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Chapter 1.

Introduction

1.1. Problem Definition

1.1.1. Context of the Work

The ANSI/IEEE standard 729-1983 defines software maintenance as the “modification of
a software product after delivery to correct faults, to improve performance or other at-
tributes, or to adapt the product to a changed environment”. Experience has shown that
the vast majority of all the costs associated with a complex software system arise during
the maintenance phase [Huf90, Eas93, Som00, Erl00]. As a result, there is a compelling
amount of pressure placed upon the research community, to come up with methods that
ensure two things: on one hand, a high quality of the initial design, in order to minimize
the need and extent of subsequent maintenance activities, and on the other hand, a low
cost of the maintenance activities themselves.

Software design is the process of elaborating a software based solution to a problem, in a
given domain. During this process, the designer performs modeling activities and struc-
turing activities, in an interwoven fashion. Modeling activities occur primarily on an ab-
stract, mental level, and involve identifying the key actors in the domain, problem and
solution space, as well as defining their individual responsibilities towards the realization
of the application’s behavior. The resulting abstract model will be referred to as design
intent. During the structuring activity, design intent is materialized in the source code, in
accordance with the best practices, conventions and rules of the programming paradigm
and language.

In the context of software maintenance, the quality of a design is determined by the ease
with which the maintainer can understand the design, and operate changes therein. De-
sign documentation other than the source code itself, may provide help, assuming that it
exists and is up-to-date. In practice however, maintainers often have to rely on the source
code alone, because high level documentation is either outdated or of little practical use.
This is confirmed by studies showing that the majority of the time spent by maintainers is
dedicated to reading and understanding existing source code [Sta84, Rug00].

1



Chapter 1. Introduction

Consequently, maintainability of a software system is decisively influenced by the static
structure1 of the source code, in one of the following two ways. On one hand, a struc-
ture that constitutes an “unnatural” solution for a given design intent (e.g. by employing
cryptic or over-engineered constructs), affects the ability of the maintainer to understand
the design. On the other hand, since any given structure favors specific types of change
while hindering others[Mar03], the use of an unsuitable structure affects the maintainer’s
ability to operate changes in the design. In other words, in order for the design to be easily
changeable, the designer must take into account the types of changes that are more prob-
able to occur in the future. Often this is difficult, because “our ability to design for change
depends on our ability to predict the future” [Par94].

In the course of a system’s life cycle, repeated changes to the system’s design have been
shown to lead to a continuous degradation of its structure. This phenomenon manifests
itself through both types of problems described above, and is known as “software aging”
[Par94]. In order to counter the effects of software aging, the system needs periodic re-
structuring. Restructuring is a reengineering activity, in which the structure of the code is
improved without affecting the observable behavior of the system. In practice, in an at-
tempt to automate the restructuring process, structural anomalies, also called code smells
[Fow99], are used as starting points for the analysis, since they can be detected automat-
ically. A structural anomaly is defined as “a property of a structure fragment that has a
negative impact on maintenance costs” [Ciu01]. Typical examples include an overly large
number of methods or attributes in a class, supertypes that depend on their subtypes,
and large switch constructs.

The classic restructuring process, based on structural anomalies, has three steps:

1. Problem detection: is concerned with finding instances of structural anomalies in
the subject system. This step can be automated, using approaches such as [Ciu01,
Mar02].

2. Problem analysis: covers the activities that are involved in deciding how to improve
the structure of the design fragment under consideration. It involves understand-
ing the design fragment in order to recover design intent, deciding on the types of
change that are more probable to occur to the fragment, and finally, deciding on a
new structure that appropriately reflects the design intent and accommodates the
expected changes.

3. Reorganization: deals with the implementation of the new structure, decided upon
in the previous step. This step can be automated, using common refactoring tools,
such as the ones described in [RBJ97, Gen04].

1throughout this work, we will refer to the static structure of the system, simply as structure

2
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1.1.2. Problem Statement

While both the problem detection step as well as the reorganization step are carried out
in a systematic and largely automated manner, problem analysis is fundamentally an ad-
hoc, largely manual process, which relies heavily on human technical expertise and intu-
ition.

The cause behind the current state of affairs is the symptomatic nature of structural
anomalies, which generally prevents putting such an anomaly in direct correspondence
with a univocal reorganization strategy. A code smell for instance, represents a highly em-
pirical, often purely numerical characteristic of the structure, that represents an excess
or a violation of some limits that are commonly accepted as norms. The presence of a
code smell is usually symptomatic for a multitude of various possible design deficiencies,
and one structural deficiency may typically manifest itself through various kinds of code
smells.

The lack of a clearly defined procedure for problem analysis, and the reliance on human
intuition and expertise, confers an ad-hoc, laborious and ultimately costly nature to the
entire restructuring process.

1.1.3. Goal and Success Criteria

The goal set out in the present work has been to transform the restructuring process, from
a process that is heavily dependent on intuition and personal know-how, into a systematic
process that supports automation. Thus, we wanted to bridge the gap that had previously
existed in the tool chain, between quality assessment of software structure on one hand,
and code transformation on the other hand. We achieved this goal by elaborating a sys-
tematic method, designed to:

Identify badly structured code: design fragments whose structure does not reflect the
design intent in a way that is natural from the perspective of the object oriented
programming paradigm, or aren’t flexible with respect to certain expected types of
change. Such fragments are characterized by an unnecessarily high effort needed
for understanding and operating changes, and can therefore be called “badly struc-
tured”.

Perform problem analysis: derive a sequence of code transformations, that makes the
structure easier to understand and easier to change.

Below, we discuss a list of essential requirements to the elaborated method. At the same
time, these requirements constitute criteria, that are relevant in assessing any method
having a similar purpose.

3
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Comprehensiveness: The method should be able to address all major problem types
that arise at the abstraction level of component design. Lanza and Marinescu
[LM06] identify three major groups of such problems: problems pertaining to class
definition, problems that pertain to the correct use of inheritance hierarchies, and
problems that pertain to cooperation between unrelated objects. Problems pertain-
ing to the architectural level (e.g. subsystem decompositions) are not addressed by
this work.

Causality: The method must guarantee the existence of a causal link between the defi-
ciencies that exist in the initial structure, and the derived sequence of transforma-
tions, which should thus be in accordance with the choices that a human engineer
would make when manually restructuring the system. In essence, this requirement
ensures that decisions are not based on indirect or global measures, such as cou-
pling, cohesion and complexity, but have a causal link to the underlying design
intent, and take into consideration the types of changes that are expected to oc-
cur to the respective fragment, in the foreseeable future. In other words, corrective
measures must be tailored to the local realities of the fragment that is transformed,
not aimed at prettifying overall statistics. This guarantees an in-depth, rather than
cosmetic improvement of design quality. Throughout the thesis, we will occasion-
ally refer to approaches that do not satisfy this criterion as being symptomatic.
Metaphorically speaking, symptomatic methods focus on the appearance, rather
than the substance of a design’s structure.

Systematic process: The process described by the method must be systematic, in the
sense that stipulates what decisions need to be made, at what times, and depend-
ing on what parameters. Thus, the decision making process can rely less on the skill
level of the maintainer performing the operation, because he must only reason in
terms of each decision, in a predefined decision tree, not on the structure of the
decision tree itself. However, determinism of the process does not mean that deci-
sions are made without human intervention. In particular, assessing design intent
or expected types of future change require human input.

Automation: Automation is the major contributor to reducing the cost of the restructur-
ing process itself, and making the method practicable for large industrial systems.
The method should allow the implementation of tools that automate most of the
activities in the problem detection and analysis steps. Nevertheless, the need for
human intervention cannot be eliminated completely. In particular, human inter-
vention is required to confirm the presumed design intent, and to assess the prob-
ability of various types of future changes, to the design. The attained level of au-
tomation should allow the use of the method on medium to large sized systems (i.e.
over 80,000 LOC), in a matter of days or weeks.
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1.2. Approach

As pointed out earlier, code smells provide a good starting point for the identification of
bad structure. Nevertheless, a meaningful reorganization is determined by the design con-
text of the fragment, which consists of the two elements described above: design intent
and the spectrum of expected changes.

Our approach is based on the simple idea of constructing higher-level entities, called de-
sign flaws, as triplets that consist of a design context, a pathological structure and a refer-
ence structure. As argued earlier, a given design intent may materialize in various different
target structures, which may or may not be qualitatively equivalent, from the viewpoint
of maintainability. However, by relying on the software engineering body of knowledge,
we can derive a set of minimal requirements that the structure must possess, in order
to optimally meet the rigors of the design context. A design flaw’s reference structure
is a template structure, showcasing one of potentially several structures that fulfill the
requirements posed by the design context. Conversely, the pathological structure repre-
sents a template structure that disregards one or more such requirements, and which has
relevance in common restructuring practice. In other words, the pathological structure
illustrates an anti-pattern in the given design context, while the reference structure rep-
resents a possible solution, that does justice to the rigors of the design context, and is
therefore optimally maintainable within the given design context.

By defining the concept of design flaw in this way, we ensure an unambiguous mapping
between a “bad structure” and a corresponding “good structure”, for an arbitrary design
context. Thus, a design flaw forms a sort of pattern that can be used for recording restruc-
turing know-how.

The procedure describing the transition from a pathological structure to the reference
structure that matches the design context, is called reorganization strategy. The process
of detecting and confirming a design flaw instance is called diagnosis. Diagnosing a de-
sign flaw means that the design context with its two components, and the pathological
structure, match those described in the design flaw specification. Since the pathological
structure in a design flaw is put in direct correspondence with the reorganization strategy
corresponding to the reference structure, a separate problem analysis step is no longer
required (i.e. diagnosis replaces both problem detection and problem analysis).

Based on the idea discussed above, we present a tool supported method for diagnosing
design flaw instances in large software systems. The method is iterative, each iteration
consisting of two fully automated and one interactive step.

The first and the second step are dedicated to identifying the pathological structure that
is characteristic for a given design flaw, along with the corresponding design intent. Both
of these steps are fully automated, and employ state of the art structural pattern matching
techniques on an abstract model of the system’s structure, extracted from the source code.
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Design intent is detected using a procedure that resembles medical diagnosis, where a
disease is diagnosed based on a characteristic combination of symptoms. In our case, the
symptoms are structural features, which we call indicators, that characterize a particular
design intent in combination with the given pathological structure. Each design flaw pos-
sesses a characteristic set of indicators. Although structural anomalies are obvious candi-
dates for indicators, an indicator must not necessarily describe a structural anomaly. As
in medical diagnosis, a design flaw instance may not necessarily induce all its character-
istic indicators. Furthermore, different design flaws may share common indicators. The
level of confidence in the candidate instances obtained through this automated pattern
matching, increases with the number of different indicators that are detected simultane-
ously.

In the third and final step, the maintainer must confirm the design intent as well as the
types of expected changes to the fragment, as described in the design flaw specification.
To this end, the maintainer is guided by a set of questions that are predefined for each
design flaw. Based on the outcome of this step, the candidate flaw is either confirmed or
rejected.

The main benefits of our approach can be summarized as follows:

• We can put the pathological structure in direct correspondence with a recom-
mended reorganization strategy, that guarantees a causal treatment of the underly-
ing design flaw. This problem-solution mapping is expressed in an explicit, pattern-
like form.

• The maintainer follows a systematic, predefined process. Diagnosis is mostly au-
tomatic, resulting in a named design flaw candidate, that is either confirmed or re-
jected. The confirmation process consists of answering a set of questions that is
predefined for each type of design flaw.

• Since we look at the interplay of several indicators which do not necessarily repre-
sent code smells, our approach is able to identify inappropriately structured design
fragments, even if there are no obvious anomalies in the structure (e.g. very large
number of methods, large method bodies, excessive cyclomatic complexity, etc).

• Based on the number and type of the observed indicators, candidate flaws can be
sorted according to the probability that they represent real flaws, thus maximizing
time efficiency.

1.3. Outline of the Dissertation

The rest of the work is structured as follows: Chapter 2 covers the basic terminology in
the field of restructuring and provides a concise overview of the notions and previous
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works, upon which we build our approach. Chapter 3 reviews and compares competing
approaches, highlighting their deficiencies with respect to the criteria that have been set
forth in section 1.1.3.

Chapters 4, 5, 6, and appendix A constitute the core of the dissertation. Chapter 4 defines
the concept of design flaw and discusses the way design flaws are specified. Chapter 5
presents a tool supported method for diagnosing design flaws, while chapter 6 discusses
the way in which deign flaws can be eliminated with the help of tool supported refactor-
ing, and introduces a design flaw based restructuring process. Finally, appendix A con-
tains a representative catalogue of design flaws, ready to be used in day to day practice.

Chapter 7 is dedicated to the validation of our tool supported diagnosis method through
a series of case studies. Chapter 8 provides an overall assessment of the merits and contri-
butions of the proposed design flaw based restructuring process, and gives some pointers
for future research.
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Background

As pointed out in the previous chapter, the goal of this work has been to develop a tool
supported method, to identify badly structured fragments in object oriented code, and
to derive sequences of behavior-preserving transformations that improve the structure of
these fragments. Such a goal statement implies bridging two important fields of object
oriented software engineering: tool supported software quality assessment and program
transformation. The purpose of the current chapter is to provide a concise overview of
these two fields. Thus, we start by reviewing some basic terminology. This is followed by
a short discussion about what characterizes “good object oriented design”, and finally, we
review approaches that pertain to the two fields mentioned above, and are relevant from
the standpoint of our work.

2.1. Terminology

For the purposes of this thesis, we define the following terms, as follows:

Software development: is the process of elaborating a software based solution to a prob-
lem, in a given domain.

Design: denotes both a process and the result of that process. The design process con-
sists in “defining the architecture, components, interfaces, and other characteristics
of a system or component” [IEE90]. The result of the design process is an abstract
model, referred to as “the design of the system or component”, and described by a
set of design documents (see below).

Design document, design description: any document, either textual and/or graphical,
that describes one or more aspects of a design. At an extreme, we can see the source
code itself as being a detailed and up-to-date design description of the system.

Static structure, structure graph: referred to simply as “the structure”, it is the set of all
entities, their properties, and relations, which can be extracted from the source code
of the system, using ordinary parsing and type analysis techniques.
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We stop at this point, in order to reflect a little bit on the relations between the terms
“design”, “design description” and “structure”.

The term “design” refers to a abstract, multi-faceted model, that exists in the mind of the
designer. For example, such a model describes the system both from a statical as well as a
dynamical perspective. Furthermore, in such a model, entities and their relations possess
both design and application semantics. To illustrate what we mean by these two types of
semantics, let us consider the case of a specialization hierarchy. Design semantics in this
case, refers to the specialization relation as a general relation between individual classes
of objects, and expresses the fact that the superclass represents a more general concept
than the subclass. On the other hand, application semantics refers to the meaning of the
classes involved in the specialization hierarchy, in the context of the application.

A “design document”, or “design description”, is an incomplete representation of this im-
material model, in a textual and/or graphical form. It is incomplete in the sense that
it always highlights one or more particular facets of the design, while playing down or
even completely ignoring others. For example, the source code representation in typical
imperative languages, though large in size and very detailed, cannot be considered com-
plete. In particular, it completely ignores the application semantics of the entities that
form the design, and highlights a static view on these while downplaying the dynamic as-
pects. Nevertheless, the source code is the most complete design description there is. In
theory, through the process of understanding, a human engineer can use the source code
in order to reconstruct the original design in his mind.

Another useful property of the source code is that it is guaranteed to be the most up-to-
date description of the design. This is why reengineering activities primarily, or some-
times exclusively, rely on the source code of the system.

And finally, the “structure” of a system is a mathematical representation of the source
code, and thus equivalent to it. Because the structure is in effect an incomplete descrip-
tion of the design, we can say that “a design has a certain structure”. Thus, throughout the
rest of this work, we will use “the structure of a given fragment of design”, as a shorthand
for saying “the structure extracted from the source code description of that fragment of
design”.

Maintenance: is the longest and most costly phase in the lifetime of software systems,
and is defined as “the process of modifying a software system or component after
delivery to correct faults, improve performance or other attributes, or adapt to a
changed environment” [IEE90].

Maintainability: refers to “the ease with which a software system or component can be
modified to correct faults, improve performance or other attributes, or adapt to a
changed environment” [IEE90]. The literature generally acknowledges three factors
that contribute to an improved maintainability: ease of understanding the design,
ease of operating changes in the design, and ease of extending a design.
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External software quality: refers to the quality of a software system, as perceived by its
users [Mey88]. In other words, external quality can be judged based on the runtime
behavior of the program. A number of commercial and free tools (e.g. all lint-like
tools such as FindBugs1) exist, that attempt to detect potential bugs by analyzing the
source code for things like null pointer dereferencing, infinite recursion and invalid
casts.

Internal software quality, design quality: refers to the quality of a software system, as
perceived by its maintainers [Mey88]. In other words, internal quality is equiva-
lent to maintainability. Since most maintenance activities involve the source code,
maintainability and therefore the internal quality is decisively influenced by the
static structure.

Structural anomaly, code smell: as we have seen before, the main task of the static struc-
ture should be to keep maintenance effort as low as possible. As a result, any char-
acteristic of a fragment of the structure, that has a negative impact on maintenance
effort, constitutes a structural anomaly [Ciu01]. Code smells [Fow99] are typical
examples of structural anomalies. For example, “large method” constitutes a struc-
tural anomaly, because the large size of the method’s body has a negative impact
on the ease of understanding and changing, therefore on the maintainability of that
method.

Restructuring: is the process of improving the structure, without affecting the system’s
external behavior (functionality and semantics) [CC90].

2.2. What Constitutes a High Quality Design?

In the life cycle of a software system, the design phase amounts to no more than 10-15%
of the total effort [BMP87], yet it is of a paramount importance to all subsequent phases,
of which by far the longest and most costly is the maintenance phase. Studies show that
maintenance accounts for over 50% of the total time [LS81], and between 75-90% of the
total effort [Erl00, Eas93].

It follows from the above, that design quality cannot be defined in absolute terms, but
rather it must take into account its main stakeholders, the maintainers. Coad and Your-
don affirm that “the most important characteristic of a good design is that it leads to an
easily maintained implementation” [CY91]. Therefore, the design must suit maintainers,
the important question being how.

Maintainers perform two kinds of activities: they need to understand and change existing
designs (here we also include extending a design). Therefore, a design is good if it makes

1http://findbugs.sourceforge.net/
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understanding and changing it easy. Through an iterative refinement process, these basic
requirements were distilled into a set of high-level principles [Mey88, CY91, LW93, Lak96,
Mar03]. They generally touch upon three important themes: proper conceptualization,
reducing complexity and improving modularity (i.e. low coupling and high cohesion),
and are summarized below:

Single Responsibility Principle: A class should have only one responsibility. Martin for-
mulates this principle as “a class should have only one reason to change” [Mar03].

The Open-Closed Principle: Software entities (classes, modules, etc) should be open for
extension, but closed for modification [Mey88]. In other words, changes should be
achievable only by adding new code, without changing existing code.

The Liskov Substitution Principle: Derived classes must be usable through the base
class interface without the need for the user to know the difference. This princi-
ple can also be stated in terms of the design contracts as: “a routine redeclaration in
a derivative may only replace the original precondition by one equal or weaker, and
the original postcondition by one equal or stronger” [Mar03].

The Dependency Inversion Principle: Details should depend upon abstractions. Ab-
stractions should not depend upon details. This principle can be translated to both
classes and entire subsystems, and in effect means that a design entity should only
depend on other entities, that are on the same or higher level of abstraction.

The Interface Segregation Principle: Clients should not be forced to depend on meth-
ods that they do not use. In other words, if a class has groups of methods that serve
different sets of clients, each set of clients should use its dedicated interface.

The Reuse-Release Equivalency Principle: The granule of reuse is the same as the gran-
ule of release. In other words, this principle states that only components that are
released through a tracking system can be effectively reused.

The Common Closure Principle: Classes that change together, belong together in a sub-
system, and groups of classes that change for different reasons should not belong
together in the same subsystem. This principle is similar to the single responsibility
principle of classes, but it applies to the responsibility of an entire subsystem.

The Common Reuse Principle: Classes that aren’t reused together should not be
grouped together. In other words, the subsystem structure should reflect reuse of
their contents.

The Acyclic Dependencies Principle: The dependency structure for subsystems must
be a directed acyclic graph. In other words, subsystems should not depend on one
another cyclically.

The Stable Dependencies Principle: Dependencies between modules must run in the
direction of stability. This means that modules which are expected to change of-
ten should not be depended upon by modules that are harder to change than they
are.
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The Stable Abstractions Principle: A package should be as abstract as it is stable
[Mar03]. This principle states that the more stable a subsystem is, the more abstract
are the classes that it should consist of.

Since these principles are still rather general to be easily applied, they have been further
refined into a multitude of heuristic rules, guidelines, and their equivalent anti-guidelines
[Mey88, Rie96, Lak96, Ciu01, Mar03, LM06]. Still, elaborating a high quality design is hard,
because of two important reasons.

First of all, many of the guidelines and rules are by their nature antagonistic. It is therefore
impossible to comply with all of them at the same time. Rather, as Coad and Yourdon note,
“a good design is one that balances trade-offs to minimize the total cost of the system over
its entire lifetime” [CY91].

A consequence of this fact is that even though structural anomalies, such as code smells,
may prove to be effective alarm signals in problem detection, they are neither guaranteed
to indicate an existing problem, nor can they suggest the right corrective measures. In or-
der to be able to decide whether the employed structure is appropriate or not, you have to
understand the context of the analyzed fragment, and reconsider the trade-offs involved
in that particular situation. The same is true in the case of deciding on corrective mea-
sures.

The second difficulty in elaborating high quality designs is change. The open-close prin-
ciple demands that future needs be met by only adding new code, without touching ex-
isting code. Of course, this requires preparing the structure to be able to accommodate
potential future needs. Certain kinds of future needs will be easy to foresee, while in other
cases, this may prove to be hard or even impossible.

On the other hand, it is not possible to accommodate all kinds of potential needs, equally
well. Thus, most of the times, the maintainer must decide which type of change to favor
(Martin calls it “strategic closure” [Mar03]), and adapt the structure accordingly. In some
situations however, it is better to adopt a demand driven strategy, as advocated by agile
software development processes.

In conclusion, the successful day to day use of design principles and rules requires careful
consideration and a lot of experience. As in other fields, a good way of improving one’s
skills is to study other successful designs, from which reusable solution ideas to common
problems can be extracted. This constitutes the motivation behind the pattern movement
in software engineering, initiated by Beck and Cunningham in [BC87], and later made
popular by Gamma, Helm, Johnson and Vlissides, in [GHJV96].

In their book, Gamma et al. define the notion of design pattern as “a solution to a [com-
monly reoccurring] problem in a given context”. The last part of this simple definition is
very important, because it acknowledges the impossibility of universally good design, as
argued above.
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Motivated by the success of using a pattern language as a form of knowledge dissemina-
tion, the pattern movement rapidly expanded to cover a wide range of granularity, and to
various application domains. From a granularity standpoint, we distinguish three levels,
whereas the separation between them is not sharp [BMR+96]: idioms, component design
patterns, and architectural patterns.

A series of empirical studies done by Prechelt et al. [PUT+01] investigate the general ben-
eficial impact of design patterns on maintenance effort. In a different study [PUPT98], the
same authors found that maintenance activities can be performed even quicker and with
fewer errors, if explicit pattern documentation is present in the code.

From the standpoint of the present work, the above discussion allows us to draw the fol-
lowing conclusions. There are many rules and guidelines which take various viewpoints
in order to describe properties of a good design, but compliance with all of them is im-
possible. Instead, trade-offs must be made by the designer, which take the local partic-
ularities as well as the change potential of the fragment into account. This is the reason
for which the causality criterion, introduced in section 1.1.3 is essential for any restruc-
turing methodology. Those methodologies that do not comply with this requirement are
inherently limited in their capabilities, and the restructuring process remains ad-hoc.

2.3. Tool Supported Software Quality Assessment

Complex software systems represent key assets in today’s enterprises. The “law of con-
tinuing change”, first formulated in a classic study by Lehman and Belady [LB85, Leh96],
states that a program that is used in a real-world environment must change, or else be-
come progressively less useful in that environment.

Another important result of that study, is that as a program evolves, it becomes more com-
plex, and extra resources are needed in order to preserve and simplify its structure. This
happens because repeated changes (which we have seen are unavoidable) tend to de-
grade the system’s architecture, a phenomenon referred to as “software aging” [Par94], or
“software decay” [Fow99]. In particular, a lack of understandability and flexibility in the
design, results in increased effort and costs associated with regular maintenance activi-
ties. Therefore, in order to keep the amount of effort and the costs under control, methods
and tools are required to periodically assess the state of the software assets, and if needed,
intervene with corrective measures.

We can largely classify tool supported quality assessment methodologies into three
groups: analysis methods, verification methods, and testing methods. Since verification
and testing methods target exclusively functional aspects, and therefore external software
quality, they are outside the scope of the present thesis.
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This section is intended to provide an overview of the fundamental concepts and methods
for assessing internal quality, based on analyses on the source code. We distinguish four
categories of approaches.

The first category consists of approaches for checking compliance to coding styles. Cod-
ing styles deal with very simple, language specific problems, such as convention viola-
tions for naming, commenting, code layouting or the use of particular language con-
structs. Style conventions can be either universal, or system dependent. Examples in-
clude the Kernighan and Ritchie style for the C language2, the GNU programmer’s style
guide 3, or the official Java coding conventions4.

The second category are clone detection approaches, which aim at detecting repetitions
of identical or close to identical blocks of source code. Clones are considered harmful, be-
cause each occurrence of a fragment must often be separately understood, changed and
tested. For example, forgetting to fix one or more occurrences may lead to inconsistent
behavior or runtime errors. Some examples of methods and tools for detecting clones are
[LHMI07, JMSG07, LJ05, DRD99].

These two categories of approaches are limited in scope, and therefore have a relatively
small contribution to forming an overall picture about the state of the design. The other
two categories of approaches, presented in sections 2.3.3 and 2.3.4, are those based on
metrics and structural pattern matching. But before taking a closer look at these, we
have to discuss two important prerequisites to tool supported quality assessment: how
the structure of systems can be represented, to allow its inspection and manipulation by
tools, and how we can model the abstract and subjective notion of quality.

2.3.1. Structural Models and Meta–Models

We mentioned before that design documentation can take many textual and/or graphical
forms. We also mentioned the fact that the source code can be regarded as an accurate
and up-to-date design document. Day to day experience shows that because of time pres-
sure, other forms of documentation are almost never in sync with the current state of the
code. Even documentation that is automatically generated from the source code, with
tools such as JAVADOC [Fri95], is not guaranteed to be 100% accurate. Therefore, almost
all approaches for tool supported quality assessment rely exclusively on the source code
of the program.

But the source code is also a very detailed description of the design, which means many
thousands of files to be analyzed. Even with tools, performing complex analyses across so
many files is very inefficient, much of the information being irrelevant from the viewpoint

2http://www.cs.usyd.edu.au/˜scilect/tpop/handouts/Style.htm
3http://www.nongnu.org/style-guide/
4http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
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of the analysis. In addition, the program may be written in a mix of various programming
languages, which brings even more technical complications to the analysis. Because of
these reasons, analyses are usually not implemented to operate directly on the source
code, but instead on top of a more or less abstract model constructed from the static
structure. Such a model is called a structural model, and is obtained as a result of a process
called “fact extraction”, typically followed by a combination of aggregation and selection
operations (jointly called “abstraction”) [Ciu01]. The level of abstraction is tailored to suit
the specific needs of the employed analyses.

In general, any model describes entities and their relations, as they exist in a given do-
main. A meta–model is a model that describes the structure and semantics of a certain
class of models. A given meta–model describes the elements and relations that appear in
a particular class of models. It provides a precise definition of the constructs and rules
needed for creating concrete models. In turn, models are said to be instances of their
corresponding meta–model (see [vG91]).

2.3.2. Software Quality Models

The notion of software quality is very complex, because it is by nature subjective and
extremely broad in scope. First of all, it is subjective because customer experience, per-
haps more than mere compliance with the specifications, plays a decisive role in judging
a product as having a high quality. Secondly, the notion is extremely broad because it can
refer to anything from internal design, to the conformance with requirements, the devel-
opment process and the usability of the system. Consequently it is impossible to quantify
software quality directly.

Therefore, a software quality model is a collection of rules and procedures that allow mak-
ing qualitative statements about a system, by creating a mapping between the abstract
notion of quality on one hand, and objectively ascertainable properties of the system on
the other hand.

In general, a quality model is either strictly hierarchical, or takes the form of a directed
acyclic graph. The root nodes of the graph represent various aspects of quality, that are of
interest to the assessors. Successive layers of the model represent iterative refinements of
the root aspects, until we reach a level that is usually populated by directly ascertainable
or measurable properties.

The first quality models structured in this way were the ones presented by McCall et al.
[MRW77] and Boehm et al. [BBL76], followed by many others, such as [Dro96, EL96, HR96,
BD02, Mar02].

As a result, the international organization for standardization (ISO) elaborated the
ISO/IEC 9126 standard, which covers a strictly hierarchical decomposition of six views
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on quality, referred to as quality factors: functionality, reliability, efficiency, maintain-
ability, portability and usability. Each quality factor is further decomposed into sub-
characteristics, called quality criteria. In the case of maintainability, the ISO standard
discerns between analyzability, changeability, stability and testability.

In spite of its popularity and success, the ISO standard does not say anything below the
level of quality criteria. In other words, the mapping process, called operationalization,
between the intangible characteristics of quality and the tangible properties of the code
[LCP01] (e.g. code metrics), is not covered. However, there are several methods that can
be used for the operationalization of intangible quality criteria, such as: the Quality Func-
tion Deployment approach [KA83], the Goal-Question-Metric approach [BCR94], and the
Software Quality Metrics approach [BBL76].

Introduced by Basili in [Bas92], the better known “Goal-Question-Metric” (GQM) ap-
proach was originally defined for evaluating defects for a set of projects in the NASA God-
dard Space Flight Center. It is designed to facilitate the operationalization with the help of
code metrics, but can be easily adapted to accommodate structural patterns. The method
consists of six steps, as follows:

1. Determine the set of measurement goals for quality. These can be for example the
quality criteria described by the ISO standard.

2. Generate questions that define those goals as completely as possible in a quantifi-
able way

3. Specify the code metrics that need to be collected in order to answer those ques-
tions

4. Develop mechanisms for data collection

5. Collect, validate and analyze the data in real time to provide feedback for corrective
action

6. Analyze the data in a postmortem fashion to assess conformance to the goals and
to make recommendations for future improvements

2.3.3. Analyses Based on Metrics

In any engineering discipline, measurement is essential, because “you cannot control
what you cannot measure” [DeM82]. In general, the term “measurement” is defined as
“the process by which numbers or symbols are assigned to attributes of entities in the real
world in such way as to describe them according to clearly defined rules” [FP96].

A measurement theory establishes the rules to be followed in order to be consistent in the
measurement activity, and provides a foundation for interpreting measurement results
[FP96]. It involves a rigorous, mathematical description of scales, measures and methods
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of measuring [HS96]. There are several measurement theories, but the so called repre-
sentational theory is the most common. The most important requirement imposed by
the representational theory is that the mapping of entities and empirical relations into
numbers and numerical relations must be of such a nature, that the empirical relations
preserve and are preserved by the numerical relations.

In the context of software, IEEE standard 1061 (1998) describing a software quality metrics
methodology, defines the term software quality metric as “a function whose inputs are
software data and whose output is a single numerical value that can be interpreted as the
degree to which software possesses a given attribute that affects its quality”.

Generally, software metrics are classified into product metrics, which describe the soft-
ware system itself, and process metrics, which describe progress, resource efficiency and
other managerial aspects of the development process.

A metrics suite is a set of individual metrics, intended to allow the formation of an overall
picture on the state of the object of measurement, by shedding light onto various com-
plementary aspects of its quality. Well known suites of object oriented product metrics
are those of Chidamber and Kemerer [CK94] and Lorenz and Kidd [LK94]. For a detailed
overview of these and other metrics suites, we refer the reader to [HS96].

Despite their relatively fast and effortless extraction, the effective use of software metrics
poses some problems:

• Metrics operate on a relatively low level of abstraction, by measuring things such
as method complexity, class cohesion and coupling, and depth of inheritance trees.
Thus, the use of design patterns for example, often has a detrimental effect on cer-
tain metrics values. This is because a high quality design is always a compromise
between different aspects of the structure, as measured by individual metrics.

• Metrics are generally symptomatic. They measure properties which may indicate
the existence of problems, but which are difficult to put in correspondence with
meaningful corrective measures.

• It is difficult to identify universally meaningful thresholds for each metric, as they
may depend on the nature, size or other particularities of the system. Thus, mea-
surement results must often be interpreted in the context of the current project.

• The validation of metrics is difficult, therefore it is hard to guarantee an acceptable
level of confidence in their predictive abilities. The risk is especially high, when
employing a quality model in order to aggregate several metric values, into a global
quality index value, or fitness function.

In spite of the above difficulties, metrics form the basis for a large percentage of tool sup-
ported analysis methods. Two important groups of approaches are worth mentioning
here.
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The first group of approaches aim to express the qualitative principles and rules which
govern object oriented design, in terms of sets of software metrics. The declared purpose
of these methods is to make design rules quantifiable and thus suitable for automated
problem detection. One of the first attempts was made by Erni and Lewerentz in [EL96],
through the definition of “multi-metrics” as n-tuples of metrics that capture a given qual-
ity criterion, as described by a quality model. A more advanced method is based on the
notion of “detection strategy”, introduced by Marinescu in [Mar02, Mar04]. Detection
strategies are metrics based logical expressions that embody negations of well known de-
sign rules. Compared to multi-metrics, detection strategies provide better abstraction
and encapsulation capabilities, and allow an engineer to directly locate design entities
that are affected by structural anomalies, such as “god class”, “data class”, and “feature
envy”.

The second group of approaches is represented by metrics based software visualiza-
tion techniques, whose primary purpose is to support reverse engineering activities, but
which can nevertheless be effectively used in problem detection as well. Particularly in-
teresting in this context, are the so called “polymetric views” [LD03], which are ordinary
visualizations, enriched with metrics information. In particular, design entities are rep-
resented using rectangles and relations are represented using edges. The essential visual
properties of these graphical elements, such as position, size and color, are varied de-
pending on the values of a carefully chosen set of metrics. Particularly useful examples
of polymetric views are the “system complexity” view [Lan03], and the “class blueprint”
[LD01]. Similar metrics enriched visualizations have been attempted in three dimensions.
Examples include [LD05] and [LN03].

2.3.4. Analyses Based on Structural Pattern Matching

In section 2.1, we defined the notion of structure as the set of all statically observable en-
tities, their properties, and relations. As a consequence, the structure can be mathemat-
ically represented as a graph, in which the observed entities are nodes, and the observed
relations are edges.

In general terms, a structural pattern is a graph that contains all entities and relations that
are common to a class of structural fragments of interest. Given the graph that represents
the structure of a system, structural pattern matching is the process of finding subgraphs
(i.e. pattern instances) that possess all of the constituents of a given structural pattern. In
mathematical terms, a match is a graph homomorphism between the pattern graph and
the host graph.

Depending on the implementation details of the pattern matching process, we have graph
based and rule based structural pattern matching approaches.
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Graph based matching, as implemented in graph rewriting systems such as [BS99, ERT99,
NSW+02, GBG+06], employs a graph formalism to specify the pattern, which then con-
stitutes the subject of a systematic search in a host graph. Since graph matching is an
NP-complete problem, performance, but also memory efficiency constitute critical con-
cerns. In the general case, graph matching algorithms and the analyses based on such
algorithms scale exponentially with the size of the system model, and therefore have a
limited applicability for large software systems.

On the other hand, rule based structural pattern matching works by defining a set of rules
as relations over elements of the structural model. This approach proves to be more flex-
ible in constructing ad-hoc analyses on large systems, because of the relative ease with
which rules that are defined on extremely different abstraction levels, can be defined and
combined into more complex analyses. In addition, a rule based formalism naturally
fits the form in which principles and rules of design are formulated. Rule based pattern
matching has been used successfully in design pattern detection for understanding and
redocumentation [KP96, AFC98, HHHL03], architecture checks using reflection models
[SSC96, FKvO98, MW99], and detection of structural anomalies [Ciu99, Ciu01, BNL03].

For example, in the context of restructuring, Ciupke describes [Ciu99] an automated
method for detecting structural anomalies in object oriented code. He defines the term
“structural problem” (i.e. structural anomaly, according to our terminology) as any prop-
erty of a structure fragment, which negatively affects development or maintenance costs.
The structural model is constructed directly from the source code, and takes the form of
a PROLOG fact database. In order to detect structural anomalies, Ciupke turns to heuris-
tic rules formulated in [JF88, Rie96, Lak96], such as “all data should be hidden within
its class”, or “a class should not depend on any of its subclasses”. He then expresses the
violation of each rule in the form of a PROLOG query, whose execution yields a set of can-
didates. Each candidate anomaly is validated by the software engineer through manual
inspection.

2.4. Tool Supported Program Transformation

The field of program transformation comprises a number of basic techniques, whose pur-
pose is to change existing programs in a useful way, according to a set of well defined rules.
Transformations normally preserve the semantics of the program, but there may be appli-
cations where this is not required, or even wanted [PP96, Vis05]. Program transformation
techniques and tools have varying degrees of specialization, ranging from single-purpose
normalization based on simple pattern matching, to general purpose full fledged meta-
programming systems. In the following, we give a brief overview of the most relevant
approaches to program transformation, from the viewpoint of our work: normalization,
refactorings, and general purpose meta-programming.
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2.4.1. Normalization Approaches

Normalization approaches adapt an existing program, according to a specific purpose,
by limiting the employed language constructs to a subset of the ones allowed by the pro-
gramming language. Normalization may be implemented either directly on the source
code, via textual pattern matching, or on a structural model of the system, using model
transformations or graph rewriting systems.

Simple normalization techniques are for example the elimination of goto statements,
desugaring5, and replacing “if-else” constructs with “switch-case” statements. More com-
plex normalization operations are for example the implementation of the Demeter nor-
mal form [Lie96] for improving modularity, normalization of inheritance hierarchies ac-
cording to [Cas92, Cas94], and the elimination of specialization-related problems in in-
heritance hierarchies [Neu00].

2.4.2. Refactorings and Derived Approaches

The term refactoring was introduced by Opdyke in [Opd92], to denote a relatively low level
program transformation, meant to change the structure of the code, without affecting be-
havior. Behavior preservation is understood in functional terms, in the sense that given
the same set of inputs, the transformed program generates the same outputs as the origi-
nal. Each refactoring has a set of pre-conditions. Behavior preservation of a refactoring is
only guaranteed if all pre-conditions of that refactoring are met, prior to its application.
Example refactorings introduced by Opdyke include basic ones, such as “move variable”
or “create empty method”, and composite refactorings, such as “replace inheritance with
delegation”, obtained by chaining together several basic refactorings.

Opdyke’s original concept of composite refactoring required that each basic refactoring in
its composition must be behavior preserving. In [Rob99], Roberts eliminated this limita-
tion, by extending each refactoring with a set of post-conditions that describe the effects
of the transformation on the program. He also described a composition method which
makes it possible to derive the global pre- and post-conditions of a composite refactoring,
based on the individual pre- and post-conditions of the composed refactorings. Thus, it
is possible to guarantee behavior preservation of a composite refactoring, even if its com-
ponent refactorings are not individually behavior preserving.

Refactorings such as those described in [Fow99] have become an essential ingredi-
ent in agile development processes, and enjoys an ever increasing support in mod-
ern development environments, such as Together6, IDEA7 and Eclipse8. They are typ-

5syntactic simplification, through the elimination of redundant language constructs
6http://www.borland.com/us/products/together/index.html
7http://www.jetbrains.com/idea/
8http://www.eclipse.org/
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ically implemented by parsing the code into a model on the level of the program’s ab-
stract syntax tree representation, transforming this model, and finally regenerating the
code from the transformed model (i.e. un-parsing). Furthermore, a series of works
[Zim97, SGMZ98, Cin00, Gen04] developed the concepts and tools for the automated
introduction of design patterns [GHJV96], through a sequence of refactorings. More re-
cently, the idea was picked up again by Kerievsky, who elaborated a catalogue of “refac-
torings to patterns” in [Ker05].

2.4.3. Meta-Programming Approaches

Meta-programming, more exactly static meta-programming, represents the most general
form of program transformation. As shown in [Lud02], it constitutes a theoretical founda-
tion and technical basis for tool support, for all other program transformation techniques.
In particular, meta-programming can be used for carrying out transformations that pre-
serve neither behavior nor semantics of program. This is for example the case in invasive
software adaptation scenarios, such as those described by [Gen04].

The idea behind static meta-programming is to parse programs into a tree or graph based
model, manipulate this model using term or graph rewriting techniques, and finally un-
parse the program back into its original format (typically source code). A distinction can
thereby be made, between the program being transformed, and the meta-program which
drives the transformation. In order to allow general source to source transformations, the
employed structural model usually corresponds to the meta-model of the programming
language itself. The RECODER9 framework provides such an infrastructure for the Java
programming language, and supports the development of further meta-programming
tools.

An example of a meta-programming tool based on the RECODER framework is Inject/J
[Gen04], which supports all refactorings described in [Fow99]. The tool also provides a
scripting language that provides advanced navigation capabilities, and allows the defini-
tion of composite refactorings. Furthermore, the tool is able to automatically test pre-
and post-conditions of all applied transformations.

9http://recoder.sourceforge.net/

22



Chapter 3.

Related Work

The previous chapter is dedicated to the introduction of basic terminology, as well as the
description of the foundations upon which our method is built. In particular, practical
approaches discussed in the previous chapter focus on sets of problems that are specific
either exclusively to code analysis and quality assessment, or exclusively to source code
transformation.

However, in order to perform restructuring, we require a holistic approach that success-
fully combines methods and techniques that are specific for both quality assessment and
source code transformation. The present chapter provides an overview of a series of at-
tempts to bridge the gap that exists between the two categories of approaches. Each indi-
vidual attempt is examined critically, with respect to the set of criteria defined in section
1.1.3.

For reasons of clarity, we decided to classify related approaches, based on common char-
acteristics, into five disjoint groups:

Manual approaches: are represented by works that describe elements of, or entire re-
structuring scenarios, in a textual, usually pattern-like form. Scenarios follow the
classic decomposition of the restructuring process into problem detection, prob-
lem analysis and reorganization. A pattern typically describes a starting structure
considered as deficient, possible causes for its appearance, one or more desirable
structures that can replace the existing one, and an example. Optionally, anecdotes,
known exceptions or variations of the described situation may be given. No mech-
anism is provided that would allow an automated detection of the initial situation,
or that would support the decision for one or the other of the alternative desirable
structures.

Tool supported investigative approaches: are attempts to directly automate ap-
proaches from the previous category, by providing a mechanism for the automated
detection of the deficient structure. Problem analysis is only indirectly supported
with tools, if at all. The decision process employed by the maintainer is not
systematic, because it has an ad-hoc nature, relies heavily on his intuition and
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experience. The term “investigative” expresses the fact that each detected problem
instance requires extensive manual investigation, while relying on the maintainer’s
personal skills and the literature. Automated code transformation capabilities are
sometimes provided.

Tool supported regressive approaches: are approaches that avoid the problem analysis
step altogether, by starting off from a given target structure, and looking for places
in the code where this structure is desirable, but is either absent, or present in a
distorted form. The target structures correspond to the well known design patterns.
Thus, structural anomalies such as the common code smells are generally not ad-
dressed by these approaches. Some degree of tool support for automated detection
as well as code transformations is provided.

Automated specialized approaches: are approaches offering a high level of automation,
but limited in scope to optimizing a narrow aspect of a system’s design, such as the
minimization of duplication, or the optimization of the modularity of subsystem
decompositions.

Automated search based approaches: are approaches that employ a search based
mechanism in order to optimize the structural quality of a system. The scope is
much larger than in the case of the previous category. Structural quality is expressed
as an abstract cost or fitness function. The cost function employs a set of code met-
rics such as coupling, cohesion and complexity metrics. Tool support is generally
limited to providing the automated computation of the structure that is optimal
with respect to the defined cost function.

3.1. Manual Approaches

Based on the idea of patterns, Brown, Malveau, McCormick and Mowbray condense in
[BMMM98] a number of common mistakes, in a wide spectrum of fields that range from
software project management to architectural issues and coding practice. These common
mistakes, called anti-patterns, are accompanied by a discussion of possible causes and
recommended remedies, as well as examples and anecdotes. The book captures a vast
body of experience in spotting and defusing potentially dangerous software development
pitfalls, and presents it in an informal and entertaining way.

From the viewpoint of tool supported object oriented restructuring, anti-patterns have
a number of weaknesses. Having an extremely broad scope, anti-patterns are rather ab-
stract, keeping a certain distance from code structure, and instead focusing more on the
process and organizational aspects of how mistakes get to be made. As a result, the rec-
ommended remedies are most often very general and refer to organizational and pro-
cess improvement measures, rather than concrete code transformations. The lack of sys-
tematic procedures means a high degree of reliance upon the skills and experience of the
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maintainer, which in turn prevents attaining a level of automation that would make the
method practicable for large industrial systems.

Based on the previous work of Opdyke [Opd92] and Roberts [Rob99], Fowler discusses in
[Fow99] the principles and use of refactorings as a means to improve the design of exist-
ing code, and presents a catalogue of more than 70 refactorings. A refactoring describes
the mechanics of a behavior preserving code transformation. Triggered by the question
of when to use refactorings, he goes on to describe a number of structural anomalies,
referred to as “bad smells in code”. These act as alarm signals that should attract the at-
tention of the maintainer to the respective design fragments.

The book contains short discussions of possible refactorings that might be meaningful in
the presence of each smell, but doesn’t offer any systematic procedure that would help the
maintainer determine the most appropriate sequence of refactorings in any given situa-
tion. Indeed, this is not possible, because of the symptomatic nature of code smells, which
merely signal the presence of some problems, but a causal treatment of these problems
requires further investigation (i.e. problem analysis) by the maintainer. As a result, the
level of attainable automation is in principle limited to detection of code smell instances
and the implementation of code refactorings.

In addition, a method that is based exclusively on code smells is oblivious to incipient
problems, because it only addresses situations where there is already a level of damage
that has become so significant as to induce the anomalous structural characteristics, cap-
tured by typical smells. In particular, as shown in chapter 1, the appropriateness of a
structural construct depends on the design context of the fragment, which includes the
change potential of that fragment. In other words, the structure may be inappropriate, if
it does not accommodate future changes in a natural way, even if there are currently no
anomalous characteristics, as captured by code smells. Code smells tend to describe the
result of ignoring the incipient problem, over a longer period.

In [DDN03], Demeyer, Ducasse and Nierstrasz apply the pattern format in order to doc-
ument best practices in the general context of object oriented reengineering. Their work
is based on the earlier results of the FAMOOS research project, which are described in
[Bae99]. There are nine clusters of related patterns, each focusing on a specific type of
reengineering activity, such as initial understanding of the system, migration strategies
or redistributing the responsibilities of classes. Reengineering pattern descriptions span
across a wide range of abstraction levels, from aspects of the reengineering process, to
code structure. Most of the reengineering patterns focus on the reengineering process it-
self rather than the design of the system (e.g. “speculate about design”, “involve the users”,
“use a testing framework”).

Those clusters that are relevant from an object oriented restructuring standpoint, deal
exclusively with redistributing responsibility and transforming conditionals to polymor-
phism. Thus, reengineering patterns do not satisfy our comprehensiveness criterion. The
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recommended structure does not take into account the entire design context because it
ignores the changes that are expected to occur to the respective fragment. Furthermore,
some of the reengineering patterns prove to be symptomatic, in the sense that there are
several patterns that deal with facets of the same problem (e.g. “move behavior close to
data” and “eliminate navigation code”) and others that mix more than one kind of prob-
lem (e.g. “split up god class”, which is a mixture between class schizophrenia1 and a de-
ficient distribution of responsibilities2). For these reasons, the causality and systematic
process criteria are not satisfied. In addition, the authors do not provide any mechanism
that would allow a tool supported detecting of the places in the code where a restructur-
ing pattern would make sense. Thus, the reengineering patterns cannot be employed in
an automated fashion.

The last approach in this category corresponds to the so called “refactorings to patterns”,
described by Kerievsky in [Ker05]. They are based on the idea enounced by Schulz,
Genssler, Mohr and Zimmer in [SGMZ98], of applying refactorings to automatically in-
troduce design patterns in existing code. In his book, Kerievsky presents a catalogue of
such meta-refactorings. A meta-refactoring is organized in a pattern format, the focus
being placed on the mechanics of implementing the corresponding design pattern.

Although each meta-refactoring contains a brief description of the initial situation, no
method is provided that would allow an automated detection of these situations. Further-
more, the mapping between the described starting situations and design patterns is not
always univocal, thus requiring the maintainer to decide between alternative solutions.
For example, the meta-refactoring “replace conditional logic with strategy” discusses the
strategy design pattern and the creation of subtypes as alternative solutions to the same
problem. This means that the approach does not satisfy our systematic process criterion,
and causality is not intrinsically guaranteed by the method, but left as a responsibility
of the maintainer. Finally, the approach focuses exclusively on design patterns, as solu-
tions to structural anomalies. As a result, lower level structural anomalies, such as those
indicated by the presence of certain code smells (e.g. data class, feature envy, refused be-
quest), are not covered at all. Thus, the approach fails short of the requirements of our
comprehensiveness criterion.

3.2. Tool Supported Investigative Approaches

Shortly after the introduction of the concept of code smells in [Fow99], first attempts to
automate their detection in code appeared: [Ciu99, Ciu01, Mar01, Mar02]. On the other
hand, based on the works of Roberts [Rob99], Cinneide [Cin00] and others, automated

1see design flaw “schizophrenic class” in A.6
2see design flaw “misplaced control” in A.5
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refactoring support in commonly used development environments was becoming more
and more common. In this context, there have been numerous attempts to link auto-
mated code smell detection with automated refactoring in integrated approaches, which
are discussed in the following.

In [DW03], the authors present a tool for restructuring Java systems. The tool uses heuris-
tic rules expressed in OCL to automatically detect code smells on an abstract syntax tree
representation of the source code. Refactorings are implemented as transformations of
the abstract syntax tree model, which allows code generation, using a dedicated pretty-
printer. For every code smell that is detected, the tool suggests a number of applicable
refactorings, but it is the responsibility of the maintainer to choose those that are best
suited in each specific context (i.e. lack of systematic procedures in the restructuring pro-
cess). Thus, the approach cannot guarantee a causal treatment of the underlying prob-
lem.

A very similar approach, but relying on logic meta-programming for code smell detec-
tion, is used by Tourwé and Mens in [TM03]. The authors acknowledge that often, several
refactorings can be chosen to remedy a particular situation (i.e. a code smell instance),
and “it is impossible to infer automatically which of these refactorings is most appropri-
ate”. Thus, a list of possible refactorings is provided, and the maintainer must choose
those that are appropriate in each particular case, by performing problem analysis man-
ually. The authors also talk about cascaded refactorings. It refers to situations in which
carrying out certain refactorings may open the possibility for applying other refactorings.
However, the method remains symptomatic, because it only provides for investigating the
possibility, but not the opportunity, of the cascading refactorings.

An interesting, more recent approach, is the one using the metaphor of “harmonious de-
sign”, described by Lanza and Marinescu in [LM06]. The work is based on, and com-
bines previous results ([Lan03] and [Mar02]) of the authors. According to them, a har-
monious design must give consideration to three aspects: class identity (what defines a
class), object collaboration (how do instances of unrelated classes cooperate) and classi-
fication (how do classes in a common hierarchy relate to one another). For each of the
three, the authors use the literature in order to distill a number of heuristic “rules of har-
mony” that describe desirable characteristics of design. They then define “disharmonies”
as violations of these rules, and provide two mechanisms that are shown to be extremely
effective in detecting disharmonies: detection strategies [Mar04] and polymetric views
[Lan03].

From a restructuring standpoint, disharmonies are very similar to code smells, and as-
sume all of their shortcomings. As in other approaches, problem analysis is not system-
atic. Although the possible decision paths are described, the maintainer does not get any
support in making these decisions. Furthermore, the notion of software quality is abso-
lute, in the sense that future changes are not taken into consideration. Because of these
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reasons, the causal treatment of structural anomalies is not built into the method, and
thus cannot be guaranteed.

Other approaches that follow similar strategies, and show similar weaknesses to the ones
described above, are [GC03, Fre03, Tri06, Mey06].

The approach presented in [TK04] uses software metrics to assess the quality of a system
based on a so called soft-goal graph decomposition. Soft-goals characterize various as-
pects of quality on a very abstract level, in terms of aspects such as modularity, coupling,
and complexity. Soft-goals are then operationalized, by putting them in correspondence
with a selected set of code metrics. The authors also define a basic set of abstract, high
level transformations (called meta-transformations), and formalize their corresponding
impact on the selected metrics, and consequently on the set of soft-goals. Based on this
impact estimate, a number of such transformations can be recommended to the engineer,
to improve system quality in certain places that scored poorly against one or more of the
soft-goals.

The approach is focused exclusively on the class level, and therefore does not satisfy our
comprehensiveness criterion. As suggested by their name, soft-goals are deeply symp-
tomatic, because they capture general properties of certain design elements or groups of
such elements, such as modularity, coupling and cohesion. Furthermore, the intent of a
given design fragment, as well as the expected changes are not taken into account when
proposing transformations. Thus, the method cannot guarantee a causal treatment of
problems arising in the structure.

In [MBG06], Moha, Bouden and Guéhéneuc propose a systematic process for specifying
and detecting structural anomalies, referred to as “design defects”. Defects are classified
according to their granularity into higher level (e.g. anti-patterns) and lower level defects
(e.g. code smells). The authors recognize that lower level defects can act as symptoms
of a higher level defect (e.g. the blob induces a central large class, surrounded by several
data classes). They introduce the notion of rule card, which is a formal description of
a high level defect, and contains structural and semantic information, and is backed by
a special meta-model. The structural information consists of the formal metric-based
specification of the lower level defects, while the semantic information consists in the
explicit definition of a number of abstract roles, which various entities fulfill within an
instance of the respective high level defect. Thus, a rule card is in effect equivalent to a
semantic network. Some of the main ideas are picked up and presented in more detail
in [MGL06]. The paper also provides some preliminary experimental results, but a full
validation is missing. In a subsequent paper [MRG+06], the authors realize the juncture
with tool supported correction with the help of formal concept analysis. A full validation
is not provided.

From the standpoint of our success criteria, this approach too has some of the typical
drawbacks in this category. Most importantly, the approach fails to guarantee a causal
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treatment of design defects, because of the following three reasons. First, defects that
are detected are inherently very abstract (e.g. spaghetti code, functional decomposition),
shedding little or no light on how to defuse them. Second, in order to come to a recom-
mended structure, the method relies on formal concept analysis and is in effect a cluster-
ing technique. In the case of the blob for example, the redistribution of methods between
classes is based on coupling and cohesion measures, ignoring design intent as well as the
change potential of the design fragment. Thirdly, semantics, though often advertised, is
confined to the roles that entities have (e.g. in the case of the blob, the central class and
the surrounding data classes). In particular, the design intent of the analyzed fragment is
not taken into account.

Finally, although the approach is claimed to be systematic, it is systematic on a meta-level,
in the sense that a sequence of steps is described in great detail. However, it does not de-
scribe the problem solution mapping process systematically, and thus cannot guarantee
repeatable results assuming a non-expert maintainer.

3.3. Tool Supported Regressive Approaches

In [GAA01], Guéhéneuc and Albin-Amiot use formal descriptions of design pattern struc-
tures in combination with a constraint solver, with automatic constraint relaxation, in
order to detect fragments that approximately match the specified structure. The degree
of variance is kept under control using parameters to the constraint solver. Their method
assumes that the found fragments represent distorted instances of the well known design
patterns. Thus, the source code is automatically transformed, based on a set of predefined
transformation rules, and in accordance with the structural differences to the canonical
structure of these patterns.

From the standpoint of our criteria, this approach has a number of drawbacks. First of all,
it is not clear why the use of a slightly different structure than the standard canonical de-
sign pattern structure is a defect. Second, the method has a symptomatic nature, because
it ignores the design context of the identified “defects”. Thus, the corresponding design
pattern or its specified canonical structure may not be appropriate in each concrete situ-
ation. Indeed, the authors themselves admit that "we need a repository of good designs,
independent of the context, for reference". But we argue that there is no universally good
structure, not even the canonical structure of design patterns. Finally the method is lim-
ited in scope to defects that map easily onto the well known design patterns.

In [JLB02], Jeon, Lee and Bae propose a tool supported approach to find candidate spots
for design patterns, which also uses the modification history of the program, as given
by the deltas between two or more complete source trees (i.e. releases). The assumption,
which is a reasonable one, is that parts that suffer certain modifications frequently, benefit
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the most from employing design patterns. The detection mechanism is query based, and
uses an abstract structural model, expressed in the form of a PROLOG fact database. The
model integrates both static structural information with historical information.

The approach is exemplified on the case of creational patterns, but no experimental re-
sults are provided. In particular, a validation of the method for more complex design
patterns is desirable. Furthermore, the approach does not satisfy the causality criterion,
because it dos not take potential future changes into account. Finally, like the rest of the
approaches in this category, the scope is limited to structural problems, whose solution
consists in applying design patterns.

Rajesh and Janakiram report on first experimental results obtained with their tool JIAD
[RJ04]. The authors claim to be able to automatically infer which design pattern is appli-
cable where, in the code of a Java system. The tool uses Prolog-like queries on a fact data
base, extracted from the source code. The specification of detection rules are based on
the intent and applicability sections of the classic design pattern descriptions.

Detection rules are symptomatic, because they are rigid and use structural information
exclusively. In particular, design intent and potential changes are not taken into ac-
count. The authors themselves admit that “sometimes design patterns introduce com-
plexity. Therefore, before applying the transformation process, the impact [...] on quality
attributes needs to be estimated”. Like the other approaches discussed above, the scope is
limited to finding opportunities to implement a design pattern. Although design patterns
arguably represent high-quality designs in certain contexts, they represent rather high-
level solutions to high-level problems. In particular, code smells may indicate structural
problems that are outside the scope of design patterns.

3.4. Automated Specialized Approaches

These approaches are designed to address one particular type of structural problems,
without consideration for others, hence the adjective “specialized”. Thus, no single spe-
cialized method can meet our comprehensiveness criterion. The reverse of the coin is that
these approaches are able to attain relatively high levels of automation. Furthermore,
though less symptomatic than search based approaches, specialized approaches do not
generally guarantee that recommended transformations are causal, because design in-
tent and potential future changes to the subject fragments are ignored. The following
paragraphs provide a few emblematic examples out of an otherwise very large array of
works.

In [Cas92, Cas94], Casais describes an iterative method for improving class hierarchies,
which employs two kinds of reorganizations. The so called decomposition consists in the
separation of the various abstraction steps that are usually merged in a single inheritance
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relation, such as specialization, implementation reuse or extension. Through this opera-
tion, alternative modeling possibilities are detected, which contribute to the reduction of
the semantic overloading of inheritance links. The second operation, called factorization,
extracts class members shared by several classes and isolates them in a common ancestor.
This is meant to eliminate unwanted redefinitions of class members.

Moore describes a tool called Guru [Moo96], to automatically create inheritance hierar-
chies that avoid member and code duplications, out of existing hierarchies and/or unre-
lated classes. The tool operates on programs written in the programming language Self.

The method presented by Neumann in [Neu00] is aimed at systematically treating prob-
lems that result from the violation of the Liskov substitution principle [LW93] in inher-
itance relations. Such situations are unavoidable in certain types of applications, espe-
cially in the development of framework based applications, business process modeling
and certain algorithms and data structures. To this end, the author defines a set of correct-
ness criteria, which also take into account how the respective subclass members are used.
For the situations in which a transformation of the hierarchy is not possible, a systematic
method for recognizing and interactively eliminating invalid usage patterns is provided.

The Demeter method for adaptive software development [Lie96] is a method that min-
imizes the coupling between groups of classes that cooperate in the realization of the
system’s functions. The so called law of Demeter is a principle that requires that objects
should only have knowledge about other, directly related ones. The author describes a
method for transforming the structure of a system, so that it satisfies the law of Demeter.

Finally, a notable group of works deal with the automated computation of subsystem
decompositions, for systems whose subsystem structure is either lost or in need of op-
timization. Also, computing subsystem decompositions based on coupling and cohe-
sion metrics may provide useful insights during reverse engineering of a large system. A
subsystem is generally defined as a group of connected components that exhibits a rel-
atively high cohesion, and low coupling with respect to other subsystems. In the case
of object oriented systems, the most used techniques are based on clustering methods.
Clustering, or cluster analysis is a mathematical technique for grouping entities based
on their common characteristics [Har75]. Successful use of clustering techniques for
computing subsystem decompositions in object oriented systems has been reported in
[RRHK00, EPS00, Tri01, MM01, Mit02].

In [BT04], Bauer and Trifu present an improved clustering method that relies on structural
pattern matching, to detect common architectural patterns that are taken into account
during clustering. For example, their method is able to identify and treat library code as
a cohesive cluster, and avoid its breakup and dispersal in other subsystems that use it.
Thus, their method is able to produce decompositions of a substantially better quality,
from the standpoint of the maintainer.
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3.5. Automated Search Based Approaches

Harman in [HJ01], and later Clarke et al. in [JCS], give an overview of the application of
search techniques to software engineering activities in general, and to restructuring in
particular. Harman coins the term “search based software engineering” and recognizes
it as a new emerging field in software engineering. Their motivation is based on the re-
alization that software engineering activities can be viewed as a search for solutions that
balance many competing constraints to achieve an optimal or near optimal result. Thus,
the aim of search based software engineering research “is to move software engineering
problems from human-based search to machine based search”.

In order to make machine based search possible, the characteristics to be optimized are
expressed as a cost or fitness function, whose basic atoms are software metrics. Because
of their exclusive reliance on metrics, all automated search based approaches to restruc-
turing have the following fundamental weaknesses:

• Because of the metrics used, they tend to optimize coarser grained, higher level
structural constructs such as design patterns away, because they operate on a much
lower level of abstraction. For example, the use of certain design patterns (e.g. vis-
itor, facade) may increase coupling metrics between subsystems. In fact, most de-
sign patterns represent solutions that trade some aspect of quality for others, such
that there’s an overall benefit concerning understandability and flexibility.

• They are generally symptomatic, because there is no case-to-case justification to
the resulting transformations. In other words, restructuring decisions are not based
on the local context, but rather on the value of the global cost function. In addi-
tion, the cost function usually aggregates several conflicting metrics that measure
completely unrelated characteristics of the structure. Because of these reasons, the
resulting structure may end up being much harder to understand and change, in
spite of the improved metrics values.

• They operate with an incomplete, or static notion of software quality. According to
the open-closed principle discussed in the previous chapter, the quality of a par-
ticular structure also depends on the type of change that the structure is likely to
suffer in the future. Search based restructuring does not take this component into
account.

Let us now look at a few examples in more detail.

The first attempts to apply search based techniques in the context of general restructur-
ing (i.e. not limited in scope to a single aspect, such as subsystem decompositions) were
focused on ways to automatically propose code refactorings. In [MSG99, SGM00], the au-
thors propose such a method, that employs a simple quality model to estimate the impact
of simple refactorings on maintainability. The quality model uses common coupling and
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inheritance metrics. Detection of problematic fragments occurs by looking for anoma-
lous values of the same set of metrics. Because it recommends refactorings based on a
universal set of a few metrics, the method is inherently symptomatic, and cannot guaran-
tee meaningful reorganization measures with respect to each fragment’s particular intent
and change potential.

Ó Keeffe and Ó Cinnéide present an automated method that relies on three types of
search techniques to automatically transform Java programs [KC06]. The tool operates
on an AST representation of the program and uses a hierarchical quality model based
on 11 individual metrics. The employed search techniques are first-ascent hill climbing,
steepest-ascent hill climbing and low temperature simulated annealing. The six imple-
mented transformations are limited in scope to inheritance hierarchies, and work on the
level of granularity of class members and above.

The authors argue that previous approaches “have focussed on improving one particu-
lar aspect of design, such as method reuse or code factorization. However, since object-
oriented design involves numerous trade-offs, this narrow focus could result in overall
quality loss”. We argue that too wide a focus isn’t helpful either. A cost function that in-
corporates many different aspects becomes too abstract. A method that tries to find an
equilibrium between a multitude of antagonist forces loses touch with the local design
context of each analyzed fragment. Thus, transformations are symptomatic because they
lead to an “optimal” but not necessarily meaningful structure. In addition, the approach
does not address fine-grained structural anomalies, such as those indicated by most of
the well known code smells.

Another optimization approach for structural improvement, based on a genetic algo-
rithm, can be found in [SSB06, Sen07]. The merit of the approach consists in trying to
counter one of the weaknesses described above, by augmenting traditional search based
techniques with a structural pattern matching technique, called “architectural clues”
[BT04]. Architectural clues allow guessing the roles that methods play inside a class. For
example, a class that only consists of delegating methods is probable to constitute a fa-
cade [GHJV96], and is therefore not broken up by the optimization algorithm. In other
words, the method avoids destroying some design patterns, in the hope of preserving un-
derstandability.

On the other hand, this feature is also a weakness of the approach. As discussed in the
previous chapter, the presence of a design pattern does not guarantee a high quality of
the structure. A given design pattern has a specific intent, which only makes it meaningful
in a well determined context. In cases where the design context of the fragment doesn’t
match the intent of the pattern, its presence constitutes a flaw, that the approach fails to
address.

Furthermore, unlike the previous approach, the approach proposed by Seng does not at-
tempt to detect design deficiencies in the structure. Instead, the structure is simply op-
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Figure 3.1.: Condensed assessment of related work

timized with respect to the cost function that is defined. Thus, causality of the resulting
transformations cannot be guaranteed.

A further weakness of the approach is its limitation in scope. For example, transforma-
tions do not reach into method bodies, and method moves between inheritance hierar-
chies are not supported. Because of these limitations, the approach fails to comply with
our comprehensiveness criterion.

3.6. Conclusions

This chapter gave an overview of research that is aimed at bridging the conceptual divide
as well as the gap in tool coverage, between current quality assessment based on static
analysis, and code transformation techniques. Based on their commonalities, we iden-
tified five groups of approaches, and discussed representative examples in each group.
Furthermore, we highlighted the most important weaknesses of each approach, by refer-
ring back to the four criteria, defined in section 1.1.3 of the introduction.

We found that there is a correlation between our classification of the approaches into
groups, and their compliance with our criteria. This allows us to compile a condensed
view of the entire assessment, as shown in figure 3.1.

As can be seen from the table, the five groups of approaches are rather complementary,
and there is no category of approaches that fully complies with all our criteria. Another
important conclusion is that none of the approaches fully complies with the causality cri-
terion. The manual and investigative approaches tend to do better because they rely on
human intervention, which makes it possible to come to a causal solution, in principle.
The specialized approaches, particularly those that focus on inheritance relations, also
tend to do a better job, because they are able to pay more attention to those aspects of de-
sign quality that form their focus. However, none of the approaches guarantees causality
by construction.
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Design Flaws

4.1. Design Context

As pointed out in chapter 2, software development is a process of elaborating a software
based solution to a problem, in a given domain. A significant percentage of the activi-
ties involved in software development revolve around solving two distinct categories of
problems: modeling problems and structuring problems.

Modeling is part of the design process, and it accounts for the following activities:

• Working out the system’s functionality requirements and breaking them down into
manageable chunks

• Establishing abstractions in the problem space, the solution space and the applica-
tion domain, which form actors that participate in realizing the functional require-
ments of the application

• Assigning responsibilities to the various abstractions by distributing the chunks of
functionality between actors

The resolution of modeling problems is a creative process that occurs on an abstract,
mental level, resulting in an abstract mental model, which translates into a design in-
tent. Thus, design intent is an abstract description of what needs to be achieved, in a
given fragment of design. Design intent is technical in the sense that it does not describe
functional requirements of the application, but rather states a design strategy to realize
one or more such requirements. It is in fact a goal statement for subsequent structuring
activities, and is comparable to the intent description of a design pattern [GHJV96].

In general, for any problem that needs to be solved in software, modeling may result in
several possible design intents. Decisive factors are for example the level of granularity
at which the domain, the problem and the solution are modeled, and the topology of the
design, which can be either action oriented or object oriented, irrespective of the pro-
gramming language used.
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+open()
+copy()
+paste()

Document

+open()
+copy()
+paste()

PlainTextDocument

+open()
+copy()
+paste()

RichTextDocument

{
  do_common_stuff();
}

{
  super.open();
  richtext_specific_stuff();
}

Figure 4.1.: Diagram showing a fragment of a text editor’s design

After a design intent crystallizes, structuring is responsible for making it explicit, in con-
secutive iterations, using natural text, diagrams, and ultimately source code. Thus, the
abstractions that result from modeling become for example classes, organized in hierar-
chies, whose assigned responsibilities are reflected in their public interfaces. The cooper-
ation between objects may be governed by various design patterns, acting as a means of
communication between developers, and from developers to maintainers.

During the initial design of a system, design intent is the result of modeling activities. In
the course of a system’s life, the original intent might change, as a result of changes to
the design. Therefore, when we restructure a system, we must infer the currently existent
design intent for a design fragment, by understanding the source code.

As an example, let’s consider the case of a hypothetical text editor program that must
handle plain text as well as rich text files. For such a program, we might have the design
fragment depicted in figure 4.1. The design intent for the depicted fragment can be ex-
pressed briefly, as providing a specialization hierarchy for the Document abstraction. In
other words, clients receive a uniform interface (i.e. Document) through which they are
granted access to an abstract set of services (i.e. open(), copy(), paste()). The
implementations of these services can vary transparently to the clients, depending on the
actual type of document that is handled by the application at any given time. In the case
depicted here, we are dealing with an object oriented design. Therefore, design intent is
expressed in the structure with the help of type inheritance, a mechanism provided in all
object oriented languages.

To use an analogy, the process of elaborating a software design resembles the process of
elaborating and giving a talk. On one hand, modeling activities correspond to identifying
and constructing the complex edifice of ideas, that the speaker wants to transmit to the
audience. On the other hand, structuring corresponds to the process of expressing these
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+open()
+copy()
+paste()

-docType : int
Document

switch (docType) {
  case TYPE_PLAINTEXT: 
    // open plain text document
    …
  case TYPE_RICHTEXT: 
    // open rich text document
    …
}

common_stuff();
...
switch (docType) {
  case TYPE_PLAINTEXT: 
    // paste plain text
    …
  case TYPE_RICHTEXT: 
    // paste rich text
    …
}

Figure 4.2.: An alternative structure for the Document class

ideas in sentences, in accordance with certain grammar and stylistic rules, particular to
the language.

Just as an idea can be expressed in different ways, a design intent can be expressed using
several possible structures. The decision depends on several factors:

• The principles, rules and dedicated mechanisms offered by the particular program-
ming paradigm and language

• The types of changes that are expected to occur to the design

• Programming style and conventions, that may exist in the development team,
which may sometimes contradict the principles and current best practices

• Various constraints imposed by the physical environment in which the system
runs, such as performance, efficiency or costs associated to certain communication
channels.

The first two factors are universal, while the last two strongly vary from team to team
and from project to project. In the present work, we decided to limit the scope of the
discussion to the first two of the four factors mentioned above.

Since nobody wants to touch a running system, all maintenance activities are the result
of changes in the system’s requirements or environment. These changes require changes
to the design of the system. Making these changes requires understanding the existing
design. Thus, in order to have a maintainable system, the source code must be structured
in a way that favors understanding and making changes. But how do the first two factors
mentioned above influence the ability of understanding and making changes to a system?
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TypeChecker
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CodeGenerator

...
v.visitVariableRef(this)
...

...
v.visitAssignment(this)
...

... {   // iterate over structure
  element.accept(this);
}
...

Figure 4.3.: A compiler’s design, structured using the visitor design pattern

First of all, in every programming paradigm we have a set of best practices and rules, that
guide developers in their choice of structure. In turn, programming languages provide
paradigm specific mechanisms and constructs, that the implementer can use to express
a design intent in a clear and natural way. Therefore, a structure that disregards the rules
and best practices of the programming paradigm, by being an unnatural, surprising ex-
pression of the design intent, increases the effort of understanding the design.

For example, object oriented languages provide the mechanism of inheritance, as a
means to express a specialization hierarchy. Moreover, the principles and rules of object
oriented design [Mey88, CY91, Rie96, Mar00, Mar03] recommend the use of the inher-
itance mechanism to express any specialization hierarchy. For example, let us compare
the structure of the design fragments shown in figures 4.1 and 4.2. Both structures express
the same design intent (i.e. the specialization hierarchy of an abstraction called “docu-
ment”). However, from the viewpoint of object oriented design, the structure shown in
figure 4.1 conveys this intent more naturally and clearly, and is therefore recommended
for the given design intent.

Let’s now turn to the second factor that influences choice of structure: the expected
changes. The open closed principle [Mar03] tells us that a program should be open for
extension but closed for modification. Ideally, a fragment of design that conforms to the
OCP can be extended without modifications to the existing code. Unfortunately, ideal
conformance to OCP is impossible. Robert Martin notes in [Mar03]: “In general, no mat-
ter how «closed» a module is, there will always be some kind of change against which it is
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...
ASTNodeIterator nodes = AST.getNodes();

while (nodes.hasMoreNodes()) {
  ASTNode node = nodes.nextNode();
  ...
  node.generateCode();
  ...
}
...

Figure 4.4.: A compiler’s design, structured using simple subtyping

not closed. There is no model that is natural to all contexts!”. In other words, every struc-
ture favors specific types of change and hinders others. [Mar03] refers to this as “strate-
gic closure”. As David Parnas puts it in [Par94], “since it is impossible to make everything
equally easy to change, it is important to estimate the probabilities of each type of change.
Then, one organizes the software so that the items that are most likely to change are con-
fined to a small amount of code, so that if those things do change, only a small amount of
code would be affected”.

We will refer to those types of changes that have a higher probability as the strategic clo-
sure. Unfortunately, in the lifetime of a system, the strategic closure is itself subject to
change. Since we cannot accurately predict all coming changes during initial design, we
have to settle for those that are obvious at that time, and expect to be taken by surprise by
others, later on. These unexpected changes, if done in a haste and without being accom-
panied by proper refactoring, are the cause of the “software aging” [Par94] phenomenon.
The same applies when restructuring an existing system. Certain kinds of future needs
will be easy to foresee, while others will be hard or impossible. The maintainer must de-
cide on the strategic closure that seems most probable at the time of analysis.

As an example, let’s consider the design of a hypothetical compiler, which represents
programs as abstract syntax trees. Since a compiler needs to perform several complex
analyses and operations, specific for each type of node in the tree, we might consider
structuring the code in accordance with the “visitor” design pattern [GHJV96], as shown
in figure 4.3. However, the visitor pattern is only recommended when it is desirable to
make the set of operations flexible, with the cost of compromising the encapsulation of
the node classes. In this case, the visitor pattern favors changes to the operations but
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hinders changes to the abstract syntax tree model, especially if there are changes to its
internal data.

Alternatively, placing the operations in the AST node hierarchy would lead to a structure
that favors changes to the model, but makes changes to the set of operations harder, as
shown in figure 4.4. If we were designing this compiler from scratch, we would expect
the abstract syntax tree to suffer a lot of changes during development of the system, and
stabilize at a later time. In order to minimize the costs associated with implementing
these changes, it would probably be a good idea to initially embed the operations into the
model, and refactor to the visitor pattern at a later time.

In conclusion, in order to favor understanding and making changes in a fragment of de-
sign, the structure needs to convey the design intent in a clear and natural way, as well as
be “closed” against the changes that need to be performed. Given the importance of the
two elements design intent and strategic closure, we define the notion of design context as
follows:

Definition 1 (Design context). The design intent and the strategic closure corresponding to
a design fragment will collectively be referred to as the design context of that fragment.

4.2. Design Flaw

4.2.1. Reference Structure

As argued in section 4.1, in a given design fragment, the choice of structure depends on
the fragments’s design context. In each individual case, by relying on the software en-
gineering body of knowledge and by deciding on the strategic closure, we can deduce
one or more alternative structures, which have ideal characteristics from the standpoint
of maintainability. The core features that characterize the quintessence of the relevant
structuring decisions, are the same in all of these structures. We will refer to these com-
mon features as the imperatives associated to the given design context. Thus, the im-
peratives associated to a design context, is a set of mandatory design decisions, whose
implementation in the structure guarantees optimal maintainability in that context.

Consequently, in order to judge the structure of an existing piece of code, we have to
recover the underlying design context and derive the corresponding set of imperatives.
Then, we analyze the existing structure with respect to the set of imperatives. If the struc-
ture fails to comply with one or more imperatives, it is deemed inappropriate in that con-
text.

Based on an arbitrary design context, we can construct a showcase structure, that embod-
ies all specific imperatives. We will refer to this structure as the reference structure for that
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context. Thus, the reference structure represents a generic template, which constitutes
an appropriate solution in the given design context.

Definition 2 (Reference structure). Given the set of maintainability guidelines described
above, the reference structure for a concrete design context is defined as a generic template
structure, which embodies all the imperatives that result from applying the guidelines to
the given context.

Remarks:

1. The reference structure is an idealized structure, without domain semantics, that
is an archetype of an satisfactory solution to a given structuring problem. A refer-
ence structure cannot, and does not deal with issues that pertain to the modeling
problem.

2. The generic structures described in the well known design patterns catalog by
Gamma et al. [GHJV96], represent reference structures in the design contexts that
warrant the use of the corresponding design pattern.

As said before, in order to come up with the imperatives in a given design context, we
have to resort to the software engineering body of knowledge. The various quality mod-
els for software maintainability available in the literature offer valuable guidance in this
endeavor. One of the most used quality models is the one described in the ISO/IEC 9126
standard (see section 2.3.2). It decomposes the abstract concept of maintainability into
four sub-characteristics: analyzability, changeability, stability and testability.

While every model decomposes maintainability a little differently, virtually all of them
touch on the two crucial aspects discussed before: ease of understanding, and ease of
modifying and extending. Further desirable characteristics addressed in various models
of maintainability are usually consequences that directly or indirectly result from the ones
described above. Such examples include stability (few unexpected effects resulting from
a change), ease of testing and ease of reuse.

Based on the existing literature, we distilled the following set of guidelines to help in the
process of establishing the imperatives in a given design context:

Ease of understanding: the structure should favor the understanding of the design by
humans. While software systems are complex systems by nature, reducing this com-
plexity is possible through abstraction and decomposition techniques:

• Clean separation and encapsulation of domain abstractions into classes;

• Extraction and separation of commonality between abstractions/classes;

• Minimizing unwanted coupling by properly distributing knowledge and re-
sponsibilities among subsystems and classes
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• Consistent use of a vocabulary of proven solutions to recurring problems (de-
sign patterns).

Ease of modifying or extending: the structure should favor easily modifying or extend-
ing the design. This can be achieved through:

• Isolating unrelated concerns from one another;

• Isolating things that change from things that stay the same;

• Isolating things that change more often from those that change more rarely;

• Achieving a balance between specificity and generality in order to minimize
the need for redesign in case of unexpected changes in the requirements or
runtime environment.

The process of applying the above guidelines to the design entities involved in the generic
description of a design intent, will usually result in conflicting requirements towards the
imperatives and the reference structure. By relying on the design context, an experienced
maintainer is able to make the right trade-offs.

4.2.2. Definition

We are now ready to define the central notion of the present work.

Definition 3 (Design flaw). A design fragment is said to be affected by a design flaw, if its
structure violates one or more imperatives in the design context of that fragment. In this
case, the structure is said to be pathological.

Remarks:

1. Although we have several pathological structures for a given design context, ev-
ery such structure forms, together with design context and reference structure, a
unique design flaw. Our objective is to identify and describe triplets that have prac-
tical relevance in restructuring practice.

2. The presence of a design flaw in a given design fragment justifies the need for re-
structuring that design fragment.

3. The resolution of a design flaw consists in replacing the existing pathological struc-
ture with one that adheres to all imperatives defined in the given design context.
The reference structure is the archetype of such a structure.

4. The difference between a design flaw and a structural anomaly is crucial. A struc-
tural anomaly is an anomalous pattern in the structure, or a structural characteristic
that is abnormal in some way, and represents an obstacle in the way of maintenance
activities. For example, very large method bodies and very deep and narrow inher-
itance hierarchies represent structural anomalies. As will be shown later, a design
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Figure 4.5.: Overview of newly defined terminology

flaw manifests itself through symptoms that may or may not constitute structural
anomalies.

Let’s now come back to the example of the compiler, from section 4.1. Since changes to the
model are expected to be much more frequent in the foreseeable future, we may decide
to “close” our design with respect to those kinds of changes. Therefore, in order to max-
imize maintainability of the fragment, it is required that we embed the operations into
the nodes of the tree. Therefore, the reference structure would correspond to the situa-
tion in which the operations are embedded into the nodes of the tree. Any other structure
that would not comply with this imperative would be deemed pathological. In particular,
the structure that employs the visitor pattern would represent a pathological structure in
the given design context. Under these circumstances, the presence of the visitor design
pattern in the source code of our compiler represents a design flaw. The reorganization
strategy that would improve the quality of the design consists in eliminating the visitor
pattern by distributing the visitor methods among the corresponding AST classes.

Figure 4.5 provides a suggestive depiction of the various relationships between the main
concepts defined above (block arrows represent flow of information).

4.2.3. Scope

Design flaws are a useful tool for assessing and improving the structure of existing designs,
with respect to maintainability. They rely on the assumption that the functional require-
ments of the application are correctly addressed by an underlying abstract model, de-
scribing the actors and their cooperation towards the realization of these requirements.
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Even when looking at design flaws that capture deficiencies in type definitions for in-
stance, we will assume that the abstractions that those types represent are semantically
valid, key abstractions in the domain, problem or solution space of the application. The
only aspect of interest from a design flaw’s perspective in this case, is the way in which
type definitions reflect the identity, behavior and cooperation patterns of these abstrac-
tions. This section is dedicated to delimiting the scope of design flaws with respect to the
confines of the present work.

In the following, we further refine the scope of design flaws with respect to four criteria:
programming paradigms, granularity, organization of the restructuring process and sys-
tem flavors.

Programming paradigms

In principle, the concept of design flaw is very general, and therefore applicable to any
design paradigm. In particular, the set of problems posed by procedural programs are in
essence very similar. However, considering the author’s background, and because object
orientation is today’s leading programming paradigm, we decided to limit the scope of
the discussion in this thesis to object oriented systems.

Granularity

Within the scope of object oriented design, one generally distinguishes three levels of in-
creasing design granularity, whereas the separation between levels is not sharp. In the
following, they will be referred to as code level, component design level and architectural
level. Only if all three levels of granularity are properly addressed, can a system’s design
be generally called well structured.

Considering their motivation and distinctive constraints, design flaws are best situated on
the first two of the three levels mentioned above: code level and component design level.
Nevertheless, the author chose to limit the scope of the flaws discussed in this work to the
intermediate abstraction level, for the following reasons:

• All concepts and methods presented in this work are applicable on the code level,
without modifications.

• Our approach is not an optimization based approach, but rather a rule based one,
in the sense that we rely on design principles, rules and heuristics. The vast majority
of design rules, heuristics, patterns and code smells in use today, that might have a
relevance in the context of tool supported restructuring are situated on the code or
component design level.

• Because of the increasing level of abstraction, the intermediate level poses more
challenges to automated processing than the code level.
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Although in theory it should be possible to extend the scope of design flaws to the archi-
tectural level, we expect this to pose significant difficulties. The main reason is that cer-
tain aspects of the architecture are hard to capture in a pattern language (e.g. subsystem
decomposition). In addition, unlike component level structures, architectural constructs
such as layers or subsystem boundaries are much more difficult to automatically pinpoint
in the source code. On the other hand, since the architecture of a system is normally not
expected to change as often as the design of its individual components, we can argue that
we need to deal with the most common case first. Therefore, the architectural level is left
as a worthwhile topic for future investigation.

Organization of the restructuring process

In the present work, we describe a method that unites problem detection and analysis
activities within object oriented restructuring, in a systematic, tool supported process.
Therefore, the method is not more than an effective tool in the hands of the maintainers,
who must use it in a way that conforms to the goals of each restructuring process.

In particular, we rely on the assumption that implementing the reference structure de-
scribed by a design flaw, does not have negative side effects elsewhere in the design. This
is because applying the reference structure is like applying a design pattern. Before de-
ciding to do it, we make sure that the design context asks for it. But on the other hand,
the merits of the reference structure prescribed for a given design context are not always
absolute. For instance, error handling may be implemented using either function return
values, or exception handling. As already mentioned in section 4.1, the design flaws pre-
sented throughout the work ignore issues related to programming style and conventions,
as well as any other design constraints that might arise from limitations imposed by the
physical environment of the system, such as performance, efficiency or costs associated
to certain communication channels. However, we don’t mean to say that such issues are
completely out of the reach of design flaws. Instead, we say that special circumstances
require specially adapted design flaws. The maintainer is responsible for putting together
and using a set of design flaws that adequately addresses the particular characteristics of
the development team and project.

System flavors

The concept of design flaw in general, and the ones specified in the current work in par-
ticular, are independent of the application domain or implementation flavor. Constraints
that are specific for the application domain (e.g. real time systems, safety critical systems,
etc) or the implementation flavor (e.g. parallel processing, distributed processing), may
impose conditions that cannot be met by generic design flaws. In such cases, it is the
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responsibility of the maintainers to put together, and use a set of design flaws that ade-
quately meet these conditions. These issues are outside the scope of the present work.

4.2.4. Anatomy of a Design Flaw Specification

As argued in the previous sections, a design flaw is uniquely determined by a design con-
text and a pathological structure. The reference structure is one that embodies the set of
imperatives that result from the context.

Concerning the form in which design flaws are described, we opted for a more pragmatic,
semi-formal specification of our design flaws. Although a formal representation of soft-
ware structure is possible (see section 2.3.1), the design context is much more difficult to
represent formally, because of its semantic nature. Concretely, a design flaw specifica-
tion combines natural language descriptions documenting design context, trade-offs and
decisions, with UML representations of program structure, in a consistent, pattern-like
form. Each design flaw specification is divided into the following sections:

Name
Just as in the case of design patterns, a design flaw needs a name that captures the
essence of the flaw. A suggestive name helps in forming a dedicated restructuring
vocabulary, which in turn makes the exchange of ideas and know-how more effi-
cient.

Description
The purpose of this section is to convey the meaning of the flaw in a concentrated
and suggestive way. A concrete instance of the design flaw is depicted in a UML
diagram and is shortly discussed.

Design Context
This section describes the design context of the flaw. In conformance with defini-
tion 1, the description of the design context comprises the description of the design
intent as well as strategic closure.

Imperatives
Guided by the basic maintainability model in section 4.2.1, and relying on the soft-
ware engineering body of knowledge, we derive a number of mandatory features
that the reference structure must have, called imperatives. Adhering to the imper-
atives guarantees that maintainability of the design fragment is maximized, within
the specified design context.

Pathological Structure
This section contains a UML representation and description of the pathological
structure, specific for the design flaw. The generic structure discussed here illus-
trates a number of structural features, which will later be used in tool supported
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diagnosis (see also chapter 5). In addition, a justification highlighting the short-
comings of the pathological structure with respect to the imperatives is provided.

Reference Structure
This section contains a UML representation and description of the reference struc-
ture for the design context at hand. The reference structure is characterized by the
fact that it closely adheres to the imperatives established for the given design con-
text.

4.3. Design Flaw Catalogue

As already explained above, a design flaw is uniquely defined by a design context and a
pathological structure, while a reference structure can be derived from the two. The ref-
erence structure is the result of materializing the design intent, while taking into account
the set of design guidelines for maintainability as well as the types of changes that are
expected to occur to the system.

In theory, when you want to specify a design flaw, you can start with any one of the three
elements, and successively work out the other two. The goal is to find those triplets that
are statistically relevant by representing situations that are commonly found in practice.
A good strategy to find relevant cases is to start either from a structural anomaly such as
a code smell (potential pathological structure), or from a design pattern (potential refer-
ence structure).

Appendix A contains a catalogue of 10 design flaw specifications, derived partly based on
existing design patterns, partly on well known code smells. The catalogue is of course by
no means complete, but can be considered relevant for the following reasons:

• All the flaws contained within the catalogue capture situations which can be fre-
quently encountered in large legacy systems, irrespective of their domain or imple-
mentation flavor.

• The catalogue is representative, because it touches on all important concerns of
object orientated design, such as object definition, inheritance hierarchies and the
distribution of responsibilities between classes. Thus, design flaws A.6 and A.7
address issues concerning class definition. Design flaws A.4 and A.5 address is-
sues concerning the distribution of behavior between abstractions represented by
classes. Design flaws A.8, A.9 and A.10 address various problems that pertain to
specialization hierarchies. Finally, design flaws A.1, A.2 and A.3 deal with situations
that warrant the use of inheritance, and are typical for software that is designed in a
procedural style.

• The catalogue contains design flaws that address both well known structural
anomalies (e.g. god class, feature envy, data class) as well as design patterns (e.g.
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visitor, state, template method), bringing them together under the roof of object
oriented restructuring.

Code excerpts are in Java, one of the most popular object oriented languages in use. The
pattern form used to describe design flaws in appendix A, extends the basic template de-
scribed in 4.2.4, with a number of additional sections that will be discussed throughout
the following chapters.
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A Method for Diagnosing Design Flaws

The previous chapter introduced the notion of design flaw, which is defined in terms of a
delta between the reference structure in a given design context, and the existing structure.
This chapter presents a method for tool supported diagnosis of design flaw instances.
To this end, we will first introduce a running example that will be used throughout the
present and the next chapter. Subsequently, we discuss the idea that forms the basis of our
diagnosis method and define some supporting concepts. Finally, we present the notion of
diagnosis strategy and discuss issues concerning the implementation of a diagnosis tool.

5.1. Example: Schizophrenic Class

As running example for the discussion in the current and the next chapter, we chose the
design flaw called “schizophrenic class”, specified in section A.6 of our catalog. For the
sake of easier reading, we reproduce the specification in the following.

5.1.1. Description

In object oriented design, a class should not capture more than one key abstraction. Key
abstractions are defined as the main entities within a domain model, and often show up
as nouns within requirements specifications ([Rie96]). A key entity is an abstraction that
stands on its own in the abstract model that results from modeling activities.

A “schizophrenic class” is a class that captures two or more key abstractions. Class
schizophrenia is common in situations where a system is developed incrementally, with-
out restructuring in-between increments. Thus, a class that is defined very early in the
process, may prove to be too abstract later on, as it receives more and more responsi-
bilities. Consequently, the class needs to be broken into fragments that capture more
fine-grained abstractions.

Another possible scenario for the formation of schizophrenic classes is in the process of
migrating a procedural system to an object oriented language. Large chunks of formerly
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global data are grouped together with functions that use this data into a single, large and
noncohesive class.

In both scenarios mentioned above, the class encapsulates the data and behavior of two
or more design abstractions. In addition, the encapsulated abstractions are described
based on their identity. In other words, we have an object oriented topology of the un-
derlying abstract model that results from modeling activities (i.e. the model describes the
encapsulated abstractions as individual, cooperating actors).

Classes whose names contain words such as “system”, “subsystem” or “manager” are likely
candidates for class schizophrenia. However, there are also exceptional situations, in
which a class is intended to provide a unified, simpler interface, to a complex set of inter-
faces that form a subsystem. This is the case of the “facade” design pattern. Nevertheless,
a facade is primarily delegating to the responsible classes and does not aggregate all the
data that define the abstractions in the subsystem.

Figure 5.1 shows such an example instance, where the class SmartHomeManager im-
plements three interfaces that define clearly separated responsibilities: the air condi-
tioning system, the alarm system and the lighting system. The implementation of these
three abstractions relies on partially overlapping data, but is mostly not related to one an-
other. For example, the air conditioning shares the attribute windowStates with the
alarm system, and the attribute windowShadeStates with the lighting system. The
schizophrenic class doesn’t always implement explicit interfaces, but we decided to in-
clude them in the example, because it is suggestive of the impersonation of various roles
that the instance of a schizophrenic class does for various clients in the system.

A schizophrenic class negatively affects the ability to understand and change the individ-
ual abstractions that it captures, in isolation.

5.1.2. Context

Design intent
You want to express a set of individual design abstractions in a model having an ob-
ject oriented topology, as classes in the system. Alternatively, you are migrating a
procedural program to an object oriented language, and you need to define coop-
erating classes, from chunks of global data and functions.

Strategic closure
The design abstractions under consideration are expected to change independently
from one another.
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+setDesiredRoomTemp(in room, in temp)
+getCurrentRoomTemp(in room)
+setACEnabled(in room, in enabled : bool)
+isACEnabled(in room)

«interface»
IAirConditioningSystem

+isAlarmEnabled()
+setAlarmEnabled(in enabled : bool)
+getAlarmStatus()
+setOffAlarm()

«interface»
IAlarmSystem

+isAutoLightEnabled()
+setAutoLightEnabled(in enabled : bool)
+turnLightOn(in room)
+turnLightOff(in room)
+getLightStatus(in room)

«interface»
ILightingSystem

+openWindow()
+closeWindow()
+lowerWindowShade()
+raiseWindowShade()

-coolingUnitStates : Vector
-desiredRoomTemperatures : Vector
-actualRoomTemperatures : Vector
-windowStates : Vector
-windowShadeStates : Vector
-motionSensors : Vector
-emergencyPhoneLines : Vector
-roomPresenceSensors : Vector
-roomLightSensors : Vector

SmartHomeManager

Vector

Figure 5.1.: An example of schizophrenic class

5.1.3. Imperatives

In general, in order to maximize maintainability, each class should capture no more than
one key abstraction. Key abstractions are abstractions that stand on their own in the ab-
stract model which determines design intent. In addition, all data that is related to one of
the class’ responsibilities, and all behavior that is related to the class’ data should be kept
together, in the same class [Rie96].

In order to maximize maintainability within the described context, we need to isolate
those design abstractions from one another, that are expected to change independently.
This implies that the functional decomposition of the original class’ behavior needs to be
replaced with an identity based decomposition that reflects the decomposition of data
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among the involved abstractions, so that data and associated behavior are kept together.

5.1.4. Pathological Structure

As illustrated in figure 5.2, the pathological structure is characterized by the fact that the
offending class encapsulates more than one key abstraction. As a consequence, we ex-
pect to find relatively isolated clusters of data and associated behavior, that represent
the implementations of the corresponding logical interfaces. The interfaces can be ei-
ther implicit, or declared explicitly, and they correspond to the various abstractions en-
capsulated by the class. In the latter case, they are not trivial, or so called marker in-
terfaces. The first cluster in the generic structure presented in the figure, comprises the
methods method1() and method2(), which use attr1, attr2 and attr3, and the
second cluster comprises methodsmethod3() andmethod4(), which useattr1 and
attr4.

SchizophrenicClass

attr1
attr2
attr3
attr4

method1()
method2()
method3()
method4()

+method3()
+method4()

«interface»
Interface2

+method1()
+method2()

«interface»
Interface1

Figure 5.2.: Pathological structure for schizophrenic class

Figure 5.2 depicts a rather favorable situation, in which the methods of the class can be as-
signed more or less unambiguously to clusters of data. This denotes an strong object ori-
ented topology of the underlying abstract model. In the worse scenario, the class may ap-
pear to be functionally cohesive, in the sense that an unambiguous association of meth-
ods to the attribute clusters which describe the encapsulated concepts is not possible.
Such instances are harder to diagnose reliably because heuristics must rely on indirect
manifestations in the structure, such as class size and the way in which clients use the
class. Thus, a schizophrenic class is likely to be large in terms of data that is defined, and
to have a relatively large number of clients in the system.
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The pathological structure described above has a negative effect on the maintainability
of the individual abstractions contained within, because it hinders understanding and
changing them in isolation.

5.1.5. Reference Structure

As shown in figure 5.3, the original class has been broken up, based on the abstractions
encapsulated by the class. Again, the figure illustrates the more favorable situation, in

+method1()
+method2()

«interface»
Interface1

+method3()
+method4()

«interface»
Interface2

-attr2
-attr3

Abstraction1

+getAttr1()

-attr1
-attr4

Abstraction2

+method1()
+method2()

«interface»
Interface1

+method3()
+method4()

«interface»
Interface2

-attr2
-attr3

Abstraction1

-attr4
Abstraction2

+getAttr1()
-attr1
Abstraction3

a b

Figure 5.3.: Reference structure for schizophrenic class

which we have a strong identity based decomposition of class members, based on the
identities of the encapsulated abstractions.

With respect to attributes that are used by two or more functional clusters, we have two
possibilities. In the first scenario, the attribute can unambiguously be assigned to one of
the newly created abstractions (figure 5.3 a). In this case, the attribute should be moved
into its natural home, a possible guiding heuristic being that the abstraction that changes
the attribute should also own it. All methods that use attributes belonging to a foreign
class, may need to be split according to the class identities and associated responsibilities
(see A.5). In case there are still foreign methods that need read access to the attribute, a
getter accessor method can be created.

The second scenario is when one or more commonly used attributes really don’t belong in
any of the abstractions implementing the interfaces, but semantically forms a helper class
for them (figure 5.3 b). In this case as well, we should avoid providing accessor methods.
Rather, the methods that use foreign attributes should be investigated, in order to identify
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possible higher level services that could be moved along with the attributes into the helper
class. Thus, we ensure that functionality is properly decomposed, according to each class’
identity and associated responsibilities.

In any of the two situations the original class can provide a “facade” to the newly created
classes.

5.2. Idea

Given a design flaw specification such as the one presented in section 5.1, the questions
immediately arise: how can we identify instances of the flaw, and how can we automate
the process? Before we discuss these questions, we must state more precisely what we
actually mean by “identify instances of a design flaw”. To this end, we define the term
diagnosis as follows:

Definition 4 (Diagnosis). We define diagnosis as the process of identifying design frag-
ments, whose structure and design context match the pathological structure and design
context described in a design flaw specification.

According to this definition, for a successful diagnosis we need a positive match on three
things: the design fragment’s structure, design intent and strategic closure. Since strate-
gic closure is generally independent of the existing code, matching it will require human
intervention. Nevertheless, we will attempt to target the other two elements, structure
and design intent, in an automated fashion. However, we want to limit ourselves in this
endeavor to a static analysis of the system, because we want to avoid the complications
arising from the need to guarantee the full code base coverage of the test runs, as well as
the instrumentation of the code.

In other words, we want to use static analysis to identify fragments of structure, that
match the description given in the design flaw specification and have a well defined in-
tent. However, in order to do this, we need to set up a hypothesis which we will validate in
chapter 7. The hypothesis that we rely on in this case, is that design intent manifests itself
in the static structure. Although this is a reasonable assumption to make, such structural
features are sometimes extremely subtle and require a very fine-grained analysis.

To illustrate this point, let’s consider the two cases depicted in figure 5.4. While in the
case of the first structure, the intent is a specialization hierarchy of the class Document,
in the second case we are dealing with variation of object behavior, based on an abstract
notion of state (i.e. the variable conState). These are two very different design intents,
which correspond to different design flaws. Nevertheless, the two structures are nearly
identical, except for the names of the variables, and the fact that in the second case the
state variable is updated in the conditional branches, while in the first case it is not. For
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+open()
+copy()
+paste()

-docType : int
Document

switch (docType) {
  case TYPE_PLAINTEXT: 
    // open plain text document
    …
  case TYPE_RICHTEXT: 
    // open rich text document
    …
}

common_stuff();
...
switch (docType) {
  case TYPE_PLAINTEXT: 
    // paste plain text
    …
  case TYPE_RICHTEXT: 
    // paste rich text
    …
}

+open()
+sendData()
+close()

-conState : int
TCPConnection

switch (conState) {
  case STATE_CLOSED:
    // open a new connection
    ...
    conState = STATE_OPEN;
    return SUCCESS;

  case STATE_OPEN:
    // connection already open
    return ERR_ALREADY_OPEN;

  ...
}

switch (conState) {
  case STATE_CLOSED:
    // connection is already closed
    return ERR_ALREADY_CLOSED;

  case STATE_OPEN:
    // close connection
    ...
    conState = STATE_CLOSED;
    return SUCCESS;

  ...
}

Figure 5.4.: Different intents may result in very similar structures

a detailed presentation of the two design flaws involved, please consult the specifications
A.1 and A.3 in appendix A.

The above example suggests a different problem as well. Certain features that allowed
us to establish the correct intent in each of the two cases might not be always present in
the structure. For example, the names used for the checked variables were suggestive of
the different intents behind the otherwise very similar structures. One could for exam-
ple build a lexical analysis of variable identifiers into the diagnosis process of these two
individual flaws. However, it is reasonable to assume that variables may also have differ-
ent, less suggestive names, and therefore, such a constraint on identifiers must be treated
as optional. This is somewhat similar to the way in which a disease is diagnosed in the
medical world, where some of the symptoms that characterize a disease may or may not
manifest themselves. Thus, the idea of our approach is to define a set of “structural symp-
toms” that are likely to appear together for a given design intent and pathologic structure.
Using state of the art pattern matching techniques, we look for instances of these symp-
toms, in a manner that is similar to medical diagnosis. In other words, the design flaw
is characterized by a linear combination of “structural symptoms”, and the more of these
symptoms we can detect, the more probable it is that we got the right design flaw. Of
course, this is only a qualitative statement, and may not hold in all cases, since individual
symptoms might need to be given different weights. See section 5.3.3 below for a dis-
cussion on weighing different indicators, based on their relevance. In addition, different
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Data
Class

Data
Class

Data
Class

Data
Class

Data
Class

God
Class

Figure 5.5.: Migration of functionality to a central class

design flaws may share common symptoms, such as the repeated conditional constructs
in figure 5.4.

As a further, perhaps easier to grasp illustration of this idea, let’s consider the situation de-
picted in figure 5.5, in which a class of the system attracts functionality from a number of
other classes around it. This situation corresponds to the anti pattern known as “the blob”
[BMMM98], or “god class” [Rie96]. The class that attracts functionality has a tendency to
gain weight, which corresponds to the code smell “large class” [Fow99]. Conversely, the
classes holding the attributes and loosing functionality tend to become slimmer, which
corresponds to the code smell “data class” [Fow99]. Furthermore, those methods in the
central class that use foreign attributes in the data classes, are likely suffering from the
code smell “feature envy” [Fow99].

This is a good example of how three apparently unrelated code smells may collectively
indicate a common underlying cause: the migration of functionality from the periphery
towards the central blob. However, this does not mean that in every case of migrated func-
tionality, all three smells will be present. For instance, the centralization of behavior might
not be extreme enough to create data classes, in which case this code smell would not be
detected. Furthermore, a large class can also have other causes, such as code duplication
or too many responsibilities assigned to it by the designer.

The rest of this chapter addresses the topic of specifying the above “structural symptoms”
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(which we call indicators) of a design flaw, as well as implementation issues of the diag-
nosis process.

5.3. Indicators

As discussed in the previous section, design flaw diagnosis is similar to medical diagnosis.
Instead of combinations of symptoms that characterize a disease, we use combinations
of structural features that describe a specific pathological structure and design intent. For
the purposes of the present work, we define the notion of indicator, as follows:

Definition 5 (Indicator). Any kind of automatically detectable finding, originating from
the static structure of the system, which expresses a distinctive feature of the pathological
structure or the manifestation of design intent, is called an indicator of the corresponding
design flaw.

Remarks:

1. According to the above definition, code smells can be indicators for various design
flaws. At the same time, an indicator must not necessarily represent a code smell.
Unlike other approaches, our method focuses on the combined presence of sev-
eral different symptoms, that must not necessarily have a negative connotation, or
represent code smells. Thus, we are able to detect inappropriately structured code,
even if there are no out of the ordinary manifestations, in the form of structural
anomalies.

2. In medical practice, a disease must not necessarily manifest itself through all of its
symptoms, and a symptom may be shared by several distinct diseases. Similarly, a
design flaw may manifest itself through a subset of its characteristic indicators, and
indicator sets for different flaws may partially overlap.

Let us now return to our example design flaw “schizophrenic class”, introduced in sec-
tion 5.1, and to find a set of indicators that characterize the corresponding pathological
structure as well as design intent.

5.3.1. Defining Indicators for “Schizophrenic Class”

First, let’s focus on the description of the pathological structure, given in section 5.1.4,
to identify some of the more obvious indicators. The description mentions two types of
structural features: the presence of “more than one key abstraction”, which translates into
“isolated clusters of data and associated behavior”, and the presence of “explicit or im-
plicit interface definitions”, which the class implements.

Based on the above, we can formulate the first two indicators of the design flaw, as follows:
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Indicator 1: The analyzed class has a low internal cohesion.

Indicator 2: The class exhibits distinct personalities with respect to disjoint groups of
clients, either by explicitly implementing two or more non-trivial interfaces, or by having
disjoint groups of clients that use disjoint fragments of the class’ public interface.

So far so good, but can we find further indicators? Let us now look at the description of the
corresponding design intent. The description talks about several design abstractions, or
chunks of global data originating from a procedural system, which constitute elements in
a design fragment having an object oriented topology. What this is actually meant to ex-
press is that the abstractions in question represent key abstractions in the design, which
means that they have semantically independent responsibilities. These responsibilities
may potentially serve several clients, and thus justify the existence of these abstractions
as separate entities (i.e. types) in the design of the system. How could we distill this infor-
mation into further indicators for our design flaw?

First, if we are talking about several abstractions or “chunks of data” that make sense on
their own, it is reasonable to assume that a schizophrenic class which is supposed to
encompass several of these, could potentially be characterized by a “larger than usual”
amount of internal data. This can be expressed as:

Indicator 3: The class defines a large number of attributes.

This indicator is a perfect illustration of the facultative nature of design flaw indicators
discussed in section 5.2, because a schizophrenic class doesn’t have to have a large number
of attributes, but rather it is more likely to have a large number of attributes. Conversely, if
a class that we stumble upon in our analysis of a system happens to define a large number
of attributes, increases our suspicion that the class in question is “schizophrenic”, in the
sense of our design flaw.

Similarly, a class that encloses several independent abstractions is likely to also have more
behavior than usual. In addition, if the object oriented topology of the enclosed abstrac-
tions is not that pronounced, as described in the second part of section 5.1.4, the class
is also likely to be more complex. These two characteristics are jointly expressed by the
following indicator:

Indicator 4: The class is heavyweight, in the sense that it is very large and has a high com-
plexity.

Finally, the last proposed indicator for the design flaw “schizophrenic class” expresses the
idea that a class which encloses several key design abstractions must serve all the clients
of each individual abstraction, and therefore are likely to have a higher incoming coupling
than usual:

Indicator 5: The class constitutes a “bottleneck”, in the sense that a significant proportion
of all classes in the system depend on it. A class depends on another if it references it.
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At this point, it is important to note that the above indicators are defined informally, in
a language independent manner. Also, the definitions may contain expressions such as
“very large class”, “low cohesion”, “many clients” and so on. Of course, this type of defi-
nitions constitute the first step in automating the diagnosis process, but their main pur-
pose is to document, to describe. In the subsequent step, indicator descriptions need to
be translated in something more precise, which can be executed mechanically. In order
to achieve this, we will build upon the results of previous doctoral theses and research
projects at the technical university of Karlsruhe1 and its associated research center, FZI2.
The author of this work has been involved in some of these projects personally.

5.3.2. Formal Definition of Indicators

In general, identifying structural fragments that satisfy a set of requirements is called
structural pattern matching. As discussed in section 5.4 below, for practical reasons,
structural pattern matching approaches work on an abstract model of the system’s struc-
ture, called the structural model. The rules that govern the construction of a structural
model are described by its corresponding meta-model, which is language specific. In or-
der to be able to use our indicators in an automated structural pattern matching tool, we
need to express them as relations on the set of entities defined by the meta-model.

In today’s state of the art, we have two categories of approaches for structural pattern
matching, with applications in static analysis. They are on one hand the graph pattern
matching approaches, with applications in automated design pattern detection, such as
[KP96, AFC98], and on the other hand rule based querying with applications in automated
detection of code smells, such as [Ciu01].

In general, graph pattern matching techniques are not suitable for our problem, because
of the following reasons:

• They require an a-priori mapping of the artifacts of interest to the nodes and edges
of a graph. This task has proven feasible especially at or above the level of granular-
ity that corresponds to class members, such as in the case of most design patterns.
As will be shown, we generally need to approach the granularity level of the abstract
syntax tree. Thus, the size of the graph as well as the pattern that needs to be identi-
fied becomes unpractical. Defining a sufficiently large and fine-grained search pat-
tern is very difficult, or impossible. Furthermore, as suggested by figure 5.4, we will
often have to deal with a very wide dynamic range of granularity. In other words, we
will need to specify both very fine-grained and coarse-grained features at the same
time.

1Universität Karlsruhe (TH), http://www.uni-karlsruhe.de
2FZI Forschungszentrum Informatik, http://www.fzi.de
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• Performance and memory efficiency of the search decrease, usually in an exponen-
tial manner, with the increasing size of the model and search pattern. Our goal is to
analyze real world systems that have several hundred thousand lines of code.

• The fragments we will be looking for may differ slightly in their structure, between
instances of the same design flaw (i.e. individual indicators are generally optional).
Supporting optional or variable structures may be hard or impossible in graph
based pattern specifications.

Rule based approaches have been successfully used in identifying both code smells and
design patterns, because rule based formalisms naturally fit the form in which principles
and rules of design in general, and indicators in particular, are formulated. Since rules
usually express some limited characteristics of the structure, they scale much better with
respect to both specification effort and execution time. Also, it is relatively easy to specify
both coarse-grained and fine-grained rules.

Since rules are commonly defined as relations over elements of a structural model, ex-
isting approaches do not support variability. In other words, it is usually not possible to
define optional portions of a rule. We overcome this limitation by capturing each optional
aspect (i.e. indicator) in a separate rule, and combine these rules in a process that resem-
bles medical diagnosis.

In order to express indicators as rules, we can resort to several formalisms, such as de-
tection strategies [Mar02, LM06], queries expressed in a logic programming language
such as Prolog [Ciu99, Ciu01], or relational algebraic operators or the SQL query language
[Ciu01, TSK05]. Alternatively, we can simply write a program that computes relations us-
ing the development environment’s specific APIs.

While in theory, all of these formalisms can be used interchangeably, each of them
presents certain advantages, depending on the type of indicator as well as the form in
which the structural model exists. For example, detection strategies are best at specifying
informal, fuzzy, metrics based rules, such as indicator 4 defined above. Prolog queries
on the other hand, are a natural match for sharp structural pattern matching rules, such
as “a class must not know any of its descendants”. Furthermore, if the structural model
exists as a set of prolog facts, the specification is directly executable by an inference en-
gine. Finally, SQL, as a loose implementation of a relational algebra, is a natural, directly
executable formalism, for the case in which the structural model exists in the form of a
relational database.

In the following, we exemplify the specification of an indicator using a detection strategy.
Indicator 4 defined in the previous section, seems a perfect candidate for being expressed
using a detection strategy, because it is informal, fuzzy and refers to measurable sizes. We
repeat its definition below, for convenience:

Indicator 4: The class is heavyweight, in the sense that it is very large and has a high com-
plexity.
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As described in [LM06], the process of transforming an informal rule such as indicator 4
into a detection strategy, has four steps:

1. The first step consists in picking out the structural characteristics of interest from
the informal rule. In our case, the rule directly mentions two types of characteris-
tics: class size and complexity.

2. Next, we need to select appropriate metrics that quantify each of the previously
identified characteristics. Depending on the situation, one may choose well-known
metrics from literature, or define a custom metric. In our case, we could imagine
at least two different ways of measuring the size of a class: counting class mem-
bers and counting lines of code. Similarly, the literature provides several complexity
measures, mostly based on McCabe’s cyclomatic complexity [McC76]. Alternatively,
we might choose a single metric that combines both of the previous aspects, such
as the WMC (Weighted Method Count) metric [CK94].

3. In the third step, we need to establish appropriate comparators and threshold val-
ues for each metric. In all but the rarest of cases, we need to rely on statistical data
for threshold values of acceptable quality. This statistical data can either be based
on a large number of case studies, or it can be derived from the system that is an-
alyzed. For a more detailed discussion on choosing thresholds in the context of
detection strategies, please refer to [LM06]. Let us assume for a moment that the
chosen threshold values for WMC is 40, and the comparator used is “greater than”.

4. Finally, the detection strategy is “composed” using logic operators, as appropriate
for the rule being specified. In our case we do not have to do anything, since we
only use one metric.

Thus, the final textual form of the detection strategy would be:

I2 := WMC(c) > 40

where c represents an instance of “Class” (see figure 5.7 below), in the system’s struc-
tural model.

At this point, the following questions arise: how “good” is this indicator? Does it fulfill
its intended purpose well? Could we potentially improve it? In order to answer these
questions, we need to discuss the issue of indicator quality.

5.3.3. Quality of Indicators

Conceptually, an indicator can be regarded as a filter, whose input and output are sets of
structural entities on a given level of granularity. In the case of the indicator formulated
above, we could for example define the input as the set of all classes in the system. Then
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{ r1, r2, r3, r4, r5, i1, i2, i3, i4, i5 } FILTER { r1, r2, r4, i1}

input output

Figure 5.6.: A set filter, viewed as a retrieval mechanism

the output is a subset of the initial set, that has the property of having a weighted method
count that is higher than 40.

Generally, the quality of a set filter can be assessed in terms of the relevance/usefulness
of its output for a given input. To this end, we can call upon the classical data retrieval
measures of precision and recall. If we look at the filter as a retrieval mechanism (see
figure 5.6), that is expected to extract relevant elements (ri ) from its input and pass them
to its output, precision and recall of the filter are defined as follows:

Precision: represents the ratio of the number of relevant elements in the output to the
total number of elements in the output. For the example in figure 5.6, P = 3

4 ;

Recall: represents the ratio of the number of relevant elements in the output to the num-
ber of relevant elements in the input. For the example in figure 5.6, R = 3

5 ;

An ideal filter has both 100% precision and 100% recall. In most practical applications
however, it is very hard or impossible to implement ideal filters. Consequently, precision
and recall are usually not standalone, but inversely related: the higher one of the mea-
sures, the lower the other. Thus, our goal is to find a suitable balance, so that we have an
acceptable precision, without loosing too many of the relevant inputs.

Therefore, in theory, in order to assess the quality of an indicator, we need to measure
its precision and recall. Unfortunately, this is easier said than done, because in order to
compute recall we need to know the number of relevant elements in the input. In the case
of our example indicator, this would require us to either know or accurately estimate the
real number of schizophrenic classes in the entire system.

Since there is no practical way of knowing this, other than a painfully laborious manual
inspection of the system, we need a different way of ensuring a minimum level of quality
for newly specified indicators. To this end, we will employ the following artifice in the
process of specifying detection rules for indicators. Specifically, we will use a two step
procedure. In the first step, we specify a raw version of the indicator, in such a way that
we get close to ideal recall. Then, if possible, in the second step of the procedure we
optimize the indicator’s precision, by imposing further constraints, in a way that arguably
minimizes loss of recall. As a rule of thumb, we should afford giving priority to recall
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over precision, because design flaws are diagnosed in terms of a combination of several
different indicator types.

If we apply the artifice described above, we get indicators that tend to lie on the side of
higher recall and lower precision. Thus, precision alone tends to receive a greater rele-
vance in judging the quality of an indicator:

P (I ) = Con f (I )

Found(I )
= Con f (I )

Con f (I )+Di s(I )
(5.1)

where Found(I ), Con f (I ) and Di s(I ) represent the total number of automatically found,
manually confirmed and dismissed instance candidates of a given design flaw, for which
the indicator I had been found during the analysis.

Although P (I ) can tell us something about how well an indicator works individually, it
doesn’t tell us anything about how that indicator performs in combination with others, in
the diagnosis process of a given design flaw. In other words, we would like to have a way of
characterizing the relative contributions of various individual indicators in the diagnosis
process of a design flaw. To this end, as in the medical sciences, we can resort to regression
analysis[DS98], a statistics technique which can be used to describe the relation that exists
between a so called response variable (in our case the presence or absence of a design flaw
instance), and a set of so called explanatory variables (the outputs of various indicators
that characterize that particular design flaw).

The simplest form of regression is the so called linear regression method, in which the
relationship between the response variable and the explanatory variables takes the fol-
lowing general form:

Y =α+β1X1 +β2X2 + ...+βp Xp +ε (5.2)

where Y is the response variable, Xi are the explanatory (also called independent) vari-
ables, ε is a random term, α is a constant term (also called the intercept), and β1−p are a
set of coefficients that determine the regression model.

Given a series of Y j and a series of X1, j , X2, j ...Xp, j , where j = 1, ...,n the so called linear re-
gression method of ordinary least squares [Gau21] determines a set of β1, ...,βp such that
the function of Y (X1, ..., Xp ) corresponding to equation 5.2 best approximates the given
series of Y j . The name of the method comes from the fact that the estimated coefficients
minimize the sum of squared error estimates for the given data set. The method assumes
that the variables X1, ..., Xp are as suggested by their name, independent.

In the context of design flaw diagnosis, the resulting coefficients can be understood as
weights, which tell us about the relative influence that each individual indicator has in
the outcome of the diagnosis. In chapter 7, we will make use of the above techniques
when assessing the quality of the indicators that are used in evaluating the approach.

63



Chapter 5. A Method for Diagnosing Design Flaws

5.4. Tool Support

In the previous sections, we described the process of defining indicators for a design flaw.
In the following, we discuss the implementation of tool support for indicator detection
and the diagnosis process in general.

5.4.1. Structural Models

As already discussed in chapter 2, the source code constitutes the most detailed and only
guaranteed reliable source of structural information for static analyses. In practice how-
ever, tools usually do not analyze source code directly. Instead, they use a model that is
extracted from the system’s source code, known as the structural model. The so called
meta-model describes the building blocks and rules that are used for building specific
structural models (see 2.3.1).

Any meta-model can be used in the diagnosis process, provided that it is fine-grained
enough to allow the implementation of all indicators that are required. The indicators de-
fined for the design flaw that we chose as our running example throughout this chapter,
requires a meta-model that can reach down to the individual statements. As a minimum,
it must be fine-grained enough to allow distinguishing conditional statements and indi-
vidual variable accesses within method bodies. Such fine-grained meta-models can be
usually found in IDEs with support for code refactoring, such as eclipse3, or in libraries
and frameworks for code analysis and transformation, such as RECODER4. These meta-
models usually go down to the abstract syntax tree level, and thus are complete with re-
spect to a given programming language. Consequently, they are usually limited to that
single programming language. However, a complete model has the advantage that it al-
lows generating the complete source code of the system, which in turn allows the imple-
mentation of both analyses and refactorings on the same model.

An interesting compromise from the standpoint of model granularity is achieved by a
meta-model, designed at the FZI Forschungszentrum Informatik, within the frame of
the project QBench5, and used in the open-source analysis tool SISSy6. It is presented
schematically in figure 5.7.

The QBench system meta-model [TSK05, TS05] was especially designed for fine-grained
static analysis, goes down to the level of and distinguishes between several types of state-
ments, and can be annotated with information concerning code duplication. It is however
not detailed enough to allow code generation.

3http://www.eclipse.org
4RECODER (http://recoder.sourceforge.net) is a project under joint development between the University

of Karlsruhe and the FZI Forschungszentrum Informatik
5QBench is a research project funded by the German federal government (BMBF 01ISC10A-01ISC10G)
6http://sissy.fzi.de
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Figure 5.7.: Overview of the meta-model used in the tool SISSy
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Nevertheless, instance models that adhere to it are able to simulate all common code
refactorings. Thus, this meta-model can be successfully used for making various predic-
tions, such as impact analysis of code refactorings.

5.4.2. Implementing the Diagnosis Process

Until now, we showed how individual indicator instances can be automatically detected,
using existing rule based structural pattern matching. In the rest of this chapter, we dis-
cuss implementation issues that pertain to the diagnosis process as a whole.

Diagnosis is based on the assumption that the larger the set of observed indicators in a
given design fragment, the higher the confidence that the fragment’s structure and design
intent match those specified for the respective design flaw. Conceptually, checking that
a given design fragment simultaneously exhibits several indicators, is analogous to using
the unification feature in order to specify complex rules in Prolog, where the terms being
unified represent elements in the structural model. The only difference is that indicators
are generally optional, so failure to detect an indicator should not break the entire query.

In the simplest of cases, all indicators of a design flaw are completely independent, so
their detection can happen in any order. However, for practical reasons, we want to
choose one of them as an initial filter, in order to reduce the search space for the analysis
as much as possible. This filtering role of the chosen indicator means however, that any
potential design flaw instance that does not have that particular structural characteristic
is irrevocably excluded from the analysis. That is why, the initial filter should only capture
features that are mandatory for any instance of that design flaw. Most of the times, the
pathological structure possesses one or more such features. In addition, the initial filter
may be used as a means to include further constraints, meant to pragmatically reduce the
search space and the potential number of candidate flaws, depending on the particular
needs of the person performing the analysis.

For example, in the case of the design flaw “schizophrenic class”, we could choose the
first indicator as the initial filter, since it can be regarded as a characteristic feature of the
pathological structure. In addition, we can decide to impose a further constraint on the
elements of the search space (classes in our case), namely to exclude all trivial classes
from the analysis. Thus, the final form of the initial filter could look the following: “Any
non trivial class, that is not cohesive with respect to data use of its method”. Defining what
trivial classes are, and expressing this heuristic formally as a detection rule is done as
described in section 5.3.2. For example, the formalization of the initial filter with the help
of a detection strategy could look like this:

Ini t i alF i l ter = (
TCC (c) < 0.15

) ∧ (
NOM(c) >= 4

) ∧ (
NO A(c) >= 3

)
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where T CC represents the tight class cohesion metric [BK95], NOM represents the num-
ber of methods defined by the class c, and NO A represents the number of attributes de-
fined by the class c.

The automated method presented above is an attempt to automate the matching of the
pathological structure as well as the underlying design intent, using heuristics. As ex-
plained in section 5.2, the diagnosis process also contains a third step, which consists of
evaluating the strategic closure for the analyzed fragment and matching it against the one
described in the design flaw specification. In addition, design intent can sometimes be
elusive and therefore hard to capture reliably in indicator definitions. For these reasons,
the output of the automated part of the diagnosis should not be regarded as fail proof.
Consequently, the third and final phase of the diagnosis process is interactive. In order
to support the maintainer in this phase, we formulate a number of yes/no questions for
each design flaw. The analysis tool will guide the maintainer through the last steps of the
diagnosis process, by presenting him with the right questions for the candidate flaw un-
der consideration. Furthermore, this feature can be integrated with state of the art code
browsing and code visualization, in a wizard-like fashion, such that the user is always
presented with only the information that is relevant for the decision at hand.

In the case of “schizophrenic class”, our running example in this chapter, we formulated
the following two questions for matching the design context and confirming that a candi-
date represents a real design flaw:

Question 1: The maintainer must confirm that the suspected class captures at least two key
abstractions that are not related through specialization, with data and functional methods
of their own.

Question 2: The maintainer must confirm that the two or more design abstractions cap-
tured by the class are expected to change independently from one another. If the class in
question represents a facade or is intended as a library of utility functions for a subsystem,
the user must ensure that separating the individual abstractions enclosed in the class is
meaningful and desirable.

In section 4.2.4 of the previous chapter, we described a pattern form for specifying design
flaws. We are now ready to extend this pattern with information that describes the diag-
nosis process of the design flaw. To this end, we will add a new section, called diagnosis
strategy. A design flaw’s diagnosis strategy is structured into the following four parts:

Search space: specifies the search space used in the automated detection of indicator
instances. The search space specifies the type of structural elements that constitute
potential inputs for the indicators, seen as filters.

Initial filter: defines the informal rule that is used to reduce the search space by filter-
ing out those elements of the search space that are not considered relevant for the
analysis.
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Figure 5.8.: Overview of the diagnosis process

Indicators: contains the list of informal indicator descriptions that are characteristic for
the design flaw, as described in 5.3.1.

Context matching: contains the set of questions that are used interactively in order to
match the underlying design context with the one described in the specification.

In conclusion, the current chapter presented a method for tool supported diagnosis of
design flaw instances. As summarized in figure 5.8, the method has three main steps. In
the first step, a structural model of the system is built, based on the source code. In the
second step, using existing rule based pattern matching techniques, the structural model
is investigated in order to find relevant combinations of indicator instances, that charac-
terize various design flaws. Both the first and the second step run in a fully automated
fashion, and result in a list of suspects. In the third and last step, the maintainer confirms
or rejects each suspect in an interactive fashion, based on a set of questions that the user
must answer. The questions posed by the system are meant to ensure an exact match
of the fragment’s design context, and are predefined for each type of design flaw. In the
process of answering these questions, the maintainer uses integrated visualization, code
browsing and cross referencing features.
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Chapter 6.

A Design Flaw Based Restructuring
Process

The previous chapters introduced a novel method that replaces classic approaches to
problem detection and problem analysis with an integrated, systematic diagnosis pro-
cess. Compared to the classic approaches, our method is designed to guarantee a causal
treatment of existing structural deficiencies, while simultaneously increasing the level of
automation. This corresponds to the goals that have been set out in section 1.1.3 of the
thesis.

The purpose of the present chapter is twofold. First, we complete the cycle of the re-
structuring process, by addressing conceptional and implementation related issues of its
concluding, reorganization phase. In the latter part of the chapter, we discuss the concept
of a design flaw based restructuring process.

6.1. Closing the Circle

6.1.1. Reorganization Strategies

By definition, a design flaw is a mismatch between the features of a specific “is” structure,
and the imperatives associated to the fragment’s design context, as embodied by the ref-
erence structure. The imperatives embodied by the reference structure render it optimal
with respect to the maintainability of the fragment.

The unambiguous mapping between the deficient “is” structure and the optimal “should
be” structure means that further problem analysis, beyond the successful diagnosis of
a design flaw, is no longer necessary. Thus, diagnosis spans both the classic problem
detection and analysis activities. However, compared to previous methods, our method
describes a systematic process, thus relying less on the intuition and personal experience
of the maintainer.
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Figure 6.1.: Solution structure for the example in figure A.16

Given a successful diagnosis, the elimination of the design flaw is straightforward, and is
achieved by transforming the source code so that it matches the given reference struc-
ture. The procedure which describes the steps of this transformation process forms the
so called reorganization strategy of the design flaw.

In chapter 4, we distinguished between two kinds of design activities: modeling and struc-
turing. Modeling involves identifying the key actors and their responsibilities in the do-
main, problem and solution space of the application, and results in an abstract model
which translates into a design intent. In general, for any non-trivial application, model-
ing may result in several possible design intents, depending on factors such as the level
of granularity at which the domain, the problem and the solution are modeled, and the
topology of the design. Irrespective of the programming language used, the topology can
be either action oriented or object oriented (see [Rie96]). Once a design intent takes
shape, structuring activities are responsible for giving it expression, in accordance with
the principles, rules and best practices of a given programming paradigm and language.
As explained in section 4.2.3, design flaws represent deficiencies that occur during the
structuring activity. They do not address potential deficiencies of modeling activities.
Therefore, a reorganization strategy is elaborated under the assumption that the underly-
ing model, and thus the design intent, is adequate with respect to the requirements of the
application.
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Figure 6.2.: Alternative design for the fragment in figure A.16

The best illustration of this idea is perhaps in the case of the design flaw “schizophrenic
class” (A.6), introduced as a running example in section 5.1. A “schizophrenic class” is a
class that captures two or more distinct (i.e. not related through specialization) design
abstractions, as exemplified by figure 5.1.

Let’s look at this example a little bit closer. By looking at the existing design described
by the UML diagram, we immediately identify three unrelated abstractions, encapsulated
within the schizophrenic class SmartHomeManager, as suggested by the three inter-
faces. These abstractions correspond to the air conditioning system, the alarm system
and the lighting system of a house. We also see that the topology of the underlying ab-
stract model is object oriented. In other words, the three encapsulated abstractions are
described by relatively isolated clusters of data and methods in the schizophrenic class.
This is a requirement of the design flaw specification. Thus, if the topology of the under-
lying model were action oriented, we would not have a schizophrenic class.
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The reorganized structure, corresponding to the reference structure of the design flaw,
looks like the one in figure 6.1. As shown in the figure, the three abstractions have been
separated into individual classes, based on their identities and implemented interfaces.
Some of the original data and associated behavior could not be unambiguously assigned
to one of the new classes. Thus, they form a fourth, utility class that has been named
Room.

Let us now consider the alternative structure, shown in figure 6.2. Wouldn’t this struc-
ture be a more adequate solution? In order to answer this question we must observe that
figure 6.2 does not merely depict an alternative structure to the same structuring prob-
lem. Rather, it depicts a completely different design, because it has a different underly-
ing model. Figure 6.2 corresponds to a much more fine grained original model than that
which transpires from figure 5.1. Thus, figure 6.2 would actually constitute a complete
redesign of the fragment, with both renewed modeling and structuring. The reference
structure and the reorganization strategy, rely on the assumption that the underlying ab-
stract model (including its topology) is appropriate and should not change. Thus, from
the standpoint of the design flaw, the structure shown in figure 6.2 is not an alternative to
the pathological structure, but the structure of a different, more fine grained underlying
model.

The description of the reorganization strategy takes the form of an algorithm in
pseudocode, and employs classic code refactorings such as those described in
[Opd92, Rob99, Fow99]. The following represents the reorganization strategy for
the design flaw “schizophrenic class”.

1: Let O be the schizophrenic class
2: Check that we have an identity based decomposition of data in O, based on the iden-

tities of the encapsulated abstractions. // An action oriented topology in the case of the
encapsulated abstractions would require a complete redesign of the fragment, which is
outside the scope of design flaws in general (see 6.1.1)

3: Encapsulate all attributes in O with public accessors // The public visibility is only
temporary, in order to make moving functionality around easier

4: Identify all the abstractions Ai , that need to be separated and establish their future
interfaces

5: Create empty classes that correspond to each of Ai

6: if O has subtypes // we assume that they contain valid specializations for one or more
of the abstractions contained in O then

7: Establish those abstractions from Ai that are affected by each specialization of O
8: Create appropriate subtypes for the classes that correspond to these abstractions
9: end if

10: for all attributes ai in O do
11: Find the natural place for ai in one of the newly created classes, including helpers,
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based on the Ai determined before and apply “move field” [Fow99]
12: if ai is an array or collection then
13: Decide between keeping the structured type and having an association multiplic-

ity of 1 to the host class, or increasing the association’s multiplicity and replacing
the collection or array with only one of its elements. In the latter case, the class
interface and the implementation of the facade need to be adapted accordingly

14: end if
15: end for
16: for all methods mi in O do
17: if mi can be unambiguously assigned to one of the new classes then
18: Apply “move method” [Fow99] to move mi ’s body to the respective class
19: if mi is specialized in one of O’s subclasses then
20: Apply “move method” [Fow99] to move the overriding method into the appro-

priate specialization
21: end if
22: else
23: Apply “extract method” and “move method” [Fow99] to break up the original

method, based on the attribute clusters that determine the encapsulated abstrac-
tions, and reunite functionality with its associated data

24: if mi was previously specialized in one of O’s subclasses then
25: Apply “extract method” and “move method” [Fow99] to break up the original

overriding method, based on the attribute clusters that determine specializa-
tions of the encapsulated abstractions, and reunite functionality with its asso-
ciated data

26: end if
27: end if
28: if mi had public visibility then
29: Implement “facade” [GHJV96] method in O, delegating to the appropriate ab-

straction(s).
30: end if
31: end for
32: Create initialization methods in the facade O, or adapt its constructors to instantiate

and wire together all newly defined classes and their specializations
33: Reduce data and accessor visibility as much as possible in all of the newly created

classes

A first observation is that reorganization strategies involve high level transformations,
such as the introduction of design patterns (e.g. the design pattern “facade” in step 16).
High level, complex refactorings can be expressed as combinations of basic refactorings.
For a detailed discussion on the theory and practical use of this method, we refer the
reader to the results of [Zim97, SGMZ98, Rob99, Tok99, Cin00, Gen04, Ker05].
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Secondly, because of the necessity of human intervention, a reorganization strategy is
more than a high level refactoring. For example, establishing the interfaces of the con-
tained abstractions in step 4 of the strategy, requires interaction and exploration capabil-
ities, which are characteristic for a modern integrated development environment. Since
the original Smalltalk refactoring browser [RBJ97], several tools have emerged that com-
bine advanced refactoring capabilities with advanced code browsing and user interaction
capabilities (e.g. Eclipse1, IntelliJ IDEA2, Inject/J [Gen04], SISSy Advanced Refactoring
Wizard [Tri06]). These tools face and solve very similar challenges to a tool for imple-
menting reorganization strategies, and prove that a highly effective platform for carrying
out such complex transformations is part of today’s state of the art.

Thirdly, all reorganization strategies given in our design flaw catalogue resort to basic ob-
ject oriented building blocks, and are therefore language neutral. Thus, the implemen-
tation of tool support may require adapting a reorganization strategy, according to the
features of the particular programming language and meta-model.

Finally, reorganization strategies, as described in the present work, rely on the assump-
tion that the structural elements involved in the reorganization are not affected by other
design flaws. While most of the times this is actually the case, we may have situations in
which several design flaw instances may overlap, or their reorganization strategies may
otherwise interfere. This particular situation is addressed in section 6.2.1, below.

6.1.2. Restructuring Patterns

By putting together a design flaw’s specification with its corresponding diagnosis and re-
organization strategies, as in the catalog described in appendix A, we obtain what we call
a restructuring pattern.

Just like various other pattern languages, restructuring patterns describe reoccurring
problems and the core of their solution, in a particular domain of human activity, in our
case object oriented restructuring. They are a compact way of communicating best prac-
tice in this field.

Restructuring patterns have the following merits:

Tuned on restructuring: restructuring patterns have been designed with restructuring in
mind. They are a means of recording and communicating restructuring know-how.

Causality: through diagnosis, restructuring patterns help us go beyond common struc-
tural anomalies and code smells, and address the cause that induced them. In ad-
dition, diagnosis takes into account the types of changes expected to occur to the
fragment. Thus, we can deduce the correcting measures that are meaningful for the

1The Eclipse Website: www.eclipse.org
2The IntelliJ IDEA Website: http://www.jetbrains.com/idea/
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given design fragment, and guarantee an in-depth rather than cosmetic improve-
ment of the structure.

Systematic process: restructuring patterns take a significant part of the decisional bur-
den off the shoulders of maintainers, by guiding them throughout the entire de-
cision making process involved in restructuring. Thus, the maintainer’s role and
responsibilities are subject to a transformation that is similar to the transformation
that occurred in aviation, from the days of early flight pioneers to modern commer-
cial airlines. Where early flight pioneers used to depend on their personal skills and
experience, modern pilots use standardized procedures and checklists.

Automation: the systematic nature of the process based on restructuring patterns, allows
significantly higher levels of total or partial automation, which decreases costs and
increases reliability. In terms of the above analogy, the standard procedures and
checklists previously used by a pilot, can now be implemented as functions of the
autopilot. Thus the executory role of the maintainer diminishes, while a supervisory
role becomes increasingly dominant.

In the following, we look at how restructuring patterns relate to other pattern languages,
relevant for our discussion:

Design patterns [GHJV96]: are formulated form the viewpoint of forward engineering,
and do not describe an a-priori structure (i.e. the pathological structure). Thus, a
design pattern can help a savvy maintainer in the problem analysis and reorganiza-
tion phases, but a restructuring pattern offers more. It describes a comprehensive,
step-by-step process, that spans an entire restructuring iteration, from problem de-
tection until its elimination through code transformation. In effect, restructuring
patterns can be seen on a meta-level, in the sense that they employ and describe
the use of ordinary design patterns, within the context of restructuring.

Anti-patterns [BMMM98]: describe common mistakes, and are in this respect analogous
to our design flaws. However, anti-patterns have a very broad scope, ranging from
management to architectural issues and coding practice, which hinders direct tool
support. On the other hand, restructuring patterns are tailored for the restructur-
ing process, and provide all the ingredients that are necessary for a tool supported
identification and removal of design flaw instances.

Reengineering patterns [DDN03]: apply the pattern format in order to document best
practices in the general context of reengineering. Potential future change of the
design is not considered, and reengineering patterns are symptomatic, in the sense
that there are several patterns that deal with facets of the same problem (e.g. “move
behavior close to data” and “eliminate navigation code”) and others that mix more
than one problem (e.g. “split up god class”, which is a mixture between the problems
of class schizophrenia and a deficient distribution of responsibilities). As in the case
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of anti-patterns, reengineering patterns are intended to be read by humans, and
there is no mechanism to allow their automated utilization.

Refactorings to patterns [Ker05]: are presented in a pattern-like form, and focus on the
mechanics of implementing a design pattern in a place where it is missed. However,
there is no mechanism to diagnose such situations. Furthermore, in the tradition of
Fowler’s refactorings, many refactorings to patterns are symptomatic in the sense
that they address situations where the actual problem is not clear, and the main-
tainer is faced with decisions between alternative refactoring routes, along the way.
For example, the refactoring “replace conditional logic with strategy” discusses the
strategy design pattern and the creation of subtypes as alternative solutions to the
same problem. This is due to the fact that the diagnosis of a real problem in the
sense of causality is not addressed.

Disharmonies [LM06]: represent distortions that constitute violations of the structural
properties of a “harmonious design”, in effect, code smells. Disharmonies have a
pattern-like presentation, and are organized in three clusters that correspond to
object identity, object collaboration and object classification (i.e. inheritance). The
process of employing disharmonies follows the classic decomposition of the re-
structuring process into three steps: detection, analysis and reorganization. Thus,
each disharmony has a formally defined detection strategy, but problem analysis
is not systematic, due to the symptomatic nature of the disharmonies, which pre-
vents the specification of a clear reorganization strategy. In contrast, restructuring
strategies rely on a causal, systematic diagnosis process, that encompasses both
detection and analysis, and is less dependent on the maintainer’s own judgement.
Diagnosis also takes future change into account and results in a named design flaw,
whose elimination can be described more easily and precisely. Thus, restructuring
patterns allow for a higher level of automation throughout the restructuring pro-
cess.

6.2. Design Flaw Based Restructuring

At this point, restructuring patterns provide us with the main elements that we need in
order to put together a restructuring process based on design flaws. But before we can do
that, we need to address the issue of design flaw interference.

In our previous chapters, we silently assumed the ideal case, in which design flaw in-
stances appear isolated from one another, and can therefore be dealt with separately.
While this may represent the more common case, it is conceivable that two or more de-
sign flaw instances or their corresponding reorganization strategies might affect the same
design entities. An in-depth examination of the problems of design flaw interference con-
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stitutes future work. However, the following section contains some brief considerations
on the topic.

6.2.1. Considerations on Dealing with Design Flaw Interference

We say that two design flaw instances interfere, if they overlap, or if their reorganization
strategies affect one or more common design entities. Figure 6.3 shows a design fragment,
adapted from a real telecommunications system, and affected by interfering design flaws.

+readConfig()

ConfigFile

+initConfigFile()

Process

ProcessA ProcessB

+initConfigFile()

ProcessC

if (this.instanceof(ProcessA)) {
  ...
} else if (this.instanceof(ProcessB)) {
  ...
} else {
  throw new Exception("Not supported!");
}

{
  throw new Exception("Not supported!");
}

...
readConfig();
...

Figure 6.3.: Example of design flaw interference

The system models various types of processes as derived classes of the superclass
Process. Most but not all process classes represent processes that are configurable
through special configuration files. The concept of configuration file is represented by
the class ConfigFile, which among other things, provides the functionality for pars-
ing the various file formats. Process extends the class ConfigFile for the purpose of
reusing its code, however it is obvious that the inheritance relation between the two types
does not represent a semantically valid specialization. In order to provide each process
instance with the appropriate parsing functionality, the method readConfig() uses
runtime type identification to check the identity of the current object instance, in a com-
plex conditional construct. To top it off, one of the three processes is not configurable, as
indicated by an explicit refusal of the method initConfigFile(), inherited from its
parent.

Obviously, the fragment shown above has several problems. First of all, we have an
instance of “containment by inheritance” A.8, between ConfigFile and Process.
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+readConfig()

ConfigFile

+initConfigFile()

Process -cFile

1

+readConfig()

ConfigFileB

+readConfig()

ConfigFileA

+ProcessA()

ProcessA

+ProcessB()

ProcessB

+ProcessC()
+initConfigFile()

ProcessC

...
cFile = new ConfigFileA();
...

...
cFile = null;
...

{
  cFile.readConfig();
}

{
  throw new Exception("Not supported!");
}

Figure 6.4.: Structure resulting from the elimination of “containment by inheritance”

Second, the process hierarchy suffers from “premature interface abstraction” A.9, be-
cause Process defines the method initConfigFile(), which is then refused by
ProcessC.

Finally, we have the supertype ConfigFile, that depends on its subtypes ProcessA
and ProcessB. At first sight, we would be tempted to see an instance of the design flaw
“collapsed method hierarchy” A.10 in this case. However, according to the flaw’s defini-
tion, the involved class hierarchy must be a valid inheritance hierarchy, which it’s not,
because of the invalid specialization between ConfigFile and Process.

This contradiction results from the way in which we defined the context of our design
flaws. The context description must be as precise as possible, in order to guarantee the
causality criterion. In other words, we want to be able to describe a reorganization strat-
egy that is certain to be meaningful for the situation at hand. For this reason, although
readConfig() collapses a hierarchy of code specialization in itself, it is not a valid in-
stance of the design flaw, because part of the flaw’s context does not match the concrete
situation.

As it turns out, the reorganization strategy of the design flaw “containment by inheri-
tance” A.8 contains provisions that handle the situation in which the supertype depends
on one or more of its subtypes, so this case would be handled correctly when reorganizing
the fragment (see figures 6.4 and 6.5).

However, there may be situations, in which we may have design flaws that are present
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+readConfig()

ConfigFileProcess -cFile

1

+readConfig()

ConfigFileB

+readConfig()

ConfigFileA

+ProcessA()

ProcessA

+ProcessB()

ProcessB

+ProcessC()

ProcessC

+initConfigFile()

ConfigurableProcess

{
  cFile.readConfig();
}

Figure 6.5.: Structure resulting from the elimination of “collapsed method hierarchy”

in an incipient form, and thus cannot be confirmed as such, unless some other interfer-
ing flaw is first removed. Such a situation is depicted in figure 6.6, where an instance of
“schizophrenic class” A.6 in class SmartHomeManager prevents the incipient instance
of “misplaced control” A.5 between RemoteControl and SmartHomeManager to be
detected, unless the schizophrenic class is first dealt with. In addition, there may even
be situations in which an incipient design flaw instance is not even detectable at all, until
another instance’s full removal. This would for example be the case of a class that reuses
the code of another class by inheriting from it (i.e. “containment by inheritance” A.8). If in
addition, the former subclass contained code that operated on attributes defined in the
former superclass, after removing the original design flaw we would automatically induce
another design flaw: “misplaced control” A.5.

Thus, a potential method for the integrated treatment of both confirmed and incipient
design flaw instances is complicated even more, because it would have to take all of these
cases into account. We leave the full investigation of these issues as future research, and
limit the discussion in the present work, to a simpler but nevertheless valid approach, that
is based on iterativeness.

The idea is to perform a diagnosis on the entire system, and then eliminate everything that
can be eliminated, in accordance with the idealized reorganization strategies. After the
reorganization is complete, diagnosis is repeated for all elements that have been newly
created, or otherwise affected by the previous reorganizations. This iterative process goes
on until no more design flaw instances are diagnosed.

For the example depicted in figure 6.6, this would happen as follows. In the first itera-
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+offendingMethod()

RemoteControl

SmartHomeManager homeMan = ...;
...
// abusive manipulation of satellite object's state 
// with data flow loop

currentState = homeMan.windowShadeStates[i];
newState = max(currentState + 25, 100);

homeMan.windowShadeStates[i] = newState
...

+setDesiredRoomTemp(in room, in temp)
+getCurrentRoomTemp(in room)
+setACEnabled(in room, in enabled : bool)
+isACEnabled(in room)

«interface»
IAirConditioningSystem

+isAutoLightEnabled()
+setAutoLightEnabled(in enabled : bool)
+turnLightOn(in room)
+turnLightOff(in room)
+getLightStatus(in room)

«interface»
ILightingSystem

+openWindow()
+closeWindow()

SmartHomeManager
-coolingUnitStates : Vector
-desiredRoomTemperatures : Vector
-actualRoomTemperatures : Vector
-windowStates : Vector
+windowShadeStates : Vector
-motionSensors : Vector
-emergencyPhoneLines : Vector
-roomPresenceSensors : Vector
-roomLightSensors : Vector

Vector

Figure 6.6.: Another case of interfering design flaw instances

tion, we would only diagnose an instance of “schizophrenic class” A.6, and the incipi-
ent “misplaced control” A.5 would be ignored. By breaking up the schizophrenic class,
as described by the reorganization strategy, we obtain valid classes that contain subsets
of the original set of attributes. By invalidating the diagnosis results for the newly cre-
ated classes, we open up the possibility of diagnosing the previously ignored instances of
“misplaced control” in a subsequent iteration. Since all classes involved in the candidate
design flaw instance would now be valid classes, diagnosis would succeed. Following the
removal of all instances of “misplaced control”, and the invalidation of affected entities, a
subsequent diagnosis run would not find any more design flaws, and the process ends.

There are at least two possible ways of optimizing the iterative process suggested above.
First, we can attempt to establish precedence rules between the various types of design
flaws, based on the conditions posed by their context descriptions. Thus, we could say
for instance that diagnosis and treatment of “schizophrenic class” A.6 should have prece-
dence over “misplaced control” A.5, because a successful diagnosis of the latter requires
the absence of the former. Such a requirement can also be justified intuitively, if we con-
sider that in order to be able to discuss about the distribution of responsibilities between
concepts, we first have to clearly describe these concepts as distinct classes.

The second type of optimization, concerns the diagnosis phase itself, and consists in re-
ducing the number of candidate flaws that the maintainer has to look at, depending on
the presence of certain others. Concretely, if we had the situation depicted in figure 6.6,
confirming the schizophrenic class would automatically infirm the candidate instance of
misplaced control. Thus, the maintainer would not even see the potential misplaced con-
trol as a candidate instance anymore.
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An in-depth investigation of the topic of precedence hierarchies for the purpose of dealing
with interfering design flaw instances is left as future research.

6.2.2. Overview of Proposed Restructuring Process

Since in real life, a working system is always changed out of necessity, any restructuring
process is based upon a set of underlying reengineering goals that are a translation of this
necessity. Possible reengineering goals may be:

• Fixing functional bugs

• Implementing new features

• Decreasing system fragility3

• Migrating the system onto a new platform or technology

• Splitting a monolithic system into separately maintainable or marketable parts

• Reusing parts of the system in a different project

• Integrating heterogeneous pieces to form a new system

Restructuring generally has the task of preparing the source code, or parts of it, in order to
facilitate the implementation of the underlying reengineering goals. This translates into
increasing the understandability, extensibility and flexibility of the code.

For the rest of the discussion we assume the existence of a tool, that supports diagno-
sis and reorganization activities, as described in the past and current chapters. The tool
operates on an abstract structural model of the system, as described in section 5.4.

With the considerations above, the structure of the proposed tool supported restructuring
process, based on design flaws, is as follows (see figure 6.7):

Step 1: Based on the primary reengineering goals, delimit system parts to be restruc-
tured. Add all corresponding structural model elements to the diagnosis queue.

Step 2: Build up an understanding of the types of future change that are reasonably prob-
able to occur to the parts of the system that are to be restructured. This step is im-
portant in order to allow the maintainer to decide on the strategic closures during
diagnosis.

Step 3: Choose a design flaw mix that is appropriate with respect to the underlying re-
engineering goals and future changes of the system. Also of value at this stage, is
the impression that maintainers may have about certain aspects of the system’s de-
sign. For instance, a maintainer that has suspicions about certain inheritance hier-
archies, may decide to include more design flaws that deal with inheritance prob-
lems into the mix. The catalogue in appendix A can be used as a starting point,
because it offers examples that touch on all major aspects of object oriented design.

3the probability of unexpected failures due to changes in the system
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Source code

Structural model

…
….

…
…..
…

…..

Detection 
strategies

Design flaw
instances

Diagnosis

Reorganization
Reorganization

strategies

…
….

…
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…

…..

Figure 6.7.: Process overview

Step 4: Perform a diagnosis iteration on all model elements contained in the diagnosis
queue, according to the method described in chapter 5. The first two fully auto-
mated phases of this step will result in a number of candidates that the maintainer
can sort according to probability. Subsequently, the maintainer goes through the
part or the entire list, and either confirms or rejects the match between design con-
texts in each case. As a result, we obtain a list of design flaw instances, which we
add to the reorganization queue. The diagnosis queue is emptied.

Step 5: If the reorganization queue is empty, the process ends here.

Step 6: Carry out reorganization strategies for all design flaw instances in the reorgani-
zation queue. At the same time, add all changed or new model elements into the
diagnosis queue.

Step 7: Empty reorganization queue and jump to step 4.
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Evaluation

In this chapter, we evaluate the automated diagnosis method introduced in chapter 5. The
chapter has two main parts. In the first part, we give a brief description of a prototype tool
called CodeClinic, which implements our diagnosis method. The second part is dedicated
to the actual evaluation, which consists of a series of case studies on intermediate to large
sized software systems.

7.1. Prototype Tool

As illustrated by the screen shot in figure 7.1, CodeClinic is fully integrated with the
Eclipse framework and IDE. The tool integrates seamlessly with the Java development
tools, adding various elements to the graphical environment, and enables developers to
have their projects scanned for potential design flaws in the background, while they code.
Additionally, it is possible to restrict the analysis to individual packages and compilation
units.

The candidates found are presented in two dedicated views. The design flaw list view,
shown in the lower part of the screen, displays a categorized list of design flaw instances
found in the code, and allows the engineer to jump to the affected code fragments, which
are displayed and highlighted in the environment’s main editor window. The second view,
shown to the right of the main editor window, displays detailed information that is specific
for each type of design flaw, about the currently selected flaw instance. In addition, this
view presents the engineer with the sequence of questions that he needs to answer, in
order to confirm or reject a given candidate.

The tool itself is designed as a framework that can be extended using the standard Eclipse
mechanism of extension points. Figure 7.2 depicts a very abstract logical view of the sys-
tem architecture. The Eclipse plugin that contains the actual application framework is
shown on the left, and an extension plugin that defines a single design flaw is shown on
the right. The shaded component depicted below the two plugins belongs to the Java De-
veloper Tools (JDT) of the Eclipse platform, and represents the structural model of the
java source code project that is analyzed.
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Figure 7.1.: Screen shot of CodeClinic

The main application is structured into three layers. The model layer holds the design flaw
instances that are detected by the tool, together with information about the correspond-
ing indicator presence and the current state of each instance. A design flaw instance can
be in any of the three states: undecided (the initial state after detection), confirmed and
rejected. The model persister is responsible for automatically persisting the entire model
to disk upon closing the environment, and for restoring it back upon start-up. Thus, the
tool supports the analysis of complex projects, across multiple sessions.

The presentation layer depicted in the middle, is responsible for acting as an intermedi-
ary between the data model and the various possible views, as well as for accepting and
responding to user gestures. For example, it is the responsibility of this layer to initiate
the diagnosis process in response to the user’s corresponding action in the graphical en-
vironment. The automated part of the diagnosis process is coordinated by the detection
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Eclipse JDT Model

CodeClinic
Model

Detection
Manager

Model 
Persister

Storage

Presentation layer

CodeClinic IDE Plugin

Design Flaw
Configurator

Indicator
Detectors

Design flaw
Details 

View
Design Flaw List 

View

Figure 7.2.: Architectural overview of CodeClinic

manager, with whom all concrete design flaw implementations are registered. The system
supports an arbitrary number of design flaws, which can be packaged as separate eclipse
plugins, and dynamically deployed on top of an existing installation.

Figure 7.2 depicts the interactions that take place between the main application and one
design flaw implementation. The design flaw configurator registers itself with the detec-
tion manager and configures the individual indicator detectors with appropriate parame-
ters and metrics thresholds, which are configured by the user via the standard preferences
dialog of the Eclipse platform. During analysis, individual indicator detectors receive ac-
cess to the underlying structural model of the analyzed project, as well as to the Code-
Clinic model.

Finally, the top layer is represented by the views. The tool currently offers the two views
mentioned above: the design flaw list view and the details view. In addition, for each can-
didate instances, a separate entry in the warnings list of the platform standard “Problems”
view is added.

The architecture and the user interface of the tool are designed to allow an easy extension
with further analysis features such as code visualizations, as well as the implementation of
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an advanced refactoring assistant. Using the refactoring capabilities of Eclipse, the refac-
toring assistant would guide the user through the reorganization process of each design
flaw. Such a reorganization assistant has been developed prototypically [Tri06], but has
not yet been integrated with CodeClinic.

For the purposes of the evaluation, we chose a set of five design flaws from our catalog:
“containment by inheritance” A.8, “explicit state checks” A.3, “collapsed type hierarchy”
A.1, “schizophrenic class” A.6 and “misplaced control” A.5. The chosen set of design flaws
is relevant for the following reasons:

• All five design flaws capture situations which can be frequently encountered in large
legacy systems, irrespective of their domain or implementation flavor.

• The set of chosen flaws is representative, because they address a representative set
of common problems in object oriented design: deficiencies pertaining to concep-
tualization and class definition (“schizophrenic class”), to distribution of responsi-
bilities and cooperation between abstractions (“misplaced control”), to the use of
the inheritance relation (“containment by inheritance”), as well as the unjustified
absence of object oriented features, typical for procedural style programming (“col-
lapsed type hierarchy” and “explicit state checks”).

• The chosen set contains design flaws whose definitions are inspired both by well
known structural anomalies (e.g. god class, feature envy, data class), and by design
patterns (e.g. state, template method).

In addition, as will be explained in section 7.2.1, the choice of four of the design flaws
mentioned above has also been motivated by the fact that they describe different causes
for the appearance of two well known code smells: “god class” and “switch statements”.
Thus, we here especially interested to see if our method is able to distinguish correctly
between the different cases.

In the following, we present relevant implementation details for the design flaws used in
the evaluation. The various indicator definitions have been implemented to work in the
context of the programming language Java.

Indicators that needed concretization in the form of metrics based rules, have been ex-
pressed using detection strategies, as described in 5.3.2. In general, metrics thresholds
used in indicator detection rules are configurable, so they will be given as symbolic con-
stants, along with default values. Most of these defaults are borrowed from [LM06], and
are the result of statistical analyses over a large number of case studies. However, in order
to improve the detection of some indicators, we decided to adjust some of the thresholds
used in our evaluation to better match the characteristics of each of the analyzed systems.
Further details on this matter along with the actual threshold values used in the evalua-
tion are presented in section 7.2.2.
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7.1.1. Containment by Inheritance

Search space
All pairs of classes.

Initial filter
Definition: Classes must be related through a direct inheritance relation.

Implementation: as defined.

Indicator 1
Definition: The derived class is a “tradition breaker” in the sense that it adds a sig-
nificant amount of new methods, or it extends several supertypes.

Implementation:

I1 := NAS(s) >= MinNAS and PNAS(s) >= MinPNAS or
NII(s) >= MinNII

where s represents the subclass, NAS and PNAS represent the number of added
services and the percentage of newly added services in the subclass, as defined in
[LM06], and NII represents the number of interfaces implemented by the subclass.

Default thresholds:

MinNII = 2
MinNAS = 6
MinPNAS = 0.66

Indicator 2
Definition: The presence of “refused bequest” (interface form) [Fow99] in at least one
method that is part of the inherited public interface of the base class. There are two
possible scenarios. In the first one, the derived class employs private or protected in-
heritance. In the second scenario, the derived class employs public inheritance but
overrides the inherited public interface with methods that are either empty, are lim-
ited to throwing exceptions, or returning an error code.

Implementation:

I2 := NRO(s) >= MinNRO

where s represents the subclass and NRO represents the number of refusing over-
rides, as described in the definition of the indicator.

Default thresholds:

MinNRO = 1

Indicator 3
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Definition: The base class stores library code. We have the following two possibilities:
either it is intended as a library for arbitrary classes, or the subclass uses it as such. In
the first case, the base class is large and complex, yet has a very low internal cohesion.
In the second case, the superclass is not simple (i.e. it has a certain minimal size and
complexity), yet the subclass does not override any of the inherited services.

Implementation:

I3 := NOM(S) >= MinNOM1 and WMC(S) >= MinWMC1 and
TCC(S) <= MaxTCC or NOM(S) >= MinNOM2 and
WMC(S) >= MinWMC2 and NOS(s,S) <= MaxNOS

where s represents the subclass, S represents the superclass, NOM represents the
total number of methods of a class, WMC represents the weighted method count
metric as defined in [LM06], TCC represents the tight class cohesion metric, and
NOS represents the number of overridden services in s, inherited directly from S.

Default thresholds:

MinNOM1 = 10
MinWMC1 = 31
MaxTCC = 0.2
MinNOM2 = 7
MinWMC2 = 14
MaxNOS = 0

7.1.2. Explicit State Checks

Search space
All classes of the system.

Initial filter
Definition: A non trivial class that contains at least two switch or equivalent
if-else constructs, located in separate methods, not using runtime type identi-
fication, on the same specific class attribute, which is not declared as final.

Implementation: as defined.

Indicator 1
Definition: The name of the checked attribute contains the word "state", thus sug-
gesting a state variable. Alternatively, the switch parameter is compared against a set
of symbolic constants whose names contain such a word.

Implementation: as defined.

Indicator 2
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Definition: Usage patterns of the switch parameter suggest a state variable, in the
sense that the value of the checked parameter is changed, either within branches of
the conditional constructs, or from the clients that called the respective operation.

Implementation: as defined.

7.1.3. Collapsed Type Hierarchy

Search space
All classes of the system.

Initial filter
Definition: A non trivial class that contains at least two switch or equivalent
if-else constructs, located in separate methods, not using runtime type identi-
fication, either on the same specific class attribute or using formal parameters that
have the same name.

Implementation: as defined.

Indicator 1
Definition: The name of the parameter used in the conditional expressions contains
the word "type", thus suggesting a type variable. Alternatively, the parameter is com-
pared against a set of symbolic constants whose names contain such a word.

Implementation: as defined.

Indicator 2
Definition: Usage patterns of the parameter used in the conditionals suggest a type
variable. In other words, there is no write access on the variable, anywhere in the
class, with the exception of object constructors.

Implementation: as defined.

7.1.4. Schizophrenic Class

Search space
All classes of the system.

Initial filter
Definition: Any non trivial class, that is not cohesive with respect to data use of its
methods.

Implementation:
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IF := NOM(c) >= MinNOM and NOA(c) >= MinNOA and
TCC(c) <= MaxTCC

wherec represents the class,NOM represents the total number of methods,NOA rep-
resents the total number of attributes, and TCC represents the tight class cohesion
metric.

Default thresholds:

MinNOM = 4
MinNOA = 3
MaxTCC = 0.2

Indicator 1
Definition: The class defines a large number of attributes.

Implementation:

I1 := NOA(c) >= MinNOA

where c represents the class and NOA represents the number of locally defined,
non-static attributes.

Default thresholds:

MinNOA = 6

Indicator 2
Definition: The class is heavyweight, in the sense that it is very large and has a high
complexity.

Implementation:

I2 := WMC(c) >= MinWMC

wherec represents the class andWMC represents the weighted method count metric.

Default thresholds:

MinWMC = 40

Indicator 3
Definition: The class constitutes a “bottleneck”, in the sense that a significant pro-
portion of all classes in the system depend on it. A class depends on another if it
references it.

Implementation:

I3 := NRC(c) >= MinNRC

where c represents the class and NRC represents the number of classes that refer-
ence c.

Default thresholds:
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MinNRC = 6

Indicator 4
Definition: The class exhibits distinct personalities with respect to disjoint groups
of clients, either by explicitly implementing two or more non-trivial interfaces, or
by having disjoint groups of clients that use disjoint fragments of the class’ public
interface.

Implementation: as defined.

7.1.5. Misplaced Control

Search space
All methods defined in all classes of the system.

Initial filter
Definition: Any non-trivial method, that is not a constructor or an accessor, and ref-
erences a different type. Referenced types will be referred to as “satellites”.

Implementation: as defined.

Indicator 1
Definition: The method accesses at least two foreign fields, either directly or through
accessors. The accessed fields are declared in classes that are not superclasses of the
one declaring the method.

Implementation: as defined.

Indicator 2
Definition: The method manipulates the internal state of another, unrelated class,
by writing to one or more of its attributes, either directly or through a setter method.

Implementation: as defined.

Indicator 3
Definition: The method contains an information loop in the sense that information
is pulled from instances of an unrelated class using accessors, transformed it in one
way or the other, and the result is pushed back into the class either by writing to an
attribute or as a parameter in a method call.

Implementation: as defined.

Indicator 4
Definition: Unrelated classes whose data are read or written to by the method, act as
“dumb” data holders, by exposing a significant proportion of their data, either directly
(i.e. public attributes) or through accessors.

Implementation:
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I4 := NEA(s) / NOA(s) >= MinExposure

where s represents the satellite class, NEA represents the number of exposed at-
tributes, and NOA represents the total number of attributes.

Default thresholds:

MinExposure = 0.75

Indicator 5
Definition: The method varies its behavior based on the identity of an object, using
runtime type identification. In other words, it compares the type of a reference against
an unrelated (i.e. through inheritance) type, adapting its behavior accordingly.

Implementation: as defined.

7.2. Case Studies

7.2.1. Experimental Goals and Approach

For the validation of the proposed diagnosis method, we formulated the following exper-
imental goals:

1. To check if the fully automated part of the diagnosis process, as described in chapter
5, works as intended, and is able to produce valid candidate flaws. This amounts to
the following points:

• Test the hypothesis formulated in section 5.2, that design intent manifests it-
self in the structure, and thus can be determined by an automated tool. Specif-
ically, the design flaws ”explicit state checks” and “collapsed type hierarchy”
have been specifically chosen because of the similarity of their pathological
structures, which corresponds to the code smell “switch statements” [Fow99].
Similarly, the two design flaws “schizophrenic class” and “misplaced control”
capture complementary aspects of a single structural anomaly known in the
literature as “god class” [Mar02], or “the blob” [BMMM98].

• Test the hypothesis that design flaw diagnosis (at least the automated part) and
medical diagnosis are similar in the sense that design intent is characterized
by a unique combination of indicators, and that the precision of the diagnosis
process tends to increase with the growing number of simultaneously detected
indicators. This is of course just a tendency, since each of the indicators must
be assigned a weight that reflects its relevance for the respective type of flaw.

2. To evaluate the quality of each indicator by computing a linear regression model in
order to estimate its relevance for its respective design flaw, as described in section
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5.3.3. At the same time, the weights obtained from the linear regression constitute
a predictive model that is useful in future analyses. The assumption that is made
here is that the specified indicators, which represent the explanatory variables in
the regression, are statistically independent.

3. To compute the recall of the fully automated part of the diagnosis, by determining
the real number of false negatives. For reasons of practicability, we decided to limit
the scope of this task to only two design flaws: “explicit state checks” and “collapsed
type hierarchy”. The reason for choosing these two design flaws is that they have the
smallest number of indicators from the mix that was selected for our experiments.
Thus, we wanted to see if under these circumstances it is still possible to correctly
detect most of, or all of the existing instances. Thus, we adapted our tool in such
a way that it generates a list of all occurrences of the specific switch or if-else con-
structs that occur in two or more methods of any class. Subsequently, each of the
reported cases was manually investigated.

As explained in chapter 5, the automated part of the diagnosis process only covers the
detection of the pathological structure and design intent, and does not address the ques-
tion of establishing the strategic closure for the given fragment. This is because strategic
closure generally depends on momentary and planned requirements towards the appli-
cation, and therefore can differ at various points in time. In other words, strategic closure
depends on factors that are external to the system.

Consequently, we will ignore it in our experiments. Therefore, all precision values used
in the validation have been computed by only taking into account the match between
the actual and the specified pathological structure and design intents, and by ignoring
strategic closure. This means that an instance will be considered as confirmed, if and
only if the pathological structure and design intent match the specification of the flaw.

This way of computing diagnosis precision is in conformance with the set of experimental
goals stated above.

7.2.2. Experimental Setup

We validated the proposed diagnosis method by employing the tool CodeClinic on a set
of four intermediate to large-sized software systems, each representing a different appli-
cation domain:

• XUI (v1.04)1: a Java and XML based framework for building desktop, handheld, mo-
bile, web and enterprize applications with a rich user interface. XUI provides devel-
opment and debugging tools, as well as a set of look and feel components, widgets,
and database bindings. In addition, the framework offers support for declarative
XML based user interface generation.

1http://www.xoetrope.com/xui
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System LOC Nr. Types Nr. 
Methods

Avg. 
Methods/Type

Avg. 
Fields/Type

Avg. 
WMC

XUI 47,750 547 3,593 6.56 3.12 20.04
JFreeChart 83,591 609 6,804 11.17 3.07 30.63
Inject/J 53,190 647 5,143 7.94 2.33 23.48
JEdit 87,479 859 4,877 5.67 3.26 24.85

Figure 7.3.: Size and complexity measurements for the analyzed systems

Threshold XUI JFreeChart Inject/J JEdit
Indicator1 MinNAS 6 10 6 5

MinNOM1 7 11 8 5
MinWMC1 19 27 21 21
MinNOM2 10 16 12 8
MinWMC2 40 60 46 49

Schizophrenic 
class Indicator2 MinWMC 40 60 45 50

Containment by 
inheritance Indicator3

Figure 7.4.: Threshold values used during analysis

• JFreeChart (v1.0.6)2: a free chart library for the Java platform, that allows developers
to display professional quality charts of various types in their applications. It sup-
ports a wide range of output types, including Swing components and several bitmap
and vector based graphic file formats.

• Inject/J (Aug 2005:)3: is a meta-programming library for the JAVA programming lan-
guage. The tool allows an interactive script based execution of code refactorings,
and provides a rollback mechanism. An important factor in favor of choosing this
case study was that the author had direct access to the development team.

• JEdit (v4.2)4: is a full featured highly customizable text editor, with syntax high-
lighting and other spcialized support for more than 130 languages. It has a built-in
macro language and an extensible plugin architecture.

The table shown in figure 7.3 offers some general size and complexity characteristics of
these systems. The measurements were made using the tool CodePro Audit5, version
5.1.0.

As can be seen in the table, some metric values vary significantly across the individual
systems. Therefore, in order to improve the detection of some indicators, we decided to

2http://www.jfree.org/jfreechart
3http://injectj.fzi.de
4http://www.jedit.org
5http://www.instantiations.com/codepro/analytix/about.html
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replace default threshold values with ones that are better tailored for each individual sys-
tem. The table shown in figure 7.4 provides an overview of the actual values used in the
experiments. For example, we see that the average number of methods per type varies
between 5.67 in the case of JEdit, and 11.7 in the case of JFreeChart. Consequently, the
values of MinNOM1 and MinNOM2 used as thresholds in indicator 3 of the design flaw
“schizophrenic class” had to be scaled accordingly. Such significant differences between
values of the same metric may be the result of different sets of guidelines, design philoso-
phies, or levels of competence in the respective development teams, and are a perfect
illustration of the dangers of using thresholds that are statistically derived across a very
large number of systems.

7.2.3. Discussion of Results

Experimental Goal 1

Figure 7.5 provides a condensed view of the statistics concerning our first experimental
goal. Each of the individual rows in the given tables, provides the statistics for those can-
didate flaws for which a particular number of indicators had been detected by our tool.
This number is given in the first column of each table. For example, for the system XUI,
we have a total number of 5 candidate instances of the design flaw “containment by in-
heritance”, for which CodeClinic detected exactly two out of the total of three indicators
defined in the design flaw specification. Based on the manual inspection of each candi-
date, only 2 candidates out of the 5 were confirmed, which means a precision of 40%. The
last column provides the precision computed over all four analyzed systems.

The figures in this table prove both hypotheses formulated in the first experimental goal in
section 7.2.1. Concretely, our prototype implementation was able to correctly identify the
design intent and the presence of the pathological structure in a total of 712, automatically
detected and manually confirmed cases. This proves our first hypothesis, namely that
design intent can at least in some cases be determined using an automated tool. The total
precision over all five design flaws and four analyzed systems is around 33%.

In addition, as indicated by figure 7.6, we can clearly see a direct correlation between
precision and the number of simultaneously detected indicators, although in most cases
with a simultaneous decrease of recall. This is in accordance with the second hypothesis
formulated for this experimental goal.

This drop in recall is illustrated by figure 7.7, which indicates the number of confirmed
design flaw instances in relation to the number of simultaneously detected indicators.
Interestingly, the design flaw “schizophrenic class” seems to represent an exception from
this point of view. This tells us something interesting about this flaw’s set of indicators.
More exactly, it tells us that the indicators of “schizophrenic class” are statistically less
independent than those of other design flaws, such as “misplaced control”.
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conf.

      cand.
precision

conf.

      cand.
precision

conf.

     cand.
precision

conf.

     cand.
precision

1 34 / 119 28.6 49 / 123 39.8 5 / 52 9.6 2 / 22 9.1 28.5
2 2 / 5 40.0 45 / 66 68.2 4 / 4 100.0 1 / 4 25.0 65.8
3 1 / 1 100.0 10 / 10 100.0 0 / 0 ─ 0 / 0 ─ 100.0

conf.

      cand.
precision

conf.

      cand.
precision

conf.

     cand.
precision

conf.

     cand.
precision

1 1 / 1 100.0 1 / 2 50.0 2 / 5 40.0 6 / 16 37.5 41.7
2 0 / 0 ─ 0 / 0 ─ 0 / 0 ─ 0 / 0 ─ ─

conf.

      cand.
precision

conf.

      cand.
precision

conf.

     cand.
precision

conf.

     cand.
precision

1 1 / 3 33.3 3 / 19 15.8 1 / 5 20.0 2 / 6 33.3 21.2
2 0 / 0 ─ 0 / 0 ─ 0 / 0 ─ 2 / 2 100.0 100.0

conf.

      cand.
precision

conf.

      cand.
precision

conf.

     cand.
precision

conf.

     cand.
precision

1 1 / 16 6.3 2 / 9 22.2 3 / 19 15.8 4 / 27 14.8 14.1
2 9 / 16 56.3 3 / 12 25.0 5 / 11 45.5 2 / 15 13.3 35.2
3 10 / 16 62.5 11 / 19 57.9 7 / 9 77.8 4 / 13 30.8 56.1
4 3 / 4 75.0 14 / 17 82.4 3 / 3 100.0 4 / 5 80.0 82.8

conf.

      cand.
precision

conf.

      cand.
precision

conf.

     cand.
precision

conf.

     cand.
precision

1 24 / 202 11.9 56 / 233 24.0 67 / 184 36.4 103 / 350 29.4 25.8
2 16 / 39 41.0 45 / 129 34.9 23 / 47 48.9 61 / 151 40.4 39.6
3 6 /9 66.7 14 / 17 82.4 5 / 11 45.5 28 / 73 38.4 48.2
4 0 / 0 ─ 0 / 0 ─ 0 / 0 ─ 7 / 8 87.5 87.5
5 0 / 0 ─ 0 / 0 ─ 0 / 0 ─ 0 / 0 ─ ─

Containment by Inheritance

Explicit State Checks

Collapsed Type Hierarchy

Schizophrenic Class

Overall
precision

Overall
precision

Overall
precision

Nr. 
Ind.

Nr. 
Ind.

Nr. 
Ind.

Nr. 
Ind.

Nr. 
Ind.

Misplaced Control

Overall
precision

Overall
precision

XUI JFreeChart InjectJ JEdit

XUI JFreeChart InjectJ JEdit

XUI JFreeChart InjectJ JEdit

XUI JFreeChart InjectJ JEdit

XUI JFreeChart InjectJ JEdit

Figure 7.5.: Overview of results for experimental goal 1
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Figure 7.6.: Precision in relation to the number of indicators

Indeed, if we look at the respective specifications, we can see that the sets of indicators
specified for the other design flaws (especially “misplaced control”) often express alter-
native, even mutually exclusive manifestations in the structure. Unlike these cases, in the
case of “schizophrenic class”, the relation between the various types of indicators is much
stronger, in the sense that the captured features are more probable to occur together, in
any instance of the flaw. In other words, the individual indicators are not completely in-
dependent, and we expect this to affect the quality of the linear regression performed for
this particular flaw, as part of our second experimental goal.

Therefore, the conclusion that one might draw from figure 7.7, namely that it is better to
have indicator sets such as in the case of “schizophrenic class”, is false. The goal should
not be to reduce loss of recall by defining statistically dependent indicators, but instead to
capture every conceivable manifestation of a given flaw, even if some of them are mutually
exclusive.

Experimental Goal 2

Our second experimental goal was to evaluate the quality of each particular indicator with
respect to the way in which it relates to the other indicators defined for a given flaw. In
order to do this, we applied a simple linear regression on the set of observations made on
the four analyzed systems. The obtained coefficients are given in figure 7.8, along with
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Figure 7.7.: Number of confirmed instances in relation to the number of indicators

the corresponding values of the standard error, as computed by the statistics package R6.

From the results shown in the figure, we can conclude that “misplaced control” and “con-
tainment by inheritance” define the most relevant indicators, as indicated by the relatively
low errors of the corresponding coefficients. For the reasons described above, the results
for “schizophrenic class” are less conclusive and should therefore be taken with a grain of
salt. Finally, in the case of both “collapsed type hierarchy” and “explicit state checks”, the
second indicator seems as expected, to be the more reliable one. This can be explained
by the relatively rudimentary way in which the analysis of variable identifiers (which is
at the heart of indicator 1 in both design flaws) was implemented in our tool. Thus, we
could find only 3 confirmed instances of “collapsed type hierarchy” that presented indi-
cator 1, and no instance of “explicit state checks” with that indicator. The latter situation
prevented us even to compute a coefficient, as indicated by the empty cells in the table.

As discussed in sections 5.3.3 and 7.2.1, performing linear regression brings the added
bonus that the obtained coefficients constitute the weights of the respective indicators.
The resulting linear equation acts as a predictive model for the corresponding design flaw.
Due to the observations made earlier, we can only regard the predictive models of “mis-
placed control” and “containment by inheritance” with a certain degree of confidence.
This confidence is however limited by the relatively low size of the observation set used
in the regression. To obtain more reliable models, further experiments need to be per-

6http://www.r-project.org/
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I1 I2 I3
Coeff. 0.34 0.42 0.26

Std. Err. 0.033 0.073 0.030

I1 I2
Coeff. ─ 0.42

Std. Err. ─ 0.103

I1 I2
Coeff. 0.38 0.25

Std. Err. 0.217 0.075

I1 I2 I3 I4
Coeff. 0.05 0.41 0.18 0.14

Std. Err. 0.049 0.061 0.062 0.052

I1 I2 I3 I4
Coeff. 0.23 0.15 0.21 0.18

Std. Err. 0.030 0.019 0.029 0.022

Containment by inheritance

Misplaced Control

Explicit state checks

Collapsed Type Hierarchy

Schizophrenic Class

Figure 7.8.: Overview of results for experimental goal 2

formed.

For the two design flaws mentioned above, the corresponding predictive models can be
expressed by the following equations:

MC = 0.22619 I1 + 0.15044 I2 + 0.207 I3 + 0.18421 I4 + 0.41154 I5 (7.1)

C I = 0.33615 I1 + 0.42292 I2 + 0.26139 I3 (7.2)

where MC and C I are approximations of the probability of presence for misplaced control
and containment by inheritance respectively, and Ii are boolean variables that indicate
the presence, or absence of the corresponding design flaw indicator.

Experimental Goal 3

Our third and final experimental goal was to compute the real recall for the two design
flaws “collapsed type hierarchy” and “explicit state checks”. The results of our analysis are
shown in figure 7.9. As indicated by the figure, we have identified only one false negative
of type “collapsed type hierarchy”, in the case of class Name of the system JEdit. A relevant
portion of the offending code is shown in listing 7.1.
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System Potential 
false negatives

Confirmed 
false negatives System Potential 

false negatives
Confirmed 

false negatives

XUI 0 0 XUI 1 0
JFreeChart 4 0 JFreeChart 1 0
InjectJ 1 0 InjectJ 3 0
JEdit 6 0 JEdit 15 1

Explicit State Checks Collapsed Type Hierarchy

Figure 7.9.: Overview of results for experimental goal 3

Object resolveThisFieldReference( ... ) throws UtilEvalError {
...

if ( isCompound( evalName ) )
result = classNameSpace.getThis( interpreter );

else
result = classNameSpace.getClassInstance();

...
}

Listing 7.1: Collapsed type hierarchy in class Name

According to the comment associated to the class declaration, Name “implements a name
resolver”. An instance of Name stores an identifier, which may either be simple or com-
pound (e.g. the simple name “attribute”, as opposed to a fully qualified name such as
“obj.attribute”). In effect, the class defines a hierarchy of two specialized versions
of the common abstractionName. Conditionals such as the one shown in listing 7.1 occur
repeatedly in order to select the appropriate behavior, based on the actual type of name,
which is stored in a private field called evalName.

The reason that prevented this valid instance of “collapsed type hierarchy” to be detected
in previous phases of our experiment, is the fact that the field is not checked directly, but
rather through the intermediary method isCompound(), which returns either true or
false, based on the presence of the character “.” in the contents of its parameter. In order
to cover situations that are similar to this one, the indicator implementation in the tool
can be extended to employ dataflow analysis techniques.

Examples

We conclude our discussion on the case studies, by presenting a few of the diagnosed
design flaw instances in detail.
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/**
* This operation is not supported by this axis.

*
* @param g2 the graphics device.

* @param dataArea the area in which the plot and axes should be
drawn.

* @param edge the edge along which the axis is drawn.

*/
protected void selectAutoTickUnit(Graphics2D g2,

Rectangle2D dataArea,
RectangleEdge edge) {

throw new UnsupportedOperationException();
}

Listing 7.2: Refused bequest in SymbolAxis

Let us start with an example of the design flaw “containment by inheritance”. In
JFreeChart, the abstract class ValueAxis defines the generic concept of chart axes that
display value data. The comment associated to the class declaration says: “The two
key subclasses are DateAxis and NumberAxis”. As expected, these concrete sub-
classes are valid specializations of the base abstraction, describing the behavior of time
axes and numerical axes respectively. NumberAxis is further specialized by classes
such as CyclicNumberAxis, LogarithmicAxis, and quite interestingly, by a class
named SymbolAxis. With respect to the latter class, our tool found indicators 2 (re-
fused bequest) and 3 (library superclass) of the design flaw “containment by inheri-
tance”. This raised the suspicion that the inheritance relation between SymbolAxis and
NumberAxis is semantically not a valid specialization.

After looking at the code fragment, we could confirm that this suspicion was justified, as
one could immediately guess from the names of the two classes. First of all,SymbolAxis
does not support part of the interface of its superclass, as indicated by the presence of
indicator 2 and the code fragment shown in listing 7.2.

In addition, the detector for indicator 3 found that NumberAxis, the superclass of
SymbolAxis is a heavyweight class (WMC=125), defines no less than 38 methods, and
has an extremely low cohesion at the same time (TCC=0.09). This made us suspect that
the class is meant as a library of functionality. As it later turned out, we could also diag-
nose this class as being a “schizophrenic class”.

In the course of investigating JFreeChart, we noticed that the misuse of the inheritance
relation in this way is quite common throughout the system (33 similar instances were
found).

The second example concerns a suspected instance of the design flaw “collapsed type
hierarchy”, in the class BrowserIORequest in JEdit. Our tool found both indicators
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public void run() {
switch(type) {

case LIST_DIRECTORY:
listDirectory();
break;

case DELETE:
delete();
break;

case RENAME:
rename();
break;

case MKDIR:
mkdir();
break;

}
}

Listing 7.3: A method of the class BrowserIORequest affected by “collapsed type
hierarchy”

of this design flaw, in connection with the private integer attribute called type. After
inspecting the source code of this class, we confirmed that the repeated occurrence of
switch statements in different methods, which is characteristic of the pathological struc-
tures for both instances of “explicit state checks” and “collapsed type hierarchy”, were in-
deed referencing a variable that could be associated with the type of each class instance.
The attribute is only written to once, at object creation, and thus has a constant value for
the entire lifespan of the object. Several of the class mehods, such as the method run()
shown in listing 7.3, check the value of this field in order to choose the appropriate spe-
cialized behavior.

Our third example is a suspected (based on the presence of indicator 2) instance of the
design flaw “explicit state checks”, detected in the classParserTokenManager of JEdit.
After a closer inspection of the code, we found that this generated class implements a
parser, which in effect is a state machine with the current state represented by the current
character in the input buffer. The explicit checks on the state are performed in no less
than 38 different methods of the class. Therefore, as discussed in section 7.2.1, the design
intent and thus the instance itself were confirmed as valid. However, if we were to take
strategic closure into account, this flaw instance would probably be dismissed because
the code of the class in question is generated, and therefore unlikely to ever be in need of
human attention.

A good example instance of the design flaw “schizophrenic class”, is the class
AbstractRenderer in the system JFreeChart. This candidate manifests instances of
all four indicators in the specification. Thus, the class is uncohesive, defines no less than
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1 public void hidePage( XPage page ) {
2 ...
3

4 if ( ( lastPage != null ) && ( page != lastPage ) ) {
5 container.remove( lastPage );
6

7 page.setStatus( XPage.DEACTIVATED );
8 page.pageDeactivated();
9

10 container.doLayout();
11 validate();
12 }
13 }

Listing 7.4: Fragment of method XApplet.hidePage()

51 different attributes and over 150 methods, and has a weighted method count of 386,
whereas the system wide average is around 30. In addition, the class is a bottleneck and
defines several implicit interfaces that are used by disjoint groups of clients. According to
the comment that is associated to the class declaration, the class is a “base class provid-
ing common services for renderers”. Sure enough, AstractRenderer proves to be too
abstract of a concept, and can be divided up into an entire rendering subsystem, defining
many finer grained concepts, while the original class could play the role of a facade to the
new subsystem.

Finally, we present example instances of the design flaw “misplaced control”. Because this
is the only method level design flaw in the set of flaws used in our experiments, it is also
the most pervasive type of flaw, with 455 confirmed instances in the four analyzed sys-
tems. Furthermore, “misplaced control” has several possible manifestations in the struc-
ture, which also explains the large number of indicators defined for this type of design
flaw. For these reasons, we will present three different instances, featuring different types
of indicators that this flaw induces in the structure.

The first instance that we discuss here, was detected in method hidePage() of the class
XApplet, in the system XUI. The offending method manipulates the internal state of the
satellite classXPage (indicator 2). Furthermore,XPage favors external manipulations by
exposing a significant number of its fields (approximately 90%), both directly and through
accessor methods (indicator 4).

After manual inspection of the method body, we confirmed the presence of “misplaced
control”, in lines 7 and 8 of the source code fragment shown in listing 7.4. Concretely,
lines 7 and 8 could be extracted to a new method called deactivate(), which should
belong to class XPage. The problem with the existing design is that XApplet knows
the two-step protocol for deactivating an instance of XPage: setting the internal state to
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1 public void addObservation(double value, boolean notify) {
2 ...
3

4 SimpleHistogramBin bin = (SimpleHistogramBin) iterator.next();
5 if (bin.accepts(value)) {
6 bin.setItemCount(bin.getItemCount() + 1);
7 placed = true;
8 }
9

10 ...
11 }

Listing 7.5: Fragment of method addObservation()

1 public String getAssignmentOperator() {
2 String op = "";
3 if (recoderAssignment instanceof BinaryAndAssignment)
4 op = "&=";
5 else if (recoderAssignment instanceof BinaryOrAssignment)
6 op = "|=";
7 else if (recoderAssignment instanceof BinaryXOrAssignment)
8 op = "^=";
9 else if (recoderAssignment instanceof CopyAssignment)

10 op = "=";
11 else if (recoderAssignment instanceof DivideAssignment)
12 op = "/=";
13 ...
14

15 return op;
16 }

Listing 7.6: Fragment of method getAssignmentOperator()

XPage.DEACTIVATED, and firing an internal handler in XPage. Relocating this knowl-
edge to XPage would shield XApplet and other potential clients of this class from pos-
sible changes to this protocol.

The second example of misplaced control affects the method
SimpleHistogramDataset.addObservation(), and involves state manipula-
tion of the class SimpleHistogramBin (indicator 2), combined with an information
loop (indicator 3). Listing 7.5 shows an excerpt of method addObservation().
Line 6 of the listing contains the problematic information loop: in order to add a new
observation to a SimpleHistogramBin, the method queries the current number
of observations by accessing an internal field of the class, computes a new value by
adding 1 to the queried value, and finally writes back the newly computed value into
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the same field. The problem with this type of structure is similar to the previous case,
namely that the offending method defines the protocol for adding a new observation to
an instance of SimpleHistogramBin. This means that if this protocol would need
to be changed (for example by adding some notifications to various listeners), the class
SimpleHistogramDataset and maybe others would need to be updated as well.
This kind of knowledge really belongs to the owner of the attribute that stores the item
count, that is SimpleHistogramBin.

Finally, the last example that we are going to discuss shortly, is an instance of “misplaced
control” involving type checks using reflection. The offending method is in this case
RecoderAssignment.getAssignmentOperator() in system Inject/J. A portion
of this method is shown in listing 7.6. The variable recoderAssignment that is
checked in each if statement is a private field of type Assignment, declared in class
RecoderAssignment. This type of explicit checking is wrong because it induces a de-
pendency to every concrete type of assignment, and contains knowledge about the inter-
nal nature of other, completely unrelated classes. In addition, such constructs are also
completely redundant. A much simpler and better solution would be to simply define an
abstract method named getAssignmentOperator() in RecoderAssigment, and
then appropriately override this method in the various specializations of this class. Thus,
the previously explicit information about each assignment type would be encapsulated
and distributed among the rightful owners of such information.

Conclusions

The results of the above experiments show that it is possible to implement a tool that
automates most of the diagnosis method proposed in chapter 5, and that such a tool
can be used effectively on intermediate to large-sized software systems. Working com-
pletely alone, the author was able to perform the four case studies in less than three weeks
time. However, most of the performed activities can easily be parallelized and distributed
among several people, thus reducing the absolute amount of time even further.
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Conclusions

The purpose of this research was to explore the possibility of transforming object oriented
restructuring, from an ad hoc process that is heavily dependent on intuition and personal
know-how, into a systematic process that supports a high level of automation. To this
end, we introduced a new definition for the notion of design flaw. The essential difference
between our definition and previous ones is the encapsulation of semantics, in order to
describe a context in which the structure of a given design fragment can justifiably be
considered inadequate.

Apart from being able to make this type of justification, the knowledge of the context al-
lows us to describe those characteristics of the structure that are missing, but desirable
in that particular context. Thus, pinpointing an instance of a given design flaw amounts
to establishing a new, from the standpoint of maintainability better structure, for the af-
fected design fragment. This particular step (previously referred to as problem analysis)
used to pose a major obstacle in the way of automation.

In light of the above, the problem of defining a systematic process for restructuring can be
reduced to the problem of defining a systematic process for pinpointing design flaws. We
successfully addressed this problem and thus achieved the goals set out in section 1.1.3,
by developing a systematic process to diagnose design flaws. The process has certain
similarities to medical diagnosis, and employs ordinary static analysis techniques in order
to locate design flaw instances in the code. Furthermore, our diagnosis method is to a
very large extent automatable, as demonstrated by a series of case studies performed on
a representative collection of intermediate to large sized software systems.

We are now in a position to assess our method with respect to the set of criteria put for-
ward in section 1.1.3 of the introductory chapter.

8.1. Assessment of Proposed Method

The proposed method complies with all criteria that had been put forward in section 1.1.3,
as argued in the following:
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Comprehensiveness: According to this criterion, any restructuring methodology should
be able to address all types of problems that pertain to every major concern of com-
ponent level object oriented design. In particular, the following three types of con-
cerns were considered (see [LM06]): class definition as a means to express key ab-
stractions of the problem and solution domains, inheritance relations as a means to
express specialization hierarchies between families of abstractions, and patterns of
cooperation between objects that represent instances of unrelated abstractions. As
argued in chapter 4, the design flaw catalog of appendix A addresses a representa-
tive selection of problems that pertain to each of these types of concerns. Moreover,
the feasibility and effectiveness of the proposed tool supported diagnosis method
has been demonstrated in chapter 7, for design flaws that address each of the three
concerns. Our method can not only address the same kinds of problems as tradi-
tional methods revolving around code smells and design patterns, but it does so in
a more profound and accurate way. Specifically, our method is able to distinguish
between subtle variants of problems that were previously treated as one, such as the
code smell “switch statements” [Fow99], and the anti-pattern known as “the blob”
[BMMM98].

Causality: This criterion requires the existence of a causal link between the design con-
text of the affected fragment, and the recommended target structure that results
from applying the restructuring method. In other words, the restructuring deci-
sions that result from applying the method must match those that a human engi-
neer would make while manually restructuring the system. We identified design in-
tent and strategic closure as being the necessary ingredients in a fragment’s context.
Our restructuring method is causal by construction, because it fully takes the design
context of the analyzed fragment into account. Furthermore, we showed how a tool
that implements our proposed diagnosis process can recover design intent in an
automated way.

Systematic process: The requirement imposed upon the method by this criterion is a
systematic nature. Specifically, the human engineer has a predefined decision tree,
and need only reason about a problem in terms of each decision, not about the
structure of the decision tree itself. Our restructuring method fulfills this crite-
rion by construction, because on one hand design flaws are defined in such a way
that diagnosing a design flaw instance amounts to establishing the necessary target
structure, and on the other hand the diagnosis process itself is systematic. There-
fore, we have proposed a systematic process that replaces what was previously re-
ferred to as problem analysis.

Automation: The last criterion requires that most of the restructuring process support
automation, especially the decision making process that was formerly part of prob-
lem analysis. Furthermore, the attained level of automation should allow the use of
the method on medium to large sized systems, in a reasonably short interval of time.
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Our prototype tool CodeClinic and the experiments described in chapter 7 demon-
strate the viability of an implementation, as well as its practicability on a code base
totalling around 300,000 lines of code, and with an associated effort on the order of
magnitude of a few person weeks. Furthermore, this type of restructuring activity
can easily be parallelized and distributed among several people, either by breaking
up the subject system into its constituent subsystems, or by dividing up the set of
design flaws that form the object of investigation.

8.2. Summary of Contributions

The research presented by this work brings a number of essential contributions to the
field of object-oriented restructuring, as summarized in the following:

• A new way of defining the notion of design flaw, that is tailored to the specific needs
of restructuring. Design flaws allow the specification of a causal treatment of com-
monly encountered deficiencies in object oriented designs.

• A method for diagnosing design flaw instances, which replaces the activities tradi-
tionally known as problem detection and analysis, with a systematic, largely auto-
mated process. The method has a major practical implication, namely that for the
first time, a complete tool coverage of the restructuring process is made possible. A
number of case studies demonstrate the practicability of the method for intermedi-
ate to large sized software systems.

• A systematic, tool supported restructuring process, that ensures a causal treat-
ment of diagnosed design flaw instances.

• Restructuring patterns, as a means of recording and disseminating restructuring
expertise. A restructuring pattern encapsulates a design flaw specification, along
with all the information required for its diagnosis and correction, either manually
or using specialized tools.

• A catalog of ten representative design flaws and associated restructuring pat-
terns, ready to be used in day to day practice.

• An extensible diagnosis tool, integrated in the Eclipse development environment,
which operates for systems written in the programming language Java.

8.3. Future Work

One possible direction to extend this research is into other programming paradigms and
associated languages, most importantly procedural programming. As discussed in chap-
ter 4, the concept of design flaw is very general, and therefore applicable in principle to
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any design paradigm. In particular, the set of problems posed by procedural programs
are essentially very similar, and the existing set of design rules and guidelines for these
languages is ample.

The second worthwhile area of research would be a detailed study of design flaw interfer-
ence. We see a significant potential for optimizing both the diagnosis and the reorgani-
zation processes by properly taking design flaw interference into account. In particular,
as discussed in section 6.2.1, one could classify design flaws according to several crite-
ria, such as the type of concern that they address, or their level of granularity. Based on
these classifications, one could attempt to define precedence rules between various types
of flaws. For example, such a rule could state that design flaws pertaining to inheritance
relations should be resolved before design flaws such as “misplaced control”, because it
makes little sense to make decisions concerning the distribution of responsibilities be-
tween classes, unless the conceptual relations between these classes accurately reflects
the conceptual domain of the application. During diagnosis, this would result in the elim-
ination of a significant number of irrelevant candidates, and therefore to less effort on the
part of the user. Performing costly and risky refactorings in vain could be avoided in this
way.

Another possible area of investigation would be to see whether expanding the scope of the
automated analyses to other than the static structure, would bring more accuracy to the
diagnosis process. We think of two immediate possibilities. First, a combination of static
and dynamic analyses could bring more accuracy in situations where the behavioral as-
pects of involved entities play an important role. For example, runtime information could
help tip the balance in favor of design flaws such as “collapsed type hierarchy” A.1 and
“explicit state checks” A.3. And second, historical information obtained from a version
management system such as CVS, could help the user decide on the strategic closure for
a suspected design fragment.

Finally, further improvements could be brought to the implementation, by integrating it
with the refactoring engine provided by the development environment. Reorganization
strategies could be implemented in the form of wizards, that could guide the user through
every step of the specified reorganization strategy. In addition, both the methodology and
the implementation could benefit from the integration of state of the art visualization
techniques, such as those presented in [Lan03] and [LM06].
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Design Flaw Catalogue

A.1. Collapsed Type Hierarchy

A.1.1. Description

According to [Rie96], the most natural way of expressing the specialization relationship
(“is kind of”) between abstractions, is by implementing a type hierarchy using inheri-
tance. In [Mey88], the author distinguishes between horizontal and vertical type general-
ization. Horizontal generalization is expressed through type parametrization, also known
as generics. Specialization on the other hand, corresponds to vertical generalization, and
is expressed through inheritance.

Thus, in an inheritance hierarchy, parent nodes represent vertically generalized abstrac-
tions of their children, which in turn are specializations of their parents. All members of
the hierarchy support the interface of the root class, which can be used polymorphically.

A collapsed type hierarchy is the situation where an abstraction “absorbs” its own spe-
cializations, and emulates the specialization hierarchy, by explicitly checking the value
assigned to a variable that represents the object’s special type. Figure A.1 depicts an exam-
ple instance of a collapsed type hierarchy in a text editing system that handles ASCII and
rich text documents. The class Document in the figure, provides the generic interface
which defines common operations on generic documents (e.g. the methods open(),
copy() and paste()). The implementation of the class makes use of a variable (e.g.
docType) to track the current type of the document being processed. Its methods em-
ploy switch conditional constructs to inquire the current value of this variable in order to
provide the needed specialized behavior.

A collapsed hierarchy makes understanding and changing individual specializations
harder because their internal data and code are entangled in a single, bulky class. Also, it
is hard to clearly distinguish general code from specialized code, and extend the hierarchy
with new specializations.
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+open()
+copy()
+paste()

-docType : int
Document

switch (docType) {
  case TYPE_PLAINTEXT: 
    // open plain text document
    …
  case TYPE_RICHTEXT: 
    // open rich text document
    …
}

common_stuff();
...
switch (docType) {
  case TYPE_PLAINTEXT: 
    // paste plain text
    …
  case TYPE_RICHTEXT: 
    // paste rich text
    …
}

Figure A.1.: An example of collapsed type hierarchy

A.1.2. Context

Design intent
You need to express a specialization hierarchy of a class, that represents a valid ab-
straction in the design of application. Clients of the root class need to access spe-
cialized versions in a transparent way, using the interface defined by the generic
abstraction.

Strategic closure
The number or implementation details of individual specializations is expected to
change.

A.1.3. Imperatives

In order to maximize maintainability in the context described above, it is important to
have a clean physical separation between the specializations themselves, as well as be-
tween what is common and what is characteristic for each specialization. This is most
naturally achieved with the use of the inheritance relation. This will reduce the time
needed to understand, add, change or remove individual specializations.
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A.1.4. Pathological Structure

As exemplified in figure A.2, the entire hierarchy is collapsed into a single class which im-
plements the root abstraction’s interface. The implementations of the various operations

+operation1()
+operation2()
+operation3()

-typeParameter : int
Abstraction

...
do_common_tasks();

switch (typeParameter) {
  case TYPE1: 
    // do type1 specific tasks
    …
  case TYPE2: 
    // do type2 specific tasks
    …
  case TYPE3:
  ...
}
...

Figure A.2.: Pathological structure for collapsed type hierarchy

of this interface use a variable (either an attribute or a method parameter) for switching
between the alternative behaviors. The attribute is usually initialized at the moment of in-
stantiation and semantically embodies its concrete type. If method parameters are used,
the clients pass arguments in order to request the expected behavior.

Although the concrete behavior of the abstraction instance is transparent to clients after
its initialization, the design presented above has some serious drawbacks. The class that
implements the abstraction is a monolith, in which specializations are tangled with one
another in the implementation of every method defined by the generic interface. Because
of this, the class increases in size and complexity. The entanglement on one hand and the
increase in size and complexity on the other hand, make the design fragment hard to
understand and change in the ways described in the context.

A.1.5. Reference Structure

The reference structure in the given context uses inheritance as the natural way to express
a specialization hierarchy. As depicted in figure A.3, the type variable is no longer neces-
sary, because the desired specialization is chosen through instantiation. Thus, the root
abstraction received subclasses that correspond to each of the specializations. The large
conditional constructs in the main abstraction have been dismantled branch by branch,
and each branch has moved into the corresponding subclass. Each of the subclasses may
implement any of the operations in the common interface in its own special way. Any
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+operation2()
+operation3()
+hook1()

Abstraction1

+operation2()
+operation3()
+hook1()

Abstraction2

+operation1()
+operation2()
+operation3()
+hook1()

Abstraction
{
  // do type1 specific tasks
  ...
}

{
  // do common tasks
  ...

  // do specific tasks
  hook1();
}

Figure A.3.: Reference structure for collapsed type hierarchy

behavior that was common to all specializations has migrated into special hook methods,
in concordance with the template method design pattern.

A.1.6. Diagnosis Strategy

Search space
All classes of the system.

Initial filter
A non trivial class that contains at least two switch or equivalent if-else con-
structs, located in separate methods, not using runtime type identification, either
on the same specific class attribute or using formal parameters that have the same
name.

Indicators
Indicator 1: The name of the parameter used in the conditional expressions contains
the word "type", thus suggesting a type variable. Alternatively, the parameter is com-
pared against a set of symbolic constants whose names contain such a word.

Indicator 2: Usage patterns of the parameter used in the conditionals suggest a type
variable. In other words, there is no write access on the variable, anywhere in the
class, with the exception of object constructors.

Context matching
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Question 1: It must be confirmed that the class represents a valid abstraction in the
design of the system.

Question 2: It must be confirmed that the parameter used in the conditional con-
structs represents a type code, used for implementing a specialization hierarchy of
the abstraction represented by the class.

Question 3: It must be confirmed that the behavior being specialized semantically
describes the abstraction in its entirety. In other words, the behavior that is being
specialized corresponds to the abstraction modeled by the class in its entirety, not to a
limited aspect of its implementation.

Question 4: It must be confirmed that the number or implementation details of in-
dividual specializations is expected to change.

A.1.7. Reorganization Strategy

1: Based on the range of allowed values of the parameter, identify specializations of the
class

2: if class has no subtypes then
3: Apply refactoring “replace type code with subclasses” [Fow99] for the identified spe-

cializations
4: Apply refactoring “replace conditional with polymorphism” [Fow99] for the newly

created subclasses
5: else
6: Apply design pattern “bridge” [GHJV96] to extract the collapsed hierarchy into a

parallel inheritance hierarchy
7: end if
8: Push up common behavior as high as possible in the newly created inheritance hier-

archy, by creating template methods, in accordance with the design pattern “template
method” [GHJV96]
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A.2. Embedded Strategy

A.2.1. Description

In object oriented design, functionality is distributed among objects, based on the iden-
tity and perceived responsibilities of their corresponding classes. Thus, objects can be
seen as actors that cooperate in order to realize the system’s functions. Oftentimes, one
class instance needs to be able to vary some detail of its behavior dynamically, based on
the momentary needs of its clients. Normally, this can be achieved elegantly by employ-
ing the strategy design pattern. It allows defining a family of interchangeable algorithms
in the form of a hierarchy. A client uses one member of this hierarchy in order to dynam-
ically configure the class instance. Thus, the configurable instance is said to provide a
context for the algorithm used as a parameter.

An embedded strategy is the situation in which the class providing the context, explicitly
switches between alternative algorithms, whose implementations are all hard-coded into
the class itself. Figure A.4 depicts an example instance of an embedded strategy, in a
hypothetical text editing application.

+open()
+copy()
+paste()
+preview(in target : int)

Document

common_stuff();
...
switch (target) {
  case TARGET_PRINTER: 
    // prepare print preview
    …
  case TARGET_WEB: 
    // prepare web preview
    …
}

Figure A.4.: An example of embedded strategy

The class Document in the figure, provides the generic interface which defines com-
mon operations on generic documents, such as open(), copy(), paste() and
preview(). Clients configure the preview operation by choosing between two al-
ternative types of algorithms: one for print preview, the other for web preview. The
preview()method uses a conditional construct in order to select the desired algorithm
at runtime.

An embedded strategy makes understanding and changing both context class and indi-
vidual algorithms harder, because their internal data and code are entangled in a single,
bulky class. Also, it is hard to clearly distinguish general code from algorithm-specific
code, as well as to implement additional algorithms.
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A.2.2. Context

Design intent
Allow clients of a class that represents a valid abstraction in the application’s design,
to dynamically configure its instances with a family of interchangeable algorithms,
that contribute to part of the services provided by the class.

Strategic closure
You expect the class providing the context, or the number and implementation of
individual algorithms in the family to change independently.

A.2.3. Imperatives

From a maintainability standpoint, if the context and the algorithms are expected to
change independently, it is important to have a clean separation between their imple-
mentations. Furthermore, in order to ease understanding and changing individual al-
gorithms in isolation, it is important to cleanly separate their implementations from one
another while simultaneously avoiding code duplication. Since the alternative algorithms
semantically represent specialized versions of an abstract generic algorithm, we have a
specialization hierarchy, that is best expressed using inheritance.

A.2.4. Pathological Structure

The pathological structure is depicted in figure A.5. All alternative algorithm implemen-

+contextOperation1()
+contextOperation2()
+contextOperation3()
+configurableOp(in algSelector)

Context

...
do_common_tasks();

switch (algSelector) {
  case VARIANT1: 
    // perform algorithm variant 1
    …
  case VARIANT2: 
    // perform algorithm variant 2
    …
  case VARIANT3:
  ...
}
...

Figure A.5.: Pathological structure for embedded strategy
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tations are contained within and mixed with the implementation of the context class.
Clients choose between the various algorithms by means of selectors, defined either as
class attributes or as parameters of those methods that support configuration. In order
to select the desired behavior, the methods themselves use conditional constructs that
explicitly check the value of the selector.

Although the class allows its clients to dynamically configure part of an object’s behavior,
the design presented in figure A.5 clearly disregards the imperatives described above. The
implementation details of the algorithms are entangled with those of the context class,
which impedes understanding and changing any of the two in isolation. In addition, the
danger of having duplication between methods that rely on the same algorithms is very
high.

A.2.5. Reference Structure

In the reference structure for the described context, the algorithm family is extracted out
of the class providing the context, and modeled by a specialization hierarchy. This corre-
sponds to the “strategy” design pattern. As depicted in figure A.6, the selector parameter

+contextOperation1()
+contextOperation2()
+contextOperation3()
+configurableOp()
+setCurrentStrategy(in currentStrategy)

-currentStrategy
Context

...
currentStrategy.strategyInterface()
...

+strategyInterface()
+hook()

AbstractStrategy

+hook()

ConcreteStrategy1

+hook()

ConcreteStrategy2

-currentStrategy

1 1

{
  do_common_tasks();
  hook();
}

Figure A.6.: Reference structure for embedded strategy

is no longer needed, because explicit checks are now replaced by polymorphic calls to
an abstract strategy interface. The individual branches of the former conditionals have
migrated into the corresponding member of the newly defined specialization hierarchy.
Clients can either use a dedicated method for configuring the context, as shown in the
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figure, or can pass a reference to the desired strategy directly, upon each call. The use
of inheritance allows extracting commonalities into the upper layers of the hierarchy, by
employing the template method pattern.

A.2.6. Diagnosis Strategy

Search space
All classes in the system.

Initial filter
A class contains at one or more methods that employ switch or equivalent
if-else constructs, not using runtime type identification, which check a par-
ticular class attribute, or formal parameters having the same name. The checked
attribute or method parameters will be referred to as selectors.

Indicators
Indicator 1: The name of the selector contains the word "strategy" or "algorithm",
thus suggesting a strategy configuration parameter. Alternatively, the selector is com-
pared against a set of symbolic constants whose names contain such a word.

Indicator 2: Usage patterns of the selector suggest a strategy configuration parame-
ter. In other words, the value of the selector is dictated from outside of the class. If it
is a class attribute, clients change the attribute themselves, either directly or through
an accessor method.

Indicator 3: The concern that is being specialized represents a small fraction of the
class. In other words, a very small number of the class’ non-accessor methods contain
the conditional constructs described in indicator 1.

Context matching
Question 1: It must be confirmed that the classes represents a valid abstraction in
the design of the system.

Question 2: It must be confirmed that the parameter used in the conditional con-
structs represents a type code, used for implementing a specialization hierarchy.

Question 3: It must be confirmed that the abstraction being specialized does not cor-
respond to the concept modeled by the class as a whole, but to some limited aspect of
its implementation. The rest of the class can be regarded as the context in which this
family of related algorithms perform some limited task.

Question 4: It must be confirmed that changes to class providing the context as well
as the number and implementation of individual algorithms in the embedded hier-
archy are likely to happen in isolation.
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A.2.7. Reorganization Strategy

1: Identify all abstract strategy types based on the logic of the conditional structures
2: for all strategy interfaces I Si do
3: Based on the range of values taken by the type parameter, identify all concrete

strategies that correspond to I Si

4: Apply refactoring “replace conditional logic with strategy” [Ker05] to implement the
“strategy” design pattern [GHJV96] corresponding to I Si

5: Push up common behavior as high as possible in the newly created strategy hierar-
chy, by creating template methods, in accordance with the design pattern “template
method” [GHJV96]

6: end for
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A.3. Explicit State Checks

A.3.1. Description

In object oriented programming, polymorphism is the universal mechanism that allows
an abstraction, defined by its interface, to vary behavior transparently with respect to its
clients. In particular, polymorphism is the most natural way of altering an object’s be-
havior, as observed by its clients, based on its current “state”. Normally, under the notion
of “state”, we understand a snapshot of the current values of all attributes defined in the
class. In this case however, “state” must be understood in an abstract sense, as the state
of a domain abstraction that is modeled by the class.

The design flaw “explicit state checks” refers to the situation in which an object uses ex-
plicit checks on some internal piece of data, in order to execute state specific behavior or
manage its “state” transitions. The data that is checked represents the current “state” at
any given time.

+open()
+close()
+send()

-conState : int
TCPConnection

switch (conState) {
  case STATE_CLOSED: 
    // open connection
    …
    conState = STATE_ESTABLISHED;
    return SUCCESS;

  case STATE_ESTABLISHED: 
    // already open, do nothing
    return ERR_ALREADY_OPEN;
}

switch (conState) {
  case STATE_CLOSED: 
    // already closed, do nothing
    return ERR_ALREADY_CLOSED;

  case STATE_ESTABLISHED: 
    // close connection
    …
    conState = STATE_CLOSED;
    return SUCCESS;
}

switch (conState) {
  case STATE_CLOSED: 
    // connection is closed, cannot send
    return ERR_CONNECTION_CLOSED;

  case STATE_ESTABLISHED: 
    // send data, state does not change
    ...
}

Figure A.7.: An example of explicit state checks

In the example depicted in figure A.7, the class TCPConnection uses the attribute
conState to store the current connection state. The class implements a number of
operations (e.g. open(), close(), send()) whose behavior varies according to this
state. The selection occurs explicitly, by checking the attributes current value upon each
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call. Some operations change the current state of the object by assigning a new value to
the attribute.

Explicit state checks make it harder for the maintainer to add new states, as well as identify
and change behavior that is specific to a given state. Furthermore, it is hard to distinguish
state dependent from state independent code in the bloated classes that suffer from this
design flaw.

A.3.2. Context

Design intent
Objects of a class that represents a valid abstraction in the application’s design, need
to vary their behavior dynamically, based on an abstract state, that can be managed
either internally or externally.

Strategic closure
You expect the number of states to change, changes to the code that corresponds to
individual states, or changes that would require the maintainer to distinguish state
dependent from state independent behavior.

A.3.3. Imperatives

In order to maximize maintainability in the context described above, we must isolate on
one hand, state dependent from state independent code from one another, and on the
other hand, code that is specific for each individual state from one another. In addition,
we can minimize the risk of code duplication by extracting commonalities in behavior
among various states, in a specialization hierarchy.

A.3.4. Pathological Structure

Figure A.8 illustrates the most important characteristics of the pathological structure in
the case of “explicit state checks”. As shown in the figure, both state dependent and state
independent code are contained inside a single monolithic class. The current state of an
instance is held by an attribute that usually has some enumerated type. Throughout the
implementation of the class, the value of this attribute is repeatedly checked inside typ-
ically large conditional constructs in order to select the desired behavior. State changes
are carried out by assigning a new value to the attribute.

The pathological design clearly contradicts the imperatives described above. The entire
functionality is entangled inside a single class, with several bloated methods. This leads
to increased effort and error proneness in understanding and changing both state depen-
dent and state independent code.
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+operation1()
+operation2()
+operation3()

-stateParameter : int
Abstraction

...
switch (stateParameter) {
  case STATE1: 
    // perform state specific tasks
    …
  case STATE2: 
    // perform state specific tasks
    …
  case STATE3:
  ...
}
...

Figure A.8.: Pathological structure for explicit state checks

A.3.5. Reference Structure

In the given context, the reference structure corresponds to the design pattern “state”, as
illustrated in figure A.9. In the structure presented in the figure, state specific behavior

+operation1()
+operation2()
+operation3()

-state
Abstraction

...
state.operation1()
... +operation1()

+operation2()
+operation3()

AbstractState

+operation1()
+operation2()
+operation3()

State1

+operation1()
+operation2()
+operation3()

State2

-state

1 1

...
state.operation3()
...

+operation1()
+operation2()
+operation3()

State3

Figure A.9.: Reference structure for explicit state checks

has been isolated into separate classes, that form a specialization hierarchy. As a result,
the large conditional constructs in the main class had been dismantled branch by branch,
and each branch has moved into one of the concrete state classes. The main class aggre-
gates the root of the specialization hierarchy, defining the common state interface. State
management including instantiation of the state objects is generally best performed in-
ternally by the main class.
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A.3.6. Diagnosis Strategy

Search space
All classes of the system.

Initial filter
A non trivial class that contains at least two switch or equivalent if-else con-
structs, located in separate methods, not using runtime type identification, on the
same specific class attribute, which is not declared as final.

Indicators
Indicator 1: The name of the checked attribute contains the word "state", thus sug-
gesting a state variable. Alternatively, the switch parameter is compared against a set
of symbolic constants whose names contain such a word.

Indicator 2: Usage patterns of the switch parameter suggest a state variable, in the
sense that the value of the checked parameter is changed, either within branches of
the conditional constructs, or from the clients that called the respective operation.

Context matching
Question 1: It must be confirmed that the classes represents a valid abstraction in
the design of the system.

Question 2: It must be confirmed that the parameter used in the conditional con-
structs semantically denotes the state of the domain abstraction.

Question 3: It must be confirmed that the number or implementations of individual
state specific behaviors are expected to change, or changes are expected that would
require the maintainer to distinguish state dependent from state independent code.

A.3.7. Reorganization Strategy

1: if state management occurs from within the conditional constructs described in indi-
cator 1 then

2: Apply refactoring “replace state-altering conditionals with state” [Ker05] on the af-
fected class

3: else
4: Based on the range of allowed values of the state parameter, identify the range of

possible states
5: Apply refactoring "replace type code with state" [Fow99]
6: Implement a state management interface in the context class and adapt clients to

use the context’s state management interface
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7: If desired, optimize state management performance, by replacing on demand state
object instantiation with pre-instantiated state objects, according to the “singleton”
design pattern [GHJV96]

8: end if
9: Push up common behavior as high as possible in the newly created state hierarchy, by

creating template methods, in accordance with the design pattern “template method”
[GHJV96]
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A.4. Dispersed Control

A.4.1. Description

One of the fundamental differences between the procedural and the object oriented
paradigms, is the way in which complex operations are broken up into pieces that are
allocated to various program functions. In the procedural world, we have a workflow, or
activity based view, according to which a complex operation is broken up based on the
logical steps in the workflow. In the object oriented world, a decomposition based on ob-
ject identity and responsibilities is dominant while the activity based decomposition still
plays an important role within classes.

There are however situations which justify concentrating bits of functionality from het-
erogeneous classes, giving priority to an activity rather than identity based decomposi-
tion. The design pattern “visitor” corresponds to such a situation, where the realization of
functionalities on top of complex structures of related objects presumes a certain degree
of orchestration between type specific behaviors. In order to make the implementation of
complex operations that semantically pertain to an entire structure of objects maintain-
able, the individual bits of type specific behavior are encapsulated into a so called visitor
class, that represents the high-level operation.

We have a case of “dispersed control”, when in a situation such as the one described
above, the implementations of structure related functionalities are broken up and dis-
persed between the individual types that belong to the structure. Figure A.10 illustrates
an example of dispersed control in a hypothetical compiler. The heterogeneous struc-
ture is represented in this case by the abstract syntax tree, which is modeled as a col-
lection of specialized ASTNode objects. Code generation represents the high level op-
eration that is defined for the structure. Its implementation is dispersed throughout the
generateCode() method in the entire ASTNode hierarchy. An external client to the
hierarchy, called CodeGenerator, orchestrates the code generation functionality by it-
erating through the objects in the structure in a given way, and calling each object’s indi-
vidual version of generateCode().

Since the types of individual nodes in the abstract syntax tree depend on the program-
ming language that is being compiled, it is reasonable to expect that once implemented,
the hierarchy will not change significantly. On the other hand, it is very probable that fur-
ther global operations on the abstract syntax tree, such as type checking for example, will
have to be added or changed frequently in the future. But maintaining such operations as
well as adding new ones in this structure is difficult, because all descendants of ASTNode
need to be adapted every time. In addition, individual types in the ASTNode hierarchy
are harder to understand and changed, because their implementation is cluttered with
the various bits of functionality that realize each global operation.
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+getNodeID()
+getParentNode()
+typeCheck()
+generateCode()

ASTNode

+typeCheck()
+generateCode()

VariableRefNode

+typeCheck()
+generateCode()

AssignmentNode

+generateProgramCode()
-AST

CodeGenerator

...
ASTNodeIterator nodes = AST.getNodes();

while (nodes.hasMoreNodes()) {
  ASTNode node = nodes.nextNode();
  ...
  node.generateCode();
  ...
}
...

Figure A.10.: An example of dispersed control

A.4.2. Context

Design intent
You need to implement a number of operations that semantically pertain to a com-
plex, heterogeneous structure, which consists of objects of classes, that represent
a valid specialization hierarchy. The operations accumulate data from the struc-
ture elements, or perform some global function, by orchestrating between element
specific bits of functionality.

Strategic closure
The number and implementation of the global operations is expected to change
more frequently than the number and implementation of the individual element
types forming the structure.

A.4.3. Imperatives

In order to maximize maintainability in the context described above, the implementation
parts that are expected to change often (i.e. the global operations on the structure) must
be decoupled from one another, and from those that are expected to change more rarely
(i.e. the elements of the structure). In other words, the activity based view of complex
operations should be given priority over the identity based view.
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A.4.4. Pathological Structure

As shown in figure A.11, the inheritance hierarchy that describes the elements of the ob-
ject structure, is also used for expressing the differences that exist between type specific
bits of the global operation. In other words, every element’s type interface is a mix of

+elementOp1()
+elementOp2()
+dispersedOp1()
+dispersedOp2()
+dispersedOp3()

AbstractElement

+elementOp1()
+elementOp2()
+dispersedOp1()
+dispersedOp2()
+dispersedOp3()

Element1

+elementOp2()
+dispersedOp1()
+dispersedOp2()
+dispersedOp3()

Element2

+structureOperation()
-structure

Client1

...
ElementIterator elements = structure.getElements();

while (elements.hasMore()) {
  AbstractElement element = elements.next();
  ...
  element.dispersedOp1();
  ...
}
...

Figure A.11.: Pathological structure for dispersed control

both operations that are “local” to each element type, and operations that perform ele-
ment specific bits of a greater, global operation that relates to the entire structure. The
orchestration that is necessary in order to obtain the end result from the combination of
individual element specific bits, is realized in an external client, which iterates over the
structure in an appropriate way. Oftentimes, the purpose of the global operation is to de-
rive some information that results from accumulating information from each structure
element.

The pathological structure described above disregards the imperatives of this design flaw,
because it mixes global, structure specific and element specific functionality, cluttering
the implementation of all element types. Furthermore, individual structure related op-
erations are hard to understand and change, because their implementation is dispersed
throughout the entire element hierarchy. Adding a new global operation is hard, because
it requires adding new methods to all element types.
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A.4.5. Reference Structure

The reference structure is represented by the design pattern “visitor” and is illustrated in
figure A.12. All individual bits defining a complex operation that pertains to the whole

+elementOp1()
+elementOp2()
+accept(in v : NodeVisitor)

AbstractElement

+elementOp1()
+elementOp2()
+accept(in v : NodeVisitor)

Element1

+elementOp2()
+accept(in v : NodeVisitor)

Element2

+visitElement1(in e : Element1)
+visitElement2(in e : Element2)

NodeVisitor

+visitElement1(in e : Element1)
+visitElement2(in e : Element2)
+structureOperation1()

Operation1

+visitElement1(in e : Element1)
+visitElement2(in e : Element2)
+structureOperation2()

Operation2

...
v.visitElement1(this)
...

...
v.visitElement2(this)
...

... {   // iterate over strcuture
  element.accept(this);
}

Figure A.12.: Reference structure for dispersed control

structure, have been encapsulated in separate visitor classes, which as special cases of
visitors, are all part of a common specialization hierarchy. Each visitor class corresponds
to exactly one global operation. Furthermore, a double dispatch mechanism has been
implemented between the two hierarchies, which gives the maintainer complete flexibil-
ity in changing the number and implementations of individual visitors, without touching
the element hierarchy. The element hierarchy defines a generic interface that allows a
client to use an arbitrary visitor object, and each visitor object defines element specific
methods, that are called during visitation. In addition, all element types need to provide
an interface that allows a visitor to access element internal data. This break of element
encapsulation is the price paid for the increased maintainability of the global operations.

A.4.6. Diagnosis Strategy

Search space
All type hierarchies in the system.

Initial filter
The root of the hierarchy defines a number of methods, either concrete or abstract,
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that are either overridden or implemented in almost all terminal nodes of the hier-
archy.

Indicators
Indicator 1: The overridden methods represent bits of semantically unrelated global
operations. Thus, there are no calls between any pair of such methods.

Indicator 2: The overridden methods represent bits of semantically unrelated global
operations. Thus, clients do not call more than exactly one such method, from within
any of their methods.

Indicator 3: The overridden methods are called from within contexts that suggest an
orchestration, or an accumulation of information. An orchestration is probable if
calls to many such methods occur from within a cycle, in which the call’s target ob-
ject is continually changed. Accumulation is probable if many such methods return
information by means of a return value or output parameter.

Context matching
Question 1: It must be confirmed that the hierarchy represents a valid specialization
hierarchy in the application’s design.

Question 2: It must be confirmed that the identified group of methods represent bits
of global operations that are semantically associated to a complex structure, formed
with instances of the hierarchy. The clients that call methods in the identified group,
orchestrate the calls to individual objects in the structure in order to accumulate in-
formation or otherwise perform a structure specific service.

Question 3: It must be confirmed that the number and implementation of the global
operations is expected to change more frequently than the number and implementa-
tion of the individual element types forming the structure.

A.4.7. Reorganization Strategy

1: if there is no double dispatch infrastructure in place then
2: Create abstract visitor class AV
3: for all types Ti that form the heterogeneous structure do
4: Create a corresponding visit<...> method in AV
5: Create a method named accept(...) that receives a reference of AV ’s type as

a parameter, and calls the proper visit<...> method on the received refer-
ence

6: end for
7: else
8: Let AV be the root of the existing visitor hierarchy
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9: end if
10: for all dispersed operations Oi in the heterogeneous hierarchy do
11: Create a concrete visitor class Vi , as a subtype of AV
12: Apply refactoring “extract method” [Fow99] on the orchestration code within the

client class, containing the call to Oi

13: Move previously extracted method to Vi

14: Replace the call to Oi with a call to the corresponding accept(...) method,
passing the reference this as argument

15: Move all element specific method implementations that override or implement Oi ,
to the various visit<...>methods in Vi . If needed provide accessor methods to
internal attributes of the heterogeneous element types

16: Remove all empty methods corresponding to Oi from the element hierarchy
17: end for
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A.5. Misplaced Control

A.5.1. Description

The way in which functionality is broken up into subroutines or methods is one of the fun-
damental differences between the procedural and the object oriented paradigms. In the
procedural world, we have a process, or workflow based view of the application’s func-
tionality, which is broken up into methods, based on the logical steps in the workflow.
Thus, data is decoupled from the methods that use it. In the object oriented world, the
predominant decomposition of functionality is based on object identities, and their asso-
ciated responsibilities, while activity based decomposition should only play a role within
classes. In other words, functionality and associated data are each divided and paired up,
based on the responsibilities of each class. There are also notable exceptions to this prin-
ciple, namely in those situations where the designer deliberately favors a workflow based
decomposition by containing a complex process into a method, in order to make it eas-
ily maintainable. Such situations are present in the mediator, visitor and strategy design
patterns.

Assuming a proper distribution of data among the classes of a system, we have a case of
“misplaced control” in the situation where a piece of functionality is unjustifiably sep-
arated from the data its operates on. In other words, if a code fragment implements a
service, based on data that is defined in a foreign class, that fragment is said to be mis-
placed, unless the placement is justified by the need to improve the maintainability of a
complex operation that the fragment is part of. Figure A.13 illustrates an example instance
of “misplaced control” in a hypothetical graphical editor.

The figure shows an excerpt of the method weightAndPlaceNodes(), of the strat-
egy class DiagramLayouter. The method uses data that is strictly internal to the class
DiagramNode in order to compute the weight for each node that needs to be placed in
the current diagram. Assuming that there aren’t alternative ways of computing a node’s
weight, and since the details of this process are not crucial from the standpoint of the lay-
outing algorithm, the code block that computes node weights should naturally belong to
theDiagramNode class. As can be seen from this example, the data encapsulation of the
node class is broken in a brutal fashion, by having a data flow loop, in which data is first
read out, processed and then written back to the foreign object.

Misplacing functionality in the way described above has many negative consequences for
the understandability and flexibility of an object oriented design, because it favors the
concentration of functionality in a few heavyweight classes (often referred to as behav-
ioral god classes, or blobs). As a result, most of the other classes degenerate in “dumb”
data holders, whose data encapsulation and hiding is abused systematically. Further-
more, this tends to be a self sustaining process, in the sense that adding new functionality
to the lightweight classes becomes more and more difficult without major restructuring.
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+getUplinks()
+setUplinks()
+getDownlinks()
+setDownlinks()
+getWeight()
+setWeight()
+isMovable()
+setMovable()

-uplinks : Vector
-downlinks : Vector
-weight : int
-movable : bool

DiagramNode

+weightAndPlaceNodes()

DiagramLayouter

Vector

...
// Get all the nodes
DiagramNode[] nodes = diagram.getNodes();

// Compute node weights
for (int i = 0; i < nodes.length; i++) {
  // Get the number of downlinks of this node.
  int nDownlinks = nodes[i].getDownlinks().size();

  // Compute the weight of the node
  nodes[i].setWeight((nDownlinks > 0) ? (1 / nDownlinks) : 2);
}

// Sort the nodes according to this weight 
// and place them in the diagram
...

Figure A.13.: An example of misplaced control

The end result is a procedural style program with a lot of global data, and inherent main-
tenance problems.

A.5.2. Context

Design intent
Two or more classes, representing valid abstractions, that are not related through
inheritance, hold data and/or responsibilities that are relevant in realizing a coher-
ent unit of the application’s functionality. Assuming a proper distribution of data
among the classes, you want to distribute the implementation of the unit of func-
tionality between them.

Strategic closure
You expect that maintenance activities are more probable to appertain to individ-
ual abstractions and their responsibilities, rather than the unit of functionality as
a whole. Alternatively, you expect the need to specialize some of the abstractions
involved in realizing the unit of functionality.
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A.5.3. Imperatives

In order to maximize maintainability in the context described above, the responsibility
based decomposition of behavior should takes priority over the workflow based decom-
position. Furthermore, it is essential to maximize data hiding, thus eliminating unneces-
sary coupling between the classes that represent the cooperating abstractions. The bits
of functionality that are assigned to each class have to naturally fit the class’ identity and
responsibilities. Assuming a proper distribution of data between the classes, the bits of
functionality should be placed in the same class that holds the data that is relevant for the
realization of the corresponding behavior.

A.5.4. Pathological Structure

The pathological structure for “misplaced control” is characterized by figure A.14, which
shows the class
textttCentralClass, holding misplaced behavior, and its so called satellite class, holding
data that is required by the misplaced behavior. This role assignment to the classes is

+offendingMethod1()
+offendingMethod2()
+offendingMethod3()
+doSomething1()
+doSomething2()

CentralClass

+getData2()
+setData2()
+getData3()
+setData3()
+getData4()
+setData4()
+getComposedObject()

+data1
-data2
-data3
-data4
-composedObject : SomeClass

SatelliteClass

SatelliteClass sat = obtainSatellite();
...
// abusive call to composedObject.method()
sat.getComposedObject().method();
...

SomeClass

Parent

Root sat = obtainSatellite();
...
// misplaced functionality
if (sat instanceof SatelliteClass) {
  doSomething2(sat);
}
...

SaltelliteClass sat = obtainSatellite();
...
// abusive manipulation of staellite object's state 
// with data flow loop
tmp2 = sat.getData2();
tmp3 = sat.getData3();
sat.setData4(doSomething1(tmp2, tmp3));
...

Figure A.14.: Pathological structure for misplaced control

only significant for the three concrete instances of the design flaw that are exemplified
in offendingMethod1(), offendingMethod2 and offendingMethod3. Any
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class, including SatelliteClass may contain misplaced behavior, in which case the
roles would be reversed.

In general, satellite classes are characterized by broken encapsulation, either by having
public attributes or a lot of accessors. On the other hand, we have three examples of mis-
placed behavior in the figure. In the first example, the encapsulation of the satellite is
broken by violating the “law of Demeter for methods”1, by calling methods on an object
reference, obtained from the satellite. In the second example, we have an information
loop in the sense that the offending method pulls information from the satellite, trans-
forms it in one way or the other, and then pushes the result right back into the satellite.
The third and last example of misplaced behavior is when the offending method performs
some processing on an instance of the satellite class, based on its concrete identity. In all
three cases, the offending method contains code that can be regarded as providing some
value added service on foreign data, and that would naturally belong in the satellite.

From the standpoint of the imperatives described above, data and associated behavior
are not kept in the same class, which leads to broken encapsulation and unnecessarily
high coupling between the central class and its satellite(s). This has a negative effect on
the ease of understanding and ease of change for the classes involved.

A.5.5. Reference Structure

As depicted in figure A.15, the reference structure is characterized by the fact that the
former satellite encapsulates and effectively hides its internal data from the former cen-
tral class. It does this by providing a number of value added services on its data (the
methods doSomething1(), doSomething2() and performService()), which
contain code that was formerly placed in the central class. If we look at the implementa-
tions of the former offending methods, Method1() throughMethod3(), we see that all
three forms of “misplaced control” have been defused by using delegation. In the case of
Method3, the explicit type check has been replaced wit a polymorphic call to the method
doSomething2(), defined in the satellite’s parent class.

A.5.6. Diagnosis Strategy

Search space
All methods defined in all classes of the system.

Initial filter
Any non-trivial method, that is not a constructor or an accessor, and references a
different type. Referenced types will be referred to as “satellites”.

1see http://www.ccs.neu.edu/research/demeter/
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+Method1()
+Method2()
+Method3()

CentralClass

+doSomething1()
+doSomething2()
+performService()

-data1
-data2
-data3
-data4
-composedObject

SatelliteClass

SatelliteClass sat = obtainSatellite();
...
sat.performService();
...

SomeClass

+doSomething2()

Parent

Root sat = obtainSatellite();
...
sat.doSomething2();
...

...
data4 = f(data2, data3);
...

SaltelliteClass sat = obtainSatellite();
...
sat.doSomething1();
...

...
composedObject.method();
...

Figure A.15.: Reference structure for misplaced control

Indicators
Indicator 1: The method accesses at least two foreign fields, either directly or through
accessors. The accessed fields are declared in classes that are not superclasses of the
one declaring the method.

Indicator 2: The method manipulates the internal state of another, unrelated class,
by writing to one or more of its attributes, either directly or through a setter method.

Indicator 3: The method contains an information loop in the sense that information
is pulled from instances of an unrelated class using accessors, transformed it in one
way or the other, and the result is pushed back into the class either by writing to an
attribute or as a parameter in a method call.

Indicator 4: Unrelated classes whose data are read or written to by the method, act as
“dumb” data holders, by exposing a significant proportion of their data, either directly
(i.e. public attributes) or through accessors.

Indicator 5: The method varies its behavior based on the identity of an object, using
runtime type identification. In other words, it compares the type of a reference against
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an unrelated (i.e. through inheritance) type, adapting its behavior accordingly.

Context matching
Question 1: The maintainer must confirm that the classes involved represent valid
abstractions in the design of the system and the distribution of data among them is
semantically sound.

Question 2: The maintainer must confirm that the code fragment that accesses data
in the satellite class, can be seen as a service that is useful on its own, on data that
belongs to the satellite class.

Question 3: The maintainer must confirm that future maintenance activities are
more probable to appertain to individual abstractions and their responsibilities,
rather than the unit of functionality as a whole. If the class in question implements a
mediator, concrete visitor, or a concrete strategy, the user must ensure that extracting
the misplaced unit of behavior is meaningful and desirable.

A.5.7. Reorganization Strategy

1: Let m be the offending method
2: for all satellite objects Sati do
3: Based on the places in m where attributes of Sati are accessed, determine abstract

services that can be logically seen as falling within the responsibility of Sati

4: for all Identified services Sr v j do
5: if the implementation of Sr v j does not correspond to the entire method body of

m then
6: Apply refactoring “extract method” [Fow99] on code that corresponds to Sr v j

7: end if
8: Apply refactoring “move method” [Fow99] on the method that contains the im-

plementation of Sr v j , to move it into Sati , or one of its superclasses, if appropri-
ate
// This can for example be the case when satellites are siblings in an inheritance
hierarchy and the method m uses reflection to check the exact type of the satellite
instance in order to perform some type-specific action. The recommended solu-
tion is to move the code fragments involved to their corresponding satellite classes
and consequently extract the commonality out of those operations into a common
ancestor.

9: end for
10: Revise and if appropriate reduce the visibility of data members in Sati

11: end for
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A.6. Schizophrenic Class

A.6.1. Description

In object oriented design, a class should not capture more than one key abstraction. Key
abstractions are defined as the main entities within a domain model, and often show up
as nouns within requirements specifications ([Rie96]). A key entity is an abstraction that
stands on its own in the abstract model that results from modeling activities.

A “schizophrenic class” is a class that captures two or more key abstractions. Class
schizophrenia is common in situations where a system is developed incrementally, with-
out restructuring in-between increments. Thus, a class that is defined very early in the
process, may prove to be too abstract later on, as it receives more and more responsi-
bilities. Consequently, the class needs to be broken into fragments that capture more
fine-grained abstractions.

Another possible scenario for the formation of schizophrenic classes is in the process of
migrating a procedural system to an object oriented language. Large chunks of formerly
global data are grouped together with functions that use this data into a single, large and
noncohesive class.

In both scenarios mentioned above, the class encapsulates the data and behavior of two
or more design abstractions. In addition, the encapsulated abstractions are described
based on their identity. In other words, we have an object oriented topology of the un-
derlying abstract model that results from modeling activities (i.e. the model describes the
encapsulated abstractions as individual, cooperating actors).

Classes whose names contain words such as “system”, “subsystem” or “manager” are likely
candidates for class schizophrenia. However, there are also exceptional situations, in
which a class is intended to provide a unified, simpler interface, to a complex set of inter-
faces that form a subsystem. This is the case of the “facade” design pattern. Nevertheless,
a facade is primarily delegating to the responsible classes and does not aggregate all the
data that define the abstractions in the subsystem.

Figure A.16 shows such an example instance, where the class SmartHomeManager im-
plements three interfaces that define clearly separated responsibilities: the air condi-
tioning system, the alarm system and the lighting system. The implementation of these
three abstractions relies on partially overlapping data, but is mostly not related to one an-
other. For example, the air conditioning shares the attribute windowStates with the
alarm system, and the attribute windowShadeStates with the lighting system. The
schizophrenic class doesn’t always implement explicit interfaces, but we decided to in-
clude them in the example, because it is suggestive of the impersonation of various roles
that the instance of a schizophrenic class does for various clients in the system.
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+setDesiredRoomTemp(in room, in temp)
+getCurrentRoomTemp(in room)
+setACEnabled(in room, in enabled : bool)
+isACEnabled(in room)

«interface»
IAirConditioningSystem

+isAlarmEnabled()
+setAlarmEnabled(in enabled : bool)
+getAlarmStatus()
+setOffAlarm()

«interface»
IAlarmSystem

+isAutoLightEnabled()
+setAutoLightEnabled(in enabled : bool)
+turnLightOn(in room)
+turnLightOff(in room)
+getLightStatus(in room)

«interface»
ILightingSystem

+openWindow()
+closeWindow()
+lowerWindowShade()
+raiseWindowShade()

-coolingUnitStates : Vector
-desiredRoomTemperatures : Vector
-actualRoomTemperatures : Vector
-windowStates : Vector
-windowShadeStates : Vector
-motionSensors : Vector
-emergencyPhoneLines : Vector
-roomPresenceSensors : Vector
-roomLightSensors : Vector

SmartHomeManager

Vector

Figure A.16.: An example of schizophrenic class

A schizophrenic class negatively affects the ability to understand and change the individ-
ual abstractions that it captures, in isolation.

A.6.2. Context

Design intent
You want to express a set of individual design abstractions in a model having an ob-
ject oriented topology, as classes in the system. Alternatively, you are migrating a
procedural program to an object oriented language, and you need to define coop-
erating classes, from chunks of global data and functions.

Strategic closure
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The design abstractions under consideration are expected to change independently
from one another.

A.6.3. Imperatives

In general, in order to maximize maintainability, each class should capture no more than
one key abstraction. Key abstractions are abstractions that stand on their own in the ab-
stract model which determines design intent. In addition, all data that is related to one of
the class’ responsibilities, and all behavior that is related to the class’ data should be kept
together, in the same class [Rie96].

In order to maximize maintainability within the described context, we need to isolate
those design abstractions from one another, that are expected to change independently.
This implies that the functional decomposition of the original class’ behavior needs to be
replaced with an identity based decomposition that reflects the decomposition of data
among the involved abstractions, so that data and associated behavior are kept together.

A.6.4. Pathological Structure

As illustrated in figure A.17, the pathological structure is characterized by the fact that
the offending class encapsulates more than one key abstraction. As a consequence, we
expect to find relatively isolated clusters of data and associated behavior, that represent
the implementations of the corresponding logical interfaces. The interfaces can be ei-
ther implicit, or declared explicitly, and they correspond to the various abstractions en-
capsulated by the class. In the latter case, they are not trivial, or so called marker in-
terfaces. The first cluster in the generic structure presented in the figure, comprises the
methods method1() and method2(), which use attr1, attr2 and attr3, and the
second cluster comprises methodsmethod3() andmethod4(), which useattr1 and
attr4.

Figure A.17 depicts a rather favorable situation, in which the methods of the class can
be assigned more or less unambiguously to clusters of data. This denotes an strong ob-
ject oriented topology of the underlying abstract model. In the worse scenario, the class
may appear to be functionally cohesive, in the sense that an unambiguous association of
methods to the attribute clusters which describe the encapsulated concepts is not possi-
ble. Such instances are harder to diagnose reliably because heuristics must rely on indi-
rect manifestations in the structure, such as class size and the way in which clients use
the class. Thus, a schizophrenic class is likely to be large in terms of data that is defined,
and to have a relatively large number of clients in the system.
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SchizophrenicClass

attr1
attr2
attr3
attr4

method1()
method2()
method3()
method4()

+method3()
+method4()

«interface»
Interface2

+method1()
+method2()

«interface»
Interface1

Figure A.17.: Pathological structure for schizophrenic class

The pathological structure described above has a negative effect on the maintainability
of the individual abstractions contained within, because it hinders understanding and
changing them in isolation.

A.6.5. Reference Structure

As shown in figure A.18, the original class has been broken up, based on the abstractions
encapsulated by the class. Again, the figure illustrates the more favorable situation, in
which we have a strong identity based decomposition of class members, based on the
identities of the encapsulated abstractions.

With respect to attributes that are used by two or more functional clusters, we have two
possibilities. In the first scenario, the attribute can unambiguously be assigned to one of
the newly created abstractions (figure A.18 a). In this case, the attribute should be moved
into its natural home, a possible guiding heuristic being that the abstraction that changes
the attribute should also own it. All methods that use attributes belonging to a foreign
class, may need to be split according to the class identities and associated responsibilities
(see A.5). In case there are still foreign methods that need read access to the attribute, a
getter accessor method can be created.

The second scenario is when one or more commonly used attributes really don’t belong
in any of the abstractions implementing the interfaces, but semantically forms a helper
class for them (figure A.18 b). In this case as well, we should avoid providing accessor
methods. Rather, the methods that use foreign attributes should be investigated, in order
to identify possible higher level services that could be moved along with the attributes into
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+method1()
+method2()

«interface»
Interface1

+method3()
+method4()

«interface»
Interface2

-attr2
-attr3

Abstraction1

+getAttr1()

-attr1
-attr4

Abstraction2

+method1()
+method2()

«interface»
Interface1

+method3()
+method4()

«interface»
Interface2

-attr2
-attr3

Abstraction1

-attr4
Abstraction2

+getAttr1()
-attr1
Abstraction3

a b

Figure A.18.: Reference structure for schizophrenic class

the helper class. Thus, we ensure that functionality is properly decomposed, according to
each class’ identity and associated responsibilities.

In any of the two situations the original class can provide a “facade” to the newly created
classes.

A.6.6. Diagnosis Strategy

Search space
All classes in the system.

Initial filter
Any non trivial class, that is not cohesive with respect to data use of its methods.

Indicators
Indicator 1: The class defines a large number of attributes.

Indicator 2: The class is heavyweight, in the sense that it is very large and has a high
complexity.

Indicator 3: The class constitutes a “bottleneck”, in the sense that a significant pro-
portion of all classes in the system depend on it. A class depends on another if it
references it.

Indicator 4: The class exhibits distinct personalities with respect to disjoint groups
of clients, either by explicitly implementing two or more non-trivial interfaces, or
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by having disjoint groups of clients that use disjoint fragments of the class’ public
interface.

Context matching
Question 1: The maintainer must confirm that the suspected class captures at least
two key abstractions that are not related through specialization, with data and func-
tional methods of their own.

Question 2: The maintainer must confirm that the two or more design abstractions
captured by the class are expected to change independently from one another. If the
class in question represents a facade or is intended as a library of utility functions for a
subsystem, the user must ensure that separating the individual abstractions enclosed
in the class is meaningful and desirable.

A.6.7. Reorganization Strategy

1: Let O be the schizophrenic class
2: Check that we have an identity based decomposition of data in O, based on the iden-

tities of the encapsulated abstractions. // An action oriented topology in the case of the
encapsulated abstractions would require a complete redesign of the fragment, which is
outside the scope of design flaws in general (see 6.1.1)

3: Encapsulate all attributes in O with public accessors // The public visibility is only
temporary, in order to make moving functionality around easier

4: Identify all the abstractions Ai , that need to be separated and establish their future
interfaces

5: Create empty classes that correspond to each of Ai

6: if O has subtypes // we assume that they contain valid specializations for one or more
of the abstractions contained in O then

7: Establish those abstractions from Ai that are affected by each specialization of O
8: Create appropriate subtypes for the classes that correspond to these abstractions
9: end if

10: for all attributes ai in O do
11: Find the natural place for ai in one of the newly created classes, including helpers,

based on the Ai determined before and apply “move field” [Fow99]
12: if ai is an array or collection then
13: Decide between keeping the structured type and having an association multiplic-

ity of 1 to the host class, or increasing the association’s multiplicity and replacing
the collection or array with only one of its elements. In the latter case, the class
interface and the implementation of the facade need to be adapted accordingly

14: end if
15: end for
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16: for all methods mi in O do
17: if mi can be unambiguously assigned to one of the new classes then
18: Apply “move method” [Fow99] to move mi ’s body to the respective class
19: if mi is specialized in one of O’s subclasses then
20: Apply “move method” [Fow99] to move the overriding method into the appro-

priate specialization
21: end if
22: else
23: Apply “extract method” and “move method” [Fow99] to break up the original

method, based on the attribute clusters that determine the encapsulated abstrac-
tions, and reunite functionality with its associated data

24: if mi was previously specialized in one of O’s subclasses then
25: Apply “extract method” and “move method” [Fow99] to break up the original

overriding method, based on the attribute clusters that determine specializa-
tions of the encapsulated abstractions, and reunite functionality with its asso-
ciated data

26: end if
27: end if
28: if mi had public visibility then
29: Implement “facade” [GHJV96] method in O, delegating to the appropriate ab-

straction(s).
30: end if
31: end for
32: Create initialization methods in the facade O, or adapt its constructors to instantiate

and wire together all newly defined classes and their specializations
33: Reduce data and accessor visibility as much as possible in all of the newly created

classes
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A.7. Embedded Features

A.7.1. Description

Inheritance allows the definition of a hierarchy of specialized versions of an abstraction.
By using a reference to the root type, other classes in the system can use any of the spe-
cialized variants without knowing their exact type. Furthermore, the object that the refer-
ence points to, may be dynamically exchanged with other objects of any of the specialized
types.

But what if we wanted to dynamically give or withdraw new responsibilities or features,
to one particular object? We cannot achieve this using inheritance alone, because ob-
ject state would be lost every time we replaced instances. Furthermore, if the number
of individual features were large, and we wanted to combine them, the number of spe-
cializations, and therefore classes in the system, would explode uncontrollably. The most
flexible solution for this scenario involves combining both the inheritance and composi-
tion mechanisms, in accordance with the decorator design pattern.

A class is said to suffer from “embedded features”, if it uses attributes that represent on/off
switches for optional features of the class. The attributes are explicitly checked in order
to choose the desired behavior in each case. Figure A.19 illustrates this situation.

+draw()
+scrollUp()
+scrollDown()
+scrollLeft()
+scrollRight()
+push()

-bordered : bool
-scrollable : bool
-pushable : bool

UIElement

TextBox Bitmap

...
if (bordered) {
  // draw border
  ...
}
...
if (scrollable) {
  // draw scrollbars
  ...
}
...

if (!scrollable) return;
...

if (!pushable) return;
...

Button

Figure A.19.: An example of embedded features

In the example shown in the figure, the abstractions that need to be configurable are el-
ements of a graphical user interface, whose common root class is UIElement. The fea-
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tures that an UIElement is expected to support are: drawing a 3D border around the
element (the attribute bordered), scrolling support (the attribute scrollable), and
support for push actions (the attribute pushable). As we can see in the figure, the im-
plementations of the element’s operations contain blocks that check the current status of
each feature in order to provide the desired behavior.

The structure described above negatively affects maintainability, because it mixes code
that belongs to the features with the code of the base abstraction. Thus, it becomes harder
and harder to add new features, as well as understand and change any of the features in
isolation. In addition, in the particular situation depicted in figure A.19, it is not possible
to change the “layering” of the bordering and scrolling features, without changing the
implementation. Thus, we must for example statically decide between having the scroll
bars outside, or inside of the 3D border.

A.7.2. Context

Design intent
You want to allow clients to dynamically enable or disable one or more optional
features on instances of a class, or family of classes. The class, or hierarchy of classes
represent a valid abstraction or specialization hierarchy in the application’s design.

Strategic closure
You expect further features to be added in the future, changes to occur to the ex-
isting features, or you need to be able to dynamically change the layering of the
features. The public interface of the base abstraction is either not expected to suffer
frequent changes, or changes are only expected in methods that are not related to
any of the optional features.

A.7.3. Imperatives

In order to maximize maintainability in the context described above, we need to separate
the implementation of the base abstraction from the implementations of the features, and
the implementations of the features from one another. In order to maximize the flexibility
in combining several features, the choice of layering should be left entirely to the clients,
and not hardwired in the base abstraction.

A.7.4. Pathological Structure

The pathological structure of the flaw is very simple, and is schematically depicted in
figure A.20. The operations of the base abstraction employ simple conditionals which
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+operation1()
+operation2()
+operation3()

-featureSwitch1 : bool
-featureSwitch2 : bool

Abstraction

...
if (featureSwitch1) {
  // perform feature specific action
  ...
}
...
if (featureSwitch2) {
  // perform feature specific action
  ...
}
...

...
if (featureSwitch1) {
  // perform feature specific action
  ...
}
...

...
if (featureSwitch2) {
  // perform feature specific action
  ...
}
...

Figure A.20.: Pathological structure for embedded features

check the value of the corresponding on/off switch, every time feature specific behavior
might be desirable.

The pathological structure is hardly maintainable, because it mixes the implementation
of the base abstraction with the implementations of the optional features. In addition,
the ordering of feature specific actions, such as those in operation1() is fixed, and
therefore impossible to alter at runtime. These aspects contradict the imperatives defined
in the previous section.

A.7.5. Reference Structure

The reference structure for the design flaw “embedded features” corresponds to the deco-
rator design pattern ([GHJV96]), and is illustrated in figure A.21. The original abstraction
is extended with the class AbstractDecorator, which is a degenerate composite, in
the sense that it composes exactly one instance of its parent. AbstractDecorator
also serves as a base class to a number of classes, each capturing a unique feature. The
abstract decorator (and therefore all concrete decorators) fully support the interface of
the base abstraction. The default behavior of these methods is to transparently delegate
to the contained instance of the base abstraction. Each feature can override one or more
such operations, as well as extend the inherited interface, but should also call the de-
fault implementation. This allows clients to wrap several decorators around the object, in
order to enable a combination of features. The wrapping order determines the logical lay-
ering of the features. Clients are responsible for ensuring that potentially invalid feature
combinations or layering are avoided.
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+operation1()
+operation2()
+operation3()

-featureSwitch1 : bool
-featureSwitch2 : bool

Abstraction

+operation1()
+operation2()

-addedState
Feature1

+operation1()
+operation3()
+addedOperation()

Feature2

+operation1()
+operation2()
+operation3()

-a
AbstractionDecorator

-a

1

1

a.operation1();

super.operation1();

// perform feature specific tasks
...

Figure A.21.: Reference structure for embedded features

A.7.6. Diagnosis Strategy

Search space
All classes in the system.

Initial filter
The class defines at one attribute that appears to represent an optional feature of
the class. In other words, the attribute has a primitive, ordinal type, and it is written
to either in a constructor, a method whose name contains “initialize”, “setup” or
“configure”, or from outside the class (either directly or through accessors), but not
from other non-accessor methods of the class. In addition, the attribute is checked
exclusively in simple conditional statements (if or if-else), in methods of the
class.

Indicators
Indicator 1: One or more of such attributes have a boolean type.

Indicator 2: Code that corresponds to a branch in one or more of the identified sim-
ple conditionals, acts as a filter or otherwise changes the return value of the method
in which it resides, by either containing a return statement or by writing to a variable
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that is used as the return argument of the method.

Indicator 3: The suspected class has a higher than average cyclomatic complexity.

Context matching
Question 1: It must be confirmed that the classes represents a valid abstraction in
the design of the system.

Question 2: The maintainer must confirm that the class attributes identified by the
initial filter represent on/off switches for optional features provided by the suspected
class.

Question 3: The maintainer must confirm that new features are expected to be added
in the future, changes are expected to occur to the existing features, or the need to
dynamically change the logical layering of the features may arise.

Question 4: The public interface of the class is either not expected to suffer frequent
changes, or changes are only expected in methods that are not related to any of the
optional features.

A.7.7. Reorganization Strategy

1: Let C be the class containing the embedded features, and the so called enclosure type
be the interface that declares all of the public methods needed by clients of C

2: if E is defined by a superclass or implicitly defined by C then
3: Extract an interface I defining the enclosure type
4: Make C explicitly implement I
5: end if
6: Identify F , the set of optional features implemented in C
7: if F contains more than one feature then
8: Define a base decorator class D (may be abstract), which implements I and dele-

gates to an internal instance of the type C
9: Define concrete decorator classes for all features in F , as subclasses of D D

10: else
11: Define a concrete decorator class, which implements the interface of the enclosure

type and has delegation methods to an internal instance of type C
12: end if
13: if C has subclasses that override optional features in C then
14: Move feature overriding code from the subclass into specializations of the corre-

sponding concrete decorator classes
15: end if
16: for all features fi in F do
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17: Move the corresponding code blocks out of the conditional statements from C into
the corresponding concrete decorator class. If there are methods that are called
exclusively from such code blocks, move these methods to the decorator class as
well

18: Create appropriate constructors in the concrete decorator class
19: end for
20: Remove the configuration parameter from C
21: Adjust clients by replacing object parametrization with proper instantiation of the

decorator and decorated classes. If several decorators need to be layered and there
are invalid combinations provide and make use of factory methods in the decorated
class

22: Adapt all clients that rely on the identity of the decorated object to eliminate this de-
pendency // This is necessary because decorated objects share the interface of the origi-
nal object, but not its identity

150



A.8. Containment by Inheritance

A.8. Containment by Inheritance

A.8.1. Description

The object oriented paradigm provides two basic mechanisms to facilitate the reuse of
behavior from an already implemented class, in the implementation of a new class. The
first mechanism is the inheritance relation, intended to express a vertical generalization
between an abstraction and its specialization. From the clients’ point of view, the two
classes are said to be of the same kind, because the derived class automatically inherits
and supports all operations defined in the interface of its base class. In addition, their in-
stances can be used interchangeably by referring to them through the common interface.

The second mechanism is composition, which expresses the containment and the “uses”
relations, between the container class and the contained class. In this case, a container
instance “uses” an instance of the contained class in order to realize its own responsibili-
ties.

The design flaw “containment by inheritance” refers to the situation in which a class in-
herits from another class, but the inheritance relation does nor represent a valid special-
ization. In other words, the derived class “uses” the inherited bits of the base class’ im-
plementation, but does not need, or even want to support its public interface. Using in-
stances of the two classes interchangeably would not be meaningful from the viewpoint
of other classes in the design.

+send()
+receive()

-buffer
NetworkAdapter

+schedulePrintJob()
+cancelPrintJob()
+warmUp()
+runDiagnostics()
+send()
+receive()

NetworkPrinter

{
  throw new Exception("not supported");
}

Figure A.22.: An example of containment by inheritance

An example instance of this design flaw is depicted in figure A.22, in which a
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NetworkPrinter uses a NetworkAdapter in order to accomplish the responsibil-
ities, assigned to it by design. The inherited operations are logically not meaningful for
the derived class, and have been overridden with methods that always return an error.
The example shown in the figure employs what is called public inheritance, which is the
standard type of inheritance in the object oriented paradigm. In certain languages, such
as C++, dedicated variants of inheritance may be provided for facilitating implementation
inheritance, but without inheriting the base class interface. In this case, the two overrides
would not be necessary.

The structure presented above contradicts the semantics of inheritance and therefore
may lead to confusions in understanding a design. In addition, someone who wants to
understand the implementation of the derived class is forced to also check the base class.
Finally, details of the base class implementation are needlessly revealed to semantically
unrelated classes. This means that changes to the internals of the base class are harder
to accomplish, because they may potentially affect the derived class, its subclasses, and
possibly their users throughout the system.

A.8.2. Context

Design intent
While implementing a new class, you want to reuse (part of) the behavior of an
already implemented class. The two classes represent valid abstractions in the ap-
plication’s design. From the perspective of your class’ users and within the confines
of the application domain, the relationship between the two abstractions is rather
a “has” and “uses” type relation, not a valid specialization.

Strategic closure
You expect changes in the original class, or any other maintenance activities that
would require an understanding of the design fragment involving the two classes.

A.8.3. Imperatives

One of the fundamental principles in object orientation is the separation of the public in-
terface from the details of the implementation. Therefore, a black box style design, where
the publicly exposed details are confined to a minimal interface, is always preferable to a
white box design, which increases the risk of unwanted dependencies from other classes
in the system. In the context described above, hiding the internals of the original class
from the new class as well as from the users of the new class, is important in order to de-
crease design fragility due to unwanted coupling. A black box design also minimizes the
effort spent in understanding the new class, because it limits the number of abstractions
(interfaces) that need to be understood, to one.
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A.8.4. Pathological Structure

The pathological structure that characterizes the present design flaw is illustrated in figure
A.23. The names of the classes reflect their roles with respect to the containment relation

+operation1()
+operation2()

-attr1
-attr2

Contained

+operationA()
+operationB()
+operationC()
+operation1()
+operation2()

Container

{
  throw new Exception("not supported");
}

{
  // empty override
}

Figure A.23.: Pathological structure for containment by inheritance

described in the context. The Container extends the Contained class in order to
acquire its implementation. It also inherits the latter’s public interface, which it does not
need/want to support. The methods of this interface may therefore be overridden with
empty methods, and methods that throw a specific exception or otherwise return an error.

Since the inheritance mechanism employed in the pathological structure corresponds
to a white-box reuse of the contained class’ implementation, the pathological structure
stands in clear contradiction to the imperatives defined above. As already mentioned in
the description, certain languages (such as C++) define private and protected inheritance,
which facilitate implementation inheritance without publishing the base class interface.
According to [Rie96] however, these represent warped forms of containment that may
produce confusion, are harder to maintain, and should therefore be avoided.

A.8.5. Reference Structure

As illustrated in figure A.24, inheritance is replaced by composition. This represents the
most natural way of expressing the containment relation between a class that wants to
use already implemented behavior, and the class that provides the wanted behavior.
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+operation1()
+operation2()

-attr1
-attr2

Contained

+operationA()
+operationB()
+operationC()

-containee : Contained
Container

-containee

1

Figure A.24.: Reference structure for containment by inheritance

A.8.6. Diagnosis Strategy

Search space
All pairs of classes.

Initial filter
Classes must be related through a direct inheritance relation.

Indicators
Indicator 1: The derived class is a “tradition breaker” in the sense that it adds a sig-
nificant amount of new methods, or it extends several supertypes.

Indicator 2: The presence of “refused bequest” (interface form) [Fow99] in at least
one method that is part of the inherited public interface of the base class. There are
two possible scenarios. In the first one, the derived class employs private or protected
inheritance. In the second scenario, the derived class employs public inheritance but
overrides the inherited public interface with methods that are either empty, are lim-
ited to throwing exceptions, or returning an error code.

Indicator 3: The base class stores library code. We have the following two possibil-
ities: either it is intended as a library for arbitrary classes, or the subclass uses it as
such. In the first case, the base class is large and complex, yet has a very low internal
cohesion. In the second case, the superclass is not simple (i.e. it has a certain minimal
size and complexity), yet the subclass does not override any of the inherited services.

Context matching
Question 1: It must be confirmed that the two classes represent valid abstractions in
the design of the system.

Question 2: It must be confirmed that the inheritance relation between the two
classes does not represent a valid specialization (“kind of” relation).

Question 3: It must be confirmed that from the viewpoint of the class’ users, the logi-
cal relation between the two abstractions is a “uses”-type relation, which can be mod-
eled through containment.
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Question 4: It must be confirmed that changes in the original class, or any other
maintenance activities that would require an understanding of the design fragment
involving the two classes, are expected to happen in the future.

A.8.7. Reorganization Strategy

1: Let B be the subclass playing the role of the container class.
2: if B only uses part of the superclass’ functionality then
3: Apply refactoring “extract class” [Fow99] on the needed functionality needed by B .

Let this new class be A
4: else
5: Let A be the superclass, or the class extracted from it that plays the role of the con-

tained class, and
6: end if
7: If A is abstract and B is concrete, create an implementation class as a subtype of A,

by extracting all implementations of abstract methods from B into the newly created
subtype [Fow99]

8: Replace the inheritance relation between A and B with composition.
9: if B had subclasses that were overriding methods in A, or A had behavior specific to

subtypes of B then
10: Create corresponding subtypes of A, containing the overridden versions of the

methods or type specific behavior, in accordance with the design pattern “bridge”
[GHJV96]

11: Create factory methods that allow clients to instantiate the desired class combina-
tion

12: else
13: Implement the instantiation of A or its concrete implementation in B ’s constructor
14: end if
15: Adapt the visibility of attributes and methods in A and its subtypes, to provide needed

services to B
16: If the objects of A are and are expected to remain stateless, turn the class into a “sin-

gleton” [GHJV96]
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A.9. Premature Interface Abstraction

A.9.1. Description

Data, behavior and interface should be defined at the proper level in any inheritance hi-
erarchy. There are two possible ways of going wrong. In the first scenario, some of the
data, behavior and/or interface may be defined too low in the hierarchy. In other words,
we have commonality that has not been recognized as such, and the result is duplica-
tion. Riel tells us to “factor the commonality of data, behavior, and/or interface as high as
possible in the inheritance hierarchy” [Rie96]. In the second scenario, commonality is de-
fined too high, which may result in its rejection in some of the members of the hierarchy.
Of course, throughout the life cycle of a non trivial system, it may happen that a hierarchy
starts off well designed, but “evolves” into one of the two cases, and consequently needs
to be restructured.

The design flaw “premature interface abstraction” corresponds to the second scenario, in
which a piece of the public interface (i.e. a method) is defined too high in the inheritance
hierarchy, as illustrated by the example in figure A.25, and are consequently rejected (i.e.
“refused bequest”, [Fow99]) by some of the concrete specializations.

+eat()
+drink()
+fly()

-weight
Bird

+fly()

PenguinParrotEagle

{
  throw new BirdException("Cannot fly");
}

Figure A.25.: An example of premature interface abstraction

Suppose our design originally contained the superclass Bird, and the two subclasses
Eagle and Parrot. By using the principles and heuristics of object orientation, the
common interface containing eat(), drink() and fly(), has been factored in the
base class. At a later time, the class Penguin was added. Since penguins are a special
kind of birds, the class belongs at the bottom of the hierarchy. The developer then noticed
that the default implementation of fly() caused unexpected behavior, and he decided
to override this method with one that signals this error, by throwing an exception.
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The design presented above violates the Liskov substitution principle of object oriented
design, which forms the basis for the mechanism of polymorphism. The interface of
Penguin does not reflect what the class actually does, and may therefore confuse its
users. Also, if further non flying birds are added to the hierarchy, the problem expands to
them as well. If the maintainers of the system later decide to change the exception that is
thrown, they must remember to update all affected classes.

A.9.2. Context

Design intent
Given a valid taxonomy expressed using an inheritance hierarchy, you want to
achieve a distribution of interface declarations throughout the types that form the
hierarchy, in a way that naturally reflects the original taxonomy.

Strategic closure
You either expect changes to the type that rejects part of the inherited interface, or
any change that would require the maintainer to understand and use the special-
ization hierarchy.

A.9.3. Imperatives

In order to maximize maintainability in the context described above, the public interfaces
of the classes that form an inheritance hierarchy, should be defined at the proper level in
the inheritance tree. The proper level is the one that guarantees the absence of logical
contradictions between an abstraction’s identity and the characteristics inherited from
its generalizations.

A.9.4. Pathological Structure

As illustrated in figure A.26, a type defines one or more methods that are then rejected by
one or more of its subtypes (pictured in gray). Starting from each rejecting type, we can
form a subtree whose root type is a subtype of the abstraction that defines the rejected in-
terface. These subtrees are encircled in the figure. The first one contains an abstract class
and two concrete classes, which both reject the interface formed by operation2() and
operation3(), defined by Abstraction. The two rejecters are grayed. The sec-
ond subtree is formed by its root alone, the class Concrete4, which also rejects the two
methods. Class Concrete3 doesn’t reject the inherited methods.

At this point, we must impose a restriction: all concrete types (i.e. types that can be in-
stantiated) that are part of the subtrees formed as described above, must reject the in-
terface. Why do we need this restriction? Because if we allowed concrete classes in two
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+operation1()
+operation2()
+operation3()

Abstraction

+operation2()
+operation3()

Concrete4Concrete3Abstract1

+operation2()
+operation3()

Concrete2

{
  throw new Exception(not supported!);
}

+operation2()
+operation3()

Concrete1

Figure A.26.: Pathological structure for premature interface abstraction

or more subtrees to not reject the interface, it would mean that the interface represents
optional responsibilities, that some of the subtypes may or may not support. These op-
tional responsibilities are therefore not semantically tied to the core responsibilities of
Abstraction. For example, if the taxonomy referred to birds, as in figure A.25, then
a rejected interface dealing with object serialization would obviously not be logically re-
lated to the concept of a bird. This situation would warrant the extraction of the corre-
sponding method declarations into a separate dedicated interface for serialization, which
could then be implemented only by those classes that need it. But this scenario is not
within the scope of the present design flaw, hence the restriction.

The rejection of an inherited interface fragment in a type, signals a logical contradic-
tion between the type’s identity and the characteristics inherited from its generalizations,
which has a negative effect on the maintainability of the design.
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A.9.5. Reference Structure

The reference structure is depicted in figure A.27. Please note that the rejected inter-
face, formed by methods operation2() and operation3(), has been pushed fur-
ther down in the hierarchy. If we only had one “adopting” subtree, we could have simply

+operation1()

Abstraction

Concrete4

Concrete3

Abstract1

Concrete2Concrete1

+operation2()
+operation3()

AbstractionWithOp2and3

Figure A.27.: Reference structure for premature interface abstraction

moved the declarations into the root of this subtree. The figure however shows the general
situation, in which a new type (AbstractionWithOp2and3) is defined.

A.9.6. Diagnosis Strategy

Search space
All types defined in the system.

Initial filter
The type must have at least two direct subtypes, and must declare an interface (i.e.
one or more methods) that is rejected by at least one of its direct or indirect sub-
types, which may either be an abstract or a concrete type. Rejection is indicated by
the presence of “refused bequest” (interface form) [Fow99] in all the methods that
form the inherited public interface, by overriding the inherited interface with meth-
ods that are either empty, are limited to throwing exceptions, or returning an error
code. Every rejecting type determines a subtree whose root node is a direct subtype
of the initial type.
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Indicators
Indicator 1: All concrete classes contained in all of the subtrees described above, re-
ject the interface, either explicitly, or implicitly, by inheriting such overridden meth-
ods from an abstract superclass.

Context matching
Question 1: It must be confirmed that the inheritance hierarchy represents a valid
taxonomy in the application’s design.

Question 2: It must be confirmed that the rejection of the interface is semantically
justified for those subtrees that reject it, and that the interface is meaningful for the
adopting subtrees.

Question 3: It must be confirmed that changes to the type that rejects part of the
inherited interface, or any change that would require the maintainer to understand
and use the specialization hierarchy, are expected to happen in the future.

A.9.7. Reorganization Strategy

1: Let C be the class defining the rejected interface I
2: if I is adopted by two or more subtrees determined as described above then
3: Create an intermediary type T , as a direct subtype of C . T can be either an interface

or an abstract class, as appropriate.
4: Make all adopting subtrees inherit from T
5: Apply refactoring “push down method” [Fow99] on the methods composing I to

move them into T
6: else
7: Apply refactoring “push down method” [Fow99] on the methods composing I to

move them into the root of the adopting subtree
8: end if
9: Remove the methods corresponding to I in all rejecting types
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A.10. Collapsed Method Hierarchy

A.10.1. Description

Data, behavior and interface should be defined at the proper level in any inheritance hi-
erarchy. One possible mistake is to define some of the data, behavior and/or interface
too low in the hierarchy. This results in commonality that has not been recognized as
such, and is therefore duplicated in the nodes of the hierarchy. Riel tells us to “factor the
commonality of data, behavior, and/or interface as high as possible in the inheritance
hierarchy” [Rie96].

The other possibility is to define the commonality too high in the inheritance tree. In sec-
tion A.9 of this catalog, we described a flaw that captures the case of prematurely defined
interfaces.

The design flaw “collapsed method hierarchy” deals with a similar kind of problem, but
regarding behavior (i.e. parts of a method hierarchy’s implementation). As in the case of
interfaces, this flaw is not always the result of poor initial design, but sometimes of the
system’s evolutionary history. Figure A.28 presents us with an example instance of the
“collapsed method hierarchy” design flaw, in a hypothetical logical expression evaluator.

+eval()
+preorderPrint()

-leftChildNode
-rightChildNode

LogicalExpressionNode

+eval()

AndNode

+eval()

OrNode

+eval()

NotNod

+eval()

XorNod

if (this.instanceof(OperandNode)) {
  print(eval());
} else {
  print(operatorSymbol);
  if (!this.instanceof(NotNode))  leftChildNode.preorderPrint();
  rightChildNode.preorderPrint();
}

+eval()

OperandNode

1

1

Figure A.28.: An example of collapsed method hierarchy

In the example, logical expressions are modeled as trees, that consist of
LogicalExpressionNodes. Each node may have two, one or no child nodes,
in case they represent a binary operator, unary operator or operand, respectively. The
hierarchy’s root defines an abstract eval() method, which is implemented in each
specialized node, according to its particularities. Developers then decide to add the
preorderPrint() operation. Since the implementation of this operation would be
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identical for most of the concrete node types, the developer chooses to implement it
once, in the superclass, treating the two exceptional cases explicitly. By doing that, he
pulls specific behavior up into higher levels of the hierarchy.

“Collapsed method hierarchies” have a negative influence on maintainability because
they concentrate specialized behavior from potentially several subclasses in the super-
class implementation, making the operation harder to understand and change. In addi-
tion, the superclass becomes dependent on its subtypes. Thus, changes to the lower levels
of the hierarchy may require changing methods in the superclass as well.

A.10.2. Context

Design intent
Given a semantically valid specialization hierarchy, modeled as an inheritance hier-
archy, you want to distribute behavior (implementation) throughout the types that
form the hierarchy, in a way that naturally reflects each type’s responsibilities.

Strategic closure
You expect changes to occur that would require the maintainer to understand or
modify the superclass or its subclasses.

A.10.3. Imperatives

In order to maximize maintainability, the distribution of behavior (i.e. implementation)
among the classes that form a specialization hierarchy, should be in accordance with the
specialization relationships between these classes. In other words, a class should not im-
plement behavior that falls within the responsibilities of one or more of its descendants. A
class should only contain code that realizes behavior that is common to all its subclasses.
A superclass should not be dependent in any way on any of its subclasses [Rie96].

A.10.4. Pathological Structure

As depicted in figure A.29, the pathological structure is characterized by the fact that a su-
perclass contains code that is specific to one or more of its direct or indirect subclasses. In
order to guarantee that such code is only executed for the right subtype, the implementa-
tion contains explicit checks on the object’s type, by using a reflection mechanism, as in
the case of method operation3().

The structure depicted in the figure is in contradiction with the imperatives stated above,
because the more general abstraction contains code that is not common for all its sub-
classes. In order to do that, it must “know” at least some of its subtypes, therefore intro-
ducing an unwanted downward dependency (i.e. from general to special).
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+operation1()
+operation2()
+operation3()

Abstraction

+operation1()
+operation2()

Specialization1

+operation1()
+operation2()

Specialization2

+operation1()
+operation2()

Specialization3

...
if (this.instanceof(Specialization3)) {
  // type specific stuff
  ...
} else if (this.instanceof(Specialization4)) {
  // type specific stuff
  ...
}
...

+operation1()
+operation2()

Specialization4

Figure A.29.: Pathological structure for collapsed method hierarchy

A.10.5. Reference Structure

The reference structure is illustrated in figure A.30. The explicit checks have been re-
placed with a call to a hook method, as described by the “template method” design pat-
tern [GHJV96]. Those subclasses that need special treatment override the hook methods
as desired. Thus, type specific behavior is moved from the superclass to the appropriate
specializations in the hierarchy.

A.10.6. Diagnosis Strategy

Search space
All classes in the system.

Initial filter
The class must have at least one descendant. In addition, it contains at least one
conditional statement that uses runtime type identification in order to check the
self object’s type, comparing it against the type of one of its descendants.

Indicators
Context matching

Question 1: It must be confirmed that the supertype and the subtypes it depends on
represent valid abstractions in the design of the system, and that the inheritance re-
lations that link them represent valid specializations.
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+operation1()
+operation2()
+operation3()
+hook3()

Abstraction

+operation1()
+operation2()

Specialization1

+operation1()
+operation2()

Specialization2

+operation1()
+operation2()
+hook3()

Specialization3

// coomon stuff
...

hook3();
...

+operation1()
+operation2()
+hook3()

Specialization4

{
}

Figure A.30.: Reference structure for collapsed method hierarchy

Question 2: It must be confirmed that changes that would require the maintainer to
understand or modify the superclass or its subclasses are expected to happen in the
future.

A.10.7. Reorganization Strategy

1: Let C be the class containing conditional constructs identified by I1
2: for all methods mi in C , that contain the conditional constructs identified by I1 do
3: Let S be the set of subclasses that mi depends on
4: Remove those classes si from S, that override mi without calling the superclass ver-

sion
5: for all conditional structures in mi do
6: Create an empty hook method in C , in accordance with the design pattern “ tem-

plate method” [GHJV96]
7: Move type-specific behavior from the current conditional structure into the cor-

responding overrides of the default hook method, in the respective subtypes in
S

8: If the type-specific behavior from mi calls other methods in S, check to see if
those methods can be also moved into the subtype

9: Replace current conditional structure in mi with a call to the current default hook
method
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10: end for
11: end for
12: If default hooks are not meaningful for some of the subtypes, define an intermediate

level in the hierarchy, in order to group together those specializations that do not need
special treatment under a common supertype. The same can be done with those that
need it.
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