
IMPROVING SPEECH SYSTEMS BUILT FROM VERY LITTLE DATA

John Kominek*, Sameer Badaskar*, Tanja Schultz*§, Alan W Black*
{jkominek, sbadaska, tanja, awb}@cs.cmu.edu

* Language Technologies Institute, Carnegie Mellon University, USA
§ Cognitive Systems Lab, Karlsruhe University, Germany

ABSTRACT

This paper studies two ways for helping non-specialist users
develop speech systems from limited data for new
languages. Focused web re-crawling finds additional
examples of text matching the domain as specified by the
user. This improves the language model and cuts word error
rate nearly in half. Iterative voice building with interleaved
lexicon construction uses the voice from a previous iteration
to help construct an improved voice. 4.5 hours of the user’s
time reduces transcription error rate from 32% to 4%.

1. INTRODUCTION

The SPICE project is an initiative that deploys a web-based
toolkit for the rapid development of Automatic Speech
Recognition (ASR) and Text-to-Speech (TTS) [1]. The
purpose is to make the construction of these speech
processing technologies available to the world at large, and
in particular to simplify the process for non-specialist users.
The first version of this toolkit has been now running as a
live server for one year [2], and has been used in laboratory
courses taught at Carnegie Mellon University in the U.S. and
at Karlsruhe University in Germany. One distinctive
characteristic of the SPICE architecture is the ability to
interactively and iteratively construct systems customized to
new speakers and new languages with an absolute minimum
of data and effort, in practice with as little as 5-10 minutes
of speech data [3].

In a semester-long assignment, students are asked to
choose a language and domain of interest and to use the
SPICE system to: i) define a phoneme set, ii) collect a text
corpus, iii) build a bigram language model, iv) generate a
200-1000 utterance prompt list, v) record the prompt list
from one or more native speakers, vi) construct a lexicon
and letter-to-sound rules, vii) build acoustic models for
ASR, viii) evaluate the recognizer, ix) build voice models
for TTS, and x) evaluate the synthesizer. For end-to-end
evaluation, the system provides a “talk-back” function,
where the speaker says a sentence which is transmitted to
our server, decoded, synthesized, and played back to the
user. A pair of systems can be hooked together to provide
intermediated communication.

From the laboratories conducted to date, students are
successful about half the time. Much of the blame may be
attributed to deficiencies in our software. However, we
observed that the successful students arrive with substantial
experience in speech technologies. Those with less
experience lack knowledge of what is reasonable at each
stage of data collection, and where the “comfort zone” of
each technology component lies. One possible solution is to
knowledge-engineer additional constraints into the system,
effectively providing sturdier guide-rails for the purpose of
preventing users from veering off track. Thus, the major
challenge of this approach is how to find and where to place
appropriate guide-rails.

A more robust approach is to build a system in an
iterative process with integrated user feedback. Here, the
user bootstraps the system from 10 minutes of speech for
example, evaluates it, and – with system support – mends
various deficiencies. Deficiencies typically include
insufficient speech data, a weak acoustic or language model,
and words missing from the lexicon. Previously in [4] we
measured the relative effectiveness of working on the
pronunciation dictionary versus simply recording more
speech (as it pertains to synthesizer quality), and applied the
results to eight non-English languages. We found that during
early stage work it is better to collect additional speech,
while in later stages improving the lexicon offers greater
gain for amount of labor spent. The location of the transition
point seems to lie between 30m and 60m of speech, but
naturally it depends on the language in question and on the
relative speed of recording versus lexicon correction.

This paper reports on initial investigations in iterative
system development, as applied to ASR and TTS. The
starting point is a “seed application” consisting of a small
amount of text, ten minutes of recordings, and a dictionary
of a few hundred words. In our tests we use two seed
applications, one in English (investigating TTS) and one in
Hindi (investigating ASR). Both target the domain of
cooking recipes. Using such a seed, we have developed a
mechanism for expanding the text corpus using the
technique of focused web re-crawling [5]. This supports
bigram language models with better coverage for ASR and
also provides material for additional speech recordings For
evaluating TTS, speech is collected in five stages, with

lexicon development interleaved. The voice is evaluated
after each stage by transcribing the heldout set.

Two high level ideas guide our investigation into low
resource system construction. The first is: how can one
improve on an initial system? Users wanting to build usable
systems are confronted with the quandary of “now what?”.
The second idea is: of the many ways the user can devote
development time, where can the effort be best expended?
This paper provides the beginnings of an answer and some
useful hard data to support it.

2. TEXT COLLECTION

One pitfall users of SPICE are inclined to commit is not
collecting enough text data. In SPICE these data are used for
computing a statistical language model and for automatically
selecting a prompt set. The user may upload plain text or
point the system to a web page to crawl.

2.1. Focused web re-crawling
The SPICE user specifies the domain implicitly by specifying
either the URL of the text or by uploading a text file. The
documents crawled from the target URL can be analyzed to
identify the domain related terms which could be used to re-
query a search engine for additional URLs. The downloaded
documents are cleaned of html tags. Then bigrams in the text
are scored by the well known “term frequency inverse
document frequency” (TF-IDF) weighting scheme. The
bigrams with highest TF-IDF score are treated as domain
terms and used to re-query a search engine (in our case,
Google). Additionally, terms with highest TF-IDF score
along with their respective scores are stored as a model of
the domain. For each bigram-query term, the top K (K=5)
URLs returned by the search engine are then crawled for
more documents. The crawler keeps track of visited pages to
prevent duplicate downloads.

To minimize topical (domain) drift of the downloaded
documents from the original domain, each of the crawled
documents is cleaned up and the cosine similarity with
respect to the domain model is computed. Documents whose
similarity scores lie above a certain threshold are added to
the data obtained initially. This similarity computation and
thresholding step ensures purity of the additional text data
while removing irrelevant content. We apply focused
crawling to automatically gather additional domain related
text data for enhancing the language model which in turn
affects the performance of the ASR.

2.2. Corpus expansion of recipe domain data
For both our English and Hindi tests we chose the same
topic domain of cooking recipes. Sentences typical of this
domain are “sprinkle the cavity with salt and pepper,” and

“in a small bowl, mix flour, beer, and sauce”. The English
seed application contains 5,261 word tokens; after expansion
the count is 215,217. The Hindi seed consists of 192 hand-
edited sentences totaling 1,523 words. This was expanded to
159,995 words in one run, and 360,395 in another,
depending on the threshold settings. Three Hindi text sets
are used to construct and evaluate three language models, as
discussed in the following section.

For the English database used to test text-to-speech,
1,111 utterances were recorded from a single speaker.
Removing 10% for testing leaves exactly 1,000 for training.
Discussion of TTS experiments is deferred to section 3.

2.3. Effect of language model and out-of-vocabulary
words on ASR performance
In the Hindi ASR experiments the speech data consists of
192 utterances (comprising 13 minutes) from a single
speaker, with 20 utterances held out for testing. This
relatively small amount is used to adapt multi-lingual
GlobalPhone acoustic models to the speaker [6]. The
training/test data was partitioned three times with separate
experiments run on each partition

LM word
count

Word Error Rate (WER) (%)
perplexity / OOV rate (%)

split 1 split 2 split 3 ave.

1 1523 95.88
5.2/68.7

97.92
6.9/57.9

84.93
7.8/50.0

92.91
6.6/58.9

2 159995 55.15
177/16.8

56.25
93.4/27.4

51.81
165/13.4

54.41
145/19.2

3 360395 54.12
214/15.0

52.08
113/25.0

50.60
187/11.3

52.27
171/17.1

Table 1. WER, perplexity, and OOV rates measured on 3
training/test partitions for each of the 3 language models.

The performance increase from 92.9% to 52.3% shown in
table 1 is substantial and mostly a result of significantly
reducing the OOV rate on the test set by focused recrawling.
We could achieve a comparable result only in a cheating
experiment, where we included the test sentences into the
LM. Clearly, this is not a solution in practice. Furthermore,
overspecialization makes a system less flexible. Recrawling
increases the LM perplexity from 6.6 to 171 but this is more
than compensated by reducing the OOV rate from 58.9% to
17.1%. Non-technical users easily fall prey to the deadly
effect of OOV words. An enhanced recrawler could
specifically target this problem by automatically maximizing
vocabulary coverage.

3. INCREMENTAL VOICE BUILDING

Incremental voice building is a technique that uses a
previous version of a synthesizer to help construct a newer
version. Our effort focuses on incremental lexicon building
and is based on the observation that synthesized samples of
words can assist in the task of pronunciation correction [7].
The procedure is conceptually straightforward.

1. Employing the previous synthesizer and its letter-
to-sound rule system, up to four alternate
pronunciations are generated for each lexical entry.
This is performed as a batch operation prior to
involving the user for the correction stage.

2. The alternate pronunciations are presented to the
user one entry at a time, with the most likely
pronunciation listed first. Presentation includes the
word in the native script, phoneme strings for each
alternate, and the corresponding wavefile. The user
listens to the wavefiles and selects the closest
match, or, if none is acceptable, types in an
alternate pronunciation. In the SPICE system the
typed-in pronunciation is synthesized for playback.
Because this task can be tiring, the user was not
expected to examine the full lexicon in one sitting.
Review sessions lasted 20-30 minutes, and ended
when the user noticed encroaching fatigue.

3. The user records an additional set of 200 prompts,
spending about 25 minutes to complete this task.
We designed the lexicon and recording activities to
be interleaved and roughly balanced.

4. The updated lexicon and expanded speech data are
used to rebuild the voice.

5. While the voice is being rebuilt the user transcribes
a set of heldout test utterances from which the
transcription error rate is computed. This number is
made available to the user as a measure of voice
quality, and is compared to previous values.

6. The user may now begin a new session at step 1. In
actual practice, a number of engineering details
needed to be attended to between iterations. The
experiments reported here were conducted over a
span of several days.

3.1. Data characteristics and time usage
The English recipe-domain synthesizer was built in five
iterations. Ignoring overhead, the user spent 2 hours to
record 1000 short utterances plus 2.5 hours to improve the
pronunciation lexicon. With silences trimmed off, each
session yielded about 7 ½ minutes of speech data, totaling
36m13s. Table 2 provides time summaries of lexicon
building. The column examine time gives the average time
to handle a lexical entry, viz. selection or type-in correction.

Average times vary from 5 to 17s. Notice that selecting the
correct pronunciation (if present), is 2-3 times more
efficient. Also, the selection times decreased substantially
over the sessions. This is due to a combination of factors:
familiarization with the task and application, and the fact
that the voice quality improves with each iteration.

lexicon words time (mm:ss) examine time (s)

stage total stage total selected type-in

104 104 20:40 20:40 9.8 15.9

140 244 28:55 49:35 10.1 16.7

193 437 31:10 80:45 7.2 14.4

217 654 26:01 106:46 4.7 14.4

310 964 41:23 148:09 5.9 12.3
Table 2. Five iterations of lexicon expansion on the English
test. The seed lexicon of 394 words is not included.

3.2. Lexical coverage of prompts and corpus
The system works on lexical entries ordered by frequency,
and one may take the counts from either the prompt list or
from the text corpus. Choosing to cover all the words in the
prompt list first optimizes model building (because the
transcript will be better). Ordering words based on the
corpus optimizes coverage of the language domain, at the
risk of poorer acoustic models.

Figure 1 compares three word selection strategies. They
are 1) prompts before corpus, 2) corpus before prompts, and
3) one from each alternately. In this experiment we adopted
the first strategy – that is, seeking a pronunciation for each
word in the prompt list first.

Figure 1. Token Coverage in the prompt set under three
selection strategies. The black dots are the actual samples
from incremental voice building. The prompt set has 1057
unique words.

Word Count

0 500 1000 1500 2000

P
e
rc

e
n
t

co
v
e
ra

g
e

25

50

75

100
Prompt Token Coverage

Legend

prompts then corpus
alternating selection
corpus then prompts

3.3. Lexicon construction – usage of wavefiles
When working on the lexicon, each word is accompanied by
up to four alternate pronunciations displayed as a phoneme
string and synthesized using the voice from the previous
stage. To study user behavior we measured the frequency of
wavefile playings. The distribution is shown in Figure 2. In
difficult cases wavefiles are played eight times or more, but
most often once is enough. The average number of counts
ranged from 3.7 (stages 1 and 2) to 1.8 (stage 4). Table 3
lists how often each alternate was chosen when no
corrections were made. Instead of randomized ordering, our
experience suggests that it is better to place the most likely
pronunciation first.

Figure 2. Distribution of the number of times that the user
plays the wavefiles for a word.

distribution of pronunciation selections

stage 1st 2nd 3rd 4th % 1st

1 54 9 5 2 77.1

2 61 17 12 1 67.0

3 93 27 2 2 75.0

4 132 18 4 7 82.0

5 155 26 22 5 74.5
Table 3. Distribution of selection choices of each stage.

3.4. Transcription listening tests
Transcription word error rates on a held out test set is a
direct measure of comprehensibility. After 4.5h of user
effort the final result is 33 errors out of 724 words, or 4.6%,
down from an initial rate of 32%. Ten of these may be
considered “soft” (the for a), while remainder are “hard”
errors (bowl for dough). In the final voice building iteration,
41 minutes of lexicon work resulted in an 2.62% reduction
in absolute WER, or 3.8% per hour. In the previous stage 51
minutes of total effort (25 recording, 26 lexicon) reduced

WER by 3.32%, or 3.9% per hour. This suggests that the
bulk of improvement is due to an improved lexicon. Our
experiments in [4] found that when a voice is small (less
than 30m) collecting more speech data is most efficient path
to improvement, then after some threshold lexicon work
wins out. Truly separating the two effects, though, requires
that substantially more conditions be built and evaluated.

Voice Transcription Errors

utts lexicon effort INS DEL SUB WER

200 356 0:25 18 45 167 31.77

400 460 1:08 19 48 111 24.59

600 600 2:00 16 24 90 17.96

800 793 2:56 7 10 59 10.50

1000 1010 3:47 6 6 40 7.18

1000 1320 4:28 5 1 27 4.56
Table 4. Transcription error counts and rates for a 724 word
test set. Total effort is given in hours and minutes.

 4. CONCLUSION

To improve existing seed ASR and TTS systems we have
prototyped two innovations for SPICE: 1) focused web
recrawling to enhance the language model, and 2) iterative
voice building with interleaved lexicon construction. We
conjecture that if users can experience tangible improvement
while working, they will be much more willing to devote the
effort required to develop speech system for new languages.

6. REFERENCES

[1] SPICE, http://cmuspice.org.
[2] Schultz, T., Black, A., Badaskar, S., Hornyak, M., Kominek,

J., SPICE: Web-based Tools for Rapid Language Adaptation
in Speech Processing Systems, Interspeech 2007, Antwerp.

[3] Kominek, J., Schultz, T., Black, A. Voice Building from
Insufficient Data – Classroom Experiences with Web-based
Language Development Tools, ISCA Speech Synthesis
Workshop 6, Bonn, German, 2007.

[4] Kominek, J., Schultz, T., Black, A. Synthesizer Voice Quality
of New Languages Calibrated with Mean Mel Cepstral
Distortion, SLTU-2008 Workshop, Hanoi, Vietnam.

[5] Chakrabarti, S., van den Berg, M., Dom, Byron. Focused
crawling: a new approach to topic-specific (web) resource
discovery, Computer Networks, vol. 31, no. 11-16, 1999.

[6] Schultz, T., GlobalPhone: A Multilingual Speech and Text
Database developed at Karlsruhe University. ICSLP, Denver
CO, USA, 2002.

[7] Davel, M., Barnard, E. The Efficient generation of
pronunciation dictionaries: human factors during
bootstrapping, Interspeech 2004, Jeju, Korea.

Num Wavefile Plays

0 4 8 12 16

O
cc

u
ra

n
ce

 C
o
u
n
t

0

100

200

300

400

500
Distribution of Wave Play Count

