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A functional equation with two unknown functions

Janusz Matkowski and Peter Volkmann

1. Introduction. Throughout this paper I denotes a non-degenerate in-
terval in IR, i.e., I is a convex subset of IR with non-empty interior. We
determine all continuous, strictly increasing ϕ, ψ : I → IR such that

(ϕ+ ψ)−1(ϕ(x) + ψ(y)) + (ϕ+ ψ)−1(ϕ(y) + ψ(x))(1.1)

= x + y (x, y ∈ I);

this will be done in the next paragraph. The third paragraph contains some
background information concerning equation (1.1). For the moment we on-
ly like to mention that a more general equation (with four unknown func-
tions) had been solved by Baják and Páles [2], but under stronger regularity
conditions. In the last paragraph we give an application to the functional
equation

F (Aϕ,ψ(x, y), Aψ,ϕ(x, y)) = F (x, y) (x, y ∈ I),(1.2)

where (generally) Aϕ,ψ(x, y) = (ϕ+ ψ)−1(ϕ(x) + ψ(y)).

2. Solution of (1.1).

Theorem 1. Let ϕ, ψ : I → IR be continuous and strictly increasing. Then
(1.1) holds if and only if there are a, b ∈ IR, a > 0, such that

ϕ(x) + ψ(x) = ax + b (x ∈ I).(2.1)

Proof. Let (1.1) be true. We consider x0, y0 ∈ I and we like to show

(ϕ+ ψ)

(
x0 + y0

2

)
=

(ϕ+ ψ)(x0) + (ϕ+ ψ)(y0)

2
.(2.2)

We assume x0 ≤ y0 and define recursively

xn = min{(ϕ+ ψ)−1(ϕ(xn−1) + ψ(yn−1)),(2.3)

(ϕ+ ψ)−1(ϕ(yn−1) + ψ(xn−1))},

yn = max{(ϕ+ ψ)−1(ϕ(xn−1) + ψ(yn−1)),(2.4)

(ϕ+ ψ)−1(ϕ(yn−1) + ψ(xn−1))}
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(n = 1, 2, 3, . . . ). We get

[x0, y0] ⊇ [x1, y1] ⊇ [x2, y2] ⊇ . . . ,

hence

xn ↑ x̄, yn ↓ ȳ, x̄ ≤ ȳ.

When adding (2.3), (2.4), then (1.1) implies xn+yn = xn−1 +yn−1. Therefore
we have xn + yn = x0 + y0 (n = 1, 2, 3, . . . ), in the limit

x̄ + ȳ = x0 + y0.(2.5)

(2.3), (2.4) also can be written as

ϕ(xn) + ψ(xn) = min{ϕ(xn−1) + ψ(yn−1), ϕ(yn−1) + ψ(xn−1)},(2.6)

ϕ(yn) + ψ(yn) = max{ϕ(xn−1) + ψ(yn−1), ϕ(yn−1) + ψ(xn−1)}.(2.7)

Adding them we get

(ϕ+ ψ)(xn) + (ϕ+ ψ)(yn) = (ϕ+ ψ)(xn−1) + (ϕ+ ψ)(yn−1),

hence

(ϕ+ ψ)(xn) + (ϕ+ ψ)(yn) = (ϕ+ ψ)(x0) + (ϕ+ ψ)(y0)(2.8)

(n = 1, 2, 3, . . . ). Now n→ ∞ in (2.6), (2.7) gives

ϕ(x̄) + ψ(ȳ) = ϕ(x̄) + ψ(x̄) or ϕ(x̄) + ψ(ȳ) = ϕ(ȳ) + ψ(ȳ).

In both cases we get x̄ = ȳ, and because of (2.5) we have

x̄ = ȳ =
x0 + y0

2
.

Then n→ ∞ in (2.8) leads to (2.2).

Equation (2.2) is true for arbitrary x0, y0 ∈ I, and this means that ϕ +
ψ : I → IR is a solution of the Jensen functional equation. Furthermore
ϕ+ ψ is continuous and strictly increasing, therefore we get (2.1) with some
a > 0, b ∈ IR; cf., e.g., Aczél [1] or Kuczma [6].

On the other hand, if continuous, strictly increasing functions ϕ, ψ : I →
IR satisfy (2.1), then (1.1) can easily be verified.

Remark. Consider a0, b0 ∈ I, and replace (2.3), (2.4) by the formulas

an = (ϕ+ ψ)−1(ϕ(an−1) + ψ(bn−1)),(2.9)

bn = (ϕ+ ψ)−1(ϕ(bn−1) + ψ(an−1))(2.10)
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(n = 1, 2, 3, . . . ). Then

lim
n→∞

an = lim
n→∞

bn =
a0 + b0

2
.(2.11)

Proof. For x0 = min{a0, b0}, y0 = max{a0, b0} the xn, yn from (2.3), (2.4)
are just

xn = min{an, bn}, yn = max{an, bn}.
This, together with xn ↑ 1

2
(x0 + y0), yn ↓ 1

2
(x0 + y0), and x0 + y0 = a0 + b0

leads to (2.11).

Using Theorem 1 we are able to describe our solutions of equation (1.1)
more precisely.

Theorem 2. The continuous, strictly increasing ϕ, ψ : I → IR solving
(1.1) can be obtained in the following way:

I) We start with an arbitrary Lipschitz-continuous, strictly increasing func-
tion ϕ : I → IR; let λϕ denote its smallest Lipschitz-constant.

II) We determine ψ : I → IR by means of (2.1), where b ∈ IR, a ≥ λϕ are
arbitrary, but where the last inequality has to be replaced by a > λϕ, if on a
non-degenerate sub-interval of I the function ϕ is linear with slope λϕ.

Proof. Let us begin with continuous, strictly increasing ϕ, ψ : I → IR
solving (1.1). By Theorem 1 we have (2.1), and for x, y ∈ I, x ≤ y we get

ϕ(y) − ϕ(x) = a(y − x) − ψ(y) + ψ(x) ≤ a(y − x).

So a is a Lipschitz-constant for ϕ, hence λϕ ≤ a.

Let us suppose ϕ to be linear with slope λϕ on some interval [p, q] ⊆ I
(where p < q). Then we have ϕ(q) − ϕ(p) = λϕ(q − p) and taking (2.1) for
x = q, x = p and subtracting we get

λϕ(q − p) + ψ(q) − ψ(p) = a(q − p).

Because of ψ(p) < ψ(q), this implies λϕ < a.

These considerations show that ϕ, ψ are included in the procedure given
by I), II). Conversely it is easy to see that all functions ϕ, ψ obtained by I),
II) are continuous and strictly increasing on I (in fact, it only remains to
show that ψ : I → IR is strictly increasing). According to the construction
they fulfil (2.1) with some a, b ∈ IR, hence they solve (1.1).

3. Background. The functional equation (1.1) is related to the question
of invariance of a quasi-arithmetic mean with respect to a mean-type mapping
defined by two quasi-arithmetic means. This question leads to

ϕ−1

(
ϕ(x) + ϕ(y)

2

)
+ ψ−1

(
ψ(x) + ψ(y)

2

)
= x+ y (x, y ∈ I),(3.1)
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where the unknown functions ϕ, ψ : I → IR are continuous and strictly
increasing. Sutô [9] determined the analytic solutions of (3.1). The same
solutions then had been found in [7] under the assumption of twice continuous
differentiability and after this by Daróczy and Páles [3] in the general case.

Jarczyk and Matkowski [5], motivated by a more general invariance pro-
blem for weighted quasi-arithmetic means, considered the functional equation

pϕ−1(qϕ(x) + (1 − q)ϕ(y)) + (1 − p)ψ−1(rψ(x) + (1 − r)ψ(y))(3.2)

= px + (1 − p)y (x, y ∈ I),

where p, q, r ∈]0, 1[ are arbitrarily given and the unknown ϕ, ψ : I → IR again
are continuous and strictly increasing. They determined the twice continuous-
ly differentiable solutions of (3.2). Then Jarczyk [4] got the same solutions
in the general case.

The means

Aϕ,ψ(x, y) = (ϕ+ ψ)−1(ϕ(x) + ψ(y)) (x, y ∈ I)(3.3)

had been introduced in [8]; we also can write them as

Aϕ,ψ(x, y) =

(
ϕ+ ψ

2

)−1 (
ϕ(x) + ψ(y)

2

)
(x, y ∈ I).

For ϕ = ψ we get the quasi-arithmetic mean generated by ϕ, and because
of this we call Aϕ,ψ a quasi-arithmetic mean with two generators (ϕ and ψ).
Let us observe that weighted quasi-arithmetic means are special cases of the
means (3.3).

Using (3.3) we can write a functional equation considered by Baják and
Páles [2] as

Aϕ1,ψ1(x, y) + Aϕ2,ψ2(x, y) = x+ y (x, y ∈ I).(3.4)

They determine all four times continuously differentiable solutions ϕ1, ψ1, ϕ2,
ψ2 : I → IR such that ϕ′

1(x), ψ′
1(x), ϕ′

2(x), ψ′
2(x) > 0 (x ∈ I). Our functional

equation (1.1) is a special case of (3.4), namely it can be written as

Aϕ,ψ(x, y) + Aψ,ϕ(x, y) = x + y (x, y ∈ I).(3.5)

It should be mentioned that all the solutions of (1.1) which are given by our
Theorem 1 already were known to Baják and Páles [2].

Let us finally observe that, when dividing (3.5) by two, this equation
can be interpreted as invariance of the arithmetic mean with respect to the
mean-type mapping (Aϕ,ψ, Aψ,ϕ) : I2 → I2.
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4. An application. Suppose the continuous, strictly increasing functions
ϕ, ψ : I → IR solve (1.1), and let f : I → IR be arbitrary. Writing (3.5)
instead of (1.1), we then get

f(1
2
(Aϕ,ψ(x, y) + Aψ,ϕ(x, y))) = f

(
x + y

2

)
(x, y ∈ I).

This means that F : I2 → IR defined by

F (x, y) = f

(
x+ y

2

)
(x, y ∈ I)(4.1)

fulfils the functional equation

F (Aϕ,ψ(x, y), Aψ,ϕ(x, y)) = F (x, y) (x, y ∈ I).(1.2)

Now we shall see that under some continuity assumptions the solutions F :
I2 → IR of (1.2) have the form (4.1).

Theorem 3. Let ϕ, ψ : I → IR be continuous, strictly increasing functions
solving (1.1). Suppose F : I2 → IR to be continuous in the points of the
diagonal {(x, x) | x ∈ I}. Then F solves the functional equation (1.2) if and
only if there is a continuous f : I → IR such that (4.1) holds.

Proof. So let F : I2 → IR be a solution of (1.2) which is continuous in
the points (x, x) from I2. We consider (x, y) ∈ I2, and for a0 = x, b0 = y
we define an, bn (n = 1, 2, 3, . . . ) as in the Remark after Theorem 1. Observe
that (2.9), (2.10) can be written as

an = Aϕ,ψ(an−1, bn−1), bn = Aψ,ϕ(an−1, bn−1) (n = 1, 2, 3, . . . ).

Therefore we get from (1.2)

F (an, bn) = F (an−1, bn−1) (n = 1, 2, 3, . . . ),

and this implies

F (an, bn) = F (a0, b0) = F (x, y) (n = 1, 2, 3 . . . ).(4.2)

Because of (2.11) we have lim
n→∞

an = lim
n→∞

bn = 1
2
(a0 + b0) = 1

2
(x + y), and

n→ ∞ in (4.2) leads to

F

(
x + y

2
,
x+ y

2

)
= F (x, y).(4.3)

Let us define f : I → IR by f(x) = F (x, x) (x ∈ I), then f is continuous,
and (4.1) follows from (4.3).
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