a (static) compo-
nent parameter (StoredFiles.NUMBER OF ELEMENTS). This component parame-
ter is exposed by the component developer, so that the domain expert or software
architect can provide a value for it depending on the usage of the component. Also
the size of the stored files can be specified using a component parameter (Stored-
Files.BYTESIZE), thus this specification can be reused in different designs for
different MediaStores and be adapted to a particular setting.

The performance goal for the modelled use case 1 is that the time between the
user issuing the request for the files, and the system starting to send the files to the
user is less than 8 seconds. This time involves searching the database, reading the
files from hard disk, transferring them from the database server to the application
server, and watermarking each file. It does not include the network transfer over the
Internet to the user. More precisely, the requirements for the architecture include a
service level agreement (SLA) stating that at least 90% of the calls have to return in
less than 8 seconds. The following performance prediction will check, whether the

253

7.3. TYPE-I-VALIDATION

Size (MB) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0
Probability 0.0060 0.0223 0.0466 0.1038 0.1606 0.2038 0.1882 0.1137 0.0685 0.0293 0.0173 0.0093 0.0300

Table 7.1: File size distribution (Setting1)

system will be able to fulfil this SLA.
The parameterisation introduced to the component performance specifications

in this thesis allows analysing the architecture for different usage profiles. This in-
cludes changing the usage models, i.e., how users interact with the system, and
changing the component parameters, i.e., the static data the components operate
on. Therefore, the following analysis is carried out for two distinctive settings with
different parameters.

In Setting1, the components in the MediaStore architecture are used to cre-
ate a music store. The database is filled with 250.000 MP3 files (i.e., AudioDB.-
StoredFiles.NUMBER OF ELEMENTS = 250000). Each MP3 file has a size be-
tween 1 and 12 MB (cf. exact distribution in Tab. 7.1). The component Digital-
Watermarking is configured to add user IDs to each passed file (probIncludeID
= 1.0). Finally, users request 10-14 files with a uniform distribution from the store,
which represents a music album.

In Setting2, the components in the MediaStore architecture are used to cre-
ate a video store. The database only contains 10.000 video files (i.e., AudioDB.-
StoredFiles.NUMBER OF ELEMENTS = 10000), as there are fewer movies than
songs. Each video files is assumed to be highly compressed and has a size be-
tween 95 and 105 MB with a uniform distribution. The component Digital-
Watermarking is configured to add the user ID and subtitles to the video files (i.e.,
probIncludeID = 1.0, probIncludeText = 1.0). Each user seeks only a
single movie per request.

Notice that the parameterisation also allows using individual components of
the MediaStore architecture in different systems, instead of only using the same
system with different parameterisations. For example, the component Digital-
Watermarking does not depend on the MediaStore component and could also be
used in an online book shop. Then, the same RDSEFF can be used for performance
predictions because of its parameterisation, which allows adapting the specification
to the inputs from the book shop. To restrict the complexity of the evaluation in this
section, performance prediction is carried out here only for the same architecture
with two different usage profiles.

For the implementation of the MediaStore, the model-to-code transformations
developed in [Bec08] have been used to generate code skeletons, which were com-

254

7.3. TYPE-I-VALIDATION

pleted with the respective business logic (e.g., for watermarking) manually. The
implementation is based on EJB3. The model-to-code transformation also generated
build scripts, deployment descriptors, configuration files, and a test client. Using
AspectJ, measurement probes were weaved into the code. A pre-test run ensured
that these probes did not distort the measured execution times significantly. During
the actual measurements, where the modelled usage profile was reproduced using
the test client, 500 measurements of the response time were recorded to get distri-
bution functions for both settings.

7.3.3 Results

This subsection compares performance measurements of the MediaStore implemen-
tation with performance predictions of the MediaStore model produced by the dif-
ferent solvers. It will first describe the results for each individual solver (SRE, Simu-
Com, LQNS, LQSIM) to answer the formerly defined questions Q1 and Q2, before
comparing the predictions to answer question Q3. Question Q4 about the sensitivity
of the architecture will be tackled in the next subsection.

Stochastic Regular Expressions For the SRE prediction, the model transforma-
tions described in Chapter 6.2 and 6.3 produced a Stochastic Regular Expression
consisting of 28 symbols from the MediaStore PCM instance in about 300 ms. Run-
ning the SRE-Solver (ca. 50 ms) yielded probability distributions for both settings of
the MediaStore.

Fig. 7.6 shows the results for Setting1 consisting of two histograms on the left
hand side and the corresponding cdfs on the right hand side. Each figure includes
the distribution for the measurements (straight line) and the predictions (dashed
line).

The graphs for measurement and predication widely overlap. However, the pre-
dicted data is more smooth than the empirical data due to the approximated distri-
bution functions and the involved convolutions. The response time with the highest
probability is 6.0 seconds for the measurements and 5.7 seconds for the predictions.
The expected values for both distributions are 6.23 seconds and 5.61 seconds respec-
tively (less than 10 percent deviation).

At a significance level of α 0.01, a KS-test was not able to reject the null hy-
pothesis of prediction and measurement having the same underlying probability
distribution. The compliance of the SLA of 90% of calls returning in less than 8 sec-

255

7.3. TYPE-I-VALIDATION

Figure 7.6: Response Time MediaStore Setting 1

onds was correctly predicted, as the SRE-Solver predicted 98% of calls returning in
less than 8 seconds and the measurements confirmed this, as actually 92% returned
in less than 8 seconds.

Similar graphs illustrate the results for Setting2 (Fig. 7.7). The predicted val-
ues clearly show the uniform distribution of the files sizes used in this setting. The
measured values spread more than the predicted values supposedly because of
still inaccurate handling of the higher network load in the prediction model. The
most probable response time is 9.6 seconds (measured) and 9.4 seconds (predicted),
whereas the expected values are 9.74 seconds and 9.58 seconds respectively.

As in Setting1 a KS-test was not able to show that the underlying probability
distributions of measurements and predictions are different. Here, both predictions
and measurements reported a violation of the desired SLA of 90% of calls returning
in less than 8 seconds. The measurements showed that 90% of the calls return only
in less than 11.4 seconds and the predictions yielded 10.4 seconds and thus correctly
forecasted the violation of the SLA. Therefore, Setting2 is not capable of fulfilling
the required SLA.

SimuCom The SimuCom solver for PCM instances [Bec08] additionally produced
predictions for the MediaStore system, which are presented in the following to as-
sess the accuracy of the different solvers. Running SimCom’s model transformations

256

7.3. TYPE-I-VALIDATION

Figure 7.7: Response Time MediaStore Setting 2

and completing a simulation run that produced adequately many data points took
ca. 30 seconds for the MediaStore system, which is significantly slower than running
the SRE-Solver (below 1 second). In this simple single user scenario, the SRE-Solver
is therefore advantageous over the simulation. However, SimuCom becomes ad-
vantageous in the often more interesting multi-user scenarios.

Fig. 7.8 for Setting1 and Fig. 7.9 for Setting2 appear similar to the figures
for the SRE-solver. Measurements and predictions widely overlap. The predicted
values are not as smooth as from the SRE-solver, because of the different solution
mechanisms. The expected values for probability distributions are 6.17 seconds
(Setting1) and 9.60 seconds (Setting2), whereas the measurements yielded 6.23
seconds and 9.74 seconds respectively. The deviation between predictions and mea-
surements is therefore below 10 percent.

For both settings a KS-test was not able to reject the null-hypothesis of the pre-
diction and measurements having the same underlying distribution functions. As
for the SRE-Solver, the compliance and violation of the SLA was correctly predicted
with SimuCom.

LQNS/LQSIM Using the PCM2LQN model transformation, an LQN was gen-
erated from the MediaStore PCM instance (duration: ca. 200ms). Fig. 7.10
illustrates the generated LQN. There is an LQN task for each usage scenario

257

7.3. TYPE-I-VALIDATION

Figure 7.8: Response Time MediaStore Setting 1

Figure 7.9: Response Time MediaStore Setting 2

258

7.3. TYPE-I-VALIDATION

(DownloadFiles), each task, each loop action, and each each resource. The tasks
that do not directly access resources but delegate calls to other tasks, run on dummy
processors, where they produce no resource demands. These processors are neces-
sary for the LQN to be syntactically correct. Each task contains at least one entry.
Activities and precedence specified by task graphs for these entries are not shown
in the figure.

IA1_Entry IA2_Entry IA3_Entry IA4_Entry AudioDBCPUTaskIA1_Entry AppServerCPUTask
AppServer

CPU
Processor

Entry LoopActionTask

Entry CollectionIteratorTask

Entry getFilesTask

Entry queryDB

Entry downloadFromDB

Entry downloadHTTP

Dummy
Processor

Dummy
Processor

AudioDB
CPU

Processor

Dummy
Processor

Dummy
Processor

Dummy
Processor

Dummy
Processor

Entry watermarkTask Dummy
Processor

Entry DownloadFilesTask Dummy
Processor

Figure 7.10: Layered Queueing Network for the MediaStore

Running LQNS or LQSIM on the generated LQN took less than 10 ms in both
cases and yielded the usual performance metrics as mean values of exponential
distribution functions. Therefore, only point estimators of the measurements can
be compared with the LQN predictions. LQNS predicted the response time for
Setting1 of the MediaStore as with a mean value of 6.47 seconds (measurement:
6.23 seconds), and for Setting2with a mean value of 10.26 seconds (measurement:
9.74 seconds). Thus the deviation in both cases was less than 10 percent. LQSIM pre-
dicted the response time for Setting1 of the MediaStore as 6.37 seconds and for
Setting2 as 10.20 seconds. There are only very small deviations both from the
LQNS predictions and the measurements.

The metrics for throughput and resource utilisation are less interesting in the

259

7
8
9

10
11
12

ds

Setting�1

5,62
6,17 6,47 6,38 6,24

0
1
2
3
4
5
6

SRE SimCOM LQNS LQSIM Measurement

Se
co
n

9,58 9,60
10,27 10,20

9,75

7
8
9

10
11
12

ds
�

Setting�2

0
1
2
3
4
5
6

SRE SimCOM LQNS LQSIM Measurement

Se
co
n

7.3. TYPE-I-VALIDATION

single-user scenario and have thus been omitted here. It is not possible to answer
question Q2 about the compliance to the SLA of 90 percent of the calls returning
in less than 8 seconds with the LQN solvers adequately, because they only support
mean values for results, but not to determine arbitrary quantiles.

Comparison To assess the different solvers and answer question Q3, Fig. 7.11
shows the predicted mean value response times of each solver as well as the mea-
sured mean response time. Deviations between measurements and predictions are
limited for all predictions, the error is less than 10 percent in all cases. The SRE
predictions deviate the most from the measurements in both cases. This might be
a result of the high number of convolutions involved in this case, which introduce
rounding errors. The LQNS and LQSIM predictions are higher than the measured
values in both cases. This again might result from rounding errors introduced by
the transformation when deriving the expected values from the probability distri-
butions in the PCM instance.

d d

Figure 7.11: Response Time (Mean Values)

Besides the prediction results, the execution time of running each solver can also
be compared. The LQN tools (both LQNS and LQSIM) are the fastest solvers avail-
able for PCM instances, as they analyse the MediaStore example in less than 10 ms.
However, they only produce less expressive mean values. The SRE-Solver predicts
the performance in ca. 50 ms, but is restricted to single-user cases. This limitation
is not present for the SimuCom simulation, whose execution time is the longest. It
includes substantial processing time for the model-to-code transformations, and the
simulation time can be adjusted by the user for a desired accuracy. To get the re-
sult presented before, running SimuCom took about 30 seconds, where the model
transformation consumed about 20 seconds and the simulation about 10 seconds.
However, other than the LQN tools, both PCM tools have not been optimised yet.

260

7.3. TYPE-I-VALIDATION

7.3.4 Sensitivity Analysis

At the beginning of this section question Q4 asked for the sensitivity of an architec-
ture to changes in parameter values of the models. The following presents a sensitiv-
ity analysis resulting from more than 50 simulation runs, where single parameters
of the MediaStore were adjusted to different values to determine their impact on the
overall predictions.

The analysis is deliberately kept simple to allow an easy comprehension of the
results. Only a single variable in the PCM instance is changed at a time to deter-
mine its sensitivity, while all other variables are kept at the default values described
before. This allows determining the value ranges for certain parameters, which do
not violate the SLA. However, it does not allow analysing the effect of changing
multiple variables at a time, as combinatorial effects are excluded from the analy-
sis. Furthermore, changing variables in a PCM instance could involve changing the
form of probability distributions (for example from a uniform to a normal distribu-
tion). In the analysis performed here, the form of the probability distributions is not
altered, only the expected value of these probability functions is changed by adding
or subtracting constants to the distribution.

As the predicted response times from the PCM solvers are given by probability
distributions, it would require the sensitivity analysis to compare these probabil-
ity distributions to each other. To allow better comprehension, the results in the
following are compared by point estimators of the probability distribution. The per-
formance goal of the MediaStore scenario was that 90% of the calls return in less
than 8 seconds. Thus, the sensitivity analysis compares the 90% quantiles of all pre-
dicted response times to determine the parameter range where the SLA would be
violated.

Fig. 7.12- 7.14 show the results for changing variables in the usage model, the sys-
tem model, and the resource environment model respectively. The domain expert
would make changes to variables in the usage model. In the MediaStore system, the
domain expert can adjust the number of requested files as well as the user popula-
tion. Fig. 7.12 shows the impact of these changes plotting the expected number of
requested files (left hand side) and as well as the user population (right hand side)
against the 90%quantile of the predicted response time.

While Setting1 had a default expected number of requested files of 12, the
figure shows that the SLA would be violated if users would request a probability
distribution with an expected value of 14 files from the store, while leaving all other
variables at their default values. The slope of the curve is 0.35. The MediaStore is

261

7,5

8

8,5

9

9,5

90
%
�Q
ua

nt
il)

5

5,5

6

6,5

7

7 8 9 10 11 12 13 14 15 16 17

Se
co
nd

s�
(

Number�of�Requested�Media�Files�(Expected�Value)

45

55

65

75

85

90
%
�Q
ua

nt
il)

5

15

25

35

1 2 3 4 5 6 7 8 9 10

Se
co
nd

s�
(

User�Population

8,5

9

9,5

10

10,5

11

90
%
�Q
ua

nt
il)

6

6,5

7

7,5

8

5 5,5 6 6,5 7 7,5 8 8,5

Se
co
nd

s�
(

Size�(MB)�of�Files�in�AudioDB�(Expected�Value)

4
5
6
7
8
9

s�
(9
0%
�Q
ua

nt
il)

0
1
2
3

Se
co
nd

s

Number�of�Files�in�AudioDB

7.3. TYPE-I-VALIDATION

7

SLA

9 9

SLASLA

Figure 7.12: Sensitivity Analysis: Media Store Usage Model

however much more sensitive to the number of users concurrently issuing requests,
as the right hand figure depicts. A number of two or more concurrent users already
violates the SLA, so that the system cannot reply to the requests in less than 8 sec-
onds. Here, the slope of the curve is 7.13, therefore there is a substantially higher
sensitivity to the user population that for the number of requested files.

9 SLA

SLA

Figure 7.13: Sensitivity Analysis: Media Store System

Fig. 7.13 illustrates the predictions for adjusting the component parameters used
in the MediaStore system to different values. Increasing the file size distribution
from the default expected value in Setting1 of 5.5 MB to expected values above
6.0 MB for higher audio or video quality would violate the SLA (Fig. 7.13, left hand
side). The slope of this curve is 0.68, therefore higher than the slope for the number
of requested files. However, the MediaStore system is not sensitive for the number
of files present in the AudioDB, which alters the execution time for search requests
(Fig. 7.13, right hand side). Increasing the number of files from 250000 to 400000 im-

262

8

10

12

14

16

90
%
�Q
ua

nt
il)

0

2

4

6

0,5 1 2 4 8 16

Se
co
nd

s�
(

Processing�Rate�AppServer�CPU

8

10

12

14

16

90
%
�Q
ua

nt
il)

0

2

4

6

0,5 1 2 4 8 16

Se
co
nd

s�
(

Processing�Rate�AudioDB�CPU

7.3. TYPE-I-VALIDATION

plies almost no effect on the overall predicted response time of this use case, because
this parameter is involved in a resource demands which is too small to significantly
change the overall execution time.

SLASLA

9

SLA

9

Figure 7.14: Sensitivity Analysis: Media Store Resource Environment

Finally, Fig. 7.14 illustrates the predicted effect of changing the processing rates
of the CPUs in the resource environment to assess the inclusion of faster (or slower)
hardware. Changing the AppServer CPU, which performs watermarking the me-
dia files, almost shows no effect on the overall response time, as most processing
power is requested from the AudioDB. It is even possible to use a CPU with half of
the processing rate (0.5) than the default CPU without violating the SLA. Changing
the AudioDB CPU, which is used when searching for files and retrieving them from
hard disk, has a higher impact. With a CPU twice as fast, almost a bisection of the
predicted response time can be achieved.

7.3.5 Discussion

The formerly presented results have shown that the MediaStore system is most sen-
sitive to the number of users concurrently accessing the store. To allow concurrent
access by multiple users, the store architecture would have to be changed signifi-
cantly. Some of the variables analysed above cannot be easily changed by the soft-
ware architect when designing the system. For example, the usage model is often
part of the requirements and its parameters can only be changed by renegotiating
the requirements. Often, also the resource environment is fixed or hardly change-
able without substantial costs.

However, a parameter controllable by the software architect is the size of the files
present in the AudioDB. An additional component could be introduced to lower the

263

7.4. TYPE-II-VALIDATION

bitrates of the stored files, thereby decreasing the overhead for reading the files from
disk and transferring them over the network. In this case, the performance analysis
would have given the software architect a substantial hint on where to change the
system.

As already mentioned, the sensitivity analysis presented here has not studied the
effect of changing multiple variables at a time, because that would quickly increase
the solution space beyond comprehensibility. However, after the single-variable
sensitivity analysis a goal-oriented multiple-variable analysis could be performed,
for example by increasing the user population and decreasing the file sizes at the
same time. This is regarded as future work.

In the future such an analysis should also be carried out with systems with more
complex parameter dependencies. The MediaStore features only linear dependen-
cies, which lead to linear effects when adjusting the parameter values. In reality,
there are also often non-linear dependencies, which can be expressed with the StoEx
language. Assessing their sensitivity is usually more interesting than the for linear
dependencies.

7.4 Type-II-Validation

Complementing the Type-I-Validation in Chapter 7.3, the goal of the Type-II-
Validation presented in this section is to empirically evaluate the practicability of the
PCM and its tools from the user’s point of view. This validation has been realised
as a students experiment as part of a Master’s thesis by Anne Martens (cf. [Mar07]).

The following describes this study with a special focus on results concerning the
parameterisation concepts contributed to the PCM in this thesis. Chapter 7.4.1 in-
troduces the setting of the study, defines questions to be answered to achieve the
studies goal, and lists assumptions of the study. Chapter 7.4.2 explains the experi-
ment’s design and the systems under study. Chapter 7.4.3 describes and discusses
the results of the study, before Chapter 7.4.4 concludes the Type-II-Validation by
discussing the study’s internal and external validity.

7.4.1 Setting: Questions, Metrics, Assumptions

The following questions were asked before the study to direct its conduction
(slightly adopted from [Mar07]):

• Q5: What is the accuracy of the method when applied by third parties?

264

7.4. TYPE-II-VALIDATION

• Q6: Can third parties successfully assess a design alternative with the method?

• Q7: What causes the achieved prediction accuracy by third parties?

• Q8: What is the duration for applying the method by third parties?

Q5 and Q6 are closely related to Q1 and Q2 from the former section. Metrics for
Q5 compare prediction made with a model against a sample solution for the exper-
iment’s tasks using statistical methods. Metrics for Q6 compare a ranking of design
alternatives based on model predictions with a ranking from a sample solution. The
hypotheses for both questions are the same as for Q1 and Q2: the deviation between
the response time mean values is below 30% and third parties can rank the design
alternatives correctly.

Q7 asks for causes of the achieved prediction accuracy. Answers for the ques-
tion shall be provided by quantitative and qualitative metrics. As the participants
had to pass an acceptance tests of their models, which ensured a minimum qual-
ity level, quantitative metrics count the number of failed acceptance tests and the
number of recorded interpretation problems. Qualitative metrics are collected us-
ing questionnaires asking the third parties for their explanation for causes of the
achieved prediction accuracy. There are several possible factors influencing the pre-
dictions, such as comprehensibility of the meta-model, usability of the supporting
tools, and adequacy of the modelling language’s concrete syntax. The hypothesis
for this question is that main cause for inaccurate predictions are the prototypical
tools.

Q8 analyses the effort needed to conduct a performance prediction with the
method. While it might be possible to achieve very accurate predictions with a
method when spending a large amount of time, this is not practical due to the usu-
ally limited resources available for performance modelling and prediction in the
software industry. Therefore, metrics for this questions measure the duration for
applying the method and break it down to individual tasks, such as modelling, run-
ning the simulation, fixing errors, etc. The hypothesis is that a reasonable perfor-
mance prediction for a small system can be carried out in less than a day.

In this thesis, the focus is on checking the practicability of the newly introduced
parameterisation concepts. Therefore, when describing the results of the Type-
II-Validation special emphasis is laid on analysing whether the parameterisation
caused inaccuracies in the predictions or was responsible for a longer duration of
the performance prediction.

265

7.4. TYPE-II-VALIDATION

Several assumptions had to be made to carry out the Type-II-Validation as a stu-
dent experiment due to organisational constraints. They are listed here to allow the
reader judging the validity of the study. A thorough discussion of the experiment’s
internal and external validity follows after presenting the results of the study. No-
tice that the assumptions listed in Chapter 7.3 also apply for the Type-II-Validation.
Additional assumptions are:

• No use of the PCM’s role concept: Each participant of the student experiment
fulfils the roles of component developer, software architect, system deployer,
domain expert, and QoS analyst at the same time. To increase the number
of data points the modelling and prediction tasks were not divided among
different developer roles. Therefore, the benefits of the PCM’s role concept
cannot be assessed with this study.

• No estimations by the participants necessary: It is assumed that all data nec-
essary to create performance annotations is already available for the exper-
iment, i.e., the participants do not have to estimate values or perform mea-
surements with prototypes. This assumption limits the effort for applying the
method and allows a more thorough analysis of the overall modelling and
prediction.

• No comparison between predictions and measurements: Instead of compar-
ing predictions and measurements, in this study predictions of the experi-
ment’s participants were made with predictions of a sample solution for the
experiment’s tasks. Due to the immaturity of predicting the performance of
concurrent control flows with the PCM, this assumptions has been introduced
to allow modelling concurrent component interactions in the experiment’s
tasks. It remains future work to improve the solvers to correctly predict the
performance in these cases.

7.4.2 Experiment Design

The Type-II-Validation has been conducted as a controlled experiment with a num-
ber of students each applying the method. Having multiple test persons instead of
just a single one is a mean to control the distorting influence of the person’s individ-
ual capabilities.

It was furthermore decided to compare the Palladio prediction method with the
established SPE method [Smi02]. This allowed quantifying the proposed improve-

266

7.4. TYPE-II-VALIDATION

ments of Palladio over an existing method. The SPE method was chosen, because
a former study [KF05] had attested it the most maturity from the available perfor-
mance prediction approaches.

The independent variable of the controlled experiment was the applied method
(i.e., Palladio or SPE). The dependent variables for both methods were aligned with
the metrics described at the beginning of the section. This included the predicted
response times for the systems under study, the ranking of design alternatives, and
the duration for all involved tasks as quantitative measures. Furthermore, question-
naires for each participant helped collecting additional qualitative data, for example
a subjective assessment of both methods.

SPE
Media Store
9 Students

Palladio
Media Store
10 Students

SPE
Web Server
10 Students

Palladio
Web Server
8 Students

Session 1:
6/30/2007

Session 2:
7/7/2007

P
re

pa
ra

tio
n

E
xp

er
im

en
t

Lectures
10 Sessions

Practical Lab
8 Sessions

Exercises
10 Sheets

Figure 7.15: Design of the Experiment

Fig. 7.15 depicts the different parts of the experimental design, which includes a
preparation phase lasting several weeks and then the conduction of the experiment
on two days. The following will detail on these parts.

Participants and Preparation As mentioned before, 19 computer science students
participated in the experiment [Mar07]. No practitioners participated in the experi-
ments due organisational constraints (i.e., it requires substantial costs to have prac-
titioners apply the methods). While the students had limited programming experi-
ence, most of them had at least participated in lectures about software engineering

267

7.4. TYPE-II-VALIDATION

and software architecture. They were familiar with the UML, which was useful as
the models created during the experiment are similar to UML models.

The study was conducted as part of a university lab course on software perfor-
mance engineering. The students were motivated to complete the course success-
fully, because they received grades for it.

Because the students were not familiar with both Palladio and SPE before start-
ing the course, 10 lectures sessions and practical exercises were held to prepare them
for the experiment (Fig. 7.15). 2 lectures covered SPE and 5 lectures covered Palla-
dio due to its higher complexity. The students had to hand in solutions for weekly
exercise sheets, which were graded to ensure their familiarity with the methods and
their tools.

Experiment Plan and Execution The experiment itself was designed as a change-
over trial [WRH 00] applying the prediction methods on two different systems
(Fig. 7.15). The students were divided into two groups and each student of each
group applied one method to one system during each session. In the second ses-
sion, each student switched the prediction method as well as the analysed system.
This allowed tracing back differences in the results of each participant to specifics of
the analysed system instead of interpreting differences in the results as specifics of
the applied method.

To ensure balanced capabilities of both groups, the participants were assigned to
the groups based on their grades for their solutions to the exercise sheets. Students
from the better half and the worse half were assigned randomly to each group. This
limited the effect of having one more capable group, which would distort the mea-
surement of the dependent variables.

The experiment sessions had a maximum time limit of 4.5 hours to model the
systems with the corresponding tools of each method and conduct the performance
prediction. The time limit shall reflect the situation in the software industry, where
the resources for performance modelling and prediction are usually limited. How-
ever, during the execution of the experiment the time limit was loosened to 6 hours,
as several participants were not able to hand in appropriate solutions in the allotted
time.

To ensure a minimal quality of each participant’s solution and to avoid trivial
solutions, acceptance tests during the experiment sessions checked the models cre-
ated by the students. The students could not continue with other experiment tasks
until they successfully passed an acceptance test. This ensured more data points

268

7.4. TYPE-II-VALIDATION

for the dependent variables as the number of useless outliers was decreased. Fur-
thermore, it motivated the students to produce good solutions. The acceptance tests
only checked for a coarse grain compliance with the sample solution (both predic-
tions and model structure) of the experiment’s tasks, but did not enforce strict com-
pliance. Therefore, the results presented later still exhibit deviations between the
student’s results and the sample solution.

During the experiment sessions at a university lab, four experimenters super-
vised the conduction. Participants were allowed to ask questions to the experi-
menters if they ran into problems that prevented continuing the experiment. The
experimenters documented the given advice (cf. [Mar07]), so that their influence on
the participants results can be judged independently.

Systems under Study [1 page] The students analysed one of two systems during
each experiment session. The MediaStore system is similar to the system analysed in
Chapter 7.3, while the WebServer system is a prototypical component-based server
for downloading HTML-files with multimedia content. The experiments’ task de-
scriptions contained UML component diagrams of the static system architectures,
as well as sequence diagrams of performance critical use cases with performance
annotations. The participants were asked to model the systems with the tools of
each method and conduct performance predictions for different design alternatives
and usage profiles as described in the following.

The MediaStore system was slightly adapted from the formerly presented ver-
sion. It did not contain a database adapter and all components were allocated onto a
single server. There were two different performance-critical usage scenarios running
in parallel on the server. The first scenario involved downloading a set of files from
the system, which required watermarking each file. The second scenario modelled
the upload of single media file to the store’s database.

Additionally, the participants had to analyse two different usage profiles consist-
ing of different parameter characterisation in the usage model and different com-
ponent parameter characterisation in the system. The first usage profile modelled
a single user executing the usage scenarios alternately. The second usage profile
modelled multiple users in an open workload using the system concurrently and
increased the number of requested files and the number of downloads.

The experimental tasks included five design alternatives for the MediaStore and
required the participants to analyse each design alternative for each usage profile
(i.e., a total of 12 predictions including the original system and five alternatives). The

269

7.4. TYPE-II-VALIDATION

alternatives included i) introducing a cache component, ii) introducing a database
connection pool, iii) allocating the database component to another server, iv) com-
pressing the media files, and v) introducing a broker look-up (also see [Bec08]) be-
tween the components. The students were required to rank these design alternatives
according to their impact on the performance of the system. In the sample solution
created by the experimenters before the conduction of the experiment, alternative i)
(cache) and iv) (compression) yielded the fastest response times.

The WebServer system allowed users to download static and dynamic HTML
files. It consisted of six components allocated to a single server. The system specifi-
cation contained only a single usage scenario, which was however complexer than
the one for the MediaStore because it involved multiple requests and control flow.
Furthermore, the experiments’ task included five design alternatives, which were
comparable to the MediaStore design alternative. They were i) introducing a cache
for dynamic content, ii) broker look-up, iii) parallel logging, iv) using an additional
second server, and v) introducing a thread pool. The sample solution revealed that
introducing the second server (alternative iv) allowed the fastest response times in
this scenario.

As for the MediaStore system, the participants had to analyse two different usage
profiles. The first profile involved a single user workload, a specific proportion of
dynamic and static content, and a specific distribution of the number of dynamic
objects and the file sizes. In the second usage profile, multiple users accessed the
WebServer in an open workload, requested more static files, and fewer dynamic
objects.

Tools For the sample solution both systems were modelled in all design alterna-
tives and with both usage profiles using the tools provided by the methods.

The PCMBench (Fig. 7.16) includes a number of graphical editors to create PCM
instances. The concrete graphical syntax of these editors is aligned with UML com-
ponent diagrams, UML activity diagrams, and UML deployment diagrams. One
aim of the experiment is to find out whether the use of these editors is intuitive for
the participants.

After the user has completed the modelling process, the PCMBenchs validates
the model instance by checking several OCL constraints and reports errors or omis-
sions to the user. Running the SimuCom, as performed by the participants of the
experiment, yielded a set of experiment data, which the user can visualise for exam-
ple as histograms or cdfs. The experiment also checks whether the simulation result

270

7.4. TYPE-II-VALIDATION

Figure 7.16: Screenshot PCM-Bench

271

7.4. TYPE-II-VALIDATION

is comprehensible and useful for the users.
The SPE-ED tool enables creating and analysing models for the SPE

method [Smi02]. The user can create annotated control flow graphs to model a dy-
namic view of a software architecture. Furthermore a so-called overhead matrix
specified the time for executing specific actions (such as CPU access, reading from
a database etc.). The concrete graphical syntax is proprietary and not aligned with
UML. The user can analyse the created models with QN solvers or a discrete-event
simulation.

7.4.3 Results

The following presents the results to answer the questions Q5-Q8 raised in Chap-
ter 7.4.1.

To assess the prediction accuracy of both approaches (Q5), Table 7.2 shows the
deviations between the predicted mean response times per usage profile (UP) of Pal-
ladio/SPE and the experiment’s sample solution. The values are averaged among
all design alternatives and all participants and therefore highly condensed for quick
comprehension. More detail about the deviation can be found in [Mar07].

Media Store Web Server Average
UP1 UP2 UP1 UP2

Palladio 4.69% 6.79% 7.45% 10.67% 6.9%
SPE 11.35% 10.21% 2.42% 9.21% 8.3%

Table 7.2: Deviation of the predicted response times

The maximum deviation is below 30%, therefore the hypothesis stated for Q5
cannot be rejected in this case. There are also no significant differences between Pal-
ladio and SPE as well as between both usage profiles. Notice that these values re-
fer to predictions that passed the acceptances tests, other predictions are excluded.
Thus, a limited deviation between the values was already ensured by the experi-
ment’s design.

There are many possible reasons for the still visible deviations. The simulations
performed during the experiment do not produce deterministic results after each
run, because they involve drawing samples from probability distributions. Further-
more, the participants may have not correctly used all values for performance anno-
tations from the experiment’s task description in their model. Some of these values
had to be determined via additional calculations, which could introduce errors.

272

7.4. TYPE-II-VALIDATION

Question Q6 asked whether the participants could successfully rank the design
alternatives according to their performance properties. Answering this questions
turned out to be difficult, because several students did not complete the experimen-
tal tasks in the allotted time and could therefore not provide a full ranking. Table 7.3
shows the correct rankings of design alternatives in the form x y, where x is the
number of correct rankings and y is the number of students, who submitted a rank-
ing at all.

Media Store Web Server
UP1 UP2 UP1 UP2

Palladio 1/1 1/1 4/6 5/5
SPE 7/7 2/7 8/8 7/8

Table 7.3: Correct Rankings of the Design Alternatives

Although the number of completed rankings is low (especially for Palladio),
most submitted rankings were indeed correct. For the MediaStore and Palladio,
only a single participant provided a ranking. The numbers are slightly higher for
the WebServer. This might result from a learning effect of the participants, because
they analysed the WebServer after the MediaStore and were more familiar with the
experimental setting. Only 2 of 7 rankings for analysing usage profile 2 of the Me-
diaStore turned out to match the sample solution. A reason might be the fact that
for this setting the results for several design alternatives (e.g., i) and iv) as well as ii)
and iii)) were almost equal, which easily lead to different rankings.

In conclusion the study provided too few data points to answer question Q6
reasonably. Therefore, the assessment of different design alternatives still remains
to be validated properly.

Question Q7 asked for causes for the achieved prediction quality. Therefore,
Martens [Mar07] analysed the problems and errors made by the participants during
the experiment. The experimenters had documented all questions by the partici-
pants and the reasons for failed acceptance tests during the experiment. After the
experiment, the student’s models were analysed further for errors and deviations
from the experimental tasks, which could not be revealed with the acceptance tests.
Furthermore, the experimenters handed out questionnaires to the students, where
they could themselves note problems they encountered.

For Palladio, many documented problems and errors related to the specification
of parameter dependencies and component parameters. The number of problems

273

7.4. TYPE-II-VALIDATION

was higher in the first session when the MediaStore was analysed and less pro-
nounced in the second session (for details see [Mar07]).

There are several possible explanations for the students’ problems with specify-
ing parameter dependencies. During the preparation phase, unfortunately, compo-
nent parameters had only been introduced in the lectures, but not practiced in the
exercises. The PCM-Bench’s support for specifying parameter dependencies was
still prototypical and not substantially tested. The concept of parameter dependen-
cies is one of the few points, where the Palladio method differs substantially from
the SPE method. Therefore, the participants could not rely on their SPE knowledge
for specifying parameter dependencies, which they could for example for specifying
control flow.

During the second session, fewer problems with parameter dependencies were
detected, which might relate to a learning effect (more familiarity with the ex-
perimental setting) or to unbalanced groups. On the subjective questionnaires,
the participants stated that the specification of parameter dependencies was time-
consuming and error-prone with the available tools and that it reduced the clear
overview of the complete model. However, they also noted that it lead to higher
flexibility, enabled reuse, and was more intuitive than in the SPE method, where
the influence of parameters on the performance had to be encoded into constant
resource demands.

As another interesting fact, the problems with Palladio occurred earlier during
the experiment and the finished Palladio models were less erroneous than the SPE
models. 77% of Palladio-related problems occurred during modelling and were
noted on the experimenters’ questions protocols, 12% were encountered in the ac-
ceptance tests, and 11% were still present in the finished models after the exper-
iment. In contrast, SPE-related problems occurred in 30% of all cases during the
experiment and were noted on the question protocols, 26% at the acceptance tests,
and 44% when analysing the finished models. This could relate to the PCM-Bench
requiring more correct inputs and checking more substantially for errors, whereas
the SPE-ED tool is more robust to erroneous user input and does not check the mod-
els for validity.

To answer question Q8 about the duration for the performance prediction with
both methods, Fig. 7.17 shows box-and-whisker plots for the time spent by the stu-
dents in the experiment sessions. The left hand side (Fig. 7.17(a)) illustrates the
overall duration, while the right hand side (Fig. 7.17(b)) illustrates the duration for
modelling and performance prediction of only the initial system without any design

274

7.4. TYPE-II-VALIDATION

alternatives. While the box plots show that the time varied strongly between differ-
ent participants, it is also visible that the prediction for Palladio took longer for both
analysed systems.

M
S

 P
al

M

S
 S

P
E

W

S
 P

al

W
S

 S
P

E

M
S

 P
al

M

S
 S

P
E

W

S
 P

al

W
S

 S
P

E

250 300 350 400 100 150 200 250 300

Time in minutes Time in minutes

(a) Prediction including all Design Alternatives (b) Prediction without Design Alternatives

Figure 7.17: Box plots of the overall time needed by the students in the experiment
sessions

To quantify the ratio between the durations of Palladio and SPE, Table 7.4 in-
cludes the mean values for the execution times. The ratio (d Palladio) between the

d SPE

duration for the overall prediction is 1.32 for the MediaStore and 1.17 for the Web-
Server. It is interesting that the ratio was higher for both system, when only looking
at the duration for modelling the initial system without any design alternatives.
With Palladio, the students were able to model and analyse the design alternatives
in 171 minutes (MediaStore) or 94 minutes (WebServer), which is less than for SPE,
where they needed 185 minutes for the MediaStore and 124 minutes for the Web-
server. However, for Palladio not all participants were able to finish the analysis of
all design alternatives.

Prediction including all
Design Alternatives

Prediction without
Design Alternatives

MediaStore WebServer Avg MediaStore WebServer Avg
Palladio
SPE

374 min 285 min
284 min 243 min

329.5 min
263.5 min

203 min 191 min
99 min 119 min

197 min
109 min

Ratio 1.32 1.17 1.25 2.05 1.61 1.81

Table 7.4: Duration for the Predictions (mean values, in minutes)

This result could be a hint that the reusability of Palladio models was advan-
tageous over the SPE models when modelling the design alternatives. In SPE, the

275

150

200

250
UP2�analysis

UP1�analysis

UP2�searching�for�errors

UP1�searching�for�errors

0

50

100

Media�Store�Palladio Web�Server�Palladio Media�Store�SPE Web�Server�SPE

UP2�modelling

UP1�modelling

Resource�environment�modelling

Resource�demand�modelling

Control�flow�modelling

Reading

7.4. TYPE-II-VALIDATION

students had to model the control flow through the system again to assess a differ-
ent design alternative. Instead Palladio allowed to simply relocate a component to
a different server or introducing a new component without the need to model the
control flow of the other components again. However, the number of data values is
not sufficient to derive general observations with statistical significance.

Fig. 7.18 shows a more detailed breakdown of the duration for modelling the
initial system without design alternatives. For both methods, it took the students
less time to read the experimental tasks for the WebServer, which might be the result
of a learning effect after the first session where the MediaStore was analysed. Also
for both methods, more time was needed to model the control flow of the WebServer
than the of the MediaStore, which could hint at a more complex architecture of the
WebServer.

Time�in�minutes

Figure 7.18: Breakdown of the duration for analysing the original system

Another interesting detail is the time needed by the students to search for errors
in their models after the tools rejected the models. The time was significantly higher
for Palladio that for SPE with both systems. This could be a sign of the still im-
mature tool support for Palladio, which sometimes provided less informative error
messages, whereas SPE also accepted erroneous models. The absolute numbers of
errors with both methods were comparable.

276

7.4. TYPE-II-VALIDATION

7.4.4 Threats to Validity

The following discusses the internal validity, the construct validity, and the external
validity of the experiment described before.

Internal Validity The internal validity refers to the degree to which changes in
the dependent variables (i.e., the resulting metrics) are indeed results of changing
the independent variables (i.e., the performance prediction method) and not caused
by interfering variables [WRH 00]. The experimenters have to control all relevant
interfering variables as much as possible to ensure a high internal validity.

An important interfering variable in this experiment were the different capabilities
of the students. Based on their individual talent and motivation, the quality of the
performance predictions might have changed. To ensure that at least the dependent
variables changed equally for both investigated method, the students were assigned
to the two experiment groups according to their exercise paper results. Students
were randomly chosen from the better and the worse half based on these results and
then assigned to the experiment groups to balance the capabilities of both groups.

The systems under analysis might also influence the prediction results, as one
method could be more suited for a given system. To trace back differences of the de-
pendent variables to the analysed systems and not to the prediction method Palladio
or SPE, a change-over trial experiment design has been chosen. The participants of
the experiment analysed two systems, therefore differences in the predictions and
the duration can to a certain extent be traced back to the systems.

A small learning effect visibly appeared in the results of the experiment. During
the second experiment session, the same students were able to conduct the perfor-
mance predictions faster and more participants completed the analysis of all design
alternatives. This might result from the students’ higher familiarity with the ex-
perimental session and also from some bug fixes to the PCM bench after the first
experiment session.

Furthermore threatening the internal validity is a potential bias of both the exper-
imenters and the students. The experimenters developed the Palladio method and
implemented the PCM bench. Therefore, they were naturally interested in showing
the benefits of their own method against the SPE method. This possibly subcon-
scious bias might have been transduced to the students during the tutorial sessions.
The students might thus have been biased towards or against Palladio, because they
knew the authors. However, the subjective results found in the questionnaires re-
vealed no strong favouring of the Palladio approach over the SPE approach.

277

7.4. TYPE-II-VALIDATION

Construct Validity The construct validity refers to the degree to which persons
and settings used in an experiment represent the analysed, more general constructs
well [WRH 00]. In this case, the goal of the experiment was to analyse the practica-
bility of two performance prediction methods.

Both SPE and Palladio represent the construct of a performance prediction
method. SPE is a mature approach with substantial documentation and several
available industrial case studies. It does not target a specific type of software sys-
tem and can be applied broadly. Palladio is less mature than SPE and has not been
validated with industrial-size case studies. It targets component-based systems and
requires the analysed systems to follow this paradigm.

Although the methods slightly differ in their target systems, both use annotated
control flow diagrams to model the performance properties of the system under
study. In this regard, both approaches are representative for the many other ap-
proaches, which use annotated UML diagrams and transform them into formal pre-
diction models [BDIS04].

To represent the setting of a performance prediction well, different design alter-
natives were analysed during the experiment. This shall simulate a typical situation
for a software architect when designing a new system. The proposed design alter-
natives represent common performance patterns (e.g., cache, replication, resource
pool) [Smi02].

The construct validity is also threatened by using students to conduct the perfor-
mance prediction, which might not represent the situation in practice, where expe-
rienced software engineers analyse performance properties. However, the students
in this experiment had completed their pre-diploma and were substantially trained
in the investigated methods. Thus, it is questionable whether higher experience will
indeed help practitioners to achieve better accuracy in a performance prediction.

External Validity The external validity refers to the degree to which the results
of a study can be generalised to other in particular practical situations [WRH 00].
The results of the experiment presented here indicate a high prediction accuracy,
while assessing longer durations for applying the Palladio methods. It is debatable
whether these results would still be valid if larger systems had been analysed.

The systems under study were small and consisted of less than 10 components.
This might threaten the external validity if systems in practice would be created
from substantially more components. However, component granularity is vari-
able [SGM02], therefore the architecture of a system with a higher number of com-

278

7.4. TYPE-II-VALIDATION

ponents could be abstracted into less than 10 components by forming composite
components.

In their complexity and size, the analysed systems are comparable to systems
analysed in typical other performance prediction case studies [Smi02]. The systems
in these other studies are often taken from real-life projects. It is still unknown,
whether the Palladio editing and simulation tools would be able to handle systems
with a substantially finer component cutting. If performance analysts have to make
model abstractions for such systems to be analysable, the prediction accuracy might
decrease. Therefore, an experimental evaluation of the Palladio method with more
complex systems is future work.

7.4.5 Conclusions

The described experiment was the first, initial type-II validation of the PCM and its
accompanying tools. Because of the limited number of participants, no statistical
hypothesis testing could be performed. Therefore, the results only give preliminary
hints on the success of the validation without statistical significance.

The students were able to achieve a decent prediction accuracy with the Palladio
method, but needed more time than for the SPE method. However, they created
reusable models, whereas SPE models are not componentised and therefore more
difficult to reuse. Although a research prototype, the PCM-Bench was able to sup-
port the performance modelling and simulation process well to a large extent.

The parameter dependencies in RDSEFF and the component parameters intro-
duced in this thesis still proved to be difficult to apply for the participants of the
experiment. This might result from a lack of training and still weak tool-support for
these features. However, the experiment also provided hints that the parameterisa-
tion was advantageous over monolithic models, because the students were able to
analyse the design alternatives of both systems faster with Palladio than with SPE.

Future experiments should improve the number of data points to enable statis-
tical hypothesis testing. It would be interesting to include performance engineers
from the software industry in the study, instead of just relying on students. In the
future, the systems under study should be real systems from practice to increase the
study’s external validity. In the formerly described experiment, it was not possible
to compare Palladio to another component-based performance prediction approach
as non of the existing approaches provides the needed tool support. Therefore, the
benefits of role concept of the PCM still remain to be validated.

279

7.5. SUMMARY

7.5 Summary
This chapter presented an experimental evaluation of the modelling languages and
transformations proposed in this thesis. First, a type I validation was conducted,
where the PCM was used to model a distributed, component-based system, the Me-
dia Store. Because of the newly introduced parameter dependencies in the PCM, it
was possible to analyse the performance of this architecture under two different us-
age profiles. Using the model-transformations and performance solvers described
in this thesis, the response time of the Media Store was predicted for both usage
profiles. A comparison with measurements showed a deviation of response time
predictions of less than 10 percent using point estimators. Additionally, a sensitivity
analysis involving more than 50 simulation runs revealed that the Media Store ar-
chitecture is most sensitive to the number of users concurrently accessing it. Finally,
to complement the type I evaluation, this chapter reported on a type II evaluation
of the PCM, which was conducted as a controlled experiment with 19 computer
science students. It showed that the students were able to achieve a decent pre-
diction accuracy using the models and prediction tools, but that the tools still need
improvement before being practicable in an industrial context.

280

Chapter 8

Conclusions

8.1 Summary

This thesis has proposed several new modelling languages, which shall increase
model-driven performance prediction accuracy for component-based software sys-
tems in scenarios where the performance depends on the usage profile. Further-
more, it presented two model transformations from the new languages into existing
performance models. For these performance models, solvers based on numerical
analysis and simulation are available to derive performance metrics such as re-
sponse time, throughput, and resource utilisation. The whole approach proposed
in this thesis was evaluated in a case study with a component-based system and a
controlled experiment, where 19 students used the proposed modelling languages.
The following will briefly summarise the contributions of this thesis.

The RDSEFF modelling language (Chapter 4.3) enables component developers
to specify the performance of software components in relation to parameter val-
ues. An RDSEFF models the behaviour of a component service only in terms of
resource demands (internal actions) and calls to required services (external actions),
and therefore abstracts from component code. It allows control flow constructs, such
as sequence, alternative, loop, and fork, as well as the specification of parameter de-
pendencies to resource demands and calls to required services. This thesis gives the
language Petri net semantics (Chapter 4.4).

RDSEFF instances allow breaking down a usage profile at system boundaries
to the usage profiles of individual components, because using the language each
component specifies how it propagates data through an architecture. Because of the
parameterisation, RDSEFF models are well-suited for reuse in different contexts.

8.1. SUMMARY

Chapter 4.3.4 discussed limitations of this language, which include the missing sup-
port for message-oriented communication, the negligence of component internal
state, and the limited scopes for stochastic dependencies.

The PCM usage modelling language (Chapter 4.2) has been proposed to enable
domain experts to specify user behaviour at system boundaries. It includes mod-
elling workloads (user population or user arrival rate), parameterised calls to sys-
tem services, waiting delays, and probabilistic behaviour with sequences, alterna-
tives, and loops. Multiple usage scenarios running in parallel can be modelled.

The usage modelling language is a domain-specific language restricted to con-
cepts known to a domain expert without IT background. It is more expressive than
Markov usage models, because it allows arbitrarily distributed loop iterations and
parameterisation of calls. Other than typical UML models for performance predic-
tion, the language does not refer to hardware resources or components. Therefore
system usage can be changed independently from the system structure. The lan-
guage assumes (Chapter 4.2.3) that a single user does not initiate system calls in
parallel.

This thesis has also proposed a new method of characterising component ser-
vice parameters for performance prediction (Chapter 4.1). To express uncertainty
about actual user behaviour during early development stages, the PCM parameter
abstractions allow modelling parameter values with random variables. Because a
parameter’s influence on the performance of a system is in some cases better deter-
mined by parameter meta-data instead of the parameter values, the PCM parameter
abstractions allow modelling different parameter meta-data, such as the byte size
or the number of elements in a collection. The clear distinction between different
meta-data is needed to allow independent usage of the resulting specifications.

The PCM parameter abstractions are accompanied by the StoEx-framework
(Chapter 3.3.6), which allows boolean and arithmetic operations on the random vari-
ables characterising parameters. This is useful to specify parameter dependencies in
RDSEFFs and PCM usage models. The parameter abstractions so far assume primi-
tive, collection, and composite data types and do not support other parameters such
as pointers or streams.

To enable performance predictions with models specified as instances of the
newly introduced modelling languages, this thesis defines two transformations into
performance models. Because each of these transformations requires solving the
parameter dependencies inside a PCM instance, this step has been implemented as
a separate model transformation (”Dependency-Solver”), which can be used by any

282

8.1. SUMMARY

transformation from PCM instances to performance models.
The Dependency Solver propagates parameter characterisations specified by the

domain expert in the usage model through all RDSEFF specifications in a fully spec-
ified PCM instance. This allows substituting the parameter references inside RD-
SEFFs and then solving the resulting stochastic expressions. The results are branch
probabilities, loop iterations numbers, and resource demands for a specific usage
context. The following transformations can directly map this information to queue-
ing networks or Petri nets. Chapter 6.2.5 discusses the computational complexity of
this transformation.

The first model transformation to the performance domain defined in this the-
sis is to Stochastic Regular Expressions (SRE). The Palladio research group has de-
veloped this model for quick estimation of response times in single-user scenarios.
This model supports calculations involving the general distribution functions used
in PCM instances and also provides its result as a general distribution function. This
thesis has extended the model with a new loop concept, which allows arbitrary dis-
tributed number of iterations instead of the former geometrically distributed num-
ber of iterations, which had proved unrealistically im many settings. Chapter 6.3.6
describes the assumptions underlying this model: it does not support concurrency
and assumes stochastically independent random variables for resource demands.
The transformation to SREs has been implemented prototypically and the models
has been validated in a case study (Chapter 7.3.3).

The second model transformation maps valid PCM instances to Layered Queue-
ing Networks (LQN). This is a popular performance model for distributed systems,
which is based on extended queueing networks. There are efficient solvers for LQN
instances based on mean-values analysis or simulation. The model is substantially
more complex than the SRE model and allows mapping all behavioural constructs of
PCM instances. It supports concurrency and asynchronous communication. How-
ever, the model assumes exponentially distributed resource demands and provides
performance metrics only as mean-values. Therefore, LQN performance predictions
cannot exploit the general distribution functions supported by PCM instances and
provide less expressive results. The transformation from PCM instances to LQNs
has been implemented prototypically in Java and validated in a case study (Chap-
ter 7.3.3).

Besides new modelling languages and transformations, this thesis also proposes
a new process model for QoS-driven development of component-based software
systems (Chapter 3.1). It is based on a process model for component-based systems

283

8.1. SUMMARY

by Cheesman et al. [CD01]. The PCM is designed to support this process model.
It explicitly includes the participation of different developer roles in the modelling
process during system specification. The process model also introduces the idea
of restricted domain-specific modelling language for different developer roles. In
addition to similar process models, it explicitly includes the roles of the system
deployer and domain expert in QoS analysis. An experimental validation of this
process model requires substantial effort and remains future work.

As software components often already exist in code when designing a new
component-based system, it is desirable to automatically generate the needed ab-
stract performance models from code as far as possible. This thesis has proposed
a hybrid approach including static and dynamic code analysis to derive RDSEFF
instances from Java code (Chapter 5). The static code analysis part has been im-
plemented by a Master student [KKKR08] and has been validated on a component-
based system. Given arbitrary Java code and component interfaces, the static analy-
sis automatically performs the RDSEFF abstractions on source code. It can identify
resource accesses but cannot derive resource demands from source, which requires
dynamic analysis. In general, the static analysis can determine loop iteration num-
ber and parameter dependencies only in restricted cases due to the halting problem.

To validate the newly proposed modelling languages, several empirical studies
have been conducted in the context of this thesis (Chapter 7). This thesis reports
in detail on the last and most complex study involving the so-called MediaStore
system. It is a component-based 3-tier architecture, which is completely modelled
using the PCM. This enabled analysing performance critical use cases of the system
using the introduced transformations and performance solvers (Chapter 7.3.3).

Additionally, the MediaStore system was implemented, which allowed compar-
ing prediction based on the models with measurements based on the implemen-
tation and assessing the prediction errors. In the investigated cases, the error was
below 10 percent when comparing point estimators, which is comparable to the pre-
diction accuracy related studies (e.g., [LFG05]) and often sufficient to assess different
design alternatives. However, the new modelling languages allow analysing dif-
ferent usage profiles without changing the component performance specifications,
which was not or only limitedly possible with former approaches.

The ability to evaluate different design alternatives with the PCM was validated
in former studies [KHB06]. In addition, this thesis includes a sensitivity analysis
of the MediaStore system based on multiple simulation runs. It analyses different
parameter ranges of the MediaStore and identifies the parameter the prediction re-

284

8.2. BENEFITS

sults are most sensitive to (the number of users). The analysis is still restricted as
it changes only a single parameter value at a time and does not show the effect of
changing multiple parameters simultaneously.

Finally, a controlled experiment has been conducted by a Master student to vali-
date the applicability of the PCM by third parties [Mar07]. This validation comple-
ments the formerly conducted empirical studies. 19 computer science students par-
ticipated in the experiment and predicted the performance of various systems using
the PCM tools after extensive training. The experiment showed that the students
could achieve a decent prediction accuracy (less than 10 percent deviation to the
sample solution). However, it also showed that the students still had difficulties to
specify the PCM’s parameter dependencies manually (Chapter 7.4). The modelling
tools proved to be not sufficiently robust to modelling errors regarding parameter
dependencies and need further improvement to achieve industrial maturity.

8.2 Benefits

The formerly described contributions shall improve model-driven performance pre-
dictions for component-based software systems. They target component develop-
ers, software architects, system deployers, and domain experts.

Component developers can specify the performance of their software compo-
nents reflecting all influence factors not under their control. In this thesis especially
the influence of different usage profiles was included. Availability of such speci-
fications may improve the saleability of the components. Software architects may
prefer purchasing and using such components, because they make the behaviour of
their designed systems more predictable in advance. Opposed to monolithic model-
driven performance prediction approaches, the component developer’s specifica-
tions are reusable by different software architects in different contexts, because of
their parameterisation. This might also increase the reuse of the component.

The static code analysis developed in this thesis eases the effort for component
developers to provide performance specifications. Tools can already perform some
of the abstractions needed for the models, which might even enable inexperienced
developers to create performance specifications. The modelling languages provide
a standard abstraction level and give developers a vocabulary to describe perfor-
mance properties.

Software architects benefit from the proposed method, because they can assess
the performance of their systems during early development stages. This can help

285

8.3. FUTURE WORK

identifying bottlenecks and design flaws. Adapting the design early can reduce the
costs for re-designing and re-implementing a system due to poor performance af-
ter implementation. Software architects can evaluate individual components and
select among functional equivalent components with different performance proper-
ties. The costs for modelling are reduced for software architects, because the work
for modelling is shared with the component developers.

In particular, using the modelling languages proposed in this thesis, software ar-
chitects can easily analyse the performance of their architectural designs under dif-
ferent usage profiles. This enables quick assessment for different customer require-
ments. It also helps to renegotiate performance goals with customers, if a system
design cannot fulfill the contractually specified requirements. Software architects
can predict their performance for different user populations or parameter values.
Thus, they can determine achievable performance goals.

Software architects can also assess different design alternatives. For the same
functional requirements they can test different designs and their impact on the per-
formance. With the predictions, they get quantitative data for decision support and
do not have to rely on intuition only. If none of the available component can meet
certain performance goals as predicted by the method, a design alternative can also
be the implementation of a new software component. Therefore, performance pre-
diction also supports make-or-buy decisions.

Using the Palladio method, software architects only need limited performance
engineering knowledge, because they use only domain-specific modelling lan-
guages referring to concepts from their domain. The performance models and their
analytical solver or simulation tools are encapsulated and do not have to be under-
stood by the software architect. Therefore, even non-experts can possibly conduct
performance predictions, if the described specifications are available.

8.3 Future Work

The following provides pointers for research extending the work conducted in this
thesis. It is divided into short-term and long-term future work.

8.3.1 Short Term Future Work

Short term future work is mainly concerned with weakening the formerly discussed
assumptions underlying the modelling languages and transformations. Further-

286

8.3. FUTURE WORK

more, in the short-term existing prediction methods and modelling approaches
could be connected to the PCM to further exploit the possibilities of usage profile
propagation in other domains.

• RDSEFF Behavioural Extensions: Several limitations of RDSEFFs have been
listed in Chapter 4.3.4. The RDSEFF’s support for stochastic dependencies of
random variables needs improvement, which would allow more accurate pre-
dictions. Furthermore, it is difficult to model component internal concurrency
with RDSEFFs, especially if the forked threads involve performance-relevant
parameter dependencies. Specifying asynchronous communication is possi-
ble with RDSEFFs using fork actions, however it is intricate and a construct
for asynchronous external call actions would be desirable. Also a construct
for reusing behaviour inside a single component by different RDSEFFs would
ease their creation.

• Reliability Prediction with RDSEFFs: Former research by Reussner et
al. [RSP03] has dealt with reliability prediction for component-based software
architectures using a similar but more restricted notation to RDSEFFs. It is de-
sirable to connect this work to the current PCM meta-model, which would re-
quire only small extensions to internal actions of RDSEFFs. The corresponding
reliability solver could be used for PCM instances in this case, which would
enable its further development. This step is also a prerequisite to performabil-
ity analysis of PCM instances. However, the validation of reliability prediction
models is still difficult.

• Parameter Model Extensions: The parameter model introduced in this the-
sis allows primitive, collection, and composite data types. This assumes that
components always exchange complete data packages. However, some com-
ponents (e.g., for multimedia content) communicate via streams (e.g., au-
dio/video streams), and the PCM provides no support for modelling such
communication. Furthermore, as discussed in Chapter 4.1.4, it is possible to
implement algorithms traversing PCM System instances, which propagate
parameter domain divisions due to control flow branches back to the PCM
Usage Model. This would give the domain expert a default set of subdo-
mains for certain parameters, for which only the probabilities would have to
be specified. Finally, the Dependency Solver still has limited support for the
characterisation of INNER collection elements (Chapter 4.1.3) and needs to be
extended accordingly.

287

8.3. FUTURE WORK

• Textual Syntax for RDSEFFs: The controlled experiment evaluating the PCM
showed that a lot of the participating students had difficulties modelling the
parameter dependencies introduced in this thesis with the graphical editors.
An alternative to these editors would be a textual syntax for RDSEFFs and us-
age models describing the models like pseudo code, which is more familiar to
many developers. This could ease the specification of parameter dependencies
and also enable using features like auto completions and syntax highlighting.
The textual specification can be more compact than the graphical notation,
therefore possibly providing a better overview of complex models.

• Extend Reverse Engineering Method: Java2PCM requires the definition of
a list of component interfaces to analyse source code and only supports static
analysis. As Chouambe [Cho07] has implemented a component detection tool
for arbitrary Java code called ArchiRec, which can identify component inter-
faces, it is desirable to combine both tools. Furthermore, Java2PCM’s static
analysis needs to be completed by a dynamic code analysis to determine re-
source demands. It requires a testbed for components, which generates stubs
for required services, systematically generates parameter values for provided
interfaces, and repeatedly executes the component with these values. Moni-
toring facilities of such a testbed must measure resource demands and collect
the results in a database. An automatic analysis should be able to generate
resource demand functions in dependency to input parameter from the data.

• Transformations to Intermediate Models: The model transformations im-
plemented in this thesis do not use intermediate modelling languages be-
tween software models and performance models, such as CSM [PW06] or
KLAPER [GMS05]. As transformation to different performance models ex-
ist from these languages, a mapping to them could connect those models and
their performance solvers to the PCM. However, tool support is still immature
for these intermediate languages and they still do not support some PCM con-
cepts, which would therefore be lost for the transformation into performance
models. Thus, mapping the PCM to these languages depends on their future
development and tool support.

• Integrate Specialised Solvers: Verdickt et al. [VDTD07] proposed a method
to combine a network simulator with an analytical LQN solver. This approach
allows more refined predictions in network-intensive scenarios. The idea of

288

8.3. FUTURE WORK

combining different solvers for higher prediction accuracy could be incorpo-
rated to the Palladio approach. It is possible to connect existing network simu-
lators (e.g., ns-2 [Inf]) or other resource simulators to the Palladio approach. A
special benefit of using Palladio instead of LQNs would be that Palladio com-
ponents explicitly specify the amount of data they send over networks using
parameter dependencies. This would allow for even more accurate predic-
tions.

8.3.2 Long Term Future Work

Besides the formerly described short-term future work, there also some directions
for long-term future work, which require more in-depth research. The following
lists describes some of them:

• Dynamic Architecture: The PCM supports analysing static, component-based
architectures with fixed connectors and fixed component allocations to re-
sources. However, some systems (e.g., involving local mobility or web ser-
vices) have a dynamic architecture, where component connectors can change,
components can be allocated to different resources, and components can be
replicated at runtime. Methods from Grassi et al. [GMS07a] and Caporuscio et
al. [CMI07] allow performance prediction and analysis for dynamically recon-
figurable architectures. Extending the PCM into this direction would increase
the number of analysable systems.

• Evaluation PCM Role Concept: The QoS-driven process model proposed in
this thesis includes a separation of the different developer roles involved in
the creation of a component-based system, which is required to allow them
to work independently from each other. This separation is also targeted by
the modelling languages included in the PCM, which are designed for specific
developer roles. It remains unclear, whether the separated specification of the
performance-related information of component-based systems is indeed ben-
eficial, or whether a single performance specialist should always conduct the
analysis. To evaluate the role concept, a controlled experiment with a larger
software architecture would be required, where the participants would em-
body certain developer roles. In the Type II evaluation presented in Chap-
ter 7.4 each of the participants modelled all parts of the system, so that the ex-
periment yielded more data points. Therefore, there was no division of work.

289

8.3. FUTURE WORK

However, such an evaluation of the role concept is expensive and requires a
high number of participants to deliver a sufficient amount of data points.

• Integration of other QoS Attributes: As mentioned before, the PCM could
support the analysis of other compositional QoS attributes besides perfor-
mance, such as reliability, availability, maintainability, and costs. Notice that
some QoS attributes are not per se compositional, such as security and safety,
because they lead to emergent properties of the system. A QoS attribute cur-
rently gaining importance is power consumption, which is often critical in
large-scale software architectures and requires similar predictions as for per-
formance or reliability. Besides analysing these QoS attributes in isolation, the
PCM could also support their combined analysis, for example the performa-
bility combined from performance and reliability. As another example, Petriu
et al. [PWP 07] analyse the impact of security features on the performance of
a software system.

• Internal State: The internal state of a software component can influence its
QoS characteristics in the same manner as input parameter [HMW04]. In the
PCM, only a static abstraction of internal state is modelled with component
parameters (Chapter 4.1.3), which cannot change during runtime. This ab-
straction avoid state space explosion, because a component-based system can
have a huge number of user-dependent internal states. However, future exten-
sions to the PCM could experiment with less high abstractions for the internal
state and make it user-dependent and changeable in specific scenarios. For
example, state machines could be used to model possible internal states and
transitions between them. Component parameter could provide default val-
ues capturing the initial state of a component. It remains to be validated in
which cases such a model is still solvable.

• Dynamic Abstraction Levels: A major problem in performance modelling is
the unknown abstraction level for the models. In general, the most abstract
models that still deliver performance results sufficient to support design de-
cisions are desired. For component developers it is a priori often unknown,
which features of their components influence the performance of the after ar-
chitecture significantly and need to be modelled precisely. The software archi-
tect might want to create an abstract architectural model to retain mathemati-
cal tractability, but would have to rely on a complex component performance
specifications from the component developers, who would be interested in

290

8.3. FUTURE WORK

providing most accurate models. The level of abstraction necessary for an
accurate performance model might also depend on the usage scenario. For
example, in a scenario where response times are expected to be higher than 10
seconds, it might not be necessary to model features, which only change the
performance in a range of milliseconds. Therefore, a tool-supported, dynamic
abstraction of performance models (e.g., an automatic adaption of RDSEFFs)
to the usage scenario would be desirable to increase the number of solvable
models.

• Automated Evaluation of Architectural Models The PCM’s feedback after
running model solvers that deliver performance metrics is still limited. There
are various possibilities for improvement: Tools could graphically highlight
bottlenecks in a PCM model instance and annotate the predicted passage times
for individuals actions into System (combined) and RDSEFF instances. Anal-
ysis tools could also be prepared for important recurring questions about the
performance of a system, such as ”what is the maximum throughput?”, ”what
is the bottleneck resource?”, etc., for which they would provide specialised
visualisations. Smith et al. [Smi02] have documented several performance
patterns and anti-patterns. It is conceivable to mine valid PCM instances for
performance anti-patterns and automatically suggest solutions or even the in-
troduction of a performance pattern (also see [CF07]). Performance solvers
could also be adapted to allow an automatic multi-variable sensitivity analy-
sis of the performance of a PCM instance. Bondarev et al. [BCdK07] proposes
a method for automatically analysing different architectural alternatives and
investigate multi-objective trade-offs. As the PCM targets analysing different
design alternatives, more sophisticated support into this direction is desirable.

• Model Libraries The PCM aims at reuse of performance models. PCM com-
ponent repositories and resource repositories support storing models for re-
trieval and reuse. For hardware resources and commonly used software com-
ponents, it is useful to store PCM model instances in these repositories to build
up model libraries, which software architects can exploit. This has also been
proposed by Cortellessa et al. [CPR07]. The commercial company Hyper-
formix supplies a model library for thousands of different servers, so that
performance analysts can analyse the performance on different hardware re-
sources and answer sizing questions.

291

8.3. FUTURE WORK

292

Appendix A

Contributions and Imported Concepts

The contributions of this thesis are embedded into the research of the Palladio
group. Therefore, to delimit these contributions from contributions of other group
members, the following two figures show the authors of different packages of the
Palladio Component Model (PCM) and model transformations for the PCM, which
produce other models or code.

293

pc
m

::r
ep

os
ito

ry
[B

ec
ke

r]

pc
m

::c
or

e:
:c

on
ne

ct
or

[B
ec

ke
r]

pc
m

::c
or

e:
:c

om
po

si
tio

n
[B

ec
ke

r]

pc
m

::p
ro

to
co

l
[B

ec
ke

r,
K

ro
gm

an
n]

pc

m
::S

EF
F

[B
ec

ke
r,

K
ro

gm
an

n]

pc
m

::R
D

SE
FF

[K
oz

io
le

k,
 B

ec
ke

r]

pc
m

::p
ar

am
et

er
[K

oz
io

le
k]

<<
ex

te
nd

s>
>

<<
im

po
rt>

>

<<
im

po
rt>

>
<<

im
po

rt>
>

pc
m

::s
ys

te
m

[B
ec

ke
r]

<<
im

po
rt>

>

pc
m

::a
llo

ca
tio

n
[B

ec
ke

r]

pc
m

::r
es

ou
rc

ee
nv

iro
nm

en
t

[B
ec

ke
r,

K
oz

io
le

k]

pc
m

::r
es

ou
rc

et
yp

e
[B

ec
ke

r,
K

oz
io

le
k]

pc
m

::u
sa

ge
m

od
el

[K
oz

io
le

k]

pc
m

::q
os

an
no

ta
tio

ns
[K

oz
io

le
k,

 B
ec

ke
r]

st
oe

x
[K

oz
io

le
k,

 B
ec

ke
r]

Figure A.1: Authors of PCM Packages

294

<<
us

es
>>

<<
m

et
am

od
el

>>
PC

M
[B

ec
ke

r,
K

oz
io

le
k]

<<
m

et
am

od
el

l>
>

SR
E

[K
oz

io
le

k]

<<
tr

an
sf

or
m

at
io

n>
>

PC
M

2S
to

R
eg

[K
oz

io
le

k]

<<
m

et
am

od
el

>>
C

on
te

xt
[K

oz
io

le
k]

<<
in

pu
t>

>

<<
in

pu
t>

>
<<

ou
tp

ut
>>

<<

co
nc

ep
t>

>
SR

E
[F

iru
s,

 H
ap

pe
, B

ec
ke

r]

<<
ba

se
d

on
>>

<<
tr

an
sf

or
m

at
io

n>
>

D
So

lv
er

[K
oz

io
le

k]

<<
in

pu
t>

>

<<
ou

tp
ut

>>

<<
tr

an
sf

or
m

at
io

n>
>

Si
m

uC
om

[B
ec

ke
r]

<<
m

et
am

od
el

>>
PC

M
+C

om
pl

et
io

ns
[B

ec
ke

r]

<<
in

pu
t>

>
<<

co
de

>>
Si

m
uC

om
In

st
an

ce
[B

ec
ke

r]

<<
ou

tp
ut

>>

<<
tr

an
sf

or
m

at
io

n>
>

C
ou

pl
ed

Tr
an

sf
or

m
at

io
n

[B
ec

ke
r]

<<
in

pu
t>

>

<<
ou

tp
ut

>>

<<
m

as
te

rt
he

si
s>

>
<<

co
nc

ep
t>

>
Va

lid
at

io
n

of
 C

Ts
[B

ie
hl

 (u
nf

in
is

he
d)

]

<<
ba

se
d

on
>>

<<

tr
an

sf
or

m
at

io
n>

>
Pr

ot
C

om
[B

ec
ke

r]

<<
co

de
>>

Pr
ot

ot
yp

e
[B

ec
ke

r]

<<
ou

tp
ut

>>

<<
tr

an
sf

or
m

at
io

n>
>

PC
M

2E
JB

[B
ec

ke
r]

<<
co

de
>>

EJ
B

 C
od

e
Sk

el
et

on
[B

ec
ke

r]

<<
ou

tp
ut

>>

<<
m

as
te

rt
he

si
s>

>
M

ap
pi

ng
 P

C
M

2E
JB

[S
ch

au
de

l]

<<
ba

se
d

on
>>

<<
in

pu
t>

>

<<
in

pu
t>

>

<<
tr

an
sf

or
m

at
io

n>
>

PC
M

2L
Q

N
[K

oz
io

le
k]

<<
m

et
am

od
el

l>
>

LQ
N

[W
oo

ds
id

e]

<<
ou

tp
ut

>>

<<
tr

an
sf

or
m

at
io

n>
>

PC
M

2L
Q

N
[K

oz
io

le
k]

<<
m

et
am

od
el

l>
>

Q
PN

[B
au

se
]

<<
ou

tp
ut

>>

<<
in

pu
t>

>

<<
co

de
>>

Ja
va

 1
.4

 S
ou

rc
e

<<
tr

an
sf

or
m

at
io

n>
>

<<
m

as
te

rt
he

si
s>

>
Ja

va
2P

C
M

[K
ap

pl
er

]

<<
in

pu
t>

>

<<
ou

tp
ut

>>

<<
co

de
>>

Ja
va

 1
.4

 S
ou

rc
e

<<
tr

an
sf

or
m

at
io

n>
>

<<
m

as
te

rt
he

si
s>

>
A

rc
hi

R
ec

[C
ho

ua
m

be
]

<<
in

pu
t>

>

P
hD

 th
es

is
 K

oz
io

le
k

P
hD

 th
es

is
 B

ec
ke

r

P
hD

 th
es

is
 K

ro
gm

an
n

<<
m

as
te

rt
he

si
s>

>
PC

M
 E

co
re

 M
od

el
[K

ro
gm

an
n]

<<
ba

se
d

on
>>

<<
m

as
te

rt
he

si
s>

>
Ty

pe
 II

 V
al

id
at

io
n

[M
ar

te
ns

]
<<

em
pi

ric
al

 v
al

id
at

io
n>

>

<<
lib

ra
ry

>>
C

om
m

on
 M

2T
 C

or
e

[B
ec

ke
r]

Figure A.2: Authors of PCM Transformations

295

296

Appendix B

Mathematical Definitions

B.1 Probability Theory

This section explains and formally defines some fundamental terms of probability
theory.

297

B.1. PROBABILITY THEORY

B.1.1 Probability Space

The notion of probability space has been introduced by Kolmogorov in the 1930s
and is the foundation of probability theory. Probability spaces are used to define
random variables.

Definition 19 Probability Space
A proability space is a tupel Ω,A, P , with the pair Ω,A being a measure space
consisting of

• the sample space Ω, which is a nonempty set, whose elements are given by the
symbol ω and are known as outcomes of an experiment.

• the σ-algebra A of subsets of Ω, whose elements are called events. An event is
a set of outcomes of an experiment to which a probability is assigned.

and the function P : A 0, 1 being a probability measure satisfying the following
three probability axioms:

• P A 0 for all A A (the probability of an event is a non-negative number)

• P Ω 1 (the probability that some elementary event in the entire sample
space will occur is 1, i.e., there are no elementary events outside the sample
space)

• P for pairwise disjoint A1, A2, ... A (P is σ-additive)i 1 Ai i 1 P Ai

B.1.2 Measurable Functions

Measurable functions are well-behaved functions between measure spaces. Non-
measurable functions are generally considered pathological. A random variable
variable is a measurable function, hence the definition follows.

Definition 20 Measurable Function
Let Ω,A and Ω ,A be measure spaces. The function f : Ω Ω is called A,A -
measurable, if

1A A : f A A

298

B.1. PROBABILITY THEORY

B.1.3 Random Variable

The following, general definition of a random variable is not restricted to a specific
measure space. Notice however, that normally (and also in the StoEx-framework)
real-valued random variables are used.

Definition 21 Random Variable
Let Ω,A, P be a probability space and Ω ,A be a measure space. An A,A -
measurable function X : Ω Ω is called Ω -random variable on Ω.

B.1.4 Real-valued Random Variable

Definition 22 Real-valued Random Variable
Let Ω,A, P be a probability space and R,A be a measure space withA being the
Borel σ-algebra. An A,A -measurable function X : Ω R is a real-valued random
variable mapping a real number X ω to each element ω Ω, if

r R : ω X ω r A

meaning that the set of all results below a certain value must be an event.

B.1.5 Probability Mass Function

A probability mass function gives the probability that a discrete random variable
(with a finite or countable infinite sample space) is exactly equal to some value.

Definition 23 Probability Mass Function
Let Ω,A, P be a probability space and X be a discrete random variable taking
values on a countable sample space S R. Then the probability mass function

0, 1 of X is given byfX : R

P X x , x S
fX x

0, x R S

This defines fX x for all real values, including the ones, x can never adopt. Their
probability is always zero.

299

B.1. PROBABILITY THEORY

B.1.6 Probability Density Function

Definition 24 Probability Density Function
A non-negative Lebesgue-integrable function f : R R is called probability den-
sity function of the random variable X , if

b

a

f x dx P a X b

for any two numbers a and b, a b. The total integral of f x has to be 1 (i.e.,
f x dx 1).

300

B.2. PETRI-NETS

B.2 Petri-Nets

This work uses a mapping to Hierarchical Queueing Petri nets (HQPN) to define the
dynamic semantics of the behavioural models (Usage Model, RDSEFF) described in
Chapter 4.2-4.3. HQPNs include a number of extensions to conventional Petri nets,
which will be explained step by step in the following. The definition of Queuing
Petri nets is taken from [BK02], while the definition of Hierarchical Peti nets follows
[Jen92].

Definition 25 Petri Net [BK02]
An ordinary Petri Net (PN) is a 5-tuple PN P, T, I , I , M0 , where

1. P p1, p2, ..., pn is a finite and nonempty set of places,

2. T t1, t2, ..., tm is a finite and nonempty set of transition P T ,

3. I and I : P T N0 are called backward and forward incidence functions,
respectively,

4. M0 : P N0 is called initial marking.

Ordinary PNs cannot distinguish between different token types, which may lead
to complicated models to express certain settings. Colored PN (CPN) allow to attach
a type (called color) to each token. Each place is restricted to a set of colors, which
specifies the valid types of tokens allowed to reside in it. Therefore, a color function
C maps a set of colors to each place. Furthermore, the transitions of CPNs may
fire in different modes, for which the color function C assigns a set of modes to each
transition. CPNs are formally defined as follows:

Temporal aspects can be included into PNs with Stochastic PNs (SPN). SPN at-
tach an exponentially distributed firing delay to each transition. This delay defines
the time a transition waits after being enabled before it fires. Besides these timed
transitions, Generalised Stochastic PNs (GSPN) additionally allow immediate tran-
sitions, which fire in zero time once enabled. Firing weights (i.e., probabilities) as-
signed to immediate transitions can be used to determine the next transitions to fire,
if multiple immediate transitions are enabled. Immediate transition are prioritised
over timed transitions and always fire in case a timed transition and an immediate
transitioned are enabled at the same time. GSPN are formally defined as follows:

The last two definitions can be combined to define Colored GSPNs:

301

B.2. PETRI-NETS

Definition 26 Colored Petri Net [BK02]
A Colored PN (CPN) is a 6-tuple PN P, T, C, I , I , M0 , where

1. P p1, p2, ..., pn is a finite and nonempty set of places,

2. T t1, t2, ..., tm is a finite and nonempty set of transition P T ,

3. C is a color function that assigns a finite and nonempty set of colors to each
place and a finite and nonempty set of modes to each transition.

4. I , I are the backward and forward incidence functions defined on P T

such that
I p, t , I p, t C t C p MS ,

p, t P T ,

5. M0 is a function defined on P describing the initial marking such that M0 p

C p MS .

Definition 27 Generalised Stochastic Petri Net (GSPN) [BK02]
A Generalised SPN is a 4-tuple GSPN PN, T1, T2, W , where

1. PN P, T, I , I , M0 is the underlying ordinary PN,

2. T1 T is the set of timed transitions T1 ,

3. T2 T is the set of immediate transitions, T1 T2 , T1 T2 T ,

4. W w1, ..., w T is an array whose entry wi R is a rate of a negative ex-
ponential distribution specifying the firing delay, if ti T1 or is a firing weigh
specifying the relative firing frequency, if ti T2.

302

B.2. PETRI-NETS

Definition 28 Colored GSPN (CGSPN) [BK02]
A Colored GSPN is a 4-tuple CGSPN CPN, T1, T2, W , where

1. CPN P, T, C, I , I , M0 is the underlying CPN,

2. T1 T is the set of timed transitions T1

3. T2 T is the set of immediate transitions, T1 , T1 T ,T2 T2

4. W w1, ..., w T is an array with wi R such that c :C ti C ti

c R is a rate of a negative exponential distribution specifying the firing
delay due to color ci if ti

wi

T1 or is a firing weight specifying the relative firing
frequency due to c, if ti T2.

,

CGSPN are not able to express queueing disciplines. Therefore Bause et. al
[Bau93] introduced Queueing PN (QPN), which base on CGSPNs and feature places
with integrated queues. A queueing place (Fig. B.1) consists of a queue for tokens re-
questing service and a depository for tokens, which have completed their service at
the queue. If a token is fired into a queueing place, it gets inserted into the queue
according to the queue’s scheduling policy. Tokens in a queue cannot enable the
output transitions of the queueing place. When a token completes its service, it is
inserted into the depository, from which it can enable output transitions.

QUEUE DEPOSITORY

Figure B.1: Queueing Place and its Shorthand Notation [Kou06]

Besides timed queueing places, there are immediate queueing places for places

303

B.2. PETRI-NETS

with zero service time. Analogous to immediate transitions, scheduling in imme-
diate queueing places has priority over scheduling/service in time queueing places
and firing of timed transitions. Otherwise, QPNs behave like CGSPNs, therefore the
formal definition follows:

Definition 29 Queueing PN (QPN) [BK02]
A Queueing PN is a 8-tuple QPN P, T, C, I , I , M0, Q, W , where:

1. CPN P, T, C, I , I , M0 is the underlying CGSPN,

˜ ˜2. Q q1, ..., q P , μ1, ..., μ P , whereQ1, Q2,

˜• Q1 P is the set of timed queueing places,

˜ ˜• Q2 P is the set of immediate queueing places, Q̃1 , andQ2

• qi denotes the description of queue according to Kendall’s notation
[LZGS84] taking all colors of C pi into consideration, if pi is a queueing
place or equals the keyword ”null” if pi is an ordinary place,

R such that c c R is interpreted as a rate
of a negative exponential distribution specifying the delay at place pi due
to color c.

• μi C pi C pi : μi

˜ ˜3. W w1, ..., w T , whereW1, W2,

˜• W1 T is the set of timed transitions,

˜ ˜ ˜ ˜• W2 T is the set of immediate transitions, W̃1 , W1 T ,
and

W2 W2

• wi R such that c c R is interpreted as a rate
of a negative exponential distribution specifying the firing delay due to
color c, if ti

C ti C ti : wi

W̃1 or a firing weight specifying the relative firing frequency
˜due to the color c, if ti W2.

It is convenient to structure larger PNs into smaller subnets. Therefore, Bause
et al. [BBK94, BBK95] have introduced Hierarchical QPNs (HQPN), which consist
of a number of QPN subnets and additionally contain subnet places (Fig.B.2). Each
subnet has a dedicated input and output place and another place counting the active
population of the subnet, which is the number of tokens fired into the subnet that
have not yet left the subnet again.

304

B.2. PETRI-NETS

INPUT OUTPUT

ACTUAL
POPULATION

User specified
part of the subnet

Figure B.2: Subnet Place and its Shorthand Notation [BBK94]

Tokens fired into a subnet place are added to the input place of the subnet, which
the subnet place is assigned to. The semantics of the output places of subnets is
similar to the depository of timed queuing places. Tokens added to a output place
may enable output transitions of the corresponding subnet place.

Subnet places allow to create arbitrary hierarchies of QPNs. Note, that if two
subnet places are assigned to the same subnet, an distinct instance of the subnet is
created for each of them, i.e., tokens fired into both subnet places concurrently do
not interfere with each other in a single subnet.

Jensen et al. [Jen92, p.97] have introduced another mechanism for structuring
large PNs, which is called fusion of places. This mechanism allows users to specify
that a set of places is considered to be identical. Whenever a token is added/re-
moved at one of the places in a fusion set, an identical token is added/removed at all
other places in the fusion set.

The following formal definition of HQPN includes both the subnet places
[BBK94] and the fusion sets [Jen92] described above:

305

B.2. PETRI-NETS

Definition 30 Hierarchical Queueing PN (HQPN) [BBK94, Jen92]
A Hierarchical Queueing PN is a 4-tuple HQPN N, SP, SA, FS , where:

1. N is a finite set, where

• n N is a non hierarchical QPN Pn, Tn, Cn, In , In , Mn0 , Qn, Wn ,

• the sets of net elements are pairwise disjoint: n1, n2 N : n1 n2

Pn1 Tn1 Pn2 Tn2

2. SP PN is the set of subnet places,

3. SA : SP N is the subnet assignment function,

4. FS is the set of fusion sets, such that members of a fusion set have
identical colour sets and equivalent initialization expressions:

P PN

• fs FS : p1, p2 fs : C p1 .C p2 M0 p1 M0 p2

306

B.3. SCHEDULING DISCIPLINES

B.3 Scheduling Disciplines

• Processor Sharing (PS): An idealised form of round-robin scheduling with
zero context switch times and zero time slices.

• First-Come-First-Serve (FCFS): Requests are served in the order in which they
arrive.

• Preemptive Priority Scheduling (PPS): Requests with higher priorities will
be served first. A request with a priority higher than the currently executing
request will preempt the current request.

• Head-of-Line Priority (HOL): Requests with higher priorities will be served
first. A request with a priority higher than the currently executing request will
not preempt the current request.

• Random Scheduling (RAND): Requests will be selected for execution ran-
domly.

• Infinite Server (IS/INF): An infinite number of servers for requests is assumed.
This implies that each request will be served immediately without queueing.

307

308

Bibliography

[Aag01] Jan Aagedal. Quality of Service Support in Development of Distributed
Systems. PhD thesis, University of Oslo, 2001.

[App] Apple Incorporated. iTunes Music Store. http://www.apple.com/
itunes/. last retrieved 2008-01-13.

[AW95] Alberto Avritzer and Elaine J. Weyuker. The automatic generation of
load test suites and the assessment of the resulting software. IEEE
Trans. Softw. Eng., 21(9):705–716, 1995.

[Bau93] F. Bause. Queueing Petri Nets - A formalism for the combined qual-
itative and quantitative analysis of systems. In Proceedings of the 5th
International Workshop on Petri Nets and Performance Models, pages 14–
23, October 1993.

[BBG97] M. Bravetti, M. Bernardo, and R. Gorrieri. From EMPA to GSMPA:
Allowing for General Distributions. In E. Brinksma and A. Nymeyer,
editors, Proc. of the 5th Int. Workshop on Process Algebras and Performance
Modeling (PAPM’97), 1997.

[BBK94] F. Bause, P. Buchholz, and P. Kemper. Hierarchically combined queue-
ing petri nets. In Proceedings of the 11th International Conference on Anal-
ysis and Optimization of System, volume 199 of LNCS, pages 176–182,
Sophie-Anitpolis (France), June 1994.

[BBK95] Falko Bause, Peter Buchholz, and Peter Kemper. QPN-Tool for the
specification and analysis of hierarchically combined queueing Petri
nets. In MMB ’95: Proceedings of the 8th International Conference on Mod-
elling Techniques and Tools for Computer Performance Evaluation, volume
977 of Lecture Notes in Computer Science, pages 224–238, London, UK,
1995. Springer-Verlag.

309

[BC96] R. J. A. Buhr and R. S. Casselman. Use case maps for object-oriented sys-
tems. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[BCC 05] Jakob E. Bardram, Henrik Bærbak Christensen, Aino Vonge Corry,
Klaus Marius Hansen, and Mads Ingstrup. Exploring quality at-
tributes using architectural prototyping. In Ralf Reussner, Johannes
Mayer, Judith A. Stafford, Sven Overhage, Steffen Becker, and
Patrick J. Schroeder, editors, Proc. 1st International Conference on the
Quality of Software Architectures (QoSA’05), volume 3712 of LNCS,
pages 155–170. Springer, 2005.

[BCdK07] Egor Bondarev, Michel R. V. Chaudron, and Erwin A. de Kock. Explor-
ing performance trade-offs of a JPEG decoder using the deepcompass
framework. In Proc. of the 6th International Workshop on Software and per-
formance (WOSP ’07), pages 153–163, New York, NY, USA, 2007. ACM.

[BCdW06a] Egor Bondarev, Michel Chaudron, and Peter de With. A process for re-
solving performance trade-offs in component-based architectures. In
Proc. of the 9th International Symposium on Component-based Software En-
gineering (CBSE’06), volume 4063 of LNCS, pages 254–269. Springer,
July 2006.

[BCdW06b] Egor Bondarev, Michel R. V. Chaudron, and Peter H. N. de With.
Compositional performance analysis of component-based systems on
heterogeneous multiprocessor platforms. In Proc. 32nd EUROMICRO
Conference on Software Engineering and Advanced Applications (EUROMI-
CRO ’06), pages 81–91. IEEE Computer Society, 2006.

[BDHK06] Henrik C. Bohnenkamp, Pedro R. D’Argenio, Holger Hermanns, and
Joost-Pieter Katoen. MODEST: A compositional modeling formal-
ism for hard and softly timed systems. IEEE Trans. Software Eng,
32(10):812–830, 2006.

[BDIS04] Simonetta Balsamo, Antinisca DiMarco, Paola Inverardi, and Marta
Simeoni. Model-based performance prediction in software develop-
ment: A survey. IEEE Trans. Softw. Eng., 30(5):295–310, May 2004.

[BdWCM05] Egor Bondarev, Peter de With, Michel Chaudron, and Johan Musken.
Modelling of Input-Parameter Dependency for Performance Predic-

310

tions of Component-Based Embedded Systems. In Proc. of the 31th EU-
ROMICRO Conference (EUROMICRO’05), 2005.

[Bec08] Steffen Becker. Coupled Model Transformations for QoS Enabled
Component-Based Software Design. PhD thesis, University of Oldenburg,
Germany, January 2008.

[BG98] M. Bernardo and R. Gorrieri. A tutorial on EMPA: A theory of concur-
rent processes with nondeterminism, priorities, probabilities and time.
Theoretical Computer Science, 202(1-2):1–54, 1998.

[BG02] M. Bravetti and R. Gorrieri. The theory of interactive generalized semi-
Markov processes. Theoretical Computer Science, 282(1):5–32, 2002.

[BGMO06] Steffen Becker, Lars Grunske, Raffaela Mirandola, and Sven Overhage.
Performance Prediction of Component-Based Systems: A Survey from
an Engineering Perspective. In Ralf Reussner, Judith Stafford, and
Clemens Szyperski, editors, Architecting Systems with Trustworthy Com-
ponents, volume 3938 of LNCS, pages 169–192. Springer, 2006.

[BH07] Marco Bernardo and Jane Hillston, editors. Formal Methods for Perfor-
mance Evaluation (7th International School on Formal Methods for the De-
sign of Computer, Communication, and Software Systems, SFM2007), vol-
ume 4486 of LNCS. Springer, May 2007.

[BJPW99] Antoine Beugnard, Jean-Marc Jézéquel, Noël Plouzeau, and Damien
Watkins. Making components contract aware. Computer, 32(7):38–45,
1999.

[BK02] F. Bause and F. Kritzinger. Stochastic Petri Nets - An Introduction to the
Theory. Vieweg Verlag, 2nd edition, 2002.

[BKR95] Andrei Borshchev, Yuri Karpov, and Victor Roudakov. Covers - a tool
for the design of real-time concurrent systems. In Proc. 3rd International
Conference on Parallel Computing Technologies (PaCT ’95), pages 219–233,
London, UK, 1995. Springer.

[BKR07] Steffen Becker, Heiko Koziolek, and Ralf Reussner. Model-based Per-
formance Prediction with the Palladio Component Model. In Proc. 6th
International Workshop on Software and Performance (WOSP’07), pages
56–67. ACM Sigsoft, February 2007.

311

[BKR08] Steffen Becker, Heiko Koziolek, and Ralf Reussner. The Palladio Com-
ponent Model for Model-Driven Performance Prediction. Journal of
Systems and Software, To appear:To appear, 2008.

[BM04a] Antonia Bertolino and Raffaela Mirandola. CB-SPE Tool: Putting
component-based performance engineering into practice. In Ivica
Crnkovic, Judith A. Stafford, Heinz W. Schmidt, and Kurt C. Wallnau,
editors, Proc. 7th International Symposium on Component-Based Software
Engineering (CBSE’04), volume 3054 of LNCS, pages 233–248. Springer,
2004.

[BM04b] Antonia Bertolino and Raffaela Mirandola. Software performance en-
gineering of component-based systems. In Proc. 4th International Work-
shop on Software and Performance (WOSP’04), pages 238–242, New York,
NY, USA, 2004. ACM Press.

[BMdW 04] Egor Bondarev, Johan Muskens, Peter de With, Michel Chaudron, and
Johan Lukkien. Predicting real-time properties of component assem-
blies: A scenario-simulation approach. In Proc. 30th EUROMICRO
Conference (EUROMICRO ’04), pages 40–47. IEEE Computer Society,
2004.

[BMMI04] Simonetta Balsamo, Moreno Marzolla, Antinisca Di Marco, and Paola
Inverardi. Experimenting different software architectures perfor-
mance techniques: a case study. In Proc. 4th International Workshop
on Software and Performance (WOSP’04), pages 115–119, New York, NY,
USA, 2004. ACM.

[BR06] S. Becker and R. Reussner. The Impact of Software Component Adap-
tation on Quality of Service Properties. L’objet, 12(1):105–125, 2006.

[BSM 03] Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, and
Timothy J. Grose. Eclipse Modeling Framework. Eclipse Series. Prentice
Hall, August 2003.

[CBB 03] Paul C. Clements, Felix Bachmann, Len Bass, David Garlan, James
Ivers, Reed Little, Robert Nord, and Judith Stafford. Documenting
Software Architectures. SEI Series in Software Engineering. Addison-
Wesley, 2003.

312

[CD01] J. Cheesman and J. Daniels. UML Components: A Simple Process for
Specifying Component-based Software Systems. Addison-Wesley, 2001.

[CDI01] V. Cortellessa, A. D’Ambrogio, and G. Iazeolla. Automatic derivation
of software performance models from case documents. Performance
Evaluation, 45(2-3):81–105, July 2001.

[CE00] Krysztof Czarnecki and Ulrich Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2000.

[CF07] Vittorio Cortellessa and Laurento Frittella. A framework for au-
tomated generation of architectural feedback from software perfor-
mance analysis. In Proc. 4th European Performance Engineering Workshop
(EPEW’07), volume 4748 of LNCS, pages 171–185. Springer, September
2007.

[CGLL02] S. Chen, I. Gorton, A. Liu, and Y. Liu. Performance prediction of COTS
component-based Enterprise Applications. In Proc. 5th ICSE Workshop
on Component-based Software Engineering (CBSE’02), 2002.

[CH06] K. Czarnecki and S. Helsen. Feature-based survey of model transfor-
mation approaches. IBM Systems Journal, 45(3):621–645, 2006.

[Che80] Roger C. Cheung. A user-oriented software reliability model.
Trans. Softw. Eng., SE-6(2):118–125, March 1980.

IEEE

[Cho07] Landry Chouambe. Rekonstruktion von Software-Architekturen.
Master’s thesis, Universität Karlsruhe (TH), May 2007.

[CLGL05] Shiping Chen, Yan Liu, Ian Gorton, and Anna Liu. Performance pre-
diction of component-based applications. J. Syst. Softw., 74(1):35–43,
2005.

[CMI07] Mauro Caporuscio, Antinisca Di Marco, and Paola Inverardi. Model-
based system reconfiguration for dynamic performance management.
J. Syst. Softw., 80(4):455–473, 2007.

[CMZ02] Emmanuel Cecchet, Julie Marguerite, and Willy Zwaenepoel. Perfor-
mance and scalability of EJB applications. SIGPLAN Not., 37(11):246–
261, 2002.

313

[CN82] K.M. Chandy and D. Neuse. Linearizer: a heuristic algorithm for
queueing network models of computing systems. Communications of
the ACM, 25(2):126–134, 1982.

[CN02] P. Clements and L. Northrop. Software product lines.
Boston, 2002.

Addison-Wesley

[Com06] Compuware. Applied performance management survey.
http://www.cnetdirectintl.com/direct/compuware/

Ovum_APM/APM_Survey_Report.pdf, October 2006. last retrieved
2008-01-13.

[Cor] Microsoft Corp. The COM homepage.
com/com/. last retrieved 2008-01-13.

http://www.microsoft.

[Cor05] Vittorio Cortellessa. How far are we from the definition of a common
software performance ontology? In Proc. 5th International Workshop on
Software and Performance (WOSP ’05), pages 195–204, New York, NY,
USA, 2005. ACM Press.

[Cox86] Brad J. Cox. Object oriented programming: an evolutionary approach.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1986.

[CPR07] Vittorio Cortellessa, Pierluigi Pierini, and Daniele Rossi. Integrating
software models and platform models for performance analysis. IEEE
Trans. Softw. Eng., 33(6):385–401, June 2007.

[DFJR97] John Dilley, Rich Friedrich, Tai Jin, and Jerome A. Rolia. Measurement
tools and modeling techniques for evaluating web server performance.
In Proceedings of the 9th International Conference on Computer Performance
Evaluation: Modelling Techniques and Tools, pages 155–168, London, UK,
1997. Springer-Verlag.

[DG00] Karl Doerner and Walter J. Gutjahr. Representation and optimization
of software usage models with non-markovian state transitions. Infor-
mation & Software Technology, 42(12):873–887, Sep 2000.

[DI04] Antinisca DiMarco and Paola Inverardi. Compositional generation of
software architecture performance qn models. In Proc. 4th Working

314

IEEE/IFIP Conference on Software Architecture (WISCA’04), pages 37–46.
IEEE, June 2004.

[DiM05] Antinisca DiMarco. Model-based Performance Analysis of Software Archi-
tectures. PhD thesis, Universita di L’Aquila, 2005.

[DMM04] A. Diaconescu, A. Mos, and J. Murphy. Automatic performance man-
agement in component based software systems. In Proc. IEEE Interna-
tional Conference on Autonomic Computing (ICAC’04), 2004.

[DPE04] Giovanni Denaro, Andrea Polini, and Wolfgang Emmerich. Early
performance testing of distributed software applications. volume 29,
pages 94–103, New York, NY, USA, 2004. ACM Press.

[Ecla] Eclipse Foundation. Atlas model weaver (amw). http://www.

eclipse.org/gmt/amw/. last retrieved 2008-01-13.

[Eclb] Eclipse Foundation. Eclipse modeling framework homepage. http:
//www.eclipse.org/modeling/emf/. last retrieved 2008-01-13.

[Eclc] Eclipse Foundation. Graphical modeling framework homepage.
http://www.eclipse.org/gmf/. last retrieved 2008-01-13.

[EF04] Evgeny Eskenazi and Alexander Fyukov. Quantitative Prediction of
Quality Attributes for Component-Based Software Architectures. PhD the-
sis, Technische Universiteit Eindhoven, Netherlands, 2004.

[EFH04] Evgeni Eskenazi, Alexandre Fioukov, and Dieter Hammer. Perfor-
mance Prediction for Component Compositions. In Proc. 7th Interna-
tional Symposium on Component-based Software Engineering (CBSE’04),
volume 3054 of LNCS. Springer, 2004.

[EHL 94] Stephen H. Edwards, Wayne D. Heym, Timothy J. Long, Murali Sitara-
man, and Bruce W. Weide. Part ii: specifying components in resolve.
SIGSOFT Softw. Eng. Notes, 19(4):29–39, 1994.

[EJB07] Sun Microsystems Corp., The Enterprise Java Beans homepage. http:
//java.sun.com/products/ejb/, 2007. last retrieved 2008-01-13.

[FBH05] Viktoria Firus, Steffen Becker, and Jens Happe. Parametric perfor-
mance contracts for QML-specified software components. In Proceed-
ings of 2nd International Workshop on Formal Foundations of Embedded

315

Software and Component-Based Software Architectures (FESCA ’05), pages
64–79, 2005.

[FFO02] Andre G. Farina, Paulo Fernandes, and Flavio M. Oliveira. Represent-
ing software usage models with stochastic automata networks. In Proc.
14th International Conference on Software Engineering and Knowledge En-
gineering (SEKE ’02), pages 401–407, New York, NY, USA, 2002. ACM
Press.

[FMN 96] G. Franks, S. Majumdar, J. Neilson, D. Petriu, J. Rolia, and M. Wood-
side. Performance analysis of distributed server systems. In Proc.
6th International Conference on Software Quality (ICSQ’96), pages 15–26,
1996.

[FMW 07] Greg Franks, Peter Maly, Murray Woodside, Dorina Petriu, and
Alex Hubbard. Layered queueing network solver and simula-
tor user manual. http://www.sce.carleton.ca/rads/lqns/

LQNSUserMan.pdf, May 2007. last retrieved 2008-01-13.

[FOL08] Free on-line dictionary of computing (foldoc).
org/, January 2008.

http://foldoc.

[Fra99] Greg Franks. Performance Analysis of Distributed Server Systems. PhD
thesis, Department of Systems and Computer Engineering, Carleton
University, Ottawa, Ontario, Canada, December 1999.

[FW98] Greg Franks and Murray Woodside. Performance of multi-level client-
server systems with parallel service operations. In Proc. 1st Interna-
tional Workshop on Software and Performance (WOSP’98), pages 120–130,
New York, NY, USA, 1998. ACM.

[Gel] Jean Gelissen. Robocop: Robust open component based software ar-
chitecture. http://www.hitech-projects.com/euprojects/

robocop/deliverables.htm. last retrieved 2008-01-13.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1995.

[GHR92] N. Goetz, U. Herzog, and M. Rettelbach. TIPP— a language for timed
processes and performance evaluation. Technical report, 1992.

316

[GL03] Jean Gelissen and Ronan Mac Laverty. Robocop: Revised specification
of framework and models (deliverable 1.5). Technical report, Informa-
tion Technology for European Advancement, 2003.

[GLB04] Mechelle Gittens, Hanan Lutfiyya, and Michael Bauer. An extended
operational profile model. In Proc. 15th International Symposium on
Software Reliability Engineering (ISSRE’04), pages 314–325, Washington,
DC, USA, 2004. IEEE Computer Society.

[GM01] Hassan Gomaa and Daniel A. Menasce. Performance engineering of
component-based distributed software systems. In Performance Engi-
neering, State of the Art and Current Trends, volume 2047 of LNCS, pages
40–55, London, UK, 2001. Springer.

[GMS05] Vincenzo Grassi, Raffaela Mirandola, and Antonino Sabetta. From de-
sign to analysis models: a kernel language for performance and relia-
bility analysis of component-based systems. In Proc. 5th International
Workshop on Software and Performance (WOSP ’05), pages 25–36, New
York, NY, USA, 2005. ACM Press.

[GMS07a] Vincenzo Grassi, Raffaela Mirandola, and Antonino Sabetta. A Model-
Driven Approach to Performability Analysis of Dynamically Recon-
figurable Component-Based Systems. In Proc. 6th Workshop on Software
and Performance (WOSP’07), February 2007.

[GMS07b] Vincenzo Grassi, Raffaela Mirandola, and Antonino Sabetta. Fill-
ing the gap between design and performance/reliability models of
component-based systems: A model-driven approach. Journal on Sys-
tems and Software, 80(4):528–558, 2007.

[GPT01] Katerina Goseva-Popstojanova and Kishor S. Trivedi. Architecture-
based approach to reliability assessment of software systems. Perform.
Eval., 45(2-3):179–204, 2001.

[Gru07] Lars Grunske. Early quality prediction of component-based systems -
a generic framework. J. Syst. Softw., 80(5):678–686, 2007.

[GSCK04] Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent. Software
Factories: Assembling Applications with Patterns, Models, Frameworks, and
Tools. John Wiley & Sons, 2004.

317

[Gut00] Walter J. Gutjahr. Software dependability evaluation based on markov
usage models. Perform. Eval., 40(4):199–222, 2000.

[Hap04] Jens Happe. Reliability Prediction of Component-Based Software Ar-
chitectures. Master’s thesis, University of Oldenburg, 2004.

[Hap08] Jens Happe. Concurrency Modelling for QoS-predictions of Software Com-
ponents. PhD thesis, University of Oldenburg, Germany, 2008. To Ap-
pear.

[HC01] George T. Heineman and William T. Councill, editors. Component-based
software engineering: putting the pieces together. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2001.

[Hil96] J. Hillston. A Compositional Approach to Performance Modelling.
bridge University Press, 1996.

Cam-

[HKR06] Jens Happe, Heiko Koziolek, and Ralf Reussner. Parametric Per-
formance Contracts for Software Components with Concurrent Be-
haviour. In Frank S. de Boer and Vladimir Mencl, editors, Proc. 3rd In-
ternational Workshop on Formal Aspects of Component Software (FACS’06),
Electronical Notes in Computer Science, September 2006.

[HMSW02] Scott A. Hissam, Gabriel A. Moreno, Judith A. Stafford, and Kurt C.
Wallnau. Packaging Predictable Assembly. In Proc. IFIP/ACM Working
Conference on Component Deployment (CD’02), pages 108–124, London,
UK, 2002. Springer-Verlag.

[HMSW03] Scott Hissam, Gabriel Moreno, Judith Stafford, and Kurt Wallnau. En-
abling predictable assembly. J. Syst. Softw., 65(3):185–198, 2003.

[HMW01] Dick Hamlet, David Mason, and Denise Woit. Theory of software re-
liability based on components. In Proc. 23rd International Conference on
Software Engeneering (ICSE’01), pages 361–370, Los Alamitos, Califor-
nia, May12–19 2001. IEEE Computer Society.

[HMW04] Dick Hamlet, Dave Mason, and Denise Woit. Properties of Software
Systems Synthesized from Components, volume 1 of Series on Component-
Based Software Development, chapter Component-Based Software De-
velopment: Case Studies, pages 129–159. World Scientific Publishing
Company, March 2004.

318

[hn07] heise newsticker. Bericht: Probleme bei SAPs neuer Mittelstandssoft-
ware. http://www.heise.de/newsticker/meldung/88300,
April 2007. last retrieved 2008-01-13.

[Hoa85] C. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[HRW95] Curtis E. Hrischuk, Jerome A. Rolia, and C. Murray Woodside. Auto-
matic Generation of a Software Performance Model Using an Object-
Oriented Prototype. In Proc. 3rd International Workshop on Model-
ing, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS ’95), pages 399–409, Washington, DC, USA, 1995. IEEE
Computer Society.

[IEE00] IEEE. IEEE Recommended Practice for Architectural Description of
Software-Intensive Systems. Standard IEEE 1471-2000, 2000.

[Inf] Information Sciences Institute (ISI). Network Simulator ns-2. http:
//www.isi.edu/nsnam/ns/. last retrieved 2008-01-13.

[ISO03] ISO/IEC Standard. Software engineering – product quality – part 1:
Quality model. ISO Standard 9126-1, ISO/IEC, 2003.

[Jai91] Raj Jain. The Art of Computer Systems Performance Analysis : Techniques
for Experimental Design, Measurement, Simulation, and Modeling. Wiley,
1991.

[Jen92] Kurt Jensen. Coloured Petri Nets - Basic Concpets, Analysis Methods and
Practical Use, volume 1 of EATCS Monographs on Theoretical Computer
Science. Springer, 1992.

[Kan03] Michael Kanellos. Moore’s Law to roll on for another decade. http:
//www.news.com/2100-1001-984051.html, February 2003. last
retrieved 2008-01-13.

[Kap07] Thomas Kappler. Code Analysis Using Eclipse to Support Perfor-
mance Predictions for Java Components. Master’s thesis, Universität
Karlsruhe (TH), August 2007.

[KB06] Samuel Kounev and Alejandro P. Buchmann. SimQPN - A tool and
methodology for analyzing queueing petri net models by means of
simulation. Perform. Eval, 63(4-5):364–394, 2006.

319

[KB07] Michael Kuperberg and Steffen Becker. Predicting Software Compo-
nent Performance: On the Relevance of Parameters for Benchmarking
Bytecode and APIs. In Ralf Reussner, Clemens Czyperski, and Wolf-
gang Weck, editors, Proc. 12th International Workshop on Component Ori-
ented Programming (WCOP’07), July 2007.

[KBH07] Heiko Koziolek, Steffen Becker, and Jens Happe. Predicting the Per-
formance of Component-based Software Architectures with different
Usage Profiles. In Proc. 3rd International Conference on the Quality of
Software Architectures (QoSA’07), volume 4880 of LNCS, pages 145–163.
Springer, Juli 2007.

[KBHR08] Heiko Koziolek, Steffen Becker, Jens Happe, and Ralf Reussner. Model-
Driven Software Development: Integrating Quality Assurance, chapter
Evaluating Performance and Reliability of Software Architectures with
the Palladio Component Model, page To appear. IDEA Group Inc., De-
cember 2008.

[KBWA94] Rick Kazman, Len Bass, Mike Webb, and Gregory Abowd. SAAM: a
method for analyzing the properties of software architectures. In Proc.
16th International Conference on Software Engineering (ICSE ’94), pages
81–90, Los Alamitos, CA, USA, 1994. IEEE Computer Society Press.

[KF05] Heiko Koziolek and Viktoria Firus. Empirical Evaluation of Model-
based Performance Predictions Methods in Software Development. In
Ralf Reussner, Johannes Mayer, Judith A. Stafford, Sven Overhage,
Steffen Becker, and Patrick J. Schroeder, editors, Quality of Software Ar-
chitectures and Software Quality (Proceedings of the First International Con-
ference on Quality of Software Architectures (QoSA2005)), volume 3712 of
Lecture Notes in Computer Science, pages 188–202, Erfurt, Germany, 9
2005.

[KF06] Heiko Koziolek and Viktoria Firus. Parametric Performance Contracts:
Non-Markovian Loop Modelling and an Experimental Evaluation. In
Juliana Kuester-Filipe, Iman H. Poernomo, and Ralf Reussner, editors,
Proc. 3rd International Workshop on Formal Foundations of Embedded Soft-
ware and Component-Based Software Architectures (FESCA’06), volume
176 of ENTCS, pages 69–87. Elsevier, March 2006.

320

[KH06] Heiko Koziolek and Jens Happe. A QoS-Driven Development Pro-
cess Model for Component-Based Software Systems. In Ian Gorton,
George T. Heineman, Ivica Crnkovic, Heinz W. Schmidt, Judith A.
Stafford, Clemens A. Szyperski, and Kurt C. Wallnau, editors, Proc.
9th International Symposium on Component-Based Software Engineering
(CBSE’06), volume 4063 of LNCS, pages 336–343. Springer, June 2006.

[KHB06] Heiko Koziolek, Jens Happe, and Steffen Becker. Parameter Depen-
dent Performance Specifications of Software Components. In Christine
Hofmeister, Ivica Crnkovic, Ralf Reussner, and Steffen Becker, editors,
Proc. 2nd International Conference on the Quality of Software Architectures
(QoSA’06), volume 4214 of LNCS, pages 163–179. Springer, June 2006.

[Kin76] James C. King. Symbolic execution and program testing.
ACM, 19(7):385–394, 1976.

Commun.

[KKC00] R. Kazman, M. Klein, and P. Clements. Atam: Method for architecture
evaluation. Technical Report CMU/SEI-2000-TR-004, Carnegie Mellon
University, Software Engineering Institute, 2000.

[KKKR08] Thomas Kappler, Heiko Koziolek, Klaus Krogmann, and Ralf Reuss-
ner. Towards Automatic Construction of Reusable Prediction Models
for Component-Based Performance Engineering. In Proc. Software En-
gineering 2008 (SE’08), LNI. GI, February 2008. To Appear.

[Kos05] Rainer Koschke. Rekonstruktion von Software-Architekturen – Ein
Literatur- und Methoden-Überblick zum Stand der Wissenschaft.
Informatik – Forschung und Entwicklung,
Springer Berlin / Heidelberg.

19(3):127–140, April 2005.

[Kou06] Samuel Kounev. Performance Modeling and Evaluation of Distributed
Component-Based Systems Using Queueing Petri Nets. IEEE Trans.
Softw. Eng., 32(7):486–502, July 2006.

[Koz04] Heiko Koziolek. Empirische Bewertung
Analyseverfahren für Software-Architekturen.
Universität Oldenburg, October 2004.

von Performance-
Diploma thesis,

[Koz05] Heiko Koziolek. Operational profiles for software reliability. In Wil-
helm Hasselbring and Simon Giesecke, editors, Dependability Engineer-

321

ing, volume 2 of Trustworthy Software Systems, chapter 6, pages 119–142.
GITO-Verlag, Berlin, 2006, 2005.

[KPV03] S. Khurshid, C. S. Pasareanu, and W. Visser. Generalized symbolic
execution for model checking and testing. In Proc. 9th International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’03), Warsaw, Poland, April 2003.

[KR08] Klaus Krogmann and Ralf Reussner. Palladio - Prediction of Perfor-
mance Properties. In The Common Component Modeling Example: Com-
paring Software Component Models,, To Appear in LNCS. Springer, 2008.

[Kro07] Klaus Krogmann. Reengineering of Software Component Models to
Enable Architectural Quality of Service Predictions. In Ralf Reussner,
Clemens Szyperski, and Wolfgang Weck, editors, Proc. 12th Interna-
tional Workshop on Component Oriented Programming (WCOP’07), July
2007.

[KWB03] Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The
Model Driven Architecture: Practice and Promise. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2003.

[LFG05] Yan Liu, Alan Fekete, and Ian Gorton. Design-level performance
prediction of component-based applications. IEEE Trans. Softw. Eng.,
31(11):928–941, 2005.

[LZ74] Barbara Liskov and Stephen Zilles. Programming with abstract data
types. SIGPLAN Not., 9(4):50–59, 1974.

[LZGS84] E.D. Lazowska, J. Zahorjan, G.S. Graham, and K.C. Sevcik. Quantita-
tive System Performance. Prentice Hall, 1984.

[MAFM99] Daniel A. Menasce, Virgilio A. F. Almeida, Rodrigo Fonseca, and
Marco A. Mendes. A methodology for workload characterization of
e-commerce sites. In EC ’99: Proceedings of the 1st ACM conference on
Electronic commerce, pages 119–128, New York, NY, USA, 1999. ACM
Press.

[Mar04] M. Marzolla. Simulation-Based Performance Modeling of UML Software
Architectures. PhD thesis, Universit‘a Ca Foscari di Venezia, 2004.

322

[Mar05] Anne Martens. Empirical Validation and Comparison of the Model-
Driven Performance Prediction Techniques of CB-SPE and Palladio.
Individuelles projekt, Universität Oldenburg, August 2005.

[Mar07] Anne Martens. Empirical Validation of the Model-driven Performance
Prediction Approach Palladio. Master’s thesis, University of Olden-
burg, November 2007.

[MBH 04] David Martin, Mark Burstein, Jerry Hobbs, Ora Lassila, Drew McDer-
mott, Sheila McIlraith, Srini Narayanan, Massimo Paolucci, Bijan Par-
sia, Terry R. Payne, Evren Sirin, Naveen Srinivasan, and Katia Sycara.
Owl-s: Semantic markup for web services. http://www.w3.org/

Submission/2004/07/, Novemberq 2004. last retrieved 2008-01-13.

[MBNR68] M.D. McIlroy, JM Buxton, P. Naur, and B. Randell. Mass-Produced
Software Components. Software Engineering Concepts and Techniques
(NATO Science Committee), 1:88–98, 1968.

[McM01] David McMullan. Components in layered queueing networks. Tech-
nical report, Carlton University, Ottawa, Canada, October 2001.

[MDL87] HD Mills, M. Dyer, and RC Linger. Cleanroom Software Engineering.
IEEE Software, 4(5):19–25, 1987.

[met07] metamodel.com. What is metamodeling, and what is it good
for? http://www.metamodel.com/staticpages/index.php?

page=20021010231056977, 2007. last retrieved 2008-01-13.

[Mey90] Bertrand Meyer. Introduction to the theory of programming languages.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1990.

[Mey92] Bertrand Meyer. Applying Design by Contract. Computer, 25(10):40–
51, 1992.

[Mey97] Bertrand Meyer. Object-Oriented Software Construction, Second Edi-
tion. The Object-Oriented Series. Prentice-Hall, Englewood Cliffs (NJ),
USA, 1997.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[MJ51] F.J. Massey Jr. The Kolmogorov-Smirnov Test for Goodness of Fit. Jour-
nal of the American Statistical Association, 46(253):68–78, 1951.

323

[ML05] Marcus Meyerhöfer and Frank Lauterwald. Towards platform-
independent component measurement. In Proceedings of the 10th Work-
shop on Component-Oriented Programming (WCOP2005), 2005.

[MN04] Marcus Meyerhöfer and Christoph Neumann. TESTEJB - A Measure-
ment Framework for EJBs. In Proceedings of the 7th International Sympo-
sium on Component-Based Software Engineering (CBSE7), 2004.

[Moo65] Gordon E. Moore. Cramming more components onto integrated cir-
cuits. Electronics, 38(8), April 1965.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The definition of Standard
ML. MIT Press, Cambridge, MA, USA, 1990.

[Mus93] John D. Musa. Operational profiles in software-reliability engineering.
IEEE Software, 10(2):14–32, 1993.

[MV05] Marcus Meyerhöfer and Bernhard Volz. EJBMemprof - A memory pro-
filing framework for enterprise javabeans. In Proc. 8th International
Symposium on Component-based Software Engineering (CBSE’05), volume
3489 of LNCS, pages 17–32, 2005.

[MW00] Peter Maly and C. Murray Woodside. Layered modeling of hard-
ware and software, with application to a lan extension router. In Proc.
11th International Conference on Computer Performance Evaluation: Mod-
elling Techniques and Tools (TOOLS’00), pages 10–24, London, UK, 2000.
Springer-Verlag.

[Nei91] J.E. Neilson. Parasol: A Simulator for Distributed And/or Parallel Systems.
Carleton University, School of Computer Science, 1991.

[NWPM95] J. E. Neilson, C. M. Woodside, D. C. Petriu, and S. Majumdar. Software
bottlenecking in client-server systems and rendezvous networks. IEEE
Trans. Softw. Eng., 21(9):776–782, 1995.

[Obj05a] Object Management Group (OMG). UML Profile for Modeling
Quality of Service and Fault Tolerance Characteristics and Mecha-
nisms. http://www.omg.org/cgi-bin/doc?ptc/2005-05-02,
May 2005. last retrieved 2008-01-13.

324

[Obj05b] Object Management Group (OMG). UML Profile for Schedulabil-
ity, Performance and Time. http://www.omg.org/cgi-bin/doc?
formal/2005-01-02, 2005. last retrieved 2008-01-13.

[Obj06a] Object Management Group (OMG). CORBA 3.0 - IDL Syntax and Se-
mantics chapter. http://www.omg.org/cgi-bin/doc?formal/

02-06-07, February 2006. last retrieved 2008-01-13.

[Obj06b] Object Management Group (OMG). Corba component model,
v4.0 (formal/2006-04-01). http://www.omg.org/technology/

documents/formal/components.htm, 2006. last retrieved 2008-
01-13.

[Obj06c] Object Management Group (OMG). Metaobject facility (MOF). http:
//www.omg.org/mof/, 2006. last retrieved 2008-01-13.

[Obj06d] Object Management Group (OMG). MOF QVT final adopted specifica-
tion (ptc/05-11-01). http://www.omg.org/cgi-bin/apps/doc?

ptc/05-11-01.pdf, 2006. last retrieved 2008-01-13.

[Obj07a] Object Management Group (OMG). UML Profile for MARTE, Beta
1. http://www.omg.org/cgi-bin/doc?ptc/2007-08-04, Au-
gust 2007. last retrieved 2008-01-13.

[Obj07b] Object Management Group (OMG). Unified modeling language: Su-
perstructure version 2.1.1. http://www.omg.org/cgi-bin/doc?

formal/07-02-05, February 2007. last retrieved 2008-01-13.

[OFWP05] Tariq Omari, Greg Franks, Murray Woodside, and Amy Pan. Solving
layered queueing networks of large client-server systems with sym-
metric replication. In WOSP ’05: Proceedings of the 5th international
workshop on Software and performance, pages 159–166, New York, NY,
USA, 2005. ACM.

[Par72] D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Commun. ACM, 15(12):1053–1058, 1972.

[PPK06] Pavel Parizek, Frantisek Plasil, and Jan Kofron. Model checking of
software components: Combining java pathfinder and behavior pro-
tocol model checker. In Proceedings of the 30th Annual IEEE/NASA

325

Software Engineering Workshop SEW-30 (SEW’06), pages 133–141. IEEE
Computer Society, 2006.

[PS02] Dorina C. Petriu and Hui Shen. Applying the UML Performance Pro-
file: Graph Grammar-Based Derivation of LQN Models from UML
Specifications. In Proc. 12th International Conference on Computer Per-
formance Evaluation, Modelling Techniques and Tools (TOOLS’02), pages
159–177, London, UK, 2002. Springer-Verlag.

[PTLP99] S.J. Prowell, C.J. Trammell, R.C. Linger, and J.H. Poore. Cleanroom
software engineering: technology and process. Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA, 1999.

[PW91] D.C. Petriu and C.M. Woodside. Approximate MVA from Markov
model of software client/server systems. In Proc. 3rd IEEE Symposium
on Parallel and Distributed Processing (PDP’91), pages 322–329, 1991.

[PW02] Dorin C. Petriu and C. Murray Woodside. Software Performance Mod-
els from System Scenarios in Use Case Maps. In Proc. 12th International
Conference on Computer Performance Evaluation, Modelling Techniques and
Tools (TOOLS’02), pages 141–158, London, UK, 2002. Springer-Verlag.

[PW04] Dorin B. Petriu and Murray Woodside. A metamodel for generat-
ing performance models from UML designs. In Thomas Baar, Alfred
Strohmeier, Ana Moreira, and Stephen J. Mellor, editors, UML 2004 -
The Unified Modeling Language. Model Languages and Applications. 7th In-
ternational Conference, Lisbon, Portugal, October 11-15, 2004, Proceedings,
volume 3273 of LNCS, pages 41–53. Springer, 2004.

[PW06] Dorin B. Petriu and Murray Woodside. An intermediate metamodel
with scenarios and resources for generating performance models from
UML designs. Journal of Software and Systems Modeling, 6(2):163–184,
June 2006.

[PWP 07] D. C. Petriu, C. M. Woodside, D. B. Petriu, J. Xu, T. Israr, Geri Georg,
Robert France, James M. Bieman, Siv Hilde Houmb, and Jan Jürjens.
Performance analysis of security aspects in uml models. In WOSP ’07:
Proceedings of the 6th international workshop on Software and performance,
pages 91–102, New York, NY, USA, 2007. ACM.

326

[RBH 07] Ralf Reussner, Steffen Becker, Jens Happe, Heiko Koziolek, Klaus
Krogmann, and Michael Kuperberg. The Palladio Component
Model. Technical Report 2007-21, Universität Karlsruhe (TH),
2007. http://digbib.ubka.uni-karlsruhe.de/volltexte/

1000007341, last retrieved 2008-01-13.

[Rea] Real-Time and Distributed Systems Group, Carleton University.
Layered Queueing Network Documentation. http://www.sce.

carleton.ca/rads/lqns/lqn-documentation/. last retrieved
2008-01-13.

[Reu01a] R. Reussner. Enhanced component interfaces to support dynamic
adaption and extension. In HICSS ’01: Proceedings of the 34th Annual
Hawaii International Conference on System Sciences (HICSS-34)-Volume 9,
page 9043, Washington, DC, USA, 2001. IEEE Computer Society.

[Reu01b] Ralf H. Reussner. Parametrisierte Verträge zur Protokolladaption bei
Software-Komponenten. Dissertation, Universität Karlsruhe (TH), July
2001.

[RFB04] Ralf H. Reussner, Viktoria Firus, and Steffen Becker. Parametric Per-
formance Contracts for Software Components and their Composition-
ality. In Wolfgang Weck, Jan Bosch, and Clemens Szyperski, editors,
Proceedings of the 9th International Workshop on Component-Oriented Pro-
gramming (WCOP 04), June 2004.

[RL80] M. Reiser and S. S. Lavenberg. Mean-value analysis of closed multi-
chain queuing networks. J. ACM, 27(2):313–322, 1980.

[RPS03] Ralf H. Reussner, Iman H. Poernomo, and Heinz W. Schmidt. Reason-
ing on software architectures with contractually specified components.
In A. Cechich, M. Piattini, and A. Vallecillo, editors, Component-Based
Software Quality: Methods and Techniques, number 2693 in LNCS, pages
287–325. Springer, 2003.

[RRMP08] Andreas Rausch, Ralf Reussner, Raffaela Mirandola, and Frantisek
Plasil, editors. The Common Component Modeling Example: Comparing
Software Component Models, volume to appear of LNCS. Springer, Hei-
delberg, 2008.

327

[RS95] J. A. Rolia and K. C. Sevcik. The method of layers. IEEE Trans. Softw.
Eng., 21(8):689–700, 1995.

[RS02] Ralf H. Reussner and Heinz W. Schmidt. Using parameterised con-
tracts to predict properties of component based software architectures.
In Ivica Crnkovic, Stig Larsson, and Judith Stafford, editors, Proc. 9th
IEEE Conference and Workshops on Engineering of Computer-Based Systems
(ECBS’02), 4 2002.

[RSP03] Ralf H. Reussner, Heinz W. Schmidt, and Iman H. Poernomo. Relia-
bility prediction for component-based software architectures. J. Syst.
Softw., 66(3):241–252, 2003.

[RZ07] Simone Röttger and Steffen Zschaler. Tool support for refinement of
non-functional specifications. Journal on Software and Systems Modelling
(SoSyM), 6(2), June 2007.

[SGM02] Clemens Szyperski, Daniel Gruntz, and Stephan Murer. Component
Software: Beyond Object-Oriented Programming. Addison-Wesley, 2002.

[Sim06] Erik Simmons. The usage model: Describing product usage during
design and development. IEEE Software, 23(3):34–41, May/June 2006.

[SKK 01] Murali Sitaraman, Greg Kuczycki, Joan Krone, William F. Ogden, and
A.L.N. Reddy. Performance specification of software components. In
Proc. of SSR ’01, 2001.

[SLC 05] Connie U. Smith, Catalina M. Llado, Vittorio Cortellessa, Antinisca Di
Marco, and Lloyd G. Williams. From UML models to software perfor-
mance results: an SPE process based on XML interchange formats. In
Proc. 5th international workshop on Software and performance (WOSP’05),
pages 87–98, New York, NY, USA, 2005. ACM Press.

[SMA05] Koushik Sen, Darko Marinov, and Gul Agha. Cute: a concolic unit
testing engine for c. In ESEC/FSE-13: Proceedings of the 10th European
software engineering conference held jointly with 13th ACM SIGSOFT in-
ternational symposium on Foundations of software engineering, pages 263–
272, New York, NY, USA, 2005. ACM Press.

328

[SMF 07] Jayshankar Sankarasetty, Kevin Mobley, Libby Foster, Tad Hammer,
and Terri Calderone. Software Performance in the Real World: Per-
sonal Lessons from the Performance Trauma Team. In Proc. 6th Interna-
tional Workshop on Software and Performance (WOSP’07), pages 201–208,
New York, NY, USA, 2007. ACM.

[Smi90] C.U. Smith. Performance Engineering of Software Systems. Addision-
Wesley, 1990.

[Smi01] Connie U. Smith. Origins of software performance engineering: High-
lights and outstanding problems. In Performance Engineering, volume
2047 of LNCS, pages 96–118. Springer, 2001.

[Smi02] Connie U. Smith. Performance Solutions: A Practical Guide To Creating
Responsive, Scalable Software. Addison-Wesley, 2002.

[SPJN98] Christiane Shousha, Dorina Petriu, Anant Jalnapurkar, and Kennedy
Ngo. Applying performance modelling to a telecommunication sys-
tem. In Proc. 1st international workshop on Software and performance
(WOSP ’98), pages 1–6, New York, NY, USA, 1998. ACM.

[Sta73] Herbert Stachowiak. Allgemeine Modelltheorie. Springer Verlag, Wien,
1973.

[Sun] Sun Microsystems. Java EE at a Glance. http://java.sun.com/

javaee/. last retrieved 2008-01-13.

[SVC06] T. Stahl, M. Voelter, and K. Czarnecki. Model-Driven Software Develop-
ment: Technology, Engineering, Management. John Wiley & Sons, 2006.

[SW97] Fahim Sheikh and Murray Woodside. Layered Analytic Performance
Modelling of a Distributed Database System. In Proc. 17th Interna-
tional Conference on Distributed Computing Systems (ICDCS ’97), page
482, Washington, DC, USA, 1997. IEEE Computer Society.

[Tip94] Frank Tip. A survey of program slicing techniques. Technical report,
Amsterdam, The Netherlands, 1994.

[Tri01] Kishor Trivedi. Probability and Statistics with Reliability, Queuing, and
Computer Science Applications. Wiley & Sons, 2nd edition, 2001.

329

[vDKV00] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific lan-
guages: an annotated bibliography. SIGPLAN Not., 35(6):26–36, 2000.

[VDTD07] T. Verdickt, B. Dhoedt, F. De Turck, and P. Demeester. Hybrid Perfor-
mance Modeling Approach for Network Intensive Distributed Soft-
ware. In Proc. 6th International Workshop on Software and Performance
(WOSP’07), ACM Sigsoft Notes, pages 189–200, February 2007.

[VHBP00] Willem Visser, Klaus Havelund, Guillaume Brat, and SeungJoon Park.
Model checking programs. In ASE ’00: Proceedings of the 15th IEEE
international conference on Automated software engineering, page 3, Wash-
ington, DC, USA, 2000. IEEE Computer Society.

[Voa98] Jeffrey M. Voas. Certifying off-the-shelf software components. Com-
puter, 31(6):53–59, 1998.

[Voa99] Jeffrey M. Voas. Certifying software for high-assurance environments.
IEEE Softw., 16(4):48–54, 1999.

[Voa00] Jeffrey M. Voas. Will the real operational profile please stand up? IEEE
Softw., 17(2):87–89, 2000.

[Wei81] Mark Weiser. Program slicing. In ICSE ’81: Proceedings of the 5th inter-
national conference on Software engineering, pages 439–449, Piscataway,
NJ, USA, 1981. IEEE Press.

[Wey98] Elaine J. Weyuker. Testing component-based software: A cautionary
tale. IEEE Softw., 15(5):54–59, 1998.

[WFP07] Murray Woodside, Greg Franks, and Dorina Petriu. The Future of
Software Performance Engineering. In Future of Software Engineering
(FOSE ’07), pages 171–187, Los Alamitos, CA, USA, May 2007. IEEE
Computer Society.

[Whi92] James A. Whittaker. Markov chain techniques for software testing and re-
liability analysis. PhD thesis, University of Tennessee: Knoxville, TN,
1992.

[WMW03] Xiuping Wu, David McMullan, and Murray Woodside. Component-
based Performance Prediction. In Proc. 6th ICSE Workshop on
Component-based Software Engineering (CBSE’06), pages 13–18, 2003.

330

[WNHM86] C. M. Woodside, E. Neron, E. D. Hos, and B. Mondoux. An active-
server model for the performance of parallel programs written using
rendezvous. Journal of Systems and Software, 6(1-2):125–132, 1986.

[WNPM95] C. Murray Woodside, John E. Neilson, Dorina C. Petriu, and
Shikharesh Majumdar. The stochastic rendezvous network model for
performance of synchronous client-server-like distributed software.
IEEE Trans. Comput., 44(1):20–34, 1995.

[Woi94] Denise Woit. Operational Profile Specification, Test Case Generation, and
Reliability Estimation for Modules. PhD thesis, Queen’s University,
Kingston, Ontario, Canada, 1994.

[Woo84] C. M. Woodside. An active-server model for the performance of par-
allel programs written using rendezvous. In Proc. IFIP Workshop on
Performance Evaluation of Parallel Systems, Grenoble, Dec. 13 - 15 1984.

[Woo89] C. Murray Woodside. Throughput calculation for basic stochastic ren-
dezvous networks. Perform. Eval., 9(2):143–160, 1989.

[Woo02] Murray Woodside. Tutorial Introduction to Layered Modeling of Soft-
ware Performance. http://www.sce.carleton.ca/rads/lqns/
lqn-documentation/tutorialg.pdf, May 2002. last retrieved
2008-01-13.

[WP93] James A. Whittaker and J. H. Poore. Markov analysis of software spec-
ifications. ACM Trans. Softw. Eng. Methodol., 2(1):93–106, 1993.

[WPS02] Murray Woodside, Dorin Petriu, and Khalid Siddiqui. Performance-
related completions for software specifications. In ICSE ’02: Proceed-
ings of the 24th International Conference on Software Engineering, pages
22–32, New York, NY, USA, 2002. ACM Press.

[WR94] Claes Wohlin and Per Runeson. Certification of software components.
IEEE Trans. Softw. Eng., 20(6):494–499, 1994.

[WRH 00] Claes Wohlin, Per Runeson, Martin H¨ oornost, Magnus C. Ohlsson, Bj ¨
Regnell, and Anders Wesslén. Experimentation in Software Engineer-
ing: an Introduction. Kluwer Academic Publishers, Norwell, MA, USA,
2000.

331

[WS03] Lloyd G. Williams and Connie U. Smith. Making the business case for
software performance engineering. In Proceedings of CMG, 2003. last
retrieved 2008-01-13.

[WT94] James A. Whittaker and Michael G. Thomason. A markov chain model
for statistical software testing. IEEE Trans. Softw. Eng., 20(10):812–824,
1994.

[Wu03] Xiuping Wu. An approach to predicting performance for component
based systems. Master’s thesis, Carleton University, Ottawa, Canada,
July 2003.

[WV00] James A. Whittaker and Jeffrey Voas. Toward a more reliable theory of
software reliability. Computer, 33(12):36–42, 2000.

[WVCB01] C. Murray Woodside, Vidar Vetland, Marc Courtois, and Stefan Ba-
yarov. Resource function capture for performance aspects of software
components and sub-systems. In Performance Engineering, State of the
Art and Current Trends, pages 239–256, London, UK, 2001. Springer-
Verlag.

[WW04] Xiuping Wu and Murray Woodside. Performance Modeling from Soft-
ware Components. In Proc. 4th International Workshop on Software and
Performance (WOSP’04), volume 29, pages 290–301, New York, NY,
USA, 2004. ACM Press.

[WWL04] Pengfei Wu, Murray Woodside, and Chung-Horng Lung. Composi-
tional layered performance modeling of peer-to-peer routing software.
In Proc. of the IEEE International Conference on Performance, Computing,
and Communications, pages 231– 238, 2004.

[XOWM06] Jing Xu, Alexandre Oufimtsev, Murray Woodside, and Liam Mur-
phy. Performance modeling and prediction of enterprise javabeans
with layered queuing network templates. SIGSOFT Softw. Eng. Notes,
31(2):5, 2006.

[Yac02] Sherif M. Yacoub. Performance analysis of component-based appli-
cations. In SPLC 2: Proceedings of the Second International Conference
on Software Product Lines, pages 299–315, London, UK, 2002. Springer-
Verlag.

332

[Zsc04] Steffen Zschaler. Formal specification of non-functional properties of
component-based software. In Jean-Michel Bruel, Geri Georg, Hein-
rich Hussmann, Ileana Ober, Christoph Pohl, Jon Whittle, and Stef-
fen Zschaler, editors, Workshop on Models for Non-functional Aspects of
Component-Based Software (NfC’04) at UML conference 2004, September
2004. Technical Report TUD-FI04-12 Sept.2004 at Technische Univer-
sität Dresden.

[Zsc07] Steffen Zschaler. A Semantic Framework for Non-functional Specifications
of Component-Based Systems. Dissertation, Technische Universität Dres-
den, Dresden, Germany, April 2007.

333

