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Abstract: Our society demands ubiquitous mobile devices that offer seamless interaction with everybody, everything, 
everywhere, at any given time. However, the effectiveness of these devices is limited due to their lack of 
situational awareness and sense for the users’ needs. To overcome this problem we develop intelligent 
transparent human-centered systems that sense, analyze, and interpret the user’s needs. We implemented 
learning approaches that derive the current task demand from the user’s brain activity by measuring the 
electroencephalogram.  Using Support Vector Machines we can discriminate high versus low task demand 
with an accuracy of 92.2% in session dependent experiments, 87.1% in session independent experiments, 
and 80.0% in subject independent experiments. To make brain activity measurements less cumbersome, we 
built a comfortable headband with which we achieve 69% classification accuracy on the same task.  

1 INTRODUCTION 

Our modern information society increasingly 
demands ubiquitous mobile computing systems that 
offer its users seamless interaction with everybody, 
everything, everywhere, at any time. Although the 
number and accessibility of mobile devices such as 
laptop computers, cell phones, and personal digital 
assistants grows rapidly, the effectiveness in 
supporting the users to fulfilling their tasks proves to 
be much smaller than expected. This mainly results 
from the fact that such devices lack situational 
awareness and sense for the users’ needs. As a 
consequence users waste their time with manually 
configuring inflexible devices rather than obtaining 
relevant information and efficient automatic support 
to solve their problems and tasks at hand.   

It is our believe that the solution lies in intelligent 
transparent human-centered systems that sense, 
analyze, and interpret the needs of their users, then 
adapt themselves accordingly, provide the optimal 
support to given problems, and finally present the 
relevant results in an appropriate way. The goal of 
the work presented here is to solve the analytical 
part of human-centered systems, i.e. sensing, 
analyzing, and interpreting the users’ needs. 

For this purpose we develop learning approaches 
that derive the users’ condition from their brain 
activity. We are interested in conditions that are 

important in the context of human-computer 
interaction and human-human communication. In 
this particular study we focus on the (mental) task 
demand as a user condition in the context of lecture 
presentations and meetings.   
The term task demand defines the amount of mental 
resources required to execute a current activity. 
Although we are using the general term task de-
mand, we are exclusively concerned about the men-
tal not the physical task demand. Task demand infor-
mation can be helpful in various situations, e.g. 
while driving a car, operating machines, or perform-
ing other critical tasks. Depending on the level of 
demand and cognitive load, any distraction arising 
from electronic devices such as text messages, in-
coming phone calls, traffic or navigation informa-
tion, etc. should be suppressed or delayed. Also, the 
analysis of task demand during computer interaction 
allows to asses usability. In a lecture scenario, a 
speaker may use task demand information to tailor 
the presentation toward the audience.  
 
In this paper we investigate the potential of detecting 
task demand by measuring the brain activity using 
scalp electrodes. Although we focus on the system 
evaluation in the lecture and meeting scenario, the 
described methods are applicable to any other real-
life situation. To make electrode-based recordings 
acceptable, the following issues must be addressed: 
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• Robustness: The system needs to be robust against 
artefacts introduced by speech or body movement 

• Usability: EEG sensors and recording device need 
to be user friendly and comfortable to wear 

• Applicability: Measuring brain activity must be 
feasible in realistic scenarios in real-time. 

In this work we are addressing these three goals by 
relaxing the inconveniences of clinical brain activity 
recording and make it applicable to real human-
computer interaction and human-human communi-
cation scenarios. 

2 ELECTROENCEPHALOGRAM 

The source of the Electroencephalogram (EEG) is 
neural activity in the cortex, the outmost part of the 
human brain. This neural activity causes electrical 
potential differences, which can be measured using 
scalp electrodes. Information between neurons is 
transferred via the synapses where chemical 
reactions take place causing ion movements. These 
movements result in excitatory or inhibitory 
electrical potentials in the post-synaptic neurons. 
The electrical fields emerging from the ion 
movements are called cortical field potentials and 
have a dipole structure. If the electrical activity of a 
huge number of neurons is synchronized, the 
corresponding dipoles point all in the same 
direction. Their sum becomes large enough such that 
potential differences between particular scalp 
positions and a constant reference point can be 
measured. EEG characteristics like frequency, 
amplitude, temporal and topographic relations of 
certain patterns can then be used to make inferences 
about underlying neural activities (Zschocke, 1995).  

In the EEG which can be measured at the scalp, 
amplitudes between 1μV and 100μV and fre-
quencies between 0Hz and 80Hz can be observed. 
These EEG signals show specific characteristics at 
different scalp positions, depending on the current 
mental condition. When the human brain is not 
absorbed by external sensory stimuli or other mental 
processes, we usually observe the α-activity across 
the cortex, i.e. rhythmic signals between 8Hz and 
13Hz with large amplitudes. When performing 
higher mental processes the α-activity is attenuated 
and other activity patterns occur in those cortex 
regions, where the processes happen. In many cases 
these patterns are identified by γ-activity, which 
typically show frequencies around 40Hz and have a 
lower amplitude than α-activity (Schmidt and 
Thews, 1997). In this work we assume that the de-
gree of α-activity attenuation and activity at higher 
frequencies is correlated with task demand. This is 

justified by the fact that the amplitude of non-α-
activity is correlated with the degree of vigilance, a 
physiological continuum between sleepiness and 
active alertness (Zschocke, 1995). Furthermore, it is 
known that people are more alert when the task 
demand is high. The frequency analysis of our 
recorded data confirms this assumption. During most 
activity types several cortex regions are involved 
and task demand is characterized by the amplitude 
of non-α-activity in all regions involved in the 
current task. This suggests that the activity of the 
whole cortex must be taken into account to achieve 
optimal results for task demand estimation. 

3 TASK DEMAND & VIGILANCE 

A large body of research work concerns the 
computational analysis of brain activity, applying 
EEG, functional magnetic resonance imaging, and 
functional near infrared spectroscopy to areas such 
as estimation of mental task demand. Several groups 
reported research on the computational assessment 
of task demand based on EEG data recorded while 
varying the task difficulty (Smith, 2001), (Pleydell-
Pearce, 2003), (Berka, 2004). These studies focused 
on the design of intelligent user interfaces that 
optimize operator performance by adjusting to the 
predicted task demand level. Regression models 
were trained to predict task demand from the 
recorded EEG data. These models used the task 
difficulty or the rate of errors as references during 
task execution. The features extracted from the EEG 
data represented mostly the frequency content of the 
signals. Positive correlations between predictions 
and references or predictions and self-estimates of 
task demand (Smith, 2001) are reported throughout 
these studies. Pleydell-Pearce (2003) achieved a 
classification accuracy of 72% for the discrimination 
of low versus high task demand in subject and 
session dependent experiments and 71% in subject 
independent experiments. Task demand assessment 
has also been done on data from other modalities, 
including muscular activity (Pleydell-Pearce, 2003), 
blood hemodynamics (Izzetoglu, 2004), and pupil 
diameter (Iqbal, 2004). Reasonable results could be 
achieved with all three modalities. However, 
correlations between pupil diameter and task 
demand could only be shown for one interactive task 
out of a group of various cognitive tasks. 

Other work focused on the EEG-based estima-
tion of operator’s vigilance during sustained atten-
tion tasks (e.g. car driving or operating a power 
plant). Jung (1997) asked subjects to respond to 
auditory stimuli which simulate sonar target 
detection, while EEG was recorded from five 
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electrodes over the parietal, central and occipital 
cortex. The error rate in terms of failures to respond 
to stimuli was then used as reference for a Multi-
Layer ANN which was trained with a frequency 
representation of the EEG signals to predict a 
vigilance index between 0 and 1. On unknown data a 
root mean square error (RMS-error) of 0.156 
between predictions and references is reported for a 
subject dependent experimental setup. Duta et al. 
(Duta, 2004) recorded EEG from the mastoids while 
subjects had to perform visual attention tasks. 
Vigilance was labelled by experts who visually 
inspected the recorded data. Three vigilance 
categories “alertness”, “intermediate” and “drowsi-
ness” were distinguished. Using the coefficients of 
an AR model as features for Multi-Layer ANNs 
39% to 62% predictions matched the references in 
subject independent experiments. 

4 DATA & METHODS 

4.1 Data Capturing 

Two different devices were used for data 
acquisition: an EEG-cap from ElectroCap™ and a 
self-made EEG-headband (see Figure 1). The majo-
rity of data were recorded with the ElectroCap™ 
using 16 electrodes placed at positions fp1, fp2, f3, 
f4, f7, f8, fz, t3, t4, t5, t6, p3, p4, pz, o1, and o2 ac-
cording to the international 10-20 system (Jasper, 
1958). Reference electrodes were attached to the ear 
lobes and linked together before amplification. 
Although we are aware of the relationship between 
facial expressions and level of task demand, we 
decided to exclude the motor cortex from our mea-
surement for two reasons: firstly, the facial muscular 
activity is partly captured by the frontal EEG 
electrodes, and secondly we assume that motor 
activity is of rather minor importance for the 
assessment of our classification task.  

Some data were recorded with a headband, in 
which we sewed in four electrodes at the forehead 
positions fp1, fp2, f7, and f8. Reference electrodes 
were attached to the mastoids and linked together 
before amplification, the ground electrode was 
placed at the back of the neck. The headband has 
three major advantages over the ElectroCap™ which 
are crucial to real-life applications: the headband is 
(1) more comfortable to wear, (2) much easier to 
attach, and (3) better to maintain and clean, also no 
electrode gel gets in contact with the subject’s hair. 
The drawback is the limited positioning and number 
of electrodes compared to the ElectroCap™.  

 

Figure 1: Headband, build-in electrodes at fp1, fp2, f7, f8. 

In contrast to recordings for clinical purposes, 
subjects were allowed to move freely during the 
recordings to keep the situation as natural as 
possible, i.e. the subject's head was not fixated. 
Consequently we had to deal with data artefacts 
introduced by muscular activity (some recordings 
required speaking as well). Strategies to remove 
those artefacts will be described in section 4.2. 

Amplification and A/D-conversion was done 
with a 16 channel VarioPort™ physiological data 
recorder (Becker, 2005). Each channel had an 
amplification factor of 2775 and a frequency range 
from 0.9Hz to 60Hz. After amplification, A/D 
conversion was performed using 4096 A/D-steps 
and a sampling rate of 256 Hz. The data was 
transferred instantaneously from the amplifier to a 
computer via an RS232 port for online processing. 
The port capacity is limited to 115200 Bits per 
second which corresponds to 28 electrode channels 
at a sampling of 256Hz. Although sampling with a 
lower frequency should be sufficient to avoid 
aliasing when considering the amplifier’s upper 
cutoff-frequency of 60Hz, we decided to go with 
256Hz since for technical reasons the slope of the 
band pass filter is very small. 

4.2 Data Preprocessing 

Figure 2 summarizes the signal processing steps of 
our task demand estimation system. After EEG 
recording, artefacts are removed applying inde-
pendent component analysis (ICA). A short time 
Fourier transform (STFT) is used for feature 
extraction. After feature normalization and 
averaging over temporally adjacent features, 
different methods for reducing the dimensionality 
are used. Finally, Support Vector Machines (SVMs) 
or Artificial Neural Networks (ANNs) for 
classification or regression are applied to obtain task 
demand predictions. We also applied Self-
Organizing-Maps (SOMs) to determine which levels 
of task demand can be reliably discriminated. 
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Figure 2: Task Demand Estimation System. 

4.2.1 Artefact Removal 

Artefacts such as muscular activity and especially 
eye movements contaminate the EEG signal, since 
the corresponding electrical potentials are an order 
of magnitude larger than the EEG sources. This 
causes in particular problems in the EEG that is 
measured over the frontal cortex. ICA has shown to 
be very efficient for artefact removal in EEG data 
(Jung et al., 2000).   

Original data ICA components

Back projected data

Removal of component 2

 
Figure 3: Artefact removal applying ICA: (1) independent 
components are computed from the original data (top left), 
(2) the second component (eye blinking artefact) is identi-
fied and rejected (top right), and (3) the data is projected 
back to the original space (bottom left). 

To apply ICA to EEG data it is assumed that the 
signal measured at one electrode can be described by 
a linear combination of signals emerging from 
independent processes (i.e. cortical field potentials, 
muscular artefacts, 60Hz AC noise): Let x(t) be the 
vector of signals measured at all electrodes at time t 
and s(t) be the independent components. Then x(t) 
can be expressed by x(t) = A · s(t), where A is called 
mixing matrix. ICA computes the matrix A, or its 
inverse the de-mixing matrix W, such that 
independent components can be estimated from the 
measured signals (Hyväarinen et al., 2000). Artefact 
components can then be identified either by visual 

inspection of the training data or by using cross-
validation and be rejected from the data. The re-
maining components are projected back into the 
original coordinate system (see Figure 3). For ICA 
computation we used the open source Matlab tool-
box EEGLAB (Delorme et al., 2004), which applies 
the Informax algorithm to the matrix estimation.  

4.2.2 Feature Extraction, Averaging and 
Normalization 

After artefact removal we computed the power 
spectrum of the time signal applying STFT. For two-
second long segments overlapping by one second, 
features were computed representing the content of 
frequency bands with 0.5Hz width. This results in 
one feature vector per second. The dimensionality of 
one feature vector for 16 electrode channels and 
frequencies ranging from 0 to 45Hz is 16·90=1440. 
To reduce the influence of outliers final feature 
vectors for each time point were obtained by 
averaging over k previous features. To compensate 
for different ranges in the frequency bands, we 
normalized each feature using the following two 
normalization approaches: 
• GlobalNorm: Feature means and variances are 

calculated based on the complete training set. 
Calculated values are used globally for mean 
subtraction and variance normalization on all data 
(training, validation, and test data). 

• UserNorm: Feature means and variances are 
calculated on training, validation, and test data 
separately for each user. Then, user-specific mean 
subtraction and variance normalization is applied. 

4.2.3 Feature Reduction 

Since the dimensionality of the feature vector may 
be large compared to the amount of training data, we 
investigated various feature reduction methods. A 
straightforward approach is to average over adjacent 
frequency bands, another approach is the Linear 
Discriminant Analysis (LDA), which selects features 
according to their discriminative power (Fukunaga, 
1972). For sparse data and large dimensionalities, 
LDA estimation may become ill-conditioned. 
Therefore, we also applied a correlation-based 
feature reduction method, which selects those 
features that correlate best with the variable to be 
predicted. This method proved to be particular use-
ful for the assessment of task demand, since – in 
contrast to LDA – it takes into account the 
continuous nature of the predicted variable.  
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4.3 Data Analysis 

To learn more about the data structure and to gain 
insights into the granularity and distinctness of task 
demand levels, we generated self-organizing maps 
(SOMs) (Kohonen, 1995) for the training data. After 
obtaining the Best Matching Unit (BMU) for each 
training example, a map was calculated which 
visualizes colour-coded clusters corresponding to 
different task demand levels. Thus the spatial 
relation between the feature vectors belonging to the 
different task demand levels can be visualized 
concisely on a two dimensional grid. Although the 
SOM-based analysis may indicate which task 
demand levels are easy to discriminate, the 
hypotheses have to be verified experimentally on 
test data. SOM training and visualization were 
performed with the MATLAB™ based SOM-
Toolbox (Vesanto et al., 2000). 

4.4 Learning Methods 

We investigated two types of classifiers: Multilayer 
ANNs and SVMs. ANN classifiers were trained with 
standard back-propagation, based on feed-forward 
networks with a tanh activation function and one 
hidden layer. For all ANNs early stopping 
regularization was performed and the number of 
neurons in the hidden layer was determined on the 
validation data. For SVM-based classification we 
used an implementation of SVMlight (Joachims, 
1999), which directly addresses the multi-class 
problem (Tsochantaridis, 2004). SVMs were 
restricted to linear kernels to limit computational 
costs and avoid extensive parameter tuning. By 
treating the task demand levels as class labels (e.g. 
“low”, “medium”, “high”), both classification 
methods can be applied to the problem of task 
demand estimation. To exploit the information 
contained in the ordinal scaling of the different class 
labels, we investigated the regression versions of 
ANNs and SVMs as well.  

Since ANN predictions fluctuate due to random 
weight initializations, predictions from five 
networks trained on the same data were combined 
using majority decisions (in case of classification) or 
averaging (in case of regression). 

4.5 Evaluation Methods 

The system performance for task demand 
assessment is evaluated in terms of classification 
accuracy. When regression methods are used, class 
labels are assigned numeric values and each 
prediction is assigned to the label with the closest 
value. Although confusion matrices could lead to a 

deeper understanding of pros and cons of the 
prediction methods, we decided to use the more 
concise classification accuracies. Results presented 
here are averages over all test sets and all class 
accuracies. The latter gives more reliable results in 
the presence of unbalanced test sets. 
We use the normalized expected loss to compare 
accuracies that were calculated based on different 
numbers of classes. Comparing accuracies directly 
would not be appropriate since the chance accuracy 
A(c) varies with the number of classes. The 
normalized expected loss relates the observed error 
to the chance error and thus makes it independent 
from the number of classes. The value of the 
normalized expected loss is bound by 1/ A(c) and 
ranges between 0 and 1. 

5 EXPERIMENTS 

We conducted various experiments to evaluate task 
demand assessment and collected EEG data for this 
purpose, using both the headband and the 
ElectroCap™. In offline experiments we analyzed 
and optimized the processing steps of the system. 

5.1 Data Collection 

Task demand data was collected from subjects 
perceiving an audio-visual slide presentation. The 
presentations were tailored to the subjects’ 
educational background and designed to provoke 
each task demand level with equal amount of time. 
The presentations were video-taped so that each of 
the subjects could evaluate their task demand 
afterwards by watching the tape. We defined the 
following task demand levels: 
• Low: All details of the presentation are well 

understood with low mental effort. 
• Medium: Some mental effort is required to 

follow the presentation, not all details may be 
understood. 

• High: All available mental resources are required 
to understand at least the essence of the topic. 
Most of the details are not understood.  

• Overload: The presentation topic is not 
understood. The subject is overwhelmed, 
disengaged and makes no more effort to 
understand the presentation. 

In total 7690 seconds of data were recorded with the 
ElectroCap™ from six students (three male, three 
female) between 23 and 26 years old. One subject 
was recorded twice. 1918 seconds of data were 
recorded with the headband from two students (one 
male, one female) between 21 and 28 years old. 
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5.2 Experimental Setup 

One major goal of our experiments was to 
investigate the impact of user and session 
dependencies on the system performance. The other 
goal was to examine the efficiency and performance 
of the headband compared to the ElectroCap™. We 
therefore conducted user/session dependent and 
independent experiments on ElectroCap™ and 
headband recordings using the following setup: 
UD: User and session dependent setup: Different 

subsets of the same session were used for training 
(80%), validation (10%), and testing (10%). Four 
sessions were recorded with the ElectroCap™ and 
two with the headband.  

UI: User and session independent setup: The system 
was trained on three of the four ElectroCap™ 
recording sessions and tested on the fourth session 
in a round-robin fashion. For better comparability 
the same test sets as for setup UD were used. 
Validation was performed on two held-out 
ElectroCap™ recording sessions.  

SI: Session independent but user dependent setup: 
One subject was recorded twice in two separate 
sessions using the ElectroCap™. The system was 
trained on one session and tested on the other, 
without validation set.  

5.3 Results – Data Analysis 

Figure 4 compares for one subject the SOM trained 
on all task demand levels (left-hand side) to the 
SOM trained on high and low task demand level 
(right-hand side). The grey-scaled dots represent the 
best matching units (BMUs) on the grid belonging to 
the feature vectors of different task demand levels. 
The size of the dots is proportional to the amount of 
feature vectors that share the same BMU. Obviously 
we see a large overlap between the BMUs when all 
four task demand levels are considered, while the 
BMUs for low and high task demand seem to be 
well separable. Same observations were made for 
the SOMs trained on other subjects. 

Baseline results on the UD setup (no averaging, 
GlobalNorm normalization, no feature reduction, 
linear classification SVMs) confirmed our 
expectation that the four task demand levels are 
difficult to discriminate (classification accuracy 
40%, normalized expected loss 0.81). When 
distinguishing low versus high task demand we 
achieved a classification accuracy of 78% and a 
normalized expected loss of 0.43. The major reason 
for the poor results on discriminating all four levels 
is that subjects had difficulties to identify the 
boundaries between adjacent demand levels. To 
investigate this we asked some subjects to re-

evaluate their task demand at a later time. We found 
a low intracoder agreement among adjacent task 
demand levels, while high versus low task demands 
were rarely confused. In the remainder of this 
section we will therefore focus on the discrimination 
between low and high task demand.   

 
Figure 4: SOM trained on all four task demand levels (left-
hand side) and on low vs. high task demand (right-hand 
side). Grey scale intensity indicates task demand level, 
ranging from low (light) to overload (dark). 

Table 1 shows the average amount of data per 
subject after removing the medium and overload 
task demand recordings.  

Table 1: Data per subject (in seconds) for all setups. 

Setup Training Validation Test 
UD 247 31 64 
UI 740 229 64 
SI 257 - 48 

5.4 Results – Learning Method 

Table 2 compares the regression and classification 
versions of ANNs and SVMs for the baseline system 
(no averaging, GlobalNorm normalization, no 
feature reduction). For all three experimental setups 
SVMs perform better than ANNs. For setup SI the 
regression SVMs significantly outperform the 
classification SVMs. For the other setups the 
differences between the two SVM variants are rather 
small. Since at least theoretically the regression 
SVMs should be able to better exploit the ordinal 
scaled information given in the task demand levels, 
we decided to use these in the remainder of our 
experiments.  
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Table 2: Baseline system performance for all setups; 
classification (c) and regression methods (r); In 
parentheses: standard deviation for five ANN experiments. 

Setup UD UI SI 
SVM c 81%  72% 66% 
SVM r 79%  74% 73% 
ANN c 78% (7%) 70% (3%) 53% (5%) 
ANN r 71% (3%) 69% (3%) 66% (5%) 

5.5 Results – Normalization and 
Feature Reduction 

In the following experiments we optimized the 
processing steps of our system in a greedy fashion 
on the validation set. Table 3 shows the 
classification accuracies for all experimental setups 
with the optimal parameters (given in parentheses).  

Averaging over k=2 feature vectors improved the 
results for the UD and UI setup. The use of 
normalization method UserNorm instead of the 
baseline method GlobalNorm improved results for 
setups UI and SI. This matches our expectation, 
since this method reduces the variability across 
sessions (UI and SI) as well as across subjects (UI). 
Normalization is not relevant for the user dependent 
setup (UD) since it only applies when data of 
different subjects are used for training and test.  

Table 3: Results for the optimized task demand system. 

Setup UD UI SI 
Baseline 78% 74% 73% 
Averaging (k=2) 82%  79% 73% 
Normalizing 
(UserNorm) 

N/A 80% 87% 

Feature Reduction 
(Corr-based) 

92% 77% 66% 

 
Feature reduction was only successful for UD, 

where a correlation based reduction from 1440 to 80 
features yielded considerable improvements. For the 
other setups feature reduction did not help, probably 
since despite normalization the data variability was 
too large. Consequently, features which were well 
correlated with task demand on the training data 
exhibited poor correlations with task demand on the 
test data.  Comparing the results of feature reduction 
among the different setups is difficult since the 
optimal number of 80 features for the UD setup was 
determined on the validation set, while we set this 
number manually to 240 for the SI and UI setup as 
the validation method did not give any reasonable 
optimum. 

 Averaging over adjacent frequency bands for 
feature reduction corresponds to putting features into 
bins of size b. We observed that even for large 

numbers of b the results did not drop much for any 
of the setups. For b=45 (two features per electrode, 
i.e. lower and the upper frequencies) results are in 
the same range as without feature reduction. For 
b=90 (one feature per electrode, 8 features in total) 
results dropped significantly. This suggests that it is 
sufficient to consider for task demand estimation the 
content of two broad frequency bands: the lower 
frequencies (around the α-band) and the higher 
frequencies (around the γ-band). Experiments to 
investigate this hypothesis are planned. The feature 
reduction would benefit from more reliable model 
estimation and reduced computational costs. 

5.6 ElectroCap™ versus Headband 

After optimizing the system parameters, experiments 
using the UD setup were conducted on the headband 
data. A classification accuracy of 69% could be 
achieved. This compares to 69% using the four 
ElectroCap™ recordings with 4 electrodes and 82% 
with 16 electrodes. These results were achieved 
without correlation based feature reduction. For the 
reduced number of electrodes, the classification 
accuracies for half of the subjects are at least 86% or 
better, while for the other half they are around 
chance. This implies that the feasibility of task 
demand estimation based on four electrodes might 
depend on the subject or even on the presentation 
itself. As described above the presentations and 
topics were tailored towards the educational 
background of the subjects. 

6 CONCLUSIONS  

In this paper we described our efforts in building 
human-centered systems that sense, analyze, and 
interpret the users’ needs. We implemented several 
learning approaches that derive the task demand 
from the user’s brain activity. Our system was built 
and evaluated in the domain of meeting and lecture 
scenarios. For the prediction of low versus high task 
demand during a presentation we obtained 
accuracies of 92% in session dependent experiments, 
87% in subject dependent but session independent 
experiments, and 80% in subject independent 
experiments. To make brain activity measurements 
less cumbersome, we built a comfortable headband 
with which we achieved 69% classification accuracy 
for low versus high task demand discrimination. 
Based on our findings we developed an online 
system that derives user states from brain activity 
using the headband (Honal et al., 2005). A 
screenshot of our prototype is shown in Figure 5. 
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Figure 5: Screenshot of our prototype online brain activity 
system. The upper left monitor area displays the EEG 
signal; the hypothesized current user state is shown in the 
upper right corner. Spectrograms for the headband 
electrodes fp1, fp2 f7 and f8 are shown at the bottom. 
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