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deren als die angegebenen Quellen und Hilfsmittel verwendet habe.

Karlsruhe, den 31.7.2006

Marek Wester

ii



iii



Abstract

Communication in quiet settings or for locked-in patients is not easy without disturbing

others or even impossible. A device enabling to communicate without the production of

sound or controlled muscle movements would be the solution and the goal of this research.

A feasibility study on the possibility of the recognition of speech in five different modalities

based on EEG brain waves was done in this work. This modalities were: normal speech,

whispered speech, silent speech, mumbled speech and unspoken speech.

Unspoken speech in our understanding is speech that is uttered just in the mind without

any muscle movement. The focus of this recognition task was on the recognition of unspoken

speech. Furthermore we wanted to investigate which regions of the brain are most important

for the recognition of unspoken speech.

The results of the experiments conducted for this work show that speech recognition

based on EEG brain waves is possible with a word accuracy which is in average 4 to 5

times higher than chance with vocabularies of up to ten words for most of the recorded

sessions. The regions which are important for unspoken speech recognition were identified

as the homunculus, the Broca’s area and the Wernicke’s area.
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Chapter 1

Introduction

Automatic speech recognition is supposed to provide a solution in human-machine commu-

nication. It enables the communication with computers in a natural form. In the beginning

of the research in speech recognition computing power was a problem in order to do reliable

speech recognition in real time. Since the fast increase of computing power this problems

vanished but other conceptual problems remained. The recognition of speech in noisy en-

vironments is still an unsolved problem. Speech impaired people having problems to utter

speech correctly are also a difficult task for a speech recognizer. Sometimes it would be even

desirable to communicate while uttering speech is not possible like in different environments

e.g. under water or in very quiet environments. In the described situations communica-

tion through unspoken speech would be ideal because it would be the only solution for the

described problems.

In this work we define unspoken speech as follows: it is speech which is thought as if it

would be spoken. To learn the production of unspoken speech a person would have to start

with uttering a word in normal speech. The next step would be to think of nothing while

uttering the word besides the thoughts needed to produce this speech. The final step would

be to do the same as in the step before without any muscle movement. This is what we

understand as unspoken speech.

1.1 Goal of this Research

In this work we want to investigate if the recognition of unspoken speech is feasible. To

show this we employed electroencephalography (EEG) measurement of the human brain at

the scalp. The underlying idea is that every muscle movement is preceded by an activation

of neurons in the brain. This activation involves electrical signals which are measured with

electrodes attached to the scalp. The research in this field shows that there is a connection

1



CHAPTER 1. INTRODUCTION 2

between the recorded EEG-data and speech production. We want to investigate if this is also

true for unspoken speech. To achieve this goal we divided this work in three subtasks.

The first subgoal is to find out if the recognition of normally spoken speech using EEG-

data is possible. This step should show that there are patterns in the EEG-data while speech

is produced in a normal speech modality which could be recognized with the methods of

automatic speech recognition.

In the second subgoal we want to investigate how well this recognizer performs for different

modalities of speech production, namely: whispering, silent speech, silent mumbling and

finally unspoken speech. This modalities can also be seen as a degeneration of normal speech

production to unspoken speech.

In the final subgoal that is described in this work we investigated if data that is collected

around the region of the brain that is considered as being responsible for muscle movement

(homunculus) and the regions that are considered to be responsible for speech (Broca’s area

and Wernicke’s area) are sufficient to recognize unspoken speech.

The main goal of this work is to investigate if it is possible to recognize naturally thought

arbitrary unspoken speech with adjusted methods of standard automatic speech recognition

applied on EEG data.

1.2 Motivation

Language recognition without the need to speak out loudly or speak at all is useful for many

applications.

Sometimes it would be very convenient to have an EEG based speech recognizer. An

example is a very quiet setting like an opera performance or a library. No sounds should be

produced there. It is for example not possible to answer a phone call. Communication in this

situations would be possible with a recognizer for unspoken speech. For example the person

in the opera performance could use unspoken speech to answer the phone and just listen to

what the caller has to say and answer with a limited set of unspoken words which are then

synthesized into audible speech for the caller.

While solving a convenience problem is a nice to have feature, there are areas where no

general purpose solution exists today to enable people to communicate with others. One

area where our research can help are people like locked-in patients whose only chance to

communicate with their environment is currently through rough speech or eye blinking. This

people could use an EEG system to control a computer with their thoughts. Even a small

vocabulary of about ten words would be sufficient to control basic commands on the computer.

Using a T9 [10] spelling system like it is used in most cell phones these days they could even
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write letters or chat with other people. The enrichment of their lives might even be worth

the hassle with an EEG cap on their head and the gel filled hair after using it.

Figure 1.1: Locked-In patient using the Thought Translation Device[1] to control a computer

Another group of people who would benefit from the system would be people who are in

situations where usual speech recognition or even simple communication is not possible. This

are for example fire fighters while wearing a thermal protecting fire suit with an oxygen mask

when fighting a fire. While exposed to extreme temperatures the firefighters are already in

bad physical conditions and through the noise produced by the fire it is hard for them to

produce speech that can be understood trough the radio communication system. It would

be less stressful to call for reinforcements while just thinking it than to shout it. Again a

small set of commands is sufficient in such situations. Another group are scuba divers. Since

most rebreahers are put into the mouth it is not possible for them to utter anything. A

set of thinkable commands would help them to get any communication. For both of the

described groups an additional EEG cap would not add to the burden of the equipment they

are already wearing to accomplish their tasks.

1.3 Ethical Considerations

The recording and recognition of human thoughts is an invasion of the privacy of the recorded

subject. The recorded data alone includes personal information about the subject.

The recorded data can e.g. include information about mental disease of the subject as
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Koles describes in[11]. The subjects from whom the data was collected, were apprised of this

fact before they decided if they wanted to take part in the recording. Since our group has no

intent to investigate mental disease in EEG-data, data would not be used for examinations

other than research topic of speech recognition in EEG-data, as the data was collected just

for this purpose.

Future improvements may make it possible to not just recognize trained data but also

random thoughts. This possibility might be used for interrogations and lie detection. In-

terrogation methods which involve mind reading may be considered as being illegal e.g. in

the USA through the Fifth Amendment of the United States Constitution: ”...nor shall be

compelled in any criminal case to be a witness against himself...”[12]. Though this kind

of technology may be misused by criminal people for interrogations. The purpose of our

research is not mind reading but the recognition of unspoken speech and we refrain from

misusing this technology against the will of people.

The only purpose of the research done for this work is to support people in the fulfilling

of their tasks and not to spy on them or to intrude their privacy.

1.4 Structure of the Thesis

In chapter 2 the theoretical background is described that is necessary to understand the

following chapters. Information about the speech recognition system Janus, about the feature

extraction methods used, electroencephalography, the brain and the recording technology can

be found there.

In chapter 3 the related work in the field of unspoken speech recognition in EEG data are

discussed and it is shown which new contributions come from this thesis.

An overview over the recording system, the process of recording, the training and the

recognition is given in chapter 4.

The collected data is described in chapter 5. The different corpora and modalities are

introduced there.

The results of the conducted experiments and therefore the main part of this thesis are

explained in chapter 6. Chapter 7 describes the demo system that was built to test our

recognition methods online. In Chapter 8 a summary with conclusions and an outlook to

future work is given.

The appendix describes the technical background and a documentation of the software

created for this thesis. A list of all recordings can also be found in the appendix.



Chapter 2

Background

2.1 Janus

The Janus Recognition Toolkit is a framework developed for speech recognition of normal

speech developed by Interactive System Labs at University of Karlsruhe, Germany and

Carnegie Mellon University, Pittsburgh, USA[13]. The recognition system developed for

unspoken speech recognition is based on the Janus framework. A technical overview can be

found in the Appendix A.1. A theoretical overview will be provided in this section.

To initiate the recognition system a state of the art recognizer for normal speech was

chosen and iteratively adapted to a recognizer for unspoken speech.

The first step in the training of the recognizer is the segmentation of the speech. The

recordings are always starting with silence followed by a word and then again silence. The

detection of silence in EEG- data is an easy task if muscle movement is involved, since the

movement results in large amplitudes of the brain waves which make the distinction of speech

and silence easy.

A problem arises when no muscle movement is involved. Brain waves of speech vs silence

are hard to discriminate. Because of that, speech had to be marked in a procedure controlled

by the subject. This was done by one eye blink before uttering the unspoken word and one

eye blink after the uttering. The high amplitudes produced by the eye blinking which were

easy to detect served as a marker for the speech part. Because the recordings did concern

single isolated words rather than continuous sentences, a more sophisticated segmentation

was not needed.

Features were computed as described in the next section. This computation resulted in

a high dimensional feature vector of 192 dimensions. This feature space was reduced to 35

dimensions with the linear discriminant analysis.

A left-to-right Hidden Markov Model[14] with five states and 25 gaussians per state was

5
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trained for every word in the vocabulary. The shape of the gaussians is represented by a

diagonal matrix. The Expectation Maximization algorithm with four iterations was used for

the training.

Finally the recognition was conducted by the computation of a Viterbi path for every word

of the vocabulary which was recorded. The word with the best Viterbi score was selected as

the hypothesis.

2.2 Feature Extraction

The features in speech recognition are different from the features which were used for the

recognition of unspoken speech. Usually acoustic speech recognition relies on frequency based

features, extracted from the speech signal. There is a huge difference in the data density of

the recorded waves. While in audible speech data is recorded through one channel with 16

kHz, brain waves were recorded through sixteen channels with 300 Hz each. An example for

brain waves in contrast to audible sound wave can be found in figure 4.4

The following features were used in the unspoken speech recognizer:

• windowed Short Time Fourier (STF)[15] coefficients: the STF coefficients were used

with a window size of 26.6 ms and a window shift of 4 ms. This parameters were

chosen because of experimental results.

• delta coefficients: the delta coefficients were used and also the delta coefficients of

the delta coefficients (delta delta coefficient) were used. A delta coefficient is the first

deviation, while the delta delta coefficient is the second deviation.

• delta mean coefficients: the delta mean is a delta coefficient of a windowed mean

The resulting features were concatenated to form a single feature vector. The dimension-

ality of the resulting feature vector was reduced with the linear discriminant analysis[16].

2.3 Electroencephalography

The recording of electrical activity of the human brain, known as electroencephalography,

was first done by Hans Berger in 1929[17]. The electroencephalography (EEG) is a method

to record the electrical potentials produced by the brain close to its surface. For this purpose

electrodes are positioned either on the scalp or directly on the cortex. In the case of this

thesis we used electrodes positioned on the scalp.
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The electric potentials that can be measured on the surface of the skull are due to the

information transfer which happens in the brain between the neurons which the brain consists

of. This process is described in more details in section 2.4.1.

The EEG is considered to have a high temporal resolution of up to 80Hz. We used a higher

sampling rate for our recordings as it would be required to avoid aliasing. The slope in the

bandpass filter of our amplifier is very small so that we are using a sampling rate of 300 Hz.

This makes it ideal for speech recognition of thoughts. On the other hand it records a three

dimensional compound using electrodes at the surface while reducing it to a two dimensional

space. And even the spatial resolution in this two dimensionalities is not high as Paul

Nunez states in [18]. He says that one scalp electrode records electrical currents generated

in cortical tissue containing approximately 30-500 million neurons. While technologies like

e.g. computer tomography, positron emission tomography or magnetic resonance image have

a high spatial resolution, EEG has the highest temporal resolution. This is important for

the recognition of unspoken speech that requires the observation of rapid changes over time.

Another advantage of EEG is that it is relatively inexpensive and easy to transport because

the recording device fits in every pocket, while this is not true for the recording devices of

the other structural brain imaging methods.

EEG is also the only method which measures the electrical potentials produced by the

neurons in the brain directly. Other methods rely on the blood flow or metabolisms which

are not coupled with the electric potentials produced by the neurons.

The EEG recording system consists of electrodes, amplifiers and a recorder. The elec-

trodes are attached to a cap which is placed on the subjects head to keep them in position.

The cap is covered in section 2.5. The most commonly used way to distribute the electrodes

over the scalp is an uniform distribution using the International 10-20 System introduced by

the International EEG Federation in 1958 [19]. Figure 2.1 shows an example for the 10-20

distribution.

To reduce impedance, a conductive gel is often applied between the scalp and the elec-

trodes. The gel also helps to get the electrodes connected to the scalp through hair so there

is no need for shaving the head of the subject.

The electrodes are connected to an amplifier and filter combination and the resulting

signal is recorded. The recorded signals are called brain waves. The amplitude which can be

measured on the scalp is about 200µV [18].

There are three ways to measure the potential. Average reference derivation is the name

of the first way. All signals are averaged and the resulting signal is used as a common

reference for the amplifier. The second way is the common reference derivation. The reference

electrodes are placed e.g. at the earlobes. All electrodes are measured then relative to this
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Figure 2.1: The international 10-20 system for distributing electrodes on human scalp for
EEG recordings[2]

reference. The last way is the bipolar derivation. The electrodes are connected in a way

that potential differences between adjacent scalp electrodes are measured, e.g. an amplifier

measures the difference between electrode 1 and electrode 2. The second amplifier measures

the difference between electrode 2 and 3 and so on.

EEG recordings are very vulnerable to artifacts. These artifacts can be produced by the

environment. A source might be the VGA1-outlet of a computer which produces electro-

magnetic interferences. Another source for artifacts might be the recording hardware. The

artifacts can also come from the recorded subject. Every body movement causes large arti-

facts. Automatic artifact removal works as Nunez states in [18] only for the largest artifact

because the artifact band and the important band, which contains the EEG information that

should be extracted, overlap.

2.4 Brain

This section we will explain the basic unit of the brain, the neuron, and how it works and

how through its work electrical potentials are produced which can be measured afterwards.

After that follows a introduction of the different language areas in the brain. This is followed

by a section describing the process of speech production. The last section explains the idea

1Video Graphics Array (VGA)
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behind this work.

2.4.1 Information transfer

The major class of cells which are responsible for message transfer in the brain are called

neurons. They are also the foundation of the nervous system. A typical neuron as shown in

figure 2.2 consists of the cell body (soma) filled by cytoplasm that is containing a nucleus.

There are two extension of the soma which are dendrites which collect electrical potentials

from other neurons and the axon transports electrical potentials to other neurons or muscle

cells.

Figure 2.2: Model of a neuron[3]

For a communication between neurons to occur they have to be connected to each other

one the one side with the dendrite and on the other side with the axon terminal. This

connection is called synapse. Through this junctions the cells exchange electrical potentials

through chemical processes. There are two kinds of synapses: exhibitory and inhibitory.

Exhibitory synapses increase the potential in the connected neuron and inhibitory synapses

decrease this potential. If and only if enough exhibitory potentials are generated to exceed

a certain threshold a so called action potential is evoked. This potential is then transported

through the axon of the neuron to other neurons or muscle cells.

The potential inside a neuron is about -70mV. This is measured relative to extracellular

fluid. In order to have such a negative level the cell has to keep charged ions inside the soma.

So it has a cell membrane that does not let the ions inside the cell or let them get outside

the cell.

To keep this negative level the cell has two strategies. The first passive one is that the

soma has proteins that can be opened and closed for K+ and Na+ ions. The ion concentration
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of a neuron cell of a mammal is shown in table 2.1. If this protein is opened, K+ flow out

of the cell because of diffusion until the electric potential which changes with this flow stops

the diffusion. The second strategy is active and is an ion pump which actively pumps two

K+ ions in and three Na+ ions out. This results in a more negative soma.

intracellular fluid extracellular fluid

K+ 155 4
Na+ 12 145
Cl− 4 120

Ca++ 10−8-10−7 2

Table 2.1: Ion concentration in a muscle cell of a mammal[8]

Figure 2.3: The flow of ions during an action potential[4]

When an action potential hits a synapse it causes a flow out of neurotransmitters which

opens the proteins to let Na+ flow in (caused by diffusion) and the cell membran gets more

positive as shown in figure 2.3 (1). At a certain threshold the K+ proteins open and K+ flows

out (2). After reaching the highest point the Na+ proteins close and because there is still

more K+ inside the cell than outside, the K+ are still leaving the cell. Finally the K+ protein

closes (3) and the ion pump does the rest of the work to get a concentration as in table 2.1.

It is believed that a summation of this action potentials in cortical cells is what can be

measured with EEG. While Meyer-Waarden[20] also explains this theory he states that there
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were no experimental results proofing this. He explains another theory that the signals can

also come from the brains surface where mostly dendrites and synapses are located.

In order to active a muscle to e.g. produce speech the action potential finally has to

reach a muscle fiber and make it contract. The connection between an axon and a muscle

is called neuromuscular junction and is also a synapse. For the action potential to pass the

neuromuscular junction it activates the spilling of the neurotransmitter acetylcholine in the

neuromuscular junction. This transmitter binds to receptors at the motor end plate located at

the muscle which causes the motor endplate to be depolarized which causes a depolarization

of the muscle fiber and results in a muscle contraction.

2.4.2 Brain and Language

While in normal speech recognition the vocal tract as the part of speech production is the

point of interest in this work the brain as the source of unspoken speech is the subject of

investigation. Ramachandran [18] gives a detailed explanation of the brain and its functions.

This section will focus on the parts of the brain which we believe to be most important for

the production of unspoken speech.

Figure 2.4: Left side of the brain showing the important regions of the brain for speech
production like primary motor cortex, Broca’s area and Wernicke’s area (modified from [5])

A model of the human brain is depicted in figure 2.4. The model shows the left side of
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the brain with the front of the brain on the left side of the figure. Three parts of the brain

are interesting for this work and for speech production: Broca’s area, Wernicke’s Area and

the primary motor cortex.

The Broca’s area was discovered by Paul Broca[21] in 1861 by autopsy. Broca found out

that this area was injured in the brains of persons having difficulties to articulate words.

Sometimes they could just utter a hand full of words. This area of the brain is thought to be

responsible for the articulation of words. Broca’s area is located on the left side of the brain.

The Wernicke’s area is also located at the left side of the brain as shown in figure 2.4. It

was discovered by Carl Wernicke in the 19th century. Wernicke found that a lesion in this

area leads to speech without language. This means that people can speak fluently but the

spoken output makes no sense. They are just able to utter meaningless words and sentences

sounding correctly.

The primary motor cortex, also known as ”homunculus”, is depicted in figure 2.5. This

part of the brain is responsible for the movements of most parts of the human body and more

specifically for the vocal speech tract. The figure shows which parts of the motor cortex are

responsible for which part of the body. The size of the body on the map do not correspond

to the actual size, but to the actual brain portion part to control this particular part of the

body. So there is as much brain mass to control the face as to control the legs but the face

is much smaller. The consequence is that there is a lot information to be gathered from the

homunculus concerning the movement of the face and therefore speech production.

Before the primary motor cortex lies the premotor area which supports the primary

motor cortex in the planing of movements. The Broca’s area is located in the premotor area

though generates the movement patterns for the production of speech. It works together with

the cerebellum. The cerebellum is a connection point of sensory feedback and the muscle

movement. It coordinates the movement depending on the sensory feedback like e.g. how

hard to push a button.

2.4.3 Speech Production in the Human Brain

The production of speech in the human brain is a field of ongoing research. In this section the

Wernicke-Geschind-Model[22] is going to be introduced which is a well know classic theory

about the production of speech after hearing a word. More recent research shows that this

model is oversimplified [23]. Nevertheless the Wernicke-Geschwind-Model is the basis for

more sophisticated models. The model also gives a theoretical fundament for the findings in

this work.

Figure 2.6 shows the path that the neural signal follows according to the Wernicke-

Geschwind-Model when a person hears a word and then repeats the word. First the word
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Figure 2.5: Homunculus area, also know as primary motor cortex. This part of the brain
controls most movements of the human body[5]

is processed in the primary auditory area. The semantics are extracted and also added in

the Wernicke’s area. As Mamoli [8] states a lesion of the Wernicke’s area can lead to wrong

naming of words in speech production therefore semantics are also added to the word which

is going to be uttered. The signal advances through the arcuate fasciculus which is the

connection between the Broca’s area and the Wernicke’s area to the Broca’s area. A plan for

the motor cortex is formed in the Broca’s area. The plan is implemented then in the motor

cortex with the manipulation in the vocal tract.

2.4.4 Idea behind this Work

Normal speech involves the innervation of muscles. To innervate muscles action potentials are

needed which can be measured with the EEG. Brain waves result from action potentials which

finally lead to the innervation of muscles and through this to speech production. This brain

waves affect different areas in the left part of the brain according to the Wernicke-Geschwind-

Model and to further work in this area. Following the Wernicke-Geschwind-Model it can be

said that this process is involved in every speech production. The idea behind this work is

that it should be possible to recognize patterns from the data collected through the EEG

while speech is produced.
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Figure 2.6: A graphical representation of the Wernicke-Geschwind-Model[6]

During the different modalities the muscle movement decreases more with every modality

until in the unspoken modality no muscle movement is involved at all. Through this process

the involvement of the primary motor cortex gets lower. But as we believe the involvement

of the other regions involved in speech production stays at a level that pattern recognition

is still possible because speech is still produced. The Wernicke-Geschwind-Model stays valid

because unspoken speech as defined by us is speech without muscle movement. But still

movement patterns should be produced in the Broca’s area which then should be recognized.

No mind reading should be done, just patterns should be recognized in the process of speech

production as described in the Wernicke-Geschwind-Model.

2.5 Cap

The cap that was used for the recordings was supplied by Electro-Cap International, Inc2.

It is equipped with 20 electrodes using the International 10-20 method [19]. It is made of

an elastic spandex-type fabric. The electrodes are made of Ag/AgCL and are recessed and

attached to the fabric. Because they do not touch the skin of the subject directly they have

to be filled with a conductive gel as shown in picture 2.7. The process of filling the electrodes

2http://www.electro-cap.com/

http://www.electro-cap.com/
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also lowers the impedance of the skin because during this process skin is abraded.

Figure 2.7: Electro-Cap being filled with a conductive gel

The cap is attached to the subject with straps which presses the electrodes closer to the

scalp. The straps are connected to a band which is attached around the upper part of the

body under the axles. This tension is important so that the gel can not run out of the

electrodes. On the other hand this pressure inflicts pain to the subject over time because

the electrode fittings are made out of hard plastic. This pain may lead to artifacts in the

recordings.



Chapter 3

Related Work

This chapter describes the related work. However since this study is to the best of our

knowledge the first that addresses the recognition of unspoken speech with EEG therefore

no literature was found that describes approaches to the given problem. Instead this chapter

introduces the main topics in the EEG brain wave recognition community which are related

to this work and show how the recognition of human thoughts was approached.

3.1 Early work

The first work that describes speech in EEG is from 1971. McAdam [24] conducted ex-

periments measuring brain waves while the subject was speaking. His results showed that

the recordings of the inferior frontal sites of the left hemisphere (presumably Broca’s area)

showed larger negative potential than the recordings from the right hemisphere. This was

the first evidence for a crude localization of speech production with EEG.

3.2 Brain computer interface

Brain computer interfaces (BCI) should make the control of computers with just the usage

of the mind possible. Work in this area is successfully showing that binary decisions are

possible to be done with thoughts. The subject have to learn and train particular thinking

patterns. The burden is on the side of the subjects rather then on the side of recognizer to

discriminate real life thoughts.

There is a distinction between dependent and independent BCIs. A dependent BCI relies

on the presentation of a stimulus that activates a brain region. This activation is then

detected. An example are the visual evoked potentials. This systems use the visual evoked

potential (VEP) recorded from the visual cortex to recognize the direction of an eye gaze.

16
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Middendorf[25] built a device where several buttons on a screen were presented. This buttons

were blinking at a different rate. The user selected a button by focusing on it. The device

could recognize the choice by measuring the frequency of the photic driven response over the

visual cortex. If it matched the frequency of the flashing button then the device selected this

button as a hypothesis.

A independent BCI is one which the user can use without an external presentation of a

stimulus. An example is the P300 evoked potential.

The BCIs can be divided into four groups based on the electrophysiological signal they

use (Figure 3.1 visualizes three of the signal types):

3.2.1 Slow cortical potentials

The slow cortical potentials (SCP) are the slowest which can be recorded by EEG. The

potentials are lasting between 300ms and several seconds. There are negative and positive

SCPs. People can learn to control the production of them. Birbaumer [1] built a device for

locked-in patients where this persons had to learn to control the slow cortical potentials of

their electroencephalogram. This enabled the locked-in patients to transmit binary decisions

to the computer.

3.2.2 P300 evoked potentials

A subject is presented a large number of frequent events. When one infrequent event occurs

then a positive peak can be measured in the brain waves at about 300ms after this event.

Farwell and Donchin [26] built a device showing a matrix of letters. Every row and column

was flashing in a random order one at a time. The subjects were counting the number of

times the desired letter was flashing. The counting of the flashing of the row or column

containing the desired letter generated an infrequent event which evoked the P300 potential.

The flashing of rows or columns not containing the character on the other hand was the

frequent event. The detection works without a long training of the subject.

3.2.3 Mu rhythm

The mu rhythm is the 8-12Hz activity which can be measured at the central sensory motor

cortex. Mu rhythms are present when the subject is relaxed. They disappear in the left

hemisphere of the brain when body parts on the right side are used and vice versa. It is

possible to learn after some weeks of training to control the amplitude of the mu rhythm

just by thoughts. Wolpaw and McFarland[27] introduced a system which can recognize the
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amplitudes of the mu rhythms on both sides of the brain and by that to control the movement

of a computer mouse.

Figure 3.1: (Modified from [7]) (Top left): User learns to move a cursor to the top or the
bottom of a target. (Top right) The P300 potential can be seen for the desired choice.
(Bottom) The user learns to control the amplitude of the mu rhythm and by that can control
if the cursors moves to the top or bottom target. All the signal changes are easy to be
discriminated by a computer.

3.2.4 Movement related EEG potentials

Studies show that particular EEG signals can be derived while a subject imagines to move

a body part. An example for this approach comes from Dornhege[28] who presents the

subjects the letters ’L’ and ’R’. The subject images to perform a movement of a finger of

the corresponding hand (L=left, R=right). The evaluation shows that the signal for left

and right can be discriminated. Also Wentrup[29] uses this approach. The Berlin Brain-
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Computer Interface group used an approach where the subject imagines the movement of

the whole left or right hand[30].

3.2.5 Discussion

The drawback of this is that the subject needs to train made up thoughts to control the

computer. Furthermore mostly binary decisions are possible. Therefore these approaches are

more suitable for a command receiving system than for a system which enables people to

communicate with a computer via unspoken speech.

3.3 Recognizing presented Stimuli

One group of work investigates the possibility of recognizing stimuli. The task consists of the

presentation of a visual or auditory stimulus. While doing so EEG-data is recorded. Later a

recognition of what was shown in the EEG-data is tried[31] [32]. This differs from visually

evoked potentials because here the stimulus is detected, not the eye gaze.

Suppes et al. [33] presented a system capable to detect from brain waves audible or visual

stimuli followed by nothing, spoken or silent speech.

This methods are also used to build functional maps of the brain or to develop theories

how the parts of the brain work together.

This approaches help us to understand the brain but are not useful for our communication

task.

3.4 State Detection

Singh [34] built a system that recognizes certain mental states such as if eyes are closed or

open and if the person has Alzheimer or not. Another work in the mental state detection was

done by Honal[9] where six different user states such as reading, listening or resting could be

discriminated in brain waves.

3.5 Contribution

This work differs from the described work because it investigates the possibility to recognize

unspoken speech out of brain waves. This means that the subject does not have to imagine

unnatural things to communicate its commands like moving the left finger. Commands can

be uttered in a natural way as they are usually spoken. We do this with an adapted state of
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the art speech recognizer which is also different from the approaches that the work presented

here used for solving this task.

The idea as it is described in section 2.4.4 is a different approach than ones that the

presented work took because we try to extract speech out of the moving patterns that the

Broca’s area generates in all modalities including the unspoken modality. As the experimental

results show the primary motor cortex together with the Broca’s area and Wernicke’s area

produce enough collectable information to make an unspoken speech recognition possible that

performs as good as if it would be using also the information of all the other non movement

related areas where we placed electrodes.

Also the number of detectable states is different. It is increased to 10 different recognizable

states for all modalities. This gives the person more options and makes the system more

flexible.



Chapter 4

System Overview

This chapter will describe how the data collection was done and how the training of the

model and the recognition process were performed.

4.1 Setup

The goal of this work is to show that the recognition of unspoken speech using EEG data

is possible. To keep focus on this specific task we had to get rid of as many influences on

the recorded subject as possible. Any distractions on the subject such as movements of any

body part, pain, additional thoughts or environmental influences could cause artifacts in the

EEG signal which would make recognition harder. We tried hard to keep as many artifacts

as possible out of the signal. The dispositions we used to reach this goal will be described in

the next sections.

4.1.1 Overview of the recording setup

Our recordings were done in quiet rooms during day and night times. The recording setup is

shown in the picture 4.1. The picture shows a room at the interAct-labs at Carnegie Mellon

University in Pittsburgh, Pennsylvania, USA in which most of the recordings were done.

Other locations with a very similar setup were also tried.

The subject was sitting in the chair in the front and the advisor was sitting in the chair

at the opposite side of the table. The subject was facing the CRT display and looking at it.

The investigator was controlling the recordings on a laptop which was attached to the CRT

display.

The subject was told that it can quit the experiment without any consequences at any

time. The subject was also allowed to ask for as many breaks as it wanted. During this

21
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Figure 4.1: recording setup

breaks candies and beverages were provided for the subject. The sessions were continued

when all eating and drinking was finished and the subject had enough rest.

The screen showed instructions which the subject had to follow. If the subject did any

mistakes then it was asked by the adviser to repeat the current recording. The recording was

then deleted and repeated and the subject could also ask the investigator for a repetition of

the recording if the subject noticed a mistake.

The recordings were done on the investigator controlled laptop1 with the “UKA {EEG—EMG}
Studio 2.10mwR”[35] software. The software and the modification done for this recording

setup are described in Section A.2.

4.1.2 Recording Procedure

EEG recordings differ a lot from other kinds of recordings because of the high impact of arti-

facts on the recognition. Because of that the subject was not allowed to do any uncontrolled

1IBM T40p 1.6GHz, 1GB RAM
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motions during the recordings. To avoid this motions we enforced a special procedure during

the recording process.

The succeeding steps were followed for the recording of every utterance:

1. The subject sat quietly and without any movement in front of a white screen

2. The instructor started the recording process by pressing a button.

3. The screen showed the words which should be uttered in black letters. In brackets it

showed the modality of the utterance.

4. After 1 second the screen showed the words: “inhale and exhale”.

5. After 1 second the screen turned black.

6. After 2 seconds the screen turned white.

7. The subject was instructed to wait for about 1 second

8. The subject utters the word which was shown on the screen in step 3.

9. The instructor stopped the recording with the pressing of a button as soon as the

subject uttered the words from step 3.

The sequence of screens (Figure 4.2) through the steps 3 to step 7 was chosen to force

the subject in a certain rhythm of recording. The result of this rhythm was that the initial

situation for every recording of every utterance was always the same. The subject saw the

word to utter, inhaled and then exhaled so that it could start the utterance in an exhaled

state. In this way we could produce comparable recordings. The appearance of the black

screen in step 5 was chosen to not later recognize a picture which the subject might have in

its head from the words in step 3.

Figure 4.2: The screens showed to the subject before it uttered the word

Obviously the condition for stopping the recording in step 9 was hard to determine by

the instructor for the thinking modality. So another procedure had to be used to determine
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the end of a recording. Several possibilities of showing the end of the thinking are possible.

The subject could show the end of its thinking by either stopping the recording by itself or

giving the instructor a sign to stop it.

However every voluntary movement would involve the production of additional artifacts.

If the subject stops the recording process by itself then it produces artifacts before pressing

a button to stop this process. To get a proper alignment there artifacts should be easy to

recognize. This is a non trivial task for artifacts which are produced by movements of the

lower part of the body e.g. the hands. So a good alignment is harder to find than with an

alternative approach which was used in our system.

Eye blinking produces a significant increase of the amplitude in the recorded EEG signal

at the Fp1 and Fp2 electrodes. This can be recognized very reliable and an alignment can be

found easily. So when the subject finished thinking it did one eye blink. After this blinking

the instructor stopped the recording.

4.1.3 Subject

The first source for artifacts is the subject itself. Every movement of the subjects body

produces artifacts. We found that the closer the muscle of the movement is located to an

electrode the higher the amplitude of the measured artifact on this electrode is.

The subject was therefore told not to move any part of the body during the production

of the utterance. The eyes should be open all the time and focusing a point in front of the

subject on the screen. Any eye blinking was not allowed during the modalities which involved

facial movement and during the thinking process.

During the recording process before the actual recording as described in the steps 1 to

7 in section 4.1.2 the subject was asked to stay in a neutral position as described in [24].

This neutral position means that the subject should stay in a relaxed but immobile posture,

the eyes should fix the screen, the lips should stay together and the tongue should rest on

the floor of the the subjects mouth. The subject should not move the eyes, swallow or do

movements of the head, the limbs or the trunk. The word production should be as fast and

accurate as possible. This rules were just strictly enforced during and after step 5, since this

was the phase which could impact the recording.

The subjects were all from Germany and none of them was a native English speaker. All

were graduate students. All the subjects were capable of completing the recording task and

did not use any medication. Table 4.1 summarizes the subjects data which was relevant for

the experiments.
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Speaker ID age sex recorded utterances minutes

S1 25 male 5345 772.76
S2 24 male 250 25.78
S3 24 male 250 27.36
S4 25 female 250 27.85
S5 27 male 250 22.73
S6 23 female 1256 167.9

Table 4.1: subjects (a more detailed view of the statistical data is given in appendix B)

4.1.4 Hardware Setup

To capture the signal from the scalp we used two caps (figure 4.4 from Electro-Cap Interna-

tional, Inc). They differed in size only. For electrode positioning on the cap the 10-20 system

was used. The caps are equipped with 20 Ag/AgCL electrodes. Because we had an amplifier

with 16 channels we used 16 electrodes of the cap simultaneously. These are Fp1, Fp2, F2,

F3, F4, F7, C3, C4, Cz, T3, T4, T5, T6, P3, P4, Pz as shown in figure 4.3.

Figure 4.3: This figure shows a sample recording of a subject uttering “eight” in the speech
modality. The signal at the top is the waveform of the audio recording simultaneously. The
head on the right shows which channels are connected to which electrodes. A1 and A2 are
the reference electrodes.

We left out the electrodes O1 and O2 which cover the optical cortical regions since we

do not focus on visual information. We also had to leave out one more and decided for F8

because speech is considered to take place mostly on the left side of the brain [36] and the
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Figure 4.4: subject with Electro-Cap cap

front of the frontal cortex is also not considered to have anything to do with speech.

We used the VarioPortTM [Becker 2003] (figure 4.5) as the amplifier and recorder to

amplify and digitalize the captured signal. The specifications of the amplifier are collected

in table 4.2. All recordings were done with a sampling rate of 300 Hz.

Figure 4.5: From left to right: optical waveguide, computer interface, amplifier

The amplifier was connected to the computer through an interface and an optical wave-

guide which was connected to a RS232 port which itself was connected through an USB-

adapter to a computer. The computer was equipped with an Pentium M 1.6 GHz processor

and with 1GByte RAM. All recordings were done under Windows XP.

For the non thinking modalities we also recorded sound files with an sampling rate of 16

KHz. For that we used a close throat microphone (ISOMAX E6 directional microphone).
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Amplification factor 2775
Input Range ±450µV
A/D conversion 12 Bit (4096 steps)
Resolution 0,22 V / Bit
Frequency Range 0,9 ... 60 Hz

Table 4.2: Technical specification of the amplifier used for the recordings [9]

This was optimal because it could fit under the cap behind the left ear and did not apply

any additional physical pressure on the subjects scalp.

As monitor we used a 17” CRT with 1024x768 resolution and a horizontal frequency of

75 Hz.

4.2 Training

After the recordings were conducted a training on the data had to be done. The speech

recognition system Janus (see section 2.1 for details) was used for this. Janus was run on the

condor-cluster at the Carnegie Mellon University InterAct-Labs. A framework was developed

based on a state of the art ASR to train a model based on the recorded data. It was also

used to evaluate the trained model.

A detailed description of the usage is given in A.1. A brief description of the theoretical

background is given in 2.1.

4.3 Recognition

The recognition could be done offline for the purpose of testing our recorded data and our

recognition system. But it could also be done online, in realtime to do a demo recording as

described in section 7.

4.3.1 Offline

The recognition offline is done when an evaluation of the recognizer is needed. A set of

recordings is selected for the recognition using the leave one out cross validation approach.

The system is always trained for one session in one modality. For this the data is divided into

two groups. For the evaluation set one utterance of every word of the vocabulary is selected.

The remaining utterances are used for the training.

The evaluation of every utterance of the evaluation set is done by the computation of

the Viterby score for every utterance with the selection of the word with the best score as
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the hypothesis. The word accuracy is computed from this results. This process is repeated

until every utterance was once in the evaluation group. The resulting average of the word

accuracies is taken as the resulting word accuracies presented in this work.

4.3.2 Online

The online recognition is needed for the demo system. First a set of training data is recorded.

Then the recognizer is trained based on these data. In the online recognition the evaluation

set comes straight from the online recordings. After segmentation the hypothesis is built as

in the offline system.



Chapter 5

Data Collection

Data was collected in different modalities and with diverse vocabularies. In this chapter

the corpora used for this work and the modalities are described. All data were recorded in

English.

5.1 Corpora

We used different vocabularies in our data collection. A set of this words which we used in

a recording session is going to be called corpus. We used several corpora to show that the

speaker is not adapting to a particular corpus. The vocabularies of the corpora are shown

in table 5.1. Since we used a full word model for our recognizer the sentences of the lecture

corpus can be seen as one word.

Name Vocabulary

digit one, two, three, four, five, six, seven, eight, nine, zero
digit5 one, two, three, four, five
lecture good afternoon ladies and gentlemen, welcome to the interact

center my name is marek wester, let me introduce our new pro-
totype, thank you for your attention, any questions

alpha alpha, bravo, charlie, delta, echo
identifier
gre

brittle, cordial, diffidence, regicide, profundity, presage, non-
plused, insipid, fluster, tepid

phone yes, no, accept, deny, wait
player start, back, next, louder, turn down

Table 5.1: Corpora used during the data collection. The table shows the name which is used
as an identification to refer to the corpus

29
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5.1.1 Digit and Digit5 corpora

The digit corpus represents the English numbers from zero to nine. We used this corpus

because numbers are universally composable and the size is limited to ten and so the training

of a system does not take a long time. The longer a training takes the less comfortable it is for

the subject. The situation can get even painful since the cap is very tight. More information

about the problems we had with the cap can be found in section 2.5.

The digit5 corpus consists of the numbers for one to five. It was used for the training

of our demo system. To train a model we needed training data. Since session independence

could not be shown (as described in section 6.4) we had to do a data collection preceding

every demo recording. To save some time and to assure the well being of the subject we used

the digit5 corpus.

The digit corpus makes our results easier to compare with other work in this field because

it is frequently used in the EEG-community.

5.1.2 Lecture Corpus

The lecture corpus was used to see how good our recognition system can recognize sentences

with the full word model. The corpus consists of sentences used during the demonstration of

an EMG system at several press conferences of the interAct labs. Using the same sentences

would allow for comparison.

5.1.3 Alpha Corpus

The alpha corpus consists of the words alpha, bravo, charlie, delta, echo. These words are

used by the International Civil Aviation Organization (ICAO) as spelling alphabet. The

words are chosen to be easy to distinguish. We wanted to have an easily distinguishable

vocabulary to check if the methods we developed improve when making the recognition task

easier. The alphabet can also be used universally and allows the comparison with results

from other groups. The number of words is constricted to five for fast turn-around time in

our experiments.

5.1.4 Gre Corpus

In order to avoid that the subject get used to the vocabulary of our corpora and make sure

that the subject does not picture the words in from of imaginary images and to eliminate the

resulting artifacts we introduced the GRE corpus that contained words that are rarely used

in English language. They were selected from the Graduate Record Examination (GRE)
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which is a standardized test that many colleges in the USA require their students to do. The

GRE includes a test of vocabulary knowledge which was our source to randomly pick ten

words (brittle, cordial, diffidence, regicide, profundity, presage, nonplused, insipid, fluster,

tepid). These word were shown to the subject some minutes before the data collection and

just the pronunciation was explained.

The GRE corpus makes the adaption to words unlikely and since the semantics of these

words was not revealed the subject could not picture them.

5.1.5 Phone Corpus

The phone corpus consists of the words yes, no, accept, deny, wait. It can be used to answer

or reject phone calls. Since we recorded just two sessions with the phone corpus it can be

seen as a further proof of concept that our recognizer is able to recognize a variety of words.

5.1.6 Player

The player corpus consists of commands ( start, back, next, louder, turn down) to control

an mp3 player. It was designed to be used during a demo which was not further developed

due to a problem that came from the fact that the music that was played to the subject was

recognized instead of the commands that the subject thought.

5.2 Modalities

We did most of our recordings in 5 different modalities. These are normal speech, whispered

speech, silent speech, mumbled speech and unspoken speech. With recording this modalities

we could test our recognition system under different circumstances of speech production in

this modalities. These modalities create a sort of a continuous degeneration of speech. This

degeneration works on two levels.

The first level is the acoustic level. While normal speech can be seen as the optimal way

to utter words so that they are most easy to recognize, it gets harder with whispered speech

and impossible with silent, mumbled and unspoken speech.

The second level is the movement level. With the normal speech modality the movement

of the speech related muscles is very easy. Because of the vanishing feedback in whispered

speech and the missing feedback in silent speech it gets harder, as the subjects reported, to

move the muscles necessary for correct speech production. Mumbled speech was considered

as the hardest to utter by the subjects because the lips were closed in this form of speech.
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During all recordings of all modalities the subjects were asked to think the words they

utter very clearly. And not to think of anything else. So that they could develop a feeling

for how to think a word that they uttered. This was a preparation for the unspoken speech

modality where they had to only think the word.

5.2.1 Normal Speech

The subject was asked to pronounce the word as naturally and clearly as possible in an

audible fashion. Later we asked the subject to utter words in the digit corpus using phonetic

knowledge.

5.2.2 Whispered Speech

To utter words in the whisper modality the subject was asked to whisper the words naturally

and clearly so that they were barely audible. No special restrictions were made in this

modality.

5.2.3 Silent Speech

The modality of silent speech was defined as natural speech production without the produc-

tion of any sound. The silent speech modality was felt hard to utter by the subjects.

5.2.4 Mumbled Speech

The mumble modality was defined as natural speech production without opening the lips

and producing any sound. This was the most degenerated kind of speech. It was felt as the

hardest to utter by the subjects.

5.2.5 Unspoken Speech

In the unspoken speech modality the subjects were asked to think the word loud and clearly

as if they were uttering the word in the normal speech modality. To think a word ”loud”,

focused and clearly means that they should not think of anything else. They should think

the word in the same way as they did in the normal speech, whispered speech, silent speech

and mumbled speech modality. They were also asked to think nothing before the thinking

and after the thinking of the word.



Chapter 6

Experiments

This chapter presents the results of our experiments and the way we developed our recognition

system.

For all experiments the evaluation method as explained in 4.3.1 is used. The results of

the crossvalidation are presented as word accuracy.

To refer to the different sessions the following notation is used:

subject-session-modality/repetitions → [0-9][0-9]-[0-9][0-9]-[nwsmu]+/[0-9]+

e.g. 02-05-wu/20 refers to a session recorded with subject 02 in the subjects

session 05 with 20 repetitions in the whispered speech modality per word and 20

repetitions in the unspoken speech modality per word.

Every time it is referred to significance in the description of the experiments then the

t-student-test was used to determine this. A result of this test is considered to be significant

if the error probability is ≤ 5%.

In the first part of this chapter a description of how we found the parameters for the

feature extraction and normalization is shown. In the next section the results for the first

subgoal of this, as defined in the introduction, is shown. In the next two sections the problems

with speaker and session dependency are discussed. The results for the second subgoal of

this work are discussed in section 6.5. The following two sections discuss the recognition of

sentences and unknown words. The final section in this chapter presents the results for the

third and last subgoal of this work.

6.1 Feature Extraction and Normalization

This section contains a description of how the parameters of the recognizer influence the

recognition results. The result of this investigation should be no optimal system since an

33
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optimization done on the compared to speech recognition small amount of data would be

just an optimization of the system on these specific data and not an optimization of the

task of recognizing speech in brain waves. So the result of this experiments should be to get

knowledge about which parameter can be a good lever for getting better recognition results

and which parameters influence the system most in which modality and what values work

best for this data.

A baseline system was used for this investigation. Within this system one parameter

was varied at a time so that the influence of the parameter can be seen. The following

parameters were investigated (in brackets are the values of the baseline system which were

gathered empirically in the course of developing the recognizer):

• The first parameters which were investigated concern the data processing which is the

process of transforming the brain waves info feature vectors

– Window Size of the STFT (26.6ms)

– Windows Shift of the STFT (4ms)

– the extracted feature (stft and delta delta)

– use LDA or not (use LDA)

– number of dimensions of the feature vector used for the training (35 dimensions)

• The second group of parameters concerned the HMM which is the classifier we used for

the recognizer

– number of gaussians for every state of the HMM (25 gaussians)

– number of states of the HMM (5 states)

The experiments were conducted with the sessions 01-02/5, 01-04/5, 01-05/5, 01-06/5.

The following figures in this section are going to show the mean of the word accuracy of four

different sessions on which the experiments were conducted in the five modalities for a better

overview. A detailed listing of the results can be found in appendix C.

First the window size was investigated. As figure 6.1 shows, the window size of 106.6ms

performs worst. The sizes 26.6ms and 53.3ms show no significant difference for the modalities

involving muscle movement. Just the unspoken speech modality shows a large improvement

of 10.5 % points when using a window size of 53.3ms.

The next investigation concerns the window shift for the STFT. Here the results in figure

6.2 show very clearly that a window shift of 4ms has the best results through all modalities.

Now that we have a feeling of how big the windows have to be and in what shift they

have to move we can investigat the influence of the different features next. The investigation
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Figure 6.1: The window size of 53.3ms is better for unspoken speech

started with the STFT which was also included in all of the following experiments concerning

the features. Then the delta, delta delta and delta delta delta was varied. The last experiment

was done with STFT, delta delta and delta mean.

The results in figure 6.3 show that the features are dependent on the modality. The

speech and whisper modality which involve the production of audible speech perform best

when just using the STFT. This also means that delta features do not help to discriminate

speech in these modalities.

For the silent modality delta works best. But a double delta and just the STFT are

also not significantly worse. The mumble and the unspoken speech gain a lot from the delta

features. Both perform best with the delta mean feature. But there is also a significant peak

for the delta delta feature. The gain from the features for mumbled speech is 10% points

and for unspoken speech 15% points. This shows that this parameter is a good lever for the

mumbled and unspoken speech modality.

Now that features are selected we have to investigate if there is any gain if we cut off

dimensions which make the training task hard due to the lack of more data. This can be

done with the LDA whose basic idea is that the dimensionality of a feature is reduced while

discriminative information is preserved as good as possible. The results in figure 6.4 show

that the usage of the LDA has an significant improvement of 31.40 % points. The mode

where no LDA was used seems to be undertrained which is normal in this situation because

we have a high dimensionality of 192 dimension but not much data. So using the LDA is a
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Figure 6.2: A window shift of 4ms is ideal

good lever to improve the recognition system.

The next question to answer is how many dimensions should be kept after the LDA.

In this investigation the number of dimensions of the feature vector after performing the

dimensionality reduction was varied.

A dimensionality of 16 dimensions shows the best results for all modalities besides the

mumble modality (see figure 6.5). For the mumble modality 8 dimensions are optimal. The

whisper modality is also not much worse with 8 dimensions. Since the range can be 14 %

points this parameter is also important in building the recognizer.

The next investigation was conducted to see the influence of the number of gaussian

mixture models (gaussians) used for every state in the HMM.

For the speech and silent speech modality best results can be gained by using 4 or 16

gaussians (figure 6.6). Best results for the whisper and unspoken speech modality can be

gained with 4 and 32 gaussians.Ffor the mumbled speech modality there is no value for the

parameter which provides the significantly best result. The numerically best results can be

gained with 25 gaussians.

The last investigation concerned the number of states in the HMM. As figure 6.7 shows

this parameter has the maximum distribution of optimal values over the parameter value.

Just the normal speech and silent speech share 6 as the optimal number of states. For

the unspoken modality 3 states work best while 5 states are best for the mumbled speech

modality and 7 states for the whispered modality. The gain with this parameter is up to 8%
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Figure 6.3: delta features increase the recognition of unspoken speech

points for the mumbled speech modality so this parameter can be seen as a lever to optimize

a recognizer. But it is hard to find an optimal value for a large number of modalities.

As a conclusion we can state that using the LDA is the best lever for all modalities. It is

also clear that a window shift of 4ms performs best and also a window size of 53.3ms seems

to be optimal for all modalities.

It gets harder to state which features are best. The mumbled and the unspoken modality

clearly gain from delta features, while this is not true for the normal speech, whispered speech

and silent speech modality. The number of dimensions after the LDA also falls in the group

of parameters with two best parameter values. The mumbled speech modality performs best

with 8 dimensions while the other modalities perform best with 16 dimensions. There is a

large gain in this parameter of up to 14.5 % points.

The parameters concerning the HMM are mostly modality dependent. A general conclu-

sion can only be, that finding the optimal parameter in the HMMs can be hard but the gain

can be high.

6.2 Recognition of Normal speech

The first subgoal was to see if it is possible to recognize normal speech in EEG-data. For

this data was collected as described in section 4.1.2. The recognizer was trained with the

recorded data and the evaluation of the recognizer showed results as shown in the confusion
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Figure 6.4: lda is very important for the current recognizer

matrix 6.1.

hypothesis

re
fe

re
n
ce

one two three four five six seven eight nine zero word accuracy
one 17 1 2 3 2 68%
two 20 1 1 3 80%

three 2 17 1 2 3 68%
four 4 5 5 5 1 1 1 2 1 20%
five 1 1 13 1 1 4 4 52%
six 1 21 3 84%

seven 2 2 17 4 68%
eight 4 1 2 5 11 2 44%
nine 1 1 1 2 1 18 1 72%
zero 5 2 18 72%

62.8%

Table 6.1: confusion matrix for results of session 01-07-n/25

The worst result can be seen for the word ”four”. The production of this word involves not

much facial movement. Therefore not much EEG-data is produced in the homunculus area

which can be the reason for the worse recognition. Another reason may be bad recordings

for this word.

Chart 6.8 shows the results for the recognition of speech in different sessions with the digit

corpus. The results do not significantly differ besides session 6 and session 7. The bad result
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Figure 6.5: up to 35 coefficients are best for the recognizer after the dimensionality reduction
was done

in session 6 results from not well articulated words. The speaker was not focused enough

during the recording of this session. This shows how important well done recordings are.

The result in table 6.1 and the results in chart 6.8 show that recognition of speech in

EEG-data is possible. The achieved results are about 5 times higher than chance so we can

say with more likelihood that goal 1 is reached.

6.3 Variation between Speakers and Speaker Depen-

dancy

Unspoken speech is a kind of thinking. Every person speaks different in the persons mind.

There is no notation of a phonetic alphabet for unspoken speech. No subunit of a thought

word is known which is constant between different people. In this section an investigation of

the speaker dependency of the recognition system was conducted.

To test if a system is speaker dependent we trained the recognition system with the data

of one speaker and recognized a session of another speaker which was recorded with the

same corpus and the same number of repetitions under the same conditions. The results

across speakers are significantly worse than within speakers. Table 6.2 shows the results of

an experiment where a session in the modalities normal speech, silent speech and unspoken

speech using the digit corpus was trained with subject 1 and then evaluated on comparable
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Figure 6.6: No significant difference can be seen for up to 32 gaussians. 64 gaussians are too
much.

data of subject 6 and vice versa. The results show that the recognition rate is not significantly

different from chance. This showed that the system is very speaker dependent.

evaluation session

m
o
d
e
l
se

ss
io

n

06-06-n/10 01-11-n/10
06-06-n/10 92% 11%
01-11-n/10 9% 99%

06-06-s/10 01-11-s/10
06-06-s/10 100% 11%
01-11-s/10 7% 91%

06-06-u/10 01-11-u/10
06-06-u/10 98% 10%
01-11-u/10 10% 96%

Table 6.2: Results of the experiment with the digit corpus show high speaker depedency

This is due to the fact that the brain waves that can be measured while speech is produced

seem to be very different between every person. The first problem is that to get stable results

in the recognition some training in producing constantly the same speech is needed. The

subjects need to be instructed very carefully. During the experiment the subject has to be

very focused on the task of clear production of speech. Interruptions because of technical
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Figure 6.7: no significant difference in the overall performance but unspoken speech seems
to do best with 3 states

recording issues or through a noisy environment are borne different by every subject. This

results in smaller or higher artifacts. Figure 6.9 shows the result word accuracy for five

different subjects. Since for subject 6 no comparable session was recorded the results of this

subject are not in the chart. The digit corpus was used in this sessions1. Large variations can

be seen in word accuracy between the subjects and within the same subject and the different

modalities.

For most of the other experiments subject 1 was used to get results which are better

comparable. This subject also turned out to produce recordings which could be better rec-

ognized.

A larger amount of data was also collected with subject 6. The results through different

sessions show that the results are worse compared to subject 1 who had more training. Table

6.3 shows that the results in the different comparable sessions are sometimes significantly

worse and sometimes comparable. In numbers the results of subject 1 are always better.

Due to this all other results presented here are from recordings of subject 1.

102-01-nwsmu/5, 03-01-nwsmu/5, 04-01-nwsmu/5, 05-01-nwsmu/5
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Figure 6.8: Word accuracy for the digit corpus in different sessions with normal speech
modality. The red line shows the average.

6.4 Variation between Sessions and Session Dependancy

In normal speech recognition a recognizer can be trained with the recordings of one session

and can then recognize other untrained recordings. To test if this is also possible for the

recognition of unspoken speech we tested this with training the recognizer with the recordings

of one session. Then we tried to recognize recordings of another session with this recognizer.

The results in word accuracy were worse than chance. Even feature adaption such as MLLR

did not give significant results.

Variations between sessions are due to the different recordings conditions and more im-

portantly different mind states of the recorded subject.

6.5 Modalities

The results for the investigation of the second subgoal are presented in this section. It should

be investigated how well the developed recognizer works for different modalities: normally

spoken speech, whispered speech, silent speech, mumbled speech and unspoken speech.

The results for the different modalities are shown in chart 6.10. In every session of this

chart all 5 modalities were recorded with the digit corpus. Five examples were recorded for
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Figure 6.9: word accuracy for different subjects

every word in every modality. This results in 250 recordings per session. All five session were

recorded with the same speaker in the same recording setting. This five sessions were chosen

as examples for the other sessions recorded and tested which performed comparably.

The speech modality has an average word accuracy for the five session of 50 %. This

is five times higher than chance which is 10 %. The other modalities which involve muscle

movement are in average not significantly different2. Some sessions like e.g. session 2 in

mumble modality show worse results. This can be explained with bad recordings. The subject

may not have uttered the words correctly, the environment produced noise or problems with

the cap led to worse data.

For the unspoken speech which involved no muscle movement the results were slightly

worse. But a significant difference could not be shown. In average this results are comparable

with the results from the other modalities.

The second subgoal is therefore reached. In average we get a word accuracy rate that is

four to five times higher than chance.

2The t-student test was performed
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word accuracy
domain session id normal silent unspoken

digit 1-11-nsu/10 59,0% 63,8% 35,0%
6-06-nsu/10 42,0% 51,0% 31,0%

phone 1-14-u/20 42,0%
6-05-u/20 38,0%

digit 1-09-u/25 45,0%
6-01-u/25 29,6%
6-03-u/25 33,7%

Table 6.3: comparison of the word accuracy for subject 1 and subject 6 for different sessions
with different modalities and different corpora.

6.6 Recognition of sentences

We investigated how well sentences are recognized with the recognizer. For the investigation

every sentence was modeled as word in the recognition framework. The test was done in

three sessions3 with the lecture corpus with two different subjects.

session repetitions modality word accuracy word accuracy
chance

06-04 20 unspoken 42.5 % 2.1
01-10 25 unspoken 56 % 2.8
01-12 15 normal 67.7 % 3.3
01-12 15 silent 84 % 4.2
01-12 15 unspoken 67.7 % 3.3

Table 6.4: Results for the recognition of sentences

The results from table 6.4 show a high word accuracy compared to the word accuracy for

the single word recognition. The reason is that the number of sentences is five and not ten

like in the digit corpus. The sentences are also longer and therefore less confusable. Therefore

the probability to choose a word by chance is 16.66% compared to 10%. The last column

still shows a word accuracy of four to five times higher than chance for the session 01-12.

6.7 Meaningless Words

It would be possible that not the uttered word is recognized but an image of the word that

is produced in the mind. Therefore we investigated if the recognition also works for words

which have no meaning to the subject. Ten words which were meaningless to subject 1 were

randomly chosen by the recording assistant out of the Graduate Record Examinations which

3The sessions are 06-04-t/20, 01-10-t/25 and 01-12-nsu/15
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Figure 6.10: Results of the different modalities

resulted in the gre corpus as described in section 5.1.4. Meaningless means here that all

subjects are non native English speakers. Therefore this rarely used words are not know to

the subject and because of that they have no meaning to the subject.

Because the words had no meaning to the subject only one session was recorded and

evaluated. The words of this corpus were not know by the subject and the subject could not

derive them from known words.

Table 6.5 shows a confusion matrix of the evaluation result. The word accuracy was

38.50% which is approximately four times higher than chance. This result could be seen as

an indication that the detection is based on the brain waves resulting from producing the

speech rather than imaging a picture.

6.8 Electrode Positioning

The third subgoal was to investigate which electrode positions are most important for the

recognition of unspoken speech. Session 01-24-u/30 in the unspoken speech modality using

the digit corpus was chosen to investigate this. The result for the evaluation with all electrodes

is a word accuracy of 47.24%.

Training and evaluation experiments were performed, in which we left out particular

electrodes in order to see how important the corresponding channel information is. The
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hypothesis
re

fe
re

n
ce

brittle cordial diffide. fluster insip. nonp. pres. profu. reg. tepid
brittle 5 3 3 1 5 1 1 1
cordial 4 6 1 8 1

diffidence 7 2 7 2 2
fluster 3 2 5 1 1 4 1 2 1
insipid 1 16 3

nonplused 2 8 6 4
presage 1 2 16 1

profundity 1 7 8 4
regicide 2 7 6 5

tepid 1 1 8 4 1 5

Table 6.5: Confusion matrix for the recognition of unknown words shows a word accuracy of
38.50%. The rows are the expected words while the columns are the predicted words.

evaluation criteria is word accuracy measured on unspoken speech of session 01-24-u/30.

The left out electrodes were chosen to be left out because the region around the electrodes

T3, C3, Cz, C4, T4 seems to be most promising to detect unspoken speech because the

homunculus is located there. Also the electrode F7 where the Broca’s area is located and

electrode T5 where the Wernicke’s area is located seem to be interesting.

The electrodes in the back P3, Pz, P4 and T6 were left out first. Then we left out the

electrodes in the front: Fp1, Fp2, F3, Fz, F4. The result for the word accuracy in figure

6.11 shows no significant difference to the result with all electrodes. This indicates that the

electrodes in the front and in the back do not to provide information that help in recognition

of unspoken speech.

In the next step we left out the electrodes in the front and the back, namely P3, Pz, P4,

T6, Fp1, Fp2, F3, Fz, F4. The result regarding the word accuracy is shown in figure 6.11

in the bottom right. The word accuracy does not differ significantly from the word accuracy

with all electrodes. This indicates that the remaining electrodes are sufficient to recognize

unspoken speech. This supports the theory as described in chapter 2 that this areas of the

brain are not much involved in speech production and therefore are also not much involved

in the production of unspoken speech.

The next point of the investigation is to see if the Broca’s and Wernicke’s area are as

important as it seems or if the area around the homunculus is sufficient for the recognition

of unspoken speech. The result for this question with an error probability of 0.018% is

significantly worse compared to the result with all electrodes.

The first result in the top row of figure 6.12 shows also a significantly worse (error prob-

ability 0.001 %) word accuracy compared to the word accuracy with all electrodes. Here we
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investigated if possibly the inverse of the best result of figure 6.12 shows better results. But

again the electrodes around the homunculus together with the Broca’s area and Wernicke’s

area are showing the best result.

We investigated the influence of the Broca’s area and Wernicke’s area. Since Broca’s

area is responsible for fluent pronunciation and Wernicke’s area is responsible for semantic

processing then Wernicke’s area should not provide a lot of additional information for un-

spoken speech on single words as used in this experiment. So we used in one experiment

the electrodes on the homunculus and only the Broca’s area and in the second experiment

the homunculus and only the Wernicke’s area. As figure 6.13 shows the information of the

Wernicke’s area are such important that both results in this experiment are nearly the same

and significantly worse than the best result. This supports the Geschwind-Wernicke-Model

that says that the Wernicke’s area is also an important part of speech production and that

Broca’s area and Wernicke’s area work together to produce speech.

The last question was to see if just the Broca’s area, the Wernicke’s area and the area

between them would provide a high word accuracy. As figure 6.12 shows in the bottom left

this result is in between the best and the worst result. Compared to the result with all

electrodes this result is significantly worse (error probability 2.83 %).

In conclusion we can say that the best result is achieved with all electrodes (16) but

that no significant difference exists when focusing on the homunculus and Broca’s area and

Wernicke’s area (7 electrodes) and that this leads to the best result among all other settings.

Subgoal three is reached. It can be shown that the region around the homunculus and

the Broca’s area and Wernike’s area are sufficient for the recognition of unspoken speech.
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Figure 6.11: Electrode Layout with the word accuracy gained using just the shown electrodes
in training and evaluation. The electrodes A1 and A2 are the reference electrodes while the
electrode GND is the ground electrode.
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Figure 6.12: The results as word accuracy for the experiments with different electrode posi-
tions
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Figure 6.13: Broca’s area and Wernicke’s area alone do not perform as good as they do
together



Chapter 7

Demo System

To test the online recognition capabilities of the unspoken speech recognizer a demo system

was built. The results of the offline recognition were very promising so online recognition

should be possible.

The setup of the recording room was the same for the demo setup as for the normal

recording as presented in section 4.1.1. Only the software needed to be exchanged. The task

in the demo was to produce letters with the unspoken speech modality.

The procedure was the following:

1. the subject makes one eye blink

2. the subject utters a word with the unspoken speech modality

3. the subject makes one eye blink

4. the recognizer tries to recognize the word and outputs the hypothesis to the screen as

shown in picture 7.1

The vocabulary for the demo was the alpha corpus as introduced in section 5.1.3. To save

space just the first letter of the words was output.

The subject was looking on a white screen all the time to have the same conditions as

during the recording of the training data.

Before the demo could be started training data had to be recorded due to the session

dependency of the recognizer. Then the recognizer needed to be trained and finally the demo

system could be started. The subject was given the task to utter five times ”alpha” then

five time ”bravo”. . . and then five times ”echo”. The subject was not interrupted during or

in between the process of uttering the 25 words. For later analysis everything was recorded

with a video camera.
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Figure 7.1: The demo setting. The laptop screen shows the hypothesis of the last 2 recognized
words, which are ”C” and ”E”

Nine sessions of which each included the recording of training data and the online recog-

nition were done. Six sessions were done with the alpha corpus, two sessions were done with

the digit5 corpus and one session was done with the digit corpus.

None of the sessions produced results measured as word accuracy which were significantly

different from chance.

The reason for the bad results may be due to problems with the cap. The collection of

training data takes about two hours. Then the recognizer needs to be trained and the demo

system needs to be set up which can take also about one hour. During this time the subject

needs to wear the cap because it is not possible to get exactly the same electrode positioning

as before.

The cap needs to be very tight because the electrodes need a good connection with the

scalp. The electrode mountings are made out of hard plastic which is pressed against the

scalp. This inflicts pain after about 90 minutes as the subject reported.

There are two consequences because of the pain. The first is that the subject cannot be

as focused with pain on the scalp as without pain. Because of that the unspoken speech

during the online recognition is not uttered in the same way as during the recording of the

training data. Therefore the learned patterns from the training data differ from the patterns

during the online recognition.

The second consequence is that brain waves changes with pain. Baltas [37] even built a

pain detection system based on EEG data. Therefore the learned patterns from the training

data also differ from the patterns produced during the online recognition task.
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A solution for this problem would be to use a cap which is more comfortable to wear and

does not inflict pain. Another solution might be to try to get rid of the pain artifacts with a

better approach in the preprocessing.



Chapter 8

Conclusions and Future Work

8.1 Summary and Conclusion

In this work we showed a setup for recording EEG-data during the production of speech in

five different modalities: normal speech, whispered speech, silent speech, mumbled speech

and unspoken speech. Furthermore we introduced a system to recognize speech in this

five modalities which uses methods of speech recognition for spoken audible speech. The

main focus was on the recognition of unspoken speech which is uttered without any muscle

movement. Finally an investigation was done to identify the regions of the brain which

produce the most interesting brain waves for unspoken speech recognition.

The results of the experiments which were conducted showed that speech recognition on

EEG brain waves is possible with a word accuracy four to five times higher than chance

for vocabularies of up to ten words. The same results were found for the other modalities.

Unspoken speech was slightly but not significantly worse than the other modalities. The

results also showed that the important regions for unspoken speech recognition seem to be

the homunculus, the Broca’s area and Wernicke’s area.

Still there are defiances to be solved. Speaker and session dependency makes the usage of

the system difficult. For every recognition task training data has to be collected beforehand.

The largest problem to solve is the inability of online recognition due to pain inflicted by

wearing the cap for longer than 90 minutes.

This results show that there is a potential for breaking barriers in interaction with com-

puters and through this with other humans. For physically challenged people unspoken

speech is sometimes the only efficient way to communicate with their environment.
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8.2 Outlook

This work is to be seen as a feasibility study. It does not claim completeness. There are still

areas which need to be improved. Improvements are needed in the preprocessing. Methods

for feature extraction like wavelets or independent component analysis could improve the

recognition and make artifact detection easier.

Improvements are also needed for the cap with respect to the number and location of

electrodes and comfort. A higher density of electrodes might provide more information for

the recognizer. This would make the system also more reliable for interferences which could

come from single electrodes. A cap which is more comfortable to wear would decrease the

infliction of pain and therefore online recognition might be feasible.



Appendix A

Software Documentation

This chapter should give a brief overview of the technical details of the recognition system.

It is a starting point to get an understanding of how to use it.

A.1 Janus

For all recognition tasks the Janus Recognition Toolkit was used. This is a framework to

build speech recognition systems. It is written in C1 and provides a TCL2 wrapper to control

it. It is available for various platforms. For the recognition task in this work the Linux

operating system was used.

The recognition system was adapted from a state of the art speech recognizer. To make

the exchange of parameters for the experiments easier all important parameters were made

available in two files. This files are desc/baseDesc.tcl and desc/featDesc eeg.tcl. This first

file contains parameters concerning the recognition system like the number of states for

the HMM, the number of gaussians, the corpus and so forth. The second file contains the

description of the feature extraction.

Because of the high number of different modalities a lot of recognizers needed to be trained

and evaluated. The recognizer was developed at Carnegie Mellon University where a Condor-

Cluster[38] is available to compute high numbers of parallel tasks. The recognition task of

different modalities was parallelable such that every recognition system can run independent

from each other.

To build a parallel system three task had to be solved. First the system needs to be

changed to work in a parallel manner. Second the system needs to be started from a central

spot. Third the system needs to deliver the recognition results from the parallel tasks.

1http://en.wikipedia.org/wiki/C programming language
2http://en.wikipedia.org/wiki/Tcl
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The recognizer that was used as the base for the resulting system was already partly able

to solve the training and evaluation task in parallel. This just worked for a lot of data but

not as in the task of this work for a small amount of data but different recognition tasks. It

was also not possible to start the recognizer with different parameters at the same time as

needed for our task.

To make the system work in parallel there are two ways. The first way would be to

develop a complex system residing in one directory capable of doing different recognition

tasks with different parameters at one time. The Condor-Cluster tries to dispatch different

jobs like the recognition task to computers with free computing capacities. Therefore the

recognizer would have had to cope with the problem that different computers try to write

data to the same directories and files at the same time.

The second way of solving this problem is to take the already working recognizer and to

duplicate it and start the systems isolated from each other. This has the advantage that the

developed and working recognizer can be used and no additional efforts need to be invested

in solving problems coming from parallelisation. The disadvantage is that tools need to be

developed to control this set of duplicates.

Because the seconds approach seemed to provide fast and more reliable results it was

selected for this work. The spot of controlling the system is the master.tcl script. It can be

used to solve all the three tasks mentioned earlier. The first task is to enable the system to

work in parallel. For this it has to be duplicated and initialized with initial parameters. This

is done with the build parameter in the master.tcl script.

The syntax is: janus master.tcl build <speaker-id> <session-id> <modality> -domain

<corpus>. E.g. janus master.tcl build 02 03 whisper -domain digit builds a recognizer for

the subject 02 in session 03 speaking in modality whispered speech with the digit corpus.

There has to be a possibility to update parameters in the different recognizers. This is

done by the updateFile parameter. It would be desirable for this task to address more than one

recognizer at a time. The first possibility to do this is to simply concatenate the different rec-

ognizer names e.g. janus master.tcl updateFile ”01 02 whisper 01 02 mumble 02 03 whisper”

eeg recognizer/desc/baseDesc.tcl. In this example the file eeg recognizer/desc/baseDesc.tcl is

copied to the recognizers ”01 02 whisper 01 02 mumble 02 03 whisper”. This can also be ex-

pressed in a shorter way by using the % symbol which works like the usual Kleene-star *. The

example could also be written like this: janus master.tcl updateFile ”01 02 % 02 03 whisper”

eeg recognizer/desc/baseDesc.tcl.

The next step to solve for the task of parallelisation is to control the recognizers. The

recognizers have to be started, monitored and possibly terminated. For that the following

parameters can be attached to the master.tcl: start, showStat, kill. To start the training and
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evaluation for the session 02 of subject 04 in all modalities the command is: janus master.tcl

start 04 02 %. To start the monitoring of the started jobs this command is needed: janus

showStat . This opens a TK3 window as shown in figure A.1 showing the status of all jobs

and the Condor cluster. To possibly kill the jobs from job number 1023 to 1059 this command

will work: janus master.tcl kill 1023-1059.

Figure A.1: TK window showing the status of the jobs and the cluster

The remaining task is to get the results as word accuracy and as a confusion matrix from

the jobs that ran. The following command will present the results for session 02 of subject

04 in all recorded modalities: janus master.tcl results 04 02 %.

3http://en.wikipedia.org/wiki/Tk
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A.2 Recording Software

The recording software “UKA {EEG—EMG} Studio 2.10mwR” (a screenshot can be seen

on image A.2) was developed at University of Karlsruhe in Germany at the ITI Waibel labs

and modified for this work at CMU. This software is developed in C++4 and runs in the

Microsoft Windows operation system only.

Figure A.2: The software used for the recordings of brain waves

The recording software was developed for the recording to be done on one screen. For our

recording task a system is needed which has a different screen for the recording assistant and

the subject that is recorded. For this the control window that shows the push to talk button

and the word that has to be uttered needed to be modified. The window was enlarged so

that it would span over one and a half screen showing on the one screen the controls for the

recording assistant and on the other screen the word that has to be uttered for the subject.

Another requirement was to implement the successively changing words on the subjects

screen as described in section 4.1.2. This requirement was implemented so that after the

recording assistant pressed the recording button the sequence of words started to show on

the subjects screen.

The recording software also needed to be changed for the demo system. In the case of the

4http://en.wikipedia.org/wiki/C Plus Plus

http://en.wikipedia.org/wiki/C_Plus_Plus
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demo system the recording software had to detect eye blinks. The procedure for the demo

system was the following:

1. start writing recorded data to a to a file called recording-<number>.adc where <number>

is a number starting with ”1” increased by one after every recording

2. detect the first eye blink

3. detect the second eye blink

4. close the file and start over

The janus recognizer was waiting for the file with the name recording-1.adc. After this file

appeared janus had to wait for the appearance of recording-2.adc because recording-1.adc was

still recorded. When recording-2.adc appeared it did the recognition of the uttered word in

file recording-1.adc and showed the hypothesis in a TK window and waited for recording-3.adc

to appear and then did the recognition on recording-2.adc and so on.
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Recorded Data

id speak whisper silent mumble think Σ minutes domain

02-01 5 5 5 5 5 250 25.78 digit

03-01 5 5 5 5 5 250 27.36 digit

04-01 5 5 5 5 5 250 22.85 digit

05-01 5 5 5 5 5 250 22.73 digit

06-01 25 250 31.33 digit

06-03 25 250 30.5 digit

06-04 20 100 17.33 lecture

06-05 20 100 11.71 phone

06-06 10 10 10 300 37.4 digit

06-07 25 125 18.33 digit5

06-08 3 3 2.46 1234554321

06-09 25 125 16.46 alpha

06-10 3 3 2.35 abcdeedcba

01-01 5 5 5 5 5 250 24.11 digit

01-02 5 5 5 5 5 250 24.4 digit

01-03 5 5 5 5 5 250 22.55 digit

01-04 5 5 5 5 5 250 23.93 digit

01-05 5 5 5 5 5 250 23.71 digit

01-06 5 5 5 5 5 250 22.28 digit

01-07 25 250 32.1 digit

01-08 25 250 37.48 digit

01-09 25 250 43.13 digit

01-10 10 50 12.2 lecture
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01-11 10 10 10 300 42.4 digit

01-12 15 15 15 225 45.48 lecture

01-13 20 200 28.65 gre

01-14 20 100 11.88 phone

01-15 15 75 9.5 player

01-16 15 75 9,01 player

01-17 10 10 16 player long

01-18 15 75 17.23 player

01-19 10 10 18.2 player long

01-20 30 150 22.86 digit5

01-21 30 150 24.61 alpha

01-22 20 100 14.83 digit5

01-23 20 100 14.6 digit5

01-24 30 300 46.66 digit

01-25 30 150 23.06 alpha

01-26 15 75 13.05 alpha

01-27 60 300 50 alpha

01-28 30 150 23.26 alpha

01-29 20 20 20 300 46.76 alpha

01-30 20 20 200 28.66 alpha

Table B.1: Overview of how many utterances were

recorded in every session
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Results of the experiments from

section 6.1

This is a detailed report of the experimental results concerning the parameters of the recog-

nizer. The maximum values per modality per parameter are marked bold.

window size session Accuracy
26.6ms 01-02/5 01-04/5 01-05/5 01-06/5 Average
speech 36.0% 38.0% 52.0% 32.0% 39.5%
whisper 52.0% 54.0% 46.0% 28.0% 45.0%
silent 52.0% 56.0% 58.0% 46.0% 53.0%
mumble 38.0% 52.0% 58.0% 44.0% 48.0%
unspoken 54.0% 50.0% 58.0% 36.0% 49.5%

47.0%
53.3ms
speech 40.0% 44.0% 42.0% 36.0% 40.5%
whisper 52.0% 48.0% 50.0% 30.0% 45.0%
silent 60.0% 62.0% 54.0% 44.0% 55.0%
mumble 46.0% 52.0% 44.0% 52.0% 48.5%
unspoken 60.0% 56.0% 72.0% 52.0% 60.0%

49.8%
106.6ms
speech 40.0% 30.0% 38.0% 40.0% 37.0%
whisper 52.0% 26.0% 32.0% 28.0% 34.5%
silent 46.0% 42.0% 46.0% 40.0% 43.5%
mumble 34.0% 42.0% 42.0% 42.0% 40.0%
unspoken 38.0% 52.0% 56.0% 38.0% 46.0%

40.2%

Table C.1: The window size of 53.3ms is better for unspoken speech.
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window shift session Accuracy
4ms 01-02/5 01-04/5 01-05/5 01-06/5 Average
speech 36.0% 38.0% 52.0% 32.0% 39.5%
whisper 52.0% 54.0% 46.0% 28.0% 45.0%
silent 52.0% 56.0% 58.0% 46.0% 53.0%
mumble 38.0% 52.0% 58.0% 44.0% 48.0%
unspoken 54.0% 50.0% 58.0% 36.0% 49.5%

47.0%
8ms
speech 30.0% 46.0% 40.0% 42.0% 39.5%
whisper 44.0% 46.0% 50.0% 38.0% 44.5%
silent 34.0% 50.0% 58.0% 42.0% 46.0%
mumble 34.0% 48.0% 52.0% 28.0% 40.5%
unspoken 54.0% 52.0% 58.0% 32.0% 49.0%

43.9%
16ms
speech 30.0% 42.0% 30.0% 30.0% 33.0%
whisper 46.0% 26.0% 40.0% 26.0% 34.5%
silent 18.0% 40.0% 42.0% 46.0% 36.5%
mumble 24.0% 40.0% 30.0% 26.0% 30.0%
unspoken 46.0% 34.0% 52.0% 26.0% 39.5%

34.7%
27 ms
speech 24.0% 18.0% 36.0% 20.0% 24.5%
whisper 36.0% 24.0% 18.0% 20.0% 24.5%
silent 34.0% 36.0% 44.0% 28.0% 35.5%
mumble 28.0% 28.0% 14.0% 20.0% 22.5%
unspoken 32.0% 20.0% 28.0% 14.0% 23.5%

26.1%

Table C.2: A window shift of 4ms is ideal.
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gaussians session Accuracy
4 gaussians 01-02/5 01-04/5 01-05/5 01-06/5 Average
speech 42.0% 44.0% 52.0% 36.0% 43.5%
whisper 66.0% 46.0% 58.0% 34.0% 51.0%
silent 58.0% 54.0% 60.0% 44.0% 54.0%
mumble 42.0% 48.0% 58.0% 36.0% 46.0%
unspoken 5.0% 46.0% 64.0% 46.0% 51.5%

49.2%
8 gaussians
speech 40.0% 44.0% 46.0% 32.0% 40.5%
whisper 46.0% 5.0% 58.0% 34.0% 47.0%
silent 52.0% 48.0% 58.0% 46.0% 51.0%
mumble 38.0% 48.0% 54.0% 40.0% 45.0%
unspoken 44.0% 44.0% 64.0% 40.0% 48.0%

46.3%
16 gaussians
speech 40.0% 44.0% 48.0% 42.0% 43.5%
whisper 5.0% 48.0% 42.0% 22.0% 40.5%
silent 62.0% 54.0% 58.0% 46.0% 55.0%
mumble 44.0% 5.0% 56.0% 38.0% 47.0%
unspoken 46.0% 48.0% 60.0% 42.0% 49.0%

47.0%
25 gaussians
speech 36.0% 38.0% 52.0% 32.0% 39.5%
whisper 52.0% 54.0% 46.0% 28.0% 45.0%
silent 52.0% 56.0% 58.0% 46.0% 53.0%
mumble 38.0% 52.0% 58.0% 44.0% 48.0%
unspoken 54.0% 5.0% 58.0% 36.0% 49.5%

47.0%
32 gaussians
speech 42.0% 44.0% 48.0% 30.0% 41.0%
whisper 54.0% 58.0% 54.0% 38.0% 51.0%
silent 52.0% 62.0% 54.0% 42.0% 52.5%
mumble 38.0% 48.0% 54.0% 44.0% 46.0%
unspoken 54.0% 46.0% 62.0% 36.0% 49.5%

48.0%
64 gaussians
speech 40.0% 46.0% 42.0% 34.0% 40.5%
whisper 52.0% 52.0% 38.0% 26.0% 42.0%
silent 36.0% 5.0% 34.0% 44.0% 41.0%
mumble 40.0% 56.0% 54.0% 40.0% 47.5%
unspoken 42.0% 44.0% 48.0% 32.0% 41.5%

42.5%

Table C.3: No significant difference can be seen for up to 32 gaussians. 64 gaussians are too
much.
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states session Accuracy
3 states 01-02/5 01-04/5 01-05/5 01-06/5 Average
speech 36.0% 42.0% 52.0% 40.0% 42.5%
whisper 58.0% 54.0% 46.0% 36.0% 48.5%
silent 48.0% 54.0% 62.0% 44.0% 52.0%
mumble 40.0% 48.0% 44.0% 44.0% 44.0%
unspoken 64.0% 56.0% 56.0% 42.0% 54.5%

48.3%
4 states
speech 44.0% 36.0% 52.0% 36.0% 42.0%
whisper 52.0% 48.0% 54.0% 40.0% 48.5%
silent 46.0% 64.0% 62.0% 38.0% 52.5%
mumble 36.0% 44.0% 36.0% 44.0% 40.0%
unspoken 52.0% 52.0% 56.0% 38.0% 49.5%

46.5%
5 states
speech 36.0% 38.0% 52.0% 32.0% 39.5%
whisper 52.0% 54.0% 46.0% 28.0% 45.0%
silent 52.0% 56.0% 58.0% 46.0% 53.0%
mumble 38.0% 52.0% 58.0% 44.0% 48.0%
unspoken 54.0% 50.0% 58.0% 36.0% 49.5%

47.0%
6 states
speech 46.0% 48.0% 42.0% 44.0% 45.0%
whisper 52.0% 50.0% 48.0% 32.0% 45.5%
silent 50.0% 60.0% 60.0% 50.0% 55.0%
mumble 42.0% 48.0% 52.0% 38.0% 45.0%
unspoken 46.0% 48.0% 50.0% 42.0% 46.5%

47.4%
7 states
speech 40.0% 46.0% 48.0% 36.0% 42.5%
whisper 58.0% 50.0% 54.0% 42.0% 51.0%
silent 54.0% 48.0% 52.0% 44.0% 49.5%
mumble 34.0% 54.0% 40.0% 38.0% 41.5%
unspoken 48.0% 54.0% 50.0% 32.0% 46.0%

46.1%

Table C.4: no significant difference in the overall performance but unspoken speech seems to
do best with 3 states
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coeff. after LDA session Accuracy
4 01-02/5 01-04/5 01-05/5 01-06/5 Average
speech 26.0% 38.0% 38.0% 36.0% 34.5%
whisper 50.0% 48.0% 42.0% 34.0% 43.5%
silent 42.0% 48.0% 50.0% 50.0% 47.5%
mumble 40.0% 54.0% 54.0% 32.0% 45.0%
unspoken 36.0% 40.0% 48.0% 40.0% 41.0%

42.3%
8
speech 42.0% 50.0% 52.0% 36.0% 45.0%
whisper 62.0% 58.0% 52.0% 38.0% 52.5%
silent 42.0% 50.0% 64.0% 52.0% 52.0%
mumble 50.0% 66.0% 60.0% 46.0% 55.5%
unspoken 54.0% 42.0% 58.0% 46.0% 50.0%

51.0%
16
speech 50.0% 50.0% 54.0% 40.0% 48.5%
whisper 58.0% 56.0% 62.0% 36.0% 53.0%
silent 50.0% 56.0% 64.0% 56.0% 56.5%
mumble 52.0% 56.0% 54.0% 44.0% 51.5%
unspoken 54.0% 44.0% 74.0% 42.0% 53.5%

52.6%
35
speech 36.0% 38.0% 52.0% 32.0% 39.5%
whisper 52.0% 54.0% 46.0% 28.0% 45.0%
silent 52.0% 56.0% 58.0% 46.0% 53.0%
mumble 38.0% 52.0% 58.0% 44.0% 48.0%
unspoken 54.0% 50.0% 58.0% 36.0% 49.5%

47.0%
40
speech 40.0% 34.0% 50.0% 30.0% 38.5%
whisper 48.0% 56.0% 54.0% 28.0% 46.5%
silent 46.0% 68.0% 60.0% 40.0% 53.5%
mumble 40.0% 44.0% 58.0% 32.0% 43.5%
unspoken 52.0% 42.0% 56.0% 36.0% 46.5%

45.7%
64
speech 36.0% 38.0% 48.0% 30.0% 38.0%
whisper 42.0% 56.0% 30.0% 30.0% 39.5%
silent 44.0% 62.0% 48.0% 30.0% 46.0%
mumble 30.0% 46.0% 52.0% 44.0% 43.0%
unspoken 54.0% 44.0% 42.0% 18.0% 39.5%

41.2%

Table C.5: up to 35 coefficients are best for the recognizer after the dimensionality reduction
was done
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features session Accuracy
stft 01-02/5 01-04/5 01-05/5 01-06/5 Average
speech 58.0% 52.0% 60.0% 50.0% 55.0%
whisper 58.0% 44.0% 58.0% 40.0% 50.0%
silent 40.0% 58.0% 76.0% 42.0% 54.0%
mumble 28.0% 60.0% 36.0% 40.0% 41.0%
unspoken 46.0% 46.0% 24.0% 26.0% 35.5%

47.1%
delta
speech 48.0% 42.0% 46.0% 48.0% 46.0%
whisper 58.0% 46.0% 52.0% 30.0% 46.5%
silent 44.0% 68.0% 56.0% 52.0% 55.0%
mumble 42.0% 54.0% 54.0% 48.0% 49.5%
unspoken 56.0% 50.0% 48.0% 24.0% 44.5%

48.3%
delta delta
speech 36.0% 38.0% 52.0% 32.0% 39.5%
whisper 52.0% 54.0% 46.0% 28.0% 45.0%
silent 52.0% 56.0% 58.0% 46.0% 53.0%
mumble 38.0% 52.0% 58.0% 44.0% 48.0%
unspoken 54.0% 50.0% 58.0% 36.0% 49.5%

47.0%
delta delta delta
speech 38.0% 48.0% 52.0% 38.0% 44.0%
whisper 48.0% 52.0% 56.0% 34.0% 47.5%
silent 48.0% 60.0% 54.0% 42.0% 51.0%
mumble 38.0% 48.0% 42.0% 32.0% 40.0%
unspoken 54.0% 42.0% 56.0% 38.0% 47.5%

46.0%
delta mean1

speech 44.0% 48.0% 46.0% 42.0% 45.0%
whisper 50.0% 50.0% 46.0% 38.0% 46.0%
silent 48.0% 58.0% 56.0% 46.0% 52.0%
mumble 52.0% 56.0% 56.0% 40.0% 51.0%
unspoken 56.0% 48.0% 68.0% 30.0% 50.5%

48.9%

Table C.6: delta features increase the recognition of unspoken speech
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LDA/no LDA session Accuracy
with lda 01-02/5 01-04/5 01-05/5 01-06/5 Average
speech 36.0% 38.0% 52.0% 32.0% 39.5%
whisper 52.0% 54.0% 46.0% 28.0% 45.0%
silent 52.0% 56.0% 58.0% 46.0% 53.0%
mumble 38.0% 52.0% 58.0% 44.0% 48.0%
unspoken 54.0% 50.0% 58.0% 36.0% 49.5%

47.0%
without lda
speech 14.0% 24.0% 20.0% 12.0% 17.5%
whisper 16.0% 14.0% 14.0% 24.0% 17.0%
silent 12.0% 18.0% 20.0% 24.0% 18.5%
mumble 18.0% 24.0% 14.0% 20.0% 19.0%
unspoken 8.0% 6.0% 4.0% 6.0% 6.0%

15.6%

Table C.7: lda is very important for the current recognizer
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