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Abstract
An important decision in the design of automatic conversa-
tion understanding systems is the level at which information
streams representing specific participants are merged. In the
current work, we explore participant-dependence of low-level
interactive aspects of conversation, namely the observed con-
textual preferences for talkspurt deployment. We argue that
strong participant-dependence at this level gives cause for merg-
ing participant streams as early as possible. We demonstrate
that our probabilistic description of talkspurt deployment pref-
erences is strongly participant-dependent, and frequently pre-
dictive of participant identity.
Index Terms: Vocal interaction, Automatic conversation un-
derstanding, Meetings.

1. Introduction
An important decision in the design of automatic multipartic-
ipant conversation understanding systems pertains to the level
at which information streams representing specific participants
are merged. The majority of such systems, to date, have de-
layed fusion until as late as possible; with very few exceptions,
speech/non-speech segmentation, automatic laughter detection,
automatic speech recognition, and automatic punctuation are
performed independently for each participant.

A growing body of evidence suggests that modeling inter-
active aspects of conversation as early as possible may be ben-
eficial, as stream fusion provides a context for the activity of
each participant. For example, in speech/non-speech segmenta-
tion, it has recently been shown that modeling contiguous inter-
vals of speech, or talkspurts [5],simultaneouslyfor all partici-
pants makes it possible to impose conversation- and participant-
independent overlap constraints [6], and thereby largely elimi-
nate the problem of crosstalk observed in close-talk microphone
recordings of meetings.

Although adaptation to specific participants (and conversa-
tions) represents an opportunity for improved system perfor-
mance, very little is known about how participant-specific the
observed contextual preferences for vocal activity deployment
actually are. In meetings, work on dominance classification [9],
influence ranking [10], meeting type classification [1], and role
and seniority classification [2] has shown that systematic dif-
ferences in vocal activity deployment do exist across classes
of conversations and participants. In the current work, we hy-
pothesize that contextual preferences for vocal activity deploy-
ment actually vary quite significantly acrossspecificpartici-
pants, more so than they do within each participant’s reper-
toire. This would make such preferences predictive of par-
ticipant identity, suggesting that low-level processing systems

stand to benefit from adaptation passes prior to final decoding.
The goal of the current work is to explore whether talkspurt

deployment timing differentiates between participants. To this
end, we present experiments in which participant identity in un-
seen meeting data is recovered given only the parameters of a
probabilistic model of talkspurt deployment. Although our mo-
tivation is not competitive speaker identification, these features
may, in the multiparticipant context, be complementary to stan-
dard acoustic, prosodic, lexical, and semantic features typically
computed for this task. Our results indicate that when the partic-
ipants to a conversation are known, the channels corresponding
to each participant can be correctly identified in the majority
of cases. When the identities of the participants are not known
ahead of time, the observed channel activity can be correctly at-
tributed to specific participants in over a third of the cases. We
note additionally that the proposed framework makes it possible
to assess the extent to which classification of participants into
equivalence classes, as in our earlier related work [2], relies on
the detection of specific participants rather than of classes.

2. Data
The data used in the current work is the same as that used in [2],
namely the ICSI Meeting Corpus [3] meetings of type

u ∈ U ≡ {Bed,Bmr,Bro} , (1)

representing longitudinal recordings of three research groups at
ICSI. Each of the 67 meetings in this subset is identified by
a string consisting of the typeu, and a numerical identifierd.
As in [2], we have divided them into:ICSITRAINSET, consist-
ing of the 33 meetings for whichd mod 4 ∈ {1, 2}; ICSIDE-
VSET, consisting of the 18 meetings for whichd mod 4 ≡ 3;
and ICSIEVAL SET, consisting of the 16 meetings for which
d mod4 ≡ 0. The three sets are not disjoint in participants, and
the number of instrumented participantsK varies from meeting
to meeting, between 3 and 9.

We use and contrast three separate multiparticipant vocal
activity segmentations. All three segmentations are binary, in
that at any point in timet each participantk is considered to
be either vocalizing or not vocalizing. The first segmentation,
S, consists of all talkspurts and is constructed from the forced-
alignment lexical item endpoints found in the ICSI MRDA Cor-
pus [4]; inter-item gaps shorter than 0.3 seconds are bridged.
The second segmentation,S − B, is constructed in the same
way, but only non-backchannel lexical items are considered. Fi-
nally, the third segmentationL of laugh bouts is as described in
[7]. Each of the three segmentations is discretized [6] using a
particular frame step∆T and frame sizeTS .



3. Framework
The task in the current work is to hypothesize specific partici-
pant identities for each ofK unknown participants in a particu-
lar meeting. Inference is based on theK observed vocal activity
sequences. We denote theseK sequences, jointly and in paral-
lel, as thevocal interaction[8] record of a meeting, since for
each participantk, 1≤k≤K, the remainingK − 1 vocal activ-
ity sequences comprise the interactive context.

We treat the entirety of each meeting as a single occurrence
of each of itsK participants. Many ICSI meeting participants
participate in only a small handful of meetings, and, for these,
robust models of vocal activity behavior cannot be inferred. We
therefore limit ourselves to identifying only those participants
which occur inICSITRAINSET 7 or more times; there are 14
such participants. We map all other participants to the class
OTHER. Hypothesized participant identities are drawn from the
setG = {S1, S2, · · · , S14, OTHER}, where all identities except
OTHER are unique within each conversation of interest.

To enforce this constraint, we hypothesize allK participant
identities simultaneously. TheK-length vectorg of participant
identities is such that the identity of thekth participant (with
k an arbitrary enumerator such as channel number) is found in
g [k]. The alternative multiparticipant assignmentsg form a
closed setG, whose number of elements is

|G| =

KX

j=0

K!

(K − j)! j!
·

(|G| − 1)!

(|G| − 1 − j)!
. (2)

The first term in Equation 2 represents the number of combina-
tions of j indices ing at whichj non-OTHER participants are
found; the second term represents the number of permutations
of |G| − 1 non-OTHER participants, takenj at a time.

Given a vectorF of observables for a single meeting, we
seek the besta posterioriassignmentg∗ using

g
∗ = arg max

g∈ G

P (g |F )

= arg max
g∈ G

X

u ∈U

P ( u, g, F )

= arg max
g∈ G

X

u ∈U

P ( u ) P (g |u )
| {z }

MM

P (F |g, u )
| {z }

BM

. (3)

In the above, “MM” is the membership model and “BM” is the
behavior model [1]. The MM provides the prior probability that
the conversational groupg hold a meeting of typeu; the BM
provides the likelihood that the observed featuresF are pro-
duced by groupg in meeting typeu.

4. Observables
For a particular meeting, each discretized multiparticipant seg-
mentation,S,S−B, orL, is a matrix ofT columnsqt, 1≤t≤T ,
whereT is the number of frames. The columnsqt areK-length
vectors in{0, 1}K . We compute from each of these three ma-
trices the following feature types:fV I

k , the probability that par-
ticipantk initiates vocalization at timet when no-one else was
speaking att − 1; fV C

k , the probability that participantk con-
tinues vocalization at timet when no-one else was speaking at
t − 1; fOI

k,j , the probability that participantk initiates vocaliza-
tion at timet when participantj was speaking att − 1; and
fOC

k,j the probability that participantk continues vocalization at
time t when participantj was speaking att − 1. Values of the

feature types, which are time-independent probabilities, are es-
timated using an asymmetric infinite-range variant of the Ising
model, as used in [1]; the model implements a particular type
of parameter tying, reducing model complexity fromK·2K to
K + K2 independent parameters. Additionally, we compute a
feature typefV

k , the time-independent probability that partici-
pantk vocalizes at any time.

5. Behavior Model
SinceK may change from meeting to meeting, the size of the
feature vectorF must be considered variable. We therefore fac-
tor the behavior model, assuming that all features are mutually
independent. Each feature is described by its own univariate
Gaussian modelN

`
µ, σ2

´
, whose parameters we compute us-

ing µ̂ = C1/C0 and σ̂2 = C2/C0 − µ̂2, whereCm is the
zeroth, first, or second order (m ∈ {0, 1, 2}) cumulant. For
one-participant feature types for participantξ ∈ G, and for two-
participant feature types for participantsξ andζ, these are given
by

Cm
u;ξ =

RX

r=1

δ (ur, u)

KrX

k=1

δ (gr [k] , ξ) × (fr,k)m , (4)

Cm
u;ξ,ζ =

RX

r=1

δ (ur, u)

KrX

k=1

δ (gr [k] , ξ) × (5)

KrX

j=1

δ (gr [j] , ζ) × (fr,k,j)
m ,

respectively. Here,δ is the Kronecker delta, andr enumerates
over theR meetings in the training corpus.ur is the type of the
rth meeting, andfr,k (andfr,k,j) are the features from thekth
(andjth) participant in therth meeting.

Because certain participants and participant pairs in
G may occur only rarely in the training data, we rely
also on less specific cumulants. For one-participant fea-
ture types, this includes meeting-type-independent cumulants
Cm

∗;ξ =
P

u Cm
u;ξ, meeting-type-specific but participant-

independent cumulantsCm
u;∗ =

P

ξ Cm
u;ξ, and meeting-type-

independent and participant-independent cumulantsCm
∗;∗ =

P

u

P

ξ Cm
u;ξ. For two-participant feature types, this

also includes meeting-type-independent cumulantsCm
∗;ξ,ζ =

P

u Cm
u;ξ,ζ ; meeting-type-specific but participant-independent

cumulantsCm
u;ξ,∗ =

P

ζ Cm
u;ξ,ζ , Cm

u;∗,ζ =
P

ξ Cm
u;ξ,ζ , and

Cm
u;∗,∗ =

P

ξ

P

ζ Cm
u;ξ,ζ ; and meeting-type-independent and

participant-independent cumulantsCm
∗;ξ,∗ =

P

u

P

ζ Cm
u;ξ,ζ ,

Cm
∗;∗,ζ =

P

u

P

ξ Cm
u;ξ,ζ , andCm

∗;∗,∗ =
P

u

P

ξ

P

ζ Cm
u;ξ,ζ .

Maximum a posteriori (MAP) model estimates are com-
puted by combining these cumulants using

C̃m
u;ξ = Cm

u;ξ + λ∗;ξ Cm
∗;ξ + λu;∗ Cm

u;∗ + λ∗;∗ Cm
∗;∗ . (6)

and

C̃m
u;ξ,ζ = Cm

u;ξ,ζ + λ∗;ξ,ζ Cm
∗;ξ,ζ + λu;ξ,∗ Cm

u;ξ,∗ (7)

+ λ∗;ξ,∗ Cm
∗;ξ,∗ + λu;∗,ζ Cm

u;∗,ζ + λ∗;∗,ζ Cm
∗;∗,ζ

+ λu;∗,∗ Cm
u;∗,∗ + λ∗;∗,∗ Cm

∗;∗,∗ .

In the current work, theλ interpolation factors are tuned using
the development data; however, it should be noted that minimal
effort has gone into optimizing these values.

The argumentation so far assumes a single feature vec-
tor F, extracted from a binary vocal activity segmentation



V ∈ {S,S − B,L} using a particularframing policy; here,
a policy consists of a specificframe step∆T and frame size
TS . A feature family for a particular segmentation type and
framing policy is denotedFV

∆T/TS
; we assume such feature

families to be independent, i.e. thatP (F, F′, · · · |g, u ) =
P (F |g, u ) × P (F′ |g, u ) × · · · .

6. Membership Model
The membership model used in the current work is identical to
that in [1] and [2]. It assumes that participants attend meet-
ings of specific type independently of other participants, and
has the general formP (g |u ) =

QK
k=1

P (g [k] |u ), where
P (g [k] |u ) is the probability that thek-th participant has
identity g [k], conditioned on the meeting typeu. The proba-
bilities are found using maximum likelihood estimation.

7. Search
As Equation 2 illustrates, the number of possible multipartic-
ipant alternativesg can be intractably large. Our proposed
greedy algorithm, which does not exhaustively iterate overG, is
shown below; at every point in the algorithm’s execution,G′ is
the set of currently unhypothesized specific participants, andI
is the set of indices in{1, 2, · · · , K} currently unoccupied by
specific participants.

1. G′ = G. I = {1, 2, · · · , K}. g [k] = OTHER, for
all 1≤k≤K. Estimateu-conditioned MMs and BMs.
ComputeLL = score(F, MM , BM). LL∗ = LL.

2. WhileI 6= ∅,

(a) g∗ = ∅. Setg to the first element ofG′.

(b) Seti to the first element inI.

(c) g [i] = g. Estimateu-conditioned MMs and BMs.
ComputeLL = score(F, MM , BM). If LL >
LL∗, g∗ = g, LL∗ = LL, g∗ = g, andi∗ = i.

(d) g [i] = OTHER. Seti to the next element ofI. If
i 6= ∅, return to Step 2c.

(e) Setg to the next element ofG′. If g 6= ∅, return to
Step 2b.

(f) Removeg∗ from G′. Removei∗ from I. Return
to Step 2.

The algorithm aims to identify allK participants, one itera-
tion at a time; score(F, MM , BM) is the joint probability prod-
uct in Equation 3. Step 1 hypothesizes a background participant
model at each index1≤i≤K. The algorithm then enumerates
over the currently still unhypothesized specific participantsG′.
Each such participantg is evaluated as being at each currently
still unused indexi ∈ I. Once the first participant is located at
his/her best indexi∗, the algorithm proceeds to identify a next
participant, by enumerating over all remaining participants and
over all remaining vacant indices.

8. Experiments
We present two experiments; in the first, the identities of par-
ticipants are known and only need to be attributed to specific
observed participants; in the second, participants must first
be drawn from a larger population. The numbers we present
should be contrasted with majority class guessing. Always
guessing the most probable single participant inICSITRAIN-
SET yields accuracies of 11.9% and 11.8% onICSIDEVSET

andICSIEVAL SET, respectively (always guessingOTHERyields
20.6% and 22.9%, respectively, but effectively fails to identify
any specific participants).

8.1. Known group g

We first explore the performance of the behavior model, un-
der the assumption of a perfect membership model. We do this
by allowing both the type of meetingu and the identity of the
K participants ing to be known in advance; the only task is
to determine the correct permutatationα which maximizes the
posterior probability ofg given the observedF:

α∗ = arg max
α∈SK

P (F |α (g0) , u∗ ) , (8)

whereSK is thesymmetric group onK symbols, ie. the space
of all possibleK! permutations ofK elements, andg0 is an ar-
bitrary but fixed ordering of the correctK participant identities.
u∗ is the known type of the meeting. Following the application
of Equation 8,g∗ = α∗ (g0).

Table 1 shows the performance of each feature family
FV

∆T/TS
, computed using 6 different framing policies and 3 dif-

ferent binary segmentations, and using all feature types for all
participants and participant pairs, onICSIDEVSET. It appears
that theS segmentation is the most informative, that remov-
ing backchannels from theS segmentation lowers performance
slightly, and that theL segmentation, alone, leads to classifi-
cation accuracies which are approximately 33% relative lower
than accuracies obtained using theS segmentation.

∆T TS Segmentation TypeV
(ms) (ms) S S − B L

50 100 55.9 57.6 36.4
100 200 60.2 56.8 42.4
200 400 60.2 53.4 35.6
400 800 55.1 58.5 31.4
800 1600 47.5 47.5 38.1

1600 3200 54.2 56.8 32.2

Table 1: Identity classification accuracy using all feature types
in each feature familyFV

∆T/TS
, on ICSIDEVSET, for 6 differ-

ent framing policies and 3 different binary segmentations. For
each test meeting, the meeting type and participant identities are
known (but not attributed). Best performingFV

∆T/TS
’s for each

segmentation type are shown in bold.

In Table 2 we show the 5 complete feature familiesFV

∆T/TS

from Table 1 which, when combined, yield the highest iden-
tity classification accuracy onICSIDEVSET. We show the per-
formance of each feature family separately, all 5 feature fami-
lies together, and, for each feature family, the performance of
the other 4 feature families together. OnICSIDEVSET, perfor-
mance using all 5 feature families is 9.3% higher than for the
best feature family alone. We note thatFL

0.1/0.2, obtained us-
ing L, improves the accuracy of classification based only on
talkspurt production by 5.9%. The table also shows that per-
formance onICSIEVAL SET is approximately 10% lower than
on ICSIDEVSET. Furthermore, unlike for the latter, the feature
family obtained using the laughter segmentationL lowers per-
formance forICSIEVAL SET, from 54.9% to 53.9%.

We note that dropping the assumption that the test meeting
typeu is known during testing does not impact the results in Ta-
ble 2, because meeting typeu can always be correctly inferred
from the (unordered) participant identitiesg0.



ICSIDEVSET ICSIEVAL SETFeature family
accur compl accur compl

FS

0.1/0.2 60.2 60.2 50.0 52.0
FS

0.2/0.4 60.2 61.9 45.1 51.0
FS

0.8/1.6 47.5 61.0 54.9 50.0
FS−B

0.2/0.4 53.4 59.3 48.0 50.0
FL

0.1/0.2 42.4 63.6 29.4 54.9
all 5 FV

∆T/TS
’s 69.5 53.9

Table 2: Identity classification accuracy (%) using each of the
best five feature families by themselves (accur), together (all
5 FV

∆T/TS
’s), and leaving each of the five out, one at a time

(compl), for bothICSIDEVSET and ICSIEVAL SET. For each
test meeting, the meeting type and participant identities are
known (but not attributed); the best-performing feature families
are shown in bold.

8.2. Unknown group g

Next, we drop the assumption that the (unordered) set of par-
ticipants is known in advance. This exercises the membership
model, as we now need to validate candidateg’s, drawn from
G. Selection is performed using the algorithm described in Sec-
tion 7, and the simple membership model from Section 6. Re-
sults are shown in Table 3.

ICSIDEVSET ICSIEVAL SETFeature family
accur compl accur compl

FS

0.1/0.2 39.0 30.5 27.5 33.3
FS

0.2/0.4 30.5 35.6 20.6 37.3
FS

0.8/1.6 16.9 31.4 28.4 32.4
FS−B

0.2/0.4 29.7 33.1 24.5 37.3
FL

0.1/0.2 16.9 40.7 21.6 24.5
all 5 FV

∆T/TS
’s 29.7 30.4

Table 3: Identity classification accuracy (%) when meeting type
and participant identities are not known; symbols as in Table 2.

As can be seen in the table, classification accuracies are
significantly lower when theK group participants must be not
only permuted into the correct arrangement but also first drawn
from a population larger thanK. When all 5 feature fami-
lies are used, classification accuracy is reduced by 44% relative
on ICSIEVAL SET; it is reduced by 32% relative when only the
best performing feature family combinations from among those
shown are used. These reductions are likely attributable to both
the membership model and the search algorithm, and are the
subject of ongoing analysis.

8.3. Effect of training set size

In order to gain insight into how performance varies with the
size of the training data, we repeat the above experiment but
use bothICSITRAINSET andICSIDEVSET for training, leading
to a 50% relative increase in training corpus size.

Space constraints prohibit a detailed analysis of the result-
ing improvements onICSIEVAL SET; the latter are in the range
0.0-3.0% absolute for every feature family in Table 3. Using all
5 feature families increases the classification accuracy by 3.9%
absolute.

9. Conclusions
We have explored the extent to which specific participant iden-
tities can be recovered from only the vocal interaction record of
meetings. Our experiments suggest that when it is known who is
present, identities can be successfully attributed to participants
in the majority of cases (53.9% in unseen data). When it is not
known who is present, and identity hypotheses must be drawn
from a larger set than present at the meeting, classification ac-
curacies degrade significantly; in the data used here, classifi-
cation rates are 20% lower than when participant identities are
known and must only be assigned. However, even in this case,
the numbers represent a 20% relative reduction in classification
error over a baseline which always assigns the most frequent
identity.

The presented system offers significant scope for feature
type selection ([2]), joint membership modeling, and improve-
ments to search. However, the ramifications of our current find-
ings extend beyond participant identification. That participant
identities can be recovered with above-chance accuracies using
parametric models of vocal activity deployment indicates that
applications relying on such models stand to gain significantly
from participant-specific training, or participant adaptation. Ex-
ample applications include speech/non-speech segmentation for
meeting recognition, laughter detection for emotional valence
classification, and text-independent backchannel detection.
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