
 i

Dissertation, genehmigt von der Fakultät für Wirtschaftswissenschaften der Universität
Fridericiana zu Karlsruhe, 2008

Model-Driven Management of Internal
Controls for Business Process Compliance

Dipl.-Inform. Kioumars Namiri

Referent: Prof. Dr. Rudi Studer
Koreferent: Prof. Dr. Günter Müller

2008 Karlsruhe

 ii

 iii

Zusammenfassung

Internationale, EU-weite und nationale Gesetze fordern die Realisierung von effektiven
internen Kontrollsystemen in Unternehmen. Eines der Hauptziele der internen Kontrollen ist die
Vermeidung von Risiken, die aus den operativen Geschäftsprozessen eines Unternehmens
erwachsen, um u.a. vertrauenswürdige Bilanzabschlüsse zu erreichen.

In dieser Dissertation werden Vorgehensweisen basierend auf Modellen von internen
Kontrollen und Geschäftsprozessen vorgestellt, die zu einer Reduzierung der Aufwände zur
Sicherstellung der Geschäftsprozesscompliance beitragen. Dies wird durch eine höhere
Anpassbarkeit, Wiederverwendbarkeit und Benutzbarkeit von internen Kontrollen erreicht. Mit
Anpassbarkeit wird das Bedürfnis adressiert, schnell und unkompliziert neue bzw. modifizierte
Kontrollen für Geschäftsprozesse zu modellieren. Wiederverwendbarkeit adressiert die
Möglichkeit, die Kontrollen auf einem hohen Abstraktionslevel zu beschreiben, damit sie in
verschiedenen fachlichen Kontexten wieder verwendet werden können. Benutzbarkeit verlangt
ein minimales technisches Know-How für die Modellierung und Anwendung der internen
Kontrollen in Geschäftsprozessen.

Es wird eine Abstraktionsschicht über die Geschäftsprozesse und ihren Managementaktivitäten
beschrieben, in der die notwendigen Kontrollen formal modelliert und gegen die laufenden
Ausführungsinstanzen eines Prozesses überprüft werden. Der Ansatz dieser Dissertation ist
regelbasiert und modell-getriebenen, der auf der konzeptionellen Trennung des Entwurfs von
internen Kontrollen und Geschäftsprozessen basiert. Die Wirksamkeit der Kontrollen wird dann
durch eine enge Integration von internen Kontrollen und Geschäftsprozessen zu ihrer
Ausführungszeit erreicht. Der Benutzbarkeit des Modellierungsansatzes wird durch eine
musterbasierte Vorgehensweise unterstützt.

 iv

 v

Abstract

This thesis tackles the problem of high costs and effort for achieving the compliance of
business processes to regulations in the area of Enterprise Risk Management (ERM). Common to
these regulations are requirements on the presence of effective internal controls in companies.
The current shortcomings faced by companies in this respect are the low level of automation with
regard to translating compliance requirements into a set of internal controls and assuring the
effectiveness of these controls during the execution of business processes. The high cost of
business process compliance is due to the fact that in many organizations a large number of the
steps in designing and testing controls on business processes are still manually executed.

In order to overcome the above challenges this thesis develops an abstraction layer above
business processes. This layer is responsible for ensuring business process compliance. In this
layer the controls are formally modeled and evaluated against existing process models and their
execution instances. The thesis describes a novel, model-driven approach for the automation of
business process compliance through monitoring the effectiveness of controls. This is enabled
through the conceptual separation of the design of controls and business processes at a model-
level, and a tight integration of controls in the business process instances at the execution-level.
In order to address the usability of the models and the approach, this thesis advocates the use of
control patterns in the abstraction layer responsible for business process compliance. The control
patterns should give compliance experts and business process experts the ability to specify and
design their compliance requirements accordingly. These control patterns are then mapped to
formal models that are used by technical experts to implement the control patterns in business
processes.

To complement this abstraction layer which uses models of the entities involved in business
process compliance, a verification and validation approach is presented: The verification of
business process models assures that business processes be built in a compliant manner as
required in a formal specification. The validation assures the compliant behavior of business
process executions, i.e. the business processes work as described in the formal model of controls.

 vi

 vii

Acknowledgements

Many people contributed to the work presented in this thesis. First of all, I would like to thank
Prof. Dr. Rudi Studer for giving me the opportunity to do this research and for his support
throughout this thesis.

In addition, I would like to thank my co-advisor, Prof. Dr. Günther Müller at University
Freiburg. In addition to his precious scientific advice, he gave me great self-confidence in my
work.

I am especially grateful to my supervisor at FZI, Nenad Stojanovic, who greatly encouraged
my work and gave me very helpful support throughout my completion of this thesis.

The fruitful discussions with Shazia Sadiq from the University of Queensland during her visit
at SAP Research in Karlsruhe sharpened many of my ideas. From SAP Research in Karlsruhe, I
would like to especially thank Elmar Dorner, who told me best which steps to take in order to
complete a PhD thesis. From SAP Research in Karlsruhe, I would like to further thank Rainer
Ruggaber, Ulrike Greiner, Orestis Terzidis, Michael Altenhofen, Daniel Oberle, Norman May,
Susan Marie Thomas, Zoltan Nochta, Jens Lemcke, Christian Drumm, Matthias Born and Olaf
Grebner for their scientific support. From the SAP team in St. Leon Rot I would like to thank
Günther Liebich, who gave me the opportunity to verify my research results in the context of
SAP Financials product lines. The master students Maurice Kügler, Javit Gellaw and Rene
Fitterer at SAP Research contributed to my work, especially during the implementations in the
context of ATHENA and ICCOMP projects.

 I am much obliged to Souni Breil, Susan Marie Thomas and Asma Alazeib, who proof-read
the English of my thesis.

Above all, I thank my family and friends. I could have not completed this thesis without all
their encouragement and confidence.

Kioumars Namiri

 viii

 ix

Table of Contents

1 Introduction ……………………………………………………………… 2
1.1 Motivation 2
1.2 The Challenge of Business Process Compliance for Standard Software

Providers and their Customers 4
1.3 Research Questions and Contributions 5
1.4 Readers Guide 6

2 Scenario …………………………………………………………………... 10
2.1 Purchase-To-Pay Business Process Model 10
2.1.1 Purchase Request Processing 11
2.1.2 Purchase Order Processing 13
2.1.3 Goods Receipt Processing 14
2.1.4 Supplier Invoice Processing 15
2.1.5 Payment Processing 15
2.2 Use Case 1 – Internal Controls Compliance Requirements of

CustomerA on P2P 16
2.2.1 Identification of Relevant Accounts 16
2.2.2Identification of Relevant Business Processes 17
2.2.3 Control Identification 17
2.2.4 Control Effectiveness (As-Is-Situation) 18
2.2.5 Control Test, Assessment and Correction 19
2.3 Use Case 2 – Internal Controls Compliance Requirements of

CustomerB on P2P 21
2.3.1 Identification of relevant accounts 21
2.3.2 Identification of relevant Business Processes 22
2.3.3 Control Identification 22
2.3.4 Control Effectiveness (As-Is-Situation) 23
2.3.5 Control Test, Assessment and Correction 25
2.4 Discussion and Elicitation of the Challenges 27
2.4.1 Identifying significant Accounts, Risks and relevant Processes 27
2.4.2 Serving enterprise-specific business process variants 28
2.4.3 Business Objectives vs. Control Objectives 28
2.4.4 Identification and Design of the Controls 29
2.4.5 Maintenance of Compliance 30
2.4.6 Heterogeneity and Gap between roles involved 31
2.5 Conclusion 31

3 Basic Concepts …………………………………………………………… 34
3.1 Internal Controls 34
3.1.1 Roles and their Responsibilities in Internal Controls Compliance 36
3.1.2 COSO - A Framework for Internal Controls 37
3.1.3 Relations between Internal Controls and Regulatory Compliance Requirements 41
3.2 Business Process Management 44
3.2.1 Business Process Analysis 44
3.2.2 Business Process Design 44
3.2.3 Business Process Implementation 45
3.2.4 Business Process Execution 45

 x

3.2.5 Business Process Monitoring 45
3.2.6 Business Process Mining 45
3.2.7 Business Process Verification 46
3.2.8 Business Process Validation 46
3.3 Interrelationship between Business Process Management and

Internal Controls Compliance 46
3.4 Conclusion 50

4 Domain Model for Business Process Compliance …………………………. 52
4.1 Formal Definition of Business Process Compliance 53
4.1.2 Scenario Revisited 54
4.1.2 Selected Method for supporting the relation controls 57
4.2 Controlled Entities in Business Processes 59
4.2.1 First Class Entities in Business Processes 59
4.2.2 Business Process Definition 61
4.3 Related Work 78
4.3.1 On Risk Management for Business Processes 78
4.3.2 On Modeling the Behavior in Business Processes 80
4.3.3 On the RBAC and Business Processes 83
4.4 Conclusion 83

5 Business Process Verification ………………………………………………. 86
5.1 Basics 87
5.1.1 Introduction to Cross Organizational Business Processes 87
5.1.2 Ontologies in Web Ontology Language (OWL) 90
5.1.3 SWRL – A Semantic Web Rule Language 91
5.1.4 KAON2 92
5.2 Approach for Business Process Verification 93
5.2.1 CBP Ontology 94
5.2.2 Expressing Business Level Correctness Requirements 96
5.3 Overall Architecture and Implementation 98
5.4 Related Work 99
5.4.1 On the Application of the Approach in the context of an internal SAP project 99
5.4.2 On Model checking of business processes 100
5.5 Conclusion 101

6 Control Model for Business Process Compliance …………………………. 103
6.1 Control State Model 103
6.2 Control Model 106
6.2.1 Designing the Triggering Event of a Control 107
6.2.2 Specification of Control Conditions 110
6.2.3 Recovery Actions of Controls 111
6.2.4 Specification of a Control for a Business Process 115
6.3 Related Work 116
6.3.1 On System Specification Properties 116
6.3.2 On Exception Handling in Business Processes 116
6.4 Conclusion 118

 xi

7 Pattern-Based Design of Controls in Business Processes …………………. 120
7.1 Motivation for Using a Pattern-Based Approach for Control Design 120
7.2 Analysis and the Structure of a Control Pattern in

Business Process Compliance 121
7.3 Control Pattern Formalization 125
7.4 Control Pattern Repository 126
7.5 Control Pattern Instantiation 133
7.6 Conclusion 135

8 Compliance Validation of Business Process Executions ………………….. 137
8.1 Introduction 137
8.2 Foundations 138
8.2.1 Introduction to Business Rules 138
8.2.2 Production Rules 139
8.2.3 Tool Environment 143
8.3 Overall Approach 149
8.3.1 Compliance Design Phase 149
8.3.2 BPD Adaptation Phase 150
8.3.3 Compliance Enforcement Phase 154
8.4 Implementation 157
8.4.1 Requirements for the Realization of ICR 158
8.4.2 Realization of the Business Process Model Adaptation phase of the approach 165
8.4.3 Integration of Business Process Instances with ICR-Execution 169
8.5 Related Work 173
8.5.1 On Adaptive Workflows 173
8.5.2 On Industrial Solutions 174
8.5.3 Application of Formal Ontologies for Business Process Compliance Automation 177
8.6 Conclusion 181

9 Assessment ……………………………………………………………...…… 183
9.1 Complexity 184
9.1.1 Modeling Complexity 184
9.1.2 Execution Complexity 187
9.2 Completeness Assessment of Control Model 191
9.3 Summary 193

10 Conclusion and Outlook …………………………………………………... 196
10.1 Summary of Contributions 196
10.2 Future Work 199

References ……………………………………………………………………… 202

 xii

 xiii

List of Figures
Figure 1 Overview of thesis ... 7

Figure 2 Purchase Request processing as a sub-process of Purchase-To-Pay-Business Process
 .. 11

Figure 3 Purchase Order processing as a sub-process of Purchase-To-Pay Business Process .. 14

Figure 4 Goods Receipt processing as a sub-process of Purchase-To-Pay Business Process 14

Figure 5 Overview of business documents involved in Purchase-To-Pay Business Process 16

Figure 6 CustomerA’s variant of Purchase Request Processing containing RfQ-sub-process .. 21

Figure 7 CutsomerB’s variant of Purchase Request Processing containing a separate unit PC
and two employees PC1 and PC2 .. 23

Figure 8 CustomerB’s variant of Purchase Order Processing with the purpose of implementing
control CB2 (SoD on PO creation and Approvals) .. 24

Figure 9 CustomerB’s variant of Goods Receipt Processing after the implementation of the 3-
Way-Match Control .. 25

Figure 10 The position of preventive and detective controls in business processes 49

Figure 11 The involved entities and their relationships in business process compliance 53

Figure 12 Example of Relation isRelevant in case of CutsomerA ... 55
Figure 13 Function controls and relation effectivityRequires in case of CustomerA 55

Figure 14 Relation interdepends for CustomerA ... 56

Figure 15 Relation isAssigned: Risks that are identified in the Procurement of CustomerA and
CustomerB .. 56

Figure 16 Relation mitigates in case of CustomerA and CustomerB ... 57
Figure 17 Compliance expert identifies and provides a set of controls 58
Figure 18 Selected Method: Verification and Validation of Business Processes 59

Figure 19 Business Process Definition (UML Notation) ... 61
Figure 20 Controlled Entities ... 63

Figure 21 Visualization of the business process definition for Goods Receipt Processing 64

Figure 22 Model of Business Document, Activity and Transition (UML Notation) 65

Figure 23 An excerpt of state model for purchase order business document (PO) 66

Figure 24 An instantiation of business document type purchase order 68
Figure 25 Example of a Business Document Repository (R) and its instance(RI) 69

Figure 26 Two Examples for Transitions (trs and trs’) in the Purchasing Business Process 73

Figure 27 Entities related to Business Process Instance ... 74
Figure 28 RBAC4BPD: Role-Based Access to Activities and Business Documents in Business

Process Definition .. 77

Figure 29 A taxonomy of enterprise risks [ERM06] ... 78
Figure 30 KAON2 – Rule Object ... 92
Figure 31 Conceptual steps for Business Process Verification .. 93
Figure 32 Sequence of process modeling including a verification step 94
Figure 33 Taxonomy of CBP Model Ontology .. 94
Figure 34 Main classes and properties of the CBP ontology ... 96
Figure 35 Business process modeling sequence including expressing business level

requirements ... 97

Figure 36 Add rule dialog... 97

Figure 37 Structure of the Add Rule Dialog .. 98
Figure 38 Overview Architecture of the Business Process Verification Approach 98

Figure 39 Ontological Knowledge base ... 99
Figure 40 Two different shipping process variant .. 100

 xiv

Figure 41 Visualization of a Control State Model according to Definition 4.5 104

Figure 42 High level overview of Control model .. 106
Figure 43 Role-Based Recovery Action Modeling exemplified .. 113
Figure 44 Control Pattern Repository... 122
Figure 45 From a Control Pattern to its technical implementation in a system 123

Figure 46 Application of PSP for SSE ... 127
Figure 47 Illsutration of PSPs for Inter-Report-Comparison ... 130
Figure 48 Rule Base, Rule Engine and Working Memory of Production Rule Systems 140

Figure 49 A business document instance in a business process instance and its shadow in a
working memory .. 142

Figure 50 Sequence of steps in phase 1: Compliance Design Phase .. 150
Figure 51 BPD Adaptation for Recovery Action model Retry & Notify & Instantiate 152

Figure 52 Overview of the interactions between roles and ICR-Design 154

Figure 53 Required functional blocks during the compliance enforcement phase 154

Figure 54 Interaction between a business process instance repository and ICR-Execution 155

Figure 55 Interaction of a business process instance with a control (ICR-Execution) 156

Figure 56 Possible Interactions (A and B) between BPRI (managed by BP Execution Engine)
and ICR-Execution ... 159

Figure 57 Example of Interactions A: Rule Engine adds/updates facts in ICR-Execution 159

Figure 58 Sequence diagram showing an update to ICR-Execution from a business process
instance bpi ... 161

Figure 59 Querying data from external systems by ICR-Execution .. 163

Figure 60 Querying an external Backend System (X) by a production-rule-based ICR-
Execution .. 165

Figure 61 Application of BP Model Adaptation on a jPDL process .. 167

Figure 62 Sequence of interactions between components involved in compliance enforcement
phase ... 172

Figure 63 General Architecture of Business Rule Engines .. 175
Figure 64 Interplay of ARIS tools for achieving business process compliance 177

Figure 65 Possible role of legal and business ontologies in business process compliance 179

Figure 66 Different set of required concepts for identical regulations resulting in two different
ontologies ... 180

Figure 67 Full set of possible additional steps required in compliance validation 188

Figure 68 Performance of Ilog Rule Execution [JRULES] ... 190

 xv

 1

 2

1 Introduction

1.1 Motivation

Compliance has become a major topic in today’s business world. The term compliance became
popular in recent years with the advent of regulations such as the Sarbanes Oxley Act (SOX)
[SOX02] filed in 2002. The SOX came as a response to a number of incidents of corporate
accounting fraud and theft of consumers' personal data. Companies within the jurisdiction of the
SOX must frequently adapt their operations to relevant regulations and periodically demonstrate
compliance by submitting reports to audits. Non-compliance to current regulations such as the
SOX can lead to large penalties (e.g. increased fines and the possibility of imprisonment), which
has significantly increased the expected cost of non-compliance. It may be for this reason that
Forrester Research projects that the compliance software market will expand to $1.3 billion by
2011 [Rasmussen, 2006].

Gartner Research gives a general definition of the term compliance [Bace et al., 2006]:
“Compliance is the process of adherence to policies and decisions”. Gartner further categorizes
different types of compliance requirements according to their sources. These sources are
regulatory compliance, commercial compliance or organizational compliance. Regulatory
compliance is concerned with laws that a business must obey, or else risks legal sanctions up to
and including prison for its officers. Commercial compliance requires that a company adheres to
a set of rules and policies in the course of its business with trading partners and customers.
Organizational compliance deals with the creation of internal compliance standards within
individual companies.

The source of the regulatory compliance requirements with which this Research is concerned is
Enterprise Risk Management (ERM). The Committee of Sponsoring Organizations (COSO)
defines ERM in [COSO-ERM04] as “the methods and processes used by organizations to manage
risks (or seize opportunities) related to the achievement of their objectives”. Regulations such as
the SOX and Basel II [BaselII08] fall into this category. It is common practice in the area of
ERM regulations to document and implement effective internal controls in the company. The
SOX goes so far as to declare it a management responsibility. Internal controls is defined by
COSO in [COSO92] as a “process designed to provide reasonable assurance regarding the
achievement of objectives in effectiveness and efficiency of operations, reliability of financial
reporting, and compliance with applicable laws and regulations”.

The realization and effectiveness of the internal controls involves different areas of company
structure: Management, internal auditing consultants and compliance experts, external regulation
bodies, business process experts (including system developers and technical consultants) and
employees. Each of these brings a different view to, and plays a different role in the enterprise,
uses different terminology when speaking about the same domain and requires need-specific
system support. This is one of the main reasons why the introduction and operations and in fact
every aspect of internal controls compliance (e.g. SOX 404) is considered to be expensive and
time consuming [Hartman, 2005].

Gartner states in [Bace et al., 2006] that “Most companies realize that compliance is an
ongoing process, not a project.” In order to remain compliant in a sustainable manner, Forrester
recommends involving the following technical areas of a company into the compliance approach
[Rasmussen, 2006]:

 3

� Enterprise Content Management (ECM): A company must be able to categorize, store,

retain, and manage access to its sensitive information. In order to fulfill growing reporting
requirements (e.g. SOX section 409), companies must have access to the right
information rapidly, irrespective of location and format: important data is not always
stored in structured formats such as databases. Most companies are drowning in
unstructured data such as e-mails, word documents and excel files.

� Business Process Management (BPM): BPM is a key technology to compliance from
two perspectives:
i) it helps companies automate, manage and formalize the review and sign-off of

their business processes
ii) it provides a platform for collaboration between the key players involved in

compliance in order to automate the risk and compliance definition processes.
� Enterprise Applications (EA): Business processes rest on the functionality provided by

enterprise applications (such as HR systems, accounting systems etc.).
� Business Intelligence (BI): BI and business analytics provide various views on data in

ECM as well as on the work achieved by BPM and EA.
In this thesis we focus on the relationship between business process management (BPM) and

internal controls. The relationship can be described by the following process [PCAOB04]:
Identify all the significant accounts in the balance sheet of the company. Identify all

relevant business processes that affect those accounts. Define one set of control objectives
for each relevant business process. These control objectives are specific to the enterprise and
must hold true for that particular process. Continuously assess risks for the enterprise by
identifying them for each relevant business process. Design and implement a set of effective
controls in order to prevent or detect the occurrence of identified risks. The design of controls
must be tested and it must be shown that they are used in daily operations as designed.
The application of the relationship between BPM and internal controls as presented in the

process description above is called business process compliance in this thesis.
Ensuring the effectiveness of controls in business process compliance in practice today has a

manual nature. This is because of retrospective reporting nature of compliance, wherein
traditional audits are conducted for “after-the-fact” detection of possible control violations, often
through manual checks conducted by consultants. The ability to increase automation in business
process compliance grants a preventive nature to compliance by detecting possible control
violations in advance during business process executions. This could lead to significant time
savings in the design and achievement of business process compliance and therefore to cost
reductions.

The aim of this thesis is to provide models and methods which will make it possible to achieve
a higher level of automation in business process compliance than that which exists in today’s
business world. Automation is achieved in such a way that compliance has a preventive nature,
i.e. control violations during execution of business processes will be preemptively detected.

 4

1.2 The Challenge of Business Process Compliance fo r Standard
Software Providers and their Customers

Today, most business enterprises do not implement their business processes from scratch.
Instead, they decide to buy pre-built software-solutions from software vendors, where the
business processes are built on top of it. This is especially the case in the area of ERP software.
We call the providers of these kinds of ERP-software in this thesis Standard Software Providers.

The software provided by Standard Software Providers has to be adapted within the customer
companies in order to ensure that the implemented business processes meet the needs and
requirements of the customer. Usually, the same business process types are adapted differently
from company to company in order to funtion within different and changing business
environments. Changing business environments are caused by frequently changing business
practices, by the capabilities of an enterprise and by its partner ecosystem. Companies have to
configure the functions in the purchased software solutions accordingly. This practice is known
as Customizing or Business Configuration. Business configuration is part of every
implementation project for customers who have bought standard software. In [Soffer et al.,
2003] configuration is described as an alignment process of adapting the enterprise IT-system to
the needs of an enterprise.

The requirements dictated by regulations in the area of ERM add another dimension of
complexity to business configuration: the customer must design the internal controls
appropriately during business configuration to assure their effectiveness during daily operations.
An approach which brings a higher level of adaptability , reusability, and usability to the
internal controls compliance process is required. Adaptability is defined as an easy and fast way
to the introduction of new or changed controls on business processes. Reusability refers to the
possibility of describing the controls on a conceptual level in order to abstract them from the
concrete implementation details of specific controls. Usability addresses the need to bridge the
gap between the compliance experts and IT experts.

A further challenge of internal controls compliance is that it must consider business process
executions in addition to business process designs. Actually, in the context of regulatory
requirements such as the SOX, the law requires that the internal controls on different entities in
enterprises be effectively applied during business process executions. This basically means that
enterprises have to prove that their processes and internal controls work as planned in daily
operations. Compliance requirements are tested and certified by external auditors as late as
possible in the management life cycle of a business process, during the runtime phase of the
business process - by checking the system logs or checking the business documents that reflect a
financial transaction (such as a purchasing order). The reason that this approach is selected by
external auditors is that, although state of the art ERP and financial systems contain different
predefined control options, in many situations business level requirements (such as efficiency and
fast business transaction response time) render enterprises unable to activate and configure the
controls (they may even disable an already set control option). A change in the configuration may
result in a company not being notified about the possible violation of a defined internal control,
since the ERP systems do not proactively notify the compliance experts about the changes in
their business configurations. The enterprise runs the risk of becoming non-compliant. Thus an
effective business process compliance approach must consider the execution of business
processes in addition to the the design of controls in business processes.

 5

In order to overcome the above challenges, SAP conducted a project called ICCOMP (Internal
Controls Compliance). Parts of the research which appears in this thesis were a product of this
project. The context of the project was to address the aforementioned challenges in the context of
Enterprise SOA (E-SOA) [Woods et al., 2006]. E-SOA acts as a blueprint for adaptable software
architecture for developing service-oriented, enterprise-scale business solutions. The core of E-
SOA is the notion of an enterprise service. An enterprise service captures business logic that can
be accessed and repeatedly used by the customer to support a particular business process.
Aggregating enterprise services into end-to-end business processes should provide the foundation
for the task of automating enterprise-scale business scenarios.

The goal of the ICCOMP-project is to provide input for a future model-based architecture:

� to enable automated verification and monitoring of the effectiveness of business process’s
compliance according to the internal controls

� to perform the internal controls automatically, based on the current state of parameters
(instances) of a business process

� to enable non-technically oriented auditing experts, through the abstraction layer
introduced on the top of the compliances definition to build compliance based on the
domain model that has to be provided.

1.3 Research Questions and Contributions

The approach selected for achieving the ICCOMP-project goals was based on the following
three research questions:

1. What are the relationships between business processes (design and execution time) and
internal controls?

2. Can internal controls be automated using a model-driven approach?

3. Is the usability given for the compliance experts using the provided models and
approaches?

In order to answer these questions, this thesis imposes an abstraction layer above a business
process, in which the controls are formally modeled and evaluated against existing process
models and instances. It describes a novel, model-driven approach for the automation of internal
controls in an enterprise, based on their conceptual separation from business process management
(BPM). The approach advocates the use of an empirically determined set of control patterns in
the proposed abstraction layer. Here are the main contributions of this thesis:

� Modeling the intersection between business processes and internal controls

In order to capture the relationship between internal controls and business processes in models,
we introduce the notion of controlled entities in business processes. These are modeling entities
that are subjected to business process compliance. In order to do this, we develop a precise model
of business processes for achieving business process compliance and formally model the role of
the controlled entities in a business process. The model and controlled entities and their
relationships to business processes are designed in such a way that they are reusable and
adaptable, which were two key challenges for customers building their business processes on top
of products offered by standard software providers.

 6

� Identification and application of control patterns in business processes
The roles involved in defining business process compliance have to be assigned with a usable

access to developed models in order to define and deploy the necessary controls on business
processes. We have empirically identified a set of frequently defined patterns of controls on
business processes at different enterprises. These patterns provide the basis for the terminology in
which the compliance experts communicate about the business process compliance domain. A
formal model of these patterns is developed and their relationship to the controlled entities is
captured. This way a compliance expert can comfortably define controls in a pattern-based
manner without necessitating any detailed understanding of the models provided in the first
contribution, which satisfies the requirement of usability of a model-driven approach for business
process compliance.

� Preventive nature of business process compliance in daily operations

A strict model-driven design of controls simplifies achieving business process compliance
because it provides better support for realizing compliance in a preventive manner. The
conditions that represent a control violation can be formally captured in controls by defining their
relationships to controlled entities in a business process. The approach provided by this thesis
detects a control violation during business process executions, even if a business process
expert/technical consultant removes the control from the process, because he or she is unaware of
the necessity of that control. The described approach (building on top of the models of the
controls and the controlled entities) enables dynamical application of the controls during the
execution phase of a business process. This is possible because there is a minimum overlap
between business process design and compliance design, which supports the requirement of
reusability and adaptability of the entities involved in business process compliance.

1.4 Readers Guide

The stucture of the thesis (see Figure 1):
Chapter 2 (Scenario) sets out the challenges of business process compliance in the case of a

purchasing process. We describe how two different customers derive, define and realize their
internal controls requirements on the purchasing process provided by a standard software
provider. Based on the scenario description, a set of requirements for business process
compliance are elicited and discussed.

 Chapter 3 (Basic Concepts) introduces the concept of internal controls compliance and
business process management. Another core objective of this chapter is to analyze several
regulatory compliance requirements in the area of ERM and to work out their relationship to
internal controls. This way a method is developed to build a holistic view on compliance
achievement for regulations in the area of ERM by providing novel solutions to their overlapping
parts. It is in this chapter that the relationship between business process management and internal
controls is established.

Chapter 4 (Domain Model for Business Process Compliance) formally describes the model of
business process compliance by identifying the first class entities involved in its definition. Based
on the relationship between internal controls and business process management established in the
previous chapter, the “verification and validation” approach is proposed for the domain of
business process compliance. Verification aims to assure the correct business level design of
business process models, whereas the aim of validation is to ensure that business processes work
as required by controls during their executions. After this, we concentrate on developing the

 7

model of controlled entities in a business process by providing a model of business processes and
the relationship between controlled entities in this model. These modeling entities serve as the
underlying conceptual framework for the design of controls in business processes, the verification
of business process models and the validation of the compliant executions of business processes
in later chapters.

Chapter 5 (Business Process Verification) covers the verification-part of the “verification and
validation”- approach that was proposed in the previous chapter. It describes a novel verification
approach to business process models. A set of business level constraints using the semantic web
rule language (SWRL) are then built on top of the ontological representation of business process
models in OWL-DL. The process model is then verified by checking the SWRL-expressions on
the ontological representation of business process models using reasoning techniques. The
implementation of the verification approach is described in detail.

Chapter 6 (Control Model for Business Process Compliance) provides a formal model of an
internal control by capturing its relationship to controlled entities in a business process model (as
described in chapter 4).

Chapter 7 (Pattern Based Design of Controls in Business Processes) presents a set of control
patterns built on top of the control model presented in the previous chapter. It further provides an
instantiation mechanism for the control patterns into a control that can be designed in a business
process. The objective of the pattern based approach for the design of controls is to simplify the
compliance design and consequently improve the usability of the approach.

Chapter 8 (Compliance Validation of Business Process Executions) describes the approach for
automatic detection of control violations in the course of business process executions. The
approach spans three phases and makes extensive use of the models provided in chapter 4 and 6.
The implementation of the validation approach is described in detail. There follows a detailed
discussion on related work including current available commercial software products.

Chapter 9 (Assessment) assesses the complexity and completeness of the modeling approach
and its application during the execution phase of business processes (Compliance Validation).

Chapter 10 (Conclusions and Future Research) concludes this thesis.

Figure 1 Overview of thesis

 8

Some parts of this thesis are based on the following conference and workshop publications:
[Namiri et al., 2008], [Namiri et al. 2007a], [Namiri et al., 2007b], [Namiri et al., 2007c]
[Sadiq et al., 2007] and [Namiri et al., 2007d].

The following remarks must be taken under consideration: The formalization of the models in this thesis is written as tuples. In
the formalization, a Set is written in capital letters, elements in a set are written in lower case letters, and relations between the
sets are always in “verb”-form and written in lower case letters. Technical terms are written in cursive when used for the first
time. The terms control and internal control are equivalently used in this thesis. Related work is discussed at the end of each
chapter.

 9

 10

2 Scenario
We now introduce a scenario in order to expain the motivations behind, and illustrate the

contributions of, this thesis. The scenario serves as the basis for understanding the problem space
of internal controls compliance in enterprises. It is this scenario that will serve to exemplify the
problem descriptions and the provided solutions.

The scenario is a storyboard with the following roles:
� A standard software provider called EAVendor. The enterprise applications provided by

EAVendor are generic, which can be configured to end-to-end business processes
according to the EAVendor customer’s requirements.

� Two different customer enterprises (CustomerA and CustomerB), who have purchased
software applications from EAVendor. They build their business application on top of the
purchased software products.

The following is a description of the Purchase-To-Pay (P2P) -Process provided by EAVendor
and the possible compliance requirements of the two customers in terms of optional enterprise-
specific controls on the P2P. The P2P process enables the customer enterprises to run their
procurement processes. In section 2.1, the P2P application is first mentioned and detailed in its
original generic form without possible controls as it is delivered by EAVendor. In 2.2 and 2.3 the
specific compliance requirements of CustomerA and CustomerB on Purchase-To-Pay (P2P) in
terms of two different sets of required controls according to their specific risk assessment are
introduced. In section 2.4 the two use cases are analyzed and challenges are derived from this
context of business process compliance that serve to define the requirements in the conclusion of
this chapter.

The process model described in section 2.1 represents a minimal best practice description of
the P2P- process. The introduced control options of the two use case companies are real life
requirements developed internally by SAP in cooperation with the consulting firm
PriceWaterhouseCoopers (PwC).

To keep the presentation comprehensible, we omit the following supporting processes (sub-
process) from our description:

� Contract negotiation as a sub-process of purchase request processing,
� goods-return-management as a sub-process of goods-receipt, and
� dunning.

2.1 Purchase-To-Pay Business Process Model

In its most general form, the P2P consists of five main sub-processes:
i) Purchase Request Processing
ii) Purchase Order Processing
iii) Goods Receipt Processing
iv) Supplier Invoice Processing
v) Payment Processing

The following is a description of the first three sub processes through the business documents

involved in each sub-process. Again, in order to preserve simplicity, we do not go into the details
of Supplier Invoice and Payment Processing.

 11

The roles involved in the business process vary depending on the controls required in each
customer enterprise (This will be further clarified at a later point in this thesis). Thus we restrict
the roles involved in the process model description on the organizational level to those of the
departments/organizational units involved. Inside each organizational unit, there will be different
roles, which may exist or not according to each enterprise’s specific set-up.

Example: Inside a department X, there may exist an employee, his manager and the manager

of his manager etc. Additionally, depending on the enterprise and its required control, there may
exist a controlling unit inside that department. At this stage of the business process description
we simply speak about department X.

2.1.1 Purchase Request Processing
Purchase Request Processing (see Figure 2) is triggered when an Operational Department

(OD) releases a Demand and submits it to the Purchasing Department (PD). By doing this, OD
signals the demand for materials internally. The PD selects a possible Supplier and forwards the
quotation of the selected supplier (SupplierQuote) to the OD that submitted the demand. The OD
can either accept or reject the quotation. Acceptance is signaled to the PD by the creation of a
Purchase Request (PR) based on the originally created Demand and its submission to the PD.
The PR then has to be approved by the PD.

Figure 2 Purchase Request processing as a sub-process of Purchase-To-Pay-Business Process

Please consider that each process-step can be a sub-process in itself. For example, the process-
step “Select Supplier” in Figure 2 itself contains process-steps such as “Select SupplierQuote”,
which for the sake of expedience is not included in the figure.

Business Documents involved

In the following we introduce the structural specifications of each business document in terms
of the entities it contains as attributes. Bear in mind that a business document itself may also be a
composition of other business documents.

 12

Table 1 Demand Business Document

Attribute Description
OD The department that generated the demand
CreatedBy The employee at OD who generated the demand
CreationDate The date at which the demand was reported
DemandItem A demand contains one or more entries (items) in the following

structure:
Attribute Description
Product The product which is needed in the OD
Quantity The quantity of the product which is needed in

the OD
DeliveryDate The required delivery date of the item in the

OD
ShipToLocation The address to which the item in the demand

has to be shipped

Table 2 Supplier Business Document

Attribute Description
Name The name of the Supplier
Address The postal address of the Supplier

Table 3 SupplierQuote Business Document

Attribute Description
Supplier The Supplier who has responded to a Request for Quotation (RfQ)
CreatedBy The employee who has created the quote at the Supplier
CreationDate The date when the quotation was submitted by the Supplier
ValidFrom The date from which the quotation is valid
ValidTo The date till which the quotation is valid
SupplierQuoteItem

Attribute Description
Product The product specification in one quotation item
Quantity The quantity of the specified product in the

quotation item
Price The price for the specified product and quantity

in the quotation item
DeliveryDate
(Optional)

The date at which the item can be delivered to
the purchasing company. Only specified if a
delivery date was required in the preceding
Request for Quotation

ShipToLocation
(Optional)

The location to which the quotation item can be
delivered. Only specified if this information was
required in the preceding Request for Quotation

 13

Table 4 PurchaseRequest Business Document

Attribute Description
Supplier The supplier to which the purchase request will be sent
CreatedBy The employee who has created the purchase request
CreationDate The date on which the purchase request was created
ApprovedBy
(Optional)

The employee(s) who have approved the purchase request

TotalAmount The total amount of the purchase request
PurchaseRequstItem

Attribute Description
Product See Product in DemandItem
SupplierQuote The quote of a supplier for the product in

this item
Quantity See Quantity in DemandItem
Price The approved price for the item
DeliveryDate
(Optional)

See DeliveryDate in DemandItem

ShipToLocation
(Optional)

See ShipToLocation in DemandItem

2.1.2 Purchase Order Processing
Purchase Order Processing (see Figure 3) starts with the creation of a Purchase Order (PO)

after a purchase request (PR) has been approved in the purchasing department PD. After the PO
has been approved, it will be sent to the selected supplier (denoted with S in Figure 3). The said
supplier answers with a Purchase Order Confirmation (POC). In the POC, the supplier signals
whether or not, as well as how far, it can deliver the ordered goods. At the PD, the POC is used
as a basis to decide whether

� the supplier can deliver the order as specified in the PO,
� the supplier proposes to modify the purchase order PO,
� the purchaser rejects the proposed supplier’s POC, or modifications to the PO, or
� the purchaser accepts the proposed supplier’s POC or the modifications to the order

respectively.
Alternatively the sub-process can start when the OD asks the PD to modify an already

submitted PO.
Business Documents involved

The following is a breakdown of the structural composition of the business documents
involved in the above sub-process:

PurchaseOrder: has the same structural composition as PurchaseRequest (see section 2.1.1.).
PurchaseOrderConfirmation: has the same structural composition as PurchaseRequest (see

Section 2.1.1.). In addition a supplier can signal in this business document to which degree it is
ready to deliver. The options are: ready to delivery, not able to deliver, and partially able to
deliver.

PurchaseOrderConfirmationRejection: has the same structural composition as
PurchaseRequest (see Section 2.1.1.).

 14

PurchaseOrderConfirmationModification: has the same structural composition as
PurchaseRequest (see Section 2.1.1.).

Figure 3 Purchase Order processing as a sub-process of Purchase-To-Pay Business Process

2.1.3 Goods Receipt Processing
The sub-process (see Figure 4) commences when the ordered goods have been physically

received in Logistics (shown as L in Figure 4). In this case the material and inventory accounts
(shown as MM in Figure 4) are updated with details from the goods receipt (GR). Further, the
arrival of the goods is inputed into the corresponding sub-ledger accounts (accounts payable) for
invoice receipt processing (IR) in Accounting (shown as A in Figure 4).

Figure 4 Goods Receipt processing as a sub-process of Purchase-To-Pay Business Process

Business Documents involved:
The structural composition of business documents involved in the goods receipt sub-process

can be described in the following manner:

 15

Table 5 Goods Receipt Business Document

Attribute Description
Supplier The supplier who has delivered the goods
Location The location at which the ordered goods were received
ReceivedBy The employee at OD who originally generated the demand

acknowledges that he has received the goods
ReceivedOnBehalfBy The employee (usually at the PD) acknowledges that he has

received the goods on behalf of the employee who originally
generated the demand at the OD

ReceiptDate The date till which the quotation is valid
GoodsReceiptItem has the same structural composition as the PurchaseOrderItem of

a PurchaseOrder-business document described in Section 2.1.2)

Table 6 Inventory Business Document

Attribute Description
Location Specifies the location of the inventory
InventoryItem The list of materials kept in the inventory

Attribute Description
Product The product in the inventory
Quantity The quantity of the product present in the

inventory
Status The specification of availability and

assigned status of the item for further
usage in business processes. Possible
states are “AVAILABLE”,
“RESERVED”, “EMPTY”,
“ORDERED” etc

StatusChangeDate The date at which the status change took
place

For reasons of completeness, we briefly describe the last two remaining sub-processes.

2.1.4 Supplier Invoice Processing
Supplier invoice processing starts with the transfer of information from the preceding sub-

processes to Supplier Invoice Processing. Invoice-relevant pieces of information are then reused
to create and verify supplier invoices.

2.1.5 Payment Processing
Payment Processing is used to handle outgoing payments to a business process, in this case the

supplier.
We conclude the process model description by visualizing the business documents and their

relationship to each other. The UML class diagram representation of Purchase Request, Purchase
Order and Goods Receipt Processing is depicted in Figure 5.

 16

Figure 5 Overview of business documents involved in Purchase-To-Pay Business Process

2.2 Use Case 1 – Internal Controls Compliance Requi rements of
CustomerA on P2P

This use case describes the business of the company CustomerA and how it derives and applies
the required controls on the purchasing process.

The company CustomerA receives sales orders from its customers through different channels
and produces goods based on those orders. In order to fulfill the sales orders, the enterprise
requires special materials which are supplied by other vendors in the market. The market
situation - especially for two material types (for expedience referred to as material types 4 and 5),
which are required for the production - is so highly dominated by a few big players that there
exist only a few potential suppliers. CustomerA has decided to keep a certain amount of these
material types in his warehouse unassigned in order to avoid production delays.

2.2.1 Identification of Relevant Accounts
Compliance experts and accounting experts at CustomerA identify Inventory to be among the

most important account items in the balance sheet of the company. They decide that all related
processes must be included in the risk assessment of the company. Any inventory amounts which
are higher than 20% of the total value of balance sheet amount result in an unacceptably high
percentage of the company’s capital being locked up in material stock. This will have a negative
influence on the liquidity situation of the company: Monitoring the capital lockup is a critical
task for the company because it has a negotiated fixed credit limit with its house bank which
naturally cannot be exceeded. The fixed credit limit is the only source of capital available for
financing the long running sales orders which require extensive advance financing. This risk must

 17

be managed, because otherwise CustomerA may one day be forced to reject additional customer
orders due to a lack of credit.

2.2.2 Identification of Relevant Business Processes
In a second step compliance experts, together with the management of CustomerA, identify the
business processes that have the greatest impact on the extent of the inventories. They come to
the conclusion that the procurement process is a relevant business process for inventory account.
Their analysis also points out that the warehousing process itself is in a close relationship with
the procurement process. They contact the head of procurement (Purchasing Manager) and the
Warehouse Manager and give them the task to describe these processes with the objective of
identifying the inherent controls. The completion of these tasks shall ensure that the identified
risk does not occur or at least that the possibility of its occurrence is minimized.

The procurement process of CustomerA is realized using the P2P provided by EAVendor as
described in the previous sub-section. The purchasing manager, the warehouse manager, and the
compliance experts meet, and they come up with the list of controls discussed in the next section.

2.2.3 Control Identification
These presented controls below are determined manually at CustomerA based on the specific

knowledge and expertise which compliance and business process experts possess about their
domain and the situation which is specifically relevant to CustomerA. Thus, these controls are
specific to CustomerA and as we will see in the second use-case, the same business process in
another company will require another set of controls.

Control CA1: Purchase Release Strategy

A purchasing guideline is created which states that employees in operational departments must
issue purchase requests (PR) for order related materials of type 4 and 5 in such a way that those
materials arrive in the warehouse latest one week before the start of production. To support this,
every involved employee in the operational department has to create the necessary purchase
requests for those material types at least two months before they are due to arrive in the
warehouse. This guideline should lead to an elimination of production delays.

Control CA2: Check requests for unassigned materials in warehouse

To find a balanced and appropriate warehouse stock size, a minimum and maximal acceptable
amound of said stock is defined. The maximum amount of stock exists to lower the warehouse
costs. The minimum amount of stock exists to avoid production delays. To support this, all
purchase requests must be checked in order to avoid unacceptably high warehouse costs due to an
over-quantity of unused materials in stock. The control states that purchase requests containing
materials of type 4 or 5 and requesting a total volume amount higher than 10,000 $ will not be
approved if the available material type of 4 or 5 currently unassigned in the warehouse is two
times higher than the total volume of the purchase request.

Control CA3: Minimum Number of Suppliers

Management ensures that a pre-defined number of suppliers have been contacted and provided
with the information regarding the requested materials, depending on the volume of the potential
transaction or the market situation. This control facilitates the task of supplier selection by
ensuring the existence of a variety of quotations from which to choose and thereby assures
CustomerA the ability to select the quotation with the best conditions (quality, price, etc). All the

 18

contracts with possible suppliers must be up-to-date Concretely the compliance experts define
that for purchase requests which contain materials of type 4 or 5 and a total amount higher than
10,000 $ there must exist valid contracts with at least two different possible suppliers and the
according supplier quotes are not allowed to be older than six months.

Control CA4: Substitute Concept for Purchase Approvers

The approvals for purchase requests have to be carried out in a timely and careful manner. In
the event that a person who plays a key role in the purchasing process is temporary unavailable
(e.g. illness, vacation) that person has to be substituted by another person. More specifically, all
approval tasks for that employee have to be re-routed to his substitute. Further if the approval
task inbox of an employee with the approver role contains more than 20 tasks, all further
incoming tasks will be re-routed to his deputy. This decision is based on the assumptions that an
approval inbox with too many tasks may result in the approver not carefully reviewing each
individual purchase request.

2.2.4 Control Effectiveness (As-Is-Situation)
After the controls have been identified, the management has to assure that they are effective. A

control is considered to be effective if it is used in daily operations, it works as designed, and it is
designed in such a way that it in fact prevents or minimizes the occurrence of the risk to mitigate.
They call for technical consultants who have knowledge of the Purchase-To-Pay (P2P) provided
by EAVendor. These consultants should help CustomerA with the implementation of the above
controls in the enterprise, namely in the P2P. The consultants recommend using the reporting
tools provided by the P2P. A report is basically a periodically generated representation of one or
more process-steps, in one or more business processes, which contain one or more business
documents based on pre-defined selection criteria. Most controls have to be tested manually by
analyzing the generated reports that represent (to a greater or lesser degree) a visualization of the
process execution logs. This approach only ensures violation detections after their occurence.The
following is a discussion of the approach taken by CustomerA in order to assure the control
effectiveness. This approach is what we call a control’s implementation.

Implementation of control CA1 (Purchase Release Strategy)

A report exists in the P2P sold by EAVendor, which contains the necessary information about
the date of the relevant purchase request creation of material types. This report has been
configured specially for material types 4 and 5. We call this report A1Report. A new role at
CustomerA called Controller in a new organizational unit called Controlling is created. The
employee with this role must generate the A1Report monthly and analyze it in order to assure its
adherence to the control CA1 as described in the Purchase Release Strategy. A new role called
Control Tester is conscribed by the management team. The employee with this role has the task
of checking whether the A1Report is generated as required on a monthly basis and whether the
report is analyzed for control violations.

Implementation of control CA2 (Check requests for unassigned materials in warehouse)

A report exists in the P2P sold by EAVendor, which contains the necessary information about
all materials in the warehouse and their states (Reserved, Ordered etc). We call this report
A2Report. This report has to be generated monthly by the controlling department. The output of
the monthly generated A2Reports and A1Reports are analyzed in order to find out whether there
exist Purchase Request Approvals for material types 4 or 5 when unassigned material exists in

 19

the warehouse, as designed in the control. The control tester has to verify whether the reports are
generated as required and whether they have been sufficiently analyzed.

Implementation of control CA3 (Minimum Number of Suppliers)

The control tester waits until the valid supplier quotes are older than six months in such a way
that the minimum number of suppliers control is violated by at least two. He then himself creates
a purchase request for material types 4 and 5 as a test to see whether the purchase request gets
approved or not.

Implementation of control CA4 (Substitute Concept for Purchase Approvers)

The assignment of deputies and substitutes happens at CustomerA in a separate department
called Human Resources (HR) running their own systems covered by HR-specific business
processes. There exists no technical interface between HR processes and procurement processes
realized through the P2P. The management comes to the conclusion that this control can not be
tested. Thus, it exists as documentation in the best practice guidelines of CustomerA, which has
to be followed by employees in a manual way.

2.2.5 Control Test, Assessment and Correction
Based on the results of the effectiveness checks carried out by control tester, the controls will

be assessed and corrected if necessary. These are the results reported by the control tester.

Test results for control CA1
For three months the ReportA1 was not generated at all. Thus assessing the effectiveness of

this control is not possible for these months. Further the control tester reports that a significant
number of purchase requests were not created according to the requirements specified in the
control (two months before the material arrives in the warehouse). Further the control tester
reports that although the controller detected control violations and informed the employees at the
operational department who caused the violation about the purchase release strategy, the same
employees later again ignored the purchase release strategy designed in the control.

Test results for control CA2

The defined minimum and maximum stock size for material types 4 and 5 seem to be optimal
since the warehouse management costs are reduced and there were no production delays caused
by missing materials of type 4 or 5. Further the control tester reports that, for those months
following the creation of the A1Report by the controlling department, he was able to verify the
effectiveness of CA2, but he is not able to make any statements regarding the effectiveness of
CA2 for those months before the A1Report was not generated.

Test results for control CA3

The control tester reports that he generated three purchase requests. For one of them the
minimum number of suppliers was 1 and for the other two requests the supplier quotes were older
than six months. The latter two purchase requests were passed and approved, thus he considers
the control to be ineffective. There were interviews conducted with the employees who had
processed those requests. They stated that the sub-processes which are responsible for
maintaining the supplier quotes are outside of the realm of their responsibility. Further they
argued that they are not able to update the supplier quotes since they do not have access to the

 20

relevant data. After the occurrence of the first purchase request requiring a newer supplier quote,
they blocked that purchase request and waited until the supplier quotes got updated. The purchase
request was blocked too long in the process and the supplier quotes were not updated. The
approach taken to resolve this issue is described in detail in order to clearly illustrate the
compliance challenge of business processes today in the industry:

After several inquiries by the operational department who originally had generated the demand
about the current state of their request, the employees at the purchasing department decided to
continue processing the request although they knew the control was violated. The employees who
had violated the control argued that the employee who is responsible for supplier quotes did not
follow the procedures in the control. The management interviewed the employee who maintains
the supplier quotes. He explained that each supplier quote has a validFrom and validUntil date,
during which a supplier quote is valid. He further explained that one month before the end of the
supplier quote’s validity (validUntil date), he always triggers a process called RfQ-Processing
provided by the P2P of EAVendor, which generates a request for quotation (RfQ) for certain
material types for some selected suppliers in the market. The selected suppliers answer with
supplier quotes and if accepted by conditions of CustomerA, the supplier quotes data are updated
by him. He argued that since he is not aware of the purchase requests, in particular the total
amount of them, he does not know when to trigger the RfQ sub-process to update the supplier
quotes. This is due to the fact that a valid supplier quote can be taken for a purchase request with
a total amount lower than 10,000 $ and the same supplier quote cannot be taken for another
purchase request, which has a total amount higher than 10,000 $.

Based on the testing of the controls by the control tester the management of CustomerA
decides to define two additional controls:

New Control CA11: ReportA1 Execution Control

This control checks whether the controlling department has in fact generated the A1Report and
A2Report on a monthly basis as required in CA1 and CA2.

New Control CA12: Escalation of CA1 Violation

If an employee violates the Purchase Release Strategy more than 3 times in 6 months, this has
to be reported to his manager.

With regard to the deficiency discovered in the effectiveness of control CA4, CustomerA

contacts the consultants of the P2P provided by EAVendor. The consultants recommend
integrating the RfQ sub-process (Request for Quotation) into the purchase request sub-process.
An integration project is carried out to implement the following adapted purchase request sub-
process to assure the effectiveness of CA4. The control tester will test the CA4 again to verify its
effectiveness, subsequently it will be assessed and if necessary further corrections will be made.
Figure 6 shows the extended version of purchase request processing as originally delivered by
EAVendor (see Figure 2), which contains the additional RfQ-sub-process. This is a business
process variant of purchase request processing specific to CustomerA.

 21

Figure 6 CustomerA’s variant of Purchase Request Processing containing RfQ-sub-process

2.3 Use Case 2 – Internal Controls Compliance Requi rements of
CustomerB on P2P

We now introduce a second use case in order to show the differing compliance requirements of
another company for the same business process delivered by standard software provider
EAVendor.

CustomerB runs the P2P provided by EAVendor for the realization of its procurement process.
CustomerB also buys different materials from suppliers. On the supplier market, especially for
material type 2, there are many suppliers. The supplier market is highly competitive, new
potential suppliers do emerge, but they disappear quickly. Thus, there exist significant price
variations depending on the selected supplier. Hence, CustomerB is forced to enter into short-
term business relationships with new, previously unknown suppliers in the market in order to
remain competitive with regard to the price of the produced goods. In particular the enterprise
will create supplier entries, in order to submit orders, which are used only a few times or even
only once.

2.3.1 Identification of relevant accounts
Compliance experts and accounting experts at CustomerB identify Accounts Payable

(Financial obligations against external business partners) as one of the most important account
items in the balance sheet of the company. The Accounts Payable sub-ledger in the balance sheet
of CustomerB is relevant since the accounting department has to authorize payments for several
different suppliers, and also has to process a high number of supplier invoices due to the high
number of potential suppliers. This situation is critical because the enterprise runs the risk of
producing financial misstatements based on inappropriate and fraudulent use of financial
transactions having an impact on accounts payable. The heterogeneity of the supplier landscape
may result in situations in which employees of CustomerB could create their own private
purchase orders for their own use. It is also possible that, due to the short term business
relationships, employees at CustomerB could create non-existing suppliers in the procurement

 22

process and create subsequently approve purchases and the according invoices for those non-
existing suppliers. Furthermore, the compliance experts point out that insiders who are aware of
the supplier market situation for material type 2 could just by chance submit invoices to
CustomerB with their private bank information in lieu of a supplier’s bank information, in the
hopes of receiving the payment meant for a supplier.

2.3.2 Identification of relevant Business Processes
In a second step, the compliance experts together with the management of CustomerB come to

the conclusion that the procurement process is one of the business processes relevant to accounts
payable. The purchasing manager and the compliance experts meet, and they come up with a list
of controls to avoid or at least minimize the risk of financial misstatements for accounts payable
based on misuse respectively unauthorized use of the P2P. The list of controls here is determined
in a fashion similar to that of CustomerA, based on the domain expertise of the purchasing
manager and compliance experts and CustomerB’s specific risk situation.

2.3.3 Control Identification
The following controls were identified as necessary for the company’s purchasing business

process:

Control CB1: Second Set of Eyes (SSE) on PR Approvals

According to CustomerB’s financial situation, compliance experts at CustomerB know that
financial transaction having a volume of approximately 10,000$ or higher represent a critical
amount for the company. All purchase requests containing the material type 2 with a total amount
higher than 10,000 $ have to be approved by two different employees. For this reason, a separate
role called Purchasing Clerk is created in the purchasing department of CustomerB. The role of
the two different employees necessary for approving such purchase requests has to be purchasing
clerk.

Control CB2: Segregation of Duties (SoD) on PO Creation and Approvals

To avoid misuse of the P2P, the creation and approvals of purchase orders containing material
type 2 and a total amount higher than 10,000 $ are carried out by two different employees. The
person in the role of purchasing clerk is responsible for the creation of these kinds of purchase
orders and the person in the role of purchasing manager is allowed to approve such purchase
orders. The role of purchasing manager was pre-existant in the purchasing department (see
section 2.3.2).

Notice that the description above actually does not prohibit an employee to be in the two
different roles in general, but it requires that the employees creating and approving purchase
orders be different and be assigned the required roles.

Control CB3: Check One-Time Supplier-Authorization

For immediate response to changes in the supplier market, all employees with the role
purchasing clerk get the authority to create one-time-supplier entries in the P2P backend of
CustomerB and to create purchase orders for them. One-Time-Suppliers are vendors, for which
only general data are stored instead of maintaining bank account data and other company code
data as is the case for suppliers with which a long-term relationship exists. This approach should
accelerate the whole process of entering business relationships with new suppliers. In order to
avoid the misuse of this special authority, the control asserts that the right of One-Time-Supplier-

 23

Authorization will be revoked from those purchasing clerks who have not created a One-Time-
Supplier in the last 3 months. This is to limit the group of persons with this right to those who in
fact frequently use this type of special authority, in order to avoid its abuse.

Control CB4: 3-Way-Match on PR, PO, GR

The entered supplier data (such as name, address, bank account etc.) in PR, PO and GR
business documents are compared with each other and must be found to match.

2.3.4 Control Effectiveness (As-Is-Situation)
After the controls have been identified, the management of CustomerB contacts some external

technical consultants who should help the enterprise to implement the required controls in the
P2P. These consultants have the knowledge of configuration options which is necessary in order
to customize the process according to the required controls. If the software doesn’t contain these
configuration options, it will be necessary to implement it locally at CustomerB in accordance to
CustomerB’s specific situation. Further, they recommend using the report-tools delivered with
the P2P to assure the control effectiveness. In the following we represent the implementation of
each control in the P2P model.

Implementation of CB1 (SSE on PR Approvals)

In addition to re-engineering the Purchase Request Processing sub-process of the P2P process,
the introduction of the new role purchasing clerk in the P2P requires a reorganization of the
purchasing department (PD). This is achieved by the introduction of a sub-unit within the PD
called Purchasing Clerks (PC). In PC there is a pool of employees who are assigned the role of
purchasing clerk (each employee in this unit is called PC1, PC2 etc.). After the purchase request
receives approval by an employee in the PC, the items contained in that purchase request
business document will be checked. If the items include material 2 and the total volume amount
of the purchase is higher than 10,000 $, the request is forwarded to the approval task inbox of
another employee in PC using the workflow functionality provided by the P2P. In Figure 7 the
customized P2P model, which is a special variant of the original sub-process as delivered by
EAVendor (see Figure 7), is shown.

Figure 7 CutsomerB’s variant of Purchase Request Processing containing a separate unit PC and
two employees PC1 and PC2

 24

Implementation of CB2 (SoD on PO Creation and Approvals)

Before a purchase order (PO) is created, previously approved purchase request is checked
whether a separation of duties (SoD, see description of control CB2) on PO Creation and PO
Approval is required. The default process behavior is that the POs that do not require a SoD are
created and approved by an employee in the role of purchasing clerk. Please notice that this
process step can be subjected to a SSE as well, but we that possibility will not be applied to the
case in question. In cases for which the purchase request inspection notifies the user that a SoD is
required, an “Approve PO” task is created in the task list of a purchasing clerk in PC. After the
PO has been approved by this purchasing clerk, the workflow functionality creates an “Approve
PO” task relating to that purchase in the task list of a purchasing manager in the PD.
CustomerB’s variant of Purchase Order Processing, reflecting the implementation of this control,
is illustrated in Figure 8, which differs from EAVendor’s original delivered process shown in
Figure 3.

Implementation of CB3 (Check One-Time Supplier-Authorization)

This control is realized through the report functionality in the P2P by a customized report (let
us call it ReportB3). This report contains the list of all One-Time-Supplier activities for each
purchasing clerk in the P2P. It has to be generated monthly by the controlling department at
CustomerB. Controlling further analyzes the output of the report manually in order to remove the
One-Time-Supplier-Authorization for those purchasing clerks, who did not use this functionality
as designed in the control.

Implementation of CB4 (3-Way-Match on PR, PO, GR)

The control is implemented as a variant of the Goods Receipt Processing sub-process of the
P2P (see Figure 4 for the original sub-process and Figure 9 for the process model containing the
control implementation at CustomerB). Upon receiving a goods receipt at a Location (L), the
according purchase request and purchase order business documents are loaded from the P2P
back-end that should match that goods receipt. Only if the according documents exist and their
supplier data are identical to the one on the actual goods receipt the subsequent process-steps to
update the inventory and the IR sub ledgers areenacted.

Figure 8 CustomerB’s variant of Purchase Order Processing with the purpose of implementing
control CB2 (SoD on PO creation and Approvals)

 25

Figure 9 CustomerB’s variant of Goods Receipt Processing after the implementation of the 3-
Way-Match Control

2.3.5 Control Test, Assessment and Correction
The manual effectiveness checks carried out by the control tester indicate that the controls may

require further assessments and corrections.Here are the test results reported by the control tester
at CustomerB:

Test results for control CB1

The control tester reported that, three months after the introduction of the control, all the
purchase requests requiring a SSE were approved by one single purchasing clerk, after which a
purchase order was immediately created. The control tester discovered this compliance failure by
randomly selecting approved purchase request documents on a weekly basis. The first
assumption was that either a defect in the workflow functionality provided by the P2P or the user
management system of CustomerB may have caused the problem. A bug-report was sent to
EAVendor. EAVendor tried to simulate the scenario locally, but they reported that the workflow
functionality was working correctly. A deeper analysis of the current business configuration of
the Purchase Request Processing sub-process at CustomerB showed that it did not contain the
required SSE functionality for purchase request approvals, although it had been previously
implemented in the process. A subsequent investigation revealed that an employee in the
operational department had complained that the purchasing process took too long. He had asked
the IT department to look within the system in order to find out what had happened to his
purchase request. The employee at IT told him that the purchase request was currently in the task
inbox of a second purchasing clerk awaiting approval (because the Purchase had a total value
amounting to more than 10,000$). Both employees were not aware of the required SSE on
purchases with a total value of over 10,000 $, since it had not been properly communicated to the
employees by the management. The employee in the operational department told the employee
that this situation was probably a bug in the configuration of the P2P process, since his previous
purchase request had been approved by only one employee (that purchase request had a total
value of under 10,000$). He even sent a printed version of that purchase document to the IT
employee. The IT employee agreed that this behavior must be a bug in the process configuration
and removed the SSE on purchase request approvals. The P2P process was hence working
correctly so far as the employees were concerned, purchase requests were now approved more
quickly, but the P2P process was not working as required in the compliance requirements of
CustomerB.

The management team and the auditing consultants convenced a meeting in order to discuss
this situation and how they could proactively prevent the occurrence of such situations in the

 26

future. They also invited some external consultants of the P2P in that meeting and arrived at the
conclusion that, currently, there is no known technical way to prevent this situation from
occurring. The management team and the auditing consultants came to the conclusion that in the
future they would have to better communicate the compliance requirements and the controls to
their employees. They wrote a compliance guideline for each department and distributed it
throughout the enterprise. They further charged the IT manager to prepare a technical guideline,
in terms of a check-list for software change management, which was distributed in the IT
department of CustomerB.

Test results for control CB2

Surprisingly, the control tester reporteds that, again after three months, the required SoD on
purchase creations and approvals were also not effective. All purchase orders had been created
and approved by purchasing clerks in the purchasing department. The investigation discovered
that after three months a new version of the P2P provided by EAVendor and including some new
features was rolled out at CustomerB. The external technical consultants who introduced the new
version were not aware of the required SoD on purchase order creation and approval and installed
the default purchase order sub-process without the SoD at CustomerB. There were no procedures
in place to recognize and avoid such situations.

In this case the management and the auditing consultants also prepared a guideline and a
check-list, which had to be followed during and after rollout of new versions of the P2P.

Test results for control CB3

The control tester reporteded that this control was effective and he could not find any
violations or issues. The management decided to keep this control as it was designed and there
were no corrections necessary.

Test results for control CB4

In this case the control tester reported that this control was also effective, but the control design
led to some payments being blocked for goods receipts to suppliers which were valid. This
situation was caused by the fact that, due to the competitive market situation for material type 2,
many suppliers had accepted orders from CustomerB and subsequently outsourced them and their
shipment to other suppliers (sub-contractors) in the market, without informing CustomerB of this
change. In this case the goods receipt document received by CustomerB was issued by a supplier-
sub-contractor who had not originally received the purchase order from CustomerB. The control
design led to the situation that the processing of such transactions was completely blocked and
CustomerB had to go through a dunning originated by the original supplier, which did not get its
order fulfillment paid by CustomerB. This situation resulted in additional costs for CustomerB.

Based on testing the controls by the control tester, the management of CustomerB decided to
add 2 new controls to the guidelines and check lists that were then generated as corrections to the
control tester assessments on CB1 and CB2:

New control CB41: Modified 3-Way-Match on PR, PO, and GR

The goods receipt business document and purchase request will contain the order-number from
PO. Further all goods receipts that are without this number will not be processed and will be sent
back to the supplier.

 27

New control CB42: Resolve Blocked Payments
A report provided by the P2P will be generated monthly by the controlling department. It will

contain all blocked payments. The grounds on which those payments were blocked must be
investigated manually by the controlling department.

2.4 Discussion and Elicitation of the Challenges

We conclude this chapter with an analysis of the described use cases. The discussion should
help us to determine the challenges inherent in the compliance management of enterprises, in
particular in situations where a standard software provider selling a configurable business process
application, in our case EAVendor, aims to provide business solutions like P2P for procurement
which can be customized to different customers’ compliance requirements.

The challenges identified are the following:
1. Identifying significant accounts, risks and relevant business processes
2. Serving enterprise-specific business process variants
3. Business objectives vs. control objectives
4. Identification and design of controls
5. Maintenance of compliance
6. Heterogeneity and gaps between the roles involved

Each of these challenges is discussed in more depth in the following sub-sections. We describe
for each challenge the problem space, the current solution approach, and how it can be improved.

2.4.1 Identifying significant Accounts, Risks and r elevant Processes
We‘ve seen that, according to enterprise situations and the business environment in which the

companies are operating, different accounts are considered as significant for each enterprise. In
use case 1 it was the inventory account, and in use case 2 it was the accounts payable. Identifying
those relevant accounts is a very sensitive task, which requires domain specific knowledge and
especially accounting know-how.

We have further seen that a business process subject to risk assessment that impacts an account
is not necessarily the criterion that makes an account a relevant account. For example, at
CustomerA the relationship between its negotiated fixed credit limit with its house bank and its
long-running sales orders made inventory accounts a relevant account, although the procurement
process and the sales order process were at first glance completely independent and autonomous
processes. But this situation made the procurement process a relevant process for internal
controls compliance of CustomerA.

Further, we can see that although for both enterprises the same business process, procurement,
was identified as a relevant business process, the respective risks faced by each enterprise
regarding the procurement process were quite different: While CustomerA was facing the risk of
delays in production and too-high warehouse costs, CustomerB was facing the risk of fraud.

The task of identifying the above entities is carried out, at present and for the most part,
manually, based on the expertise of compliance and accounting experts together with business
process experts. The completion of this task requires a lot of time, and therefore it is very costly.
A solution to the manual approach taken today would be to capture the expertise of the different
roles involved in business process compliance as precise formal descriptions of the entities and
how the roles and the entities interplay in the domain of compliance. Such a formal description
would need to include possible relationships between these entities and the formal description of

 28

situations for which and in which an account can be considered as significant, a business process
can be considered as a relevant for a significant account etc.

The task of automating the identification the relevant accounts, risks, and the relevant
processes is beyond the scope of this thesis. Our contribution begins after their identification by
accounting and compliance experts.

2.4.2 Serving enterprise-specific business process variants
We saw that according to the enterprise specific risk assessment, the required controls on

identical business processes can be quite different. At the end, therefore, the way a business
process works, i.e. the way it is configured, will be enterprise-specific. For instance if we take a
look at the purchase request processing of each customer enterprise after the realization of the
compliance requirements, they each represent two different variants of the same sub-process, but
with identical business objectives, namely “receive demands and create and approve their
relevant purchase requests”.

A standard software provider like EAVendor faces the challenge of having to produce its
software in such a way that it can be adapted to each customer’s enterprise-specific requirements,
in this case its compliance requirements. But at the same time, the software provided must not be
too generic, because then the introduction and maintenance of the software on the customer‘s end
becomes too complicated. This is due to the fact that those missing features (in our case the
controls) come at the cost of generality in the software. A model-based description and
deployment of the involved entities in business process compliance can support EAVendor in
providing a mechanism for flexible introduction of enterprise-specific business process variants
within customer companies: the existence o precise formalized models allows an automated
approach in this regard. The solution to these challenges, as developed in this thesis, must satisfy
the following requirements:

1. Representation of the controls and business processes each as separate modeling entities
2. Capturing, on the model-level, the relationships that exist between controls and business

processes
3. A deployment mechanism for integrating the separately modeled controls on business

process models using the relationships that exist between controls and business processes
Satisfying the requirements above enables the business processes controls to be independent

from each other at a modeling level. This independence of control and business process models
can support the automated detection of any control violations, because the conditions that
describe a control are captured separately and can be evaluated.

A Software provider like EAVendor could then provide a repository of business process
models and a repository of control models for its customers. This way the controls would not be
too tightly integrated in business processes delivered but would be present and ready to be
deployed on the customer’s end. This approach would assure that business processes and controls
are both reusable, in different business-level contexts at different customer companies having
different compliance requirements.

2.4.3 Business Objectives vs. Control Objectives
As we’ve seen, in none of the cases for which the control tester discovered a deficiency in

control effectiveness was the business objective of the business process violated. In all cases, the
business process was working “correctly” insofar as it fulfilled the business objectives for which
it was originally designed and implemented. In our use-cases the business objective was simply
to “order and receive goods”. For this reason each customer company was forced to define a

 29

separate role “control tester”, who had to check that controls were working correctly (Control
Objective) but also that the business processes were still working correctly despite the existence
of controls (Business Objective). If an enterprise failed to define such a role, then many of the
controls would not work as designed in daily operation, even if at first glance each control design
seemed correct. The same can apply to business processes: if a control for a business process is
working correctly but the business process itself is not working correctly because of or in spite of
the existence of that control caused by problems in its design.

Today, the task of testing the controls and finding deficiencies in their design is usually a time
consuming and expensive one, mostly carried out manually. Enterprises require mechanisms to
achieve a higher level of automation in assuring the effectiveness of controls. They make this
requirement known to the software vendors. Although it is basically the task and responsibility of
customer enterprises to be compliant, the software vendors serving those enterprises face the
challenge of providing solutions for their customers which allow those customers to fulfill their
control objectives.

We suggest a solution to this challenge through a modeling approach for controls and business
processes, by separating their respective designs. A monitoring mechanism during execution of
business processes, in addition to business process and control design, assures that the business
and control objectives of a business process are satisfied.

2.4.4 Identification and Design of the Controls
Controls have to be identified and designed very carefully. The two crucial aspects here are the

set of controls in an enterprise and the relationships that exist between them:

Control Set
The defined controls may inhibit the efficient execution of business processes. Basically, the

challenge is to prevent business processes from becoming too complicated and to make sure they
do not require too much time and resources, as well as knowledge that is usually outside of the
scope of the user’s business knowledge, to enact. In such a situation users of business processes
may not accept the procedures necessary to the fulfillment of control objectives. It is for this
reason that management and compliance experts cannot simply define as many controls as
possible on a business process to assure the enterprise’s compliance. This would result in the
compliance itself representing a risk for the enterprise in that the enterprise might face the risk of
not fulfilling its business objectives. Such results were certainly not intended by compliance
requirements such as the Sarbanes-Oxley Act.

Control Inter-Dependency vs. Control-Contradiction

Closely related to the above challenge are the relationships which obviously exist between
controls. As we saw in the scenario, in certain cases, a single control may not be autonomously
effective as designed. For instance, discovering a violation of a control through comparison of
certain attributes of two reports only works if both required reports have indeed been generated.
In this context, the crucial problem met in practice is that many controls are currently being
manually assured through periodically generated reports that have to be compared to each other.
If an employee in charge of generating and comparing different reports to each other fails to
fulfill his duties, the control cannot be effective, because the necessary reports responsible for
detecting any control violations are not compared to each other or do not even exist. In such cases
a separate control is required, one which ensures that a certain report has in fact been generated.
To relate this situation to the scenario, in case of CustomerA the effectiveness of CA1 and CA2

 30

could only be achieved when, after the test and assessment phase for that control, additional
controls CA11 and CA12 were added.

We provide a solution to the above issue by providing a precise model of the necessary
artifacts involved in a control. For instance a model of a report can be modeled as an activity that
may be invoked in the system. Consequently the generation of a report or its comparison to other
reports can automatically be monitored. By using this approach a higher degree of control
automation can be achieved.

On a similar note, two different controls can contradict each other or can have an impact on the
business process, when occurring in a certain combination where they block the coninuation of
the process. Recall for instance in the case of CustomerB the control CB1, which required a SSE
on purchase request approvals by two different purchasing clerks. If in such a case a compliance
expert defined a SoD on “Receive PR” and “Approve PR” where the second process step had to
be done by a purchasing manager, the process would fall into a “blocked” state after the purchase
request has been received by the purchasing clerk.

Thus, the controls must be carefully designed in conjunction with a detailed study of the
current setup of the business processes and the other controls. At present, this is done manually in
most cases and involves different roles in an enterprise. This is a costly and time consuming
approach. Enterprises require support in order to achieve a higher level of automation in the
effective design of compliance for their business processes. We contribute an improvement to the
described situation by providing a model-driven approach for the design of controls and their
effectiveness in business process executions.

2.4.5 Maintenance of Compliance
Once compliant does not mean forever compliant. In addition to regulation bodies that

periodically audit the enterprises to assess their compliance, purely technical circumstances have
an impact on the compliance level of enterprises.

Software Change Management

As the existing technical environment of enterprises change, the business processes that were
compliant before may no longer be compliant. This ever-changing context means that a control
which is effective in a business may be eliminated or contain some issues after updates in the
technical environment relevant to the business process. We saw this in the scenario case of
CustomerB when a new version of the P2P provided by EAVendor was rolled out (Overwriting
the SoD -CB2 by the original default process model provided by EAVendor). The challenge
specific to this context is that such situations may be detected very late, if at all. Manual
procedures are in place in today’s business world which are supposed to avoid the occurence of
such mistakes, as is the case with most manually controlled tasks they are costly and take a trial
and error approach. Consider that standardized approaches such as IT Infrastructure Library
(ITIL) represent best practice descriptions for management of IT-Systems, which can be applied
on a voluntary basis. One major problem is that a control violation is hard to detect, as in most
cases the business processes continue to work properly insofar as they continue to fulfill their
business objectives even if a control is violated. There are approaches required to automatically
detect such control violations. A certain level of automation can be achieved by static verification
of the current configuration of process models: one can verify whether they contain the required
controls. However, such a static approach only insures that the business process model contains
the control and cannot serve as a proof of compliance, i.e. of control effectiveness.

 31

The approach suggested by this thesis automatically recognizes a control violation during
business process execution by using the model of that control and describes how a business
process must behave in daily operation under existent of that control in the business process.

Autonomous Business Processes

Enterprises run many different business processes, often each are designed and deployed
independently from each other. Moreover the business processes are subject to the supervision of
different stakeholders and may be maintained by different teams in an enterprise. This approach
is in many regards advantageous, but when it comes to compliance this situation represents a
large drawback to assuring the effectiveness of controls. As we saw in the case of CustomerA,
the CA3-control defined in Purchase Request Processing was not effective because the sub-
process RFQ-Processing was not integrated into the P2P. Even the integration of the business
process does not guarantee the long-term effectiveness of CA3, because CA3 will only be
effective so long as RfQ-Processing is working correctly.

We simplify the business processes of enterprises by providing a flexible instantiation
approach for a business process (in the above example RfQ-Processing) that is required for
compliance of another business process (in the above example Purchase Request Processing)
during execution time of the relevant business processes. The possibility for declaring the
necessity of instantiation of the required business processes is provided in the model of control.

2.4.6 Heterogeneity and Gap between roles involved
We saw in the scenario that there are different roles involved in the compliance management

lifecycle of business processes. Accounting experts identify relevant accounts and balance sheet
items, compliance experts identify and design the controls, business process experts, like the
purchasing managers in our scenarios, have detailed knowledge of relevant business processes
which comes into the play when identifying relevant business processes, and on a technical level
there are IT experts who are responsible for implementing and maintaining the controls on the
business process and software applications which realize those processes. Control testers have the
task of checking the effectiveness of controls, which is subject to later assessment etc.
Additionally there are external auditing firms who certify the compliance of an enterprise.

Within an enterprise, each person in each of these roles has to cooperate in order for the
company to achieve compliance. Each of these roles has its own interest, and expertise, and each
uses different terminology. The alignment of these roles is one of the important reasons why
achieving and retaining compliance requires a special treatment beyond the technical challenges
discussed so far.

Enterprises require a shared cooperative environment for these different roles, a need which
they address mainly to theirstandard software providers such as EAVendor. We provide a
cooperative environment for designing and deploying controls on business processes, which can
be used by compliance experts in conjunction with business process experts. Further we provide
a set of control patterns, which provide the language and terminology for compliance and
business process experts to communicate in the domain of business process compliance.

2.5 Conclusion

We have introduced two use cases for compliance. Their discussion revealed that compliance
of business processes, in particular their control requirement, is orthogonal to usual known

 32

artifacts from business process management, namely business process design and execution. This
is mainly due to the crucial difference between control objectives and business objectives in
business processes. Business process compliance can be considered as a separate layer of
business process management activities, which is enterprise-specific. In today’s business world,
the response to this is the definition and introduction of separate teams, organizations, and roles
in enterprises that have the task of interpreting and achieving compliance for an enterprise. But
the question of how best to support such a layer on a technical level is not yet answered.

The crucial questions are: how to design such a layer and what are the relationships between a
separate layer for compliance and the existing business processes. The requirements on this
separate layer inherent in compliance were elicited in section 2.4 : the scenario using the two
different compliance approaches taken by the two use case companies for the purchase-to-pay-
process. Here is a summary of the resulting list of requirements:

i) Formal model of accounts, risks and business processes including their relationships
to each other

ii) Semantic description of significance of an account, relevance for a business process
and possible risks on a relevant business processes

iii) Identification of necessary controls for a business process
iv) Model of a control and its relationship to business processes
v) An approach for separated design of controls and business processes
vi) An approach for deploying separately designed controls on business process models
vii) Monitoring of control effectiveness during business process executions
viii) A mechanism for handling possible control violations
ix) A cooperative environment for compliance and business process experts for design

and management of controls
x) A common terminology of the domain in which the involved roles communicate

In the rest of this thesis we will introduce and discuss methods and architectures for the design

and application of such a separate layer for compliance of business processes. As it was
previously mentioned, the requirements i-iii will not be addressed.

 33

 34

3 Basic Concepts
Obviously, in order to understand business process compliance, one must first understand the

underlying concepts of business processes and of compliance. It is important to understand these
concepts in order to develop their intersection in precise models that can be used to describe a
compliant business process and its execution. In this thesis we define compliance as ‘adhering to
regulations in the area of enterprise risk management’ (ERM). As was stated in the introduction,
these regulations are in place in order to assure effective internal controls within companies. The
main objective of this chapter is to introduce the core concepts of internal controls and business
process management which are used throughout this thesis.

In section 3.1 internal controls are introduced, along with an internal controls framework
proposed by the Committee of Sponsoring Organization (COSO). The description of the
compliance domain included in this thesis is highly influenced by the COSO recommendations.
The provided models and the approach for achieving business process compliance are in part a
result of our analysis of the COSO framework. Throughout this section we will refer to SOX as
‘a popular regulation requiring internal controls compliance’. This introduction to internal
controls concludes with an analysis of some other regulations in the area of ERM in order to
expose their relationship to internal controls.

In section 3.2 the key life-cycle phases of a business process are introduced. After their
introduction, they are put in relation to the internal controls by discussing the application time of
internal controls in business processes (Detective controls vs. Preventive controls). Based on the
relationship exposed, a detailed argumentation in favor of the model-driven approach presented
in this thesis as being the core requirement for realizing a preventive nature of business process
compliance is given (section 3.3).

3.1 Internal Controls

There are several definitions and interpretations of the term Internal Control, as it affects so
many different parts of an organization as well as their responsible stakeholders. It also impacts
an organization on different levels, from strategic management level to the way that IT systems
are managed. Thus the way internal controls are designed and assured may depend on the
organization, its risk and business environment and the organizational level at which internal
controls are applied.

The committee of Sponsoring Organization (COSO) proposed in [COSO92] a popular and
mature framework for setting up internal controls in enterprises. COSO defines internal controls
as:

“a process, effected by an entity's board of directors, management, and other personnel,
designed to provide reasonable assurance regarding the achievement of objectives in the
following categories: a) Effectiveness and efficiency of operations; b) Reliability of financial
reporting; and c) Compliance with laws and regulations.”

Effective internal control is supposed to assure that an organization generates reliable financial

reporting and complies with the laws and regulations to which it is subjected. Naturally, internal
control cannot absolutely insure that the objectives of an organization will be met. This often
depends on exterior factors, such as competition or technological innovation. These factors are
outside of the scope of internal control; therefore, effective internal control provides only timely

 35

information or feedback about any progress which has been made towards the achievement of
operational and strategic objectives, but cannot guarantee their achievement.

Internal control plays an important role in the prevention and detection of fraud under the
Sarbanes-Oxley Act (SOX) [SOX02]. The SOX requires that companies perform a risk
assessment and assess related controls. This typically involves identifying scenarios in which
theft or loss could occur and determining whether existing control procedures effectively manage
the risk level (see the use case example presented in chapter 2). The SOX comprises 69 different
sections organized in 11 titles ranging from additional corporate board responsibilities to criminal
penalties and describes specific mandates and requirements for financial reporting. Here is an
overview of those SOX sections affecting software and IT-systems, which are outlined in Title 3
(Corporate responsibility) and Title 4 (Enhanced financial disclosures):

� Title 3, section 301 (Public company audit committees): The auditing committee shall
establish procedures for confidential and anonymous reports by employees of an
organization regarding questionable accounting or auditing methods and issues.

� Title 3, section 302 (Corporate responsibility for financial reports): Management is
responsible for effective disclosure of controls and procedures regarding financial
reporting, operations and compliance, and disclosure of significant deficiencies in internal
control to audit committee and external auditors.

� Title 4, section 401 (Disclosure reports): All material corrections (corrective actions) must
be included in the financial reports, which have been identified by external auditors.
Further, investors must be provided with a clear understanding of the company’s balance
sheet situation and the way the balance sheet and its items are affected by the activities in
an organization.

� Title 4, section 404 (Management assessment of internal controls): Periodic reports
should include a report from management on the effectiveness of internal controls over
financial reporting. This report should contain documentation on the control designs and
effectiveness, their tests, disclosure of any material weaknesses, and their attestation by
external auditors.

� Title 4, section 409 (Real time issuer disclosure): Timely information on material
changes in the financial conditions and operations of the company must be provided.

The most important part of the SOX for IT-systems is section 404, which requires the
realization of effective internal controls in companies. Section 302 defines the requirements
defined in section 404 as ‘management responsibility’. In this thesis our most important goal is to
provide novel methods and solutions for the implementation of section 404, which will implicitly
support management in substantiating the section 302 requirements of the Sarbanes Oxley Act.

The internal controls compliance must be reported periodically to external partners. The level
of possible deficiencies in the internal controls of a company will be assessed based on these
reports. The internal controls compliance of a company will then be decided based on these
deficiencies.

COSO defines deficiency as “a condition within an internal control system worthy of attention.
A deficiency, therefore, may represent a perceived, potential or real shortcoming, or an
opportunity to strengthen the internal control system to provide a greater likelihood that the
entity’s objectives will be achieved.” There are 3 levels of deficiency [PCAOB04]: control
deficiency, significant deficiency and material weakness. [PCAOB04] gives the following
definitions for different levels of deficiency:
� “A control deficiency exists when the design or operation of a control does not allow

management or employees, in the normal course of performing their assigned functions, to
prevent or detect misstatements on a timely basis” [PCAOB04, section 8]

 36

� “A significant deficiency is a control deficiency, or combination of control deficiencies,
that adversely affects the company's ability to initiate, authorize, record, process, or report
external financial data reliably in accordance with generally accepted accounting
principles such that there is more than a remote likelihood that a misstatement of the
company's annual or interim financial statements that is more than inconsequential will not
be prevented or detected” [PCAOB04, section 9]

� “A material weakness is a significant deficiency, or combination of significant deficiencies,
that results in more than a remote likelihood that a material misstatement of the annual or
interim financial statements will not be prevented or detected” [PCAOB04 section 10].

Although material weakness is the relevant issue for public reporting on internal controls, there
exists no automatable process for identifying a material weakness in the internal controls of a
company. This is because the making of such a determination cannot be expressed in only
quantitative terms. Material weakness can include several concepts: the level of risk, materiality
in relation to the entity’s financial statements, and the timeliness of error detection. A
shortcoming in the internal control system of an enterprise may actually be considered as a
material weakness, whereas the same shortcoming (situation) in another enterprise may only be
considered as a control deficiency by the auditing experts. The reason for this is that the impact
of a loss caused by a deficiency is relative to the size and to the financial situation of a company.

3.1.1 Roles and their Responsibilities in Internal Controls Compliance
We introduce the roles and their responsibilities that a publicly traded company must enact in

order to comply with SOX 404 and 302. This model will then serve as a generalized pattern for
compliance with other regulations in the area of ERM (they will be described in sub-section
3.1.3) which are associated with internal controls regarding necessary roles and their
responsibilities.

SOX 404 requires the assignation of the following distinct roles:

� The Management Team: embodied in the person of Chief Financial Officer (CFO) who
takes personal responsibility for an effective implementation of internal controls.

� Compliance Experts: The management team is usually supported by a special team or
even a department dedicated to SOX compliance and internal audit experts. The task of
identification, design, and effectiveness checks of the controls is delegated by the CFO to
these experts, whom we will call compliance experts. Compliance experts act in
conjunction with requests from the CFO. They have detailed knowledge of regulatory
requirements. They have little or no knowledge of the realization of business processes in
an enterprise. Their main task is rather to define and monitor the necessary controls
according to the risk assessment, and to notify other entities in the enterprise in the case
of control violations. They do not define how to bring a process into a compliant state
because this is the task of the business process experts.

� Business Process Experts: These groups of people are responsible for relevant business
processes residing in operational departments, where the business processes are run. Their
task is to implement the identified controls according to their design. Typical
characteristics of business process experts include having the knowledge of configuration
and maintenance of processes while keeping business objectives (goals) in mind. For
example, the business objective of a purchasing process is simply to set up a process in
which internal orders can be processed and sent to suppliers so that the ordered goods can
be received and supplier invoices paid. It is obvious that in large scale ERP systems this
role is carried out by different persons, or even by different organizational units. This

 37

group of persons in an enterprise usually has little or no knowledge of regulations and
compliance requirements, but very detailed knowledge of how a process is implemented.

� Business Users: Business users are the employees in a company who actually fulfill the
business tasks (using business processes). They must behave compliantly by using the
business processes in accordance with the controls. Compliant behavior may or may not
be system supported.

� External Auditors : These are official bodies or external firms who assess and certify the
effective design, documentation, and implementation of internal controls. For most large
public companies, external auditors will be from one of these four firms: Deloitte, Ernst &
Young, Price Waterhouse Coopers, and KPMG. This work will however not touch upon
their role in business process compliance.

3.1.2 COSO - A Framework for Internal Controls
Section 404 of SOX requires that management of the public companies implement and

document a system for internal controls compliance. But SOX does not give any guidelines on
how to realize an effective internal controls system. It rather recommends using well-known
frameworks as a best practice to set up an effective internal control process. COSO, which was
mentioned earlier, is mostly recognized by regulation bodies and auditors as a de facto standard
for the realization of the internal controls system. In the internal SAP project ICCOMP (see
section 1.2) COSO was selected as the guideline framework for defining internal controls on
business processes.

COSO emphasizes an internal control which is not specific to one event or circumstance, but
rather to a series of actions that permeate an entity’s activities. These actions are pervasive and
are inherent to the way management runs the business. This implies that being SOX 404
compliant is not a one-time task. It is a continuous process due to two facts: 1) Internal control is
itself a process and 2) SOX 404 compliance must be periodically reported.

COSO introduces two key terms for setting up an effective internal control process: Control
Objectives and Control Components.

3.1.2.1 Control Objectives
To provide a context for the implementation of its integrated framework, COSO sets out three
types of objectives, referred to as control objective types, for management and auditors. Control
objectives of a control provide the measurable targets in view of which the company can define
controls. COSO differentiates between the following types of control objectives [COSO92]:

� Operations: Controls of this type should ensure that the company is operating effectively
with respect to safeguarding resources against loss.

� Financial Reporting: Controls of this type should ensure the preparation of reliable
published financial statements (within the US in in accordance with Generally
Accepted Accounting Principles – GAAP). To support this objective a series of
assertions underlying an entity’s financial statements must be made regarding the
following aspects:

o Existence or Occurrence: Assets, liabilities, and ownership exist at a specific date
and recorded transactions represent events that actually occurred during a certain
period.

o Completeness: All transactions and other events and circumstances that occurred
during a specific period, and should have been recognized in that period, have, in
fact, been recorded.

 38

o Rights and Obligations: Assets are the rights, and liabilities are the obligations, of
the entity at a given date.

o Valuation or Allocation: Asset, liability, revenue, and expense components are
recorded in appropriate amounts in conformity with relevant and appropriate
accounting principles. Transactions are mathematically correct and appropriately
summarized, and recorded in the entity’s books and records.

o Presentation and Disclosure: Items in the financial statements are properly
described, sorted, and classified.

� Compliance: Controls of this type assure that the company adheres to all industry- and
environmental-specific laws and regulations to which the company is subjected. They are
dependent on factors such as the industry in which the complany operates (food, health
and medicine, transport and logistic etc), the country the company is located in, etc.

3.1.2.2 Control Components
COSO recognizes that industries, companies, and management practices all differ. Therefore,

COSO recommends evaluating the optimal application of the framework in the subjective context
of the specific company concerned with realizing the internal control process. The fulfillment of
the control objectives introduced above is achieved along five essential control components
which should be acknowledged by the company and auditors. The description of control
components is narrowly adhered to by COSO in order to meet the dynamic process of internal
control and to control for its subjective nature. The five components are interrelated and are
derived according to the way the management runs the business of a company. These components
are:

� Control Environment
� Risk Assessment
� Control Activities
� Information and Communication
� Monitoring

3.1.2.2.1 Control Environment
This component refers to the overall tone of the organization. . It includes integrity and ethical

values. It also applies to the competence of the entity’s people, the management’s philosophy and
operating style, the way management assigns authority and responsibility, and organizes and
develops its employees, as well as the attention and direction received from the board of
directors. The control environment is reviewed by external auditors who pay attention to the
following aspects:

� Existence and implementation of codes of conduct and other policies regarding acceptable
business practice, conflicts of interest, or expected standards of ethical and moral
behavior. This is directly related to section 301 of SOX.

� Dealings with business partners including suppliers, customers, investors, creditors,
insurers, competitors, and auditors, etc.

� Pressure to meet unrealistic performance targets – particularly for short-term results – and
the extent to which compensation is based on achieving those performance targets.

Control Environment is the most subjective component in COSO. It is not discussed in this
thesis.

 39

3.1.2.2.2 Risk Assessment
Risk assessment is a methodological approach to the continuous identification, analysis,

control, and monitoring of critical situations and events by proactively using adequate processes,
methods, and tools in order to balance the effort of managing events and the impact of these
events.

The COSO risk assessment process calls for risk identification and analysis as a company
generates revenue and manages expenses. The risks which are due to internal or external factors
and which affect the company’s achieving its defined control objectives are those upon which the
most focus is placed. The risk assessment should follow the specific company’s value chain of
activities [Green, 2002]. The value chain of activities is directly reflected in the balance sheet of
a company (See as examples for risk assessment the use cases in 2.2 and 2.3). Obviously the
value chain is different for each company. Risk assessment is an iterative process and should be
tightly integrated into the planning process of an enterprise.

Further, according to COSO, risks have to be separated into two different levels: the entity-
wide level and the activity level.

Entity-wide risks influence the company as a whole. External factors influencing entity wide
risks can include: Technological developments, changing customer needs or expectations,
changing competition situations, new legislation or regulation, natural disasters, and global
economic change. Internal factors influencing entity-wide risks can include: Disruption in
information systems, quality of personnel, methods of training, and motivation; change in
management responsibilities, nature of the entity’s activities and employee accessibility to assets,
and unassertive or ineffectual board or audit committees.

Dealing with risks at the activity level, according to COSO, should help the company to focus
on major business units and existing functions therein, such as sales, production, marketing, etc.
This is done by identifying control objectives for business processes that affect significant
accounts. To avoid overlooking relevant risks, it is best to identify potential risks while ignoring
the likelihood of risk occurrence. We will focus on risks associated with the activity level of a
company.

A further COSO requirement is to manage the change in an enterprise. Every entity needs to
have a formal or informal process, whose purpose is to identify conditions that can significantly
alter its ability to achieve objectives. Some of the changing circumstances that require special
attention are:

� Changed operating environment
� New personnel
� New or revamped information systems
� Rapid growth
� New technology
� New lines, products, and activities
� Corporate restructuring

Basically, managing the change states that business process reengineering has to be followed
by an updated risk assessment in an enterprise. This emphasizes the nature of risk assessment as
an iterative process.

3.1.2.2.3 Control Activities
A control activity is a procedure instigated in order to mitigate the risk that a control objective

may not be achieved. It is very important to emphasize the nature of a control activity (in the
following, a control) the way the compliance and auditors understand it, since it may easily be

 40

misunderstood as the control objective itself. Two essential elements of a control are its policy
and its procedure: the policy is in close relationship with the control objective, which was the
original motivation for defining the control. The procedure of a control assures that an action, or
a set of actions, will be carried out in order to ensure the policy of a control. For example if an
approval or authorization for a certain business level activity is required (the policy), then the
control exists in order to check the approval or authorization procedure for that business level
activity is in fact carried out as required. The controls are by no means bounded to the
information processing and IT level operations of an enterprise. For example, the policy of a
control in an enterprise which holds precious goods (for example gold) in stock is to have a door
to the stock. Having a door does not assure the control effectiveness in this case, since the door
could always be open and everyone could enter. The procedure of the control is then to check
whether i) the door exists ii) it is closed and iii) only authorized personal may enter.

For SOX 404 compliance, a company may identify several risk areas that require mitigation by
control procedures. It is for this reason that the result of a risk assessment, following the
definition and design of the according control activities, is a matched set of control objectives,
risks, and controls. Keep in mind that a control definition is usually described in terms of its
policy and its procedure only. It is not separately mentioned in such a matched set of control
objectives, risks, and controls.

There are several categorizations of control types, which are relevant to different levels and
aspects of an enterprise. Theey can be located on high levels, as top level reviews of management
activities, system software acquisitions, the system development methodology an enterprise uses
to build its IT Systems etc. For a comprehensive list and discussion of control types, refer to
COSO [COSO92].

A control can be preventive or detective:

Preventive Controls
Preventive controls are designed in order to avoid an unintended event or result. They exist to

avoid the occurrence of potential problems. They can monitor operations and/or provide input to
operations. One example of a preventive control relevant to the activity level risks of a company
(as described in 3.1.2.2.2) is an inventory control system that predicts out-of-stock items or a
credit authorization system that checks credit worthiness before goods are shipped. An example
of a preventive control which addresses the entity-wide level risks of a company (see section
3.1.2.2.2) is a control which prevents a company from having unqualified personnel by requiring
a certain qualification level in a job description. Further examples of preventive controls are:

� Segregate Duties (An example of this control type is provided in section 2.3)
� control access to physical facilities and information systems
� use well-designed documents (prevent errors)
� a cash budgeting system which monitors cash flows and forecasts of future cash flows
� an inventory control system that predicts out-of-stock items
� a credit authorization system that checks credit worthiness before goods are shipped.

 41

Detective Controls
COSO defines a detective control as a control designed to discover an unintended event or

result. It exists to uncover problems which could impede the achievement of control objectives
soon after they arise, by measuring the relevant parameters of a process and indicating if they
deviate from a given plan. Some typical examples of detective controls are:

� periodic performance reporting with variances
� standard costing and variances
� reconcile receivables, i.e. to check on a periodic basic that a company has received the

expected money from its business partners
� periodic credit history review etc.

3.1.2.2.4 Information and Communication
A properly designed internal control should provide the management with information about

its performance. For this reason COSO requires that a company establish separate procedures that
will generate information about the state of internal controls and communicate this information to
the appropriate managers.

This can be achieved with the help of information systems that produce reports containing
operational, financial, and compliance-related information. They deal with internally generated
data and information about external events, activities and conditions necessary for business
decision-making and external reporting. Communication in a broader sense must also occur
throughout the organization. Communication must occur from the top-down in order to inform
employees about the existence of internal controls and their respective responsibilities. A bottom-
up communication must occur to inform management about the state and effectiveness of the
internal controls, in order to help management to take follow-up actions in case of deficiencies.
Effective communication with external partners, such as customers, suppliers, regulators, and
shareholders, is also necessary.

3.1.2.2.5 Monitoring
Internal controls change over time, and effective procedures may eventually become non

effective. This may happen due to new personnel, changed business practices or a changed
control environment. For this reasons, internal controls systems need to be monitored. This is a
process which, over time, will help the assessment of the system’s effectiveness and
performance. This is accomplished by ongoing monitoring activities and separate evaluations of
the internal controls system.

3.1.3 Relations between Internal Controls and Regul atory Compliance
Requirements

We have introduced internal controls, with COSO as the relevant framework for realizing an
internal controls system in an organization. The existence of an effective and effectively
documented and implemented internal controls system is required by SOX 404. The reader may
ask how regulatory compliance requirements in general are related to the internal controls
system. What does having an effective internal controls system mean with respect to other
regulatory requirements with which an organization must be compliant? Internal control is about
enterprise risk management (ERM), thus only those regulatory requirements associated with
ERM should be considered. In this sub-section, we identify the existing redundancy among some
key regulations associated with ERM. With the identification of this overlap, the cost of

 42

compliance can be reduced by simply eliminating the redundancy in the related compliance
processes.

We will first briefly introduce those regulatory requirements associated to the ERM (other than
SOX), which were selected for the analysis. The following list of regulations does not represent a
complete list of regulations associated with ERM. These were selected according to the amount
of attention they receive from the compliance experts:

� Basel II in Europe and its US counterpart: Inter-agency Operational Risk Supervisory
Guidance on Operational Risk Advanced Measurement Approaches (AMA) for
Regulatory Capital

� The Federal Deposit Insurance Corporation Improvement Act of 1991 (FDICIA)
� The Gramm-Leach-Bliley Act of 1999 (GLBA)
� Solvency II
� Grundsätze ordnungsmäßiger DV-gestützter Buchführungssysteme (GoBS)

We will then compare these partly overlapping regulatory requirements and discuss their

common elements and requirements. Based on this, we will identify opportunities for
organizations to construct a holistic approach to realizing enterprise-wide risk management,
which reduces the cost and efforts necessary in order to become ERM compliant.

Basel II

Basel II [BaselII08] is intended by international bank regulatory authorities to promote
enhanced risk management practices and to better align minimum regulatory capital requirements
with the risk profile of a banking institution. Institutions qualified for Basel II will be allowed to
use their own internal models for quantifying operational risks. Quantified operational risks will
help to determine minimum regulatory capital. Qualification will be subject to regulatory review
on a qualitative and quantitative level. Basel II is about applying state-of-the-art risk management
of operational risk and internal controls systems and setting minimum capital requirements for
banks.

FDICIA

The Federal Deposit Insurance Corporation Improvement Act of 1991(FDICIA) [FDICIA91]
was one of the earliest efforts to promote a formal internal control discipline, with the process of
attestation of the adequacy of internal controls. Under the annual audit and reporting
requirements specified in FDICIA all insured depository institutions with $500 million or more in
total assets are required to submit annual management assessments of their internal control
structure and to obtain attestations of those assessments from their independent external auditor.

Banking institutions are the main focus of FDICIA, which mandated that federal banking and
thrift supervisors pass specific regulations to establish standards for the safe and sound operation
of a banking organization. As a result, specific regulatory definitions of effective internal control
structures, and requirements for annual management review and board reporting were
established. It made executive management, through their assertions, personally responsible for
the internal control structure of their organizations.

Solvency II

Solvency II [Romeike et. al, 2006] is relevant for insurance companies that operate in the EU.
Its purpose is to create an international standard and framework that insurance regulators can use
when creating regulations about how much capital an insurance firm needs to put aside for
unforeseen events. Solvency II prescribes three areas of requirements for insurance companies: i)

 43

quantitative requirements, mainly regarding the amount of capital an insurer should hold, ii)
requirements for the governance and risk management of insurers as well as for the effective
supervision of insurers, and iii) disclosure and transparency of processes.

GoBS
Grundsätze ordnungsmäßiger DV-gestützter Buchführungssysteme (GoBS) [Philipp, 1998] is a
German law and regulates the electronic processing of accounting and their underlying IT-
systems. It can be considered as equivalent to SOX in Germany. It basically prescribes an internal
controls system as a “component of process documentation” within a framework of IT-based
accounting systems. It further regulates the retention requirements of the data and documents that
are produced and consumed by electronic accounting systems and the rules applicable to security
in accounting systems.

GLBA

The Gramm-Leach-Bliley Act of 1999 (GLBA) [GLBA99] imposes standards on how a
financial institution’s customer’s private financial information may be shared among commonly
owned businesses and with third parties. GLBA requires that banking regulators write safety and
soundness standards for the safeguarding of customer information. It was used as an expansion of
the original FDICIA safety and soundness regulation. According to GLBA, the (U.S.) banking
agencies are responsible for establishing compatible regulations, and enforcing these in the banks
they regulate. One main focus is the need for the ongoing assessment of the adequacy of internal
risk management processes. GLBA auditors and regulators assess GLBA compliance on an
enterprise-wide basis based on the management’s responsibility for risk assessment processes,
risk management systems, and risk controls.

3.1.3.1 Comparison and Discussion
Often an organization has to be compliant with more than one of these regulatory

requirements. It is difficult to quantify and segregate costs according to each regulation. A close
look at FDICIA, GLBA, GoBS, SOX, Solvency II, and Basel II / AMA requirements reveals
certain common principles. They are [BITS05]:

� A greater emphasis on internal control systems and processes and their impact on
operational risk;

� Extended requirements for risk assessment and its documentation and supporting
evidence of sound systems of controls;

� The need for clearly defined roles and responsibilities regarding senior management’s
overseeing of internal control systems, with specific accountability and penalties for
non-compliance directed at responsible individuals and entities;

� Concern for the accuracy and transparency of financial reporting and their related
controls;

� An increased need for operational risk data collection and quantitative processes; and
� Better alignment of minimum regulatory capital requirements with the risk profiles of

supervised institutions, specifically with regard to operational risk (and internal control
systems).

 44

The overlaps between these various sets of regulatory requirements can be drawn to show the
convergence of the internal control certification and attestation processes. The main challenges
are:

� Determining which business processes should be included in the evaluation of risks;
� Determining which controls are relevant;
� Documenting the design of the controls;
� Evaluating the design effectiveness of controls;
� Evaluating the operating effectiveness of controls;
� Determining which control deficiencies are of a magnitude great enough to constitute a

material weakness;
� Documenting the results of the evaluation; and
� Communicating the findings to the auditory.

Thus it is obvious that bringing a higher level of support and automation to the above aspects
will improve the introduction and maintenance of an internal controls system and consequently
will improve regulatory compliance in area of ERM.

3.2 Business Process Management

Business process management (BPM) can be considered as a set of management activities
related to business processes along a timeline. Thus business process management can be
described by the set of these management activities that describe the life cycle of a business
process. Business process management life cycle models have been proposed in among others,
[van der Aalst et al, 2002a] [zur Muehlen, 2004] [Dumas et al, 2005]. In this thesis we follow
a slightly extended life cycle model compared to the model proposed by [zur Muehlen, 2004]. In
our case we see business process verification and mining (which will be described in sections
3.2.6 and 3.2.7) as separate stages. The reasons for this are: i) that our model, based on [zur
Muehlen, 2004], reflects a consolidated view on business process management proposed by
[Heilmann, 2005][Neumann et al, 2003][Galler et al, 1995][Striemer et al, 1995] ii) that in
addition to activities in a business process model it also considers the resources that are
consumed and the outputs that are produced by a business process and iii) that it is the way that
most commercial and open source BPM solution providers realize their business processes with
respect to the infrastructures for using those business processes. The life cycle comprises the
management activities of analysis, design, implementation, execution, monitoring, and
verification and validation. [zur Muehlen, 2004], in contrast, combines the two latter phases
together and calls it evaluation.

3.2.1 Business Process Analysis
This phase is the first life cycle phase of business process management. In this phase, not only

does one analyze how a process should work, one also analyzes and defines the roles involved in
the operation of the process on an organizational structure level. The result of this phase is a set
of business level requirements on the business process, which serves as input to the next BPM
phase.

3.2.2 Business Process Design
This phase, also called Business Process Modeling, is about capturing the business level

knowledge of a domain produced during business process analysis in one or more models. In our

 45

understanding of business process design, we assume that the produced models are executable.
Therefore a minimum requirement of the resulting description of the model is that it must be
expressed in clear syntax in order to be interpretable and executable by an execution
infrastructure.

3.2.3 Business Process Implementation
The proposed business process model produced during the previous phase is the input for the

technical realization of the business process. This is related either to software development, if no
pre-built business process infrastructure is used, or to business configuration (see section 1.2), if
the software is deliverd by a standard software provider. In the latter case, the process model is
used as a blueprint for the adaptation of an existing system in order to reflect the requirements
formulated in the analysis phase and technically modeled in the design phase.

3.2.4 Business Process Execution
This phase, also called enactment, relates to the daily operations of the business process. Based

on the implemented business process, business users enact the business process to fulfill their
assigned function, be it to order goods, sell goods etc. In this phase, the business process
infrastructure is used to handle individual cases covered by the business process. We call such a
case, which is a grounded member instance of the business process model, a business process
instance. This instance reflects individual information related only to that instance. We call the
entity containing all individual information for a business process instance a business process
context. A business process instance can unambiguously be identified by its context.

3.2.5 Business Process Monitoring
This phase is also called Business Activity Monitoring. Monitoring is a continuous activity that

is performed with respect to individual business process instances. During this phase, each
instance is tracked according to defined metrics. Business process monitoring can be used to
obtain information about the current state of a business process instance. This can be used as
basis for communication with business partners (e.g. a customer calls and requires information
about his order) or it can be used to detect problems with a certain business process instance (e.g.
a delivery has not reached the customer).

3.2.6 Business Process Mining
Business process mining is a relatively young discipline in business process management,

which relies on business process monitoring. The aim of process mining is to analyze event logs
extracted through business process monitoring. The extracted information can then be seen in
comparison with the previously designed model. This allows process analysts to detect
discrepancies, bottlenecks, or contradictions between the currently executed business process
instance and its model. Another usage of business process mining is to discover process models
based on event logs that were produced by information systems. The motivation behind the latter
usage is that often in companies business processes exist without being formally designed or
communicated. They exist implicitly because employees informally do their daily work
supported by various information systems which then build the business processes. Mining
techniques applied on event logs produced by information systems enables us to discover and
determine explicit (formal) process models.

 46

3.2.7 Business Process Verification
Verification addresses the correctness of a business process model. It focusses on two aspects:

1) that a model satisfies a set of properties given by a formula and 2) checking general properties
of a model regarding its “syntactical” correctness. The first aspect is subject to model checking.
The second aspect is related to determining issues which can exist in a process model design such
as determining deadlocks or constellations in which a process execution of the given model
would never terminate. We consider business process verification as a management activity on a
process model during the design phase useful for determining in advance whether a process
model exhibits (or does not exhibit) certain desirable behaviors. By performing this verification
at design time the model can, based on the potential problems identified, be modified before it is
executed. Technical verification of a process model greatly depends on the language, i.e. the
formalism used to express the business process model during the business process design phase.

3.2.8 Business Process Validation
The task of business process validation is to check whether a process model works as designed.

Compared to business process verification, it can be considered as a “higher level” check of a
business process. The validition of a business process is a more difficult process than its
verification. This is because verification requires a logical analysis of a process model, while the
validation requires matching the behavior of a business process execution with the requirements
formulated during the business process analysis phase. As a basis for validation of a business
process, both business process monitoring and business process mining can be used. The core
difference between verification and validation is that while verification results let the user know
whether a business process model is designed correctly (its design accords to a specification),
validation determines whether a business process works as designed (its execution is in
accordance with its specification and design).

3.3 Interrelationship between Business Process Mana gement
and Internal Controls Compliance

Business process management carried out in the above phases is well recognized as a means to
enforce corporate policies. Regulatory mandates also define policies and guidelines for business
practice. One may question why a separate modeling facility in addition to those available in
BPM is required to capture and enforce compliance requirements for business processes. We
identify the following reasons:
� Firstly, the source of the control objectives and business objectives will be distinct with

regard to ownership and governance as well to timeline. Whereas business objectives for
business processes within businesses can be expected to have some similarities, control
objectives will more often be dictated by external sources and at different times.

� Secondly, they have different concerns: business objectives and control objectives. Thus
the use of business process techniques and languages to model control objectives may not
provide a conceptually faithful separation of the two domains. Compliance is in essence a
normative notion, and thus control objectives are fundamentally descriptive, i.e. indicating
what needs to be done (in order to comply). There is evidence of some developments
towards descriptive approaches for BPM, but these works were predominantly focused on
achieving flexibility in business process execution (see e.g. [Hagerty, 2007] [Sartor,
2005]).

 47

� Thirdly, there is likelihood of conflicts, inconsistencies, and redundancies within the two
specifications. The intersection of the requirements and the modeling perspective needs to
be carefully studied.

And why not model the controls during the business process design phase in accordance with
the business process model produced with the help of the selected business process modeling
language? Reducing business process compliance to the business process design phase has
several drawbacks, from both a legal and a technical perspective:

A compliance project requires a certain approach from an auditing perspective, which defines a
set of requirements on the IT system landscape of an enterprise. Actually, in the context of
regulatory requirements such as SOX, the law requires that the internal controls on different
entities in enterprises be effectively applied during the execution time of business processes. This
means that the enterprises have to prove that their processes and internal controls work as
planned in daily operations.

Therefore a pure design time based approach does not fully satisfy the requirements set by
regulations such as SOX. Further, the manual embedding of all compliance requirements into the
process models has several technical drawbacks:
� Firstly, the process models become too complicated, not readable and manageable when

they are directly, i.e. manually enriched with the compliance controls.
� Secondly, since the compliance requirements on business processes are usually defined and

implemented by different stakeholders in enterprises and they have different life cycles,
they have to be separated from the original business logic of a process. This requirement
becomes obvious when considering the fact that if a required control option of a business
process is reset due to some operational reasons, such as faster transactional response time
or similar, the business process will still function properly in terms of fulfilling its
“business objectives”, namely “purchasing goods” or “selling goods”, but will no longer
fulfill its “control objectives”. For an example of such a situation, please refer to the
different use cases introduced in section 2.2 and 2.3.

� Thirdly, from the perspective of a standard software provider, the shipped process models
become less reusable for different customers if the compliance requirements are “hard
coded” in the original process models. The customers act in different environments and
have different compliance requirements for equivalent business processes (equivalent
business objectives). Therefore, the compliance requirements have to be designed and
provided separately.

Further, from a compliance auditing perspective, the compliance requirements are tested and
certified as late as possible in the management life cycle of a business process by external
auditors, namely during the execution phase of the business process – possibly by processing logs
collected through monitoring techniques.

All of which serves to illustrate that a novel approach is required to 1) decouple the internal
controls from the business process and 2) reduce the effort (especially the technical skills)
necessary for setting/managing new control objectives according to their controls. The necessity
for such an approach can also be practically clarified by referring again to the compliance use
cases described in sections 2.2 and 2.3, where we saw the orthogonal nature of compliance
compared to the business process (as concluded in section 2.5). As shown in those cases, the
reasons we’ve taken such a compliance approach can be found in the nature of internal controls
compliance. It forces us to define separate roles in a company (see section 3.1.1) and
consequently separate technical layers for compliance.

However, the challenge inherent in such a technical layer is that on a representation level
(namely in the business process design), we aim to conceptually separate the controls from the

 48

business process, and on the level of their execution we aim to tightly integrate the controls with
business process execution in order to support the control effectiveness at runtime. We must
therefore strive to effectively separate and then coherently reintegrate each control, out of and
then back into, its respective business process.

Detective Controls vs. Preventive Controls

There are several approaches which put the above BPM phases to some use, either alone or in
combinations, in order to handle the internal controls compliance of business processes. This
leads to different relationships between internal controls management and business process
management, especially with regard to the life cycle phases. The core difference between the
different approaches is whether they aim to support detective or preventive controls (see COSO,
section 3.1.2).

One can use business process verification to check whether, during business process design, a
process model that satisfies certain controls, (contains these controls) is produced. As discussed
before, this is not sufficient from the auditing perspective. The reason is that with this strategy an
enterprise only documents that it has designed the controls. It must also prove that the controls
are effective while executing process instances. Thus the business process execution phase has to
be taken into account as well.

In the area of detective controls there are currently two main approaches towards achieving
post compliance. The first is retrospective reporting, wherein traditional audits are conducted for
“after-the-fact” detection, often through manual checks by expensive consultants. A second and
more recent approach is to provide some level of automation through automated detection. This
approach may be supported by usage of process mining technologies [van der Aalst et
al.,2005a]. The bulk of existing software solutions for compliance follows this approach. The
proposed solutions hook into a variety of enterprise system components (e.g. SAP HR, LDAP
Directory, Groupware etc.) and generate audit reports against hard-coded checks performed on
the target system. These solutions often specialize in a certain class of checks, for example the
widely supported checks that relate to Segregation of Duty violations in role management
systems. However, this approach remains “after-the-fact” detection, which we call assuring “Post
Compliance”.

A major issue with the above approaches (in varying degrees of impact) is the lack of
sustainability. Even with automated detection facilities the hard coded check repositories can
quickly grow out of control making it extremely difficult to evolve and maintain them for
changing legislatures and compliance requirements. In addition to external pressures, there are
often internal pressures within a company towards quality of service initiatives for process
improvement, which have similar requirements. The complexity of the situation is increased by
the presence of dynamically changing collaborative processes shared with business partners. The
diversity, scale, and complexity of compliance requirements warrant a highly systematic and
well-grounded approach.

Figure 10 visually summarizes preventive controls vs. detective controls and puts them in
relationship to the according stages in business process management life cycle as described in
section 3.2.

 49

Figure 10 The position of preventive and detective controls in business processes

Based on the discussion above, we believe that a sustainable approach for achieving business
process compliance should fundamentally have a preventive focus. As such, we envision an
approach that provides the capacity to capture compliance requirements through a generic
requirements modeling and enforcement framework, and subsequently facilitates the propagation
of these requirements into business process models and enterprise applications, thus achieving
compliance by design. The ideal is to have as many preventive controls as possible. The usage of
formal approaches, beyond all others, would fulfill the role of capturing the conditions in which a
detective control may be violated and to prevent a control violation from occurring. Of course
one has keep in mind that the occurrence of a detective control violation may not necessarily
represent the occurrence of a risk. For this reason a flexible strategy has to be developed in order
to react to a control violation in a suitable way. This is important, since defining a general
blocking of all business process instances causing a control violation may not be adequate.

Example 3.1:

Let us assume a detective control such as: Check whether the bank account of a supplier has
changed.

Such a situation may or may not be a fraud situation, (an existing supplier may in fact have
changed his bank account due to perfectly valid and legal reasons). Currently, the above detective
control is realized in the following manner:

1. An accounting expert periodically collects a set of all suppliers from whom goods are
ordered.

2. He subsequently checks whether the bank account information of each supplier has been
changed.

3. He then investigates whether or not each supplier determined in step 2 exists.
Realizing such an approach is very inefficient and expensive due steps 1 and 2, for which all

order entries and supplier entries must periodically be manually visited by the accounting expert.
And in cases of fraud, the order has already been submitted and must be retroactively retrieved.

 One can design such a detective control as a preventive control and execute the control
automatically before an order has been submitted to a supplier. In order to do this, the following
requirements must be realized:

A. Define the triggering event of a control as a model that can be automatically recognized by
the system. In the example above such an event would be “before the order is sent to that
supplier (or even before it is approved)”.

B. Capture the conditions that could potentially represent a fraud in that model. The
occurrence of such a condition could then be automatically recognized. In the case of the

 50

above example such a condition would be the situation where “the banking account of a
supplier has changed”

Providing the above-described requirements enables the original detective control to be
realized as a preventive control. The efforts required for assuring internal controls compliance are
reduced by eliminating the manual steps 1 and 2, which were necessary in the original detective
approach.

In cases where the conditions of the preventive controls (see B) become true during the event-
part of a preventive control (see A), the current business process instance could be blocked from
continuing and a notification message for the accounting expert could be generated. The
accounting expert would then continue with step 3.

3.4 Conclusion

In this section we introduced the basic concepts of internal controls and business process
management. By looking at other relevant regulatory requirements in the area of enterprise risk
management (ERM), we showed the common requirements for the existence of an effective, up
and running, internal controls system.

As a consequence of those requirements, we provide novel methods and solutions for realizing
effective internal controls on operative business processes. These methods rely on the fulfillment
of the following requirements:

� a functioning “Control Environment” of COSO in an enterprise
� a guaranteed top-down “Information and Communication”, meaning that the necessity

and responsibility for internal controls is communicated by management to the employees
� a set of selected significant accounts, relevant business processes for those accounts, and

assessed risks and controls proposed by compliance experts.
Given this, the methods and solutions provided in this thesis then address the following COSO

components:
� Control activities: Design of controls on business processes
� Bottom-up Information and Communications: Issues and shortcomings are communicated

to management and responsible roles in an enterprise
� Monitoring: The operations of business processes are monitored for effectiveness of the

prescribed controls in daily operations.
We call a business process in such an environment compliant (Business Process Compliance)

and mean: explicitly compliant to regulations associated with ERM.
We further discussed relevant phases of business process management with regard to internal

controls. We discussed the difference between detective and preventive controls and how they are
related to the business process life cycle. We argued that an effective and efficient strategy for
achieving business process compliance should have a preventive nature, which supports
compliance by design in a business process, whereas detective controls represent a post-
compliance. The requirement for realizing a preventive nature of compliance is to capture the
entities involved in internal controls in precise formal models.

 51

 52

4 Domain Model for Business Process Compliance
In the previous chapter, we introduced basic concepts that are used in business process

compliance, namely internal controls and business process management. In this chapter we move
from a rather informal discussion towards more precise modeling of business process compliance
and the necessary artifacts for defining and achieving it. This chapter aims to provide a formal
framework in the form of a set of modeling entities, based on which the controls on business
processes will be define. The business process executions will then be validated according to
those controls.

For this endeavor a top down approach is used. First an upper model for business process
compliance is formally described by introducing some basic sets and the relations between them.
In the next step we concentrate on a part of the upper model, namely the relationship between
controls and business processes. We introduce the reference model that we propose in this thesis
to ensure the effectiveness of controls in business processes. The reference model sets different
phases in business process and internal controls management in relation to each other. These
phases should support the effectiveness of controls in business processes. The reference model
proposes to use a verification and validation approach to ensure the effectiveness of controls in
business processes: Business process verification ensures that a business process model is
deigned as required. Validation ensures that business processes work in daily operations as
required by the controls through validating the business process executions.

In order to define controls on business processes, the notion of controlled entities will be
introduced. They are the entities in a business process that are controlled by a control during
execution time of business processes. The role and position of the controlled entities in a business
process must be precisely captured. Controlled entities are further used as artifacts serving the
modeling of a control. Chapter 6 will present a control model that can be designed on business
processes building on top of the controlled entities described in this chapter. To support the
readability of the formal descriptions and their relationships, an object-oriented approach is used
in the endeavor to describe models: With the unified modeling language (UML) providing a
modeling set of constructs there exists a language adequate for capturing the structural
complexity of the models represented on a static level. We use basically the structural features of
UML in terms of class diagrams.

In summary, the objectives of this chapter are three-fold:
1. To establish a reference model for supporting controls in business processes
2. To construct a formalized repository of business process models building on top of the

controlled entities, on which a control will be designed.
3. To construct a formalized repository of business process instances building on top of the

controlled entities, which must behave as required by the controls.
In section 4.1 we give a formal definition for the upper model of business process compliance.

The definition is exemplified by the situation of the use case companies presented in chapter 2. In
this section we introduce the interconnection of business process and internal controls
management in terms ofthe reference model for supporting the effectiveness of controls. Section
4.2 introduces the controlled entities (CEs) in a business process. Here a model of business
process, consisting of the controlled entities and their relationships to each other, is motivated
and formally described. In section 4.2 we further develop the necessary artifacts that are required
to assure the effectiveness of a control during execution of business processes (business process
instance). We conclude this chapter by discussing the related work (section 4.3). Here we

 53

compare the related research in the area of integrating risks in business processes (section 4.3.1).
In sub-sections 4.3.2 and 4.3.3 a detailed discussion of current business process modeling
approaches is provided, along with a comparison of these to our proposed model of business
process capturing the controlled entities.

4.1 Formal Definition of Business Process Complianc e

In the following, the logical relationships between the first class entities identified and
exemplified by the scenario (see chapter 2) are captured. The core elements of the formal
definition of the upper model for business process compliance are: a set of significant accounts
(ACCOUNTS), a set of risks (RISKS), the set of relevant business processes (BPS) in a company
and a set of controls (CTLS) on the business processes (see Figure 11). A system responsible for
business process compliance must contain the given sets and implement the relationships
between them as shown in figure 11.

Figure 11 The involved entities and their relationships in business process compliance

Definition 4.1: Business Process Compliance Definition (BPCD)

A tuple BPCD = (ACCOUNTS, BPS, RISKS, CTLS, isRelevant, controls, effectivityRequires,
mitigates, isAssigned, riskAssessment, interdepends, contradicts) is called the Business Process
Compliance Definition, in which:

� ACCOUNTS is a set of significant accounts
� BPS is set of business processes
� RISKS is a set of risks
� CTLS is a set of controls
� isRelevant ⊆ BPS × ACCOUNTS is a relation that maps relevant business processes on

siginificant accounts.
� controls is a total function CTLS → BPS.
� effectivityRequires ⊆ CTLS × BPS is a relation between the set of controls and relevant

business processes.
� mitigates ⊆ CTLS × RISKS is a total function
� isAssigned ⊆ RISKS × BPS is a relation between risks and relevant business processes.

� riskAssessment ⊆ (BPS,
RISKS2 , CTLS) is a set of tuples of type (bps, rk, ctl), where

bps ∈ BPS, rks ∈ RISKS2 and ctl ∈ CTLS.

 54

� interdepends ⊆ CTLS × CTLS is a relation, which identifies those controls depending
on each other.

� contradicts ⊆ CTLS × CTLS is a relation, which identifies those controls contradicting
each other.

The description of each of the relations in the above definition is as follows and they will be

exemplified in next sub-section:
� controls delivers the set of controls that are required for a business processes
� isRelevant delivers relevant business processes on significant accounts
� effectivityRequires delivers business processes that are necessary for the effectiveness

of a control
� mitigates delivers the risks for which a control exists.
� isAssigned shows the risks that have been identified for a business process
� riskAssessment is a relation that represents for each business process its risks and the

controls mitigating them. This relation reflects the result of achieving COSO’s Risk
Assessment component (see section 3.1.2.2.2)

� interdepends is a relation between those controls that must be be defined together on a
business process, because they depend on each other

� contradicts is a relation between those controls that are not allowed to be defined
together on a business process, because they contradict each other.

The domain-specific-knowledge required for the internal controls compliance for business
process reflected in BPCD (Definition 4.1) is determined by following sources:

� Analysis of non IT-related COSO framework as a de-facto standard for realizing the
internal controls compliance recognized by regulation bodies and compliance/auditing
experts

� Analysis of Accounting Standards of the Public Company Accounting Oversight Board
(PCAOB) [PCAOB04], which has also ratified COSO.

� Participation in internal controls compliance projects.

4.1.1 Scenario Revisited
In the following each relation that occurred in BPCD (see Definition 4.1) is shown graphically

using the two use cases of the scenario (see chapter 2).
The relation isRelevant in the case of CustomerA (see section 2.3) is shown in Figure 12. The

procurement (in the case of CustomerA, the purchasing business process) and its sales business
process are relevant for significant accounts Inventory and Receivables.

 55

Figure 12 Example of Relation isRelevant in case of CutsomerA

Figure 13 exemplifies the function controls and the relation effectivityRequires in the case of

CustomerA. Controls CA1, CA2, CA3 and CA4 (see section 2.3) are defined for the procurement
of CustomerA (its purchasing business process), whereas the control CA4 requires RfQ-sub-
process for its effectiveness (see section 2.2.5).

Figure 13 Function controls and relation effectivityRequires in case of CustomerA

Relation interdepends is exemplified in Figure 14 using the use case of CustomerA. Controls
CA1 and CA2 depends on CA11 to be effective and CA11 depends on CA12.

 56

Figure 14 Relation interdepends for CustomerA

Figure 15 shows the risks that were identified in the purchasing business process of
CustomerA.

Figure 15 Relation isAssigned: Risks that are identified in the Procurement of CustomerA and
CustomerB

Figure 16 exemplifies the relation mitigates for some of the controls that were defined for
purchasing business process in case of CustomerA and CustomerB: In the case of CustomerA
control CA3 mitigates the risk of “Accepting Quotations from first supplier” and CA4 mitigates
the risk that “Approvals take too long”. In the case of CustomerB controls CB1, CB2 and CB3
are all required to mitigate the risk that “Unauthorized purchases could be executed”.

 57

Figure 16 Relation mitigates in case of CustomerA and CustomerB

The exemplification of relation riskAssessment in the case of CustomerA is illustrated for
reason of better readability in the form of a table instead of a figure, as was the case for previous
relations. The table has the following form: The first column contains a list of relevant business
processes, the second column contains for each entry in the first column a list of risks, and the
third column contains a control for each entry in the first column. One row of the table is
illustrated as an example in Table 7. A company must present such a table (with rows for all of its
relevant business processes) to external auditors.

Table 7 Example of a Risk Assessment entry for CustomerA (riskAssessment relation)

Business
Process

Risks Control

Procurement Accepting quotation from first supplier CA3

Risk of selecting low-quality goods

Risk of having only one supplier

4.1.2 Selected Method for supporting the relation controls
We concentrate on the realization of the relation controls in BPCD (Definition 4.1) between

business processes and the existing controls in a company. We propose a hybrid approach based
on business process verification and validation.

Business process verification (see section 3.2.7) is used to check the process model according
to a given business level specification. Since a pure design-time approach – as discussed in
section 3.3 – is not sufficient, our approach supports the compliance validation of business
processes executions. This is achieved by monitoring business process executions in order to
check whether business process instances violate any previously designed controls.

We require the existence of the set CTLS (introduced in Definition 4.1), which means that the
task of enterprise-specific interpretation of a regulation in the area of enterprise risk management
(ERM) remains that of the compliance experts. Their domain-specific knowledge is necessary to
interpret a regulation for an enterprise. Based on that interpretation (Determining of significant
accounts, risk Assessment, etc.), the compliance expert proposes a set of necessary controls to
mitigate the enterprise-specific risks. Based on the proposed set of controls by the compliance

 58

expert, the business process instances will be visited and checked during execution time (see
Figure 17).

Figure 17 Compliance expert identifies and provides a set of controls

In Figure 18 our overall method as the interconnection between business process and internal
controls management is presented. The bold arrows show the flow between different phases in
business process and controls management. The dashed arrows represent the way the roles
involved in business processes compliance are involved in different phases of business process
and controls management. The two domains are formulated by different stakeholders and have
different lifecycle phases. On the one hand the design of controls will impact the way a business
process is executed. The test of controls carried out by control testers (under the supervision of
compliance experts) may lead to (re)design of existing controls or to the definition of new
controls. On the other hand, a (re)design of a business process causes an update of the risk
assessment, which may lead to a new/updated set of controls. Additionally, business process
monitoring will support the validation of a business process, which assesses the effectiveness of
internal controls on business process executions. The result of the validation will serve as an
input to internal controls certification.

 59

Figure 18 Selected Method: Verification and Validation of Business Processes

4.2 Controlled Entities in Business Processes

In this section we introduce the concept of controlled entities in a business process, formally
define them and present their position in a business process that is subjected by a control.

A control influences different dimensions of the way business processes are enacted, namely:

� The execution order and occurrence of its activities
� The Business Documents involved (including their attributes such as amount etc.) and
� The Users including their roles performing any action in a business process.

Each of these dimensions contains entities that are subjected to controls. We call such an entity
a Controlled Entity (CE). In order to develop a clear understanding of the compliance
requirements on business processes, we must create a precise model for the business processes
and identify the position of the controlled entities within them. In focus are operative business
processes such as Purchasing, Sales, Human Resource Management etc, which can be IT
supported using workflow technology. In the following sub-sections such a model for business
process is introduced and formally defined, based on its controlled entities a control will be
designed.

4.2.1 First Class Entities in Business Processes
In order to provide a modeling approach for controls in business processes, a precise model of

a business process, including the entities that can be used to design a business process together
with the relationship between them, has to be developed. A control can then be modeled on top of
such a model. Current approaches in support of business processes (their design, implementation
and execution, see section 3.2) can be viewed from one of the following perspectives, upon
which they focus:

� Activity-based perspective: tends to emphasize the activities in a business process as
the dominant dimension. The activities produce, consume or transform information
according to a set of rules

� Information-based perspective: emphasizes the information dimension by considering
an activity in a business process as an operation that is triggered by a change of
information

Most business process systems [Georgakopoulos et al, 1995] support a modeling approach
with focuses on the first perspective, namely actions taken to achieve a certain “business
objective” (also referred to as “activity-oriented” or “verb-centric”). Thus, in these cases a
business process model must be described as a flow of activities. In real life business scenarios

 60

the process model descriptions should also capture what is enacted on during enactment of a
business process by describing the models of the business documents that matter to the business
(for instance a Purchase Order document, an Insurance policy document etc).

Describing the process models purely by the business documents involved is called
“document-oriented” or “noun-centric” and is related to the information-based perspective of
workflow systems. This approach is mainly concerned with dependencies between data used by
activities and deriving process flow based on such dependencies. The work in [Müller et al.,
2006] showed that the available dependency information is usually insufficient for the generation
of process models. It also showed that it could be difficult to determine the dependencies of a
large number of data objects.

We believe that in order to be able to reflect real-life business scenarios as precise models, for
which compliance requirements in terms of controls as formal models can be defined, a sensitive
mix of both the document- and activity-oriented approaches is required. This can also be
ascertained when studying the Hammer’s Framework [Hammer, 2004], which employs seven
dimensions to describe how work is coordinated to achieve operational and strategic business
objectives. The notion of “work” mentioned in that work is in our point of view the operational
business processes in enterprises. As we can see in Table 8 each dimension can clearly be
assigned to the scope of activities or business documents. We have assigned the fourth dimension
“who performs the work” to the scope of activities: the question raised in this dimension
motivates us to ask which role the users play in a business process model and how their
interrelationship to business documents and activities can be described. Our interpretation is as
follows: Users enact activities on business documents. We will detail this relationship later in
section 4.2.2.3.

Table 8 Hammer’s View on work achieved reflected in business processes

Dimensions of Business Process Reflection
Which results does the work deliver? Business Document

Which information does the work require? Business Document

How thoroughly is the work performed? Business Document

Who performs the work? Activity

Where is the work performed? Activity

When is the work performed? Activity

Which work is not performed? Activity

Based on the mapped dimensions on business documents and activities proposed by Hammer
we can see that neither a pure activity-flow nor document-centric approach for designing business
processes is sufficient to describe the models of operative business processes. This is due the fact
that both activities and business documents are reflected in different dimensions of work as
presented by Hammer. Referring back to the scenario of purchasing business process (see section
2.1), the same fact can be recognized: business documents (such as Purchase Requests and
Orders, Goods Receipts) together with activities (such as approving or rejecting them) were the
entities that constituted the business process.

At the same time compliance requirements in business processes, in terms of internal controls,
constrain the behavior of such entities in business processes. For example the presence of control
CB2 at CustomerB (Segregation of Duties on Purchase Order Creations and Approvals with an

 61

amount higher than 10000 $ for certain material types, see section 2.3.3) forced the business
document PurchaseOrder and the activities related to its creation and approval in the purchasing
business process behave in a special way at CustomerB, while the non-existence of the control
CB2 at CustomerA leads to another behavior of those business documents and activities.

In the following sub-section a model satisfying the above discussion, called Business Process
Definition, is presented. The controls will be formally defined in chapter 6 based on the entities in
the business process definition.

4.2.2 Business Process Definition
In the following we introduce the Business Process Definition (BPD). It represents the defined
business model of an operative process in an enterprise. First we use the class-diagram of UML
notation to present a model of BPD, then we successively detail its controlled entities relevant for
business process compliance.

The model of BPD is represented in Figure 19. In our meta-model the first class entities in a
BPD are Activity, Role, Business Document (BD), and Transition.

Figure 19 Business Process Definition (UML Notation)

A business process designed according to business process definition BPD consists of at least
two activities (Begin and End denoting the beginning and the end of a business process) and one
BD. Each activity and BD can be reused in different BPDs. An Activity has access to a certain set
of BDs, where a BD must occur in the context of at least one Activity. Furthermore each Activity
has a transition and a BD may also have a Transition. Each transition is unique to a BD or
Activity. In a BPD there exist one or several roles. A Role enacts a set of activities inside a BPD.
The high level description of the entities is as follows:

Business Document

A BD is a self-contained type representation of a unique business level entity, which is used in
daily operations. BDs are processed in a business process in order to achieve a certain business
goal. Beyond an internal structural model and a set of methods, which expose the functionality of
the BD to the outside world (clients), a BD has a life cycle, which is described by its according
transitions. As will be later described, the life cycle of a BD in terms of its transitions is unique
inside a customer enterprise. From the point of view of a standard software provider, a BD can
have different sets of transitions, which is due to the fact that the business models of customer

 62

enterprises differ one from the other. Examples for typical BDs are “Purchase Order”, “Sales
Order”, “Insurance claim” etc.

Further, a description of how these documents are processed by the transitions, i.e. which
states they go through to achieve a specific “business objective”, is necessary. For instance, the
roles involved in purchase order processing will update the purchase order business document in
the course of the purchasing operations. The purchase order business document thereby has a life-
cycle starting from its creation in some operational department, receipt by the purchasing
department, possible its validation by the controlling department and upon delivery of goods, its
closing and archiving. As we saw in our scenario, the design of such a business document can be
too coarse-grained to be used on daily operations, which leads to dividing such a business
document into several business documents with their own life cycles and attributes (such as
Demand, Purchase Request, Purchase Order, Goods Receipt etc.).

Activity

An Activity represents significant business-level progress during the execution of a business
process. One could also refer to an activity as a business process step. As mentioned before, BDs
are processed, which means that an activity reads a set of BDs, may modify those BDs, and may
create new instances of other BDs. This is achieved by invoking several methods of BDs inside
an Activity. The relations between activities is designed by the transitions between them. Further,
an Activity may be aggregated by other activities. In such a case an activity itself is a “sub-
process”.

Role

A Role is a job function within the context of an enterprise which is designed into a business
process.A Role is a job function within the context of an enterprise in which the business process
(its definition) is designed. It has some associated knowledge captured about the authority and
responsibility conferred on a group of persons assigned to the role. Being assigned to a Role in an
enterprise means an approval to perform an activity that can affect one or more BDs.

Transition

A Transition is a modeling entity that describes the state change for a BD or the progress
between activities in a business process. Given a set of activities and BDs in a BPD, there exist
special coordinating transitions specifying which activities are to be executed on which BDs. The
concept of transition is required for two reasons: i) it is used to describe the notion of “activity-
flow” in a business process (also called “control-flow” in activity-oriented workflows) ii) it is
used to capture the state change of a business document in a business process, i.e. the state-flow
of a business document in a business process. An example of the state-flow of a business
document captured by a transition would be a purchase order business document that is in
approved state and later becomes ordered. In our conceptual model for business process, the flow
of activities and business documents states are captured by transitions.

Based on the above entities a formal definition for BPD is given:

Definition 4.2: Business Process Definition (BPD)
A Business Process Definition is a tuple BPD = (BDS, ACTIVITIES, ROLES, TRS, start, end,
enacts reads, modifies, creates) in which:

� BDS is a set of Business Documents
� ACTIVITIES is a set of activities over BDS

 63

� TRS is a set of Transitions over BDS and ACTIVITIES
� ROLES is a set of roles
� start and end are each a total function from BPS (see Definition 4.1) to ACTIVITIES:
 BPS → ACTIVITIES)

� enacts ⊆ ROLES × ACTVITIES is a relation between roles and activities
� Relations reads, modifies, and creates are each a subset of ACTIVITIES × BDS.

The definition of business process models according to BPD allows us to capture real life

business process scenarios as they are found in industrial operative environments, because it
contains several dimensions of work as described in Hammer’s Framework (see section 0). The
concept of BPD will be compared in detail to the related-work in section 4.3.2.

The controls will be defined on business process models and designed according to BPD (see
Definition 4.2). Each of the entities occuring in Figure 20 is a Controlled Entity (CE) in a
business process, where the relation between a User and the other relevant entities in a business
process will be described in section 4.2.2.3.

Figure 20 Controlled Entities

Definition 4.3: Controlled Entity (CE)
A Controlled Entity for a business process can be one of the following entities in a business
process:

� Transition
� Business Document
� User
� Role
� Control

 Thus it is important to develop a detailed understanding of each of the above entities that are

subject to business process compliance. In the following sub-sections we are concerned with
controlled entities of transition, business document, role and user types in BPD. A model of the
controlled entity of type Control will be presented in detail in chapter 6. A control itself is
considered as a controlled entity in a business process because if a control is not effective in a
business process, i.e. its violation does not affect the business process executions, the enterprise
runs the risk of being non-compliant. Thus the main task of compliance experts is not only to
design the controls but also to assure their effectiveness. This situation was discussed in section

 64

3.1.1 and recognized in our selected method for achieving business process compliance by
separating the roles in compliance from that of business process expert (see Figure 18, section
4.1.2).

The required controls for business process compliance will be defined on business processes
that are contained in a repository of business process models at a company. The definition of
such a repository is straightforward:

Definition 4.4: Business Process Repository (BPR)
A business process repository BPR is a set of BPDs.

We conclude the introduction of BPD by a visualized example for the BPD of Goods Receipt

(GR) Processing, as introduced in the scenario-chapter (see section 2.1.3).

Example 4.1: Goods Receipt Processing according to BPD
Goods Receipt Processing designed according to BPD is visualized in Figure 21. The figure
contains 3 sets: ROLES, ACTIVITIES and BDS (see Definition 4.2). The relation between the
elements of the sets (enacts, reads, etc. as they were introduced in Definition 4.2) is shown as
arrows between the elements. In the figure, the roles are shown only at an organizational-unit
level (Logistics L, Material Management M and Accounting A). A role can itself represent a role
hierarchy, which represents the different roles inside an organizational unit. Further, only the
relations: enacts, creates, reads, and modifies are represented. The relations: start and end are
obvious and the interplay of Transitions will be formally defined later in sub-section 4.2.2.1.)

Figure 21 Visualization of the business process definition for Goods Receipt Processing

4.2.2.1 Business Documents, Activities and their Tr ansitions
Below we discuss in detail the interrelationship between business documents and activities in

our model, which together with their transitions build the key notions of a business process
definition. An overview of the definitions in this sub-section is given in Figure 22. These entities
and their interrelationships will be used in chapter 6 for the modeling of compliance
requirements, i.e. control modeling.

 65

Figure 22 Model of Business Document, Activity and Transition (UML Notation)

We assume the existence of the following pair wise disjoint sets:
� PCD a set of primitive core data types
� ACTVITIES a set of activity names
� BDSN a set of business document type names
� ATTRIBUTES a set of attribute names
� STATES a set of business document states names
� STATEVALUES, a set of state values
� IDS is a set of unambigious identifiers of core data type ID.

The requirements for having pair wise disjoint sets listed above basically force the
unambiguity of the business document names and activity names in a system, i.e. they assure that
there exist no two business documents in which activities have the same name. The same applies
to the attributes, states, their values, and the identifier of a business document.

In the following we define the state model of a business document:

Definition 4.5: State Model (SM)
A State Model is a tuple SM = (S, SV, initialStateValue, finalStateValues, assignStateValues),
with

� S ⊆ STATES

� SV ⊆ SSTATEVALUE2 , is a finite pair wise disjoint set of STATEVALUES sets
� initialStateValue ⊆ S × SV is a relation that specifies for each s ∈ S an unique initial

state value
� finalStateValues ⊆ S × SV is a relation that specifies for each s ∈ S a set of possible

final state values

 66

� assignStateValues ⊆ S × SV2 maps each state name on a finite set of possible state
values.

Example 4.2: An excerpt of the state model (SM) for the business document of type Purchase
Order (PO) is visualized in Figure 23. It represents only an excerpt of the possible status names
(state variables) and their values. A PO can be (among others) in states of APPROVAL,
ORDERING, POCNFM (Purchase Order Conformation) etc. Its APPROVAL state for example
may be not decided (Not Approved or Awaiting), Rejected, Approved etc. We will not attempt to
provide a complete state model for PO, i.e. all its possible state names and their possible values.

Figure 23 An excerpt of state model for purchase order business document (PO)

The controlled entity of business document type necessary for business process compliance is
defined in following, where ran (r) represents the range of a relation r between sets X and Y with
ran (r) = {y: Y | ∃ x: X ∧ r (x, y)}.

Definition 4.6: Business Document Type (BDT)
A Business Document Type is a tuple BDT = (bd, A, header, items, COMMANDS, type, SM),
with

� bd ∈ BDSN
� A ⊆ ATTRIBUTESRecovery ACTION
� header, items ⊆ A, where header ≠ ∅
� COMMANDS, is a set of action names that can be invoked in the business document
� type: A × PCD ∪ BDSN, where PCD is the set of primitive core data types and BDSN is

a set of business document type names. We say that a business document type bdt’ is
referenced in business document type bdt, if bdt’ ∈ ran (type) ∧ type(a) ∧ a ∈ A.

� SM is a state model

 67

The definition above specifies a business document type with an unambiguous name bd, a set
of attributes, a state model SM, and a set of actions (COMMANDS) that a business document
provides. A command belonging to COMMANDS of a business document type represents a
possible life-cycle action specific to that business document type that can be performed on that
business document. An example of a command possible for a business document of type Invoice
would be Confirm Invoice or a command Check PO for a business document of type PO. The
header and items attributes refer to two special sets of attributes, which are integrated in the
definition to emphasize the necessity of their being a first class entity for business document
types. A header contains additional meta-data information about the business document that
further specifies its business document type. Items, if existent, is a collection of attributes which
reference other business documents and core data types in the system. This is achieved through
the introduction of the relation type, which relates each attribute of the business document
(including its header and possible items) to any data types in the system. By doing so, the
specification allows to flexibly build new business documents based on an already existing set of
core data types and other business document types in the system. This is basically following the
paradigm of Object-Oriented-Design (OOD) and the composition and aggregation mechanisms
therein. The life cycle of a business document is specified by the state model SM it may go
through. The Transitions of a business document will build on top of this state model, which we
will elaborate upon later. As we will see, the states of a business document reflect the steps a
business document may undergo (in an enterprise) during a business process, (eg. a purchase
order may be: created, approved, declined etc.).

Instances of business document types can be created during execution of business processes,
which are defined as follows:

Definition 4.7: Business Document Instance (BDI)
A Business Document Instance (BDI) of a BDT (as defined in Definition 4.6) is a triple BDI =
(id, CURRENTSTATES, value), with

� id ∈ IDS
� CURRENTSTATES ⊆ STATEVALUES is the set of the current values for each state s ∈

S of the according business document type
� value: (A × IDS) × RI is a partial function, which assigns each attribute in A (including

the header and items) to an element of the possible values (instances) in BDSN ∪ PCD
(RI is defined in Definition 4.9)

The definition of a business document instance captures the notion of “object instantiation” as

known from the OO-Paradigm. An instantiation of a business document type generates an
unambiguous instance of that business document (given through its id ∈ IDS). The attributes in
the business document types may have a value (value is a partial function) and a business
document instance has a set of states and a certain progress of the business document life cycle in
a business process.

Notation: By value(id, a) = b we denote the value b of an attribute a ∈ A referenced in the
according business document type with an instance identification id.

Discussion: The definition above intentionally leaves open the question of how exactly to
instantiate a certain business document type. It is purposefully not specified which attributes must
have a value after the instantiation. In this respect we must remain abstract because we consider

 68

the instantiation procedure of a business document type to depend on the type of business being
discussed. We leave it to the implementation level of a business process (see section 3.2.3),
because of two reasons: Firstly, the instantiation of a business document type (for instance a
purchase order) will be different from the instantiation of a business document type goods receipt
(GR) especially with regard to which attributes of those business documents must have a value
after the instantiation. Secondly, and closely related, is the fact that the instantiation (the set of
required assigned values) of one same business document type is enterprise-specific. It is for this
reason that a standard software provider (Deliverer of Business Document type repository) will
include as many attributes as possible/known into the specification of a concrete business
document type without further specifying its concrete implementation with regard to
instantiation. Instantiation will then happen at the customer enterprise: this is called
Customization or Business Configuration. Such a strategy enables a standard software provider to
serve different customers with the same set of business document types. As an example,
remember the modified Control CB41 of CustomerB from the scenario chapter: the requirement
for the technical realization of this control was that the GR Business document type must contain
an additional attribute order-number copied from the according PO. This attribute was not
necessary for CustomerA’s model of the business document type GR since the control was not
necessary for CustomerA. The EAVendor, aware of the different customer requirements, would
include this attribute in the business document type GR without specifying it as mandatory, in
order to keep the Business Document type as flexible and reusable as possible at different
(customer) enterprises. One could argue that the introduction of identifiers “optional” and
“mandatory” in the specification of the partial function value would be necessary, but we made
the decision to stay generic at this stage of the specification in order to remain as reusable as
possible on the conceptual level.

Example 4.3: Business Document Instance of Purchase Order (PO)
Figure 24 partly illustrates an instance of the business document type PurchaseOrder.

Figure 24 An instantiation of business document type purchase order

The notion of business document repository has been mentioned. Such a repository is normally
provided by a standard software provider (such as EAVendor) to its customers. The customers
can select business document types from such a repository and implement their enterprise-
specific instantiation of the business document types in their business processes. The formal
definition of such a repository is as follows:

 69

Definition 4.8: Business Document Repository (R)
A business document repository is a finite set R of business document types, such that

∀ bdt, bdt’: BDT, att ∈ A ∧ type (att, bdt’) ⇒ bdt ∈ R ∧ bdt’ ∈ R

The definition should assure that every business document type referenced in R also occurs in

R. This property assures that a customer implements its business processes on top of a predefined
set of business document types. During the execution of business processes, a set of business
document instances are instantiated and available to be processed. They are contained in a
business document repository instance, which is defined below.

Definition 4.9: Business Document Repository Instance (RI)
A business Document repository instance RI of a repository R is a mapping instance that assigns
each business document type in R a finite set of business document instances.

An instance RI of repository R represents the set of business document instances which

currently exist (already created, modified, or can be read by activities).

Example 4.4: Business Document Repository and its instance
Consider a simplified set of business documents involved in the purchasing process (see Figure 5
in chapter 2). The R (see Definition 4.8), RI and instance (see Definition 4.9), the function type of
the business documents (see Definition 4.6) and value-function of the business document
instances (see Definition 4.7) of such a model are visualized in Figure 25.

Figure 25 Example of a Business Document Repository (R) and its instance(RI)

The notion of statements defined below is introduced in order to enable us to define an activity.
An activity is not only specified through the business documents it consumes (creates, reads, or
modifies), but an activity definition also specifies which conditions have to be satisfied before an
activity can be enacted. Further with the help of statements we design possible effects of an
activity (on a set of business document instances). In this way it becomes possible to specify the
flow of activities in a business process.

Definition 4.10: Statement
A statement on a repository instance RI of a repository R is one of the following:

� a predicate ASSIGNED(bdi, a), which returns TRUE if for the business document
instance bdi the value of its attribute a returns a business document instance in RI.
Formally:

 70

 ∀bdt: BDT, bdi:BDI, a ∈ A ⊆ ATTRIBUTES ∧ instance (bdt, bdi)
 ∧ ASSIGNED (bdi, a)

⇒ value(bdi, a) ∈ RI ∧ a∈ RI
� A predicate EQUALS (bdi, a, b), which returns TRUE, if ASSIGNED (bdi, a) is TRUE

and value (bdi, a) = b.
� GREATER, GREATER_EQUALS, SMALLER, SMALLER_EQUALS are each predicates

which take following parameters as input (bdi, a, b) and return TRUE, if the predicate
ASSIGNED (bdi, a) is TRUE and a is greater (or equals) respectively smaller (or
equals) than b.

� predicate NEW(bdi,a), which returns TRUE if for the business document instance bdi
the value of its attribute a returns a business document instance not in RI. Formally:

 ∀bdt: BDT, bdi:BDI, a ∈ A ⊆ ATTRIBUTES ∧ instance (bdt, bdi)
 ∧ ASSIGNED (bdi, a)

⇒ value(bdi, a) ∉ RI ∧ a∈ RI

� predicate STATE(bdi sv) (state statement) returns TRUE, if the current state of a
business document instance bdi has the state value sv, where STATE ∈ S and sv ∈
STATEVALUE . S is a set of states belonging to a business document type bdt ∈ R.

The business document instance bdi is initial if for all state values CURRENTSTATES of that

instance it is TRUE they are in an initial state and there exists some attribute att of a bdi for
which the predicate NEW(bdi, att) returns true.

Definition 4.11: Condition
A condition is a conjunction or disjunction of statements (Definition 4.10) and negated
statements. An effect is a conjunction of stateless statements, i.e. it contains no statement of the
form STATE (bdi, sv). A precondition is a conjunction of stateless statements and without any
statement of the form NEW(bdi, att).

We now introduce the formal definition of an activity:

Definition 4.12: Activity
An activity over a repository instance RI is a tuple activity = (name, readBDI , ifyBDImod , P,

createE , ifyEmod), such that:

� name ∈ ACTIVITIES is the activity name
� readBDI ⊆ RI is a set of business document instances to be read

� ifyBDImod ⊆ RI is a set of business document instances to be modified, with

readBDI ⊆ ifyBDImod and ifyBDImod = ∅ allowed

� P is a precondition
� createE is an effect, which contains only non-negated NEW-statements

� ifyEmod is an effect, which contains negated or non-negated ASSIGNED-statements.

An activity modifies RI, if

� ifyBDImod ≠ ∅ and

 71

� there exists a set m of attributes of a business document instance bdi, for which the
attribute att the statement ASSIGNED(bdi,a) occurs in ifyEmod of the activity and

� for those attributes m the values of some attributes att in m are modified after the
activity is enacted.

An activity creates a business document instance bdi in RI, if

� bdi ∉ readBDI and

� NEW (bdi’,a) is a statement in createE with value (bdi’, a) = bdi and

� ASSIGNED(bdi, a) is allowed in ifyEmod .

The introduction of two different effects (create and modify) allows an activity to create a
business document instance and at the same time to modify it.

Example 4.5: Activity Receive GR
(Notation: varName: att stores the current instance of att in attVar. attVar can then be reused in
another place in the activity specification.)

Activity Receive GR
� name = “Receive GR”
� readBDI ={po:PO}

� ifyBDImod = {po:PO}

� P = ¬ASSIGNED(po,GR) ∧ ASSIGNED (po, Supplier)
� createE = NEW(po,GR)

� ifyEmod = ASSIGNED (po,GR)

Description: The activity has the name “Receive GR”. It reads the business document instance po
of type PO. It reads this business document to determine the necessary information regarding the
order. The activity modifies that po (PO is element of BDI modify set). There are two statements
(simplified) that have to be fulfilled as precondition P of this activity: 1) No “Goods receipts”
exist already for that order (the attribute GR of po is not assigned and 2) a supplier does in fact
exist for that order (the attribute Supplier of po is assigned). The activity generates an initial GR
business document instance for the order by specifying NEW (po, GR) in the create effect.
Further the activity modifies the order in such a way that the order will contain an according
Goods Receipt (GR Attribute of it is assigned). The specification leaves open the implementation
of the business document instance creation (in this case GR), i.e. which attributes may be
assigned (See definition of initial business document instance in Definition 4.7).

Definition 4.13: State Change Command (SCC)
A State Change Command is a command belonging to the set COMMANDS of a business
document type (according to Definition 4.6) which changes the current value of a state name
belonging to a business document type. Formally, state change command for a business
document type is a tuple scc = (bdi, cn, F) with

� bdi being the business document instance on which the command has to be invoked,
� cn ∈ COMMANDS specifying the command name, and
� F being a non-negated state statement (as specified in Definition 4.10).

 72

Based on the state change commands and activities we now define the transitions of business
documents and activities that were used in Definition 4.2.

Definition 4.14: Transition
Given a set of activities ACTIVITIES over a repository instance RI, a transition is an expression
with one of the following forms:

� If c then invoke act
� If c then invoke scc

where c is a condition of statements over RI, act ∈ ACTIVITIES is an activity over RI, and scc
is a state change command for a business document instance in RI.

Using the transitions it is possible to describe i) the progress of a business process in terms of

the activities which have to be executed and ii) the life cycle of the business documents involved
in a business process.

Example 4.6: Transitions in Purchase Order Processing
Below (see Figure 26) we give two examples of the different types of transitions that occur in the
purchasing business process, namely in its Purchase Order Processing (see section 2.1.2).

In the first example (trs), the transition specifies that the activity Send PO will be invoked if
the approval status of an instance of the purchase order business document (po) is “Approved”
and an according purchase request for that po exists (the attribute PurchaseRequest is assigned in
the po instance).

In the second transition (trs’) it is specified that if a purchase order instance po has already
been sent to a supplier (the activity Send PO has assigned the attribute Supplier of the po) and the
APPROVAL state of the po is already Approved, then the ORDERING state of the po will be set
to Ordered. The transitions trs and trs’ are as followed:

trs: if APPROVAL(po, Approved) ∧ ASSIGNED(po, PurchaseRequest) then invoke “Send

PO” activity

trs’: if ASSIGNED(po,Supplier) ∧ APPROVAL(po, Approved) then invoke scc = (po,release,

F),
 where release is the name of the state change command and F = ORDERING (po, Ordered);

 The two transitions in the example above are visualized in Figure 26.

 73

Figure 26 Two Examples for Transitions (trs and trs’) in the Purchasing Business Process

The activities and commands that can be performed on a business document are herein
described as transitions between the activities and the status changes of business documents,
instead of a pure activity-flow-oriented definition of the process description as is the case in most
workflow approaches. The modeling approach selected in this thesis was chosen due to the fact
that with this model, the user has a variety of possible alternative activities at every stage in the
process’s progress. Upon choosing an activity to perform, the status of the business document
may be changed and another set of activities may become available, depending on the
preconditions of the activities available and the new state values of the business document states.
Modeling such a behavior in a pure activity-flow-oriented approach would lead to a process
model graph so vast as to be impossible to handle in most real life business processes. Modeling
the state model of business documents in UML State diagrams has two disadvantages: UML
State diagrams are not executable and the activity-flow aspect cannot be expressed via UML
State diagrams.

The activities and state change command (scc) invoked in a transition are mostly performed by
users in a business process. This is related to the notion of business tasks that appear in the task
inbox of a business user, and that have to be processed by that user. For instance a user can
accept a task, reject it, or assign it to another user etc. One could consider the transition as having
an execution life cycle in terms of a state diagram as well. We see the status model for workflow
steps done in [Casati et al., 1999] as suitable to be reused in our transition model.

4.2.2.2 An Execution of Business Process Definitio n: Business Process
Instance

In this section we are concerned with constructing a model of business process instance. A
business process instance represents an execution of a business process model designed
according to BPD (see Definition 4.2). The business process instances are collected in a
repository called business process repository instance (BPRI). The validation of business process
compliance, i.e. the effectiveness of controls in business processes, will be checked on the
process instances stored in a BPRI. The controls have been previously defined for business
process definitions contained in a BPR (see section 4.2.2, Definition 4.4).

In the following we introduce the definition of the entities required to build the repository of
business process instances. Figure 27 gives an overview of these entities.

 74

Figure 27 Entities related to Business Process Instance

The description and specification of each of the entities occurring in Figure 27 is as follows:

Upon the invocation of an activity or a scc in a transition (see Definition 4.14) a transition

instance will be produced. A transition instance is an already invoked transition. All transition
instances have some common attributes, which help to determine the current state of a process
instance. These common attributes are specified for a transition instance by the following
definition:

Definition 4.15: Transition Instance
A transition instance is a tuple trs = (id, usr, rle, start, end, ref) in which:

� id ∈ IDS identifies the current instance of a transition
� usr ∈ USERS is the user, who has caused the invocation of the transition
� rle ∈ ROLES is the role of that user
� start and end are each of type DATE ∈ PCD (primitive core data types), which is a core

data type. Respectively, they identify the beginning and the end of the time that the
current transition instance took to complete

� ref ∈ IDS refers to the transition type of the current transition instance.

All that remains is to specify the execution of a BPD itself, a business process instance. Based on
a business process definition according instances can be created, started and executed. The
execution then relates to fulfilling the business objective of a business process. Although a
business process instance adheres to a defined business process definition, different business
process instances can vary according to the different transitions taken during their execution and
the actors involved in fulfilling the business objective for which the business process exists. As
explained in section 3.2.4, the state of a business process instance is reflected in the business
process context. The context of a business process instance acts as a container for all consumed
and produced information (in terms of business document instances) and the execution path of a
process instance. Before introducing the formal definition of a business process instance, we
formally introduce its context:

Definition 4.16: Business Process Context

The Context of a business process instance bpi is tuple ctx = (id,)(2 RIBDSN× , PATH) where:
� id ∈ IDS identifies the instance of a business process, to which the current context is

assigned

 75

�)(2 RIBDSN× is a set of business documents type names and their current instantiation in
bpi

� PATH is a set of transition instances, which have so far been invoked during the
execution of the bpi.

The second parameter in the tuple of Definition 4.16 acts as a set of key-value-pairs consisting

of business document type names bd ∈ BDSN and the according business documents instance bdi
in bpi. The current value of a certain business document instance can be acquired through its key-
name from the context (its second parameter) of a business process instance. Using the context a
business process instance can now be defined as the following:

Definition 4.17: Business Process Instance
A business process instance of a business process definition bpd is a tuple bpi = (id, start, end,
bpdId, ctrs, ctx), in which

� id ∈ IDS identifies the current instance of a business process
� start and end are each of type Date ∈ PCD. They respectively identify the beginning

and, in the case that the instance has been completed, the end time of the current
instance.

� bpdId ∈ IDS identifies the corresponding business process definition of the current
business process instance

� ctrs ∈ IDS refers to a transition. It marks the current position of the business process
instance.

� ctx is the context of business process instance.

It should be noted that a ctrs refers to a transition and not a transition instance. This implies

that the according activity or scc in the transition is still not invoked. Further, using the
information provided in a business process definition (including its transitions), it is possible to
calculate the possible set of transitions that a business process instance could take as the next
transition (next progress step in a business process instance which is at the position marked by
ctrs). In addition, the information provided by context ctx of a business process instance bpi
enables the complete determination of the current business document instances (i.e. their current
states and the values of their attributes) involved (produced and consumed) in the course of the
execution of a business process.

A collection of business process instances is a Business Process Instance Repository. Its
definition is now straightforward:

Definition 5.18: Business Process Instance Repository (BPRI)
A business process instance repository BPRI is a set of business process instances.

Controls will be designed on the elements in BPR (see Definition 4.4) and the effectiveness of
these controls will be assured in daily operations based on the elements in BPRI according to
Definition 4.17.

4.2.2.3 Role-Based Access to Business Documents an d Activities
As we saw in the scenario, some of the defined controls (controls CA4, see section 2.2.3, CB1,

CB2 and CB3, see section 2.3.3) were related to users (employees) and their roles in the use case
companies. We have also identified (in section 4.2.2) the entities User and Role as controlled

 76

entity (see Definition 4.3) types in business processes. In the current section we are concerned
with exposing these types of controlled entities occurring in business process compliance, and
exposing their relationship to business documents and activities. The model proposed serves as
an underlying meta-model to define controls on business processes which involve users and their
roles in their control definition.

In Figure 19, we only sketched the accessing of the activities in a business process, which is
represented through an enacts-relation between a Role in a business process definition and an
Activity. In the following we detail this relation in the business process definition (BPD) and the
Role-Based-Access to business processes in our domain model for business process compliance.

We basically apply the concept of role-based-access-control (RBAC) in an adapted form of the
RBAC-Model proposed by [Sandhu et al, 1996]. Below we first give a brief general
introduction of the RBAC Core Model, and then we apply it to our model.

Role-Based Access Control (RBAC) has become a widely accepted and well-known approach
for managing the authorization and controlling the access to modern systems. It regulates the
access of individual persons in an enterprise to the information and systems containing the
information on the basis of activities the users execute in the system. The core difference between
this and the user-based access systems is that instead of specifying all the activities each user is
allowed to enact, the access to activities is defined based on the authorizations specified in roles.
A role is usually a function used to categorize users within the organization, and is assigned to an
appropriated set of permissions by an administrator; a permission being an authority to perform
an operation/activity on one of the objects in the system. So when a user attempts to execute an
activity on a target object, the access control system only allows it to proceed if this user is
assigned the role(s) that includes the necessary permissions for that operation. The main benefit
of such an approach is the ease of administration and its scalability; if a user moves to a new
organizational unit with a new function within the organization, there is no need to revoke the
authorizations that the user had in the previous function and grant the authorizations that the user
needs in the new organizational unit; the administrator simply needs to revoke and grant the
appropriate role membership for the user.

According to the description above, the core RBAC model includes sets of five basic data
elements called users, roles, objects, operations, and permissions. The RBAC model as a whole
is fundamentally defined in terms of individual users being assigned to roles and permissions
being assigned to those roles. As such, a role is a means of naming many-to-many relationships
among individual users and permissions. In addition, the core RBAC model includes a set of
sessions where each session is a mapping between a user and an activated subset of roles that are
assigned to the user.

A user is defined as a human being. Although the concept of a user can be extended to include
machines, networks, or intelligent autonomous agents /services, the definition is limited to a
person for reasons of simplicity. A role is a job function within the context of an organization
with some associated semantics regarding the authority and responsibility conferred on the user
assigned to the role. Permission is an approval to perform an operation on one or more RBAC
protected objects. An operation executes some function for the user upon its invocation. The
types of operations and objects that RBAC controls are dependent on the type of system in which
it will be implemented. In our case, the RBAC objects are business documents produced and
consumed in a business process.

Below we apply the RBAC model to our business process definition model as introduced in
section 4.2.2, which is visualized in Figure 28. We call it RBAC4BPD.

 77

Figure 28 RBAC4BPD: Role-Based Access to Activities and Business Documents in Business
Process Definition

In RBAC4BPD a set of roles are assigned to an Organizational Unit. The general role
hierarchies taken from RBAC allow the user to map the structure inside an organizational unit
(like a purchasing department) and to map the existing roles into the model. Hierarchies are
commonly used for structuring roles to reflect an organization’s line of authority and
responsibility. Role hierarchies define an inheritance relation among roles. Inheritance has been
described in terms of permissions; i.e., r1 “inherits” role r2 if all privileges of r2 are also
privileges of r1. Below is the formal definition of RBAC4BPD:

Definition 4.19: RBAC4BPD
The RBAC for Business Process Definition is a tuple RBAC4BPD = (ORGUNITS, ROLES,
USERS, ACTIVITIES, BDS, uAssigned, ouAssigned, readPrms, createPrms, modifyPrms
,pAssigned ,rh), with

� the sets ORGUNITS, ROLES,USERS,ACTIVITIES,BDS
� uAssigned ⊆ ROLES × USERS, is a many-to-many relation, which assigns users to roles
� ouAssigned ⊆ ROLES × ORGUNITS is a total function ROLES → ORGUNITS, which

assigns each role to a single organizational unit

� readPrms, createPrms and modifyPrms =)(2 BDSACTIVITIES× , the set of read, create,
and modify permissions for activities on business documents

� pAssigned ⊆ ROLES × ACTIVITIES, a many-to-many role -activity assignment relation
� rh ⊆ ROLES × ROLES is partial.

The RBAC-permissions in our case are the union of read, modify, and create permissions on

business documents, upon which an activity will be allowed to enact. Thus the semantic between
the enacts-relation in Definition 4.2 and the pAssign-relation in RBAC4BPD (Definition 4.19) is
as follows: if a role enacts an activity, then a role assignment to that activity must exist and if the
activity creates a business document, the activity must have the permission to create that business
document etc.

 78

4.3 Related Work

Discussion of related work in this section is divided into 3 distinct parts:
In section 4.3.1 we discuss the research done in area of risks in business processes, which we

consider as related to section 4.1. In section 4.3.2 we compare related work for business process
models, which we consider as related to the model of business processes proposed in this chapter.
In section 4.3.3 our RBAC4BPD is compared with previous research in the area of role-based
access to business processes.

4.3.1 On Risk Management for Business Processes
The concept of risk is extensively discussed in literature and is subject to various definitions

depending on the domain of study.
From the financial perspective as discussed in [Markowitz, 1952], risk can be considered as

“variance of return”. From the project management perspective, risk is defined as a “measure of
probability and consequence of not achieving a defined project goal”.

Obviously, there are several types of risk, whereas in this work we consider the taxonomy of
enterprise risks as presented in Figure 29. The taxonomy is derived by the work done in [ERM06].

Figure 29 A taxonomy of enterprise risks [ERM06]

One interesting type withing the domain of business process compliance is the domain having
to do with operational risks. A commonly used definition of operational risk is “the loss resulting
from inadequate or failed internal processes, people or systems or from external events”
[BaselII08].

A risk may occur in the context of the internal strategy of an enterprise, can be defined due to
external factors prescribed by regulations, or can have elements of both. While controls monitor
the business processes and report the occurrence of a risk for a business process, an action can be
defined for each risk as a reaction to its occurrence. An action can adjust the strategic
management of an enterprise or may be operational in terms of causing the reengineering of the
business process. For a discussion on measurement of priority and frequency of enterprise risks
please refer to [ERM06].

[Bernard et al, 2002] have proposed a conceptual model of risk and define it as a probable
event and its impact on an entity: Given an initial state of an entity, probable events may affect
that entity during its evolution and cause deviations from the expected future states. Risk factors
may be concrete or abstract (endogenous or exogenous) and they are able to affect the likelihood
or the impact of events. The impact itself is defined as the effect of the event related to the entity
supporting the risk. An effect can be positive or negative.

 79

In our case, the entities in the above conceptual model of risks are operative business processes
affecting a significant account in an enterprise. A risk on such a business process is any probable
event which can cause some deviations on expected outcomes, in our case financial statements
asserted by an enterprise or the expected operative results of that business process, which are
reflected in the significant accounts of the enterprise.

Previous research by [Sienou et al., 2006a] has shown that an integration of risks and
business processes entails the following challenges:

� Domain-Specific-Knowledge: Risks for business processes are events which occur in a
given business context requiring domain-specific knowledge of that domain to identify
and manage. Thus it is difficult to transfer and reuse the results of risk management of a
certain business process on another business process or even on another organization
using the same business process.

� Risk treatment: It is expensive to identify the risk during operation of business
processes. In most cases it is required to review and reengineer the business process
models.

� Heterogeneity of Risks: Risks and events causing them are complex structures with
multiple interdependencies.

Thus it is desirable to find a smooth approach to integrate risks and their treatment into
business process models.

The work of [zur Muehlen et al., 2005] provides an appealing method for integrating risks
into business processes. The proposed technique for “risk-aware” business process models is
developed for EPCs (Event-driven Process Chains) using an extended notation. However, their
notation as introduced in that work is not able to capture all types of process-related risks. In
particular, it is not possible to capture risks related to process elements other than functions (see
[zur Muehlen et al., 2005]). As a more comprehensive model, which captures different types of
risks in the context of a process model, they propose a column-based notation, in which each risk
type is captured in a separate column next to the process model. However we consider the
proposed model for business process compliance in section 4.1.2 as a completion to the approach
proposed in [zur Muehlen et al., 2005], since that work does not explicitly state how a risk is
positioned inside the business process compliance domain and leaves the semantic link between
risks, business processes, accounts, and controls, open.

Similarly [Goedertier et al., 2006] present a logical language PENELOPE that provides the
ability to verify temporal constraints arising from compliance requirements on effected business
processes. Distinct from that work, the contribution of the definition of business process
compliance (Definition 4.1) in our work provides a precise model for business process
compliance that can be used in a model-driven approach to develop a system for managing the
business process compliance in enterprises.

[Sienou et al., 2006b] proposes a vertical and horizontal integration of risk management into
process management: Horizontal integration is concerned with applying the risk management in a
given process management phase in order to manage uncertainties or opportunities specific to the
current context. Vertical integration is about managing the information of risk management while
moving down in the process management lifecycle. Again, while we argue that the approach
proposed is valid, we consider it as orthogonal to the model of business process compliance and
the formal definition proposed in our work. We are concerned with formally capturing the model
of business process compliance in order to provide a formal specification of a system for business
process compliance. While we see the four elements (Account, Business Process, Risk, and
Control) as essential first class entities in such a model, the works introduced above only capture

 80

the interrelationship between risks and business processes including their management life
cycles.

4.3.2 On Modeling the Behavior in Business Processe s
A significant amount of work exists which proposes different approaches for modeling the

relationship between different artifacts (control flows and data) in business process models.
The most prominent models are the traditional activity-centric workflows such as [van der

Aalst, 1997][Basu et al., 2002][Georgakopoulos et al, 1995][Cubera et al., 2007] focusing on
control flow. Recently data-flow-driven workflows such as [Müller et al., 2006][Sun et al.,
2005] have received increasing attention. [Wang et al, 2005] propose document-driven
workflow systems where data dependencies and control flows are combined in the process
design. In their framework, activities (called business tasks) are defined using input and output
documents as well as constraints similar to business rules and policies. We extend the concepts
presented in the above works by the introduction of the business documents and by modeling
their state life cycles in terms of their transitions, which provide a general framework to group
“business level” data logically into a set of unique entities (Business Documents). In this way we
show how the activities that operate on those business documents are related to each other.

Very close to the concept of “Business Documents” is the entity “Business artifacts”, which
were originally introduced in [Nigam et al., 2003]. They define an artifact as a “concrete,
identifiable, self-describing chunk of information that can be used by a business person to
actually run a business”. Further “Artifacts are taken to be the only explicit information contained
in the business; that is, the set of business records represents the information content of the
business”. The key properties of business artifacts are:

� A business artifact consists of two parts: an enterprise-wide unique identity and self-
describing content.

� The content may be represented as nested name-value pairs.
� The identity of a business artifact cannot be changed.
� Consequently, an artifact cannot be split into two or more pieces, each of which has the

same identity (although a different artifact with the same content but different identity can
be created).

� The content of a business artifact can be modified arbitrarily; that is, values can be
modified and new name-value pairs can be added.

� Content can be copied from one artifact to another.
� New information from computation, external input, or any other source can be added to

an artifact.
We strongly agree with this definition and our formal model is widely aligned with the above

definitions and properties. The significant difference between our model and the above definition
is the way we see and accordingly designed the life cycle of a business document in terms of the
transitions on the state names and their values. While [Nigam et al., 2003] designs the states of
business artifacts as a fixed list of states (names), we design the life cycle of a business document
as a list of states where each state can have different values (Example: APPROVAL state can have
the values Not Approved, Rejected, Approved etc). This allows for a more flexible way of
defining business process models.

Another related thread of work is the product-driven case handling approach [van der Aalst et
al., 2005b], which addresses many concerns of workflows similar to ours, especially with respect
to the treatment of process context or data. The central concept for case handling is the case and
not the activities or the routing of the activities. The case is the “product”, which is manufactured,

 81

and at any time workers should be aware of the product. Examples of cases are the evaluation of
a job application, the outcome of a tax assessment or the ruling for an insurance claim. Central to
the concept of case handling are activities and data objects. States can be modeled on both
activities and data. Our process definition and a case are similar in many respects. Case-handling,
however, details the structure of the case using data objects that can be managed and updated
independently in various activities in the context of the case. We treat data as unique entities that
are updated within each activity. To maintain the proper granularity of business level operations,
we do not detail the business documents and the activities. Case handling is more concerned with
the case execution details by providing different states of activities, while we argue that the
activities and their states proposed there can only be applied to “tasks”, which mainly appear in
the work list of a business user. Our activities and their interrelationships with the business
documents and the transition model describe the behavior model of a system. Further the state
model of data in the case handling paradigm has a different semantic than our state life cycle of
business documents, which allows for a more flexible and practice-oriented (from perspective of
business users) modeling approach of business documents, their life cycle and interplay with
activities in a business process.

Another thread of related research significant to the concept of activities in our process model
is the “services” in Service Oriented Architecture (SOA). In particular we consider Web Ontology
Language for Web Services (OWL-S) [Martin et al. 2004] as a relevant development in this area.
OWL-S provides an ontology to describe Web services semantically in order to compose them
together into business processes. In our model an activity is roughly described by the business
documents it reads and the business documents it modifies or creates. It is then expressed by
preconditions and effects. Similarly, a “service” in OWL-S has an input, an output, a
precondition, and conditional effects. Here we discuss the OWL-S model and compare it to our
approach:

OWL-S is an ontology-based approach for the semantic description of Web services. It
encompasses efforts to populate the web with content and services having formal semantics. The
ultimate goal of OWL-S is to provide an ontology that allows software agents to discover,
execute, and compose web services to business processes in an automated manner. The structure
of the ontology of services is motivated by the need to answer three essential questions about a
service:

� What does the service provide to the potential clients? This is answered by a profile,
which is used to advertise the service. To capture this perspective, each instance of the
class Service presents a ServiceProfile.

� How is it used? The answer to this question is given in the "process model" captured by
the ServiceModel class. Instances of the class Service use the property describedBy to
refer to the service's ServiceModel.

� How does one interact with it? This is a rather technical issue and an answer to this
question is given in the "grounding", which provides the needed details about transport
protocols. Instances of the class Service have a supports property referring to a
ServiceGrounding.

The class Service provides an organizational point of reference for declaring Web services; one
instance of Service will exist for each distinct published service. The properties presents,
describedBy, and supports are properties (relations) of a Service. The classes ServiceProfile,
ServiceModel, and ServiceGrounding are the respective ranges of those properties. The details of
profiles, models, and groundings may vary widely from one type of service to another.

OWL-S suffers from problems, which haven been discussed in detail in [Balzer et al., 2004].
OWL does not give constructs that are sufficiently rich to express the data flow in OWL-S.

 82

OWL-S therefore can be thought of as an extended OWL language, requiring specialized
reasoning methods in the most general case. When it comes to modeling with OWL-S concepts,
it often becomes hard to get an overview of how the different parts connect to each other. For
example, the same parameter (such as an input to a process) may be referenced in several places,
and the control flow of composite processes may be of significant complexity. Especially for the
domain of business process compliance we see the following two shortcomings of OWL-S:

� Conditional Model: Although OWL-S Profile designates elements for pre- and post

conditions (effects), it still does not specify how to declare those conditions precisely. This
limitation of OWL-S Profile is directly related to the problem of describing relations
between input and output parameters. The main problem is that conditions often refer to
concrete parameter instances which are not known before execution. Thus, a declaration of
these instances must be present in the definition of a precondition via variables. The
problem is that OWL as the underlying formalism of OWL-S does not support any
straightforward mechanism to declare variables. [Balzer et al., 2004] propose as a solution
to this problem to extend OWL by reification of additional concepts in a similar way as it is
done by OWL-S to define the data flow in a process model. As a consequence, special
algorithms are required to verify such definitions and to derive knowledge from them.
[Balzer et al., 2004] then come to the conclusion that subsumption reasoning is not
sufficient anymore to tackle this issue. Comparing to our model, we consider our model as
a formal specification on a conceptual level and we do not bound it to a certain logical
formalism as OWL-S does with OWL respectively Description Logics.

� Business level Underlying Data Model of Services: As said before, a crucial requirement
for modeling operative business processes for applying the compliance requirements on
them is to define business level data entities that are consumed and produced by a business
process respectively the services/activities in a business process. For this reason we have
integrated the concept of “Business Documents” and their pertinent state model
respectively the transitions on them as first class entities in our process model definition.
OWL-S completely suffers to provide this aspect in its specification and it also lacks to
propose how to treat data in processes and their services.

However in many respects we also follow the spirit of OWL-S, especially when it comes to the
definition of an activity by providing a mechanism to specify the “effect” of its enactment. In our
case, the effect will be described in terms of whether business document attributes become
assigned or not, and whether new business document instances are created. On the same note, we
also allow non-determinism in the execution of an activity resulting in many possible effects
given by the fact that our model is kept mostly abstract without specifying any business-specific
details about the underlying business documents and their state life cycle.

In context of web services and service oriented architecture Web Services Model Ontology
(WSMO) [Roman et al., 2005] provides a conceptual framework for semantic description of web
services in order to facilitate the automation of their discovery and invocation over the web. The
combination of such web services can potentially result in business process models, thus we
consider WSMO as related work on modeling the bahaviour in business processes. The
conceptual model WSMO consists of four main elements: Ontologies, Goals, Web Services and
Mediators. Ontologies provide the terminology used by other WSMO elements to describe the
relevant aspects of a domain. Web services describe the computational entity providing some
functionality in a domain. Goals represent an objective upon thir fulllfillment a web service is
executed. Mediators support overcoming interoperability problems between different WSMO
elements. One of the key differences between OWL-S and WSMO is the existence of the concept

 83

Goals in WSMO for describing web services. Web Services Modeling Language (WSML) is the
language used to formally describe different elements in WSMO that support different formal
logic variants and therefore different expressivity levels. According to [Agarwal, 2007], WSML
does not provide any modeling entity for orchestrating web services. Therefore it is not made
clear in WSMO how to model business processes based on web services.

We conclude the related work discussion with the statement that, to the best of our knowledge,
none of the works introduced above shows a concrete, applicable model which recognizes all the
aspects required in the domain model of business process compliance, namely Role, Business
Documents, Activity and the Transitions applicable to those Documents and Activities. We have
developed a concrete, novel, conceptual design for that domain, which explicitly contains all the
necessary semantic relationships between the aspects mentioned above.

4.3.3 On the RBAC and Business Processes
Many extensions to RBAC models have been proposed, such as task-based access control

(TBAC) [Thomas et al., 1997] or web service-based access control (WS-RBAC4BP) [Peng et
al., 2004]: TBAC models permissions to enact operations from a more task-oriented perspective
than the traditional subject-object one which is proposed by the core RBAC model. It is an active
security model that makes access decisions based not only on the operations the subject
(user/role) owns but also on the current execution context of the business process, in which an
activity may be accessed and enacted. It also takes temporal constraints into account where
access is permitted based on a just-in-time fashion for the tasks related to the sessions introduced
in the core RBAC model.

Further, in the context of Service Oriented Architecture (SOA), where Web services may be
used to realize cross-organizational business processes, [Peng et al., 2004] proposes an extended
RBAC model for web services. The most significant difference from traditional RBAC models is
that their model takes companies as subjects and Web services as protected objects. There are
two kinds of constraints in their RBAC-extension: supplement constraints and authorization
constraints. These constraints must be enforced when the relations are constructed and access
decisions are made.

Many Access Control Models including the ones above based on RBAC have limitations
regarding the representation of the relationship between user and roles, the business level
operation(s) they enact during the execution of a business process, and their organizational
embedding in an enterprise [Chandramouli, 2003]. Thus we adapt the RBAC model in a very
limited and cautious way in order to use it in our approach and bridge the gaps mentioned above.
We see our work rather as a completion to the RBAC-extensions mentioned above since they are
concerned with different facets of modeling the user’s and the system’s access to resources.

4.4 Conclusion

In this chapter we have developed a novel model and formal specification for the domain of
business process compliance and the entities controlled within it. We started by introducing an
upper-level model containing entities relevant to the domain, namely: account, business process,
control, and risk. A part of the model was tackled, namely the model of a business process and
the controlled entities. We discussed the relevant first class entities of a business process model
from the angle from which they are observed in operative business processes in the industry. We
argued that the traditional, purely activity-oriented view of business processes is not enough to

 84

describe a business process the way the business users understand it. We argued that the
“business level data”, which are consumed along the execution phase of a business process, are
crucial and have to be considered as first class entities in a business process model. We
introduced the concept of “Business Documents”. We recognized the question of “who” is
involved in an operative business process by introducing the entity “Role” as a first class citizen
in a business process model. As a framework to determine the concepts in our model we used the
Hammer’s Framework, which introduces seven dimensions of the work done in enterprises. We
put the framework in the context of business processes and derived the motivation of three
entities: activity, business document, and role.

The notion of controlled entities for business process compliance that are subject to controls
was introduced, i.e. a control will constrain the behavior of a certain controlled entity in a
business process. The controlled entities are: activity, business documents, user, role and a
control itself.

Step by step, we showed the position of each controlled entity type in a business process model
and showed the semantic interrelationships amongst them. An exception is the model of the
controlled entity control that will be separately introduced in chapter 5.

As the next refinement step on the model, we introduced the formal model of business
documents. We designed the lifecycle of a business document instance in a business process as a
set of states, where each state can potentially have different values. Based on the business
documents and the concept of conditions, we then formally designed the behavior of an activity.
It consists of: a tuple of the business documents it reads and modifies, the preconditions of the
activity, and the effects on the business documents newly created and those which were
consumed by the activity. The “flow” of a business process can then be described in terms of
“transitions”, which may happen between the activities and the states of business documents.

Further, the model of business process instance and its depending artifacts transition instance
and business process context were introduced. The effectiveness of a defined control on a
business process model will be checked during the execution time of business processes using a
business process instance.

For the design of the way users enact the activities we tightly followed the RBAC model, with
some necessary conceptual adaptations. The extension aims to integrate the concept of business
documents in the model. In order to reflect the organizational structure in which the operative
business processes happen, we introduced the entity “OrgUnit”, which builds on the relation of
“role hierarchies” proposed in RBAC.

Throughout this chapter we frequently referred to the scenario use cases provided in chapter 2
and exemplified the concepts and the relationships developed by different facets of the scenario.

 85

 86

5 Business Process Verification
In the previous chapter, in section 4.1.2, we introduced the proposed method for realizing

effective internal controls on business processes. It consists of two steps: the verification of
business process models in order to verify that they are designed as required, and the validation
of business process executions in order to validate the fact that they work as designed.

Based on the proposed method, in this chapter we introduce the solution provided by this thesis
for verification of business process models produced during design or a reengineering phase of
business processes (see section 3.2).

Note that this chapter is not directly related to the formalizations we gave in the previous
chapter, since for the implementation of the business process design verification presented here
we used a tool (given in scope of a project that will be described shortly) that does not support all
the modeling entities developed in previous chapter. In section 5.1.1.2 we give detailed
explantations of the relationship between used models.

Generally verification of process models spans over two aspects:
1. Checking that a model satisfies a set of properties given by a formula
2. Checking general properties of a model regarding its “syntactical” correctness.

In this chapter, the proposed solution for business process verification is related to the first
aspect, i.e. the properties represent some business level correctness requirements on a business
process model.

The benefits of a method for verification of business processes in the context of business
process compliance are threefold:

1. Through an automated verification of a set of business process models that exist in
companies, the risk of designing, implementing and consequently executing
noncompliant business processes can be decreased

2. By automating the task of verification achieved for the most part manually in today’s
business world, the cost of manual inspection, analysis and testing of business process
models for compliance can be reduced.

3. Completely new-designed and implemented business processes, once verified, can be
considered as compliant, while it should be noted that they cannot be considered as
remaining always compliant (see section 3.1.2.2.2).

The verification of a business process model is realized using formal methods. These methods
seek to establish a logical proof that a system will work correctly, i.e. that it is correctly designed.
A formal approach requires:

� a modeling language to describe the system, in our case a business process;
� a specification language to describe the business level correctness requirements on the

system and
� an analysis technique to verify that the system meets its specifications.

The model describes the possible behavior of the system, and the specification describes the
desired behaviors of the system. The statement that a model satisfies the specification is now a
logical statement, to be proved or disproved using the analysis technique.

The modeling language to describe the system in our case is provided by the business process
definition BPD (Definition 4.2) introduced in section 4.2.2. In the current chapter we introduce a
specification language using Web Ontology Language (OWL) to semantically describe the
business processes and their business level correctness requirements together with the analysis
technique used to verify a business process design.

 87

In this chapter, we start by outlining the basics required for understanding the approach as
well as the context of the project ATHENA, throughout which the research in this chapter was
achieved. In project ATHENA, a business process modeling approach was developed called
Cross Organizational Business Processes (CBP). CBP provided the underlying models of the
tools implemented in the project. These tools serve as the underlying business process modeling
infrastructure in this chapter, on which the verification approach is applied. In this section we
also introduce OWL, the ontology language, which served as the underlying formalism to
represent CBPs. In section 5.2 we detail the approach by presenting the CBP ontology developed
in OWL and also how the business level correctness requirements can be expressed and verified
based on the ontology. Here we also provide the implementation of the approach along with its
integration architecture in the underlying tool environment. In the subsection relating to related
works, we briefly introduce a scenario in the context of an internal SAP project, in which the
research results were practically applied in a customer prototype, before we discuss and compare
other possible approaches used for the verification of business processes.

5.1 Basics

5.1.1 Introduction to Cross Organizational Business Processes
The concepts and implementations provided in this chapter were realized within the EU-funded

research project ATHENA. The ATHENA project deals with the problem of interoperability
between enterprise information systems. Today common business paradigm is dominated by
service outsourcing, in which an enterprise focuses on its core business processes and has
secondary process parts enacted on its behalf by service provider organizations. These kinds of
business processes, within the ATHENA context, are called Cross-organizational Business
Processes (CBPs) [Lippe et al., 2005], i.e. processes that cross two or more enterprises.
Solutions to problems associated with CBPs are one of the main goals of the project. Support for
the semi-automatic modeling and automatic execution of these processes were the focus of study
in the different research groups, which investigated the problem at business and technical levels.

In ATHENA concepts were developed to classify process types pursuing different goals.
Processes are divided into three levels of abstraction: a level suited for business people, an
intermediate level suited for process analysts as well as business people, and a level suited for IT-
experts. At this last level the processes may be executed by computer systems. Furthermore,
ATHENA presents a concept to model cross-organizational processes without having to reveal
the internal, private information of enterprises. This concept includes three different process
types that vary according to the degree of information provided about a single enterprise as well
as the degree of information provided about the whole collaborative process:

� Cross-Organizational Business Process: This process type is intended to explain the
whole collaborative process and contains mainly abstract information about the roles
the involved enterprises play

� Private Process: This process type is used only internally by an enterprise and contains
all information regarded as necessary by internal users

� View Process: This process type hides sensitive information contained in the private
process of an enterprise and provides partners with information on how to interact with
the enterprise owning this private process.

Based on these concepts, modeling and execution tools were developed to support
collaborative business processes on each level; the approach of having three different levels of

 88

abstraction was also implemented. ATHENA provides the tool Maestro, which is used for
designing CBPs. They can be executed by Nehemiah, a CBP Execution Engine. It is possible to
model processes at the business level and to transform them to the technically detailed process-
models used in Maestro. Apart from this and based on formal operators, a method was developed
to enable horizontal transformation. Thus automatic transformations from view process to private
processes and vice versa are also supported by the Maestro tool.

5.1.1.1 Modeling CBPs with Maestro
Maestro supports the graphical modeling of business processes. Business processes are

graphically modeled as a set of abstract activities and the dependencies between them. Each
activity may have a so-called Task Profile attached to it, which gives this activity some kind of
functionality. A task profile can be either a manual user interaction (user task profile) or a Web
service invocation (service task profile).

The management of task profiles is accomplished by a tool called Gabriel. By allowing the
orchestration of web service invocations into business processes, Maestro paves the way for
automated business process execution without human interaction. The actual enactment of
business processes is then done by Nehemiah. Maestro realizes the process abstraction concept,
i.e. it distinguishes between private processes, view processes, and public processes in order to
retain internal knowledge of a company while inter-operating with external business partners on a
business process level.

The main graphical components of the Maestro business processes are: activity nodes,
coordinator nodes, sender nodes, and receiver nodes. In a valid Maestro business process, these
four node-type elements are connected with each other by means of the directed edges.

Coordinators control the actions which take place between activities, sender nodes, and
receiver nodes. Several kinds of coordinators exist, each of them influencing the activity flow in a
certain way. The different kinds of coordinators are: begin coordinators, end coordinators, choice
coordinators, while coordinators, merge coordinators, sync coordinators, fork coordinators, null
coordinators, and do coordinators.

During the creation of the CBP, for each communication among the business partners that were
determined, a sender node is inserted into the business process of the business partner who
actually invokes this communication, and a receiver node is inserted into the business process of
the business partner who retrieves information during this communication. The insertion of these
nodes is necessary due to technical reasons and, by attaching appropriate service task profiles to
these sender and receiver nodes, data exchange between the business partners is then realized
using web service technology.

A CBP in Maestro can be remodeled in terms of changing the sequence of activities,
coordinators, sender nodes, and receiver nodes. Or a CBP may be changed by the way the task
profiles are attached to the activities of the business process. Depending on the kind of task
profile, this change could refer to a manual user task or to a web service invocation.

5.1.1.2 Relationship between a CBP and a business p rocess according to
BPD

The main focus of business process modeling based on the concept of CBPs is the design of
interactions between different business partners in a collaborative scenario. Here web services are
the main facilitators for realizing the communication and exposing the functionality between
different business partners. Thus modeling CBPs in Maestro and executing them in the Nehemiah
engine is bounded to the usage of web services, which we consider s related to the

 89

implementation level in business process management. In contrast, a business process designed
according to the definition of a BPD is not bound to the usage of a certain technical
implementation, as it is the case with CBPs. The involved parties in BPD are defined through
users and their roles. During the implementation, by assigning roles and users appropriate
technical endpoint addresses, (for instance using web service addressing etc.), it will be
established whether those roles and users are inside the company or remote (external business
partners). Naturally, external business partners will be assigned remote addresses.

According to BPD, one of the first class entities of a business process is the data created and
consumed in a business process, which is reflected by the notion of business document. Maestro
does not provide any modeling entities to design the data in CBPs.

However due to the concept abstraction provided by BPD a CBP can be treated as a BPD on a
conceptual level. A CBP cannot be considered as a BPD, because it does not support the notion
of business documents (and all relating concepts such as the states through which a business
document instance can go).

In Table 9, a mapping between the core modeling elements of CBPs as introduced in section
5.1.1.1 and the core concepts of BPD as introduced in section 4.2.2 is provided.

Table 9 Mapping between CBP and BPD concepts

CBP BPD
Activity Node Activity or

State Change Command
(scc)

Coordinator Node Condition

- Business Document

Edge Transition

- User

- Role

Attachment of a user or task
profile to an activity node

Enacts

- creates / reads/ modifies

Begin Start

End End

User/ Service task profile Activity or scc

Private/ Sender/ Receiver
task profile

-

Private/ View/ Public view -

5.1.1.3 Limitations of CBP Verification in the cont ext of Business Process
Compliance

A verification of business processes designed in Maestro has certain limitations. These
limitations are related to the fact that not all concepts of a BPD are supported in the model of
CBPs (see Table 9). We consider the lack of business documents in a CBP especially to be one of
the main shortcomings of the CBPs. See section 0, for a detailed discussion on the necessary of

 90

inclusion of business documents in a model for business processes in the context of business
process compliance.

It is possible to verify the model of a system in general (and in our case particularly business
processes) through the elements that build the system, i.e. by the elements that the static design of
a system contains. Thus it is not possible to verify the model of CBPs according to the elements
that a CBP does not provide. A CBP only reflects the activity flow in a business process by
supporting the notion of activity nodes, coordinator nodes etc. Thus the verification of a CBP
presented in this chapter provides only the verification of the activity dimension of a business
process design.

5.1.2 Ontologies in Web Ontology Language (OWL)
In this section we explain some basics of the Web Ontology Langage (OWL) that are necessary

to the understanding of the verification approach for business process discussed in this chapter.
The CBPs introduced in the previous sub-sections are modeled in OWL.

OWL [OWL2004] is an ontology language developed by the W3C Web-Ontology Working
Group. OWL was developed as an extension of RDF Schema [RDFS2004]. OWL is based on
Description Logics (DL) [Baader et al., 2003]. DL is a decidable subset of First-Order Logic.

Knowledge in DL is represented as a hierarchical structure of classes (also called concepts),
thus as taxonomies. A DL system is usually divided into two parts: the TBox and the ABox. The
TBox defines terminological knowledge and consists of declarations describing general
properties of classes, thus it contains the definitions of classes and its relations. The ABox of a
DL system contains the definition of instances (also called individuals).

OWL exists in three dialects, namely OWL-Lite, OWL - Description Logics (OWL-DL), and
OWL-Full, which differ in terms of expressiveness and decidability. OWL- Lite is a subset of
OWL - DL, which in turn is a subset of OWL Full. Since OW-Lite's expressiveness only provides
vocabulary for defining taxonomy with some simple constraints, it is much simpler to provide
tool support for this dialect, especially in terms of reasoning. OWL-DL offers a greater
expressiveness while still being decidable, whereas OWL-Full supports the full OWL
expressiveness but is no longer decidable and is therefore not supported by today's reasoning
tools. As a result, when one requires reasoning support with good expressivity, OWL-DL is the
OWL dialect one should use [Dean et al, 2004].

OWL uses RDF's XML syntax. Each resource that is being defined can be assigned to a
Uniform Resource Identifier (URI) consisting of the namespace of the ontology and a string
identifying the resource. OWL ontologies use namespaces as their identifiers, therefore each
ontology has to have a unique namespace.

The main resources for the representation of OWL ontologies are classes, properties, and
individuals. Classes are defined using owl:Class elements. Basically, two predefined classes exist
in OWL, namely owl:Thing, the universal class of which every other class is a subclass, and
owl:Nothing, an empty class, of which every other class is a superclass. Expressive elements like
owl:subClassOf or owl:disjointWith may be used to further specify a class. The owl:subClassOf
element specifies that the class is a subclass of a given other class, whereas the owl:disjointWith
element determines the following: Given two OWL classes ClassA and ClassB, which are
disjointed from each other, if an individual is an instance of ClassA, then it cannot be an instance
of ClassB at the same time, and vice versa. For a full list of owl:Class elements, please refer to
[Dean et al, 2004].

An individual stands for a single real world object being an instance of one or more classes. In
OWL, relations between individuals are modeled by properties. Two types of properties exist: 1)

 91

Object properties relate individuals with other individuals and 2) Datatype properties relate
individuals to data type values such as an integer or a string value. XML Schema data types are
supported for the definition of OWL data type properties.

Another important feature of OWL is that it allows the user to define restrictions on top of
properties. With the owl:Restriction element, a number of restrictions can be defined that
constrain the individuals of a class in terms of the number of relations to other individuals
through a certain object property they have. We will not discuss further details on the syntax or
the semantics of OWL here as this is not our intent in this section. This section should serve to
give an insight of OWL basics. For full and formal definitions on the syntax and the semantics of
OWL refer to [Dean et al, 2004].

5.1.3 SWRL – A Semantic Web Rule Language
The expressiveness of OWL does not support the expression of rules, which is regarded as an

important additional expressive feature. Therefore, a rule extension to OWL ontologies is needed.
Semantic Web Rule Language (SWRL) [Horrocks et al., 2004] is currently one of the most
promising and most widespread semantic web rule languages. SWRL combines the OWL
sublanguages OWL-DL and OWL-Lite with a sublanguage of Rule Markup Language (RuleML)
[RuleML]. SWRL allows the defintion of the Horn-like rules for OWL-DL and OWL-Lite. These
Horn-like rules consist of a body (also called antecedent) and a head (also called consequence).
This relationship could be visualized as follows:

 body � head

Such a rule is to be read as follows: If the conditions specified in the body apply, then the
conditions specified in the head likewise apply. Both the body of a rule and the head consist of a
conjunction of one or many atoms. A general SWRL rule could be visualized as follows, where
A1 to An represent the body atoms and B1 to Bn represent the head atoms:

 A1 ∧ A2 ∧ . . . ∧ An � B1 ∧ B2 ∧ ... ∧ Bn

The atoms, that the rule body and the rule head consist of, can be of the form C(x), P(x,y),

sameAs(x,y) or differentFrom(x,y), where C is an OWL description, P is an OWL property, and
x, y are either variables, OWL individuals or OWL data values [Horrocks et al., 2004].
Accordingly, atoms can be formed from unary predicates (OWL descriptions or OWL classes),
binary predicates (OWL properties), equality predicates (sameAs), or inequality predicates
(differentFrom). Consequently, an atom consists of a predicate, being one of the four predicates
mentioned above, and a set of variables, OWL individuals, or OWL data values.

SWRL rules are expressed using the vocabulary of the underlying OWL ontology, mainly with
regard to OWL classes, individuals, and properties. SWRL also offers further expressive
vocabulary such as built-in predicates. We will not go into detail on those concepts as they are
not needed to achieve the goals of this thesis. For a full and formal definition of the syntax and
semantics of SWRL, refer to [Horrocks et al., 2004].

A drawback when it comes to OWL-DL knowledge bases with SWRL rules is that these
knowledge bases cannot be reasoned by today's ontology reasoners due to the undecidability
problem, which is further discussed in [Horrocks et al., 2004b]. One approach for overcoming
this problem was developed by [Motik et al., 2004] and led to a subset of SWRL called DL-safe

 92

rules, which is restricted to some extent in order to make reasoning over OWL-DL ontologies
with rules decidable.

DL-safe rules make reasoning over OWL-DL ontologies with rules decidable by restricting the
expressivity for rule definition. The structure of the rules regarding the rule body, the rule head,
and the fact that they consist of one or many atoms is exactly the same for SWRL rules as for
DL-safe rules. The restriction of DL-safe rules is best expressed by the definition of a DL-safe
rule, which is given by [Motik et al., 2004] as follows: "A rule r is called DL-safe if each
variable in r occurs in a non-DL-atom in the rule body." DL-atoms are the ones introduced as
atoms in SWRL.

5.1.4 KAON2
KAON2 [KAON2] is an ontology management tool for managing OWL-DL ontologies and

rules. Furthermore it offers rule support for OWL-DL ontologies by supporting the DL-safe
subset of SWRL. The class diagram, which visualizes the structure of a KAON2 Rule object, is
shown in Figure 30. On the basis of this class hierarchy, we developed the rule expression
mechanism for the verification of business processes.

Figure 30 KAON2 – Rule Object

KAON2 uses the concept of Backward Changing to reason over DL-Safe rules on top of an
OWL-DL knowledge base. Backward chaining starts with a list of goals and works backwards
from the head of rule to its body to check whether there is knowledge, in terms of individuals,
available that will support any of the heads of the rules. Thus backward chaining is considered as
being “goal-driven”, meaning that it starts with a consequence which the engine tries to satisfy. If
it can not, it will search for consequences that it can, known as 'sub goals', that will help satisfy
some unknown part of the current goal - it continues this process until either the initial
consequence is proven or there are no remaining sub goals.

For a complete discussion on the underlying concepts and reasoning algorithms used in
KAON2, refer to [KAON2].

 93

5.2 Approach for Business Process Verification

The solution provided in this thesis for verification of business process models includes
following conceptual steps:

� Define a formal description for the business processes as a formal ontology.
� Express the business level correctness requirements (BLCR) of an enterprise’s specific

business process definition according to the terms and concepts defined in that formal
ontology

� Store the specific business process definition as a semantic enriched model according to
the formal ontology (Business Process Model Instance)

� Use an Inference Engine, which takes as input the declarative rules and the semantic
process model instances and infers whether the current business process model instance
violates the existing set of given rules.

The steps above are visualized in Figure 31, including the technology used for implementing
the approach: For the business process definitions the CBPs modeled in Maestro are used. The
CBP ontology has been developed in OWL-DL. Business Level Correctness Requirements
(BLCRs) are represented as DL-Safe-rules. KAON2 Inference Engine is used as the underlying
reasoning infrastructure to verify whether a business process model instance satisfies the set of
BLCRs.

Figure 31 Conceptual steps for Business Process Verification

At design time, business processes are modeled in Maestro and then saved to the business
process repository. The business processes can then be enacted by the Nehemiah engine at
execution time. The latter step is out of scope of business process verification.

The verification mechanism proposed is supposed to be integrated in this sequence right after
the business process modeling step, which is illustrated in Figure 32. The figure outlines that,
after the business process has been defined or modified, it is verified by a reasoner in a business
process verification step, before being added to the business process repository.

 94

Figure 32 Sequence of process modeling including a verification step

In the following we go into the approach in greater detail:

5.2.1 CBP Ontology
The semantic representation of CBPs is necessary for the verification mechanism because

defining the structure, the concepts, and the relationships of Maestro business processes
semantically builds the basis for being able to express and to capture the business level
correctness requirements, i.e. the constraints. In a way, the semantic representation provides the
vocabulary for expressing these constraints. Practically, the business process expert needs to be
able to save a semantic process model instance of the business process model he is currently
designing in Maestro. This, in a first step, requires the creation of an ontology, which we called a
semantic CBP model or CBP ontology.

It contains all relevant classes, concepts, and relationships regarding CBPs and acts as a
blueprint for each business process model instance ontology that is created. In the following we
further detail the CBP ontology developed:

The ontology defines all relevant classes and properties that can be used for the semantic
description of CBPs. In order to avoid redundancy, it is common to model the classes and
properties as a model ontology and to store the individuals, i.e. the actual business process model
instances, in a separate OWL file, which we call business process model instance ontology. The
taxonomy of the model ontology is shown in Figure 33.

Figure 33 Taxonomy of CBP Model Ontology

 95

The root class of the CBP ontology, which is the class owl:Thing for all OWL ontologies, has
the following subclasses (see Figure 34):

� Graph
� Business Process
� Partner
� Node
� Edge
� Task

Graph represents a Maestro business process graph containing one or several business
processes run by different companies. Its subclasses are CoalitionGraph, PrivateGraph, and
ViewGraph. It is connected with the class BusinessProcess through the object property
hasBusinessProcess. Note that the number of business processes which may be connected to it
through the hasBusinessProcess object property differs depending on the graph type.

 The BusinessProcess class is related to nodes and edges by the object properties hasNode and
hasEdge, respectively. It can be linked to the class Partner through the object property
hasPartner.

The class Partner stands for one business partner, who is linked to the BusinessProcess class
by its object property hasPartner.

The class Node represents any kind of node contained in a business process. By means of the
object properties isPredecessorOf, isDirectPredecessorOf, isSuccessorOf, and
isDirectSuccessorOf each individual of the Node class is in some way linked to all other nodes
within the according business process. Its subclasses are ActivityNode (representing an activity in
a business process), SenderNode (standing for a node that enables outgoing communication in a
CBP), ReceiverNode (standing for a node that enables incoming communication in a CBP), and
CoordinatorNode (representing a node that aligns and manages the execution flow of a business
process instance later). Activity nodes can be connected to an individual of the ServiceTask class
through the object property callsServiceTask. In the same manner, sender nodes and receiver
nodes can be connected to the SenderServiceTask class by the object property
callsSenderServiceTask or to the ReceiverServiceTask class by the object property
callsReceiverServiceTask, respectively. In addition to linking service tasks to activity nodes,
individuals of the class UserTask can be linked to activity nodes through the object property
callsUserTask.

 The class Edge links two individuals of the Node class, which are both found within one
graph, with each other. It is connected to exactly one source node and to exactly one target node
by the object properties hasSourceNode and hasTargetNode.

An individual of the Task class refers to a task profile that can be attached to a node of a
business process. The subclasses of this class are UserTask, Private-ServiceTask,
SenderServiceTask, and ReceiverServiceTask. These different kinds of task profiles are needed to
correctly represent the communication between a process model and its implementation, i.e. the
connections between nodes within Maestro and a web service endpoint.

Each class in the above ontology is shown as a rectangle in Figure 34.

 96

Figure 34 Main classes and properties of the CBP ontology

5.2.2 Expressing Business Level Correctness Require ments
A business level correctness requirement that can be captured could be, for example, a

constraint through which web services have to be called in a certain activity of a business
process, or which specifies that after a certain activity of a business process, a certain user task
must be performed. Although these constraints are related to a certain business process, they
should be decoupled from the actual technical representation of the business process, so that they
can persist, regardless of whether the belonging business process is redesigned or even deleted.
Thus, the constraints are to be stored separately from the semantic business process model
instance itself.

We should extend the business process modeling sequence shown in Figure 32 by the extended
modeling sequence depicted in Figure 35.

 97

Figure 35 Business process modeling sequence including expressing business level
requirements

Expressed in terms of literals and the vocabulary given by the model ontology described
earlier, a rule could be defined using the rule editor for CBPs shown in Figure 36:

Figure 36 Add rule dialog

The "Add rule" - dialog constrains the vocabulary that can be used for defining business rules
by offering only the available vocabulary in combo boxes. For each literal, regardless of whether
it is a body or a head literal, the same vocabulary exists. Each literal of a rule consists of a
predicate and a set of terms. The predicates that may be used for modeling the rules are confined
to binary predicates, also called properties. Binary predicates, as the name suggests, have exactly
two terms, which is why the literals of the "Add rule" - dialog always consist of one property and
two terms. The properties available in the "Add rule" - dialog reflect the object properties and
data type properties defined in the model ontology. In order to make the "Add rule" - dialog more
user friendly, it does not show the names of the properties as modeled in the ontology, but rather
displays a description of them that is easier for the user to read. The two terms that belong to
every property are also called domain and range. Figure 37 identifies the domain, the property,
and the range of an example literal displayed in the "Add rule" - dialog. The domain of a literal,
with regard to the "Add Rule" - editor, is always some kind of variable. The property may be an
object property or a data type property. When it is an object property, the range is a variable,
whereas when the property is a data type property, the range is a string value.

 98

Figure 37 Structure of the Add Rule Dialog

5.3 Overall Architecture and Implementation

The architecture of the prototypal verification extension consists of the following three main
parts: The Maestro application provides the UI, the KAON2 framework, which is responsible for
ontology and rules management and additionally for reasoning over the ontological Knowledge
base, and the ontological KB containing OWL ontologies and rules. The functionality offered by
the KAON2 framework can be separated into three parts: Reasoning Engine, Ontology
Management, and Rules Management, as shown in Figure 38. It gives an overview on the
architecture of the prototype for business process verification integrated in the Maestro tool. On
the one hand, Maestro enables the process modeler to save model instance ontologies of business
processes, which are then created through KAON2 Ontology Management and saved as OWL
ontology files. On the other hand, it allows for the creation of rules by the business process
expert, which are processed in KAON2 Rules Management and saved to rule files. These rule
files together with the CBP ontology and the process model instance ontology build the
ontological knowledge base. The CBP ontology provides all relevant concepts and the
relationships between them regarding business processes, whereas the instance ontology, which
can be seen as an instance of the model ontology, represents an actual business process modeled
by the process expert. On the basis of this ontological KB, reasoning can be conducted by the
KAON2 reasoning engine and the results can be passed on to the Maestro UI and thus to the user,
i.e. the process expert.

Figure 38 Overview Architecture of the Business Process Verification Approach

Because the CBP ontology is an OWL-DL ontology that contains all concepts and properties of
Maestro business processes in general, it is regarded to be TBox knowledge. It is business
process independent and therefore static, and it builds the basis for each process-specific KB.
Accordingly, only one global OWL ontology file for the model ontology exists. The instance
ontology is an OWL-DL ontology containing business process specific information. It consists of
individuals of the concepts that are described in the CBP ontology. Therefore, the knowledge

 99

contained is ABox knowledge. Consistent to the idea of ontologies, the process model instance
ontology has to import the model ontology, since it uses knowledge from the model ontology.
The creation of instance ontology is to be started by the process expert through the Maestro UI
after he has modeled a business process. The instance ontology is stored in an ontology file that is
named according to the name of the business process to which it belongs.

On the basis of the existing KB consisting of the model ontology and the instance ontology,
rules can be expressed by the business process expert. The rules are saved in a separate OWL
ontology file, which contains only information on the rules. These rules are business process-
specific as well. The rules ontology is also imported by the instance ontology, so that the
knowledge from the rules ontology is also available in the instance ontology. To clarify the
structure of the ontological KB, it is visualized in Figure 39.

Figure 39 Ontological Knowledge base

5.4 Related Work

5.4.1 On the Application of the Approach in the con text of an internal
SAP project

We used the presented approach for the verification of business process models in the context
of an SAP internal project in the area of carrier-shipper-solutions. The integration of carrier (web)
services in a standard Order-To-Cash business process is enterprise-specific. The situation is that
the same web service, provided by a certain carrier company, may be integrated in different
activities of the Order-To-Cash business process run by different customer enterprises. This
results in different variants of the same business process. The verification approach was used as a
prototype using Maestro to verify whether the carrier web services were integrated in the correct
way, as required by a customer company in the Order- To-Cash business process. The scenario is
as follows:

Two different business situations for two different customer enterprises (shipper 1 and 2 in
Figure 40) lead to different configurations of the same core-carrier services Calculate Rate,
generate Routing Code, Labeling and Manifest. These services are provided as Web services by a

 100

carrier company and are integrated into the standard order-to-cash-process in each customer
enterprise. In the case of process variant 1, the rate calculation and the routing code calculation
are done during Sales Order whereas label generation is done after the goods are packed. In
process variant 2 the routing code calculation, rate calculation and label generation are all
performed after the goods have been packed. The verification approach presented in this chapter
provided a mechanism that enables a business user to express and verify the business level call
dependencies for each process variant in SWRL using the Maestro rule editor extension. Once the
SWRL statements are added to the KB, the business user can use the verification mechanism to
determine whether the current technical configuration of the CBP still satisfies the previously
expressed BLCRs on its CBP.

Figure 40 Two different shipping process variant

5.4.2 On Model checking of business processes
One could question the usefulness of developing separate process model ontology as

introduced in section 5.2.1, when ontologies like OWL-S have already been proposed. We argue
that the motivation behind the development of OWL-S was rather dynamic web service
discovery, selection and composition, where our objective is the verification of already existing
process models (built on top of a set of already existing services in the case of CBPs). Further the
verification of OWL-S process models is done manually and requires human interaction, whereas
our approach supports the automated formal verification, which is opposed to traditional
techniques such as testing and simulation and has two main advantages (i) formality - the
intuitive correctness claim is made formally; and (ii) verification - the goal of the analysis is to
prove or disprove the correctness claim.

There are two approaches introduced in related works for the verification of OWL-S process
models: In [Narayanan et al., 2002] a Petri net-based operational semantics is proposed, which
only reflects the control-flow of a process-model. [Ankolekar et al., 2005] additionally models
the data flow and applies the SPIN model-checker as an automatic verification tool. As discussed
in section 4.3.2, however, OWL-S suffers from shortcomings which make it not the ideal model
ontology for the verification of process models.

[Liu et al., 2007] proposes an approach for process models expressed in the Business Process
Execution Language (BPEL) that are transformed into pi-calculus and then into finite state
machines. Rules captured in the graphical Business Property Specification Language [Xu et al.,

 101

2006] are translated into linear temporal logic. Thus, process models can be verified against these
rules that can stem from compliance requirements by means of model-checking. The design of
Web Services composition languages, such as XLANG and BPEL, also claims to be based on pi-
calculus. However [van der Aalst, 2005] has appealed that more solid work should be done to
prove the effectiveness of pi-calculus in modeling business processes. According to [van der
Aalst, 2005] the main challenges when using pi-calculus are related to the complexity of the
models developed with the pi-calculus in order to express the rather simple workflow constructs
that are subjected to the verification.

Very similar to the proposed SWRL-based verification of business processes in this thesis is
the work presented in [Stojanovic et al., 2006]. In that work business processes modeled in
Ontoprocess-Tool can be stored semantically in OWL and verified using SWRL. The main
difference lies in the underlying process model. While the business process model instances
created according to CBP ontology in Maestro are executable business processes (by Nehemiah),
the processes modeled in ontoprocess are not executable.

5.5 Conclusion

In this chapter we presented an approach and implementation for the verification of business
process models. In the context of business process compliance, the verification of business
processes lowers the risk of designing and using business processes that have a noncompliant
structure according to a set of predefined rules. Verification is used as a tool during the modeling
of new business processes or reengineering old ones. It ensures compliance of the process models
before their execution and consequently increases the reliability of business process operations.

The verification is automated through the use of formal methods based on ontological
representation of process models in OWL-DL and by using SWRL to express the correctness
requirements on the structure of business process models. The approach was implemented in the
context of the EU-funded project ATHENA. There the verification approach was applied to cross
organizational business processes (CBPs) graphically modeled in a business process modeling
tool called Maestro. The Maestro modeling tool was extended by the verification mechanism and
a user-friendly rule editor to express business level correctness requirements on process models.
The business level correctness requirements are internally transformed into SWRL/DL-Safe
rules, thus the end-user does not need to have any technical and specifically logic knowledge.
The concepts behind the business process according to CBPs were compared to the business
process definition introduced in section 5.1.1.2 and the current shortcoming of the approach in
terms of possibility to verification of business documents was discussed.

As was previously mentioned, in the context of regulatory requirements such as the Sarbanes
Oxley Act, the law requires that some rules/constraints in terms of controls be effective during
the execution time of business processes. In such cases a design time approach as introduced in
this chapter is not sufficient to satisfy the requirements. Thus, a next step is required to expand
the approach so that it considers the runtime of business processes. Such a step, the compliance
validation of business process executions, will be presented in chapter 8.

 102

 103

6 Control Model for Business Process Compliance
The notion of controlled entities (CE) in business process compliance was introduced in

chapter 4. The following types of controlled entities were identified in business processes:
Transition, Business Document, User, Role and Control. Throughout chapter 4 a precise formal
model for the first four controlled entities was developed and their relations within a business
process identified.

In the current chapter we are concerned with developing a model for the CE of type Control.
According to this model a control will be defined on a business process model. The business
process model is defined according to Definition 4.2 (BPD). The interplay of the developed
model of CE of type Control in this chapter and BPD exposes the semantics of the relation
controls from BPCD (see Definition 4.1). In this chapter we propose a state model for controls.
The state model of control is required for managing the control docoumentation (acting as a
business document) in the business process concerned with designing the controls in a company.
Consider that such a business process is not an operative business process, such as Purchasing,
Sales etc. Regulations such as SOX require not only that controls be assured in the daily
operations of business processes, but also that the process of managing controls be well defined.
By managing the controls according to the proposed state model a company can effectively prove
to external auditors that the company has documented its controls (as required by SOX).

We start this chapter by giving an example of such a state model of a control in section 6.1. We
continue in section 6.2 by developing a formal model of controls. This is done in a bottom-up
manner in four sub-sections: section 6.2.1 - 6.2.3 provide a set of entities that are used together to
formally define the formal model of a control in section 6.2.4. In section 6.3 related works are
discussed and followed by the conclusion of this chapter.

6.1 Control State Model

A control is treated as a business document in a business process: it has a certain state life
cycle. Regulations such as SOX require that a control itself goes through certain phases, starting
at its definition and over to its design, through the way the problems with the design of a control
are dealt with, and up to and including its application on a business process and its monitoring. A
company has to prove that the current set of internal controls existing in the enterprise have gone
through such a well defined process, i.e. the life cycle of a control is managed from its creation,
the issues that are identified within the design of a control are handled, and the use of the control
in daily operations is both managed and monitored.

In this section we present such a life cycle of the business document control in terms of the
state model that a control can go through. The concept of the state model of a business document
was explained and formally specified in section 4.2.2.1.

Below the state model of a control is formally given according to the formal definition of a
business document’s state model (see Definition 4.5). The state model is determined based on the
following sources:

� Analysis of the mainly non-IT related COSO framework as a de facto-standard for
realizing the internal controls compliance recognized by regulation bodies and
compliance/auditing experts

� Participation in internal controls compliance projects

 104

� Analysis of commercial software products, such as SAP’s MIC-Tool or Oracle’s Internal
Controls Manager, to promote the management of internal controls projects.

Below, the specification of control state model is presented and visualized (Figure 41),
followed by the textual description of its state names and their possible values:

Control State Model:
S = {DESIGN, ASSESSMENT, ISSUE, MATURITY, VIOLATION}
SV = {Scoped, Designed, Evaluated, NotAssessed, Assessed, Effective, Released, Open,
Remediation, Closed, Informal, Tested, Monitored}
initialStateValue (DESIGN) = Scoped
initialStateValue (ASSESSMENT) = NotAssessed
initialStateValue (ISSUE) = Open
initialStateValue (MATURITY) = Informal
finalStateValues (DESIGN) = {Evaluated}
finalStateValues (ASSESSMENT) = {Assessed, Effective, Released}
finalStateValues (ISSUE) = {Closed}
finalStateValues (MATURITY) = {Tested, Monitored}
finalStateValues (VIOLATION) = {NotViolated, Violated}
assignedValues(DESIGN) = {Scoped, Designed, Evaluated}
assignedValues(ASSESSMENT) = {NotAsssessed, Assessed, Effective, Released}
assignedValues(ISSUE) = {Open, Remidiation, Closed}
assignedValues(MATURITY) = {Informal, Tested, Monitored}
assignedValues(VIOLATION) = { NotViolated, Violated }

Figure 41 Visualization of a Control State Model according to Definition 4.5

The business level meaning of each state name s ∈ S and each state value sv ∈ SV (see
Definition 4.5) is described below:

DESIGN: When a control is in the state of Scoped, the control has been recognized as
necessary to a relevant business process. After a control has been scoped, it is Designed by a
compliance expert and its design is Evaluated by a business process expert.

 105

ASSESSMENT: During Assessment of a control the following facts about a control must be
covered:

� Control is documented properly
� Control design achieves the related control objective(s)
� Control mitigates or avoids risk(s)
� Do other controls exist which could achieve the same control objective(s) in a faster or

cheaper way?
An ASSESSED control is considered as effective, if it permanently satisfies the above four

properties. The assessed control will then be released, i.e. become part of the internal controls
(Set CTLS in Definition of BPCD – see Definition 4.1). The assessment of a control can however
discover some issues in a control design. When this happens, the control is classed in the ISSUE
state.

ISSUE: This state occurs when a control design contains any deficiencies. In this case the
issue must be remediated. Practically speaking, a control in state ISSUE signals that some
shortcomings have been discovered within the control, and that those shortcomings were reported
when a control was being assessed or tested. A control which falls into this state requires the
following documented information in order to be considered as internal controls compliance
certified:

� Cause: What causes the shortcoming to occur?
� Implication: What are the implications of the shortcoming?
� Owner: Who is responsible for the remediation of the discovered shortcoming in

control design?
� Identifier: Who has identified the shortcoming?
� Identification time: When was the shortcoming identified?
� Priority: Which priority has the remediation of the discovered shortcoming been

assigned?
� Status: In which status is the current shortcoming (ISSUE-state values: Open,

Remediation, Closed)
� Remediation plan: Which actions are or will be undertaken to remediate the

shortcoming?
� Validation Date: When will the remediation of the control’s shortcoming be validated?

The validation procedure of a shortcoming is as follows: After the ISSUE state on a control is
remidiated, the issue will be closed. In this case, the control has to be re-assessed (ASSESSMENT
state). In all other cases an issue is considered as being open.

MATURITY: The Maturity state of a control is related to the positioning of a control inside the
control environment of an enterprise and to the way its effectiveness is assured. An informal
control indicates that the control is in place, but has not been documented, systematically
designed or assessed and therefore may contain issues. A control which is tested has been
assessed, and the discovered issues have been remediated, but the control is not monitored during
daily operations.

VIOLATION: This state is related to the execution phase of a business process, during which
the effectiveness of a control is monitored (MATURITY state is monitored). If a business process
instance violates the conditions of a control, the control is assigned the state: Violated.

A control can be added to the set CTLS in BPCD (Definition 4.1), if its creation and
management have gone through the state life cycle described above and if its state name

 106

ASSESSMENT has the value Released and its MATURITY state has been assigned either Tested or
Monitored value.

6.2 Control Model

Now that we have introduced the state model of a control, we will continue with its internal
design and its composition as a controlled entity.

A closer look at the controls presented in the scenario (see chapter 2) intuitively exposes the
following model for a control:

 All of the controls had an event, after which occurrence, during the course of the execution of
a business process a set of conditions had to hold (or not hold). Such events can have a business
level semantic or they can be related to certain points in time, i.e. the beginning of each month.
We call the former type of events BusinessEvents and the latter type DateEvents. Embedded in
each control design is the definition of necessary actions, which must be undertaken if the
conditions of a control fail, i.e. if the control is violated. Keep in mind that this is a different
situation from that when the ISSUE-state of control is Open or Remidiated (see control state
model in section 6.1). In the latter situation, the control design has some deficiencies (control
deficiencies or significant deficiencies, see section 3.1) or even material weaknesses. This means
that a control, even if it works as designed, is not able to prevent or detect some risks and fails to
fulfill its control objectives. In contrast, actions that have to be undertaken in the case of
violations of control conditions relate to the execution time of business processes. This is when
the controls are actually applied. In this work, we refer to these actions as Recovery Actions. For
each control, at least one recovery action must be assigned which reacts to the violation of a
control during the execution of a business process (a business process instance that has caused a
control violation).

Figure 42 represents a control model as described above. Each part of the figure is defined in
the following sub-sections in a bottom-up manner: We begin by introducing the triggering
event-part of the control. After, the models of control condition and recovery actions are each
presented in separate sub-sections. Based on the definitions provided in these three sub-sections
we specify the model of a control in sub-section 6.2.4.

Figure 42 High level overview of Control model

The explanations require the existence of the following functions returning an instance of
transition, where trs is a transition according to Definition 4.14 and act is an activity according to
Definition 4.12:

� model_next (trs) returns an instance of a transition following immediately after the
given transition trs in the current business process definition (BPD)

� model_previous (trs) returns an instance of a transition immediately before the given
transition trs in the current business process definition (BPD)

 107

� model_transition (act) returns the transition in the current business process definition
(BPD), which leads to the invocation of the activity act.

6.2.1 Designing the Triggering Event of a Control
In this section we formally define the triggering event of a control, as it was shown in Figure 42.

In order to become active a control must be triggered in a scope. It can be triggered at a certain
point in time or at regular intervals (DateEvents) or it can be activated by the occurrence of
business level events (BusinessEvents). Capturing and triggering such events is the main issue in
achieving the automation of the control process. Therefore, the set EVENTTYPES is as follows:

EVENTTYPES = {DateEvent, BusinessEvent}.

DateEvents

We introduce the formal definition of a DateEvent in a control in a bottom-up manner. First,
some required basic sets and data types are introduced. Then some definitions are given, based on
which the final definition of a DateEvent will be provided in Definition 6.6.

 We assume the existence of a data type Date in the form (dd, mm, yyyy) in which:

� dd is a number {dd ∈ N | 1 ≤ n ≤ 31 } specifying the day in a Date,
� mm is a number {mm ∈ N | 1 ≤ n ≤ 12 } specifying the month in a Date and
� yyyy is a number (yyyy ∈ N) specifying the year in a Date.

The recurrence of a DateEvent is specified using the frequency of the recurrence of the
DateEvent. Different kinds of frequency can be defined, which are given in the set
FREQUENCIES. The frequency of a DateEvent can be on a daily, weekly, monthly or yearly
basis:

FREQUENCIES = {Day, Week, Month, Year}

In addition, the following basic sets are required, where the notation “..” is used as an
abbreviation for the rest of elements in the set (which are obvious):

DAYS = {Monday, .., Sunday}
MONTHS = {January , .., December }

Each Frequency-type (elements in FREQUENCIES-Set) can be specified in a certain way (i.e.

configured). Their specifications, together with examples, can be found in the following four
definitions:

Definition 6.1: DayConfig

The configuration of daily-frequency Day ∈ FREQUENCIES is given by DayConfig = (n),
where

� n is a number {n ∈ N | 1 ≤ n ≤ 361 } .

Example: Using the parameter n in Definition 6.1, the number of days specifying the recurrence
of the DateEvent will be given, for instance “each fourth days” with n = 4.

 108

Definition 6.2: WeekConfig
The configuration of weekly-frequency Week ∈ FREQUENCIES is a tuple WeekConfig = (n,

on), where
� n is a number {n ∈ N | 1 ≤ n ≤ 52 }
� on is a total function DAYS → {TRUE, FALSE}.

Example: Using the parameter n in the definition above, the number of weeks before the
recurrence of the DateEvent and the day(s) in a week will be given, for instance “each second
week on monday” with n = 2 and on (Monday) = TRUE and on (Tuesday) = FALSE and on
(Wednesday) = FALSE etc .

Definition 6.3: MonthConfig
The configuration of monthly-frequency Month ∈ FREQUENCIES is a tuple either of the form
MonthConfigDayNumberBased = (n, m) or
MonthDayInWeekBased = (o, d, m) , where

� n is a number {n ∈ N | 1 ≤ n ≤ 31 }
� m is a number {m ∈ N | 1 ≤ n ≤ 12 }
� o is a number { o ∈ N | 1 ≤ n ≤ 4 }
� d ∈ DAYS

Example: Using the MonthConfigDayNumberBased- form of monthly-frequency, it is possible
to specify a DateEvent with a recurrence of the form “on the 10th of each second month”, which
would be represented by the tuple MonthConfigDayNumberBased = (10, 2).

Example: Using the MonthDayInWeekBased- form, it is possible to specify a DateEvent with a
recurrence of the form “on the second Friday of each month”, which would be represented by the
tuple MonthConfigDayNumberBased = (2, Friday, 1).

Definition 6.4: YearConfig
The configuration of yearly-frequency Year ∈ FREQUENCIES is a tuple either of the form
YearConfigDayInMonth = (n, m) or
YearConfigDayInWeekInMonth = (o, d, m) , where

� n is a number {n ∈ N | 1 ≤ n ≤ 31 }
� m ∈ MONTHS
� o is a number { o ∈ N | 1 ≤ n ≤ 4 }
� d ∈ DAYS

Example: Using the YearConfigDayInMonth– form of yearly-frequency, it is possible to specify
a DateEvent with a recurrence of the form “on each 23rd of December”, which would be
represented by the tuple (23, December).

Example: Using the YearConfigDayInWeekInMonth- form, it is possible to specify a DateEvent
with a recurrence of the form “on each third Friday in December”, which would be represented
by the triple (3, Friday, December).

 109

The recurrence of a DateEvent can be constrained using the duration of the recurrence of a
DateEvent. The definition of the duration of a DateEvent is as follows:

Definition 6.5: Duration
The duration of the recurrence of a DateEvent is a tuple either of the form DurationEndsOnDate
= (ed) or DurationEndsAfterRecurrence = (n), where:

� ed: Date specifies the end date of the DateEvent
� n is a number (n ∈ N) specifying the number of recurrences of the DateEvent, after

which the duration of the DateEvent will expire.

It is now possible to specify a DateEvent formally:

Definition 6.6: DateEvent
A DateEvent is a data type specified through a triple (bDate, freq, rConfig, d), where:

� bDate : Date specifies the beginning date of the DateEvent
� freq ∈ FREQUENCIES, where the following rules apply:

o if freq = Day, then rConfg : DayConfig
o if freq = Week, then rConfig: WeekConfig
o if freq = Month, then either rConfig: MonthConfigDayNumberBased or

rConfig: MonthDayInWeekBased
o if freq = Year, then either rConfig: YearConfigDayInMonth or

rConfig: YearConfigDayInWeekInMonth
� d is the duration, either of the form d : DurationEndsOnDate or

d:DurationEndsAfterRecurrence.

BusinessEvents

A BusinessEvent is an event that defines the boundaries between each business process step in
a business process. A step in a business process causes a business document to change its state or
a “business-level” activity to be invoked.

Building on top of the process model provided in section 4.2.2.1, the specification of a
BusinessEvent in a business process is straightforward:

A BusinessEvent in a business process is represented as the execution of an activity (according
to Definition 4.12) or state change of a business document (see state change command scc in
Definition 4.13), if certain conditions (according to Definition 4.11) are satisfied.

This is equivalent to a transition (as defined in Definition 4.14) in a business process definition
(Definition 4.2).

Based on the description above, we capture the notion of BusinessEvents required for control
modeling by the transitions existing in a business process definition and refer the reader to
section 4.2.2.1 for a detailed introduction of transitions and accompanying examples.

Regardless of whether the events are of BusinessEvent type or DateEvent type, an event has to
be specified within a scope. The scope is basically the extent of the business process execution or
time for which the control will be triggered and throughout which the conditions of a control
must hold. There are different types of scopes:

SCOPES = {Global, Before, After, Between}

A Global scope monitors the entire business process execution. This means that the conditions
of a control must always hold during a business process execution. The scope: Before monitors

 110

the execution of a business process up to a given event. This means that the conditions of a
control will be checked immediately before the given event is executed, and up to the time when
the specified event has occurred. The scope: After monitors the execution of a business process
after the occurrence of an event. This means that the conditions of a control will be checked
immediately after the execution of the event. The Between-scope monitors any part of the
execution from one given event to another event.

The concept of scope is inspired by previous research presented by Dwyer at al. in [Dwyer et
al., 1999], which will be discussed in the related works section of this chapter (section 6.3.1).

Using the concept of scope introduced above and the two different event types, it is now
possible to formally specify the event-part of a control:

Definition 6.7: TriggeringEvent

A triggering event in a control is a triple of type event = (scope, eventtype, events), where
� scope ∈ SCOPES
� eventtype ∈ EVENTTYPES
� events is a tuple events = (beginEvent, endEvent) that adheres to following rules:

o if eventtype = DateEvent, then beginEvent and endEvent are both of type
DateEvent

o if eventtype = BusinessEvent, then beginEven and endEvent are both of type
Transition

o if scope = Global, then events = (null, null)
o if scope = Before or scope = After, then beginEvent = endEvent.

6.2.2 Specification of Control Conditions
Conditions of a control apply to a certain business situation related to the current instance of a

business process that requires a special treatment upon its occurence.
In order to formally capture the control conditions we require the notion of control statements.

Control statements are by nature closely related to the statements (Definition 4.10, see section
4.2.2.1) that can be used to express conditions of transitions (see Definition 4.14) and activities
(Definition 4.12) in business process definition (Definition 4.12). Modeling the conditions that
describe a control violation requires additional types of statements, which are listed in Definition
6.8. The parameters used there have the following types: trs is of type Transition (see Definition
4.14), tri is a transition instance (see Definition 4.15), rle is a role, usr is a user, n and m are
natural numbers (N), f ∈ FREQUENCIES (introduced in section 6.2.1), ctl and ctl’ are controls
(will be formally defined later), and ce is a controlled entity.

Definition 6.8: Control Statement
A control statement for a control ctl on a business process repository instance BPRI (according
to Definition 4.17) of a repository BPR (according to Definition 4.4) can be one of the following:

� a predicate EXECUTING (trs, rle), which returns TRUE if the role rle is executing the
transition trs in BPRI

� a predicate EXECUTING (trs, usr), which returns TRUE if the user usr is executing the
transition trs in BPRI

� a predicate EXECUTED (tri, usr), which returns TRUE, if the user usr has already
executed the given transition instance tri

 111

� A predicate EXECUTED (tri, rle), which returns TRUE, if any user having the role rle
has executed the given transition instance

� a predicate EXECUTED (tri, n, m, f), which returns TRUE if the transition tri is
executed n ∈ N- times in the last period specified by m × f ∈ FREQUENCIES

� a predicate EXECUTED (tri, fromDate, toDate), which returns TRUE if the transition
instance tri is executed on a Date between fromDate and toDate.

� a predicate VIOLATED(ctl’, n, m, f), which returns TRUE if control ctl’ has previously
been violated n ∈ N- times in the last period specified by m × f ∈ FREQUENCIES in
BPRI, i.e. the state value of its VIOLATION-State has been VIOLATED. Further ctl ≠
ctl’ must hold

� a predicate CONTAINS (CES<ceType>, ce), which returns true if the set CES
consisting of controlled entities (replace <ceType> by either Control or Role or
Transition or BusinessDocument or User) contains the given entity instance ce

� three predicates SIZE_EQUALS(CES, n), SIZE_GREATER_EQUALS(CES, n),
SIZE_SMALLER_EQUALS(CES, n), which each return TRUE if the number of
elements in the set CES consisting of controlled entities are respectively: equal to
greater or equal to, or smaller than, the number n.

Consider that the result of both types of EXECUTING-statements return TRUE before the

transition is actually executed by the role or the user specified.
Using the control statements together with the statements introduced in Definition 4.10, the

control conditions can be specified in following way:

Definition 6.9: Control Condition
A control condition is a conjunction or disjunction of statement, (according to Definition 4.10),
negated statements, control statements (according to Definition 6.8) and negated control
statements.

6.2.3 Recovery Actions of Controls
A control is originally defined by a compliance expert in an enterprise. His main objective is to

design the control and to monitor its effectiveness. As we previously mentioned, (see section
3.1.1), a compliance expert has little or no knowledge of the implementation of a business
process. The detailed knowledge on how to bring a business process model and its instances into
a compliant form/state is the task of a business process expert. The control model for business
process compliance in this thesis recognizes this fact by introducing Role-Based Recovery Action
Modeling. During control design (i.e. after the DESIGN state has the state value DESIGNED, see
section 6.1), a business process expert checks the control (i.e. its recovery action- part) to
determine whether it could have a negative influence on the operational effectiveness and
efficiency of the business process (Assuring the business objective). After this, the DESIGN-
state of the control is assigned the value: EVALUATED.

Here are the different possible types of recovery actions:
� Ignore: The control violation is ignored.
� Block: The current instance of the business process, which generated a control violation,

is blocked.
� Notify (User, Message): A notification message for the specified user: User is created

with the given message: Message.
� Retry: The activity that generated the violation is repeated.

 112

� Rollback (Activity): The current instance of the business process that generated the
control violation is rolled back to the given activity: Activity.

� Instantiate (User, RecoveryProcess): A previously designed recovery business process
RecoveryProcess is instantiated parallel to the current instance of the original business
process that generated the control violation. The recovery process itself is an autonomous
business process. Its task is to remove the conditions that caused the original business
process instance to violate the control conditions. The instance of the recovery process is
assigned to the specified user User in order to enact it.

Note that combinations of the above listed recovery actions are also possible, for example
Retry & Notify, etc.

In the case of a control violation a compliance expert defines the recovery actions as minimally
as possible with regard to avoid influencing the business process logic. The decision of which
recovery action needs to be selected in a certain control design is made by the compliance expert.
This decision depends on the enterprise-specific risk assessment, which may vary for the same
kind of control from enterprise to enterprise. After the control is initially designed by a
compliance expert, and includes a recovery action, a corresponding business process expert is
notified about the creation of a new control. The business process expert can now review and edit
the recovery actions for the control originally designed by the compliance expert.

The valid combination of recovery actions set by the Compliance expert and business process
expert follows these basic rules:

- A control violation always requires a reaction, a single Ignore in particular is never
allowed, since the existence of a control with such a recovery model makes that control
meaningless

- The recovery action designed by a business process expert is never allowed to “weaken”
the original recovery action designed by the compliance expert. For instance, if a
compliance expert requires a Block & Notify on a business process instance in the case of a
certain control violation, the business process expert is not allowed to redesign the
recovery of a control to only Notify.

In order to clarify the role-based recovery action modeling we give an example of its
application below:

6.2.3.1 Scenario Revisited – Role-Based Recovery Ac tion Modeling
The description of the following situation is visualized in Figure 43. Recall the required control
“Minimum Numbers of Suppliers” (control CA3) specified for CustomerA in our scenario (see
section 2.2). The compliance expert in that enterprise designs the control according to the risk
assessment of the company and decides to select the Block & Notify recovery action in the case
of the control violation. The compliance expert at this stage is not concerned with all the possible
blocked purchasing process instances (having material type 5 in their PO if the number of valid
contracts to possible suppliers of this material type becomes lower than 2). This is represented in
the step 1 in Figure 43).

During evaluation of the control, the business process expert who possesses detailed
knowledge of the Purchase-To-Pay process (see section 2.1) is informed of the creation of the
new control (step 2 in Figure 43) and checks the recovery action of that control. Since the
business process expert has the business objective “Purchase Goods” in mind, he is aware that
some process instances may be completely blocked by that control design, and that this effect is
not desirable. Further he is aware of a business process RfQProcessing, which creates a so-called
Request for Quotation (RfQ) from a supplier. The business objective of RfQProcessing is to

 113

contract the selected supplier in the Supplier-Relationship-Management (SRM) - system of
CustomerA. As a consequence, the business process expert modifies the recovery action model of
the control by adding the recovery action Instantiate (RfQProcessing) & Retry to the control
design (step 3 in Figure 43).If a control violation occurs later on in the execution of the business
process, RfQProcessing is enacted in parallel, in addition (because of the recovery action
Instantiate) to the current P2P Process instance. The process step is retried again (because of
recovery action Retry) and, if the control violation no longer exists (perhaps because
RfQProcessing has increased the number of contracted suppliers in the backend system SRM to 2
or more), the process instance can continue. The latter explanations are not illustrated in the
figure because it relates to the execution time of business processes. We are concerned with the
designing of controls in a business process model.

Consider that the application of the above strategy would eliminate the necessity for the
integration of the RfQProcessing-sub-process in the Purchase-Request-sub-process as was
necessary in the scenario in the case of CustomerA (see section 2.2.5).

Figure 43 Role-Based Recovery Action Modeling exemplified

6.2.3.2 Definition and Application of Recovery Act ions
Based on the introduction above, the application of the proposed recovery actions, according to

the formal model of a business process (BPD, see Definition 4.2), is given.
The implication of the application of a designed set of recovery actions in a control definition

has an impact on the way the transitions (see Definition 4.14) are invoked in a business process
instance. Some recovery actions may fulfill additional tasks, such as sending a message to a
particular user (Notify recovery action) or instantiating an autonomous business process instance
(Instantiate), which then removes the conditions in a system which were responsible for the
control violation in question.

Definition 6.10: RecoveryAction
A RecoveryAction for a business process bp is an expression of the form

tMod ⊗ job
in which:

� tMod is an expression of the form i_next(trs) = trs’, where

 114

trs and trs’ are each a transition in the bp model,
the function i_next(trs) sets the next transition that will be taken in of the current
instance of bp on the transition trs.

� job represents the invocation of an activity act in a transition of the form if TRUE then
invoke act (see Definition 4.12). The existence of job for the specification of a recovery
action specification is optional. However, if job is specified then the activity act will
always be invoked.

� ⊗ is an operation that causes the parallel execution of tMod and job.

The definition above is applied to each type of recovery action using the introduced functions

model_next (trs), model_previous (trs) and model_transition(act) in section 6.2. The
formalization is as follows:

Igonore:

i_next(t) = model_next(t) ⊗ ∅
, where ∅ means there is no activity required in the job. The tMod-specification of
Ignore- recovery action sets the next transition in the current business process instance to
that transition that was originally modeled in the business process definition (determined
by model_next(t)). In this case the business process instance continues to execute as
originally designed, i.e. the control violation is ignored.

Block:
i_next(t) = t ⊗ ∅ .

Notify (User, Message):

i_next(t) = model_next(t) ⊗ NotificationActivity,
, where

Activity NotificationActivity
� name = “NotificationActivity”
� readBDI ={usr:User, msg:Message}

� ifyBDImod = {usr:User}

� P = TRUE
� createE = ∅

� ifyEmod = ASSIGNED (usr,Message).

In the above specification an employee who is notified about a control violation is represented
as a business document (User) in the system. The message box of the employee that is
changed by invocation of the activity is one of the possible attributes (A) of the User business
document (see Definition 4.6).
Retry:

i_next(t) = model_previous(t) ⊗ ∅ .

Rollback(Activity):
 i_next(t) = model_transition(Activity) ⊗ ∅.

Instantiate(RecoveryProcess, User):

i_next(t) = model_next(t) ⊗ InstantiationActivity,

 115

, where
Activity InstantiationActivity
� name = “InstantiationActivity”
� readBDI ={usr:User, prc:RecoveryProcess}

� ifyBDImod = {usr:User}

� P = TRUE
� createE = NEW (prc, RecoveryProcess)

� ifyEmod = ASSIGNED (usr, RecoveryProcess).

6.2.4 Specification of a Control for a Business Pro cess
Based on the definitions introduced in the previous three sub-sections we shall now introduce

the formal definition of a Control for a business process:

Definition 6.11: Control
A control for a business process definition bpd is a tuple ctl = (cbdt, event, cc, RAS), with:

� cbdt specifying the business document type according to Definition 4.6 of the control
with the following header attributes:

o bpd, the business process for which the control exists
o risk, that the control must mitigate
o account, the entry in the general ledger, which the business process is relevant

for
o co, the control objective of the control

� event is a tuple e = (scope, eventtype, events) according to Definition 6.7
� cc is a control condition according to Definition 6.9
� RAS is a non-empty set of recovery actions according to Definition 6.10.

The state model of the business document cbdt in the definition above can be found in section

6.1 (Control State Model).

Consider that if a control contains an event of type BusinessEvent, the statements used in a
control condition (Definition 6.9) may be the same as the statements of conditions (Definition
4.11) occurring in the transitions of a business process definition. But they have different
purposes and meanings: while the conditions in a transition of a business process definition have
as their main purpose to describe the process flow (which conditions must hold for the progress
of the process instance), the control conditions in a control describe the parameters that cause a
violation of that control. In the latter case a recovery action must be instantiated and applied to
the current instance of a process model. While in most cases the conditions of a control must be
different from the conditions in a transition, this is not formally required in our proposed control
model. The possibility of separate modeling of conditions in a control and transitions in a
business process raises the modeling approach’s level of flexibility. This flexibility is achieved
by differentiating between business and control objectives in business processes (see section
2.4.3).

 116

6.3 Related Work

6.3.1 On System Specification Properties
Our definition of the two elements of a control scope and the control statements were

conceptually based on work done by [Dwyer et al., 1999]. They have analyzed over 500
examples of program requirement properties and found that nearly all conformed to eight
temporal property patterns within five scopes. Although their patterns are used for defining
formal requirements on program specifications, they can be applied to internal controls
compliance and their monitoring requirements. Indeed, the controls on an operative business
process which we deal with in the course of this work are for the most part technically reflected
on an implementation level in the form of IF-ELSE-Statements in program code. The goal of the
Dwyers system specification properties is to present these kinds of system properties. Thus, we
argue that they are very well suited to applications in the design of controls for business process
compliance.
Beyond different kinds of scope in the event-part of a control (see section 6.2.1) the concept of
different variants of EXECUTING, EXECUTED, CONTAINS and SIZE_EQUALS control
statements used in the control conditions are inspired by the patterns of system specification
properties presented in [Dwyer et al., 1999]. They present the following patterns:

� Absence describes that the defined scope is free from state P
� Existence describes that a state P occur within the scope
� Bounded Existence describes that a state P must occur k times within the scope
� Universality describes that a state P is true throughout the scope
� Precedence describes that a state P must always be preceded by state Q in the scope
� Response describes cause-effect relationships. An occurrence of the state P must be

followed by an occurrence of state Q.
� Chain Precedence: a sequence of state must always be preceded by sequence of other

states in the scope
� Chain Response: a sequence of states must always be followed by a sequence of other

states in the scope.
We are able to present the patterns above using different kinds of statements and control
statements. Dwyer patterns are widely adopted and applied in different contexts and in other
research [Li et al., 2005] [Robinson, 2005]. As stated before the experiments and empirical
research in [Dwyer et al., 1999] have shown that the scopes and patterns are expressive enough
to represent different kinds of system requirements, and thus we argue that the control statements
are able to express the control requirements on operative business processes.

For a detailed description of the Dwyer scopes and patterns and their semantics, please refer to
[Dwyer et al., 1999].

6.3.2 On Exception Handling in Business Processes
The proposed model of recovery actions is closely related to the concept of exception handling

in software applications in general and in particular to those in workflows.
Although exception handling is not explicitly a core component of internal controls, since

COSO [COSO92] does not explicitly state how to do exception handling in an internal control
process, our study argues for the requirement of the definition of an explicit exception model as
part of our proposed model for internal controls. Namely, COSO proposes in its component
“Control activities” that “exceptions should be acted upon and reported if necessary”. Further in
its component “Monitoring” COSO requires “spotting quickly on significant inaccuracies or

 117

exceptions to anticipated results” and states that the “effectiveness of the internal control system
is enhanced by timely and complete reporting and resolution of exceptions”. We consider the
term exception in following since they arise when a rule is broken. The term exception is used by
IT- and Accounting experts for semantically the same thing (in context of compliance).

At this point we would like to discuss the related work in the area of exception handling: In
[Russel et al., 2005] a classification framework for exception handling for workflows is offered.
They determine a comprehensive range of exceptions that are capable of being detected and
provide a useful basis for recovery handling and resolution of exceptional situations.
Additionally, their research found that there are three different possible recovery actions in the
context of workflow exception handling: no action, rollback and compensate.

From the point of view of realization, we see the resolution of exceptional situations detected
by internal controls during runtime of processes as being well within the context of software
system error recovery [Lee et al., 1990]. There are two main strategies of error recovery:
backward and forward error recovery. Backward error recovery is based on rolling system
components back to a previous correct state. Forward error recovery transforms the system
components into any correct state. This is mainly the same result as [Russel et al., 2005]
reported for workflow management systems. According to [Christian, 1989], backward error
recovery has a limited applicability and modern application systems involving human beings,
Commercial-Off-The-Shelf (COTS) components, external devices and several organizations rely
on forward error recovery. As compliance management of internal controls clearly falls within
these categories of applications, we propose an adapted forward error recovery strategy
performed at the application level by a business user and not at a technical level by a system
administrator. A business expert in charge in a push-driven manner is notified with a request to
resolve the exceptional situation (see for instance notify- or instantiate- recovery actions). After
motivating the forward error strategy we come to conclusion that its usage is the preferred
exception handling mechanism for internal controls compliance in business processes.

[Charfi et al., 2004] uses Aspect Oriented Programming (AOP) techniques to extend the
functionality of a BPEL process with additional activities. This is closed to the idea of separating
internal concerns from business processes management. We agree with the argumentation given
in [Charfi et al., 2004] that there are several concerns, in particular from our point of view the
regulatory requirements such as SOX, in a business process management life cycle that have to
be separated from process designs. However the work which uses the AOP technology addresses
the implementation level of business processes. A control can be implemented using AOP.

[Giblin et al., 2006] provides temporal rule patterns for regulatory policies, although the
objective of that work is to facilitate event monitoring. A conceptual model based on UML
Profile is defined as a basis for defining compliance rules. But the work does not explicitly state
how to reason over the UML Profiles and how they may be related to the business process model
and execution levels within enterprises.

[Governatori et al., 2006] uses a logic-based formalism called Formal Contract Language
(FCL) [Governatori et al., 2005] to describe business contracts on business processes. FCL
could be used to implement controls on business processes. However, the work in [Governatori
et al., 2006] uses BPMN as a target platform for applying the FCL-statement and does not state
how the FCL-statements on BPMN process models are related to the execution of business
processes, during which the controls actually have to be checked. We would require this
specification in order to support a preventive nature of business process compliance in daily
operations. The objective of the presented control model in this chapter is to validate the
compliant execution of business processes according to the condition of a control, if and when its
triggering event becomes valid. We intentionally do not bind the control model presented in this

 118

chapter to a certain logic like FCL, because we believe that this step should be relegated to the
implementation level of a control.

6.4 Conclusion

This chapter provided a precise formal model of controls that can be designed on a business
process. The model builds on top of the controlled entities in a business process that were
introduced and formalized in chapter 4.

A control has the following structure:
� A Triggering event, which is bounded to a certain scope. There are two different types

of events: DateEvents and BusinessEvents. The latter has a business level meaning.
BusinessEvents are captured in the control model by the occurrence of a certain
transition in a business process.

� Control condition describes which conditions must be satisfied by a business process
during the scope of its triggering events. A set of control statements were introduced
for describing the control condition. They can be used together with statements (see
Definition 4.10) to formulate the control condition of a control.

� A set of recovery actions that will be invoked if the control condition is violated in the
scope of its triggering event. Different types of recovery action were introduced that
can be combined together in a control.

Several types of control statements and the concept of scope are inspired by System Property
Specification Patterns [Dwyer et al., 1999].

This chapter also provided a state model of controls that can be used during design and
management of controls.

 119

 120

7 Pattern-Based Design of Controls in Business Proc esses
The control model introduced in chapter 6 serves as the input for the implementation of the

controls in business processes. Since the conceptual model presented is rather formal and
technically oriented, its usage would be too difficult and hard to understand for compliance
experts. For this reason, a pattern-based approach for the definition of the controls on business
processes is proposed in the current chapter. The patterns should simplify the design of controls
for non-technical persons by providing a high-level-language for internal controls. The patterns
of controls on business processes will be mapped onto the proposed model of a control
(Definition 6.11).

This chapter is organized in the following way: First, the motivation for using a pattern-based-
approach for control design is given in section 7.1; then the nature of a control pattern is
discussed and set in context to related work on pattern-based approaches for conceptual modeling
(section 7.2). Based on the discussion, the attributes that describe a control pattern are introduced.
Based on the structure of a control pattern, the formal definition of a control pattern is given in
section 7.3. Section 7.4 introduces the set of control patterns identified in this thesis. In that
section the formal model of control pattern is applied to each control pattern in the repository. In
section 7.5 we introduce the notion of control pattern instantiation. Control pattern instantiation is
a procedure that generates the control condition of a concrete control based on a given control
pattern. Section 7.6 concludes this chapter.

7.1 Motivation for Using a Pattern-Based Approach f or Control
Design

A violation of controls represents an exceptional situation in the enactment of business
operations as manifested in operative business processes. The methodology presented here is
inspired by the observation that similar controls are often defined for mitigating certain risks,
which need to be managed in a similar fashion. The same risks may occur in different business
processes. For instance unauthorized or unapproved enactment of business level activities is a
certain type of risk that may occur in several business processes. Business level activities in a
purchasing process are, for instance, approval of an internal purchase request “ApprovePR” or
selection of a supplier “SupplierSelection” (see section 2.1). Both activities can be subject to the
risk of internal misuse. Typical controls that are used in practice to mitigate these kinds of risks
are the application of the “4-eyes-Principle” or separating the duty of enacting a certain business
level activity among different users or roles (Separation of Duties- SoD, see section 2.3). Another
example of a risk that occurs frequently in business processes is that received goods or services
are not in line with the order originally sent to a business partner. A concrete example of this in a
purchasing process is the situation that the received goods have a different quality or quantity
than requested. Furthermore, a certain situation in a business process may represent a risk, for
instance, a situation where a goods shipment is received from a supplier other than the one to
whom the purchase order was originally sent. This is possible when the original supplier uses a
subcontractor to fulfill the order. Typical controls to mitigate the possibility of fraud in such
constellations are to compare the business documents produced as result of the execution of
different activities in an instance of a business process. In such a way the situation representing
the above described risk can be determined. Applied concretely to the purchasing process, a
control that compares the business documents Goods Receipt, Purchase Order and Purchase

 121

Request with each other (including their attributes) can detect any undesired mismatch in the
quantity or quality of the received supplier shipment (3-Way-Match – see section 2.3). In addition
such a control would detect any fraudulent situations with respect to the current business partner
(Supplier identification, its address or bank information are not identical on Goods Receipt - and
Purchase Order- Business documents).

These observations led to the idea of taking advantage of repetitive patterns in control design,
in order to reduce the modeling effort and provide the compliance experts with reusable process
knowledge. The result is a set of patterns of internal controls on business processes. Each pattern
acts as a generalized description of actions that are frequently used in mitigating similar risks.
They define typical rules or set of rules that capture the knowledge about the occurrence of a
situation that violates a control and about the actions that can be performed to handle the
violation.

Taking the perspective of a standard software provider, providing this set of patterns in a
repository, where a certain pattern can be selected, instantiated to a real control, and applied to
business processes brings a higher level of system and component reusability to the ERP/BP
products. Taking the perspective of a customer company, building their compliance on top of
such a pattern repository can reduce the required domain specific knowledge in compliance
projects.

7.2 Analysis and the Structure of a Control Pattern in Business
Process Compliance

The control patterns provide the basis for the terminology in which the compliance experts
communicate about the domain. We have determined the set of control patterns, which will be
presented shortly, empirically by analyzing following kinds of popular ERP business processes:

� Purchasing,
� Sales and
� Human Resource Management.

In addition, the corresponding side-processes (such as for example Goods Return, Payment,
Dunning, etc. in case of Purchasing) were in the focus of the analysis. The information used for
analysis was provided by the consulting companies Deloitte and PriceWaterhouseCoopers. In a
contribution to a part of the SAP’s internal controls documentation tool called MIC (Management
of Internal Controls) [MIC], they describe a best practice model for the above business processes
(including all necessary controls). The business processes, including the control proposals, act as
documentation and are not related to the implementation level of business processes. The best
practice recommendations are not enterprise or industrial-sector specific, meaning each company
using the best practice recommendations can select a sub-set of recommended controls according
to its enterprise-specific risk assessment.

Our analysis of the different process descriptions including the controls that were provided by
Deloitte and PriceWaterhouseCoopers resulted in a categorization of controls, which then
represents the proposed control patterns. Based on this analysis, we present in Figure 44 the
different categories of control patterns (Control Pattern Repository). We recognize that this is not
a complete list of possible control patterns that may be required in practice. However based on
the auditing know-how of the auditing companies involved in the description of the analyzed
business processes mentioned above, we believe that the presented patterns reflect a large part of
possible controls in practice. There follows a brief description of each pattern category type,

 122

without details of its sub categories. A detailed description of each pattern will follow in section
7.4.

Figure 44 Control Pattern Repository

SSE patterns: We already mentioned this kind of control pattern briefly in the scenario section,
where certain transactions were shown that required the SSE-principle. Here we add the comment
that a control demanding a “higher number of eyes” would also be possible and would fall into
this category as well.

 123

Business Document control patterns: Here the syntax and semantics within and between
different business documents are subject to controls.

Inter Activity patterns: The controls satisfying these patterns require that certain activities
occur (or are absent) if a set of other activities occur in a business process (or a side process).

Report patterns: Reports are collected based on attributes on certain types of activities and
business documents in an enterprise during a certain period, e.g., monthly turnover reports. The
purpose of report control patterns is not the definition of a report, but rather to control that a
report has been generated and/or the respective reports are compared to each other as required in
the control.

Separation of Duties (SoD) patterns: In order to minimize fraud or misusage it is required that
an activity is divided into sub activities and each sub activity is executed by different users or
roles.

Authorization patterns: These controls limit users/roles access to resources.

Escalation patterns: If control conditions are ignored by the responsible users, this fact can/has
to be escalated to responsible entities in the enterprise.

A detailed description of each pattern type and its subcategories will be given in section 7.4.
The idea is to provide for each control pattern a corresponding mapping to a control according to
a control model (Definition 6.11). The control model introduced there represents a more technical
view on the controls and its introduction is aimed to facilitate the use of formal methods by
system developers/technical personnel who have the task of implementing the controls in
ERP/BPM Systems. The control patterns and the control model are kept implementation-
independent in their nature in that they are not bound to the usage of a certain system-specific
implementation. Each development team can select its favorite and suitable technical
representation of the controls, which can vary from database-oriented/SQL to a temporal logic
such as LTL (see Figure 45).

Figure 45 From a Control Pattern to its technical implementation in a system

The description of the control patterns follow the spirit of pattern-based design, which
originally aimed to provide a reusable approach to solve a recurring problem instance in a certain
domain.

 124

Christopher Alexander, a well-known building architect is widely acknowledged to be the
originator of the pattern idea [Alexander, 1979]. He explains that “each pattern is a three-part
rule, which expresses a relation between a certain context, a problem, and a solution”. Further he
adds that “as an element in the world, each pattern is a relationship between a certain context, a
certain system of forces which occurs repeatedly in that context, and a certain spatial
configuration which allows these forces to resolve themselves” [Alexander, 1979].

The usage of patterns in software applications in general became popular by the introduction of
object-oriented design patterns known as the Gang-of-Four (GoF)-patterns [Gamma et al.,
1995]. Control patterns for realizing business process compliance are introduced using an
analogy to software design patterns in object-oriented systems. Software Design patterns are
"descriptions of communicating objects and classes that are customized to solve a general design
problem in a particular context" [Gamma et al., 1995]. In contrast, control patterns are
descriptions of rules, predefining certain conditions on the occurrence of certain events during the
execution of a business process.

Significant research exists on the modeling of control flow in business processes by using
patterns to identify commonly used constructs [www.workflowpatterns.com].

On a similar note, [Giblin et al., 2006] provides temporal rule patterns for regulatory policies,
although the objective of this work is to facilitate event monitoring rather than the usage of the
patterns for support of compliance in business processes.

Significant work has been contributed in [Casati et al., 2000] for pattern-based exception
handling in workflows, which we consider as highly related to our pattern-based approach.
Especially the proposed algorithm for pattern specialization in [Casati et al., 2000] can be
reused and applied to the control patterns proposed in our work.

However, control patterns and the patterns mentioned above have in common that both are
intended to give some guidance on how a problem can be solved by using the concepts of an
underlying model. In the case of business process compliance the problem is the occurrence of a
potential risk. The underlying model in the case of control patterns is the model of a business
process introduced in chapter 4, while in the case of software design patterns the model is the
object-oriented model. By applying the idea of patterns to business process compliance the
reusability of a design is facilitated as well. In the case of control patterns, these reusable designs
are an abstract means to capture a certain kind of compliance requirement in a generic and thus
system independent manner. The compliance expert is relieved from the task of capturing
compliance requirements in controls in a recurring manner.

A pattern language is provided using a certain predefined form for each pattern description. A
pattern description is constituted using certain attributes in the form that build the pattern
language. Several pattern forms exist in the literature, each one differing from the other in the
categories of attributes they emphasize in the pattern description. Among others there exist the
Alexandrian form [Alexander, 1979], the GoF form [Gamma et al., 1995], and the Coplien
form [Coplien, 1995]. All forms contain the basic attributes to specify a pattern: name, problem
statement, context, description of forces, solution and related patterns. The attributes to specify a
control pattern proposed in this work are aligned with these common attributes. The attributes
and their descriptions for pattern specification are:

� Name of the pattern: Since the name of the pattern should become part of the vocabulary

of the community, it should be easy to remember and refer. The name must be intuitive
in the sense that it gives an image of the intent of the pattern.

� (optional) A (nested) list of super type categories of the given pattern, in order to
identify the pattern in the pattern repository

 125

� Risk situation: The risk situation in a control pattern becomes the problem statement part
of the pattern. The aim of the control pattern is described, as well as how it can be used
for mitigating certain risk situation(s).

� Control Objective(s): The control objective types (Operations, Financial Statement or
Compliance) for which the control pattern can be used.

� Solution: How the control can be used to mitigate the risk. Warnings about the pitfalls of
using the pattern should also be given. (how does this pattern become an Anti-Pattern)
Additionally, this attribute should reference variants of the pattern.

� (optional) Related to: the possible dependency links between different types of control
patterns.

� (optional) Example: a concrete control in the Purchasing process that follows the given
pattern.

7.3 Control Pattern Formalization

Using a pattern means instantiating its abstract description into a control model according to
the formal definition of a control in chapter 6 (see Definition 6.11). Considering each control
pattern description given and the formal definition of control model, reveals that while all control
patterns have many aspects in common, each pattern requires certain pattern-specific parameters.
A pattern-specific parameter is an element of a control pattern, which is always required in order
to capture the information required for the definition of a control according to the pattern. A
pattern-specific parameter will be reflected in the control condition in the corresponding concrete
instance of a pattern. For instance consideration of the SoD-Pattern reveals that the specification
of a control according to this pattern requires at least a set of transitions, whose enactment must
have been separately done by different users or roles (depending on whether user or role-based
SoD is intended by the compliance expert, see Figure 44). But taking the Escalation pattern for
instance, the design of a control according to this pattern requires the selection of a concrete
control (possibly from a control repository) and the selection of the number of ignored violations,
after which the recovery action (see Definition 6.10) of the control will be invoked. To simplify
the design process of controls required for business process compliance, pattern specific
parameters (PSPs) for each of the patterns types shown in Figure 44 have been identified, which
are included in a pre-defined template for designing a control according to a certain control
pattern.

The application of PSPs during pattern-based control design is either reflected in the control
conditions (Definition 6.9) of a control or in its triggering event (Definition 6.7) or in both parts.
We remain generic with recovery actions (Definition 6.10) of a control, because the decision on
which recovery action to select is enterprise-specific and needs to be determined by compliance
experts. This means that the compliance expert is allowed to specify any recovery action-type
presented in section 6.2.3 during instantiation of a control pattern into a concrete control
according to Definition 6.11 (its RAS-part).

Using the notion of PSPs and the attributes specifying each pattern (see section 7.2), the formal
definition of a control pattern is given below, where the notation [X] means that the existence of
X in an entity defined according to the tuple in the definition is optional:

Definition 7.1: Control Pattern (cp)
A control pattern is a tuple cp = (pName, pRisk, pCO, pSol, [pREL], [pEx], pCat ,[psp]), with:

� pName is the name of the control pattern

 126

� pRisk is the description of the risk situation in which the control pattern can be applied
� pCO specifies the control objective types of a cp with pCO ⊆ {Financial Reporting,

Operations, Compliance},
� pSol is the textual description of the approach that can be applied to mitigate the risk

situation given
� pREL is a set of other control patterns to which a cp is related (see attribute “Related

to” introduced in section 7.2)
� [pEx] An example usage of the control pattern
� pCat specifies the categorization of the control pattern as a pair pCat = ([supC],

[subC+]), where supC defines the name of super-category and subC defines the sub-
category of cp (Notation X+ means that X occurts 0 to n times)

� psp defines the possible pattern specific parameters of cp.

The formal specification above intentionally leaves the formal description of pattern specific

parameters (psp) open due the diversity of the parameters for each control pattern type. Pattern
specific parameters for each of the proposed control patterns will be given in section 7.4.

7.4 Control Pattern Repository

A brief description of each pattern type given in Figure 44 was given in section 7.2. In this
section the current content of the control pattern repository is further explicated and specified.
This is done by the description of the business level usage of the currently provided control
patterns and the introduction of pattern-specific parameters (PSPs) for each control pattern.

SSE Patterns

� Name: Second Set of Eyes (Also known as 4-Eyes-Principle)
Risk situation: Financial mis-statements can be made either through the intentional
fraudulent misuse of resources and transactions by internal employees or unintentionally
through incorrect business decisions.

� Control Objective(s): Financial Reporting, Operations
� Solution: Set up an approach for business related activities involving financial

transactions, so that at least two people sign off on each activity independently of each
other. Select the number of such activities and the people involved carefully. A high
number of activities under the control of SSE can reduce the operational efficiency of the
business process. An activity can block the progress of the business process, if it is
subject to SSE and the grant for enacting that activity is revoked later. An activity can
block the progress of the business process, if it is subject to SSE and at the same it is
subject to SoD, where the role or (one) of the roles (in the case of Inter-Role SSE) does
not appear in the list of roles in SoD.

� Related to: SoD, Authorization
� Example: Approving high volume purchase requests and orders or those related to

material types not ordered for a certain time or period should be done by two different
employees.

There are two variants of the SSE control pattern: For Intra-Role SSE it is sufficient that

employees executing a transition under the control of SSE have the same role, whereas Inter-Role
SSE requires different roles for each employee.

 127

Pattern specific parameters of this control pattern are given below:

SSEPSP = (trs, n, RLS), with

� trs is the transition under control
� n ∈ N is the number of users (number of eyes), where n ≥ 2 and
� RLS ⊆ ROLES is the set of roles of users, who execute trs.

The following example will show that the pattern specific parameters given above can be used for
both types of SSE-control patterns.

Example 7.1: Application of pattern specific parameters for SSE control patterns
In Figure 46 we give an example of the pattern specific parameters of two different controls
adhering to two different SSE-control patterns. As can be seen, using pattern specific parameters
in pattern-based design of controls will further simplify control design for business process
compliance. This is due to the fact that it is possible to support compliance experts with
predefined UI-templates for each control pattern. The area in figure marked with GP (Generic
Parameters) can occur in any type of control patterns, thus they are generic and not further
specified. They are technical control conditions (Definition 6.9) and will be manually added by a
compliance expert in order to customize the control.

Figure 46 Application of PSP for SSE

Inter Activity Control Patterns
� Name: Inter Activity Control Pattern
� Risk situation: Operational effectiveness and efficiency of a business process becomes

negatively affected, if upon occurrence of a certain unexpected business related situation
no appropriate reaction to its occurrence is predefined.

� Control Objective(s): Operations
� Solution: Identify an unusual unexpected business situation in a business process (or a

side-process of it). In case this unexpected business situation occurs the control checks
whether:

o another business event, whose occurrence is contingent on the occurrence of the
unexpected event, has occurred as well (possibly after some elapsed time), (Inter-
Activity- Existence) or

 128

o another business event has not occurred (possibly after some elapsed time)
� Related to:
� Example: A sample usage of the Inter-Activity-Existence pattern is the substitute concept

for users with the role Approver in a purchasing process. The control requires the
assignment of a substitute approver within the first day of absence of the originally
assigned approver.. All approving tasks of the absent approver will be rerouted to the
substitute employee. This control ensures that all purchasing orders will be processed in a
timely manner, if an employee with a key responsibility falls out.

The Pattern specific Parameters for both types of this control pattern are identical.

ActivityInterPSP − = (trs, trs’, n, m, f), with

� trs is a transition
� after the occurrence of trs, the transition trs’ has to occur as well (respectively not

occur in case of an Absence Pattern) (trs ≠ trs’)
� n, m ∈ N and f ∈ FREQUENCIES specify the following: n is the number of

invocations of trs’ (in the case of an Existence pattern at least n times, in the case of
an Absence pattern at most n times); in the last m frequencies (for example m = 3 and
f = Week specifies 3 weeks).

Business Document Control Patterns
� Name: Business Document Control Pattern
� Risk situation: Business documents produced (probably by fraudulent activities or

software errors) could result in undesired activities or results.
� Control Objective(s): Financial Reporting, Operation
� Solution: Check the content (syntax and semantic) of a business document instance or

compare several instances of different business document types in a business process to
determine whether a business document is complete, accurate and valid. There are several
sub-types of this control pattern:

o Completeness Checks: Verify whether all mandatory data-fields (attributes) in a
business document instance are filled with a correct data type.

o Plausibility Checks: Verify whether the attribute values of a business document
instance is plausible.

o Limit Checks: Certain attributes of different business documents instances
belonging to the same business process instance are bound to a mathematical
relationship.

o N-Way-Match: The value of certain attributes of different business documents
instances belonging to the same business process instance must match each other.

� Example:
o Completeness Check: The number of items in a PO business document instance

must be the same as the number of items in the corresponding invoice document
received from a supplier, if invoice splitting is not indicated.

o Plausibility Check: The PO Creation date is not after PO Approval Date
o Limit Check: Check availability of requested material in warehouse without

assignment: Do not accept purchase orders with a material type in their items,
where the current amount of that material type still available in the warehouse (in
stock) is higher than $10000 and the amount of the order is lower than $1000 .

 129

o 3-Way-Match: Check whether Purchase Order, Invoice and Delivery Business
Documents of a purchasing process instance have the same supplier identification
and purchase request identification.

Due to the diversity of different business document control patterns, there are no pattern
specific parameters provided. The controls can be modeled in a generic way using the general
control conditions-part in a control as introduced in section 6.2.2.

Report Patterns

The aim of report patterns is not the definition of the reports, but rather to check their
generation in the system by required users. A report is a special type of Activity with no
preconditions and effects:

Definition 7.2: Report
A report over a repository instance RI is a tuple report = (name, readBDI , reportbdi), such that:

� name ∈ ACTIVITIES is the name of the report
� readBDI ⊆ RI is a set of business document instances to be read and

� reportbdi ∈ RI is a business document instance representing the report-data.

The definition above does not state how reportbdi is acquired using the elements in readBDI .

Based on the definition above the specification of different report patterns is as follows:

� Name: Report Control Pattern

Risk situation: The necessary analysis of business transactions accessible through
periodic reports fails because the employees assigned to run and analyze the reports are
remissed in their duties. Thus undesired business situations (such as continuously reduced
monthly turnover) remain undiscovered.

� Control Objective(s): Financial Reporting, Operations
� Solution: Check whether the necessary reports in the system are run by the assigned

employees and compared to each other on a periodic basis.
� Related to:
� Example: Check whether the necessary report, which generates a list of open purchase

requests that have not been converted into purchase orders, is run on a periodic-basis.

There are three different variants of this pattern:

� Report Execution Check: Controls of this pattern assure that a report is run on a
periodic basis.

� Intra-Report Comparison Check Pattern: This pattern checks whether the variance of
certain attributes between different instances of the same report type generated in a
certain frequency (daily, weekly, monthly, yearly) exceed a predefined value.

� Inter-Report Comparison Check Pattern: This pattern checks whether the variance of
certain attributes between different instances of different report types generated in the
same period (day, week, month, year) exceed a predefined value.

In the following section, the pattern-specific parameters for each type of report pattern are
introduced:

 130

CheckExecutionReport −−PSP =(r, n, m, f) with:

� r is a report according to the Definition 7.2,
� n, m ∈ N and f ∈ FREQUENCIES specify the number of generations (invocation) of r

in a certain period (for example n = 1, m = 4, f = week specify that the report has to
be generated 1 time in a 4 week period).

ComparisonReportIntra −−PSP =(r, CATTS, V, assignVariance, assignVarianceType, f) with:

� r is a report
� CATTS ⊆ A is sub-set of attributes of rbdi (the business document representing the

data of report r - see Definition 7.2)
� V ⊆ ℜ is a set of real numbers with #V = # CATTS, where # A means the cardinality

of set A
� assignVariance is a total function CATTS→ V, which specifies the allowed variance

of each attribute in CATTS on a periodic (f ∈ FREQUENCIES)– basis
� assignVarianceType total function V→ PCD, which specifies the type of each

variance in V (PCD is set of primitive data types, see section 4.2.2.1).

ComparisonReportInter −−PSP = (r, r’, rCATTS , 'rCATTS , V, assignAttribute, assignVariance,

assignVarianceType, f) with:
� r, r’ are each the reports to be compared (r ≠ r’)
� rCATTS ⊆ A and 'rCATTS ⊆ A are each a sub-set of attributes of the report-

specific business-documents rbdi and 'rbdi with # rCATTS= # 'rCATTS

� V ⊆ ℜ is a set of real numbers (#V = # rCATTS)

� assignAttribute is a total function rCATTS → 'rCATTS specifying which attribute

of each of the given report types have to be compared,
� assignVariance is a total bijection between the set representing the results of

assignAttribute-relation and V. It specifies the allowed variance between the
respective attributes of r and r’ on a periodic (f ∈ FREQUENCIES)– basis

� assignVarianceType is a total bijection V→ PCD, which specifies the type of each
variance in V (PCD is set of primitive data types, see section 4.2.2.1).

Figure 47 represents the role of assignAttribute, assignVariance and assignVarianceType
relations in PSP-Definition of Inter-Report-Comparison control pattern by an example. In the
figure two reports R1 and R2 are used, where R1 has the attributes a, b and c and R2 has the
attributes d, e and f.

Figure 47 Illsutration of PSPs for Inter-Report-Comparison

 131

SoD Patterns
� Name: Separation of Duties Pattern (Also known as Segregation of Duties – SoD)

Risk situation: A deliberate fraud might occur when the completion of an activity is the
duty of a single person.
Control Objective(s): Financial Reporting

� Solution: Divide a business level activity into two or more sub-activities, which together
fulfill the original activity. Define for each sub-activity a separate employee having the
same role (User-based- SoD) or a separate role (role-based-SoD) to achieve the sub-
activity. Consider that it is possible that an employee can have more than one role. Role-
based- SoD becomes ineffective if an employee has the roles required to achieve each
sub-activity in SoD. An unreasonably high number of activities under the control of SoD
can reduce the operational effectiveness of a business process. In case of user-based-SoD
make sure that the substitute-concept for the user with the duty for each sub-activity is
implemented and assure its effectiveness.

� Related to: SSE, Inter-Activity
� Example: See control CB2 in scenario (section 2.2.3).

Below the pattern-specific parameters for use- and role-based SoD are introduced:

SoDBasedUserPSP −− = (TRS, rle), with

� TRS is a set of transitions in the current business process
� rle is a role. Each user executing a trs ∈ TRS must have the role rle.

SoDBasedRolePSP −− = (TRS, RLS, assignRole), with

� TRS is a set of transitions in the current business process
� RLS ⊆ ROLES is a set of roles.
� assignRole is a total bijection between TRS and RLS.

Authorization Patterns
� Name: Authorization Pattern

Risk situation: A deliberate fraud might happen when an employee intentionally can
misuse resources or has unlimited access to resources.

� Control Objective(s): Financial Reporting
� Solution: There are several (complementary) solutions: i) check the restricted access of

users to roles (User-based- Authorization), ii) check the role’s grant to execute an activity
(Role-based) or iii) limit users' grants to execute certain activities, if they did not execute
that activity for a certain period (Time Limited Authorization pattern)

� Related to: SSE, SoD
� Example: One-Time-Supplier-Creation-Control: To accelerate the reactivity of a

company to changes in the supplier market, it is possible to give the right to certain
employees in the purchasing department to create supplier-entries with incomplete
information data of the supplier. This should enable the company to enter into short-term
business-relationships with a business partner (Suppliers who will be contracted possibly
only once). This type of supplier is called a One-Time-Supplier and certain users are
allowed to create such supplier entries. The control says that it should be ensured that this
right (Executing One-Time-Supplier-Creation-Activity) is revoked from those employees

 132

in the purchasing department who did not create such a supplier-type in the last 3 months.
Such a control is of type “Time Limited”.

Below the pattern-specific parameters for different types of authorization patterns are
introduced:

ionAuthorizat-Based-UserPSP = (usr, rle), with:

� usr ∈ USERS is a User, which will be checked if it has the role rle
� role rle ∈ ROLES.

ionAuthorizat-Based-RolePSP = (rle, trs), with:

� rle ∈ ROLES is a Role, which will be checked if it is allowed to execute the

Transition
� trs: Transition.

ionAuthorizat-Limited-TimePSP = (usr, trs, n, m, f), with:

� usr ∈ USERS, is the employee, who should execute the
� trs: Transition
� n,m ∈ N and f ∈ FREQUENCIES specify together the period of time, during which

the user is required to enact the transition (for example n = 3, m = 1, f = year specify
that transition should have been enacted by the user 3 times in the last 1 year).

Escalation Patterns
� Name: Escalation Pattern

Risk situation: The control environment set up in an enterprise does not provide an
atmosphere in which employees can behave compliantly. Another risk is that the policies
are not taken seriously by the employees, or they don’t pay attention to the control
violations caused by them.

� Control Objective(s): Financial Reporting. Operation, Compliance
� Solution: Notify certain instances in the company (employees), if a control is violated

more than a certain number of times during a certain period.
� Related to: All other control patterns
� Example: If purchase orders that require SSE are approved by only one employee

frequently (say weekly), then the purchasing manager has to be informed.

Pattern-specific parameters for escalation pattern are:

EscalationPSP = (ctl, n, m, f), with:

� ctl ∈ CTLS is the control, which is violated
� n, m ∈ N, and f ∈ FREQUENCIES specify together the number of control violations

in a period (for example n = 3, m = 1, f = week specify that the control ctl is not
allowd to be violated more than 3 times weekly, otherwise this will be escalated).

 133

7.5 Control Pattern Instantiation

Control pattern instantiation is a mechanism for creating a control (according to Definition
6.11) based on a specific control pattern. The intent is to create a specific control enforcing the
desired usage of the pattern in a specific business process. Instantiation consists of binding all the
pattern-specific parameters of a control pattern to a control condition (see Definition 6.9).

In order to be able to evaluate control conditions capturing a business situation that violates the
control, it is required to obtain the set of instances of any controlled entity (CE) (Transition, Role,
Business Document, Control, User) in a business process instance according to a given selection
criteria. By checking the attributes of the set of retrieved CEs, it can be decided whether a control
is violated or not. For this reason we introduce the concept of Query of a CE. The query of a CE
(CEQuery) determines the set of all instances of that CE according to a given filter.

The following definition specifies different types of queries, where the sets used in the
Definition are: TRANSITIONS is a set of transitions (Definition 4.14), TRANSITIONINSTANCES
is a set of transition instances (Definition 4.15), CTLS is a set of controls (Definition 6.11),
ROLES is a set of roles and USERS is a set of users.

Definition 7.3: A CEQuery on a business process repository instance BPRI of a repository BPR
is any of the following functions:

� queryRoles ⊆ (BPRI × TRANSITIIONS) � ROLES2 is a partial function which returns a
sub-set of roles in ROLES, who have executed a transition t ∈ TRANSITIONS in the
given BPI ∈ BPRI

� queryBDIS ⊆ (BPRI × R × {condition}) � RI2 is a partial function, which returns a

sub-set of business document instances in RI. For the result set RI2 it holds that the
type of the business document instance is the same as the business document type given
by the business document type in R (in the domain of the relation) and all the instances
satisfy the condition given.

� queryTRANSITIONS ⊆ BPRI × TRANSITONS � INSTANCESTRANSITION2 is a partial
function which returns a set of transitions instances of the specified transition type
existing in the corresponding model of the given business process instance in BPRI. If
no transition type is specified, all transition instances will be retrieved.

� queryCONTROLS ⊆ BPRI × CTLS � CTLS2 is a partial function that returns all the
controls applied on a business process instance, which are of the type specified in the
query. If no control type is specified, all controls of all types will be retrieved.

� queryUSERS ⊆ BPRI × TRANSITIONS � USERS2 retrieves the set of users, who have
executed the specified transition type in the given business process instance in BPRI.

Although the different types of queries introduced in Definition 7.3 are invoked during the

execution of business processes (in order to evaluate the control condition), during instantiation
of a control pattern (which is related to design time of controls) a set of such queries must be
created and stored together with a control condition. Thus a control instantiation of a control
pattern is defined as follows:

 134

Definition 7.4: Control Pattern Instantiation

Instantiation of a control pattern cp on a business process is a procedurecpφ , which receives as

inputs
cpPSP and a business process definition bpd (according to Definition 4.2) and generates a

control condition (according to Definition 6.9) and a set of CEQuery (according to Definition
7.3).

As an example, the control pattern instantiation procedure for control pattern Intra-Role-SSE is
described in detail below:

Control Pattern Instantiation SSERoleIntra −−φ (According to Definition 7.4)

Input: SSERoleIntraPSP −− = (trs, n , rle), business process definition bpd

Output: control condition cc; set CEQ containing elements of type CEQuery
1 ∀ bpi of type bpd {
2 T : queryTRANSITIONS (bpi, trs);
3 R: queryROLES(bpi, trs);
4 U: queryUSERS(bpi, trs);

 cc =
5 SIZE_EQUALS (R, 1) and
6 CONTAINS (R, rle) and
7 SIZE_EQUALS(T, n) and
8 SIZE_EQUALS (U, n);
9 CEQ = { queryTRANSITIONS (bpi, trs), queryROLES (bpi, trs), queryUSERS

(bpi, trs)}
}

The set CEQ containing elements of type CEQuery is given in line 9. The variables T, R and U

(Line 2-4) are variables that will contain the results of the queries (which will be available at
execution time). These variables are then used in statements of control condition (cc).

The control condition (cc), as another output of the procedure, contains the following
statements: The control statement in line 5 checks that there is only one role, which has executed
the transition trs. The reason is that the control pattern is of type Intra-Role. The control
statement in line 6 verifies whether the required role rle in fact has exclusively executed the
transition. The statement in line 7 checks that the trs is executed n times and the statement in line
8 checks that number of users, who have executed trs is n.

Note that the instantiation procedure only binds the pattern–specific-parameters to control
conditions. The extension of a control condition is possible by manual addition of more control
statements to a control condition, in order to refine the control. This is out of scope for the
instantiation procedure of a control pattern. For instance by adding a statement like
GREATER_EQUALS(po, amount, 5000) to an already existing control condition of a control
definition adhering to the SoD-Pattern (possibly generated by the instantiation procedure), it is
possible to make the control mandatory only for purchase order business documents instances
(po) with a total amount higher than $5000 .

 135

7.6 Conclusion

Using the control patterns, the compliance expert can considerably reduce the compliance
effort and improve the quality of the compliance design for a business process. This is possible
due to the fact that instead of having to define a control from scratch, a compliance expert may
browse or query the control pattern repository and select a control pattern of interest that
mitigates an identified risk. The compliance expert then designs the control for the currently
selected business process by configuring the control pattern into a real control (specifying values
for control parameters). Furthermore, providing a control pattern repository and an approach for
designing them into business processes can provide added value to the software of standard
software providers. A major value-add is that their customers from different sectors can build
their compliance on top of such a repository. This raises the level of reusability and usability of
software and provides the compliance experts at the customer site with reusable knowledge
provided by the patterns. In this chapter we presented such a pattern-based approach for
designing the necessary controls for business process compliance.

Furthermore, a set of empirically determined control patterns were presented and described.
For the description of these patterns a set of attributes were used. We introduced the notion of
pattern specific parameters for control patterns. Pattern specific parameters are parameters related
to a specific control pattern. They serve as the basis for generating a concrete control that adheres
to a certain control pattern and also as input for generating control-pattern-specific user-
interfaces. The process of generating such a control based on a control pattern we called control
pattern instantiation. Control pattern instantiation was defined as a procedure that generates a
control condition and a set of queries for each control. These queries will be used to assure the
compliant behavior of business process instances by providing the basis for evaluating the control
condition during the execution of business processes.

 136

 137

8 Compliance Validation of Business Process Executi ons
In chapter 4, we presented a detailed model of the business process model as a BPD. We

showed in chapter 6 how the controls can be modeled in a business process model (Definition
6.11). The relationships existing between the models of a control and a business process were
also described there.

The focus of this chapter is to engage the proposed models through an approach that ensures
the compliant behavior of business process instances according to the defined controls. The
system realizing this approach is called ICR (Internal Controls Repository), which is divided into
two sub-components: ICR-Design and ICR-Execution. As we will see in this chapter, assuring
the compliant behavior of business process instances requires a set of preparations on business
process models. This set of preparations is and inherent part of our approach. A detailed
description of the implementation of the approach is provided.

First, we make some introductory remarks on ICR. We continue in section 8.2 by discussing
the foundations of the technologies used in the implementations. The discussion on foundations
will be completed by describing the selected tool environment. Our approach is realized based on
this tool environment. In section 8.3 the approach itself, which is used for the implementation of
ICR, is described. In 8.4 we describe the implementation by giving

i) the requirements for the technical realization of the approach and
ii) the reasons behind our selection of the specific implementation of ICR-Design, motivated

by the technical requirements listed before and
iii) the detailed implementation of the integration of control and business processes instances
(ICR-Execution).
Related work will be discussed in section 8.5, after which this chapter will be summarized.

8.1 Introduction

Although the proposed modeling approach allows for a flexible and usable definition of
controls on business processes (supported by the pattern-based design of controls presented in
chapter 7), during the execution of business processes the separated model of business processes
and the controls have to work in a tightly integrated manner in order to support the prevention of
control violations produced by business process instances. Recall that the design and controls of
business processes are not the only processes subject to compliance certification; the execution of
business processes in daily operations (business process instances) must also be compliant. This
implies that, while one must be able to separately design the controls and business processes, it is
also necessary that the controls and business process instances be re-integrated during the
execution of business processes. One of the main contributions of this thesis is that we render it
possible to separate the design of controls and of business process models, done respectively by
compliance experts and business process experts. Based on this, the approach presented in this
thesis allows for the automatic detection and prevention of control violations of business
processes during execution time without necessitating any human interactions.

In order to support the separation of the business and control objectives, and the automatic
prevention of control violations produced by business process instances, this thesis introduces the
possibility of another layer above the business process model and executions. The system
responsible for realizing this layer is called “Internal Controls Repository” (ICR) . The ICR is
divided into two sub-components:

 138

� ICR-Design: According to the assessed risks, a set of controls is defined in ICR-
Design.

� ICR-Execution: By executing a business process, ICR-Execution will be continually
updated with information needed for the evaluation of defined controls in order to
ensure that compliance tests will pass.

In chapter 6 and 7 we discussed how the controls can conceptually be designed in ICR (ICR-
Design). In this chapter we are concerned with the application of controls existing in ICR-Design
to support the compliance of business process executions.

The approach necessary for the realization of ICR-Execution is tightly linked to the way a
control is technically realized, i.e. its concrete representation in ICR-Design. Recall that in
chapter 6, we only presented the conceptual model of a control and did not make any statements
as to its concrete realization, i.e. the formalism and the implementation selected for its technical
persistence in a system for business process compliance.

We have decided to implement the system of ICR based on a rule-based approach. The reasons
supporting this decision are as follows:

� Considering the core structure of a control according to Definition 6.11 as consisting of
a triggering event, control condition, and recovery actions, a control can be read in the
following way: if a triggering event occurs and at the same time a condition is fulfilled,
then invoke the recovery actions. This is basically a rule.

� Rule based languages can be expressive enough to capture the control model.
� The declarative nature of rule-based languages yields an acceptable compromise

between expressiveness and simplicity.
� The high abstraction level of rule-based languages allows formulating statements close

to natural language formulations suitable for people with little or no technical skills.
This has led to developments in the area of domain specific languages (DSL) [Mernik
et al., 2005] built on top of rule languages.

Based on the rule-based presentation of controls this chapter will present an approach for
integrating the controls with business process instances achieved in ICR-Execution.

8.2 Foundations

8.2.1 Introduction to Business Rules
Business rules provide a way to capture organizational knowledge in a structured and

formalized manner [Herbst, 2000]. Further [Herbst, 2000] states that business rules can be
defined as "statements about how the business is done, i.e., about guidelines and restrictions with
respect to states and processes in an organization". The Business Rules Group [BRG2000] defines
a business rule as "a statement that defines or constrains some aspect of the business. It is
intended to assert business structure or to control or influence the behavior of the business".

[Taveter et al., 2001] and [Wagner, 2002] give a typology of formalized business rules based
on [Bubenko et al., 1998], which distinguishes between the following types of business rules:
Reaction rules, derivation rules, and integrity constraints. Reaction rules are further sub-divided
into Event-Condition-Action-rules (ECAs) and production rules:

ECA-Rules are concerned with the invocation of actions in response to events. They state the
conditions under which actions must be taken [Wagner, 2002].

In rule based systems, production rules are of the form “IF c THEN a”, where c is a condition
and a is any kind of action, including external procedures/methods. Production rules are very

 139

similar to ECA rules. [Wagner, 2002] states that ECAs can even be considered as a special case
within general concept of production rules. From a conceptual point of view, we see an ECA-rule
as a production rule, where the notion of event in ECA is explicitly designed in the left hand side
(LHS) of a production rule. However the underlying algorithms and infrastructure for processing
both types of rules can be identical. In this thesis, we differentiate between production rules and
ECA-rules through the way a rule is written, thus an ECA-rule can be transformed into a
production rule. Because production rules serve as the implementation of the compliance
approach during the execution time of business processes presented in this thesis, we introduce
them in detail in sub-section 8.2.2.

Derivation rules allow for the derivation of knowledge from other knowledge by an inference
or a mathematical calculation [Wagner, 2002]. Each rule expresses the knowledge that if one set
of statements happens to be true, some other set of statements must also be, or will become, true.
Derivation rules are the basis for the programming paradigm “Logic programming” [Lloyd,
1984], which relies on a subset of first order logic, referred to as Horn clause Logic.

According to [Wagner, 2002], an integrity constraint is an assertion that must be satisfied in
all evolving state and state transition histories of a discrete dynamic system.

To the above-introduced categorization, we add that a clear semantic separation of different
categories of rules is not a straightforward task. Many rules can be assigned to different
categories and at the same time a certain category can be considered as a special type within
another category: categories must not necessarily be mutually exclusive. For example, an
integrity constraint can be interpreted as a reaction rule, if in the case of its constraint violation a
reaction should follow.

8.2.2 Production Rules

8.2.2.1 The Structure of a Production Rule
The following concepts are generally central to a system employing production rules

[BRG2000]:
� Terms
� Facts
� Rules

Terms are artifacts that are important to a domain. They build the language and the
terminology for the presentation of the domain. In our model of business process compliance the
conceptual model behind the terms are the set of controlled entities, namely the business
documents, transitions, users and their roles, and the controls.

A Fact is an instantiation of terms or the instantiation of relationships between two or more
terms. Examples for facts are: “A PO with a total amount of 5000$ for material type 5 has been
approved on 21.12.2005” or “User Smith has invoked the operation One-Time-Vendor-
Creation”. In the area of business process compliance, the concept of facts is reflected in the
model of business document instances, transition instances, business process instances and
controls instances.

The core component of a production rule system is its rule engine (sometimes called inference
engine). This engine is able to process rules and facts. The engine matches the facts against the
existing rules to infer conclusions resulting in the execution of the actions defined in the rules.
The matching process is called Pattern Matching. A production rule is itself a two-part structure
of the following form:

 IF <conditions> THEN <actions>

 140

The IF- part in a production rule is called the Left-Hand-Side (LHS) and the THEN- part is
called the Right-Hand-Side (RHS). In production rules the foundation used for expressing the
LHS is first order logic, while the actions in RHS can be reduced to a set of invocations, which
create new facts or modify or delete existing facts.

8.2.2.2 Components of a System for Production Rule s
The basic functions of a production rule system are:

1. Creation of rules
2. Management of facts and
3. Decision of which rules to fire

In the context of production rule systems, the first functionality results in a technical
component called Production Memory or Rule Base. We will use the term rule base. A rule base
basically contains a set of production rules. The technical component responsible for the second
functionality is called Working Memory. A working memory contains a set of facts and is related
to the execution time of business processes in the case of business process compliance. Facts are
managed in a working memory; they can be created (assertion), modified, or deleted (retraction).
As previously mentioned, the third functionality is achieved by the Rule Engine. The rule engine
has two main sub-components, the Pattern Matcher and the Agenda. While the pattern matcher
determines the truth of conditions of rules that must be fired, the agenda is responsible for the
execution order of rules that are fired. The agenda further verifies whether rules are in conflict
with each other, in cases where more than one rule becomes true. In the latter case the agenda of
a production rule system uses a conflict resolution strategy to resolve conflicting rules that have
become true in parallel. All rules are evaluated against all facts in the working memory. For each
eligible combination of facts (that is, the condition part of the rule is true) a rule instance (the
action part) is created on the agenda. The agenda is basically a last-in-first-out-stack (LIFO) that
keeps track of rules which have to be fired. After the agenda has been updated, rules are fired
(their action part is executed). The execution of a rule may alter the working memory, which may
lead to a new modification of the agenda (creation of new rule instances on the agenda). After
these modifications, ineligible combinations of rules and facts are pruned from the agenda. The
execution of rules continues until the working memory is stable and the agenda is empty. Figure
48 outlines the general architecture of a production rule system.

Figure 48 Rule Base, Rule Engine and Working Memory of Production Rule Systems

 When facts are asserted to the working memory, the production rule engine creates
“working memory elements” for each fact. In the working memory, a fact is stored in the form of
a tuple and may contain an arbitrary number of data items. Thus it is possible to store business
document instances as facts in the working memory and their assigned attributes as elements in
tuples. The possibility of storing fact combinations allows for the creation of a working memory
based on the “objects” as instances of classes from an object-oriented point of view. Many
production rule engines (Drools [Drools] and Ilog Rules [ILOG] to name a few) use this

 141

possibility to create rules according to the class model provided by an object-oriented application.
The working memory then presents the current instantiation of classes (objects) produced by OO-
runtime components (JVM in case of java). Thus it is possible that the class model of the current
domain of interest provides the terms (the language) on which the rules are built. A very
important aspect of building production rules on top of an already existing “domain model” is
that it requires no further modelling efforts, since the terms relevant for building the rules are
already designed and provided by the application (business process).

8.2.2.3 RETE Algorithm and Forward Chaining
The effort required for processing a larger rule set quickly increases if every combination of

facts in the working memory is evaluated against every condition of the rules in the rule base.
Most production rule engines are based on the RETE algorithm [Forgy, 1982] in order to
increase the performance of rule processing. The RETE algorithm is responsible for
implementing the PatternMatcher-component as described in the previous section. It builds a
network of nodes in which each node represents a single condition of a rule. The RETE network
allows for the identification of valid fact combinations that fire rules more efficiently. If rules
contain identical conditions, the condition-node is created only once. Facts are then “filtered” by
the RETE network. Only those facts and fact combinations that can cause a rule to fire are passed
through the network. Since “valid” combinations of facts are identified more quickly, the
identification of valid rules (those which have to be fired) is improved.

The RETE network has a single entry point and one exit point for each rule. The first part of
the tree differentiates between types of objects that are processed in the network (discrimination
tree). Alpha Nodes represent conditions of a rule. Join Nodes represent joins between conditions
of one or more rules. The last node is the Rule Node, which controls the agenda. Whenever a
valid combination of facts (a fact combination that matches the conditions) reaches this node, the
agenda will be modified according to the action specified in the current rule.

Facts are propagated through the network via tokens. A positive token indicates that a new fact
has been asserted in the working memory. A negative token indicates that a fact has been
retracted from the working memory. If such a token reaches a rule node, the agenda will be
updated accordingly. That is, putting the rule instance on the agenda in the case of a positive
token and removal of the rule instance in the case of a negative token.

The RETE algorithm uses the principle of Forward Chaining. In contrast to Backward
Chaining (see section 5.1.4), forward chaining has a reactionary nature and is “fact-driven”. That
is, it reacts on changes affected by facts asserted in the working memory. As facts are asserted in
the working memory, the conditions of some rules, can become true, possibly concurrently, and
are put on the agenda to be fired. In this way a conclusion is reached. Backward chaining is
“goal-driven”.

8.2.2.4 Truth Maintenance and Shadow Facts in Prod uction Rule Systems
Another significant feature of compliance validation of business process executions supported

by the rule engines of production rules is the concept of Truth Maintenance [Doyle, 1979]. This
concept is used in the implementation of the approach (that will be presented in section 8.4) in
order to achieve an accurate and efficient synchronization of the ICR-Execution when changes in
a business process instance take place outside of the ICR-Execution.

Truth maintenance is related to the statefulness of the facts generated and managed in the
working memory and assures the consistency of logical relationships generated by actions in a
rule. Truth maintenance in production rules is made possible because the modification and

 142

retraction of facts already existing in the working memory is possible. Rule engines that are able
to support truth maintenance are called non-monotonic reasoners.

Closely related to truth maintenance is the concept of Shadow Facts. A shadow fact is basically
a shallow copy of the productive data (for instance business document instances) generated
outside of the production rule system, which has been asserted to the working memory. They
represent a cashed copy of the asserted object as a fact in the working memory. The rule engine
Jess [JESS] was one of the first rule systems which implemented the concept of shadow facts.

The basic relation behind truth maintenance and shadow facts is that a production rule system
should guarantee the accuracy of the conclusions derived by the rule engine. A productive system
(for instance a business process execution infrastructure or ERP system) may alter the data during
the progression of a business process instance. In such a situation, the rule engine must somehow
be informed of the changes which have occurred outside the rule system in order to derive
conclusions that accurately reflect the situation in the outside world (Truthfulness). This can be
achieved in two ways: i) by locking all the facts (and their according original productive data)
during the inference process or ii) by maintaining a cache copy of the productive data and
delegating all modifications through the rule engine. Thus the working memory is automatically
synchronized to changes occuring outside of the rule system.

Figure 49 exemplifies the concept of shadow facts in the case of a business document instance
bdi. Let’s assume that during 1T an initial fact version

1bdi exists in a bp instance maintained by

the infrastructure responsible for executing the business process definitions (BP Execution
Engine). During

2T the business document instance
1bdi is asserted to the working memory.

During
3T , the original business document instance

1bdi is modified by the application and it is

now an updated version of the original business document instance
1bdi , which we call

2bdi . The

concept of shadow facts assures that during
4T , the

1bdi fact is automatically updated in the

working memory, so that the working memory now contains a fact
2bdi (

1bdi no longer exists in

the working memory). Let’s assume that during
5T the value of the attributes of

2bdi causes the

pattern matcher to update the agenda by firing a production rule (putting it on the agenda). Let’s
further assume that the RHS-part of this rule causes the modification of

2bdi , so that during
5T

the working memory contains a new version of the bdi-fact, called
3bdi , as an updated version of

2bdi . The concept of shadow facts automatically assures that the
2bdi instance in the bp instance

maintained by BP Execution Engine is updated during
6T , so that the bdi of the bp instance has

the value
3bdi and not

2bdi (as it was during
3T), and so on and so forth.

Figure 49 A business document instance in a business process instance and its shadow in a
working memory

 143

8.2.3 Tool Environment
From the point of view of implementation, there are two open issues which remain to be

discussed:
1) How to design and execute the business processes and
2) How to implement the ICR.
We have chosen to implement the business processes in a java-environment with JBoss jBPM

[jBPM] including a graphical Process Designer Tool and a Process Execution Engine. The
processes in the jBPM designer can either be designed as BPEL or as jPDL [jBPM]. The latter
one is a language developed by jBPM itself. jPDL leans on XPDL [XPDL]. We decided to design
business processes with jPDL because it allows for concepts such as task management and
identity management, which allowed us to completely simulate typical ERP scenarios necessary
to our experimental environment. BPEL did however have limited usage in our approach: BPEL
does not account for humans in a process, so it doesn’t provide typical real life business scenarios
[BPEL4People]. It was for this reason that we chose to first design the processes as jPDL in our
prototype and then to use jBPM as its execution platform.

As for ICR implementation, we decided to implement the ICR based on production rules. A
detailed technical discussion about the reasons for this decision is provided in the implementation
part of this section. As the implementation platform for production rules we selected the Drools
Rules Engine [Drools]. We selected Drools rules as a representative of several rule engines,
because it is open source and is popular. Drools serves as a provider to implement the underlying
control model and the approach for compliance validation of business process execution.

In the following two sub-sections, the basic technical concepts behind jBPM and Drools Rules,
those which are necessary in order to understand the implementation part of the approach, are
explained. For a detailed introduction to jBPM and Drools rules, please refer to the
documentation of jBPM [jBPM] and Drools [Drools].

8.2.3.1 Business Processes with jBPM
jBPM is a java-based open source solution of a workflow engine.. A process definition in

jBPM describes a state machine that is executed in the engine. In the following, a brief overview
of the basic concepts behind jBPM is provided.

8.2.3.1.1 Business Process Design
Each business process is designed in the Java Business Process Definition Language (jPDL).

The result of designing a business process in jPDL is a directed graph of nodes with edges
between them. The following node-types are available:

� A Task node represents one or more tasks that are to be performed by humans. When
the execution path arrives at a node of this type, a task instance in the task list of a
specified business process participant will be created. After that, the node will fall into
a wait state. When the users have performed their task, the completion of the task will
trigger the further processing of the execution.

� A State node executes no business logic. This state can be useful when waiting for a
signal from an external system (asynchronous business processes).

� A Decision node handles decisions in the flow, i.e. which leaving edge of the current
node in the process execution should be taken.

� A Fork node can be used to split one path of execution into multiple, concurrent paths
of execution.

 144

� A Join node is the opposite of the Fork node and joins the multiple concurrent paths
into one single path.

In the case where a node implementation has to invoke a certain functionality automatically
(e.g. a web service), an Action Handler (see the next sub-section) must be implemented on that
node. jBPM exposes its process design programming API, thus custom node types can be
implemented as well. The design entities in jBPM which support the concepts of users and their
roles in business process definitions are swimlanes and actors in jPDL.

8.2.3.1.2 Business Process Implementation
With a jPDL-process definition only the flow of execution is specified. The access to the

underlying business logic encapsulated in different business systems (which provide business
documents and their instances) is implemented by the notion of Actions that can be attached to
the nodes.

When a node is processed during the execution of a business process, its Actions are invoked.
An Action is implemented by implementing the interface ActionHandler. An ActionHandler
satisfies the Command-Design-pattern [Gamma et al., 1995] and works in the following way:
When the process execution engine encounters a node in the process definition that has an action
associated with it, all ActionHandlers related to the node are invoked. ActionHandlers are
instances of java code that can interact with external systems when executed. An ActionHandler-
interface contains the method execute, which receives an ExecutionContext as an input-
parameter. ExecutionContext is basically a Map-Data structure (set of key-value-pairs), which
can contain any serializable java object. The implementation of the execute-Method of an
ActionHandler can read and write received data into the ExecutionContext. In such a way data
can be manipulated and populated across nodes in a business process instance. Our
implementation of the business process context (see Definition 4.16) encapsulates the
ExecutionContext of jBPM. The following listing is a simple example of an ActionHandler-
implementation and its corresponding integration in a jPDL-defintion. The explanations of the
code are given in the code as comments:

Listing 9.1
public class ApprovePurchaseOrderActionHandler implements ActionHandler
{
// execute is the only method of an ActionHandler-Interface. Every class of this interface must

 // implement this method
 public void execute(ExecutionContext executionContext)
 {
 // read from context which purchase order has to be approved, where APPROVE-PO is

 // the key under which the purchase order can be looked up in the context
 Integer poId = (Integer)
 ctx.getContextInstance().getVariable("APPROVE-PO");

// connect to the PurchaseOrder-Business-Layer (SRM) and approve the order:
 Connection connection = SRMFactory.getConnection();

// invoke the approve-activity
connection.approve(poId);

 // close the connection to SRM

 145

 connection.close();
 }
}
The ActionHandler above can be integrated in the following way in a process definition:

Listing 9.2
<process definition name = “purchasing”>
 …
<!—The activity Approve-PO, to which the action handler

ApprovePurchaseOrderActionHandler will be assigned -->
<state name = “ApprovePO”>
 <!—An instance of the ApprovePurchaseOrderActionHandler-class will be generated and

equipped with the context of the business process instance, when from the Approve-PO-
Node the transition to Send-Po-Node is taken -->

<transition to = “SendPO”>
 <action class = “ApprovePurchaseOrderActionHandler”/>
 </transition>
</state>
<state name = “SendPO”>
...
</state>
</process definition>

The jBPM engine will fire different kinds of events during a process graph execution. Events in
jBPM specify moments in the execution of the process. An event occurs when jBPM calculates
the next state. Each node type has its specific event types. A node can fire a node-enter event or a
node-leave event by default. An event in jBPM is the hook for actions and is associated with a
list of actions. When the jBPM engine fires an event, the list of actions is executed. Using the
node-enter event we implement the control condition EXECUTING (see Definition 6.9). In such
a way, we are able to capture the moment before a transition in a business process instance is in
fact invoked, i.e. the effect of an activity (see Definition 4.12) or state, e.g. changing results on a
business document instance in case of a state change command (scc) (see Definition 4.13). State
change commands are commands of a business document type (see Definition 4.6) that cause a
business document to change its state value (see Definition 4.5).

The logic behind a decision node, i.e. the calculation of the leaving edge selection, is realized
using the implementation of a DecisionHandler-Interface. The principle behind a
DecisionHandler is very similar to the one of an ActionHandler. The difference is that a
DecisionHandler-interface contains the method decide which receives an instance of
ExecutionContext and as a result returns the name of the leaving edge that should be taken. It is
up to the implementation of the DecisionHandler to determine the name of the edge.

8.2.3.2 Process Execution
The jBPM execution engine is responsible for executing business processes designed with

jPDL. The execution model of jBPM is about processing the directed graph, created during
design of a business process, and interpreting it as a state machine. jBPM implements the graph
interpretation and execution according to the chain of the command design pattern [Gamma et
al., 1995]. Very briefly explained, the chain of the command pattern means that each node in the

 146

graph is responsible for propagating the process execution. A wait state (node) means that a node
does not propagate the execution. When an execution arrives in a node, signals can be sent to the
execution. Sending a signal to the execution is an instruction to continue the progress of the
current business process instance. In addition to the above described synchronous execution
model, jBPM also supports asynchronous process executions. In this case a business process
instance can handle signals received from external systems. jBPM relies on the concept of
asynchronous messaging (such as Java Messaging Service JMS) to implement this behavior. For
a detailed description of the jBPM execution model and the underlying graph process algorithms,
please refer to [jBPM].

8.2.3.3 Production Rules with Drools Rules
For the implementation of the ICR, we used Drools Rules 4.0. Drools Rules is a java-based

Rule engine. Rules in Drools can be written in a rule notation called DRL (Drools Rule
Language) or as XML. We decided to produce the rule in DRL-format since it is more user-
friendly to read, write and understand than XML. We also use the rule-management API, which
is provided to create and manipulate rules in DRL. In the following we give a brief overview of
the concepts behind rule authoring in Drools rules. For a complete documentation, please refer to
[Drools].

The rule base-component of production rules (see section 8.2.2.2) is covered in Drools through
a set of rule-files. A rule-file in DRL is made up of the following elements:

� import
� globals
� functions
� queries
� rules

Import elements import a set of classes that can be used in rule authoring, i.e. the available
terms. They have the same purpose in a Drools rule file as the import statements in a java-class.
Globals are global variables used to make application objects available to the rules. Globals are
not asserted to the working memory, thus any changes to a global variable caused by the
application logic will not be available to a rule using a global variable. Functions in Drools are
used to put executable java-code into the rule source file, which can be invoked in the RHS of a
rule. Functions in Drools may have a return type (java class) and receive different parameters as
input. In the following we further detail the Rule-element in a rule file and the concept of queries
on the facts in the working memory.

8.2.3.3.1 Rules in Drools
A rule in Drools follows the following syntax, where * means that the preceding element may

occur 0 to many times:
rule “<name>”
 <attribute>*
when
 //LHS
 <conditional element>*
then
 //RHS

 <action>*
end

 147

In the LHS a set of conditional elements can be specified. In Drools 4.0, the following
conditional elements exist:

� pattern
� and
� or
� not
� exists
� forall
� collect
� from
� accumulate
� eval

With Pattern, conditional element patterns of facts existing in the working memory can be
specified. For example the pattern

?po: PurchaseOrder (id = 4711, totalAmount > 10000)

returns true if in the working memory a fact with the id-parameter-value 4711 and a

totalAmount-parameter higher than 10000 were asserted. Inside the Pattern conditional element
(its parenthesis) a set of constraints can be specified. Constraints can be separated by the
following symbols ',', '&&' (conjunction) or '||' (disjunction). A field of fact is an accessible
method of the according java object. Thus the model objects (java classes) should follow the java
bean pattern [JavaBean]. A java bean is a container of attributes, where each attribute is accessed
via "get<X>" or "is<X>" methods (assuming X is the name of the attribute). This means that in
the above example the java-implementation of the PurchaseOrder-class must have two methods
getId() and getTotalAmount(). The value of the fact matched by a pattern can be bounded to a
variable using the ? and : notations. A variable can then be used in other conditional elements or
in the RHS of a rule.

The ‘and’ and ‘or” conditional elements are used to group other conditional elements together.
'not' has the semantic of the negation of first order logic's existential quantifier and determines
the non existence of a fact in the working memory. 'exists' is first order logic's existential
quantifier and checks for the existence of something in the working memory. The forall
conditional element will be evaluated as true when all facts matching the first pattern also match
all the remaining patterns. The collect conditional element allows rules to reason over a collection
of objects collected from the given source or from the working memory. This is the cardinality
quantifier in first order logic.

Besides the above constructs, Drools provides the following types of conditional elements:
The From conditional element allows the user to specify a source for patterns to reason over.

This enables the engine to reason over data not in the working memory. This could be a sub-field
bound to a variable or the results of a java method call. In this way, out of the box integration
with other application components and frameworks is made possible. The conditional element
accumulate collects facts in the working memory in the same manner as the collect conditional
element, but with the additional functionality that it allows a rule to iterate over a collection of
objects, executing custom actions for each of the elements, and at the end returning a result
object.

Eval allows any java-class-method (that returns a primitive of type Boolean) to be executed.
This can refer to variables that were bound in the LHS of the rule and functions in the rule file.

 148

Usage of eval should be kept to a minimum because its use will lower the declarative level of the
rules.

In the RHS of a rule the following actions can be undertaken:
� insert will place a new fact in the working memory
� retract removes a fact from the working memory
� insertLogical inserts a fact to the working memory, but the fact will automatically be

retracted when there are no more facts to support the truth of the currently firing rule
(Truth Maintenance)

� update will modify an existing fact in the working memory (one that has been bound to
a variable on the LHS) with new parameters

� invoke a function existing in the rule file.

8.2.3.3.2 Querying facts in the working memory
The concept of Query (not related to the concept of queries on controlled entities – CEQuery –

in section 7.5) in Drools allows the user to retrieve the facts that match the conditions stated in
the query. The queries are designed in the rule file and are invoked from outside the working
memory, i.e. any java-based application, which has a reference to the working memory. A Drools
query has the same structure as the LHS of a rule. The following is an example of a query in
Drools. It retrieves all facts of type “Control” from the working memory, where their attributes
id, bpId, and violationStatus have the specified values (see inline comments inside the code):

Listing 9.3
// name of the query and its input parameters
Query "Query Control Violation" (int controlId, int bpd)

// specifies the query for all controls with violationStatus having the value Violated etc.
Control(controlId = id, bpdId = bpd, violationStatus = “Violated”)

end

A java application can invoke the query and retrieve its result in the following way (see inline

comments inside the Listing):

Listing 9.4
// establish a connection to the working memory
WorkingMemory workingMemory = getReferenceToWorkingMemory();

// initialize the input parameters of the query (as specified in query specification in Listing 9.3)
Object[] queryArguments = initializeQueryArguments(controlId, bpd);

// invoke the query on the working memory.
// the results are contained in the variable “controls”
QueryResults controls =

workingMemory.getQueryResults(" Query Control Violation ", queryArguments);

// each element retrieved by the invoked query is iterated.
for (Iterator it = controls.iterator; it.hasNext();) {
 QueryResult result = (QueryResult) it.next();
 Control violatedControl = (control) result.get("control");
 // Do something with each retrieved fact (violatedControl) from working memory:

 149

 doSomething(violatedControl);
}

8.3 Overall Approach

Our approach for compliance validation of business process instances spans over three phases:
the Compliance Design phase, the Business Process Definition Adaptation phase, and the
Compliance Enforcement phase. These phases describe the interplay of

� a control that will be included into ICR-Design with the business process definition, on
which the control is designed, and

� a business process instance with ICR-Execution.

8.3.1 Compliance Design Phase
This phase reflects the creation of a set of controls (according to Definition 6.11) by a

compliance expert on business process definitions (according to Definition 4.2) contained in a
business process repository (BPR) (according to Definition 4.4). The process definitions in their
original form as delivered by a standard software provider have a generic nature (in terms of
compliance), because compliance modeling is customer-specific. Before this phase, the process
definition in the BPR may be non-compliant in that they do not contain and realize the controls
required by the risk assessment of the enterprise. Figure 50 illustrates the sequence of steps in the
compliance design phase indicating the manual as well as the automated (system-supported)
steps. The steps in the figure can be explained as follows:

First, a compliance expert goes through the relevant business process definitions (identified by
the relation isRelevant in BPCD, see Definition 4.1), as they may be delivered by a standard
software provider. Then the compliance expert selects a controlled entity (CE, see Definition 4.3)
contained in the process definition. Then he selects a certain control pattern from the control
pattern repository. He then instantiates the selected control pattern. This is achieved by
configuring the control conditions, scope and event of a control according to the enterprise’s
specific requirements (setting the configurable PSPs of the pattern) after the control conditions
are automatically produced by the instantiation procedure (see Definition 7.4) of the selected
pattern. Further, the required recovery actions are set in the control. When the compliance expert
decides to activate the control (create control in ICR-Design), then i) the control is stored in the
ICR Design as a model adhering to the control specified in Definition 6.11 and ii) the step for
supporting the role-based recovery action modeling is invoked. Upon creation of a new control in
ICR-Design, the according business process expert is notified. He checks the recovery action part
of the control and, if necessary, he modifies/extends the recovery action model of the control (see
section 6.2.3). After this phase, the control in the ICR-Design is again updated.

 150

Figure 50 Sequence of steps in phase 1: Compliance Design Phase

In the next step, the currently selected CE in the process definition will be extended by the
currently generated control in ICR-Design. This initiates the next phase of the approach, called
the Business Process Model Adaptation Phase (Adapt BPD in Figure 50).

8.3.2 BPD Adaptation Phase
A BPD is originally in a control-free form. After phase 1 of the approach not only is a required

control stored in ICR-Design, but the BPD currently selected is also extended by artifacts
necessary to the required control. These artifacts have the task of implementing the recovery
actions in a BPD. This means that that business process instance, which has caused a control
violation, will behave as designed in the RAS-part of the control definition.

These additional artifacts in a BPD ensure that the BPD is not executed in a non-compliant
way. Later on, during phase 3, the control in the ICR monitors that the controls are effective, i.e.
that they operate as designed. This is required by law.

Definition 9.1: Business Process Model Adaptation
The process model adaptation of a business process definition is a tuple adaptation = (bpd, bpd’,
ctl, TRS), in which:

� bpd ∈ BPR is the process definition, which has to be adapted
� bpd’ ∈ BPR is the adapted process definition, with bpd ≠ bpd’
� ctl ∈ CTLS is the control definition stored in ICE-Design
� TRS is a set of newly generated transitions in bpd’.

The definition above can be interpreted as specifying the business process definition adaptation
as an operation. This operation receives a business process definition bpd and a control definition
ctl as input and generates a new business process definition bpd’ containing a set of transitions
TRS, which did not exist before in bpd, as output.

A control model includes a specified set of recovery actions (see Definition 6.10), which are to
be invoked if a control violation is detected. Different types of possible recovery actions were
identified and discussed in section 6.2.3. In the case of a recovery action type Instantiate (User,
RecoveryProcess), no adaptation of the selected bpd as described above is required. The
instantiation of the specified business process RecoveryProcess is dependent on the underlying
implementation of the approach, i.e. its description is a technical issue. The realization of the
recovery action on a bpd will be detailed in section 8.4, which deals with implementation.

 151

8.3.2.1 BPD Adaption for a selected Recovery Action Model
Below we show the adaptation for a process definition bpd by a control ctl. The adaptation is

illustrated in Figure 51.
Let

� bpd be the original control-free process definition consisting of (among others) two
activities called a and m that are connected by a transition trs,

� ctl be the required control,
� the scope of ctl be before and the business event of the control event be transition trs,

with trs having the following form:
if c then invoke a,

with a ∈ ACTIVITIES.
� the recovery action model selected be Retry & Notify (mgr, msg) & Instantiate(

bpexpert, rbp), with:
o transition trs being the transition that will be repeated by recovery action Retry,

the business process rbp being the pre-designed recovery process definition for
the process bpd in case of violation of ctl.

o The user bpexpert will process the instance of rbp.
The set TRS of transitions in bpd’ as specified in Definition 9.1 contains the following

transitions:

trsNotOk : if (VIOLATION(ctl, Violated))

then invoke notify (emp, msg) & instantiate(bpexpert, rbp);

trs : if (c and VIOLATION(ctl, NotViolated))

then invoke a;

trsRetry: if EQUALS (msg, to, emp)
 then invoke model_previous (trs);

trsCtl : if (VIOLATION(ctl, Violated))

then invoke scc = (ctl, updateControl, F), where
 updateControl is the name of the state change command on a business document

type Control and F = VIOLATION (ctl, ViolationRecorded);

 152

Figure 51 BPD Adaptation for Recovery Action model Retry & Notify & Instantiate

The new transitions exist in the adapted process definition bpd’ in order to achieve the

following functionality at a later stage during business process execution of bpd’:
1. The transition trsNotOk, in the case of a violation of the control, (VIOLATION-state of ctl

has the value Violated), invokes the recovery action model Notify & Instantiate. For the
specification of recovery actions, please refer to section 6.2.3.

2. The transition trs is a modified version of the original trs in bpd and only allows the
process instance to later continue its original business logic (invocation of activity a) if no
violation of ctl was recognized.

3. The transition trsRetry implements the behavior of the Retry- recovery action in bpd’.
When it encounters a correct generation of a business document instance msg of type
Message (its attribute “to” has the correct value), the process is continued in the activity
m. We presuppose the existence of a business document of type Message having the
attribute ”to” indicating to which user the notification of control violation should be sent.

4. The transition trsCtl is responsible for updating the control state, which indicates that a
control violation has been recognized and managed. (See Control State Model in section
6.1). For specifications on state change command scc, please refer to Definition 4.13.
Since this transition is related to assuring the control objective (separated from business
objectives) of a business process, it is not part of the process model represented in Figure
51. Indeed, technically the invocation of the scc-command updating the control state takes
place in ICR-Execution, and will later be described.

Because the adaptation of process definitions for other selected recovery action models is very

similar to the one presented above and can be derived using the one presented here,we will not
provide other examples at this time.

8.3.2.2 Discussion
Using this approach, even if a compliantly designed and operating BPD becomes non-

compliant (in terms of violating the conditions of a control), the control in the ICR will still
detect the control violation which has occurred in the business process instance of that BPD. A
business process is not compliant if it fulfills only its business objectives. The control objectives
must also be fulfilled. A compliant business process can become non-compliant due to
reengineering or the redesigning of a business process by a business process expert/developer

 153

who is not aware of compliance requirements. In this case the implementation of recovery actions
on the adapted BPD ensures that a business process instance does not continue its original
execution course, but takes an execution path enforced by the recovery actions of the control
definition. It is for the most part in this way that the approach enables compliance of a preventive
nature. No business process instances that have caused a control violation will be allowed to
continue. The BPD adaptation phase exists to extend an existing BPD by the necessary artifact in
order to realize the above described behavior. It is important to note that any modifications of a
BPD achieved during this phase are not related to the business objectives of the process, i.e. they
do not adapt the original “business logic” of a process, but rather implement the consequences of
the recovery actions- part of a control in a BPD. A business process instance based on such an
adapted BPD during this phase cannot be considered as compliant, but is considered as not “non-
compliant”. The task of bringing a process model, and more specifcally a non-compliant business
process instance, into a compliant form is still the responsibility of the relevant business process
expert, who will be informed about the control violation (Concept of Forward Error Recovery,
see section 6.2.3).

The cooperative interactions between the actors involved and the system during phase 1
(Compliance Design phase) and phase 2 (BPD Adaptation phase) are summarized in Figure 52.
The descriptions of each numbered step in the figure are:

1. A compliance expert selects a relevant business process
2. Control Pattern Configuration by compliance expert:

a. The compliance expert selects a certain control pattern and configures its pattern
to specific parameters. If necessary, additional control statements are added to
its control conditions

b. The compliance experts sets the recovery actions of the control
3. Control activation by compliance expert

a. The control pattern instantiation is invoked and the control is added into ICR-
Design

b. The BPD Adaptation is invoked on the relevant business process which in turn
automatically generates an adapted BPD

c. The original BPD is replaced by the adapted BPD
4. The relevant business process expert is informed of the creation and activation of a new

control.
5. The recovery action model of the control is verified by the business process expert,

regarding the business objectives of the business process. If necessary, the business
process expert will modify the recovery actions of the control

6. Control activation by business process expert:
a. The checked control will be stored in ICR-Design
b. BPD Adaptation is invoked on the relevant business process
c. The original BPD is replaced by the adapted BPD.

 154

Figure 52 Overview of the interactions between roles and ICR-Design

8.3.3 Compliance Enforcement Phase
This phase enables the bidirectional interaction between business process management and

internal controls management. It takes place during business process execution time and the
component involved in the interaction with a business process execution infrastructure in this
phase is ICR-Execution. In order to recognize and handle the control violations, ICR-Execution
requires the following functional blocks (see Figure 53).

� Synchronize ICR-Execution
� Determine Control Violation
� Notify of the Control Violation
� Invoke recovery action

Figure 53 Required functional blocks during the compliance enforcement phase

The ICR-Execution will be continuously updated by information about the current instance of
the business processes being enacted (Synchronize ICR-Execution). In the occurrence of any
triggering control event, the control condition will be evaluated with help of the CEQueries (see
Definition 7.3) in order to determine if it has been violated. If it has the ICR-Execution updates
itself to take into account the fact that the control has been violated and then invokes the recovery
actions in the control, which were defined during the compliance design phase and implemented
during phase 2 of the approach (BPD adaptation phase).

In order to enable the automated generation of necessary information for ICR-Execution, it
must be continuously updated, whenever a transition in the scope of a control is performed in a

 155

relevant business process instance. The update of the ICR-Execution is done by the introduction
of a Knowledge Base of Facts (KBF) which is enacted during the execution of a business process.
With the help of the KBF, the current context of the business process instance (i.e. all relevant
CEs) can be provided to the ICR-Execution.

The KBF updating the ICR-Execution are orthogonal to business process management and we
introduce them on a conceptual level. The update mechanism of the ICR-Execution is dependent
on the underlying BPM infrastructure, i.e. its description is a technical issue. The description of
the technical realization will be provided in section 8.4. However, on an implementation level,
the destination of a KBF is in all cases a network of addressable devices such as Trace/log files, a
RDBMS, or a messaging destination such as a MQSeries/JMS’s Topic/Queue. The destination of
the KBFs can also be the ICR-Execution itself. This occurs when the underlying process
execution infrastructure implements the observer design pattern or the command design pattern
[Gamma et al., 1995]. The interaction of system components during this phase and the
information exchanged between them is shown in Figure 54. It can be interpreted in the following
manner:

� Business Process Instance Repository (BPRI, see Definition 4.17) contains the set of
business process instances. It directly (or indirectly through the KBF) provides all
data necessary to the evaluation of a control in ICR-Execution. This control relevant
data is encapsulated in an entity adhering to the model of a business process instance
according to Definition 4.17. The concrete information required by ICR-Execution is
encapsulated in the business process context (see Definition 4.16), which provides the
business document instances so far produced and consumed as well as the transition
instances (see Definition 4.15) already enacted (PATH of the business process
context). Further, the business process instance contains a reference to the current
position of the instance.

� At the end of the above interaction, the control relevant data is extracted as a set of
facts and is provided to ICR-Execution.

� Based on the control definition provided by ICR-Design and the set of current facts,
ICR-Execution determines whether any control violations on any business process
instances have occurred.

� If control violations are judged to have occured, this is communicated back to BPRI
by changing setting the status of the violated control.

Figure 54 Interaction between a business process instance repository and ICR-Execution

In the following we describe the validation of a control ctl during execution time of a business
process definition bpd with a recovery action model in the control of the form Retry & Notify &
Recover(rbp). All steps are visualized in Figure 55:

 156

Figure 55 Interaction of a business process instance with a control (ICR-Execution)

1a. The control-relevant data is written to the KBF. Note that this can be done directly on the
ICR-Execution itself (updating facts directly in it) depending on the underlying BPM
Engine implementation. In this case, we continue with step 2a.

1b. The log entries are extracted and corresponding CE-facts are created and updated in the
ICR-Execution.

2a. As the state of the ICR-Execution changes with the addition of new CE facts to or by
updating previously existnet CE facts, the trigger of control ctl gets activated. The control
condition of ctl is determined by the values of the CE facts in the ICR-Execution itself or by

2b. queries the set of facts (CEQuery). Consider that a CEQuery can collect data by forwarding
the query to some other external systems (CEBackend).

3. If the conditions of the controls are violated, a new fact in the ICR-Execution (ctlViolation)
will be generated signaling that control ctl has been violated (Corresponding to state
VIOLATION (ctl, Violated) of a business document instance of ctl).

4. An instance of the recovery process rbp is generated and initialized with the necessary data.

5. The relevant business process instance bpi continues into the decision step (either transition
trs or trsNotOk). This step is marked by the decision node cd in the figure.

6a. ICR-Execution will be queried to determine the VIOLATION- state of ctl.

6b. In the case of a cViolation-Fact with a Violated-value in ICR-Execution, the business
process instance continues with the transition trsNotOk. Otherwise the transition trs will be
made. In the latter case, the process continues as originally designed.

7. If trsNotOk is made, a notification message is generated for the responsible entity in the
organization (Notify recovery action).

8. A business user or business process expert has the opportunity to process the rbp instance,
which was generated as a recovery action of ctl (instantiate). As a result of this execution,

 157

some CE will be updated. This may bring the business process instance to a state, in which
it can be compliantly execute as specified by the control.

9. The process instance has now returned to transition m in the business process instance. The
process instance will continue with step 1a.

Notice that the approach described above will detect a control violation in the ICR-Execution
even if a business process expert/technical consultant removes the control from the process
definition because he or she is not aware of the necessity of that control: the process context is
always written to the ICR-Execution during step 1a/1b and the controls exist independently in the
ICR-Design. Further, the described approach enables dynamic application of the controls during
the execution phase of a business process. There is minimal overlap between business process
design and compliance design. Thus, new controls can be designed for business processes by
adding new control definitions to the ICR-Design, while the original design of the business
process requires no manual change (BPD Adaptation phase is automated), which is one of the
main advantages of the approach.

8.4 Implementation

Apart from conceptual soundness, one of the challenges inherent in such an approach is to
assure the possibility of its efficient and scalable implementation. In this section we elaborate on
the technical challenges we faced while implementing the approach during the internal SAP
project which was introduced in section 1.2.

The system of the ICR is divided into two functional parts, ICR-Design and ICR-Execution. As
we mentioned in the introduction of this chapter, we selected the production rules to implement
the controls for the implementation of the ICR, and a RETE-Based Rule-Engine for the
realization of ICR-Execution (Drools Rules). One may question why we did not choose the
implementation approach selected in the verification of BP models (see chapter 5), which was a
SWRL/OWL-DL-implementation. The answer, for the most part, relates to the nature of
compliance validation of business process instances, which take place during the execution phase
of business processes. A detailed discussion on the technical reasons for preferring a Production-
Rules-Based implementation of the approach to SWRL/OWL-DL is given in section 8.4.1.
Section 8.4.2 describes the implementation of phase 2 of the approach, the business process
adaptation phase.

The main challenge regarding the implementation of the approach on top of a pre-existing BP-
and Rule-Infrastructure is to find a way of integrating the business process instances running
outside of the ICR. The integration must reflect the consequences of potential control violations
detected in ICR-Execution. The integration must ensure the invocation of appropriate recovery
actions. This is related to phase 3 of the approach, which is the compliance enforcement phase.
The technical implementation of this integration in the system is presented in section 8.4.3.

 158

8.4.1 Requirements for the Realization of ICR
The basis for the implementation of the ICR is the formal model of the controls (see chapter 6).
The core model of a control can be expressed by an ECA-Rule.

� The triggering events and their scopes represent the even-part,
� the control condition cc represents the condition-part, and
� the RAS-part of a control definition represents the action-part

of an ECA-Rule. As mentioned in section 8.2.1, ECA-rules can be considered as a special type of
production rule. From a conceptual point of view, we see ECA-rules as a production rule where
the notion of event in ECA is explicitly designed in the left hand side (LHS) of a production rule.
We decided to use a production rule execution engine infrastructure (Drools rules) for the
implementation of the controls in ICR-Execution.

Further, we defined the following four requirements, necessary to the rule language and the
infrastructure in order to effectively represent and execute a rule-based implementation of
controls in the context of business process compliance:

R1) Business Process Instance Awareness
R2) Expressivity
R3) Actionable output to business process

 R4) Querying external backend systems

Based on these requirements we finally selected two potential candidates for the
implementation of ICR:

1) SWRL and associated inference engine and
2) Drools Rules (including its Rule Engine) recently adopted by JBoss Drools (JBoss

Rules). It basically provides the same architecture and approach as Jess and we see it as
representative of a family of business rule engines.

In the following we elaborate on each requirement. After each elaboration, we analyze how far
the selected implementation alternatives, SWRL and Drools Rules, support that specific
requirement.

8.4.1.1 Business Process Instance Awareness
The current state of ICR-Execution, i.e. the facts contained in it, is heavily dependent on the

current business process instances and their context which is run inside the business process
execution engine. In most real-life scenarios, we have to assume the pre-existence of an
infrastructure for defining and executing business processes in terms of an ERP-system or a
workflow engine. Usually the system of the ICR is independent of these infrastructures and they
are not under its control. Thus the state in ICR-Execution is determined based on the context
provided and changed from the outside. This means that the facts in ICR-Execution are not only
generated or updated after a control is evaluated, it is possible that a BPM Execution Engine adds
new facts or updates existing facts in ICR-Execution. Figure 56 illustrates the two possible ways
that facts can be created or updated in ICR-Execution (Interactions in the figure are marked A
and B).

 159

Figure 56 Possible Interactions (A and B) between BPRI (managed by BP Execution
Engine) and ICR-Execution

In the following we further explain interactions A and B in the figure above:
Interaction A: Rule/Inference Engine adds/updates facts in ICR-Execution

As a rule representing a control is evaluated by a Rule/Inference Engine, the Rule/Inference
Engine may consequently add new facts or update already existing facts in ICR-Execution as the
result of the evaluation.

Example: An illustration of the example is given in Figure 57. Let us analyze the situation
(time

1T) in which the ICR-Execution (its Rule/Inference Engine) determines that because a PR’s

total amount (an already existing fact in ICR-Execution belonging to a bp instance with id =
4711) is lower than 10000 $, the control for SSE is not violated even if there is only one
ApprovePR-Activity enacted. This is signaled in ICR-Execution through an update of the
according fact in ICR-Execution, e.g. VIOLATION (ctlSSE, NotViolated). Later, (

2T) after a

purchaser has updated her PR by setting the amount to 11000 $ (UpdatePR-Transition), the
control is re-evaluated in ICR-Execution, before the execution of the SendPO-Activity. As the
process instance again enters the scope of the control, the rule engine determines that for the
same PR instance, the SSE control is now violated. Consequently, the previously added fact in
ICR-Execution will be updated to VIOLATION (ctlSSE, Violated).

Figure 57 Example of Interactions A: Rule Engine adds/updates facts in ICR-Execution

Interaction B: BPM Execution Engine adds/updates facts in ICR-Execution
The enactment of a business process inside a business process execution engine may cause the

creation of completely new facts or update already existing facts in ICR-Execution. Updating

 160

existing facts in ICR-Execution is required for the compliance enforcement phase (see section
8.3.3) and visually shown by steps 1a and 1b in Figure 55 (Synchronization of ICR-Execution).

Example: An illustration of this example is also given in Figure 57 (marked as interaction B).
When creating a PR business document instance during the purchasing process by a BPM
execution engine, the following fact is added to ICR-Execution: pr(…, TotalAmount=9000).
When a purchaser updates this already existing PR by increasing the amount of the PR document
instance to 11000 $, the fact that was previously added to ICR-Execution must be updated to
pr(…,TotalAmount =11000) in order to correctly reflect the state of the business process instance
in ICR-Execution.

8.4.1.1.1 Business Process Instance awareness with SWRL
The use of SWRL for the implementation of ICR-Execution in a business process context did

have the following limitations: When a user implements an ICR-Execution based on SWRL, the
ICR-Execution must be continuously synchronized as an open world system with the monotonic
assumption by the business process instance, and its context parameters must be provided by a
closed world data-base-centric system (BPM Execution engine).

When it comes to the synchronization of the open world ICR-Execution, the originally existing
closed world system forces us to simulate the closed world behavior in an open world
environment. This is due to the fact that, when evaluating a control condition, i.e. when executing
a rule by the inference engine, we have to assume that every fact used by the rule refers to the
most recently provided business process context in the BPM Execution engine. Otherwise, the
execution of the rule in an outdated business process context may result in a different and
incorrect conclusion with regard to the violation of a control. For example, if a PR with a total
amount of 9000 $ is not approved twice, the end of the specified control scope leads to a different
conclusion than that of a PR with an amount of 11000 $ which was not approved twice. Thus this
approach actually works in closed world environments, where each property of a specific fact
maintains its most recent value (Concept of Truth Maintenance, see section 8.2.2.4). In other
words, when a new value for a fact is provided, the previous value is overwritten. But in an
OWL/RDF implementation of the facts in the ICR-Execution, monotony causes the approach to
be less straight-forward. This issue is discussed in [Matheus et al., 2005] and two solutions to
this problem are therein outlined. We summarize: 1) The closed world behavior can be manually
implemented in an open world environment through an external management of the incoming
facts and the removal of the inconsistent tuples in ICR-Execution logically inferred based on the
“older version” of the fact. 2) Every fact is provided with a timestamp and added to ICR-
Execution. For compliance validation, the most recent fact, i.e. the one with the highest
timestamp, is taken. However, both approaches will significantly increase the required
computation resources as well as the complexity of the approach’s implementation.

8.4.1.1.2 Business Process Instance awareness with Drools Rules
Through the usage of jBPM and Drools we are able to implement a real-time business process

instance-aware ICR-Execution. This is made possible by the fact that all facts are added to ICR-
Execution as “Shadow facts” supporting the concept of truth maintenance (see section 8.2.2.4).
We discuss its role in our approach in the following:

For each fact in ICR-Execution, whether it was created by the Drools Rule Engine or by jBPM,
a iava bean class [JavaBean] is developed. Thus for each fact in ICR-Execution a corresponding
java bean instance exists in the Java Virtual Machine (JVM).

 161

Java beans provide a component architecture that enables easier integration of applications. A
property change notification mechanism is supported there that allows one object to become a
registered listener of another object. The listener object will then automatically receive changes
from the source object. This is the java-based implementation of the observer pattern [Gamma et
al., 1995]. Within Drools, each java bean corresponds to what is known as a shadow fact. Thus a
shadow fact is a “mirror image” of a java bean instance. All shadow facts are registered listeners
of their java bean counterparts. Thus, whenever a java bean instance changes in the BPM
Execution engine, a property change event is automatically generated for the given java object
instance and its corresponding shadow fact is updated in ICR-Execution. Figure 58 shows the
update-path of an already existing fact related to a purchase request (PR) from a Purchasing
process instance inside a BPM Execution engine, to a corresponding shadow fact in ICR-
Execution.

Figure 58 Sequence diagram showing an update to ICR-Execution from a business process
instance bpi

8.4.1.2 Expressivity
The language must provide constructs which make it possible to directly or indirectly express

the control definitions as ECA-rules. Directly or indirectly means that we do not require
constructs to express the control definitions as one single statement. Several equivalent logical
statements representing one control definition are also acceptable.

8.4.1.2.1 Expressivity with SWRL
The SWRL Rule format [Horrocks et al., 2004, Horrocks et al., 2004b] has to be mapped to

the form of a control definition (an ECA).
To express a control definition, all the terms in a control definition as described in 6.2.2 must

be expressed as atoms that constitute the antecedent and the consequent in SWRL. SWRL as an
extension of OWL, along with the classes and properties that are defined in OWL, are then both
used to define a control as a constraint over those classes, properties, and instances. The
antecedent of a control definition consists of an Event of a control condition describing a control
Violation in a business process instance.

8.4.1.2.2 Expressivity with Drools Rules
Drools Rules provides production rules that are not conceptually ECA rules, but the Event-

Model of a control (as described in section 6.2.1) can be designed in the LHS of a production rule
with acceptable overhead. Thus the challenge when using Drools Rules in order to represent an
ECA-rule is to provide a sufficient and easy-to-use event-object-model that can be used to
construct a control definition. Such an event-object-model was specified by Definition 6.7.

 162

Further, using the different types of provided conditional elements in Drools rules (see section
8.2.3.3.1) allows the expression of control statements (and control queries) in a control condition.

8.4.1.3 Actionable Output to Business Process Inst ances
The approach requires that an activity advised by a compliance expert and codified in the control
statement in terms of the recovery action be executed in the business process instance in the case
of a violated control. This actually means that when a violation is determined in ICR-Execution,
the state of things in the outside world, i.e. the current business process instance running in a
BPM Execution engine, has to be updated according to the recovery action. This update
mechanism is triggered inside the ICR-Execution (see section 8.3.3).

8.4.1.3.1 Actionable Output with SWRL
SWRL allows the use of constructs in the consequent– part of a rule statement or built-ins

which are modeled in OWL. SWRL does not provide any mechanisms to invoke operations
outside of the OWL/SWRL knowledge base. When implementing the ICR with OWL and
SWRL, the architecture must be realized in such a way that a separate component updates the
business process instance in the BPM Execution engine.

8.4.1.3.2 Actionable Output with Drools Rules
Drools provides different mechanisms to affect the outside world based on the rule execution:
1) In the right hand side (RHS) of a Drools-rule, a shadow fact can be modified or retracted.
2) Methods on java-API level, which modify the according java object instances, can either be

invoked directly within the rule itself or can be separately implemented in a function used
in the rule.

Thus when implementing the ICR based on Drools we can realize the architecture in such a
way that, based on the control-evaluation results, ICR-Execution updates the outside world in a
push-driven-manner. The mechanism of the shadow facts can be used to modify the current
business process instance that caused the violation directly from ICR-Execution. Recall that the
parameters of the current business process instance are available in ICR-Execution as shadow
facts as well. Thus their update causes the automatic update of the corresponding process instance
in the BPM Execution engine.

8.4.1.3.3 Querying External Backend Systems
This requirement is closely related to the requirement of business process instance awareness

of ICR-Execution.
During our analysis of different types of controls and the different ways in which it is possible

to evaluate their conditions during execution time of business processes, we realized that it would
be expensive to keep the ICR-Execution completely synchronized with the heterogonous
environment with which we were faced. The heterogeneity is given through different backend
systems containing different operational data such as SRM (Supplier Relationship Management)
systems, CRM (Customer Relationship Management) systems etc, which contain relevant
information about orders, contracts, business transactions etc. Further, the information necessary
to the evaluation of a control condition cannot always be provided by the context of a business
process instance itself. For example, consider a control pattern adhering to a temporary
authorization pattern, let’s say the “One-Time-Supplier-Creation” control (see use case of
CustomerB in section 2.3). Such a control definition contains a control statement (see Definition
6.8) of the type EXECUTED (usr, trs) respectively EXECUTED (trs, n, m, f). In order to evaluate

 163

such a control it must be determined how often a certain user has executed a certain activity in a
transition, in this case “One-Time-Supplier-Creation”. In this case it is not sufficient to determine
whether the current user has invoked this transition in the current business process instance. All
business process instances adhering to the given business process definition (in this case
purchasing) and processed during the period defined the in control must be checked for transition
instances of the transition in focus in order for the control to be evaluated. Thus the necessary
information cannot be provided by the current business process instance. In this case, other
backend systems containing data about previous user-transactions (such as LDAP etc.) have to be
queried to collect the necessary input to evaluate the control conditions. This basically means that
ICR-Execution will have to access the (transactional) data outside the BPRI and ICR-Execution
in order to evaluate the condition part of the control.

Figure 59 illustrates the situation described above: The set of facts required for the evaluation
of a control is A. Set A itself consists of two subsets B and C. Set C contains facts, which can be
provided directly by the current business process instance bpi, for which the control must be
evaluated. Set B contains those facts which have been produced by earlier executions of business
process instances (set D in BPRI). The members of D are either already terminated process
instances or those currently in execution. In order to create B, ICR-Execution must be able to
collect the necessary facts from relevant backend systems by querying those backend systems
(covered by concept CEQuery, see Definition 7.3). The target of these queries is either the ICR-
Execution itself (the facts in it) or a relational database of the according backend systems, in
which the operational data is stored.

Figure 59 Querying data from external systems by ICR-Execution

8.4.1.4 Querying External Backend Systems with SWRL
SWRL is by nature a rule language and not a query language. RDF query languages like

RDQL [RDQL] and SPARQL [SPAQRL] can provide SQL-like query functionality on triple
stores. OWL ontologies can be stored in triple-store backends without loss of semantics.

Further, with SWRL Query Built-In [SQWRL] a built-in is provided to define queries on an
OWL Knowledge Base. It defines a set of built-ins that can be used in SWRL rules to query
OWL ontologies. The built-ins in this library can be used to turn SWRL into a query language.
They provide SQL-like operations to format knowledge retrieved from an OWL ontology. The

 164

resulting query language complies with the standard SWRL syntax and does not alter the
semantics of the language.

The main issue when using SWRL to retrieve the data necessary for the evaluation of controls
is that SWRL, and also SQWRL, require an OWL-Knowledge Base (Ontology), from which
necessary data can be extracted. Unfortunately, for now and for the foreseeable future, most data
will continue to be stored in relational databases [O’Conner et al., 2007]. To bridge the gap
between the different underlying data models, i.e. relational and triples in case of SWRL/OWL,
the relational data has to be reformatted into a SWRL-processable form, namely triplets.

One possible way to solve the problem would be to statically map a relational database to a
triple-store. However, this approach suffers from several shortcomings: There is an issue of data
duplication and there are questions about how frequently triple stores should be updated in order
to reflect changes in the associated relational database. Applications with permanently changing
data, (such as is the case in business process compliance), and requiring up-to-date information
about business process executions require frequent synchronization, which may be cumbersome
and problematic. Similary, supporting logical updates on the replicated data means that
synchronization issues arise in the reverse direction.

[O’Conner et al., 2007] propose another approach for automatic or semi-automatic dynamic
(i.e. during execution time of the underlying application) mapping between relational databases
and triple-based formats. This is achieved in a separate software layer where SWRL-level queries
are mapped into SQL queries in order to retrieve the required data from a database.

However both approaches described above represent a significant overhead for the realization
of querying external backend systems with SWRL: Replicating the relational data in an OWL
ontology as described in the first approach leads to problems of synchronization between the two
sources. Implementing a separate software layer for mapping the SWRL/OWL based queries into
SQL queries and turning the retrieved relational data back to OWL significantly raises the level
of effort necessary for implementation as well as the complexity (execution time) of that
implementation.

8.4.1.5 Querying External Backend Systems with Droo ls Rules
Relational data can be accessed in the LHS of a production rule in Drools by invoking a so-

called Data Access Object (DAO) with the help of the from-conditional element (see section
8.2.3.3.1). DAO is a software design pattern encapsulating the data retrieval functionality with
methods implementing the access to backend systems and retrieving data from there according to
a specified set of retrieving filters. The result of such a method’s invocation would the required
set of data, which comes from a persistent media such as a relational database. A CEQuery would
be implemented technically as such a DAO. When invoking a method of a DAO from the LHS of
a production rule, the retrieved data represent facts in the working memory of the rule engine.

Figure 60 illustrates the architecture of querying external backend systems when using Drools
Rules in a java-like notation: In the business process layer, an instance of a DAO (lets say
TransitionInstanceDao) is created and initialized with the context of the current business process
instance. This way the DAO is initialized with the user and role, (and possibly other CEs in a
business process), currently executing the business process. The DAO in this case will retrieve
the information required about the current user. The instance of the DAO is asserted in the
working memory (step 1 in Figure 60). When the event specification of a control matches (in case
of production rules some facts in the working memory fulfill the conditions in the rule), then the
corresponding method of the DAO instance (now a fact in the working memory) will be invoked
with the necessary retrieval filter parameters (set during control design phase, step 2). Next the

 165

implementation of the DAO retrieves the data according to the filter (step 3) and returns the
answer (number n) back to its caller (step 4). This way it is possible to implement a production
rule which evaluates a rule based on a set of facts which were not asserted to the working
memory by the application (business process layer).

Figure 60 Querying an external Backend System (X) by a production-rule-based ICR-
Execution

8.4.2 Realization of the Business Process Model Ada ptation phase of
the approach

Implementation of phase 2 of the approach includes two tasks:
1. Implementation of an Instantiation-mechanism for a given bpd in the case of recovery

action Instantiate(user, bpd)
2. Modification of an existing jPDL process definition in the case of all other recovery

actions.
The implementation of the above tasks is described in the following two sub-sections.

8.4.2.1 Implementing Instantiate-Recovery Action
The implementation of the instantiation functionality is related to the requirement of actionable

output for business process instances (see section 8.4.1.3). As we have mentioned, the
implementation is encoded as a Drools-function-call in the RHS of a production rule. When a
control violation is detected, i.e. the facts in the working memory match the LHS of a rule, the
function in the RHS is invoked. The encoding in a rule looks as follows. Comments are given
inline in the listing:

Listing 9.5

rule "control X for business process <bpdId> "
 when

 166

// retrieve a fact of type ProcessInstance with a bpdId-parameter having the value
// <bpdId>. The retrieved fact will be written in variable $pi, in order to be used
// in other rule-parts

 $pi : ProcessInstance(bpdId = <bpdId>)

// retrieve the business process context belonging to the selected process instance
// ($pi). The resulting fact will be written in variable $context

 $context : BusinessProcessContext(bpiId = $pi)
 <events>
 <conditions>
 then
 …
 // the function createProcessInstance will be invoked. The input-parameter $

// context is retrieved in the LHS of the rule. The input-parameter <rbpdId> and
// <userId> specifies the process definition that an instance of it will be created.
// The input parameter specifies the user to whom the created process instance
// will be assigned, i.e. who will process it. The parameters <rbpdId> and
// <userId> are part of the specification of the Instantiate-recovery action, thus
// they are defined by the compliance expert during control design.

createProcessInstance (<rpbdId>,<userId> , $context) ;
end

The implementation of the createProcessInstance-Drools-Function in the rule represented

in Listing 9.5 looks as follows (the explanation of the code is inline in the code):

Listing 9.6
function void createProcesInstance (String rbpdId,

String userId,
BusinessProcessContext ctx)

{
 try {
 // get Reference to JBPM Execution Engine:
 jbpmContext = ctx . getJbpmContext () ;

 // Load the definition of the given process (bpdId) :
 graphSession = jbpmContext . getGraphSession () ;
 ProcessDefinition processDefinition = graphSession .

 findLatestProcessDefinition (bpdId) ;

// Create an instance of the process:
ProcessInstance rpi = processDefinition . createProcessInstance () ;

// Create instances of roles and user modules
 SwimlaneInstance = getRoleOf(userId);

 TaskMgmtInstance tskmgtInstance = new TaskMgmtInstance();
 SwimlaneInstance role = getRoleOf(userId);
 role.setActorId(userId);
 tskmgtInstance.addSwimlaneInstance(role);

 167

// Assign the created module in the process instance. This causes that
// the process instance will be created as a task in the task list of the
// specified user with id userId:
rpi . addInstance(tskmgtInstance);

 // Start the process instance:
 rpi . signal () ;

 // A process instance of rbpId is now created and its first task is

// assigned to user userId
 }
 catch (Exception) {
 // exception handling
 }

}

8.4.2.2 Modification of a jPDL- Process Definition
The modification of a jBPM process definition can be implemented in two ways: i) Using the

Design-time API provided by jPBM to load an existing process definition and then to add the
necessary elements in the process definition via the jBPM-API, or ii) modification of the process
definition on an XML level via the XML-API. We selected the second alternative for the
implementation of modifications: we chose to directly modify the process definitions via the
XML-API by the use of XSLT.

The following is an example of a jPDL process definition before and after adaptation. The
selected recovery actions were Retry & Notify (see Figure 61).

Figure 61 Application of BP Model Adaptation on a jPDL process

This is an example of the XML of the adapted process definition, where the modifications are
marked in the code and shown in Figure 61 (Marked positions A – F).

 168

Listing 9.7:
<?xml version="1.0" encoding="UTF-8"?>
<process-definition
 xmlns="" name="purchasing">
 <swimlane name = “PD">
</swimlane>
 <start-state name="start">
 <task name="Start Process"></task>
 <transition name="" to="PRCreation"></transition>
 </start-state>
 <task-node name="PRCreation" create-tasks = "true">
 <task name="Please enter purchase request data" swimlane = “PD">
 <controller>
 <variable name="material type" access="read,write,required"></variable>
 …
 </controller>
 </task>
 <event type = "node-leave">
 <action name = "validation"
 class = "com.sap.research.icr.execution.ICRSynchronizer">
 </action>
 </event>
 <transition name="" to="MinNumSupplierCheck"></transition> (A)
 </task-node>
 <decision name="MinNumSupplierCheck">
 <handler class = (B)

 "com.sap.research.icr.execution.ControlEvaluator">
 <variableName>MinimumNumberOfSuppliers</variableName>
 </handler>

 <transition name="OK" to="PRApprovement"></transition> (C)

 <transition name="NotOK"

 to="MinimumNumberOfSuppliers-Violation-Notify"> (D)
 </transition>
 </decision>
 <task-node name="PRApprovement" create-tasks = "true">
 <task name="PurchaseRequestApprovement" swimlane = “PD">
 </task>
 <transition name="" to="end1"></transition>
 </task-node>
 <task-node name="MinimumNumberOfSuppliers-Violation-Notify"

create-tasks = "true"> (E)

 <task name="The Control MinimumNumberOfSuppliers has been violated. "
swimlane = “PD“/>

 <transition name="" to="PRCreation"></transition> (F)
 </task-node>

 169

 <end-state name="end1"></end-state>
</process-definition>

8.4.3 Integration of Business Process Instances wit h ICR-Execution
For the task of synchronization of the ICR-Execution (phase 3 of the approach), we use the

functionality provided by the jBPM Engine implementing the command software design pattern
[Gamma et al., 1995]. This functionality is implemented in a synchronization component that
will be described in section 8.4.3.1.

The execution course of a business process instance is decided (based on the occurrence of a
control violation detected in ICR-Execution) using a decision component. This component will
be introduced in section 8.4.3.2. The interplay of the synchronization component and the decision
component during the compliance enforcement phase will be given in section 8.4.3.3.

8.4.3.1 Synchronization-Component
jBPM provides the possibility of registering (during design-time) an ActionHandler –

Implementation to each node-class (activity) of a jPDL-Process definition. The implementation
of the ActionHandler-interface can invoke additional custom functionality. We introduced this
jBPM functionality in section 8.2.3.1.2.

Our implementation of the ActionHandler-Interface is called ICRSynchronizer and it obtains a
reference to the ICR-Execution (in terms of obtaining a reference to the rule engine’s working
memory). The current instance of the business process is provided automatically by the jBPM
Process Execution Engine to the handler (input parameter of the execute-method
ExecutionContext). Based on the current instance, necessary data is collected and encapsulated in
the business process context. The instance and its context are then asserted to the working
memory as facts. Since we use the shadow fact functionality, each update of the CE
corresponding to the facts previously asserted to the working memory on the business process
execution layer will automatically be updated in the working memory as well.

In order to assure a continuous synchronization of the ICR-Execution, each node in the jPDL
process definition which has an ActionHandler attached to it, (a node which potentially contains
some business logic), is automatically equipped with an ICRSynchronizer-ActionHander, (a
custom extension to the jBPM jPDL-Modeler-Tool). To avoid performance drawbacks, the
implementation of ICRSynchronizer keeps a reference to the working memory and checks if the
current business process context is modified by the current business process instance. This means
that only if there exist completely new business document instances or transition instances
(PATH-parameter of business process context, see Definition 4.16) in a business process
instance, will the working memory be updated by these new facts through ICRSynchronizer.
With this mechanism the resource overhead of synchronizing the ICR-Execution is reduced by a
reduction of the calls from the business process execution to the ICR-Execution.
The method we just described requires no extension or change in the internal implementation of
the process execution engine and is completely loosely coupled.

8.4.3.2 Decision Handling Component
The execution course of a business process instance is automatically determined based on the

facts in the ICR-Execution. In the case of a certain control violation, a fact will be asserted in the
RHS of the rule which detected the control violation. The relevant part of a rule for achieving this
behavior looks as follows:

 170

Listing 9.8:
rule "control<X> for business process <bpdId> "
 when

…
$control : Control (name = <X>, bpd=<bpdId>) (1)
$pi : ProcessInstance(bpdId = <bpdId>, id = $control.piId) (2)

 then
 …

 $control . setViolationStatus (“Violated”, $pi) ; (3)
 end
In line (1) of the rule in Listing 9.8, the working memory will be retrieved to check whether

there exists a control instance (fact) for the business process identified by bpdId, for which the
control definition exists. A default control fact was previously added to the working memory,
through assertion of the business process context, by the ICRSynchronizer. Recall that the
business process context contains the business documents and their instantiations in a business
process instance. Since a control itself is treated in a business process as a business document, it
is available as well in business process context and accordingly in the working memory. In line
(2) of the rule the process instance of the current control instance is retrieved from the working
memory. The process instance written in variable $pi is required in the RHS of the rule (line 3),
in order to set the VIOLATION- status of the control for that process instance on the value
“Violated” in case the LHS of the rule detects a control violation.

During business process adaptation (phase 2) of the approach, a decision-node was added in
the jPDL process definition (see MinNumberSupplierCheck-Decision Node in the XML-
definition of the adapted jPDL inListing 9.7). This decision-node is equipped with a
DecisionHandler-Implementation (ControlEvaluator). Our implementation of this
DecisionHandler establishes a connection to the ICR-Execution and queries it (Drools Query, see
section 8.2.3.3.2) in order to determine an instance of a control with VIOLATION-status having
the value “Violated”. ControlEvaluator knows for which instance control definition must search
in the working memory, because the name of the control-name is set as a parameter in the XML-
configuration-part of the ControlEvaluator in the jPDL definition (variableName-node in XML-
definition,see Listing 9.7). In this way the implementation of a separate DecisionHandler-
implementation for each control definition is not required.

However, when a violated control exists in the working memory, ControlEvaluator forces the
process execution (the next transition) to the transition which was set during the business process
adaptation phase (recovery action). If no violated control fact exists, ControlEvaluator will take
the originally designed transition in the current business process instance.

A summary of the steps described in this and the previous sub-section is provided in the next
sub-section.

8.4.3.3 Sequence of Component Interactions
This section summarizes the implementation of the approach we developed for the integration

of business process instances (run in a business process execution engine) and control instances
(run in the ICR-Execution). It visualizes the sequence of interactions between the parties
involved in Figure 62. They are:

� A business process instance (BPInstance)
� ICRSynchronizer as described in section 8.4.3.1
� ControlEvaluator as described in section 8.4.3.2 and

 171

� A control in the ICR-Execution
We now describe the interactions (as marked in Figure 62):

1. readControlParameters() : As the business process instance is instantiated, it reads the
required control names on each jPDL-node configured (variableName-parameter in
decision-node, see Listing 9.7, area marked with B)
2. setControlParametersInContext() : The control name is set in the context. Now the
context contains all controls on each node.
3. execute(context) : When the business process instance is executed, the execute-method
of the ICRSynchronizer of each node containing business logic is invoked.
3.1. isSynchronizationRequired(context) : ICRSynchronizer checks whether the received
context contains new business document or transition instances. Only then will it
synchronize with the ICR-Execution.
3.1.1. assert (facts) : ICRSynchronizer fetches the context and asserts the necessary
parameters from the business process instance as facts into the ICR-Execution
3.1.1.1: setControlStatus (Violation) : As the working memory is changed by
ICRSynchronizer, the RETE-algorithm of the underlying Drools rule engine processes all
controls and updates the agenda. In the case of a control violation, the control’s
VIOLATION status will be set to “Violated” in the RHS of the rule representing a control
for the current business process instance.
4. updateShadow(facts): This is a continuously occuring interaction. Each updated CE in
a business process instance will be reflected on its according shadow fact in the ICR-
Execution.
4.1. setControlStatus(Violation) : The same as 3.1.1.1, with the difference that the ICR-
Execution is not updated by ICRSynchronizer.
5. decide (context) : As the business process instance token has arrived at a jPDL-
decision-node, its ControlEvaluator is invoked
5.1. readControl (context) : ControlEvaluator reads the control name from the context
(set in step 2).
5.2. query(controlName) : ControlEvaluator queries the ICR-Execution for checking the
existence of a violated control (with name controlName). In this case ControlEvaluator
returns the name of the transition responsible for the recovery action of the control.

 172

Figure 62 Sequence of interactions between components involved in compliance
enforcement phase

 173

8.5 Related Work

8.5.1 On Adaptive Workflows
We consider the research done in area of adaptive workflows as related to the approach

presented in this chapter. There is significant amount of research done in the area of adaptive
workflows, such as AgentWork [Müller et al., 2004] or AdeptFlex [Reichert et al., 1998]. In
these approaches instances of business process are adapted during the execution of business
processes, whenever a prescribed failure occurs. One could argue for the application of these
approaches to the area of business process compliance. In the case of a control violation, the
business process instance would be adapted dynamically during the execution of a business
process and the instance could continue to process compliantly. Theoretically, these approaches
would then have two advantages ours lacks:

1. Phase 2 of our approach, the business process adaptation phase, which takes place in
parallel to the business process design phase, would happen later, during the business
process execution phase.

2. There would be no need for the concept of forward error recovery processed by a business
user or a process expert.

However, the concept of adaptive workflows during execution time of business processes can
not be applied to the domain of business process compliance for two reasons, one from a
technical perspective and the other from a business perspective, relating to the way in which
internal controls compliance is certified. We discuss:

From a technical point of view, in the context of dynamic adaptive workflows, all approaches
known to us apply the algorithms for dynamic adaptation of instances on an execution
infrastructure implemented specifically for the approach. These concepts and their
implementations do not represent a universal result, applicable in any technical environment. For
example, in our experimental implementation on a jBoss jBPM-based process execution
infrastructure, the dynamic adaptation of a business process instance was not realizable in that
infrastructure during the execution of business processes. The main reason is that, although we
were able to adapt a business process instance on the java object level, it was not possible to
persist the adapted instance in the database of jBPM, if the business process instance goes into a
wait state and is waiting to be processed at a later point. The reason the process cannot be
persisted is that most commercial and popular open source process engines and ERP systems
check a business process instance to verify whether it fulfills its original model before the
instance is persisted. In those cases where the instance does not satisfy the original model, a
runtime exception is thrown by the engine. The implementation of the dynamic instance
adaptation in most cases then requires significant modifications to the core engine of the
infrastructure in order to realize the approach. However this is not the objective of our research.
We argue that in most cases a predefined business process execution environment or an ERP
infrastructure will exist. The challenge is to couple the compliance validation framework with the
already existing infrastructure, as was shown in our case with the ICR. Our approach has a
universal character and does not depend on a specific business process execution infrastructure to
be realized.

From a business perspective, i.e. from the point of view of compliance certification, in typical
internal controls compliance projects, external auditors check whether the enterprise has
documented its business processes (business process definitions) and its controls and whether the
business processes work (execute) as designed in their definitions and controls. In the case of

 174

dynamic adaptive business processes, it is per concept of the approach not guaranteed that
business process instances will execute as designed, because they can take any other execution
course as implemented in the runtime adaptation algorithms in use. This is a significant
contradiction to the methodology required for assuring the business process compliance desired
by official bodies. In our case, an adapted business process after phase 2 of the approach becomes
the business process definition that will be presented to external auditors. Using the compliance
enforcement phase we are able to prove that business process instances behave as described in the
adapted business process definition. This is due to the fact that the recovery actions defined in the
control definitions are implemented in the adapted business process definition during phase 2. A
special case in this context is a selected recovery action of type instantiate. In that case, the
recovery action is not reflected in the adapted business process definition, but in the RHS of a
rule in our implementation. However in this case the implementation of the recovery action is
stored in the ICR (and not on the business process layer), and the consequence of its invocation is
again reflected in a pre-designed business process definition (recovery business process), which
will be instantiated in order to correct the conditions in the system that cause a relevant business
process to violate a control. The recovery business process is again in the focus of compliance
certification (business process layer) and can be presented to certification bodies.

8.5.2 On Industrial Solutions
Software providers offer solutions for the problems encountered when tackling the

management of compliance requirements (such as SOX) which are related to our work. They can
be divided into two categories: 1) software which supports the realization of detective controls,
and 2) software which supports the realization of preventive controls.

8.5.2.1 Commercial Tools supporting Detective Contr ols
The providers in the first category originate from the business intelligence and analytics,

enterprise reporting, and data warehousing/mining areas. Some of the prominent software
companies here are SAS, COGNOS, Business Objects, and MicroStrategy. Based on collected
information produced in an enterprise, the reliability of financial statements can be supported by
detecting the occurrence of certain patterns of possible control violations in the produced data.
Periodic reports can also be generated about different transactions in an enterprise in alignment
with internal controls. Those reports can then be either manually or automatically processed to
identify certain control deficiencies in the operations and financial statements of an enterprise.

The requirement for realizing detective controls is gathering the necessary compliance data
produced during business process executions. Based on the collected information, they can then
be audited and possible control violations and deficiencies which have already taken place can be
discovered. The specific compliance-related information collected is usually called Audit logs,
which are useful for post-checking the enforcement and effectiveness of controls. The audit logs
do not only have to be collected, they also have to be managed. In [Ramanathan et al., 2007],
IBM sets out the requirements of a service for collecting and managing audit logs, which is called
audit service. The audit service can be used by a given IBM product, such as Tivoli or Access
Manager for e-business, or others, to enhance its auditing capabilities. The service can also
potentially be used by any IBM application implementing operative business processes. Each
product using the audit service has to produce the audit logs sent to the audit service in a certain
format, called Common Base Event (CBE) [CBE101] . The audit service then stores the audit logs
received in a relational database called an audit database that is tailored for the storing of large

 175

volumes of data and also provides utilities that help with the life cycle (reporting, archiving and
restoration, etc.) of audit logs. The content of the audit database can then be used in a query or to
generate reports as a basis for detective controls. Reporting facilities such as IBM DB2
Alphablox or other business intelligence solutions, some of them mentioned above, can then be
used to analyze the data. The main technical shortcoming of the audit service provided by IBM is
that it can only be used by IBM products, i.e. only IBM products can invoke the service. It also
represents a manual approach insofar as that the source system representing the operative
business process application has to gather the necessary compliance data manually, map it to the
log format required (CBE) and then invoke the service in the productive code. Thus during
execution of the processes the data can be tracked by the audit service to the audit database.
Because there is no clear conceptual separation of compliance and business process design, it is
the responsibility of the programmer of the source system to ensure the auditability of a business
system.

8.5.2.2 Commercial Tools supporting Preventive Cont rols
The industry supporting preventive controls does so generally from two different angles: 1)

Business Rule engines and 2) Workflow/Business Process engine providers.

8.5.2.2.1 Business Rule Engines
Business Rule product providers such as ILog [ILOG] or Corticon [CORTICON] provide a

generic rule framework to express conditions on a target system (in our case business processes).
The general architecture common to most business rule providers is depicted in Figure 63:
Through an editor, the business rules are entered into a business rules repository. The business
rules can then be processed by an engine. These components are developed by the business rule
product provider and deployed at a customer enterprise. However the software is not usable for
business process compliance directly out of the box, because the rule engines are kept generic.
They have to be provided with some data, which they can then process according to the
algorithms that the rule engine implements. However, what we have depicted in Figure 63 as a
“Target System” are business process instances in an enterprise. Through an adapter component,
which has to be implemented at the customer enterprise, the data produced during business
process executions will be sent to the business rule engine. In this approach the controls have to
be modeled and implemented manually on already existing business processes, since there is no
clear formalization and conceptual separation of the controls from business processes. The
introduction and integration phases of the traditional rule engines at enterprises currently
represent significant overhead because they are mostly decoupled from business process
management models and infrastructures.

Although we use a rule-based approach to implement the approach presented in this chapter as
well, the core difference is that we built our approach on well-defined models of controls and
business processes, which is not the case with a plain rule engine provided by business rule
engine providers.

Figure 63 General Architecture of Business Rule Engines

 176

8.5.2.2.2 Business Process/Workflow Providers
In the area of Business Process/Workflow Providers there are two approaches: 1) controls are

implemented inside the processes during the design of those processes, or 2) there are solutions
provided which offer only the documentation of existing controls without considering their
application on process designs or checking their effectiveness during the execution of the
processes.

One major provider in the first category is ARIS [ARIS]. We introduce and discuss ARIS
solutions for compliance as a representative of software providers in the area of business
process/workflow.

The ARIS core products that can be used for business process compliance are: ARIS Business
Architect and ARIS Audit Manager. According to [Klueckmann, 2007], ARIS considers the
business process design phase as the basis for business process compliance. The business process
design phase is supported by the tool ARIS Business Architect. Here processes are designed with
the process modeling methodology of event-driven process chains (EPCs). Using the method of
EPC, the events in a company which lead to the initiation of certain functions, which in turn set
off other events, can be visualized. The individual function can be related to the operational
organizational units. The controls are part of process modeling in EPCs. Thus the controls in
EPCs are not conceptually separated from the business process design phase and the modeling
artifact in business process modeling. Therefore with this approach the reusability of process
models and the controls disappears, since the controls are “hard wired” into the process models.
After modeling the business process as an EPC in ARIS Business Architect, the identified risks in
a business process can be designed into the EPC. This is also done with help of the tool ARIS
Business Architect. The risks represent the check-points on controls previously designed in an
EPC. The controls are then synchronized into the ARIS Audit Manager, where a testing process
of the controls takes place. The testing process supported by ARIS Audit Manager represents a
one-time testing of the controls by connecting to operative IT systems of an enterprise (ERP,
CRM, SRM, etc), where the actual technical implementation of a business processes resides and
is enacted (BP Execution phase). The test of controls is done by a separate test workflow
modeled in the ARIS environment, which starts by automatically requesting assigned testing
routines and ends with a sign-off by management and the preparation of test results for external
audits. Once tests have been closed by the ARIS system or the user, they can no longer be
changed. The test workflow is documented and locked. It is important to note that this is not a
continuous monitoring of the business processes as required for business process compliance
(Monitoring component in COSO, see section 3.1.2.2.5). The problem is that the control
effectiveness can only be determined based on the state of business process instances. After
successful testing of a control in ARIS Audit Manager, the tested controls are considered as
effective. This approach represents a manual process. Since the real business processes run in
different systems, not in ARIS products (external ERP system for instance), compliance in the
running system is not guaranteed. For example, after successful testing of a control, the controls
(which actually should be checked during business process executions) can be reset or changed
by a technical or business process expert in the operative back end systems (the business process
implementation). Thus the test results previously stored in ARIS Audit Manager do not
necessarily represent the real effectiveness situation of the controls. The main weakness is based
on the disconnection between the business process design phase and the controls design phase in
ARIS Business Architect and on the fact that the real execution and effectiveness of the controls
take place in different operative systems, outside the ARIS Tool set. The main building blocks of
the business process compliance solution provided by ARIS are represented in Figure 64.

 177

Figure 64 Interplay of ARIS tools for achieving business process compliance

8.5.2.3 Compliance solutions provided by big player s in the software market
Big players in the software market also provide solutions for ensuring internal controls

compliance. With reference to [Agrawal et al., 2006] the software products basically address the
information and communication element of the COSO control framework. When it comes to
design, and to assuring the effectiveness of the controls, they rely on the manual implementation
of control activities and monitoring requirements set by COSO. [Agrawal et al., 2006] lists that,
for example, IBM’s Workplace for Business Controls and Microsoft’s Solution Accelerator for
Sarbanes-Oxley provide central content repositories with controlled access to company financial
data. But these solutions represent a more or less manual assistance for compliance-responsible
persons in an organization to document the risk assessments and control policies. Further, with
the help of these software products the control responsibility can be assigned (delegated) to
employees in the enterprise and those assigned employees are then responsible for
implementation and monitoring of control effectiveness. Thus the task of assuring the controls
effectiveness remains unspecified and manual, because the assigned control owners must
manually verify whether each control has been implemented and assessors must likewise indicate
whether each control has been effective.

A higher level of automation in business process compliance is provided by Oracle’s Internal
Controls Manager, which offers conventional workflow modeling capabilities. Virsa, recently
acquired by SAP, provides through its product Continuous Compliance suite, some concrete
controls in the area of security and access controls to IT systems. However, [Agrawal et al.,
2006] comes to the conclusion that despite the existence of a wide variety of professional
software solutions on the market, “a considerable opportunity exists to develop new technologies
that further automate the most labor-intensive internal control processes”. They basically argue
that the opportunity is related to the low degree of automation in business process compliance. A
sound conceptual separation of business processes and the internal controls process on the design
level serves as a basis for bringing a higher level of adaptability, reusability, and usability to the
models, and these needs are not actually being addressed by industrial solutions in this area.

8.5.3 Application of Formal Ontologies for Business Process
Compliance Automation

According to [Studer et al., 1998] “an ontology is a formal, explicit specification of a shared
conceptualization. A conceptualization refers to an abstract model of some phenomenon in the

 178

world by having identified the relevant concepts of that phenomenon. Explicit means that the
type of concepts used, and the constraints on their use are explicitly defined. [...] 'Formal' refers
to the fact that the ontology should be machine readable, which excludes natural language.
Shared reflects the notion that an ontology captures consensual knowledge, that is, it is not
private to some individual, but accepted by a group.”

Based on formal ontologies the mechanism of logical reasoning can be applied. With logical
reasoning the following tasks can be achieved:

� Consistency checks of a model
� Subsumption reasoning, which determines hierarchies of concepts (or their instances)

existing in the ontology
� Rule processing

Regulation is one of the domains which apply extensive requirements on the formal modeling
of the domain due to the complex normative knowledge existing in and between different related
regulations. Thus one could claim that business process compliance could greatly benefit from an
ontology driven information system based on the formalization of text contained and referenced
in and between regulations [Gangemi et al., 2005].

Further, another thread of research exists in the development of domain specific ontologies in
the area of financial accounting and costing. One of the main motivations of regulations such as
SOX and requiring public companies to document and implement internal controls is to assure
the control objective “financial statements”. Thus using a clear, precise specification on financial
transactions and accounting practices in terms of an ontology could provide support to companies
in order to help them achieve this control objective, including the “operations” control objective.
In this context, there exists a set of business domain ontologies such as TOVE [Fox, 1992], REA
Accounting Ontology [Geerts et al., 1999], Business Model Ontology [Osterwalder, 2004],
Enterprise Ontology [Ushold et al., 1998], or E3 Value Ontology [Gordijn et al., 2001]. The
developers of the business domain ontologies listed above have different scientific backgrounds,
which is reflected by the domain-specific knowledge captured in those ontologies and can also be
noted through the level of formalization provided. While the creators of TOVE and of the
Enterprise Ontology come from the artificial intelligence community, with a precise
understanding of the ontology engineering process and the formalization there, the other
ontologies are more focused on the business level. The E3-value ontology is not formalized at all
and according to [Gordijn, 2002], a formalization of the ontology is not required because of the
communication focus of the ontology.

The assumption is that modeling the enterprise, that is modeling its business processes
according to the (formal) model proposed in a “suitable” ontology, would have benefits. In
[Spyns et al., 2002] the possible benefits of formalizing the business domain ontologies and
their application are recognized and discussed. Additionally, having the compliance requirements
(lets say SOX) for a business company formalized according to the concepts and properties
provided by a “suitable” legal ontology could be used to automate achieving business process
compliance supported by logical reasoning possibility that can be utilized on top of formalized
ontologies. The option of using such a method is can be analyzed in the following manner:

For the discussion on the applicability of ontologies in business process compliance we leave
out the point of the expressivity of the formalism used, because it is off-topic for the discussion.
We assume for the discussion an ideal constellation where we have a highly expressive language
for describing the ontologies, so that we can very precisely and formally express and capture the
content (text) of a regulation (lets say e.g. SOX 404). Let’s further assume that we also have an
ideal formalized business domain ontology, which reflects all necessary aspects and layers in an
enterprise including its business processes and the way they are designed. Based on that ontology

 179

we could capture the execution semantics of a business process instance. So far we have two
different ontologies, one for modeling the current regulation (let’s call it RegOnto here) and
another one for modeling the business processes in companies (we call it BPOnto here). The
question would be how and in which constellation we could use these two ontologies to better
support business process compliance.

A possible method could be the following, as presented in Figure 65:
1. Develop, based on RegOnto, a formalized model of the currently considered regulations.
2. Design your enterprise, including its business processes, according to BPOnto.
3. Build a repository in which semantically enriched execution facts, according to the

BPOnto ontology, are collected.
4. Use logical reasoning to determine whether the semantic instances of a business process

instance as prepared during step three “satisfy” the RegOnto representation of the current
regulation.

Figure 65 Possible role of legal and business ontologies in business process compliance

It is important to remark that although in our assumed world, a 1:1 mapping of a regulation
including all the references to other related regulations in the case of business process compliance
in an ontology would be theoretically possible, the resulting ontology is not as straightforwardly
usable as described in the above approach. The reasons are as follows:

Recall the internal controls process as described by COSO (and required by SOX 404). The
descriptions and the requirements in those regulations and frameworks are not “grounded” on a
business level. By not grounded, we mean that it does not tell a company how exactly to ensure
compliance, it does not specify which accounts, which business processes, and which controls
have to be included in the internal controls project. This is due to the fact that each enterprise is
unique in the way it works internally (internal factors) and how it is influenced by the external
factors (such as market situation, politics, competitors etc.). We exemplified such a situation in

 180

chapter 2, where each use-case company required a completely different set of controls for same
business process. The crucial differentiating factor for each business is the notion of risk. The
regulation does not tell an enterprise what constitutes a risk for that enterprise, and what therefore
has to be addressed by its internal controls system. The enterprise itself has to assess the risk,
possibly by consulting domain experts in the area of enterprise risk management (ERM). This is
what we call the interpretation of the regulation, i.e. what it means for a company. Interpretation
means to assess the risks and derive necessary consequences for the enterprise in terms of
controls. The two variable factors are risks and their consequences: We mention again that risk is
enterprise-specific, which means that the occurrence of a certain situation may represent a risk for
an enterprise, while the occurrence of the same situational constellation may not be a risk for
another enterprise operating in a different environment (internal and external factors). At the
same time, the consequence of a risk is enterprise specific as well in terms of how to handle a
certain risk. Thus the regulations in the area of enterprise risk management require enterprise-
specific interpretation. The modeling of the regulation text, as it is given in an ontology, (see
Figure 65), is not sufficient for business process compliance, because the “interpretation”-step is
necessary. The reflection of the interpretation of the regulation will lead to a partially enterprise-
specific ontological model of the same regulation. This is due to the fact that each business
domain (transportation vs. high tech companies for example) use their own terms, have their own
business processes and have their own risk factors, which leads to partially different conceptual
models being present in an ontology for each enterprise (see Figure 66).

To the best of our knowledge there is currently no research that addresses the problem of
interpretation of regulation and how enterprise-specific risks may be related to the ontological
modeling of regulations. According to [Spyns et al., 2002] and [Ushold et al., 1996], important
ontological quality factors are: reusability, reliability, shareability, portability, and
interoperability. We see in the context of business process compliance the factors of reusability
and shareability of ontologies used in the approach described above as not fully satisfied. The
reason is that in each enterprise, significant conceptual modeling effort has to be made on top of a
given regulation ontology in order to integrate the relevant concepts of risk for that enterprise in
that ontology.

Figure 66 Different set of required concepts for identical regulations resulting in two
different ontologies

 181

8.6 Conclusion

This chapter presented the description and the implementation of an approach for detecting
control violations during business process executions. Such an approach enables us to realize
business process compliance in a preventive manner. The system realizing the approach, called
ICR, consists of 2 parts: ICR-Design and ICR-Execution. ICR-Design contains a set of controls
and ICR-Execution is responsible for ensuring that the business process instances which violate
controls in ICR-Design will not pass. ICR builds on models that were provided in chapters 4, 6
and 7.

In ICR-Design, controls according to Definition 6.11 are designed on business process models
according to Definition 4.2, possibility through the instantiation of a control pattern according to
Definition 7.4. The controls will be deployed by their storage in ICR-Design and by adapting the
business process model according to recovery actions in the control. This adaptation step will
compile a set of new transitions in the business process model. These transitions will ensure that
a control-violating business process instance behave according to the required recovery actions of
the control. The integration of a business process instance with a control is then achieved by the
continuous monitoring of a business process instance by ICR-Execution. This is achieved by
evaluating the current state of the business process instance (contained in business process
context, see section 4.2.2.2) against the control conditions of a control specifying in what
circumstances its triggering event can be considered as having occurred.

 182

 183

9 Assessment
The contributions in this thesis are assessed according to the following two aspects:

1. Complexity of the system proposed and its
2. Completeness

In the following we introduce the role of complexity and completeness assessment in the
context of this thesis:

In software engineering, several definitions have been given to describe the meaning of
complexity. [Fenton, 1991] defines complexity as the amount of resources required for a
problem’s solution. [Curtis, 1980] states that complexity is a characteristic of the software
interface which influences the resources another system will expend or commit while interacting
with the software. [Card et al., 1988] define relative system maintenance complexity as the sum
of structural complexity and data complexity divided by the number of modules changed. For
business process management, [Cardoso, 2006a], defines process model complexity as “The
degree to which a process is difficult to analyze, understand or explain. It may be characterized
by the number and intricacy of activity interfaces, transitions, conditional and parallel branches,
the existence of loops, data-flow, control flow, roles, activity categories, the types of data
structures, and other process characteristics.” Applied to our context complexity, is related to the
following aspects:

1. Design complexity and
2. Execution complexity.

Design complexity affects the following aspect: How complex is it to provide a model of
business process compliance)? In order to answer this question we divide the system realizing
business process compliance into the following sub-systems:

i) System of business process models, as they have to be represented according to the
definition of BPD

ii) Controls according to the Definition 6.11; controls will be designed separately from
business processes.

The key question asks how much effort would be required to design such a system. The
assessment of the design complexity of business processes will be discussed in section 9.1.1.1
and the complexity of control modeling will be discussed in 9.1.1.2.

Execution complexity is in our approach related to the execution phase of business processes,
as described in chapter 8. More specifically, execution complexity is about monitoring business
process instances and reacting to control violations. The key question in this context is: “Is it
feasible, from a performance point-of-view, to assure the control effectiveness through the
integration of the component ICR-Execution during business process execution?” We assess the
performance of the system according to the additional time complexity brought into the system
through ICR-Execution. The existence of such a component is not allowed to influence the
runtime performance of the system, i.e. the time taken to fulfill a certain part of a business
process, in such a way that an end user of the system, i.e. a business user, is hindered in the
pursuit of the business objective intended by the business process. Space complexity of
execution is not subject to our assessment because there are usually large scale enterprise
systems responsible for implementing the business processes we are dealing with. Thus providing
additional hardware plays, from our point of view, a minor role in assessing the feasibility of
approaches today. To summarize, we consider the time complexity of business process execution
as the crucial factor for assuring the feasibility of the ICR-Execution. The optimal way to
evaluate the time complexity of the approach is through its technical deployment and

 184

performance measurements in real production environments. This was not possible for this thesis,
due to mostly political reasons: in order to make it this approach possible, a business or company
must first provide a critical set of controls resulting from a risk assessment for that enterprise. By
providing such information, a business company would indirectly expose the risks with which the
business enterprise is faced. Companies are not usually willing to provide such information, not
even to their internal employees. Thus we were forced to take the approach of estimating the time
complexity of the system. It is in this way that we show that the implementation of our approach
will have no negative influence on the efficiency of a system for managing the business
processes. Technical performance will not be affected. The time complexity aspect will be
discussed in section 9.1.2.

There exist several definitions for completeness. We consider completeness from an
expressiveness point of view in general and refer to the definition provided by Wikipedia for
language completeness [WikiCompleteness]: “A language is expressively complete if it can
express the subject matter for which it is intended.” Applying this definition to our context, the
“ language” would be the model of control (Definition 6.11) and its different patterns presented
in chapter 7. The term “subject matter” in the definition is the possible set of internal controls in
a company. Whether and how far is it possible to reflect different kinds of controls in the control
model proposed should be assessed. We assume that a control that can be captured by the model
can be used in the compliance validation during the execution as described in chapter 8. The key
question to be answered by the completeness assessment is whether, and how well, building on
top of the proposed models is able to provide the necessary set of controls according to the
models that are the basis for the automation of business process compliance design. Automation
in this context is related to the question of whether, and how much, human interaction will still be
required for defining the controls on top of the models. This completeness assessment is covered
in section 9.2.

9.1 Complexity

In the following we first discuss the design complexity of business process models and
controls, and then provide the estimation model for the execution complexity of business process
instances in a system which includes ICR-Execution.

9.1.1 Modeling Complexity

9.1.1.1 Complexity of Business Process Modeling
The effort required to model a business processdepends highly the complexity of the business

process to be designed. To determine the complexity of a business process model, the BPM
community relies mostly on research results coming from the software engineering community,
where a significant amount of research has been done regarding the complexity of software
programs.

[Cardoso, 2006b] extends the work of [van der Aalst et al., 2005c] by stating that the
complexity of a business process model can be determined from four perspectives. These
perspectives are:

� Activity complexity: This view on complexity simply calculates the number of activities
in a process model. This metric was inspired by lines-of-code (LOC) metric used with a
significant success rate in software engineering [Jones, 1986].

 185

� Control-flow complexity: The control-flow perspective describes activities, and their
ordering, through different constructors, which permit the flow of execution control. The
control-flow complexity of a process is closely related to its activity
complexityperspective. While the control-flow complexity can be very low, its activity
complexity can be very high. For example, a process that has a thousand activities may
have a very low control-flow complexity (if it is sequential), whereas its activity
complexity is very high.

� Data-flow complexity: This perspective reflects the complexity of documents and other
data objects that flow between activities. The data-flow complexity of a process increases
with the complexity of its data structures, the number of formal parameters of activities,
and the mappings between activities’ data [Reijers et al., 2004].

� Resource complexity: The resource perspective provides an organizational structure
anchor to the business process in the form of human and device roles responsible for
executing activities [van der Aalst et al., 2005c].

The above complexity perspectives on a business process model are reflected in the proposed
model of a business process in terms of BPD: the activity complexity is measured by the number
of activities according to Definition 4.12 in a BPD. Control-flow and data-complexity are
reflected by the transitions (see Definition 4.14) of business documents and activities in a BPD.
Resource complexity is influenced by the number of users involved in a BPD and by their roles
(see section 4.2.2.3) in that BPD. There are complexity metrics of business process models for
data flow and control-flow complexity. They are listed in the following and can also be taken as
reference metrics to measure the complexity of a BPD:

According to [Cardoso, 2005], a data-flow complexity metric can be composed of several sub-
metrics, including: data complexity, interface complexity, and interface integration complexity.
While the first two sub-metrics are related to static data aspects, the third metric is more dynamic
in nature and focuses on data dependencies between the different activities of a process. In the
case of our model of BPD, this means that if a business document is composed of basic data
types, it will have lower complexity than one which is composed of business documents that are
a composition of other business document types. Further [Gruhn et al., 2006] propose seven
measurement metrics for the complexity of the control-flow in a business process model, which
are: Number of Activities, Control Flow Complexity (CFC), Max. / Min. nesting depth, Number
of handles, Cognitive weight, (Anti) Patterns for BPM, Fan-in / Fan out. For a detailed discussion
of these measurement metrics, please refer to [Gruhn et al., 2006].

To the best of our knowledge there exists almost no research about the calculation of the effort
needed to model a business process. However, we propose a modified calculation approach,
borrowed from ontology engineering called ONTOCOM [Bontas et al., 2006]. Ther modified
approach based on ONTOCOM can be used to estimate the cost of modeling a business process
according to BPD. We believe that the creation of a business process model can be treated as an
ontology engineering problem, given a constellation where a standard software provider offers
different repositories of business documents, activities etc, on top of which a customer enterprise
can build its business processes. In this case the different entities in these repositories and their
relationships can be seen as an analogy to the concepts and the properties between them defined
in the ontology (TBox). The business process model built on top of entities in such a repository
then represents an instantiation of the ontology (which can be treated as the ABox).

 186

Based on this argumentation we propose below the following adapted formula for calculating
the effort (in person-months PM) required for modeling a business process:

∏= icdCESAPM *||* α

,where
� The cardinality of controlled entities CES = USERS ∪ ROLES ∪ TRANSITIONS ∪

BDS (business documents) in a business process represents one of the modeling effort
factors. The required controls in a business process are excluded here, because they will
be separately designed.

� Parameter α is defined in the same way as in the ONTOCOM-model, in that it controls
for the possibility of non-linear behavior of the model with respect to the number of
controlled entities.

� A is a constant according to the ONTOCOM-model, which represents a baseline
multiplicative calibration constant in person months

� cds are different cost driver factors having a rating level that expresses their impact on
development effort.

The critical factor for calculating the PM in the context of business process compliance is the
number of entities, which are affected by the controls, i.e. the size of the set CES. The cost
drivers in the area of ontology engineering can be domain analysis complexity, implementation
complexity, support tools etc. A detailed description of different cost drivers in the area of
ontology engineering and their rating levels can be found in [Bontas et al., 2006]. From our
point of view these cost drivers will mostly hold for business process modeling as well.

As a concluding statement regarding the modeling complexity, we argue that because our
proposed model of BPD adds no additional complexity perspective to the complexity of a
business process model, its modeling method and the resulting models would have the same
complexity and require the same effort as other mature process modeling approaches such as
EPCs, BPMN etc.

9.1.1.2 Complexity of Control Modeling
The task of identifying the necessary controls in order to mitigate the existing risks on business

processes remains manual (see section 4.1.2). In the following, we discuss the complexity of
modeling the controls for a business process. In order to achieve this task a compliance expert
must be assisted by supporting the following functionalities:

1. Model a control
2. Apply the modeled control to a business process model.

The first functionality relates to the modeling of a control and is supported by providing a
precise model of the control (see Definition 6.11). The management of controls, i.e. a desired
modification of an existing control, is highly flexible. This is achieved through the
parameterization of the control model that enables the modification of its different attributes. The
factors influencing the complexity of a control are the number of its attributes and the complexity
of each of its attributes. Through a strict model-driven design of controls, the maintenance of
controls, which is closely related to the challenge of maintaining compliance as described in
section 2.4.5, is greatly simplified.

The second functionality can be treated generally as an annotation, i.e. a business process
model is annotated with the necessary controls. It can be treated as an annotation due to the fact
that an annotation approach must be capable of supporting or helping in answering the questions:

 187

‘what to annotate”, “where to annotate” and “how to annotate”, and can be applied to our case in
following way:

1. What to annotate in a business process with the control: The question of what to
annotate in a business process is answered by a compliance expert. The approach
supports him in the selection of an identified controlled entity in a business process and
helps him to equip it with a control.

2. Where in a business process to annotate the control: This is the scope of the control
codified in its event- part as defined in Definition 6.11.

3. How to annotate the control: The technical annotation of a business process is then
automated as described by the business process model adaptation in 8.3.2. Through the
concept of business process model adaptation, an existing business process model
designed according to BPD is extended by the necessary artifacts required in order to
monitor a business process instance and react any control violation. This is an
automated approach and requires no manual interaction in order to adapt the process
model. All that is required is to identify the business process, specify the control for it
and set the recovery actions (see section 6.2.3) that should be invoked in case that
control is violated.

Providing a quantitative number regarding the modeling and annotation effort required for
controls in business processes is heavily dependent on the level of technical and compliance
expertise of the person using and applying the models. In order to determine an approximate
value of effort for annotating the business processes with controls, the evaluation results of
[Handschuh, 2005] can be used as an orientation, although the nature of annotation problem in
[Handschuh, 2005] is different from the case of business process compliance. [Handschuh,
2005] determined the effort required for the semantic annotation of web sites with semantic
information. The results achieved therein did show that, in that specific context, the effort for the
manual annotation of web sites with semantic information is almost within reasonable or feasible
limits. In that work, evaluation was in a context where experiments were carried out by students
without deep technical and logical knowledge, using the annotation approach. We argue that
these results can be applied to designing controls in business processes, because the approach can
be treated as an annotation. We further believe that the efforts required in our context would be
even lesser, for the following reasons:

i) Through usage of configurable patterns (see pattern specific parameters in section 7.4),
the required level of technical knowledge is significantly lowered

ii) The level of required knowledge of logic is minimal because of the use of business
level control patterns, which hide the technical complexity of the underlying formalism

iii) The number of concepts and the relationships between them in the domain model of
business process compliance is relatively limited

iv) The set of possible annotations in a business process is limited through the extensible
set of proposed control patterns

v) The target users of our approach are experts in their domain, namely compliance
experts in a company, whereas in the context of semantic annotation of web sites the set
of target users is potentially open.

9.1.2 Execution Complexity
Regarding the integration of ICR-Execution into the execution of a business process, in the

following we discuss and validate the performance of a system with regard to its real world
feasibility. The integration of ICR-Execution implies that during the execution of a business

 188

process, additional steps have to be enacted inside a process part, in the scope of a control. The
full set of possible additional required steps is visualized in Figure 67, which yields worst-case
time complexity results during execution:

1. Synchronization
a. Collect data
b. Obtain reference
c. Write

2. rule processing
a. working memory update
b. query backend systems
c. RETE
d. Control Violation Fact Creation

3. Recovery Action Handling
a. instantiate rbp
b. Business process instance recovery

Figure 67 Full set of possible additional steps required in compliance validation

These additional steps only exist to assure the compliance of business processes in a preventive
manner. They would not exist if the controls would have been handled in a detective manner,
which is the usual state of practice. In addition, these steps are not necessary for achieving the
business objectives of a process. These additional steps exist for assuring the control objective of
a business process and thus are not allowed to influence the execution of business processes in
such a manner that from a technical point of view the achievement of a business objective of a
process will be negatively influenced. The technical factor that has to be taken into account is the
additional time complexity of the system added to the system through ICR-Execution.

 189

9.1.2.1 Effort estimation
Step 1a (Collect Data) is about replicating the operational data, which is produced during

business process execution and which is necessary for control evaluation. This is copied from the
business process instance and context into a Map-Data type, which will be asserted to ICR-
Execution as facts. Since this operation is basically a copy-operation without any computational
effort we estimate its time complexity as linear Ο(n) depending on the number n of data items
which are copied.

Step 1b (Obtain reference) is about establishing a connection to the working memory of the
rule engine. The connection will be cached in the context of the business process instance. We
estimate the time complexity of this operation as a constant Ο(c) = 1 in the best and worst case.
Best case would be if the reference is cached in context, worst case would be if the reference has
to be obtained by connecting to the working memory.

Step 1c (Write) is responsible for sending the set of collected data items copied during step 1a
to ICR, i.e. its working memory. Although the real time efforts for this operation depend on
several factors, such as network connectivity and the distribution model of the engines (rule and
BPM), we estimate the time complexity of this step as linear O(m) depending on size m of data
sent to ICR-Execution.

Step 2a (Update Working Memory) updates the existing facts in the working memory and
creates new ones. The time cost for this operation depends on the current size of the working
memory, i.e. the number l of facts in it and the number k of received facts from business process
instance. The time complexity of this operation is Ο(l) + Ο(k) linear.

Step 2b (Query Backend Systems) The time complexity of this step depends on the form and
number of the rules representing the controls, whether they require data from operational backend
systems in order to evaluate a rule. The processing of such backend queries depends on the
technical environment parameters, i.e. the performance of the database of the backend systems
responding to such queries. We assume that in most cases in practice the database of such
backend systems is relational. Performance of processing queries in relational backend systems
depends on technical factors such as the usage of inidices in the database, form of the queries
(Selection, Projection type of joins etc.), the preferment design of database schema and its
normalization, size of operational data to be retrieved or whether a distributed query processing is
possible etc. Assuming j as the cardinality of the relation in database, it is well known [Özsu et
al., 1999] that the complexity of relational operation containing a simple select without using
joins in the selection is linear O(j), a join-operation has the complexity of O(j * log j) and the
worst case would be a query with a cartesian product operation that has a complexity of O(2j).
However, in practice, implementations of the state of the art relational databases offer a very
good performance and query optimization techniques such that we expect a linear time
complexity as well in practice for query processing. We further argue that this kind of query
operations would be invoked during business process execution anyways, in order to fulfill the
business objectives of a business process. In the case of the application of a detective nature of
controls, the query of the backend systems in order to evaluate the controls would be done
manually, by a compliance expert.

Step 2c (RETE) This step represents the most critical phase regarding the time complexity.
Beside the technical environment, i.e. the number and size of CPUs used for running the rule
engine infrastructure, the processing of this step depends on 2 factors: i) number of rules and ii)
the form of their LHS. According to [Forgy 1979] and [Albert, 2006], RETE requires in worst
case a linear time complexity in order to compute the set of satisfied rules. Further, different
production rule engines have their custom implementations of RETE algorithm, which optimizes

 190

the pattern matching algorithm. Figure 68 refers to a benchmark provided by ILog Rule engine
regarding the time needed for executing the rules. We do not expect that the number of rules (i.e.
the controls in a company) in a real application scenario would exceed 4000. As shown in Figure
68, the time effort for processing such a rule base remains almost linear.

Figure 68 Performance of Ilog Rule Execution [JRULES]

Step 2d (Control Violation fact creation) In the case of a control violation, during this step a
fact will be generated in the working memory signaling the control violation. It is obvious that
the time complexity of this operation is constant.

Step 3a (Instantiate rbp) During this step an instance of the business process responsible for
eliminating the conditions which make a control violated is generated. Here in parallel necessary
data for processing the instance will also be provided. While we estimate the time complexity of
the instantiation itself as constant, the time complexity of providing data to the instance depends
on the number p of data items set in the instance. Thus we consider the time complexity of this
step as Ο(1) + Ο(p) = Ο(p).

Step 3b (Business Process Instance Recovery) This step is related to the application of all
other types of the selected recovery action model during control design phase (as described in
section 8.3.3). The time complexity of this step depends on the complexity of the process
definition that has to be recovered. The most time-consuming recovery action would be a
rollback and we estimate its complexity as linear, depending on the number of transitions
existing in a process definition.

The whole complexity brought to the system by the above steps will be discussed in the
following sub-section

9.1.2.2 Discussion
None of the steps oulined above requires a time complexity worst than linear. Thus we

consider that the integration of ICR-Execution during process of business process instance adds a
linear time complexity to the system, where the most expensive operation is the rule execution in
the rule engine by RETE algorithm (Step 2c) depending on a number j of rules. This is the
general observation in several applications using a production rule engine. However it is
important to assess the additional complexity brought into the system while considering the
nature of operative business processes, which are the focus of business process compliance.
Typical operative business processes such as sales processing, purchasing or human resource
management require several days to be processed. The typical paradigm is that certain roles or
users involved in a business process receive tasks in their task lists, which they then must
process. This is very similar to e-mail processing. Here a business user does not immediately

 191

process a task (as he would not immediately process an e-mail received), but rather checks his
task list and processes the tasks in FIFO or priority based manner. For these reasons, the
additional time required for processing the controls in ICR-Execution can be ignored and does
not significantly influence the fulfillment of the business objectives of a business process in the
context of how they are processed by business users.

9.2 Completeness Assessment of Control Model

The completeness aspect will be assessed empirically. We assess the completeness of the
control model by reporting our analysis of a large set of controls and the way we could capture
them in our model according to our approach.

COSO provides in [COSO92] an evaluation framework designed to assist an evaluator in
completing the “Risk Assessment and Control Activities” in a company. The controls covered in
the COSO’s Reference Manual are based on a generic model of a business enterprise. The
generic business model depicts major activities in an enterprise in terms of its business processes,
and is organized in levels, from a “high level” view of an enterprise to increasingly more detailed
“low level” views.

The complete set of controls proposed within this framework contains 504 controls. We used
this framework to assess how far we are able to reflect the required set of controls in an enterprise
based on our model. The result of our assessment is shown in Table 10. The table is organized in
the following way: The first row shows the name of the process in the enterprise, the second row
the total number of controls proposed for that process by COSO, the third row named “Possible”
shows the number (and percentage) of controls, which we are able to design and check according
to our model and then to approach in a preventive way, the number of controls in the fourth row
(Interpretation) require further human interpretation to be reflected in the model, thus they are not
immediately applicable in the approach. The fifth row shows how many controls we were unable
to capture and check.

Table 10 Assessment results for possibility of mapping the COSO’s control set on the
control model

Process area Total
No. of
Controls

Possible Interpretation Not Possible

Inbound Activities 39 27 (~69%) 5 (~12%) 7 (~18%)

Operations 33 18 (~55,5%) 3 (~9%) 12 (~36%)

Outbound Activities 34 24 (~70,5%) 3 (~9%) 7 (~20,5%)

Marketing and Sales 29 14 (~48%) 2 (~7%) 13 (~49%)

Service 19 10 (~53%) 5 (~26%) 4 (~21%)

 192

Human Resources 33 14 (~42%) 8 (~24%) 11 (~33%)

Technology Development 12 6 (~50%) 2 (~17%) 4 (~33%)

Procurement 40 37 (~92,5%) 1 (~2,5%) 2 (~5%)

Process Accounts Payable 18 18 (100%) 0 (0%) 0 (0%)

Process Accounts Receivable 17 16 (~94%) 1 (~6%) 0 (0%)

Process Funds 46 38 (~83%) 2 (~4%) 6 (~13%)

Process Fixed Assets 13 8 (~61,5%) 2 (~15,5%) 3 (~23%)

Analyze and Reconcile 3 3 (100%) 0 (0%) 0 (0%)

Process Benefits and Retiree 20 12 (~60%) 1 (~5%) 7 (~35%)

Process Payroll 22 14 (~64%) 2 (~9%) 6 (~27%)

Process Tax 10 5 (50%) 0 (0%) 5 (50%)

Process product costs 15 12 (80%) 3 (~20%) 0 (0%)

Process Financial Management

and Reporting

11 5 (~45%) 3 (~27%) 3 (~27%)

Manage the enterprise 15 4 (~27%) 3 (20%) 8 (~53%)

Manage external Relations 6 0 (0%) 0 (0%) 6 (100%)

Manage Administrative Services 3 0 (0%) 0 (0%) 3 (100%)

Manage IT 24 15 (62,5%) 4 (~17%) 5 (~21%)

Manage Risks 15 1 (~7%) 3 (~20%) 11 (~73%)

Manage Legal Affairs 13 5 (~38%) 3 (~23%) 5 (~38%)

Planning 14 4 (~28,5%) 6 (~43%) 4 (~28,5%)

All (25) 504 ~ 55 % ~ 12,5 % 32,5 %

Some examples of controls in the table above which are in the row named “Interpretation” are:

� “Monitor production problems related to unavailable materials and parts” in the process
area “Inbound Activities”

� “Evaluate adequacy of production capacity” in the process area “Operations”

 193

� “Monitor adequacy of staffing, their overtime and workloads” in the process area
“Service” etc.

The problem with the above control descriptions is that the model does not know the notion of
“problem” or “adequacy”. In order to be reflected in our control model, a compliance expert has
to describe what a “problem” or “adequate” means for a specific enterprise in quantitative terms.
This is the reason why such controls have to be “interpreted” before they can be designed in a
business process.

Some examples of controls in Table 10 in the “Not Possible” row are:
� “Institute and monitor code of conduct” or “Maintain physical security of purchase

orders” in the process area “Procurement”
� “Personnel report suspected violations of laws, regulations or company policies” or

“Human resource personnel are subject to periodic training regarding legal and regulatory
requirements in the process area “Human Resources”

� “Periodically evaluate direction and priorities set by senior management to make certain
they are still valid” in the process area “Manage the enterprise” etc.

The above control descriptions cannot be captured by our model and consequently cannot be
automatically monitored, because they involve employee behavior and do not interact with IT
systems. These controls can only be verified manually and are closed to COSO component
“Control environment” as described in section 3.1.2.2.1.

It is interesting to remark that some process areas such as “Processing Accounts payable”,
“Processing Accounts receivable” or “Procurement” seem to be very well suited to use in our
approach (high percentage of possible controls). These are according to COSO “low level” areas,
which are in closed interactions with IT systems. At the same time, we count in “high-level”
process areas such as “Manage the enterprise”, “Manage external relationships” or “Manage
Administrative Services” very few controls which are well-suited to our approach.

However, the results of the completeness assessment show that more than half of the controls
(55%) can be represented by our model and their effectiveness can be assured automatically in a
preventive way by our proposed approach. We are satisfied with this number, it shows that using
a model-driven approach will significantly reduce the manual efforts required for compliance
management of internal controls for business processes.

 The fact that a significant number of the controls require a further interpretation to be used in
our approach (12,5 %) and even that 32,5% of the controls are not automatable at all shows that
the human factor still plays a very important role in business process compliance. Business
process compliance and the required internal controls cannot be completely automated, we
conclude that the roles of compliance experts and control testers will not be rendered obsolete.

9.3 Summary

In this chapter we assessed the added value of using models to design and manage controls for
business process compliance. To this purpose we discussed the modeling complexity of business
processes and controls in a step-by-step manner.

We also showed that the integration of ICR-Execution will not negatively influence the
transactional response time of business processes (Execution complexity). Negative influence is
interpreted in this context as resulting in a situation in which the business objectives of a business
process can not be satisfied due to low performance of the whole system. We showed that this
was not the case by estimating the time complexity of the additional steps required during
execution of a business process in order to realize the approach implemented by ICR-Execution,

 194

which according to our estimation seems to be linear. However we concluded that this additional
time will not be of any consequence due the nature of operative business processes, which often
take several days to be processed by business users.

The completeness of the control model and its patterns were assessed in a scenario-driven
fashion using the proposed controls on 25 different process areas proposed by COSO evaluation
framework.

 195

 196

10 Conclusion and Outlook
In this thesis, we tackled the problem of high costs and effort for achieving the compliance of

business processes to regulations in the area of Enterprise Risk Management (ERM). Common to
these regulations (such as the Sarbanes Oxley Act – SOX) are requirements on the presence of
effective internal controls at companies. The current shortcomings faced by companies in this
respect are the low level of automation in the translation of compliance requirements into a set of
internal controls and assuring the effectiveness of these controls during the execution of business
processes. The high cost of business process compliance is due to the fact that in many
organizations a large number of the steps in designing and testing controls on business processes
are manual.

In section 10.1, we briefly summarize the contents of this work and accentuate its main
contributions. Subsequently, an outlook on possible future work is addressed by discussing some
open research questions in section 10.2.

10.1 Summary of Contributions

Most companies rely on standard software providers to deliver software solutions on top of
which they build the companies’ business processes. These companies require this standard
software to provide mechanisms which yield a higher level of adaptability, reusability and
usability of internal controls on their business processes. The aspects adaptability, reusability and
usability of internal controls are related to the design time of business process compliance,
namely, modeling the controls in the business processes. Another requirement from customer
companies on their standard software providers is to assure the automatic detection of possible
control violations or to prevent possible non-compliant executions of business processes. Meeting
this requirement depends on having an approach for continuous monitoring of compliance at
companies. An automated approach for monitoring business process compliance provides
companies with a means to transform manual steps and automate them as system level controls.
Automation of controls and monitoring the compliance of business process executions to them
saves those costs associated with performing the controls and improves the reliability of the
controls because the level of human interaction required for assuring their reliability is
minimized.

The basis for the contributions of this thesis to reducing the high effort of modeling
compliance and assuring compliant executions of business processes is a strict model-driven
approach to business process compliance. Using models to describe the necessary artifacts
involved in internal controls enables the realization of preventive compliance for business
processes. This is achieved by increasing the number of preventive controls that can be
automated. By comparison, the usual manually detected controls can only assure post-
compliance.

The problem space described above was exemplified in this thesis by elicitation of a set of
challenges identified through two use cases. These challenges can be summarized as follows:

Each company has different sets of significant accounts, affected by different relevant business
processes containing different kinds of risks that are the focus of internal controls. Risk
assessment of business processes is enterprise-specific. This leads to the situation that each
company building on top of standard software requires its own enterprise-specific variant of a

 197

certain type of business process (such as sales, purchasing etc.) that has to be provided and
supported by standard software providers. Different roles in a company are involved in the design
of business processes and the necessary set of controls on them which mitigate the exiting risks in
the business process: business process and compliance experts. They have different background
knowledge and expertise and different intentions regarding a business process. A business
process expert is interested in a business process that achieves the business objectives for which
it exists, whereas a compliance expert is interested to assure the compliant behavior of a business
process by assuring the effectiveness of controls required for a business process. This leads to the
situation that one meets not only a heterogeneous system environment necessary for achieving
business process compliance, but also a heterogeneity in the roles involved and their
responsibilities in business process compliance. After the necessary set of controls on a relevant
business processes are determined, their design has today a manual nature in that they are
basically only documented. The lack of precise models of controls, business processes and the
existing formal relationships between them hinders a technical link between the documented
controls and business process designs and, accordingly, their execution. This missing link leads
to the situation that assuring the effectiveness of the controls is mostly manual in nature, using a
test-driven approach by a control tester in a company. Furthermore, once a control has been
tested, and has been judged to be working properly, it cannot be assumed to work properly in the
future, meaning it may become non-effective. The reason is that new business processes,
respectively new software versions implementing business processes are continuously deployed
in companies, and may affect the effectiveness of controls. Therefore, a continuous monitoring
approach built on top of a formal domain model of controls and business processes assures
preventive detection of non-compliant behavior of business process executions, minimizing the
manual effort that is today required in maintaining compliance.

In order to overcome the above challenges this thesis developed an abstraction layer above
business processes, which is responsible for business process compliance. In this layer the
controls are formally modeled and evaluated against existing process models and their execution
instances. The thesis describes a novel, model-driven approach for the automation of business
process compliance through monitoring the effectiveness of controls. This is enabled through the
conceptual separation of the design of controls and business processes at a model-level, and a
tight integration of controls in the business process instances at the execution-level. In order to
address the usability of the models and the approach, this thesis advocated the use of control
patterns in the abstraction layer responsible for business process compliance. The control patterns
should give compliance experts and business process experts access to specify and design the
compliance requirements accordingly. These control patterns are then mapped to formal models
that are used by technical experts to implement the control patterns in business processes. The
provided model-driven approach in the context of business process compliance has the following
added value:

� It enables the usage of formal methods, like inference, for the verification and validation
of a business process’ compliance to internal controls as required in regulations such as
SOX.

� Consequently, compliance will be achieved automatically, based on the current state of
parameters (instances) of a business process.

� Moreover, the conceptual description of control conditions ensures the flexibility of the
approach, i.e. changes to the controls require no manual changes in the design and
execution of the original business processes; this ensures relatively effortless
maintenance of compliance.

 198

� Finally, through another abstraction layer introduced on top of the compliance definitions,
we ensure that non-technical experts can build the required internal controls on top of
the domain model provided.

To complement this abstraction layer which uses models of the entities involved in business
process compliance, a verification and validation approach was presented: The verification of
business process models assures that business processes are built in a compliant manner as
required in a formal specification (chapter 5). The validation assures the compliant behavior of
business process executions, i.e. the business processes work as described in the formal model of
controls (chapter 8).

The requirements for realizing this approach to business process compliance based on
verification and validation were the following:

i) Model of a control and its relationship to business processes
ii) An approach for separating the design of controls and business processes
iii) An approach for deploying independently designed controls on business process

models
iv) Monitoring of control effectiveness during business process executions
v) A mechanism for handling possible control violations
vi) A cooperative environment for compliance and business process experts to design and

manage controls
vii) A common domain terminology in which the involved roles communicate.

The basis for satisfying the above requirements was provided in chapter 4 through a precise
formalized description of the entities in business process compliance that are the targets of
internal controls (Controlled Entities). The precise model of a control, which is a controlled entity
as well, was formally described in chapter 6 in detail. Verification and validation of business
process compliance builds on top of this formalized domain model of business process
compliance. Furthermore, the pattern-based approach to designing the controls in business
processes presented in chapter 7 uses the domain model of business process compliance and the
compliance controls provided in chapters 4 and 6.

In addition to the fulfillment of the requirements listed above, the following major
contributions to the research questions addressed in this thesis can be identified:

� Models of Intersection between Business Processes and Internal Controls
This contribution is related to the question about the relationship between business processes
and internal controls that was raised by the first research question. This thesis provides a set
of modeling entities for business process design that are subjected to internal controls
(Controlled Entities). It was shown what the formal relationships between these controlled
entities and a business process at design and execution time are. These entities and their
relationships serve as the basis for modeling the controls in business processes and assuring
their effectiveness during business process executions. Furthermore, using the models
proposed we showed that the level of automation in the design and application of internal
controls to business processes can be raised, which partly addresses the second research
question “Can internal controls be automated using a model-driven approach?”

� Identification and Application of Controls Patterns to Business Processes
With this contribution the third research question about the usability of a model-driven
approach for compliance experts is tackled. This thesis presents a set of control patterns as
the terminology in which the compliance experts speak about the internal controls compliance
domain. The control patterns are formalized and their relationships to the models presented in
the first contribution are specified. Designing the controls in business processes with the

 199

suggested pattern-based approach reduces the complexity of using the models in this thesis.
This improves the usability of the approach.
� Preventive nature of Business Process Compliance in daily operations
While the purpose of the first contribution was to address the second research question
concerning the automation of internal controls in business processes on a modeling level,
with this third contribution the question about the automation of business process compliance
is answered on the execution level. The system ICR provides a preventive kind of business
process compliance by detecting non-compliant business process instances automatically and
reacting to possible control violations as required in the control. The automation is technically
realized using a rule-based approach that builds on models that were provided by the first
contribution.

The impact of the above contributions for standard software providers are adaptability and
reusability of models through providing a model-based control repository that can be rolled out to
the different customer companies. The customers can reduce their compliance costs by designing
and building pattern-based controls on top of such a control repository. Furthermore, reduction of
the manual effort needed to test the controls reduces the compliance costs. Further cost reductions
are achieved by the automatic detection of control violations, which is enabled by the compliance
validation of business process executions.

In chapter 9 the modeling and execution complexity of the approach was assessed. The
complexity was assessed by discussing the modeling and execution complexity of the approach
for compliance validation of business process executions. The basic result for the assessment of
modeling complexity was that since the models of controlled entities in business process
compliance do not add any new modeling dimension in business process models, the modeling
efforts, and, therefore, the complexity remains the same compared to other existing business
process modeling approaches. The compliance validation of business process executions adds a
linear time complexity to the overall system responsible for enacting business processes during
runtime. This additional overhead was considered as acceptable given the nature of business
processes that are the focus of business process compliance; usually it takes several days for each
process step to be completed. The basic result of completeness assessment was that business
process compliance, i.e. modeling of internal controls in business processes and assuring the
compliant behavior of business process executions, cannot be completely automated using a
model-driven approach. This is due to the fact that approximately 32.5 % of the common controls
at companies cannot be formally modeled and therefore cannot be automatically monitored at
runtime. The necessity of the human factor in terms of compliance experts for assuring business
process compliance at companies remains.

10.2 Future Work

There are several directions to extend the results presented in this thesis. The main challenge is
to raise the level of automation in control identification, since it is not addressed by the models
and approach in this thesis.

Currently our model does not capture the internal syntax and semantics of all the entities
involved in business process compliance (see Definition 4.1). For instance the model does not
make any statement about the composition of risk and its formalization. In addition, capturing
the semantics of the relations interdepends and contradicts is currently not performed, i.e. it is
not possible to detect any contradicting, respectively interdependent controls automatically. The
same applies for the adjectives significant, relevant etc, - i.e. it is not possible to determine

 200

automatically what a significant account is or what a relevant business process in a company is.
The advantages of having a precise formal model of the relations mentioned above and the risks
in relation to formalized business processes would be the following: As seen in the scenario (see
chapter 2), the starting point of each business process compliance project is the risk assessment
for the enterprise. Given a well formalized representation of those risks and their semantic
relationships to business processes and controls, a collaborative system landscape, which can
propose a set of required controls on the business process according to the enterprise specific risk
assessment can be provided.

Furthermore, our approach requires the manual selection of a concrete control pattern and its
specific design for a business process according to the enterprise-specific compliance needs. A
higher level of automation can be brought to the whole approach by building a “Risk Repository”
as a starting point of the approach. Through a formal description of business level patterns in a
business process, as for instance proposed in [Thom et al., 2007], an automated matching of the
available control patterns presented in our work and the existing patterns in a business process
can be achieved. Such a pattern matching approach can automatically propose possible control
patterns to mitigate the existing risks associated with business processes. Such an approach
requires that business level patterns in business processes are annotated with possible types of
risks (available in the risk repository).

Another direction of future work would be to consider outsourcing scenarios related to
business processes between companies. In outsourcing scenarios an organization uses other
external service organizations to perform outsourced services. These services are still part of an
organization’s overall operations and responsibility and, consequently, need to be considered in
the overall internal control process; they are thus subject to business process compliance. In this
context [PCAOB04] specifically addresses the service auditor’s reports. It states: “The use of a
service organization does not reduce management’s responsibility to maintain effective internal
control over financial reporting. Rather, the management should evaluate controls at the service
organization, as well as related controls at the company, when making its assessment about
internal control for financial reporting.”

In this context the research question would be how to automatically detect possible control
violations at a partner company, to which parts of the business process have been outsourced. The
challenge would be to effectively and efficiently control and react to potential control violations
at a partner company without forcing that company to expose its internal business data which
may not be directly related to achieving business process compliance.

 201

 202

References
[Agarwal, 2007]

Agarwal S.: Formal Description of Web Services for Expressive Match-
making. PhD thesis, University of Karlsruhe (TH), May 2007.

[Agrawal et al., 2006]
Agrawal R., Johnson Ch., Kiernan J., Leymann F.: Taming Compliance with
Sarbanes-Oxley Internal Controls Using Database Technology. In: Proceedings of 22.
International Conference on Data Technology, p. 92, 2006.

 [Albert, 2006]
Albert L.: Average case complexity analysis of RETE pattern-match algorithm and
average size of join in Databases. In: Foundations of Software Technology and
Theoretical Computer Science, ISBN 978-3-540-52048-1, January 2006.

[Alexander, 1979]
Alexander C.: The Timeless Way of Building. Oxford University Press, 1979.

[Allen, 1984]
Allen J.F.: Towards a General Theory of Action and Time. In: Artificial Intelligence.
23(2):123-154, 1984.

[Ankolekar et al., 2005]
Ankolekar A., Paolucci M., Sycara K.: Towards a Formal Verification
of OWL-S Process Models. In: Proc. of the ISWC 2005, Galway, pp. 37-51, Ireland,
2005.

[ARIS]
 www.ids-sheer.com

 [Baader et al., 2003]

Baader F., Calvanese D., McGuinness D., Nardi D., Patel-Schneider P.F.: The

Description Logic Handbook: Theory, Implementation, and Applications. Cambridge

University Press, 2003.

 [Bace et al., 2006]

Bace J., Rozwell C.: Understanding the Components of Compliance. Gartner Research
paper, ID Number: G00137902, July 2006.

[BaselII08]

http://www.bis.org/publ/bcbsca.htm, Visited 25.03.2008
[Basu et al., 2002]

Basu A., Kumar A.: Workflow Management Issues in e-Business. In: Information
Systems Research 13(1), pp. 1–14, 2002.

[Balzer et al., 2004]
Balzer S., Liebig, T., Wagner M:: Pitfalls of OWL-S: a practical semantic web use
case. In ACM International Conference on Service Oriented Computing, pp. 289-298,
2004.

[Bernard et al, 2002]
Bernard J.-G., Aubert A. B.: Le risque: un model conceptuel d'integration. Montréal,
CIRANO: Centre interuniversitaire de recherche en analyse des organisa-tions, 2002

[BITS05]
BITS Operational Risk Management Working Group: Improving Compliance
Efficiencies by Minimizing Redundancy. May 2005, http://www.bitsinfo.org/,
Retrievend 25.03.2008.

[Boer et al., 2007]
Boer A., Gordon T. F., van den Berg K., Di Bello M., Förhécz A., Vas R.:
Specification of the legal knowledge interchange format. Deliverable 1.1, Estrella.
2007.

 203

 [Bontas et al., 2006]
Bontas E.P., Tempich C., Sure Y.: ONTOCOM: A Cost Estimation Model for Ontology
Engineering. In: Proceedings of the 5th International Semantic Web Conference
(ISWC 2006), volume 4273 of Lecture Notes in Computer Science (LNCS), pp. 625-
639. 2006.

[Bowen et al, 1982]
Bowen K.A., Kowalski R.: Amalgamating Language and Metalanguage in Logic
Programming. In: Clark e Tarnlund eds., Logic Programming, London: Academic
Press, pp. 153-172, 1982.

 [BPEL4People]
WS-BPEL Extension for People (BPEL4People), Version 1.0, June 2007.
http://www.ibm.com/developerworks/webservices/library/specification/ws-
bpel4people/, Retrieved 11.04.2008.

 [BRG2000]
The Business Rules Group: Defining Business Rules: What Are They Really? - Final
Report, Revision 1.3, July 2000.

 [Bubenko et al., 1998]
Bubenko J.A., Brash D., Stirna, J.: Ekd - enterprise knowledge development user
guide, 1998.

 [Card et al., 1988]
Card D., Agresti W.: Measuring Software Design Complexity. In: Journal of Systems
and Software, pp. 185-197, 1988.

 [Cardoso, 2005]
Cardoso J.: About the Data-Flow Complexity of Web Processes. In: 6th
International Workshop on Business Process Modeling, Devel-opment, and Support:
Business Processes and Support Systems: Design for Flexibility. The 17th Conference
on Advanced Information Systems Engineering (CAiSE'05), pp. 67-74, 2005.

 [Cardoso, 2006a]
Cardoso J.: Process control-flow complexity metric: An empirical validation. In: IEEE
International Conference on Services Computing (IEEE SCC 06), Chicago, USA, pp.
167-173, 2006.

 [Cardoso, 2006b]
 Cardoso J.: Approaches to Compute Workflow Complexity. In: Dagstuhl Seminar, The

Role of Business Processes in Service Oriented Architectures. Dagstuhl, Germany,
July 2006.

[Casanovas et al., 2006]
Casanovas P., Casellas N., Vallbe J.-J., Poblet M., Benjamins R., Blazquez M.,

 Pena R., Contreras J.: Semantic web: a legal case study. In: Davies,
J., Studer, R., and Warren, P., editors, Semantic Web Technologies. Wiley, 2006.

[Casati et al., 1999]
Casati F. Ceri S., Paraboschi S., and Pozzi G.: Specification and implementation of
exceptions in workflow management systems. In: ACM Transactions on Database
Systems, 24(3):405–451, 1999.

 [Casati et al., 2000]
Casati F., Castano S., Fugini M., Mirbel I., Pernici B.: Using Patterns to Design Rules
in Workflows. In: IEEE Transactions on Software Engineering 26(8), August 2000.

[CBE101]
D. Ogle, et al., Canonical Situation Data Format: The Common Base Event V1.0.1,
http://www.eclipse.org/tptp/platform/documents/resources/cbe101spec/CommonBas
eEvent_SituationData_V1.0.1.pdf. Retrieved 01.04.2008

[Chandramouli, 2003]
Chandramouli R.: Business Process Driven Framework for defining an Access Control
Service based on Roles and Rules. In: 23rd National Information Systems Security
Conference, 2003.

 204

[Charfi et al., 2004]
Charfi A., Mezini M.: Hybrid Web Service Composition: Business Processes Meet
Business Rules. In: Proceedings of the 2nd International Conference on Service
Oriented Computing, 2004.

[Christian, 1989]
Christian F.: Dependability of Resilient Computers, chapter Exception Handling, pages
68 – 97. Blackwell Scientific Publications, 1989.

[Coplien, 1995]
Coplien, O. J.: A generative development process pattern language. In: O.
Coplien, James; Schmidt, D., C. (Ed.), Patttern languages of program design.
Readings, MA.: Addison-Wesley. 1995.

[CORTICON]
www.corticon.com, Retrieved 01.04.2008

[COSO92]

Committee of Sponsoring Organizations of the Treadway Commission (COSO),
Internal Control – Integrated Framework, 1992.

 [COSO-ERM04]

Committee of Sponsoring Organizations of the Treadway Commission (COSO),

Enterprise Risk Management - Integrated Framework, 2004.

[Cubera et al., 2007]

WS-BPEL: Web Services Business Process Execution Language v. 2.0, OASIS
Standard, April 2007, URL: http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf,
Retrieved 04.04.2008.

[Curtis, 1980]

Curtis B.: Measurement and Experimentation in Software Engineering”. In:

Proceedings of the IEEE, Vol. 68, No. 9, IEEE Computer Society Press, Los Alamitos,

CA, pp. 1144-1157. 1980.

[Dean et al, 2004]

Dean M., Schreiber G., Bechhofer S., Harmelen F.v., Hendler J., Horrocks I.,

McGuinness D. L., Patel-Schneider P. F., Stein L. A.: OWL Web Ontology Language

Reference. W3C Recommendation. February 2004. URL: http://www.w3.org/TR/owl-

semantics/ Retrieved 11.04.2008

[de Beer, 2004]
de Beer H.: The LTL Checker Plugins: A Reference Manual. Eindhoven University of
Technology, Eindhoven, 2004.

[Dongen et al., 2005]
Dongen B.F., van der Aalst W.M.P.: A meta model for process mining
data. In: J. Castro & E. Tentiento (Eds.), Proceedings of the CAiSE Workshops, part 2
(pp. 309-320). 2005.

 [Doyle, 1979]
Doyle J.: A Truth Maintenance System. In: Artificial Intelligence, 12, 1979.

 [Drools]
 JBoss Rules (Drools), http://www.jboss.com/products/rules, Retrieved 11.04.2008.
[Dumas et al, 2005]

Dumas M., Hofstede A. ter, van der Aalst W.M.P.: Process Aware Information
Systems: Bridging People and Software Through Process Technology. Wiley
Publishing, 2005.

 [Dwyer et al., 1999]
Dwyer M., Avrunin G., Corbett J.: Patterns in Property Specification for Finite-State
Verification. In: Proceedings of the 21st International Conference on Software
Engineering, pp 411-420, May 1999.

 205

[ERM06]
Overview of Enterprise Risk Management,
http://www.casact.org/research/erm/overview.pdf, Retrieved 31.03.2008.

 [Fenton, 1991]
Fenton N.: Software Metrics: A Rigorous Approach. Chapman & Hall, London, 1991.

[FDICIA91]
 The Federal Deposit Insurance Corporation Improvement Act Of 1991,

http://thomas.loc.gov/cgi-bin/query/z?c102:S.543.ENR:, Visited 25.03.2008.
 [Forgy 1979]

Forgy C.: On the efficient implementation of production systems. Ph.D. Thesis,
Carnegie-Mellon University, 1979.

 [Forgy, 1982]
Forgy C.L.: Rete: A fast algorithm for the many pattern / many object pattern match
problem. Artificial Intelligence, 1:17–37, 1982.

 [Fox, 1992]
Fox M.S.: The TOVE Project: A Common-sense Model of the Enterprise. In: Industrial
and Engineering Applications of Artificial Intelligence and Expert Systems, Belli, F.
and Radermacher, F.J. (Eds.), Lecture Notes in Artificial Intelligence # 604, Berlin:
Springer-Verlag, 1992.

[Gailly et al., 2005]
Gailly F., Poels, G.: Towards an OWL-formalization of the Resource Event Agent
Business Domain Ontology. In: OPSW Workshop, ISWC, 2005.

[Galler et al, 1995]
Galler J., Scheer A.-W.: Workflow-Projekte: Vom Geschäftsprozessmodell zur
unternehmensspezifischen Workflow-Anwendung. In: Information Management,
10(1):20–27, 1995.

 [Gamma et al., 1995]
Gamma E., Helm R., Johnson R. , Vlissides J.: Design Patterns: Element of Reusable
Object Oriented Software. Addison-Wesley, 1995

 [Gangemi et al., 2005]
Gangemi A., Sagri M.T., Tiscornia D.: A constructive framework for legal
ontologies. In: Benjamins, R., Casanovas, P., Breuker, J., Gangemi, A., eds.: Law
and the Semantic Web: Legal Ontologies, Methodologies, Legal Information Retrieval,
and Applications, 2005.

[Geerts et al., 1999]
Geerts G. , McCarthy W. E.: An Accounting Object Infrastructure For Knowledge-
Based Enterprise Models. In: IEEE Intelligent Systems & Their Applications, July-
August 1999.

 [Georgakopoulos et al, 1995]
Georgakopoulos D., Hornick M., Sheth A.: An Overview of Workflow Management
From Process Modeling to Workflow Automation Infrastructure. In: Distributed and
Parallel Database 3, p. 119–153, 1995.

[Giannakopoulou et al., 2001]
Giannakopoulou D., Havelund K.: Automata-Based Verification of Temporal
Properties on Running Programs. In: Proceedings of the 16th IEEE International
Conference on Automated Software Engineering (ASE’01), pages 412–416. IEEE
Computer Society Press, Providence, 2001.

[Giblin et al., 2006]
Giblin C., Mueller S., Pfitzmann B.: From regulatory policies to event monitoring
rules: Towards model driven compliance automation. In: IBM Research Report.
Zuerich Research Laboratory. 2006.

[Goedertier et al., 2006]
Goedertier S., Vanthienen J.: Designing Compliant Business Processes with
Obligations and Permissions. In : J. Eder, S. Dustdar et al. (Eds.) BPM 2006

 206

Workshops, LNCS, 2006.
[Gordijn et al., 2001]

Gordijn J., Akkermans H.:. E3-value: Design and Evaluation of e-Business Models. In:
IEEE Intelligent Systems, Vol. 16(4) 2001.

 [Gordijn, 2002]
Gordijn J.: Value based requirements engineering: Exploring innovative e-commerce
ideas. PhD thesis, Vrije Universiteit Amsterdam, 2002.

 [Governatori et al., 2006]
Governatori G., Milosevic Z., Sadiq S.: Compliance checking between business
processes and business contracts. In: Proceedings of 10th IEEE Conference on
Enterprise Distributed Object Computing (EDOC2006), Hong Kong, 16-20 Oct 2006.

 [Governatori et al., 2005]
Governatori G., Milosevic Z.: Dealing with contract violations: formalism and domain
specific language. In: Processings of the 9th International Enterprise Distributed
Object Computing Conference (EDOC 2005), September 2005.

[Green, 2002]
Green S.: Managers’s Guide to the Sarbanes Oxley Act. Hoboken, N.J.: Wiley,
2004.

[Gruhn et al., 2006]
Gruhn V., Laue R.: Complexity metrics for business process models. In: 9th
international conference on business information systems (BIS 2006), vol. 85 of
Lecture Notes in Informatics, pp. 1-12, 2006

[GLBA99]
 Gramm-Leach-Bliley Financial Services Modernization Act, Pub. L. No. 106-102, 113

Stat. 1338 (November 1999).
 [Hagerty, 2007]
 Hagerty J.: SOX Spending for 2006. AMR Research, Boston USA. Nov 29, 2007.
 [Hammer, 2004]

Hammer M.: Deep Change: How Operational Innovation can transform your
Company, Havard Business Review, pp. 84-93, 2004.

 [Handschuh, 2005]
Handschuh S.: Creating ontology-based metadata by annotation for the semantic
web. Dissertation Fakultät für Wirtschaftswissenschaften (Fak. f. Wirtschaftswiss.)
Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB),
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000003776

 [Hartman, 2005]
Hartman T.: The Cost of Being Public in the Era of Sarbanes-Oxley. Foley & Lardner
LLP, June 2005

[Heilmann, 2005]
Heilmann H.: Die Integration der Aufbauorganisation in Workflow-Management
Systemen. In: Information Engineering, pages 147–165. 1996.

 [Herbst, 2000]
Herbst H.: Business Rule-Oriented Conceptual Modeling (Contributions to
Management Science). Physica-Verlag Heidelberg, 2000.

[Hoekstra et al., 2007]
Hoekstra R., Breuker J., Bello M.D., Boer Alexander: The LKIF Core ontology of basic
legal concepts. In: Pompeu Casanovas, Maria Angela Biasiotti, Enrico Francesconi,
and Maria Teresa Sagri, editors, Proceedings of the Workshop on Legal Ontologies
and Artificial Intelligence Techniques (LOAIT 2007), June 2007.

[Horrocks et al., 2004]
 Horrocks I., Patel-Schneider P.F, Boley H., Tabet S., Grosof,
B., Dean M.: SWRL: A Semantic Web Rule Language Combining OWL and
RuleML. 2004. URL http://www.w3.org/Submission/SWRL/. Retrieved 11.04.2008.

 207

[Horrocks et al., 2004b]
Horrocks I., Patel-Schneider P. F.: A proposal for an owl rules language. In:

 Proceedings of the 13th international conference on World Wide Web, (WWW 2004),
New York, NY, USA, May 17-20, 2004, ACM, 2004, pp. 723-731, 2004.

[ILOG]
www.ilog.com

[JRULES]
ILOG JRules Performance Analysis and Capacity Planning,
http://www.ilog.com/corporate/download/index.cfm?filename=jrules_cap_wp.pdf ,
Retrieved 12.04.2008.

[ITAudit04]

IT Audit Volume 7, October 1, 2004
[ITGI06]

IT Governance Institute, Control Objectives for IT and related Technologies, Version
4.0 (COBIT), 2006.

 [JavaBean]

 Java Bean Specification, version 1.01, Sun Microsystems, Inc, 2006.

 [Jess]

 Jess, The rule engine for Java Platform, http://herzberg.ca.sandia.gov/jess/

Retrieved 11.04.2008.

 [jBPM]

 JBoss jBPM, http://www.jboss.com/products/jbpm, Retrieved 11.04.2008.

 [Jones, 1986]

 Jones T. C. Programming Productivity. New York, McGraw-Hill, 1986.

 [KAON2]

 http://kaon2.semanticweb.org/, Retrieved 11.04.2008.

[Kim et al., 2002]
Kim H. M., Fox, M. S.: Using Enterprise Reference Models for Automated ISO 9000
Compliance Evaluation, Proceedings of the 35th Hawaii International Conference on
Systems Science. 2002

[Kingston et al., 2003]
Kingston J. and Vandenberghe W.: A comparison of a regulatory ontology with
existing legal ontology frameworks. In: Workshop on Regulatory Ontologies and
Compliant Regulations (Worm CoRe 2003), Catania, Sicily, November 2003.

[Klueckmann, 2007]
Klueckmann J.: Business Process Design as the Basis for Compliance Management,
Enterprise Architecture and Business Rules. ARIS White paper, 2007.
http://www.aris-platform.com/sixcms/media.php/2646/ARIS_Expert_Paper_
Business_Process_Design_Klueckmann_2007-03_en.pdf , Retrieved 25.03.2008

[Koschmider et al., 2005]
Koschmider A., Oberweis A.:Ontology Based Business Process Description. In:
Proceedings of EMOI - INTEROP'05, Enterprise Modelling and Ontologies for
Interoperability, Proceedings of the Open Interop Workshop on Enterprise Modelling
and Ontologies for Interoperability, Co-located with CAiSE'05 Conference, Porto
(Portugal), June 2005.

[Lee et al., 1990]
Lee P. A., Anderson T.: Fault Tolerance Principles and Practice. In: 3. volume of
Dependable Computing and Fault-Tolerant Systems. Springer - Verlag, 2nd edition,
1990

[Lippe et al., 2005]
Lippe S., Greiner U., Sadiq W., Schulz K.: Interoperability Issues in Cross-
Organizational Business Processes. In: Proc. of CE2005, Dallas, 2005.

 208

[Li et al., 2005]
Li Z., Han J., Jin Y.: Pattern-Based Specification and Validation of Web Services
Interaction Properties. In: Proceedings of ICSOC 2005, pp. 73 - 86, Amsterdam, The
Netherlands, 2005.

 [Liu et al., 2007]
Liu A. Y., Müller S., Xu K.: A Static Compliance-Checking Framework for Business
Process Models. In: IBM Systems Journal 46(2), 2007.

 [Lloyd, 1984]
Lloyd J.W.: Logic Programming. Springer Verlag, 1984.

[Markowitz, 1952]
Markowitz, H. M.: Portfolio Selection. In: Journal of Finance 7(1), pp. 77-91, 1952.

[Martin et al. 2004]
Martin D., Burstein M. , Hobbs J.,Lassila O., McDermott .D, McIlraith S. Narayanan
S., Paolucci M., Parsia B., Payne T., Sirin E., Srinivasan N., Sycara K.: OWL-S:

�Semantic Markup for Web Services. W3C Member Submission. November 2004.
URL http://www.w3.org/Submission/OWL-S/, Retrieved 03.04.2008.

 [Matheus et al., 2005]
Matheus C., Kokar M., Baclawski K., Letkowski V: Using SWRL and OWL to Capture
Domain Knowledge for a Situation Awareness Application Applied to a Supply
Logistics Scenario. In: Proceedings of International Conference on Rules and Rule
Markup Languages for the Semantic Web (RuleML-2005), Galway, Ireland,
November, 2005.

[McCarthy et al., 1969]
McCarthy J., Hayes P. J. : Some Philosophical Problems from the Standpoint of AI.
In: Machine Intelligence 4, Meltzer B. and Michie D. (eds.), Edinburgh, UK: Edinburgh
University Press, pp. 463-50, 1969.

 [Mernik et al., 2005]
Mernik M., Heering J. Sloane A.M.: When and how to develop domain-specific
languages. In: ACM Computing Surveys, 37(4), pp. 316–344, 2005.

[MIC]
 SAP Management of Internal Controls – MIC,

http://www.sap.com/germany/solutions/businesssuite/erp/financials/featuresfunction
s/governance.epx, Retrieved 11.04.2008.

[Motik et al., 2004]
Motik B., Sattler U., Studer R.: Query Answering for OWL-DL with Rules. In:
Proceedings of The Semantic Web (ISWC2004), Third International Semantic Web
Conference, LNCS vol. 3298, pp. 549-563, Japan, November 2004.

 [Müller et al., 2004]
 Müller R., Greiner U., Rahm E.: AGENTWORK: A Workflow-System Supporting Rule-

Based Workflow Adaptation. In: Data and Knowledge Engineering, Elsevier, 2004.
 [Müller et al., 2006]

Müller D., Reichert M.U., Herbst J.: Flexibility of Data-driven Process Structures.
In: Eder J., Dustdar S. (eds.) Business Process Management Workshops. LNCS, vol.
4103, pp. 179–190. Springer, 2006.

 [Namiri et al., 2008]
 Namiri K., Stojanovic N.: Towards a Formal Framework for Business Process

Compliance. In: Multikonferenz Wirtschaftsinformatik (MKWI2008), Muenchen,
Germany, 2008.

 [Namiri et al. 2007a]
 Namiri K., Stojanovic N.: Pattern-Based Design and Validation of Business Process

Compliance. In: Proceedings of OTM Federated Conferences, Cooperated Information
Systems (CoopIS2007), S. 59-76, Portugal, 2007.

 209

[Namiri et al., 2007b]
 Namiri K., Kuegler M.M., Stojanovic N: A Static Business Level Verification

Framework for Cross- Organizational Business Process Models using SWRL. In: 2nd
International Workshop Application of Semantic Technologies (AST 2007), in
conjunction with Informatik 2007, Bremen, September 2007.

 [Namiri et al., 2007c]
 Namiri K., Stojanovic N: Applying Semantics to Sarbanes Oxley Internal Controls

Compliance. In: 2nd International Workshop Application of Semantic Technologies
(AST 2007), in conjunction the Informatik 2007, Bremen, September 2007.

 [Namiri et al., 2007d]
Namiri K., Stojanovic N: A Formal Approach for Internal Controls Compliance in
Business Processes. In: 8th Workshop on Business Process Modeling, Development,
and Support (BPMDS'07) in conjunction with CAiSE’07, Trondheim, Norway, June
2007.

[Narayanan et al., 2002]
 Narayanan S., McIlraith S.: Simulation, Verification and automated composition of

web services. In: Proc. of the 11th WWW Conference, USA, pp. 77 – 88, 2002
[Neumann et al, 2003]

Neumann S., Probst C., Wernsmann C.: Continuous Process Management. In: J.
Becker, M. Kugeler, and M. Rosemann, editors, Process Management: A Guide for the
Design of Business Processes, pages 233–250. Springer, Berlin, New York, 2003.

[Nigam et al., 2003]
Nigam A., Caswell N. S.: Business artifacts: An approach to operational specification.
In: IBM Systems Journal, 42(3):428–445, 2003.

 [Özsu et al., 1999]
Özsu M. T., Valduriez P.: Principles of distributed database systems (2nd ed.),
Prentice-Hall, Inc., Upper Saddle River, NJ, 1999

[O’Conner et al., 2007]
O'Connor M. J., Tu S. W., Das A. K., Nyulas C. I., Shankar R. D., Musen M. A.:
Efficiently Querying Relational Databases using OWL and SWRL. In: The First
International Conference on Web Reasoning and Rule Systems, Innsbruck, Austria,
Springer, 2007.

[Osterwalder, 2004]
Osterwalder A.: The Business Model Ontology. A Proposition in a Design Science
Approach. PhD-Thesis. University of Lausanne, 2004.

[OWL2004]
 http://www.w3.org/TR/owl-features/, Retrieved 11.04.2008.
[PCAOB04]

Public Company Accounting Oversight Board (PCAOB), PCAOB Accounting Standard
No. 2 – An Audit of Internal Control Over Financial Reporting Performed in
Conjunction with an Audit of Financial Statements, Bylaws and Rules – Standards –
AS2, March 2004.

[Peng et al., 2004]
Peng L., Zhong C.: An Extended RBAC Model for Web Services in Business Processes.
In: E-Commerce Technology for Dynamic E-Business, IEEE International Conference,
pp. 100 – 107, 2004.

[Philipp, 1998]
 Matthis P.: Ordnungsmäßige Informationssysteme im Zeitablauf - Umsetzung

der GoBS im Informationssystem-Lebenszyklus. In Zeitschrift Wirtschaftsinformatik
4/1998, S. 312-317

[Ramanathan et al., 2007]
Ramanathan J., Cohen R.J., Plassmann E., Ramamoorthy K.: Role of an auditing and
reporting service in compliance management. In: IBM System Journal, Volume 46,
Number 2, 2007.

 210

[Rasmussen, 2006]
 Rasmussen M.: Overcoming Risk and Compliance Myopia. In: Forrseter Research,

Risk and Compliance Market Landscape – Series, August 2006.
[RDFS2004]

http://www.w3.org/2001/sw/WebOnt/, Retrieved 11.04.2008.
 [RDQL]
 RDQL - A Query Language for RDF
 http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/, Retrieved

11.04.2008.
 [Reichert et al., 1998]

Reichert M., Dadam P.: ADEPTflex - Supporting Dynamic Changes of Workflows
Without Losing Control. In: Journal of Intelligent Information Systems - Special Issue
on Workflow Managament, 10(2), pp. 93-129, 1998.

 [Reijers et al., 2004]
Reijers H. A., Vanderfeesten I. T. P.: Cohesion and Coupling Metrics for
Workflow Process Design. In: BPM 2004, LNCS 3080, pp. 290-305, 2004

[Robinson, 2005]
Robinson W. N.: Implementing Rule-based Monitors within a Framework for
Continuous Requirements Monitoring. In: HICSS'05, Hawaii, USA, 2005.

[Roman et al., 2005]
Roman D., Keller U., Lausen H., Bruijn J.d., Lara R., Stollberg M., Pollers A., Feier C.,
Bussler C., and Fensel D.: Web Service Modeling Ontology. In: Applied Ontology,
1(1):77 106, 2005.

[Romeike et. al, 2006]
 Romeike F., Müller-Reichart, Hein T.: Die Assekuranz am

Scheideweg – Ergebnisse der ersten Benchmark-Studie zu Solvency II. In: Zeitschrift
für Versicherungswesen, S. 316-321, 10/2006.

[RuleML]
Rule MArkup Language, URL: http://www.ruleml.org/, Retrieved 11.04.2008.

[Russel et al., 2005]
Russell N., van der Aalst W.M.P., ter Hofstede A.H.M.: Workflow Exception Patterns.
In: Proceedings of the 18th International Conference on Advanced Information
Systems Engineering (CAiSE 06), Luxembourg, 5-6 June 2006.

[Sadiq et al., 2007]
Sadiq S., Governatori G., Namiri K.: Modeling Control Objectives for Business
Process Compliance. In: 5th International Conference on Business Process
Management (BPM07), S. 149 – 164, Australia, 2007.

[Sandhu et al, 1996]
Sandhu R.S., Coyne E.J., Feinstein H.L., Youman C.E. : Role-Based Access Control
Models. In: IEEE Computer 29(2), pp 38-47, IEEE Press, 1996.

[Sartor, 2005]
 Sartor G.: Legal Reasoning: A Cognitive Approach to the Law. Springer, 2005.
[Sienou et al., 2006a]

Sienou A., Karduck A. P.: Towards a Framework for Integrating Risk and Business
Process Management. In: 12th IFAC Symposium on Information Control Problems in
Manufacturing (INCOM 06), Saint-Etienne, France, 2006.

[Sienou et al., 2006b]
Sienou A., Karduck A. P., Lamine E., Pingaud H.: Management of Business
Processes: The Contribution of Risk Management. In: European Collaborative
Electronic Commerce Technology and Research (CollECTeR Europe 2006), Basel,
Switzerland, 2006.

[Soffer et al., 2003]
Soffer P.; Golany B.; Dori D.: ERP modeling: a comprehensive approach. In:
Information Systems 28(6), pp. 673-690, 2003.

 211

[SOX02]
Pub. L. 107-204. 116 Stat. 754, Sarbanes Oxley Act, 2002.

[SPARQL]
SPARQL Query Language for RDF, http://www.w3.org/TR/rdf-sparql-query/,
Retrieved 11.04.2008.

[Spyns et al., 2002]
Spyns P., Meersman R., Jarrar M.: Data modeling versus Ontology engineering.
In: SIGMOD record, Special Issue on Semantic Web and Data Management 31 (2002)
12–17, 2002.

 [SQWRL]
 Semantic Query-Enhanced Web Rule Language (SQWRL],

http://protege.cim3.net/cgi-bin/wiki.pl?SQWRL, Retrieved 11.04.2008.
 [Stojanovic et al., 2006]

Stojanovic L., Happel H.J.: Ontoprocess - a prototype for semantic business
process verification using SWRL rules. In: 3rd European Semantic Web Conference,
2006.

[Striemer et al, 1995]
Striemer R., Deiters W.: Workflow Management - Erfolgreiche Planung und
Durchführung von Workflow-Projekten. Arbeitsbericht, Fraunhofer Institut für

 Software- und Systemtechnik, 1995.
 [Studer et al., 1998]

Studer R. ; Benjamins V. R. ; Fensel, D.: Knowledge engineering: Principles and
methods. In: Data & Knowledge Engineering Volume 25, Issues 1-2, cf. pp. 161-197,
1998.

 [Sun et al., 2005]
 Sun S., Zhao J.L., Nunamaker J.: On the Theoretical Foundation for Data Flow

Analysis in Workflow Management. In: Americas Conference on Information Systems,
2005.

 [Taveter et al., 2001]
Taveter K., Wagner G.: Agent-oriented enterprise modeling based on business rules.
In: Proc. of 20th Int. Conf. on Conceptual Modeling (ER2001). LNCS, Springer-Verlag
2001.

[Thom et al., 2007]
Thom L., Iochpe C., Reichert M.: Workflow Patterns for Business Process Modeling.
In: B. Pernici, J.A. Gulla (Eds.): Proc. of the CAiSE'06 Workshops (Vol. 1) - 8th Int'l
Workshop on Business Process Modeling, Development, and Support (BPMDS'07),
Trondheim, Norway. pp. 349-358, June 2007.

[Thomas et al., 1997]
Thomas R.K., Sandhu R.S: Task Based Access Controls. In: 11. International
Conference in Database Security, pp. 166 – 181, 1997

[Ushold et al., 1996]
Ushold, M., Gruninger, M.: Ontologies: Principles, Methods and Applications. In: The
Knowledge Engineering Review 11, pp. 93–136, 1996.

 [Ushold et al., 1998]
Uschold M., King M., Moralee S., Zorgios Y.: The Enterprise Ontology. In: The
Knowledge Engineer Review 13(1), 1998.

[Valente et al., 1999]
Valente, A., Breuker, J.A. and Brouver, P.W.: Legal Modeling and automated
reasoning with ON-LINE. In: International Journal of Human Computer Studies,
51, p. 1079–1126, 1999.

 [van der Aalst, 1997]
van der Aalst, W.M.P.: The application of Petri nets to workflow. In: Journal of
Circuits, Systems and Computes 7(1), pp. 21–66, 1997.

 212

[van der Aalst et al, 2002a]
van der Aalst W.M.P., van Hee K.: Workflow Management: Models, Methods,
and Systems.In: The MIT Press, 2002.

[van der Aalst, 2005]
van der Aalst W. M. P.: Pi Calculus Versus Petri Nets: Let Us Eat ‘Humble Pie’ Rather
Than Further Inflate the ‘Pi Hype’. In: BPTrends 3, No. 5, pp. 1–11, 2005.

[van der Aalst et al.,2005a]
van der Aalst W. M. P., de Beer H. T., van Dongen, Boudenwijn F.: Process
Mining and Verification of Properties: An Approach Based on Temporal Logic. In:
Proceedings of OTM Federated Conferences, Cooperated Information Systems
(CoopIS), S.130-147, 2005

 [van der Aalst et al., 2005b]
van der Aalst W.M.P., Weske M., Gruenbauer. Case handling: a new paradigm for
business process support. In: Data and Knowledge Engineering, 53:129–162, 2005.

 [van der Aalst et al., 2005c]
van der Aalst W.M.P., Hofstede A. H. M. t. : YAWL: Yet Another Workflow
Language. In: Information Systems Frontiers 30(4), pp. 245-275, 2005.

 [Wagner, 2002]
Wagner G.: How to design a general rule markup language? In: XML Technologien
fuer das Semantic Web - XSW 2002, Proceedings zum Workshop, Berlin, Juni 2002.
(2002)

[Wang et al, 2005]
Wang J., Kumar A.: A framework for document-driven workflow systems. In:
International Conference on Business Process Management (BPM), pp 285–301,
2005.

[WikiCompleteness]
 http://en.wikipedia.org/wiki/Completeness, Retrieved 11.04.2008
[Woods et al., 2006]

Woods D., Mattern T.: Enterprise SOA. O'Reilly, April 2006.
[XPDL]
 XML Process Definition Language (XPDL), Workflow Management Coalition (WfMC)

Specification, http://www.wfmc.org/standards/xpdl.htm , Retrieved 11.04.2008.
[Xu et al., 2006]

Xu K., Liu Y., Wu C.: BPSL Modeler–Visual Notation Language for Intuitive Business
Property Reasoning. In: Proceedings of the 5th International Workshop on Graph
Transformation and Visual Modeling Techniques, Vienna, Austria, pp. 205–214, 2006.

[zur Muehlen, 2004]
zur Muehlen M.: Workflow-based Process Controlling. Foundation, Design, and
Implementation of Workflow-driven Process Information Systems., volume 6 of
Advances in Information Systems and Management Science. Logos, Berlin, 2004.

 [zur Muehlen et al., 2005]
zur Muehlen M., Rosemann M.: Integrating Risks in Business Process Models. In:
16th Australasian Conference on Information Systems, Sydney, Australia, 2005

