http://www.mathematik.uni-karlsruhe.de/~semlv Seminar LV, No. 30, 6 pp., 28.04.2008

A functional equation with two unknown functions

Janusz Matkowski and Peter Volkmann

1. Introduction. Throughout this paper I denotes a non-degenerate interval in \mathbb{R}, i.e., I is a convex subset of \mathbb{R} with non-empty interior. We determine all continuous, strictly increasing $\varphi, \psi: I \rightarrow \mathbb{R}$ such that

$$
\begin{array}{r}
(\varphi+\psi)^{-1}(\varphi(x)+\psi(y))+(\varphi+\psi)^{-1}(\varphi(y)+\psi(x)) \tag{1.1}\\
=x+y(x, y \in I)
\end{array}
$$

this will be done in the next paragraph. The third paragraph contains some background information concerning equation (1.1). For the moment we only like to mention that a more general equation (with four unknown functions) had been solved by Baják and Páles [2], but under stronger regularity conditions. In the last paragraph we give an application to the functional equation

$$
\begin{equation*}
F\left(A_{\varphi, \psi}(x, y), A_{\psi, \varphi}(x, y)\right)=F(x, y) \quad(x, y \in I) \tag{1.2}
\end{equation*}
$$

where (generally) $A_{\varphi, \psi}(x, y)=(\varphi+\psi)^{-1}(\varphi(x)+\psi(y))$.

2. Solution of (1.1).

Theorem 1. Let $\varphi, \psi: I \rightarrow \mathbb{R}$ be continuous and strictly increasing. Then (1.1) holds if and only if there are $a, b \in \mathbb{R}, a>0$, such that

$$
\begin{equation*}
\varphi(x)+\psi(x)=a x+b \quad(x \in I) \tag{2.1}
\end{equation*}
$$

Proof. Let (1.1) be true. We consider $x_{0}, y_{0} \in I$ and we like to show

$$
\begin{equation*}
(\varphi+\psi)\left(\frac{x_{0}+y_{0}}{2}\right)=\frac{(\varphi+\psi)\left(x_{0}\right)+(\varphi+\psi)\left(y_{0}\right)}{2} \tag{2.2}
\end{equation*}
$$

We assume $x_{0} \leq y_{0}$ and define recursively

$$
\begin{array}{r}
x_{n}=\min \left\{(\varphi+\psi)^{-1}\left(\varphi\left(x_{n-1}\right)+\psi\left(y_{n-1}\right)\right),\right. \\
\left.(\varphi+\psi)^{-1}\left(\varphi\left(y_{n-1}\right)+\psi\left(x_{n-1}\right)\right)\right\}, \\
y_{n}=\max \left\{(\varphi+\psi)^{-1}\left(\varphi\left(x_{n-1}\right)+\psi\left(y_{n-1}\right)\right),\right. \tag{2.4}\\
\left.(\varphi+\psi)^{-1}\left(\varphi\left(y_{n-1}\right)+\psi\left(x_{n-1}\right)\right)\right\}
\end{array}
$$

$(n=1,2,3, \ldots)$. We get

$$
\left[x_{0}, y_{0}\right] \supseteq\left[x_{1}, y_{1}\right] \supseteq\left[x_{2}, y_{2}\right] \supseteq \ldots
$$

hence

$$
x_{n} \uparrow \bar{x}, y_{n} \downarrow \bar{y}, \bar{x} \leq \bar{y} .
$$

When adding (2.3), (2.4), then (1.1) implies $x_{n}+y_{n}=x_{n-1}+y_{n-1}$. Therefore we have $x_{n}+y_{n}=x_{0}+y_{0} \quad(n=1,2,3, \ldots)$, in the limit

$$
\begin{equation*}
\bar{x}+\bar{y}=x_{0}+y_{0} . \tag{2.5}
\end{equation*}
$$

(2.3), (2.4) also can be written as

$$
\begin{align*}
& \varphi\left(x_{n}\right)+\psi\left(x_{n}\right)=\min \left\{\varphi\left(x_{n-1}\right)+\psi\left(y_{n-1}\right), \varphi\left(y_{n-1}\right)+\psi\left(x_{n-1}\right)\right\}, \tag{2.6}\\
& \varphi\left(y_{n}\right)+\psi\left(y_{n}\right)=\max \left\{\varphi\left(x_{n-1}\right)+\psi\left(y_{n-1}\right), \varphi\left(y_{n-1}\right)+\psi\left(x_{n-1}\right)\right\} .
\end{align*}
$$

Adding them we get

$$
(\varphi+\psi)\left(x_{n}\right)+(\varphi+\psi)\left(y_{n}\right)=(\varphi+\psi)\left(x_{n-1}\right)+(\varphi+\psi)\left(y_{n-1}\right),
$$

hence

$$
\begin{equation*}
(\varphi+\psi)\left(x_{n}\right)+(\varphi+\psi)\left(y_{n}\right)=(\varphi+\psi)\left(x_{0}\right)+(\varphi+\psi)\left(y_{0}\right) \tag{2.8}
\end{equation*}
$$

$(n=1,2,3, \ldots)$. Now $n \rightarrow \infty$ in (2.6), (2.7) gives

$$
\varphi(\bar{x})+\psi(\bar{y})=\varphi(\bar{x})+\psi(\bar{x}) \quad \text { or } \quad \varphi(\bar{x})+\psi(\bar{y})=\varphi(\bar{y})+\psi(\bar{y}) .
$$

In both cases we get $\bar{x}=\bar{y}$, and because of (2.5) we have

$$
\bar{x}=\bar{y}=\frac{x_{0}+y_{0}}{2} .
$$

Then $n \rightarrow \infty$ in (2.8) leads to (2.2).
Equation (2.2) is true for arbitrary $x_{0}, y_{0} \in I$, and this means that $\varphi+$ $\psi: I \rightarrow \mathbb{R}$ is a solution of the Jensen functional equation. Furthermore $\varphi+\psi$ is continuous and strictly increasing, therefore we get (2.1) with some $a>0, b \in \mathbb{R}$; cf., e.g., Aczél [1] or Kuczma [6].

On the other hand, if continuous, strictly increasing functions $\varphi, \psi: I \rightarrow$ \mathbb{R} satisfy (2.1), then (1.1) can easily be verified.

Remark. Consider $a_{0}, b_{0} \in I$, and replace (2.3), (2.4) by the formulas

$$
\begin{align*}
& a_{n}=(\varphi+\psi)^{-1}\left(\varphi\left(a_{n-1}\right)+\psi\left(b_{n-1}\right)\right), \tag{2.9}\\
& b_{n}=(\varphi+\psi)^{-1}\left(\varphi\left(b_{n-1}\right)+\psi\left(a_{n-1}\right)\right) \tag{2.10}
\end{align*}
$$

$(n=1,2,3, \ldots)$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=\frac{a_{0}+b_{0}}{2} . \tag{2.11}
\end{equation*}
$$

Proof. For $x_{0}=\min \left\{a_{0}, b_{0}\right\}, y_{0}=\max \left\{a_{0}, b_{0}\right\}$ the x_{n}, y_{n} from (2.3), (2.4) are just

$$
x_{n}=\min \left\{a_{n}, b_{n}\right\}, \quad y_{n}=\max \left\{a_{n}, b_{n}\right\} .
$$

This, together with $x_{n} \uparrow \frac{1}{2}\left(x_{0}+y_{0}\right), y_{n} \downarrow \frac{1}{2}\left(x_{0}+y_{0}\right)$, and $x_{0}+y_{0}=a_{0}+b_{0}$ leads to (2.11).

Using Theorem 1 we are able to describe our solutions of equation (1.1) more precisely.

Theorem 2. The continuous, strictly increasing $\varphi, \psi: I \rightarrow \mathbb{R}$ solving (1.1) can be obtained in the following way:
I) We start with an arbitrary Lipschitz-continuous, strictly increasing function $\varphi: I \rightarrow \mathbb{R}$; let λ_{φ} denote its smallest Lipschitz-constant.
II) We determine $\psi: I \rightarrow \mathbb{R}$ by means of (2.1), where $b \in \mathbb{R}, a \geq \lambda_{\varphi}$ are arbitrary, but where the last inequality has to be replaced by $a>\lambda_{\varphi}$, if on a non-degenerate sub-interval of I the function φ is linear with slope λ_{φ}.

Proof. Let us begin with continuous, strictly increasing $\varphi, \psi: I \rightarrow \mathbb{R}$ solving (1.1). By Theorem 1 we have (2.1), and for $x, y \in I, x \leq y$ we get

$$
\varphi(y)-\varphi(x)=a(y-x)-\psi(y)+\psi(x) \leq a(y-x) .
$$

So a is a Lipschitz-constant for φ, hence $\lambda_{\varphi} \leq a$.
Let us suppose φ to be linear with slope λ_{φ} on some interval $[p, q] \subseteq I$ (where $p<q$). Then we have $\varphi(q)-\varphi(p)=\lambda_{\varphi}(q-p)$ and taking (2.1) for $x=q, x=p$ and subtracting we get

$$
\lambda_{\varphi}(q-p)+\psi(q)-\psi(p)=a(q-p) .
$$

Because of $\psi(p)<\psi(q)$, this implies $\lambda_{\varphi}<a$.
These considerations show that φ, ψ are included in the procedure given by I), II). Conversely it is easy to see that all functions φ, ψ obtained by I), II) are continuous and strictly increasing on I (in fact, it only remains to show that $\psi: I \rightarrow \mathbb{R}$ is strictly increasing). According to the construction they fulfil (2.1) with some $a, b \in \mathbb{R}$, hence they solve (1.1).
3. Background. The functional equation (1.1) is related to the question of invariance of a quasi-arithmetic mean with respect to a mean-type mapping defined by two quasi-arithmetic means. This question leads to

$$
\begin{equation*}
\varphi^{-1}\left(\frac{\varphi(x)+\varphi(y)}{2}\right)+\psi^{-1}\left(\frac{\psi(x)+\psi(y)}{2}\right)=x+y \quad(x, y \in I) \tag{3.1}
\end{equation*}
$$

where the unknown functions $\varphi, \psi: I \rightarrow \mathbb{R}$ are continuous and strictly increasing. Sutô [9] determined the analytic solutions of (3.1). The same solutions then had been found in [7] under the assumption of twice continuous differentiability and after this by Daróczy and Páles [3] in the general case.

Jarczyk and Matkowski [5], motivated by a more general invariance problem for weighted quasi-arithmetic means, considered the functional equation

$$
\begin{array}{r}
p \varphi^{-1}(q \varphi(x)+(1-q) \varphi(y))+(1-p) \psi^{-1}(r \psi(x)+(1-r) \psi(y)) \tag{3.2}\\
=p x+(1-p) y \quad(x, y \in I),
\end{array}
$$

where $p, q, r \in] 0,1[$ are arbitrarily given and the unknown $\varphi, \psi: I \rightarrow \mathbb{R}$ again are continuous and strictly increasing. They determined the twice continuously differentiable solutions of (3.2). Then Jarczyk [4] got the same solutions in the general case.

The means

$$
\begin{equation*}
A_{\varphi, \psi}(x, y)=(\varphi+\psi)^{-1}(\varphi(x)+\psi(y)) \quad(x, y \in I) \tag{3.3}
\end{equation*}
$$

had been introduced in [8]; we also can write them as

$$
A_{\varphi, \psi}(x, y)=\left(\frac{\varphi+\psi}{2}\right)^{-1}\left(\frac{\varphi(x)+\psi(y)}{2}\right) \quad(x, y \in I)
$$

For $\varphi=\psi$ we get the quasi-arithmetic mean generated by φ, and because of this we call $A_{\varphi, \psi}$ a quasi-arithmetic mean with two generators (φ and ψ). Let us observe that weighted quasi-arithmetic means are special cases of the means (3.3).

Using (3.3) we can write a functional equation considered by Baják and Páles [2] as

$$
\begin{equation*}
A_{\varphi_{1}, \psi_{1}}(x, y)+A_{\varphi_{2}, \psi_{2}}(x, y)=x+y \quad(x, y \in I) \tag{3.4}
\end{equation*}
$$

They determine all four times continuously differentiable solutions $\varphi_{1}, \psi_{1}, \varphi_{2}$, $\psi_{2}: I \rightarrow \mathbb{R}$ such that $\varphi_{1}^{\prime}(x), \psi_{1}^{\prime}(x), \varphi_{2}^{\prime}(x), \psi_{2}^{\prime}(x)>0(x \in I)$. Our functional equation (1.1) is a special case of (3.4), namely it can be written as

$$
\begin{equation*}
A_{\varphi, \psi}(x, y)+A_{\psi, \varphi}(x, y)=x+y \quad(x, y \in I) \tag{3.5}
\end{equation*}
$$

It should be mentioned that all the solutions of (1.1) which are given by our Theorem 1 already were known to Baják and Páles [2].

Let us finally observe that, when dividing (3.5) by two, this equation can be interpreted as invariance of the arithmetic mean with respect to the mean-type mapping $\left(A_{\varphi, \psi}, A_{\psi, \varphi}\right): I^{2} \rightarrow I^{2}$.
4. An application. Suppose the continuous, strictly increasing functions $\varphi, \psi: I \rightarrow \mathbb{R}$ solve (1.1), and let $f: I \rightarrow \mathbb{R}$ be arbitrary. Writing (3.5) instead of (1.1), we then get

$$
f\left(\frac{1}{2}\left(A_{\varphi, \psi}(x, y)+A_{\psi, \varphi}(x, y)\right)\right)=f\left(\frac{x+y}{2}\right) \quad(x, y \in I)
$$

This means that $F: I^{2} \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
F(x, y)=f\left(\frac{x+y}{2}\right) \quad(x, y \in I) \tag{4.1}
\end{equation*}
$$

fulfils the functional equation

$$
\begin{equation*}
F\left(A_{\varphi, \psi}(x, y), A_{\psi, \varphi}(x, y)\right)=F(x, y) \quad(x, y \in I) \tag{1.2}
\end{equation*}
$$

Now we shall see that under some continuity assumptions the solutions F : $I^{2} \rightarrow \mathbb{R}$ of (1.2) have the form (4.1).

Theorem 3. Let $\varphi, \psi: I \rightarrow \mathbb{R}$ be continuous, strictly increasing functions solving (1.1). Suppose $F: I^{2} \rightarrow \mathbb{R}$ to be continuous in the points of the diagonal $\{(x, x) \mid x \in I\}$. Then F solves the functional equation (1.2) if and only if there is a continuous $f: I \rightarrow \mathbb{R}$ such that (4.1) holds.

Proof. So let $F: I^{2} \rightarrow \mathbb{R}$ be a solution of (1.2) which is continuous in the points (x, x) from I^{2}. We consider $(x, y) \in I^{2}$, and for $a_{0}=x, b_{0}=y$ we define $a_{n}, b_{n}(n=1,2,3, \ldots)$ as in the Remark after Theorem 1. Observe that (2.9), (2.10) can be written as

$$
a_{n}=A_{\varphi, \psi}\left(a_{n-1}, b_{n-1}\right), b_{n}=A_{\psi, \varphi}\left(a_{n-1}, b_{n-1}\right) \quad(n=1,2,3, \ldots)
$$

Therefore we get from (1.2)

$$
F\left(a_{n}, b_{n}\right)=F\left(a_{n-1}, b_{n-1}\right) \quad(n=1,2,3, \ldots)
$$

and this implies

$$
\begin{equation*}
F\left(a_{n}, b_{n}\right)=F\left(a_{0}, b_{0}\right)=F(x, y) \quad(n=1,2,3 \ldots) \tag{4.2}
\end{equation*}
$$

Because of (2.11) we have $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=\frac{1}{2}\left(a_{0}+b_{0}\right)=\frac{1}{2}(x+y)$, and $n \rightarrow \infty$ in (4.2) leads to

$$
\begin{equation*}
F\left(\frac{x+y}{2}, \frac{x+y}{2}\right)=F(x, y) \tag{4.3}
\end{equation*}
$$

Let us define $f: I \rightarrow \mathbb{R}$ by $f(x)=F(x, x)(x \in I)$, then f is continuous, and (4.1) follows from (4.3).

Acknowledgement. This paper had been written during the second author's stay as Visiting Professor at the University of Zielona Góra in winter
$2007 / 2008$. He gratefully acknowledges the hospitality of the Faculty of Mathematics, Computer Science, and Econometrics of the University.

References

[1] J. Aczél, Lectures on functional equations and their applications. Academic Press New York 1966.
[2] Szabolcs Baják and Zsolt Páles, Invariance equation for generalized quasi-arithmetic means. Aequationes Math., to appear.
[3] Zoltán Daróczy and Zsolt Páles, Gauss-composition of means and the solution of the Matkowski-Sutô problem. Publ. Math. Debrecen 61, 157-218 (2002).
[4] Justyna Jarczyk, Invariance of weighted quasi-arithmetic means with continuous generators. Ibid. 71, 279-294 (2007).
[5] - and Janusz Matkowski, Invariance in the class of weighted quasiarithmetic means. Ann. Polon. Math. 88, 39-51 (2006).
[6] Marek Kuczma, An introduction to the theory of functional equations and inequalities, Cauchy's equation and Jensen's inequality. Państwowe Wydawnictwo Naukowe Warszawa 1985.
[7] Janusz Matkowski, Invariant and complementary quasi-arithmetic means. Aequationes Math. 57, 87-107 (1999).
[8] -, Remark 1 (at the Second Debrecen-Katowice Winter Seminar on Functional Equations and Inequalities Hajdúszoboszló 2002). Ann. Math. Silesianae 16, 93 (2003).
[9] Onosaburô Sutô, Studies on some functional equations, II. Tôhoku Math. J. 6, 82-101 (1914).

Typescript: Marion Ewald.
Authors' addresses:
J. Matkowski, Wydział Matematyki, Informatyki i Ekonometrii, Uniwersytet Zielonogórski, Podgórna 50, 65-516 Zielona Góra, Poland (E-mail: j.matkow ski@wmie.uz.zgora.pl); and: Instytut Matematyki Uniwersytet Śla̧ski, Bankowa 14, 40-007 Katowice, Poland.
P. Volkmann, Institut für Analysis, Universität, 76128 Karlsruhe, Germany.

