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Abstract

In this article, we present two new algorithms for solving given triangular systems
in parallel on a shared memory architecture. Multilevel incomplete LU factorization
based preconditioners, which have been very successful for solving linear systems
iteratively, require these triangular solves. Hence, the algorithms presented here can
be seen as parallelizing the application of these preconditioners.

The first algorithm solves the triangular matrix by block anti-diagonals. The
drawback of this approach is that it can be difficult to choose an appropriate block
structure. On the other hand, if a good block partition can be found, this algorithm
can be quite effective. The second algorithm takes a hybrid approach by solving
the triangular system by block columns and anti-diagonals. It is usually as effective
as the first algorithm, but the block structure can be chosen in a nearly optimal
manner.

Although numerical results indicate that the speed-up can be fairly good, systems
with matrices having a strong diagonal structure or narrow bandwidth cannot be
solved effectively in parallel. Hence, for these matrices, the results are disappointing.
On the other hand, the results are better for matrices having a more uniform
distribution of non-zero elements.

Although not discussed in detail, these algorithms may also be suitable for a dis-
tributed memory architecture.

Key words: preconditioning, iterative methods, sparse linear systems, parallelization.

AMS subject classification: 65F10, 65F50, 65Y05.

1 Introduction

In this article, we introduce two new parallel algorithms for solving sparse triangular
systems intended for use on a desktop PC or workstation having a shared memory ar-
chitecture. A large number of such triangular systems need to be solved when using
incomplete LU-factorization based preconditioners as part of an iterative method for
solving large, sparse linear systems of equations. In fact, this is the main application area
that we have in mind when developing the algorithms.

When preconditioning in a parallel environment, one would ideally obtain parallel linear
systems by splitting the large linear systems into smaller ones. Domain decomposition
methods, for example, go in this direction, but they are certainly not applicable to all
problems. The second best approach is to parallelize as much as possible the algorithm
for solving the (single) linear system. Generally, these approaches make use of the special
structure of the matrices or preprocess the matrix to obtain a structure more suitable for
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parallelization. In particular, when using an incomplete LU factorization based precon-
ditioner in a parallel environment, it would be ideal to reorder rows and columns of the
coefficient matrix to reduce fill-in during factorization and to allow for the best possible
use of parallelism both during the factorization and solve phase. However, a significant
number of difficult problems require either reordering prior to factorization and/or piv-
oting during factorization to increase robustness and to avoid small pivots, see e.g. [1],
[6], [7], [12], [15] for reordering and [2], [10] for pivoting strategies. Thus, reordering such
problems to allow for better parallelism may not be an option. Furthermore, even when
efficient parallel algorithms for computing incomplete factorizations and for performing
the corresponding triangular solves are conceivable and feasible, such algorithms or their
implementation in software may not (yet) exist. This is certainly the case for many mul-
tilevel incomplete LU-based preconditioners designed for relatively unstructured sparse
matrices, such as those implemented in [3] or [11]. However, common to either scenario
is that we need to solve linear systems with a given sparse lower triangular matrix L

and sparse upper triangular matrix U , usually both with a unit diagonal as efficiently as
possible.

Hence, the goal of this article is to provide algorithms for the triangular solves that
are as parallel as possible. In other words, given that the only option to solve some
triangular linear systems is to use the usual sequential algorithm and given that most
current PCs and workstations have at least a single dual core processor (and often quite
more), having one processor doing much of the work and having the other processors
doing anything useful is certainly an improvement over having one processor doing all
the work and having the other processors doing nothing. With this approach, we cannot
expect the speed-up or efficiency that we would usually want from parallel algorithms.
However, any speed-up is better than none, as in most situations we have nothing to
gain from having idle processors. On the other hand, the big advantage of an algorithm
developed in this context is that it is relatively universal. All incomplete LU-factorization
based preconditioners result in sparse factors L and U so that having a single parallel
algorithm that can be used for all sparse triangular matrices is certainly attractive and
an improvement over the current situation, where sequential algorithms are used in many
cases.

The idea behind the first parallel algorithm which we present in this paper is to split L

(or U) into blocks by both rows and columns. Note that the partitioning that leads to
the block structure can be non-uniform and different for the rows and columns, providing
for significant flexibility. In doing triangular solves Lx = y, different blocks on the same
anti-diagonal of L access different sections of x and y, allowing a fixed block anti-diagonal
to be processed in parallel. Although this algorithm can be quite effective, selecting the
appropriate block structure is not straightforward and indeed for an arbitrary matrix it
is probably impossible in practice to find the best block structure.

The second algorithm divides the coefficient matrix into two different types of regions,
each of which can be processed in parallel. We refer to it as the hybrid algorithm. The first
region type consists of a diagonal block and part of a block column, the block column
beginning on the same block anti-diagonal as the diagonal block. The second region
type is just a single block whose rows can be processed in parallel. Although dividing
the matrix in such regions appears to be quite unnatural, selecting the actual blocks
structure can be done optimally in a particular sense. Usually, the performance of this
algorithm is comparable to the first algorithm, but unlike the first algorithm, the block
structure of the matrix is determined automatically.
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Although we also considered other options for parallel solving, such as processing L by
block rows or columns, the results were worse in all cases tested. We will mention these
options in the sequel mainly because they provide the motivation for considering other
algorithms, but we will not go into details.

As indicated above, the speed-up and efficiency is not as good as what we would expect for
algorithms parallelized for more specific problems. In particular, the algorithms presented
require significant communication which becomes a bottleneck as the number of threads
increases. As this is a common problem for parallel algorithms, this drawback may become
less significant on future architectures. Currently, however, it seems that using more
than 4 threads is often counterproductive, actually increasing computation time for some
matrices. Nevertheless, for many desktop PCs, even this modest degree of parallelization
is an improvement. Additionally, using a parallel algorithm for only a few threads may
be attractive if this approach can be combined with a procedure which reduces a large
linear system to numerous smaller ones, e.g. domain decomposition methods.

In addition to the drawbacks mentioned above, it should be pointed out that the paral-
lelization is not efficient for triangular matrices having a (tight) band structure and/or
for extremely sparse matrices. In particular, if L is a block diagonal matrix, then the
blocks can be solved in parallel, but these algorithm will not find or use this structure.
Given that parallelization is straightforward in this case and that such a block structure
is unlikely to occur coincidentally, this drawback is not very serious as the appropriate
algorithm can be used easily. The worst-case situation, however, is a lower triangular
bidiagonal matrix, for which the solve cannot be parallelized at all. However, this is not
the fault of any algorithm as solving such matrices is inherently sequential. Hence, drop-
ping entries on the off-diagonal to create a diagonal block matrix may be worthwhile and
acceptable if the matrix L is used as a part of a preconditioner.

Nevertheless, such a band structure above is unlikely if L stems from an incomplete
factorization of a very poorly conditioned coefficient matrix for which the incomplete
factorization requires pivoting and/or one of the modern ordering techniques described
in [12] or [15]. In this case, any reordering taking the numerical values of the non-zero
elements of the coefficient matrix and not just their location into account and any pivoting
is likely to destroy any inherent structure that might otherwise be in L, leading to a more
uniform distribution of elements in L. This is certainly better for the parallelism exploited
by these algorithms than any band structure.

In the next section, we provide the necessary definitions and background information
including the sequential algorithm for triangular solves. We continue with block anti-
diagonal based triangular solve and discuss the selection of the appropriate block struc-
ture. We also introduce the appropriate matrix format, the parallel solve format (PS),
for implementing a parallel triangular solve algorithm effectively as well as the parallel
solve algorithm itself. The hybrid algorithm, which is introduced next, also uses the PS
format. Although this article contains all the technical details needed to implement these
algorithms, these sections have been clearly marked and can be skipped. We continue
with numerical results for the lower triangular matrices obtained by modern multilevel
preconditioners. We conclude with a few comments on the possibility and difficulty of
implementing these algorithms on a distributed memory architecture.
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2 Background and Notation

For this entire article, we will assume that L is a lower triangular matrix with unit diag-
onal. We begin by recalling the standard forward substitution for solving linear systems
with L. The same algorithms can be used for general lower triangular matrices L̃ not
having a unit diagonal by factoring L̃ = DL, where D = diag(L̃) is the diagonal matrix
containing the diagonal of L̃. Alternatively, these algorithms can easily be modified to
take general lower triangular matrices into account by dividing by the diagonal element
at the appropriate places. Furthermore, unless indicated otherwise, all algorithms can be
modified in an obvious manner so that they can be used for upper triangular matrices U

with unit diagonal.

2.1 Standard Sequential Triangular Solve

Before discussing different parallel implementations, we recall the standard sequential
algorithm. Let L ∈ R

d×d be a unit lower triangular matrix and y ∈ R
d. The following

algorithm returns the solution x of the linear system Lx = y.

Algorithm 2.1 (Triangular Solve)

1. x = y

2. for i = 2, . . . , d

3. for j = 1, . . . , i − 1

4. xi = xi − lijxj

5. end for j

6. end for i

2.2 Block Matrices and Vectors

The class of algorithms presented in the sequel aim at dividing L into a block matrix
and using the naturally occurring parallelism. Before continuing, we need to specify the
notation.

Definition 2.2 (a) Let v ∈ R
d. We call a set R = {r1, . . . , rM+1} of integers satisfying

1 = r1 < . . . < rM+1 = d + 1 a block partition or just partition for v. A block
partition defines a M -dimensional block vector vR having blocks vR

m, m = 1, . . . ,M
such that vR

m = (vi), i = rm, . . . , rm+1 − 1.

(b) Let A ∈ R
d×d. We call a pair of two sets of integers (R,S) with R = {r1, . . . , rM+1}

and S = {s1, . . . , sN+1} satisfying 1 = r1 < . . . < rM+1 = d + 1 and 1 = s1 <

. . . < sN+1 = d + 1 a block partition or just partition for A. A block partition

defines a (M ×N) block matrix A(R,S) having blocks Amn = A
(R,S)
mn , m = 1, . . . ,M ,

n = 1, . . . , N such that A
(R,S)
mn = (aij), i = rm, . . . , rm+1 − 1, j = sn, . . . , sn+1 − 1.

2.3 A First Approach to Parallel Triangular Solves

Before discussing how parallel solves can be done fairly efficiently, we need to briefly
address naive approaches for two reasons. First of all, when addressing algorithmic ques-
tions, knowing what does not work well is just as important as knowing what works well.
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Figure 1: Illustration of triangular solve by block columns. Lower triangular blocks must
be processed sequentially. Blocks shaded identically can be processed in parallel by rows.
Light blocks are solved first.

Secondly, understanding one of the naive approaches is useful for improving one of the
algorithms presented in the sequel.

The first naive possibility is to interpret line 4 of Algorithm 2.1 as a scalar product of
the (sparse) ith row of L with the (dense) vector x and to compute this scalar product in
parallel. However, as already observed in [14] section 11.6.1, the row of L usually contains
very few non-zero elements and the threads have to be synchronized d times, resulting
in very poor performance. Thus, this approach is useless.

Alternatively, it is possible to split L into a block matrix using the same partition for
rows and columns. Then it is possible to solve all diagonal blocks sequentially and all
rows occurring in the same block column in parallel, see Figure 1. Similarly, it would
be possible to solve L in parallel by block rows. Generally, either approach is highly
ineffective because the lower triangular blocks must be processed sequentially and often
these blocks are amongst the densest in the entire matrix. Hence, we need algorithms
which allow useful work to be done while the lower triangular blocks are being processed.

3 Parallel Triangular Solve by Block Anti-Diagonals

3.1 Various Versions of the Basic Algorithm

Using given partitions R = {r1, . . . , rM+1} and S = {s1, . . . , sN+1} of L, we can rearrange
the operations in Algorithm 2.1 so that we process L by increasing block anti-diagonals.

Algorithm 3.1 (Triangular Solve by Block Anti-Diagonals in Explicit Form)

1. x = y

2. for k = 2, . . . ,M + N

3. for m,n : m,n ≥ 1 and m + n = k

4. for i = rm, . . . , rm+1 − 1
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5. for j = sn, . . . , sn+1 − 1 and j < i

6. xi = xi − lijxj

7. end for j

8. end for i

9. end for m,n

10. end for k

The previous algorithm is perhaps a bit clearer in block notation. Let L̂ be L with the
diagonal set to 0, i.e. L̂ = L − I, I being the identity matrix. Note that the triangular
solve only requires matrix-vector-multiplication of blocks of L̂ with blocks of x.

Algorithm 3.2 (Triangular Solve by Block Anti-Diagonals in Block Form)

1. x = y

2. for k = 2, . . . ,M + N

3. for m,n : m,n ≥ 1 and m + n = k

4. xS
m = xS

m − L̂
(R,S)
mn xR

n

5. end for m,n

6. end for k

It is clear that blocks corresponding to a fixed k, i.e. lying on the same block anti-
diagonal, can be processed in parallel for a triangular solve because the reading and
writing in x is disjoint for processing the various blocks. Only a block containing part
of the diagonal of L requires reading from and writing to x at identical positions. Note
that the terms “diagonal block” and “block containing part of the diagonal” are not
synonymous. In fact, when the sizes of the row and column partitions are different,
speaking of a diagonal block makes no sense. But even when the sizes of the partions are
equal, but the partitions themselves are different, then a block diagonal element does not
necessarily contain part of the diagonal and the diagonal must not be contained entirely
in block diagonal elements, see Figure 2. On the other hand, if the same partition is used
for rows and columns, then the two concepts are synonymous.

However, not just the blocks on any block anti-diagonal can be processed in parallel —
all rows in all blocks, except for those in any block containing part of the diagonal, can
be processed independently. In other words, a block containing part of the diagonal must
be assigned entirely to a single processor, but all other blocks can be subdivided further
by rows and different rows may be assigned to different processors. The parallelism just
described is illustrated in Figure 2.

Algorithm 3.3 (Parallel Triangular Solve by Anti-Diagonals in Explicit Form)

1. x = y

2. for k = 2, . . . ,M + N

3. parallel for m,n : m,n ≥ 1 and m + n = k

4. parallel if {rm, . . . , rm+1 − 1} and {sn, . . . , sn+1 − 1} are disjoint

5. parallel for i = rm, . . . , rm+1 − 1

6. for j = sn, . . . , sn+1 − 1 and j < i

7. xi = xi − lijxj

8. end for j

9. end for i

10. else (process block containing part of the diagonal sequentially)

11. for i = rm, . . . , rm+1 − 1
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Figure 2: Illustration of triangular solve with block partition. Blocks shaded identically
can be processed in parallel by rows, but all elements of a block containing part of the
diagonal must be assigned to a single processor. Light blocks are processed first.

12. for j = sn, . . . , sn+1 − 1 and j < i

13. xi = xi − lijxj

14. end for j

15. end for i

16. end if

17. end for m,n

18. end for k

Note that in line 4, the algorithm checks if a block contains part of the diagonal. Further-
more, parallel indicates that both branches of if or all loops of for can be processed in
parallel. Other loops must be processed sequentially. For this algorithm, one branch of
the if -clause is assigned to one processor and the other branch, which can be processed
in parallel, is distributed amongst all processors, possibly, but not necessarily including
the processor to which the block containing part of the diagonal was assigned.

For the data distribution, we use the following approach. First, we count the number
of non-zero elements in any block containing the diagonal and the number of non-zero
elements in each row in the remaining blocks which can be processed in parallel. We
determine the ideal number of elements per processor, which is defined to be the total
number of non-zero elements divided by the number of processors. We assign all rows of
any block containing part of the diagonal to a single processor. If this block contains less
than the ideal number of non-zero elements, then we assign further rows to this processor
until we reach the ideal number of elements. Then we assign rows to the next processor,
again until we reach the ideal number of non-zero elements. We proceed similarly for each
processor. On the other hand, if the block containing the diagonal has more than the
ideal number of non-zero elements, no further rows are assigned to this processor. In this
case, we redefine the ideal number of non-zero elements to be the number of non-zero
elements of the remaining blocks divided by the number of remaining processors and
proceed as before. Details on the implementation of the data distribution depend on the
matrix formats used, so these will be addressed in Section 3.4.

7



Even though a more sophisticated approach for distributing the rows is conceivable,
e.g. distributing rows with the most non-zero elements first, usually the rows in each
block contain a fairly small number of non-zero elements, so that we obtain a uniform
distribution of the data by using this simple method. Indeed, the biggest problem occurs
whenever the block containing part of the diagonal has many non-zero elements because
they cannot be distributed. Hence, the prime goal in selecting a partition is to keep
the number of non-zero elements in these blocks small (relative to the total number of
non-zero elements to be distributed).

3.2 Partition Construction

To obtain good parallelization, we should try to select fairly coarse partitions because then
we will need to synchronize the processors and restart threads less frequently. However,
blocks containing part of the diagonal should not contain too many non-zero elements
because these cannot be distributed to different processors. As these blocks constitute
the main bottleneck for effective parallelization, we will prescribe the ideal number ∆ of
non-zero elements in any block containing part of the diagonal and use this restriction
to select the partition. Additionally, we require the partitions for rows and columns to
be the same.

Although we also experimented with different approaches allowing for different partitions,
such counting elements in the rows and columns of L and determining the partitions so
that the number of elements in the resulting block rows and columns would be similar,
the performance was worse, so we will not consider them here. Nevertheless, more in-
vestigation is warranted because using different partitions for rows and columns is an
attractive option. If we use the same partition of cardinality N +1 for rows and columns,
then we have exactly N diagonal blocks and 2N − 1 block anti-diagonals. However, if
we use different partitions for rows and columns, we may be able to distribute elements
close to the diagonals more effectively so that more block anti-diagonals contain part of
the diagonal. If this could be done in such a manner that each block containing part of
the diagonal contains fewer non-zero elements then we might be able to obtain a more
uniform data distribution to the processors, because these blocks must be assigned to a
single processor. Unfortunately, it is not clear how this could be done effectively, so we
continue with the simple approach.

Hence, for the simple approach, we scan the rows of L by increasing indices and insert a
break whenever this will result in a diagonal block containing approximately ∆ non-zero
elements. In other words, the first row break is inserted so that the top triangular block
has the prescribed number of non-zero elements ∆ and we insert a column break with the
same index. We continue and insert a second row break, if the resulting triangular block
again has the prescribed number of non-zero elements and insert a column break with
the same index. Continuing in this fashion, we obtain the required partitions. We assume
that L is stored either in compressed sparse row (CSR) or compressed sparse column
format (CSC). For details on these formats, consult [14]. If L is stored in CSR format,
then implementing this approach is straightforward. If L is stored in CSC format, we can
read L by increasing rows by using the auxiliary structure described in [4] consisting of
two vectors Lfirst and Llink of dimension d. For an upper triangular matrix U , the
approach is similar, except that the rows should be processed in descending order. This
procedure for L is summarized in Algorithm 3.4.
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Algorithm 3.4 (Anti-Diagonal-Based Partition Construction)

1. Initialize partition: s1 = 1

2. ps = 1 (current size of partition)

3. CurrentNNZ = 0

4. for i = 1, . . . , d

5. for j = 1, . . . , i − 1 and lij 6= 0

6. if j ≥ sps
7. CurrentNNZ = CurrentNNZ+ 1

8. end if

9. end for j

10. if CurrentNNZ ≥ ∆

11. ps = ps + 1, sps = i

12. CurrentNNZ = 0

13. end if

14. end for i

15. if sps 6= d: ps = ps + 1, sps = d

If the partition of L is fairly coarse, i.e. if each block has a large number of rows, then
we would expect most columns of the block anti-diagonal to have non-zero elements. In
this case, the algorithm above is efficient. However, if the partition is quite fine and/or
a large number of columns are empty, then checking every column while scanning each
anti-diagonal is inefficient. In this case, a linked list may be used to keep track of those
columns which have elements in the current block anti-diagonal. A similar approach is
used in the implementation of ILUC, see [4]. However, parallization is only efficient if the
blocks are fairly large, so that using linked lists offers no advantage in practice. Indeed,
initial numerical tests supported this, so that we will not pursue using linked lists any
further.

Although the partition as constructed by Algorithm 3.4 depends on the parameter ∆, the
performance of the parallel solve in terms of the computation time is fairly constant for
a large range of ∆. Often variations of one or two orders of magnitude in ∆ do not effect
the computation time by more than 10%. Nevertheless, a good choice for ∆ depends on
L, so we also consider algorithms for which all parameters can be fixed. However, we
continue first with the implementation details of this algorithm.

3.3 The Parallel Solve Format for a Triangular Matrix (PS Format)

Here, we begin providing the technical details needed for storing L in such a manner that
it can be solved effectively in parallel. For parallel solves to be efficient, all processors need
to access the data sequentially. We call this the parallel solve (PS) format for triangular
matrices.

Suppose we have P processors and that the matrix L consist of K regions that can be
solved in parallel, e.g. for Algorithm 3.3, we have K = M + N − 1 and the regions that
can be processed in parallel are the block anti-diagonals. The parallel solve data format
requires an array of integers pointer of dimension K ·P + 1 and three parallel arrays of
dimension equal to the number of non-zero elements of L. Two of these arrays, rowind
and colind are integer arrays, and one, values, is a real array. pointer is a pointer array
indicating the beginning and end of the data in step k, k = 1, . . . ,K which is assigned
to a particular processor. The actual data of L is stored in the parallel arrays rowind,
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colind and values. rowind and colind store the row and column indices of the non-zero
elements of L and values stores the corresponding values of lij. The elements of L that
can be processed by processor p in step k are stored in the positions q of rowind, colind,
values satisfying pointer[P · (k − 1) + p] ≤ q < pointer[P · (k − 1) + p + 1]. Hence, the
triangular solve can be performed in parallel by the following algorithm. Here, x and y

denote arrays for storing the vectors x and y.

Algorithm 3.5 (Parallel Triangular Solve in Explicit Form for the PS Format)

1. x = y

2. for k = 1, . . . ,K

3. parallel for for each processor p = 1, . . . , P

4. for q = pointer[P ∗ (k − 1) + p], . . . , pointer[P ∗ (k − 1) + p + 1] − 1

5. x[rowind[q]] = x[rowind[q]] − values[q] ∗ x[colind[q]]

6. end for q

7. end parallel for p

8. end for k

Memory may be reduced slightly by storing parallel regions in CSR or CSC format. In this
case, we can replace one of the integer arrays rowind or colind by an array which will
usually be smaller. Nevertheless, the savings are small, so that we deemed it preferable to
use a format which will allow for a slightly simpler implementation of the parallel solve.

3.4 Conversion to PS Format for the Parallel Block Anti-Diagonal Al-
gorithm

We continue with the technical details by describing how an arbitrary unit lower trian-
gular matrix L can be converted efficiently into the PS format using the parallelism of
Algorithm 3.3. Recall that the CSC format is the usual format when L is obtained by
ILUC, an incomplete LU-factorization based on Crout’s implementation, see [4] so we
will assume that L is stored in this format. A few comments for conversion from other
formats can be found at the end of this section. We also assume that a block partition
(R,S) has been selected for L.

As L is stored in CSC format, we have an integer array cpointer of dimension n+1 and
two parallel arrays, indices and data, of dimension equal to the number of non-zero
elements of L, the former being an integer array and the latter a real array. For the j-th
column, the values lij and the corresponding row indices i are stored in the arrays data
and indices at the positions cpointer[j] to cpointer[j + 1] − 1. For details, see [14].

Before discussing details, we summarize the general idea of the algorithm. For a given
block anti-diagonal, we scan L by columns and count the number of non-zero elements
in each row in that block anti-diagonal. Based on this information, each row is assigned
to a particular processor. Then, in a second scan, we copy the elements of L to the
arrays rowind, colind and values, grouping rows that have been assigned to the same
processor. We proceed by increasing processor number. Once this has been completed,
we update pointer. We continue until all block anti-diagonals of L have been copied,
beginning with the anti-diagonal containing the initial block L11.

For an efficient implementation, we also need an integer arrays first of dimension d.
The array first is initialized to equal the first d elements of cpointer so that it points
to the beginning of the columns of L. For k = 2, . . . ,M + N , we scan the kth block
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anti-diagonal whose block elements Lmn satisfy m + n = k. At the beginning of the kth
step, the jth element of first points to the position in data and indices corresponding
to the first element in the jth column contained the kth (or higher) block anti-diagonal,
i.e. to the first element contained in a block Lmn satisfying m + n ≥ k. For each column
j, we scan the array indices starting at position first[j] until we reach the first index
outside of the kth block anti-diagonal. During scanning, we count the number of non-zero
elements in each row contained in the kth block anti-diagonal. Based on this information,
we assign each row to a processor. Then, we scan the same region of the matrix again
using first and copy the data to PS format. We also update first and pointer. For
the algorithm we also need two d-dimensional arrays nnz row and assign to respectively
store the number of non-zero elements in each row and the assignment of each row to
a processor. Additionally, we have two P -dimensional arrays nnz and wp to store the
number of non-zero elements assigned to each processor and to store the write position
in the PS format for each processor.

Algorithm 3.6 (Anti-Diagonal Based Conversion of CSC to PS Format)

1. pointer[1] = 1, h = 1 (write position for rowind, colind, values)

2. initialize first: first = cpointer[1 : d]

3. for k = 2, . . . ,M + N

Analysis Phase:
count number of elements in each row of block anti-diagonal

4. nnz row = 0

5. for m,n : m,n ≥ 1 and m + n = k

6. for j = sn, . . . , sn+1 − 1

7. r = first[j]

8. while r < cpointer[j + 1] and indices[r] < sn+1

9. nnz row[indices[r]] = nnz row[indices[r]] + 1, r = r + 1

10. end while

11. end for j

12. end for m,n

Assignment Phase:
Assign rows, determine write positions, update pointer

13. Assign each row to a processor p: row i is assigned to processor assign[i].

14. Determine number of non-zero elements nnz[p] for each processor p

15. wp[1] = pointer[P ∗ (k−2)+1] (write position for data for first processor)

16. for p = 2, . . . , P

17. wp[p] = wp[p − 1] + nnz[p − 1]

18. pointer[P ∗ (k − 2) + p] = wp[p]

19. end for p

20. pointer[P ∗ (k − 1)] = pointer[P ∗ (k − 1) − 1] + nnz[P ]

Copy Phase: copy data to parallel solve format

21. for m,n : m,n ≥ 1 and m + n = k

22. for j = sn, . . . , sn+1 − 1

23. r = first[j]

11



24. while r < cpointer[j + 1] and indices[r] < sn+1

25. i = indices[r] (row index of current element)

26. h = wp[assign[i]] (current write position)

27. colind[h]=j, rowind[h]=indices[r], values[h]=data[r]

28. r = r + 1, wp[assign[i]] = wp[assign[i]] + 1

29. end while

30. update first: first[j] = h

31. end for j

32. end for m,n

End Copy Phase

33. end for k

Note that here we set k = 2, . . . M +N as in Algorithm 3.3. This is natural in this context
as opposed to k = 1, . . . K with K = M + N − 1 as one might expect for the PS format.

Perhaps a few words of explanation are needed for line 14 and line 15 of Algorithm 3.6.
It is possible to assign all rows by increasing row indices, so that any block containing
part of the diagonal is assigned first. Specifically, we assign all of these rows to the first
processor. As the number of non-zero elements in each row is stored in nnz row, we can
determine the total number of non-zero elements in the entire block anti-diagonal as a
sum of elements in nnz row. Next, we can determine the number of non-zero elements
that should be assigned to each processor. Here, we have two scenarios: if the number of
non-zero elements already assigned to the first processor is more than the ideal, i.e. more
than the total number of non-zero elements divided by P , then the workload for the first
processor is already above the ideal, so that no further non-zero elements are assigned to
this processor. Then we determine the number of elements that should be distributed to
each of the remaining processors as the quotient of the total number of remaining non-zero
elements divided by the number of remaining processors P −1. Note that we have already
processed any block containing part of the diagonal and we know the total number of
non-zero elements in the entire block anti-diagonal, so that we can actually determine
the intended workload for each processor. On the other hand, if the first processor has
a workload that is below the ideal, then we can assign it the difference between the
ideal and the number of non-zero elements that it has already been assigned to process.
Furthermore, we also intend for the remaining processors to process the ideal number of
non-zero elements. So, we continue assigning the rows of the block anti-diagonal to the
processor with lowest index p whose current workload is less than the intended workload.
Whenever a processor has just reached its intended workload, we assign subsequent rows
to the next processor.

Finally, we need to address the conversion of L from other formats to PS format as well
as the conversion for a unit upper triangular matrix U . If L is stored in CSR format, we
can just read L by rows, reading each row upto the index, where the next block anti-
diagonal begins. We store this position as the starting point for reading the next block
anti-diagonal. Hence, the implementation is straightforward and simpler than when L is
stored in CSC format. Similarly, we can convert U from CSR format to PS format, the
only difference being that the rows of U should now be read in descending order. For U

stored in CSC format, we need to also read the rows in descending order. This can be
accomplished by modifying the use of Lfirst and Llink appropriately.
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4 The Hybrid Anti-Diagonal-Column Algorithm

4.1 Description of the Algorithm

The main drawback of the anti-diagonal oriented algorithm is the dependency of the
partition on the parameter ∆. Although the partition for the algorithm which we present
here depends on two parameters, a fixed choice yields optimal results for all matrices
tested.

For this algorithm, we assume that we have the same partition S = {s1, . . . , sN+1} for
both rows and columns of L. In this case, the blocks on the block diagonal are lower
triangular blocks and the only blocks containing part of the diagonal of L. These blocks,
but no others, must be processed sequentially in their natural order for the triangular
solve of L. For n = 2, . . . , N − 1 denote by Cn the set of blocks Lm,n−1 with m > n. Note
that for any diagonal block Lnn, the rows of Cn can be processed parallel to Lnn. Hence,
for n = 2, . . . , N − 1, we can process Lnn and Cn in parallel, thus covering the entire
matrix with the exception of the blocks on the lower block off-diagonal, i.e. the blocks
Ln,n−1, n = 2, . . . , N . The processing of these blocks, however, must be interlaced with
the processing of the diagonal blocks and block columns. Note that the rows of each of
these off-diagonal blocks can be processed in parallel as well. In this manner, we obtain
the following algorithm which is illustrated in Figure 3.

Algorithm 4.1 (Hybrid Parallel Triangular Solve in Explicit Form)

1. x = y

2. for k = 2, . . . , 2N

3. if k is even

4. n = k
2

5. begin parallel region

6. parallel region 1 (do diagonal block Lnn)

7. for i = sn, . . . , sn+1 − 1

8. for j = sn, . . . , sn+1 − 1 and j < i

9. xi = xi − lijxj

10. end for j

11. end for i

12. parallel region 2 (do Cn but only if 2 ≤ n ≤ N − 1)

13. parallel for i = sn+1, . . . , d

14. for j = sn−1, . . . , sn − 1

15. xi = xi − lijxj

16. end for j

17. end for i

18. end parallel region

19. else (k odd) do off-diagonal block Ln−1,1

20. n = k+1
2

21. parallel for i = sn, . . . , sn+1 − 1

22. for j = sn−1, . . . , sn − 1

23. xi = xi − lijxj

24. end for j

25. end for i

26. end if

27. end for k
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Figure 3: Illustration of the hybrid triangular solve algorithm by block anti-diagonals and
block columns. Lower triangular blocks must be processed sequentially but rows of the
block column shaded identically can be processed in parallel. Single blocks are also solved
in parallel. Light blocks are solved first. The algorithm alternates between processing a
lower triangular block and a block column and processing a off-diagonal single block.

4.2 Partition Construction

The underlying idea for finding a suitable partition for Algorithm 4.1 is that during the
sequential processing of the lower triangular blocks, the remaining processors should not
be idle. Hence, the partition should be selected in such a manner that the number of
non-zero elements in Cn is P − 1 times the number of non-zero elements of Lnn. For this
approach, we specify two parameters: Λ indicates the ideal number of non-zero elements
for the initial block L11 and Θ the minimal number of non-zero elements that we require
every other diagonal block Lnn to have. The second parameter is needed to prevent the
partition from becoming to fine. The first parameter is needed to specify a compromise
between two options: If Λ is very large, processing the initial triangular block is expensive
as it must be processed sequentially while the other processors are idle. If Λ is too small,
then L11 will be small, usually resulting in C1 also being small. However, then L22 will
also be small, thus propagating a fine partition. Hence, if we start with small blocks,
then subsequent blocks will also be small, which is not desirable. Although the algorithm
depends on Λ and Θ, setting Λ = 1000 and Θ = 25 was the optimal choice for all matrices
tested. Actually, the algorithm is not very sensitive to the choice of Λ and Θ and other
choices would have yielded very similar results.

For the efficient implementation, we again assume that L is stored in CSC format. We
again scan L for i = 1, . . . , d by increasing rows and count the number of non-zero
elements. As soon as we have obtained the required Λ non-zero elements, we insert
a break and obtain s2. We continue scanning rows, counting the number of non-zero
elements of L21 and L22 separately. This is possible because s2 also indicates the division
point between L21 and L22. After the ith row is scanned, we can determine the number
of non-zero elements that L21 and L22 would contain if we inserted a row break either
before or after the ith row. Because we also know the number of non-zero elements of
L11 and because L is stored in CSC format, we can compute the number of non-zero
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elements that would be contained in C2. If after inserting a break before the ith row, the
number of non-zero elements of L22 would be at least Θ and if P − 1 times the number
of non-zero elements of L22 would exceed number of non-zero elements of C2 if the break
were inserted after the ith row, then we actually insert the break before the ith row. Note
that for Θ = 0 we insert the row break in the last position for which P − 1 times the
number of non-zero elements of L22 is less than the number of non-zero elements of C2,
so that we obtain the largest possible lower triangular block allowing for optimal data
distribution. For larger values of Θ, we risk not having the optimal data distribution,
but we avoid having lower triangular blocks that are too small. Note that we continue
scanning by rows if the conditions for inserting a break are not satisfied. Continuing in
this manner, we obtain S.

To obtain a more precise description of this algorithm, we define t as a counter for the
number of non-zero elements in the current triangular block, told as a counter for non-
zeroes in the previous triangular block, trow as a counter for the number of non-zero
elements in the row of the triangular block currently being scanned, b as a counter for
non-zeroes in the off-diagonal block, c as a counter non-zeroes in the current C block and
ps as a counter for current number of elements in S. This yields:

Algorithm 4.2 (Hybrid-Based Partition Construction)

1. told = 0, t = 0, b = 0, c = 0, ps = 1

2. s0 = 0, s1 = 1 (s0 is a dummy initialization)

3. for i = 1, . . . , d

4. trow = 0

5. for j = 1, . . . , i − 1 and lij 6= 0

6. if sps−1 ≤ j < sps then b = b + 1

7. if sps ≤ j then trow = trow + 1

8. end for j

9. if ps > 1 then c = cpointer[ps− 1] − pointer[ps− 2] − b − told

10. if (ps = 1 and t ≥ Λ) or (ps > 1 and c ≥ Θ and (t + trow) · (P − 1) ≥ c)

11. ps = ps + 1, sps = i, told = t, t = 0, b = trow

12. else t = t + trow

13. end if

14. end for i

15. ifsps 6= d: ps = ps + 1, sps = d

If L is stored in CSR format, we first scan L and count the number of non-zero elements in
each column. Then it is possible to proceed as above. Alternatively, it is possible to convert
L to a hybrid anti-diagonal and row-based structure. The corresponding illustration is
obtained by reflecting Figure 3 along the anti-diagonal. In this case, L is scanned by
decreasing columns. If U is stored in CSR format, then we use the appropriate hybrid
format obtained by transposing Figure 3 and scanning U by columns. For U stored in
CSC format, we either have the option of first counting the number of elements in each
row and proceeding as before or we may use the format obtained by transposing Figure
3 along both the diagonal and anti-diagonal and scanning by decreasing rows.
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4.3 Conversion to PS Format

Now that we have determined the partition S, we still need to provide the technical details
to convert L from CSC to PS format. To this end, we scan L by increasing columns. We
scan the first column and copy all elements of L until the first triangular block L11 ends
and the first off-diagonal block L21 begins. We store this position. Next, we scan the
second column and proceed just as for the first column and continue until all columns of
the triangular block have been scanned and all the elements have been copied. Next, we
scan the first off-diagonal block L21 column by column until this block ends, counting the
number of elements in each row. As we know the number of elements in each row, each
of these rows can be assigned to a processor to achieve a uniform distribution. We rescan
the off-diagonal block copying elements appropriately. Just as before, we also store the
position in the CSC format at which the various columns of the off-diagonal block L21 end
and the columns of C2 begin. Although we have not yet copied C2, we scan and copy the
second triangular block L22, assigning it to a single processor. This is done just as for the
first diagonal block L11. Next, we scan C2 to count the non-zero elements in each row. As
we have already copied the second triangular block L22, we know the number of non-zero
elements that have been assigned to a particular processor, so that we can assign the rows
of C2 to the various processors, aiming to obtain a uniform workload. After assigning the
rows, we rescan C2 and copy the data appropriately. Continuing as before with the second
off-diagonal block L32, C3 and L33, we eventually obtain L in PS format. Algorithm 4.3
summarizes this approach. N + 1 is again the cardinality of the partition S. The array
nnz row of dimension d counts the number of non-zero elements in each row, the arrays
nnz OD and nnz adc of dimension P count the number of elements per processor in the
off-diagonal parallel block and in the hybrid block anti-diagonal/column parallel region
respectively and assign is an array of dimension d indicating the assignment of each
row to a particular processor. Finally, nnz D counts the number of non-zero elements in
a fixed diagonal block, sum nnz OD the number of elements in a fixed off-diagonal block
and nnz C the number of non-zeroes in a block column.

Algorithm 4.3 (Conversion of CSC to PS Format for Hybrid Algorithm)

1. for k = 1, . . . , N

2. nnz row = 0, nnz OD = 0, nnz adc = 0

3. for j = sk, . . . , sk+1 − 1 (count elements in rows)

4. for i = cpointer[j], . . . , cpointer[j + 1] − 1

5. nnz row[indices[i]] = nnz row[indices[i]] + 1

6. end for i

7. end for j

8. nnz D = 0

9. for j = sk, . . . , sk+1 − 1 (count elements in diagonal block, assign rows)

10. nnz D = nnz D + nnz row[j]

11. assign[j] = P

12. end for j

13. nnz adc[P ] = nnz D

14. if k < N (check if an off-diagonal block exists)

15. sum nnz OD = 0

16. for j = sk+1, . . . , sk+2 − 1 (count elements in off-diagonal block)

17. sum nnz OD = sum nnz OD+ nnz row[j]

18. end for j
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19. for j = sk+1, . . . , sk+2 − 1 (assign rows of off-diagonal block)

20. Use nnz row, sum nnz OD to assign row j to a processor,
store assignment in assign[j]

21. nnz OD[assign[j]] = nnz OD[assign[j]] + nnz row[j]

22. end for j

23. if k < N − 1 (check if a block column exists)

24. nnz C = 0

25. for j = sk+2, . . . , sk+3 − 1 (count elements in block column)

26. nnz C = nnz C + nnz row[j]

27. end for j

28. for j = sk+2, . . . , sk+3 − 1 (assign rows of block column)

29. Use nnz row, nnz C to assign row j to a processor,
store assignment in assign[j]

30. nnz adc[assign[j]] = nnz adc[assign[j]] + nnz row[j]

31. end for j

32. end if

33. Use nnz adc and nnz OD to update pointer

34. Determine write position for all p and both parallel regions

35. for j = sk, . . . , sk+1 − 1 (copy by columns)

36. for i = cpointer[j], . . . , cpointer[j + 1] − 1

37. Use row index indices[i] and assign to copy data

38. end for i

39. end for j

40. end for k

5 Numerical Results

To test the algorithms presented in this article on realistic problems, we selected some of
the largest unsymmetric matrices in the University of Florida Sparse Matrix Collection
[5]. For each of these matrices, we determined a good multilevel ILU-based preconditioner
using the ideas presented in [2] and [15]. Specifically, we proceeded as follows: First, the
coefficient matrix A was preprocessed (i.e. rows and columns were permuted and scaled)
to make A more suitable for incomplete factorization. For an overview of these methods,
see [12]. Then, the matrix was factored using ILUC, see [4], but the factorization was
terminated prematurely if the pivot was less than 0.01 in absolute value. In this case,
an approximate Schur complement was computed, which was again preprocessed and
factored incompletely just as the original matrix. In this manner, we obtain a recursive
algorithm resulting in a multilevel factorization.

For the preprocessing, we considered just normalizing columns and then rows, using
PQ-reordering as described in [15] or using one of the following two step preprocessing
routines. First, A was transformed into an I-matrix, a matrix whose diagonal elements
have absolute value of 1 and whose off-diagonal elements have absolute value of at most
1, see [6], [7] and [13]. In a second step, we applied one of the symmetric permutations
(i.e. the same permutation for rows and columns) to the I-matrix, which is then again
an I-matrix, as described in [12]. Specifically, we used Algorithms 1,2 and 3. Algorithms
1 and 2 were used with weighting strategy (c) of [12], which considers both the number
of non-zero elements in each row and column and the 1-norm to obtain a sparse, more
diagonally dominant initial block. We also tested just transforming A into an I-matrix
without any further preprocessing.
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For all matrices A, we constructed the multilevel ILU preconditioner with all preprocess-
ing techniques using as a drop parameter τ = 10−t, t = 1, . . . , 9. For all these combi-
nations, we determined the total computation time consisting of the setup time for the
preconditioner and the solve time for the iterative method. The results, which we present
in the sequel, are for the lower triangular matrices L of each level of the preconditioner
requiring the shortest total computation time for a specific linear system.

The algorithms in this article were implemented in C++ and will be made available in
the next release of the software package ILU++ [11]. The code was compiled with the
Intel C++ compiler and the actual testing was done on an Intel Xeon platform with two
2.33 Ghz quad core processors.

We will not report in detail on the time needed to compute partitions and to convert
L from CSC to PS format. Suffice it to say that when implemented as described in this
article, the time needed for partition computation and conversion lies in the range of
about 8 to 15 times the time required for a single sequential triangular solve. Although
this computation time may be too long for a practical algorithm, it is possible to save
much time by implementing the following ideas:

• Partitions and conversions for L and U are independent so that L and U can be
processed in parallel.

• In a multilevel setting, the levels are independent and they can be processed in
parallel.

• Computing partitions and converting L and U are now being done one after the
other for ease of implementation and clarity of exposition. However, these can be
combined into a single algorithm, which may save some computation time.

• At least some of the work for computing partitions and converting L and U may
be done as part of the partial factorization.

Note that even if we just implement the first idea and convert L and U in parallel, then the
conversion of L and U will require no more than time than 2-4 (sequential) preconditioned
BiCGstab iterations. Finally, the time for partition computation and conversion may even
be amortized for the current implementation, if a preconditioner is to be used for several
systems.

Hence, we will restrict our attention to triangular solve times that are obtained by using
the anti-diagonal based and the hybrid algorithms. Recall that for the anti-diagonal based
algorithm, we need to specify ∆, the ideal number of elements in each diagonal block.
We tested 16 different values for ∆ in geometric progression between 100 and 100 000
and report the best result obtained for each matrix. Usually, the optimal value for ∆
was in the range of 1000 to 10 000. Although the performance was fairly constant over a
range of ∆, it certainly was not independent of it. Hence, the need to determine a good
value for ∆ is certainly a drawback of the anti-diagonal based algorithm. For the hybrid
algorithm, we report on the results for Λ = 1000 and Θ = 25 fixed for all matrices.

In Table 1, we record the speed-up obtained for both algorithms and for P = 2, 4, 8.
The speed-up is computed with respect to the standard sequential triangular solve for
matrices stored in CSC format. We only record a result if the total solve time for 100
triangular solves was at least 0.1 seconds for the sequential algorithm. Otherwise, the
computation times were too short to be meaningful. Consequently, we do not record the
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Anti-Diag. Hybrid
Matrix PP Level Speed-Up Speed-Up

2 4 8 2 4 8

PQ 2 1.7 3.1 4.3 1.5 2.5 3.1
PQ 3 2.1 3.4 5.3 1.9 2.9 4.9

av41092
PQ 4 1.8 2.9 3.7 1.8 2.6 3.3
PQ 5 1.8 2.6 3.1 1.6 2.2 2.5

FEM 3D thermal1 0 1 1.0 0.9 0.9 0.7 0.7 0.7

3 1 2.0 3.4 5.3 1.8 3.1 5.3
g7jac180

3 2 1.6 2.1 2.0 1.9 2.0 2.0

3 1 1.9 3.1 5.0 1.8 3.1 5.2
g7jac200

3 2 1.6 2.1 2.1 1.9 2.1 2.0

garon2 1 1 1.6 1.9 2.1 1.6 1.8 1.5

ns3Da PQ 1 1.8 2.9 3.8 2.0 3.3 4.0

2 1 1.4 1.8 1.8 1.5 2.3 2.2
ohne2 2 2 1.8 2.8 3.9 1.8 2.3 3.9

2 3 1.9 2.8 3.7 1.9 3.0 4.0

3 1 1.6 1.8 1.9 1.9 2.4 2.2
para-9

3 2 1.7 2.5 2.3 1.9 2.3 2.2

poisson3Db 1 1 1.4 1.4 1.5 1.3 1.4 1.2

rajat31 0 1 0.9 0.9 0.9 0.8 0.8 0.8

3 1 1.7 2.9 2.9 1.9 2.9 3.0
rma10

3 2 1.8 3.1 3.3 1.9 3.1 3.1

sme3Dc 3 1 1.9 2.5 2.4 1.9 2.5 2.5

torso1 1 1 1.4 1.6 1.6 1.8 1.9 1.5

venkat50 1 1 1.8 2.4 2.3 1.7 2.5 2.4

Table 1: Speed-up with respect to the standard sequential algorithm for matrices in CSC
format. PP indicates the preprocessing used.

results for some of the levels. We also use the following abbreviations: The column marked
with PP indicates the preprocessing used. 0 indicates just normalization of columns and
then rows but no reordering of either. 1,2,3 refer to the corresponding algorithms in [12]
combined with weighting strategy (c). PQ is used to indicate the standard PQ algorithm
introduced in [15].

Clearly, the results indicate that we do not have the speed-up that we would ideally
like to have for parallel algorithms. The results for 2 processors are generally quite good
and for 4 processors the results are generally good enough that using 4 processors is
often worthwhile. However, the results for 8 processors are quite disappointing. A more
careful analysis indicates that there are two main reasons for this poor performance.
Generally, the data is distributed quite effectively, so this is usually not the cause for
poor speed-up. However, sometimes we obtain a large number of parallel regions which
requires the processors to synchronize more frequently resulting in poor performance.
For a few matrices, almost all non-zero elements are quite close to the diagonal, so that
no efficient parallization is possible at all. Of course, in this case, we cannot expect good
performance.

To illustrate this differences in performance, we elaborate on the results for L of the first
level of the preconditioner for three specific matrices A. Pictures of L can be found in
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Figure 4: L for the first level of the preconditioner for the matrices g7jac180, poisson3Db
and FEM 3D thermal.

Figure 4. The best overall performance on 8 processors for the hybrid method is obtained
for the matrix g7jac180. For this matrix, the initial triangular block contains exactly
1000 non-zero elements. Then, we have 3 parallel regions. In the first, each processor has
1860 or 1861 non-zero elements, in the next between 13 540 and 13 592 non-zero elements
and between 36 653 and 36 800 non-zero elements in the final region. Hence, we have
almost ideal data distribution. Taking a look at the picture of this matrix, we notice
that the initial triangular block is quite sparse. This is in fact due to the preprocessing
used and as a consequence, the initial triangular block is quite large. This is beneficial
for the subsequent partitioning of L. Similarly, the final triangular block, which can
also not be processed in parallel, is empty because the incomplete factorization was
terminated prematurely and the approximate Schur complement was factored on the
next level. On the other hand, the performance for poisson3Db is quite poor and indeed
this matrix requires 22 parallel regions. Although the workload is quite uniform (except
for the initial block, the difference between the number of non-zero elements assigned
to the 8 processors never exceeds 6), sometimes the workload per processor is very low,
often below 1000, sometimes even below 100 non-zero elements. Observe that the region
closer to the diagonal of L is much denser for poisson3Db than for g7jac180. The worst
performance overall is for FEM 3D thermal1. Here, the algorithm assigns 998 non-zero
elements to the initial triangular block and almost all others, 379 176 out of a total of
380 530, to a single triangular block. This is a consequence of the fact that this matrix
is quite sparse and almost all elements are close to the diagonal as can also been seen in
picture of the matrix. Even the thin angular structure further away from the diagonal
contains only very few non-zero elements. Hence, no efficient parallization is possible. In
this sense, this is no fault of the algorithm as it is clear that this matrix does not permit
for an efficient parallel solve.

Slightly surprising is the fact that the performance of g7jac180, which has excellent data
distribution and requires few parallel regions, is not any better for 8 processors. This
is probably the result of the intense memory access that these algorithms require. Each
element in L and x is used only once when read, so when 8 processors access memory
simultaneously, this is likely to be a bottleneck.

Note that solving linear systems with the matrix FEM 3D thermal1 does not require a
very sophisticated preconditioner. Other than normalization, no preprocessing is used
and the multilevel preconditioner consists of a single level, so that the preconditioner
used is essentially ILUC, see [4], applied to FEM 3D thermal1 without any pivoting or
other more advanced strategy. Generally, one would consider such a situation fortunate,
and the fact that the strong diagonal structure of FEM 3D thermal1 is preserved in L to
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be beneficial. For parallelization using the algorithms in this article, however, this is not
advantageous. In fact, rajat31 is the only other matrix for which parallelization is detri-
mental. This matrix also has a strong diagonal structure and because again no reordering
is done, so does its factor L. On a more positive note, for both FEM 3D thermal1 and
rajat31 it certainly is possible to use reorderings, e.g. multilevel nested dissection [8], [9]
to obtain better parallelization.

On the other hand, g7jac180 could only be solved when preprocessed with Algorithm
3 in [12], so reordering for better parallelization is highly unlikely to yield successful
solves. Fortunately, Algorithm 3 also appears to yield a matrix structure for which the
algorithms presented in this paper work well. This is not surprising because Algorithms
3 reorders A to obtain a particularly sparse initial block. If L inherits this sparsity, as is
the case for g7jac180, and thus also has a sparse initial lower triangular block, then the
algorithms presented in this article can be expected to perform well.

6 Conclusion and Outlook

This article introduces two new algorithms for solving triangular systems in parallel on a
shared memory architecture. The first algorithm is based on solving the system by block
anti-diagonals. The algorithm allows for great flexibility in choosing the block structure,
i.e. different partitions may be used for rows and columns. Although this freedom has
the potential of making this algorithm quite effective, in practice choosing appropriate
partitions is difficult. We proposed selecting the same partition for rows and columns
such that the diagonal blocks have a prescribed number of non-zero elements. Although
this works quite well, it is probably possible to find better partitions and this should
be considered for future work. The second algorithm tries to overcome this difficulty by
solving the triangular matrix using a combination of processing by block columns and
block anti-diagonals. In this situation, the partition can be chosen in a nearly optimal
manner.

Preconditioning with multilevel incomplete LU factorizations consists of solves with tri-
angular systems. Hence, the algorithms presented in this article provide a method for
parallelizing the application of multilevel preconditioners. If a single linear system with a
given coefficient matrix A is to be solved iteratively, then this can only be done efficiently
in parallel if the computation of the preconditioner is also done in parallel. So in this
case, parallelizing the factorization is essential and this is the subject of ongoing work.
However, if many linear systems with the same matrix A are to be solved in parallel,
then it may still be acceptable for the preconditioner to be computed sequentially and
just using the parallization provided by the algorithms presented here may already be
sufficient.

Although these algorithms were designed with shared memory systems in mind, they can
be used with distributed memory systems as well, at least theoretically. For a triangular
solve, each non-zero element of the triangular matrix is accessed by exactly one processor.
Hence, each non-zero element of the triangular matrix should simply be stored in the local
memory of the processor needing to access that element. The parallel solve format can
be modified easily to accommodate this. Parts of the solution vector, however, need to
be broadcast to all processors at the beginning of a parallel sweep and the updated
vector needs to be collected at the end. This is a relatively expensive option, but may
be acceptable if there are only a few parallel regions. On the other hand, determining
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effective partitions and distributing the data amongst the processors for a matrix stored
on a distributed memory system is likely to be both difficult and expensive. Whether this
problem can be solved satisfactorily depends both on the manner in which the matrix is
stored after computation and on the underlying architecture. In any case, redistributing
the triangular matrix after factorization is probably not an option so that it is necessary
to distribute the triangular matrix during computation in a manner appropriate for the
parallel solve. Hence, the implementation of the parallel solve algorithms presented here
depends on the implementation of the factorization. Consequently, the suitability of these
algorithms on a distributed memory architecture needs to be decided on a case-by-case
basis and requires extensive investigations.
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