Die statische Tragfähigkeit teilweise durchgeschweißter Nähte in Stahl

Zur Erlangung des akademischen Grades eines DOKTOR-INGENIEURS von der Fakultät für Bauingenieur-, Geo, und Umweltwissenschaften

der Universität Fridericiana zu Karlsruhe (TH)

genehmigte

DISSERTATION

von

Dipl.-Ing. Wolfram Hölbling aus Mainz

Tag der mündlichen Prüfung: 11.06.2008 Hauptreferent: Prof. Dr.-Ing. Helmut Saal Korreferent: Prof. Ir. A.M. Nol Gresnigt

Karlsruhe 2008

Kurzfassung

Aktuelle Regeln für die Bemessung von Schweißnähten wie DIN EN 1993-1-8 gelten nur dann, wenn die Nähte gemäß Ausführungsregeln wie prEN 1090-2 hergestellt werden. Die Ausführungsregeln schließen auch bei vorwiegend ruhender Beanspruchung Nahtungänzen wie wurzelnahe Bindefehler aus.

Wie in einer Feldstudie in dieser Arbeit gezeigt wird, sind Bindefehler an der Nahtwurzel unter stahlbauüblichen Fertigungsbedingungen insbesondere bei Schweißnähten von dicken Bauteilen häufig. Der Nachweis der Nahttragfähigkeit kann für solche Nähten mit aktuellen Bemessungsregeln nicht erbracht werden. Ein wesentlicher Grund für den Ausschluss von Nähten mit Ungänzen ist, dass es keine Untersuchungen zur Tragfähigkeit gibt. Deshalb wird in dieser Arbeit der Einfluss von Ungänzen auf die statische Tragfähigkeit von Schweißnähten experimentell, numerisch und bruchmechanisch untersucht. Der Versagensmechanismus von teilweise durchgeschweißten Nähten wird aufgezeigt und mit einem fließbruchmechanischen Kriterium quantifiziert.

Mit Dauerschwingversuchen wird ermittelt, ab welcher Größe der wurzelnahen Ungänzen ein Reißen ausgehend von den Ungänzen und ein Abfall der Schwingfestigkeit im Vergleich zu voll durchgeschweißten Nähten zu erwarten ist.

Auf Grundlage von Messungen der Nahtgeometrie und der mechanischen Eigenschaften im Nahtbereich werden Finite Element Modelle der Nähte aufgebaut. Diese Modelle werden anhand von Bauteilversuchen validiert. Mit diesen Nahtmodellen und dem Versagenskriterium für teilweise durchgeschweißte Nähte wird eine rechnerische Parameterstudie zur Nahttragfähigkeit durchgeführt, die viele im Stahlbau mögliche Ausführungsbedingungen umfasst. Diese Studie resultiert in einer Beziehung für die Nahttragfähigkeit, die den Einfluss von Nahtungänzen, der Streckgrenze und der Kerbschlagzähigkeit in der Naht berücksichtigt.

Ein Vergleich dieser Ergebnisse mit aktuellen Bemessungs- und Ausführungsregeln in DIN EN 1993-1-8 und prEN 1090-2 zeigt Bedingungen auf (Streckgrenze im Schweißgut, Zähigkeit), für die auch bei einem geringeren Umfang von zerstörungsfreien Nahtprüfungen als in prEN 1090-2 gefordert die im Stahlbau erforderliche Reserve vorliegt. Andererseits werden nach den Ausführungsregeln zulässige Bedingungen aufgezeigt, für die nicht die erforderliche Reserve vorliegt.

Abstract

Only welds fabricated according to execution standards like prEN 1090-2 are within the scope of actual design codes for welded connections like DIN EN 1993-1-8. The execution standards do not at all tolerate imperfections like lack of fusion at the weld root even in case of predominantly static loading.

However, a study in this work will show, that lack of fusion frequently occurs at the weld root in steel constructions, especially if thick components are welded. Thus, numerous welds in steel constructions cannot be designed. Imperfections like lack of fusion are excluded, mainly because the effect of these imperfections has not been investigated. Therefore, the effect of imperfections on the load bearing capacity of welds is investigated with experiments, numerical and fracture-mechanical calculations. The failure mechanism will be shown and quantified with an elasto-plastic fracture-mechanical criterion.

Fatigue tests are performed to determine a maximum size of imperfections at the weld root, which does not affect the fatigue behaviour.

The geometry and the mechanical properties of the welds are measured. Based on this, Finite Element models of the welds are built up and validated with component test results. The Finite Element models and the failure criterion for partial penetration welds allow numerical investigations on the load bearing capacity. The execution conditions are varied in a common range for steel constructions. Based on these investigations, a correlation is derived, which takes into account the effect of imperfections, the yield strength and the Charpy notch toughness in the weld.

The results are compared with design (DIN EN 1993-1-8) and execution standards (prEN 1090-2). For certain boundary conditions (yield strength in the weld metal, toughness), the design is safe even if the extent of non-destructive testing is reduced compared to prEN 1090-2. On the other hand, the design is not safe for certain boundary conditions, although these conditions are according to the execution standard prEN 1090-2.

1	Einleitung	1
1.1	Allgemeines	1
1.2	Umfang und Ziel dieser Arbeit	2
2	Stand der Technik	4
2.1	Bemessungs- und Ausführungsregeln für teilweise durchgeschweißte Nähte	؛ 4
2.2	Stand der Forschung / Historischer Überblick	14
3	Versagenskriterien für metallische Werkstoffe	18
3.1	Kontinuumsmechanische Versagenskriterien	18
3.2 3.2.1 3.2.2 3.2.3 3.2.4	Bruchmechanische Versagenskriterien Linear-elastischer Spannungsintensitätsfaktor Fließbruchmechanisches J-Integral Konzept Anwendung des J-Integrals als Versagenskriterium Korrelation zwischen bruchmechanischen Kennwerten und der Kerbschlagarbeit	20 20 21 24 27
4	Experimentell untersuchte Nähte	
4.1	Nahtungänzen	30
4.2	Übersicht der untersuchten Nähte	33
4.3	Nahtgeometrie	35
4.4	Prüfkörpergeometrie	36
4.5	Werkstoffe	38
4.6	Schweißparameter	39
4.7 4.7.1 4.7.2	Mechanische und technologische Eigenschaften im Nahtbereich Probennahme und Prüfung Mechanische Eigenschaften	40 40 41
4.7.3 4.7.4	Kerbschlagzähigkeit im Nahtbereich Vergleich der Eigenschaften im Nahtbereich mit Anforderungen	43

5	Durchführung von Bauteilversuchen47	7
5.1	Kreuzzugversuche mit Standardproben47	7
5.2	Kreuzzugversuche mit Großprüfkörpern49	9
5.3	Biegeversuche	1
6	Nachrechnung der Versuche mit der Finiten Element Methode52	2
6.1	Abbildung der Nähte	2
6.2	Kreuzzugversuche mit Standardproben	3
6.3	Kreuzzugversuche mit Großprüfkörpern60)
6.4	Biegeversuche	5
7	Berechnung des J-Integrals und des Beanspruchungszustands67	7
7.1	Verifizierung der Berechnung des J-Integrals67	7
7.2	Berechnung der Mischmodusbeanspruchung an der Nahtwurzel74	1
7.3	Berechnung der Beanspruchungszustands77	7
7.4	Schlussfolgerung	9
8	Tragfähigkeit und Versagen in den Bauteilversuchen80)
8.1 8.1.1 8.1.2 8.1.3	Tragverhalten in den Bauteilversuchen 80 Kreuzzugversuche mit HY-Nähten 80 Kreuzzugversuche mit DHY-Nähten 83 Kreuzzugversuche mit Großprüfkörpern 85)) 3 5
8.1.4	Biegeversuche mit HY-Nähten88	3
8.2	Einfluss der Nahtquerschnitts und von Ungänzen auf die Tragfähigkeit 89)
8.3	Absicherung mit Dauerschwingversuchen96	3
8.4	Herleitung eines Versagenskriteriums10 ²	1

9	Rechnerische Untersuchungen107
9.1	Übersicht der rechnerischen Untersuchungen107
9.2	Äquivalente Beanspruchung J _{eqv,appl} der Nahtwurzel107
9.3	Widerstände J_{IC} bei verschiedenen Temperaturen und Zähigkeiten 109
9.4	Berechnung der Nahttragfähigkeit F _{Naht} 113
9.5	Nahtgeometrie / Modellierung114
9.6	Einfluss der Durchschweißung bei DHY-Nähten und HY-Nähten115
9.7	Einfluss der Überfestigkeit im Schweißgut118
9.8	Einfluss der Temperatur und der Zähigkeit120
9.9	Parameterstudie
9.10	Herleitung einer Beziehung für die Nahttragfähigkeit
9.11	Überprüfung der rechnerischen Ergebnisse mit Bauteilversuchen bei tiefen Temperaturen
10	Ausblick137
10.1	Erforderliche Durchschweißung137
10.2	Sprödbruchsicherheit von teilweise durchgeschweißten Nähten145
11	Zusammenfassung146
12	Schrifttum148
13	Verzeichnis technischer Regeln151

Anhänge:

Anhang A Metallographische und mechanisch-technologische Untersuchungen im Nahtbereich	153
Anhang B Abbildung von teilweise durchgeschweißten Nähte mit der Finiten Element Methode	174
Anhang C Programmcode zur Berechnung des J-Integrals	177
Anhang D Ergebnisse von Bauteilversuchen und versuchsbegleitenden Berechnungen mit der Finiten Element Methode	179
Anhang E Ergebnisse von Dauerschwingversuchen	197
Anhang F Ergebnisse rechnerischer Untersuchungen	198
Anhang G Ergebnisse von Bauteilversuchen bei tiefen Temperaturen	205

1 Einleitung

1.1 Allgemeines

Im Stahlbau werden nicht lösbare Verbindungen überwiegend als Schweißverbindungen ausgeführt. Abweichend zum Beispiel vom Druckbehälterbau werden tragende Verbindungen im Stahlbau häufig mit Kehlnähten oder teilweise durchgeschweißten Nähten hergestellt.

Aktuelle Bemessungsregeln wie DIN 18800-1 und DIN EN 1993-1-8 gelten nur für Schweißnähte, die gemäß den Ausführungsregeln in DIN 18800-7 und prEN 1090-2 gefertigt werden. Dies schließt auch bei vorwiegend ruhender Beanspruchung Ungänzen wie Bindefehler kategorisch aus.

Insbesondere beim Schweißen von sehr dicken Bauteilen können im Bereich der Nahtwurzel wegen ihrer schlechten Zugänglichkeit Ungänzen auftreten, die in den Ausführungsregeln nicht toleriert werden. Die zuverlässige Entdeckung dieser Ungänzen und vor allem die Bestimmung ihrer Größe erfordert besondere Prüftechniken und eine besondere Qualifizierung des Prüfpersonals [1]. Bei großen Bauteildicken und bei schwer zu prüfenden Nahtgeometrien ist die genaue Bestimmung der Größe von Ungänzen oft nicht möglich.

Aus diesen Gründen ist im Stahlbau eine wirtschaftliche und zugleich sichere Abstimmung zwischen der Bemessung und der Ausführung von Schweißnähten gewünscht. Dies ist aktuell nicht möglich, weil eine von den geltenden Regeln abweichende Ausführung in der Bemessung nicht berücksichtigt werden kann.

Der Beanspruchungszustand im Bereich der Nahtwurzel teilweise durchgeschweißter Nähte ist komplex, weil dort auch ohne Nahtungänzen ein gestörter Kraftfluss vorliegt. Die Spannungen im Nahtquerschnitt steigen hin zu den äußeren Nahtübergängen und zur Nahtwurzel an. Die Kerbschärfe der Nahtwurzel und etwaiger Nahtungänzen ist vom Schweißprozess und den Schweißparametern abhängig und streut in weiten Bereichen. An der Nahtwurzel können sehr kleine Kerbradien auftreten [2], die hinsichtlich der Kerbschärfe einem Riss nahezu gleich sind. Zudem liegt im Bereich der Nahtwurzel im Regelfall eine heterogene Werkstoffzone vor, weil hier der wärmeunbeeinflusste Grundwerkstoff (GW), die durch die Schweißwärme beeinflusste Wärmeeinflusszone (WEZ) und das Schweißgut (SG) aneinandergrenzen.

Bei teilweise durchgeschweißten Nähten treten schon weit unterhalb der Bruchlast im Bereich der Nahtwurzel plastische Dehnungen auf. Diese steigen mit zunehmender Belastung an, bis die Verbindung bei Erreichen ihres Verformungsvermögens ausgehend von der Nahtwurzel versagt.

1.2 Umfang und Ziel dieser Arbeit

Ziel dieser Arbeit ist, den Einfluss der Ausführungsqualität auf die Nahttragfähigkeit zu erfassen. Dies soll für spezielle Anwendungen im Stahl- und Anlagenbau eine wirtschaftlich optimale und zugleich sichere Abstimmung zwischen der Bemessung und den Ausführungsvorgaben sowie deren Kontrolle erlauben.

Ein Aspekt der Arbeit ist der Einfluss von Ungänzen im Bereich der Nahtwurzel auf das Tragverhalten von voll- und teilweise durchgeschweißten Nähten bei vorwiegend ruhender Beanspruchung. Weiterhin soll aufgezeigt werden, inwieweit solche Nähte durch Verwendung höherfester und duktiler Schweißzusatzwerkstoffe und von Grundwerkstoffen und Schweißparametern, die in einer großen Duktilität im Bereich der Nahtwurzel resultieren, für die vorgesehene Anwendung optimiert werden können.

In Abschnitt 2 werden zunächst Bemessungsregeln und die Anforderungen an die Ausführung und die Stahlgütewahl in europäischen und US-amerikanischen Regeln verglichen. Die diesen Regeln zugrunde liegenden Forschungsarbeiten werden angegeben. Es wird gezeigt, dass die statische Tragfähigkeit von mit Ungänzen behafteten Nähten bisher nicht untersucht wurde. Deshalb gelten Schweißnahtbemessungsregeln nur für Nähte mit sehr kleinen Ungänzen.

Weil teilweise durchgeschweißte oder durch Ungänzen behaftete Nähte, wenn sie durch Zugspannungen beansprucht werden, ausgehend von der Nahtwurzel reißen können, werden in Abschnitt 3 kontinuums- und bruchmechanische Kriterien für ein solches Versagen angegeben und hinsichtlich der Anwendbarkeit für teilweise durchgeschweißte Nähte geprüft.

In Abschnitt 4 wird zunächst mit einer Feldstudie die Häufigkeit von Nahtungänzen und deren Größe in stahlbauüblichen Nähten bestimmt. Zur Untersuchung der Tragfähigkeit solcher Nähte werden Prüfkörper von bis zu 80mm dicken Blechen aus S355J2G3 hergestellt. Bei der Fertigung werden gezielt Ungänzen eingebracht. Die Lage und Größe dieser Ungänzen wird in Abschnitt 4 beschrieben. Außerdem werden die mechanischen und technologischen Eigenschaften im Nahtbereich gemessen, damit ein Vergleich mit Anforderungen an diese Eigenschaften in Ausführungsregeln und eine Modellierung der Nähte mit der Finiten Element Methode möglich ist. In Kapitel 5 wird die Durchführung statischer Bauteilversuche mit den Nahtprüfkörpern beschrieben. Diese Versuche werden in Abschnitt 6 mit der Finiten Element Methode nachgerechnet, um die Finiten Element Modelle für spätere rechnerische Untersuchungen zu validieren. Außerdem sollen der in den Versuchen nicht gemessene Beanspruchungszustand sowie bruchmechanische Kenngrößen im Bereich der Nahtwurzel berechnet werden. Diese Berechnungen werden in Abschnitt 7 beschrieben und verifiziert.

Nachdem die Grundlagen der experimentellen und rechnerischen Untersuchungen beschrieben sind, wird in Abschnitt 8 das Tragverhalten in den Bauteilversuchen beschrieben und ausgewertet. Ziel ist, den Einfluss der Nahtungänzen auf die Bruchlasten zu bestimmen. Mit Dauerschwingversuchen soll zur Absicherung dieser Ergebnisse die maximale Größe der Ungänzen bestimmt werden, bis zu der eine Abgrenzung zwischen einer vorwiegend ruhenden Beanspruchung und einer nicht vorwiegend ruhenden Beanspruchung wie für fehlerfreie Nähte erfolgen kann.

Anhand der bei Versagen in den statischen Versuchen berechneten fließbruchmechanischen Kenngrößen soll ein Kriterium für das von der Nahtwurzel ausgehende Reißen hergeleitet werden.

Die Bauteilversuche beschränken sich im wesentlichen auf Nähte, die mit dem MAG-Prozess und überfesten Elektroden geschweißt wurden. In Abschnitt 9 soll der Einfluss der Festigkeit im Schweißgut sowie der Lage und Größe von Ungänzen über das experimentell untersuchte Spektrum hinaus berechnet werden. Eine Aussage zu Bruchlasten bei niedrigeren Temperaturen und/oder geringeren Zähigkeiten ist hierbei zunächst nicht möglich, weil das Versagens-kriterium auf Grundlage von Versuchen bei Raumtemperatur und für die in den untersuchten Nähten vorliegende Zähigkeit hergeleitet wurde. Deshalb wird auf Grundlage bruchmechanischer Betrachtungen ein Versagenskriterium auch für tiefere Temperaturen und geringere Zähigkeiten im Nahtbereich hergeleitet.

In einer breit angelegten Parameterstudie werden schließlich die wesentlichen Einflussgrößen in einem für den Stahlbau relevanten Spektrum variiert. Die Ergebnisse sollen in einer rechnerischen Beziehung für die Nahtragfähigkeit münden. Um die Beziehung auch für tiefe Temperaturen abzusichern, werden die vorhergesagten Bruchlasten mit Ergebnissen von Bauteilversuchen bei tiefen Temperaturen verglichen.

In einem Ausblick in Abschnitt 10 werden die Ergebnisse im Kontext aktueller Bemessungs- und Ausführungsregeln diskutiert.

Abschnitt 11 schließt die Arbeit mit einer Zusammenfassung.

2 Stand der Technik

2.1 Bemessungs- und Ausführungsregeln für teilweise durchgeschweißte Nähte

Im folgenden werden europäische, deutsche, schwedische und USamerikanische Bemessungs- und Ausführungsregeln für teilweise durchgeschweißte Verbindungen für vorwiegend ruhende Beanspruchung miteinander verglichen. Zum Teil verfolgen diese Regeln unterschiedliche Nachweiskonzepte, welche die Tragfähigkeit von teilweise durchgeschweißten Nähten unterschiedlich bewerten. Um diese Regeln übersichtlich zu vergleichen, werden Normbezeichnungen so abgeändert, dass so weit möglich Übereinstimmung besteht. Die in Bild 2-1 und Bild 2-2 verwendeten Bezeichnungen werden im folgenden erläutert.

-				
Europa	DIN EN 1993-1-8	Nachweis:	$\begin{split} \sigma_{v,\text{EC}} &= \sqrt{\sigma_{\perp}{}^2 + 3(\tau_{\perp}{}^2 + \tau_{\text{II}}{}^2)} \leq \frac{f_u}{\beta_w \cdot \gamma_{\text{M2}}} \\ \sigma_{\perp} &\leq \frac{0,9 \cdot f_u}{\gamma_{\text{M2}}} \\ \text{Die plastische Querschnittsreserve darf genutzt werden.} \\ \text{Das Verfahren plastisch-plastisch ist nur} \\ \text{bei "ausreichender" Duktilität zulässig.} \end{split}$	γ _{M2} = 1,25
		Nahtquerschnitt:	Wurzelmaß a _{EC}	
	5	Sprödbruchsicherheit:	DIN EN 1993-1-10	
tschland	N 18800-1	Nachweis:	$\sigma_{v, \text{ DIN}} = \sqrt{\sigma_{\perp}^{2} + \tau_{\perp}^{2} + \tau_{\text{II}}^{2}} \leq \alpha_{w} \cdot \frac{f_{y}}{\gamma_{\text{M}}}$ Das Verfahren plastisch-plastisch ist beim Vorliegen von Nahtquerschnitt nur für symmetrische Nähte zulässig.	$\gamma_M = 1,1$ σ_{\perp} oder τ_{\perp} im
-ine	D		Wurzelmaß a _{DIN} Reduktion von a _{DIN} um 2mm für Nahtöffnungswinkel <45° in Zwangspositionen	
ŏ		Nahtquerschnitt:	Wurzelmaß a _{DIN} Reduktion von a _{DIN} um 2mm für Nahtöffnungswinkel <45 in Zwangspositionen	5°

Bild 2-1: Europäische und deutsche Bemessungsregeln für teilweise durchgeschweißte Nähte bei vorwiegend ruhender Beanspruchung

		Nachweis:	$f_{w,d} = \begin{cases} \frac{\phi_{\text{BSK}} \cdot \sqrt{f_u \cdot f_{\text{SZW}}}}{1.2 \cdot \gamma_N} & \text{für } f_u < f_{\text{SZW}} \\ \frac{\phi_{\text{BSK}} \cdot f_{\text{SZW}}}{1.2 \cdot \gamma_N} & \text{für } f_u \ge f_{\text{SZW}} \end{cases} & \begin{cases} \gamma_N = 1,0 \text{ bis } 1,2 \\ (abhängig \text{ von der Sicherkeitsklasse}) \end{cases}$
Schweden	BSK 99		$ \begin{aligned} \tau_{w,II,d} &= 0,60 \cdot f_{w,d} \\ \sigma_{w,\omega,d} &= \frac{f_{w,d}}{\sqrt{2 + \cos(2 \cdot \omega)}} \end{aligned} \right\} \left\{ \begin{array}{c} \left(\frac{\tau_{II}}{\tau_{w,II,d}}\right)^2 + \left(\frac{\sqrt{\sigma_{\perp}^2 + \tau_{\perp}^2}}{\sigma_{w,\omega,d}}\right)^2 \leq 1 \end{array} \right. \end{aligned} $
		Nahtquerschnitt:	Wurzelmaß a_{EC} ; Abminderung von a_{EC} für teilweise durchgeschweißte Nähte mit ϕ_{BSK} = 0,90
		Sprödbruchsicherheit:	BSK 99 (im Ergebnis ähnlich zu DIN EN 1993-1-10)
		Nachweis:	$\frac{\text{Kehlnaht}}{\sqrt{\sigma_{\perp}^{2} + \tau_{\perp}^{2} + \tau_{\parallel}^{2}}} \leq \phi \cdot 0,60 \cdot \text{fszw} \cdot (1 + 0.5 \cdot \sin^{1.5}(\psi))$
NSA	LRFD		$\begin{array}{ll} (\underline{D})\underline{HY}\underline{-Naht}:\\ \sigma_{\perp\leq}\phi\cdot0,60\cdot f_{SZW} & \text{mit } \phi=0,80 \ ; \ \tau_{II}\leq\phi\cdot0,60\cdot f_{SZW} & \text{mit } \phi=0,75\\ \hline (\underline{D})\underline{HY}\underline{-Naht}, \ GW \ unmittelbar \ angrenzend \ an \ Naht:\\ \sigma_{\perp\leq}\phi\cdot f_{v} & \text{mit } \phi=0,90 \ ; \ \tau_{II}\leq\phi\cdot0,60\cdot f_{I_{I}} & \text{mit } \phi=0,75 \end{array}$
		Nahtquerschnitt:	a _{EC} ; a _{EC} wird für Nahtöffnungswinkel <60° um 3mm reduziert Nahtöffnungswinkel <60° sind für Prozess 135 nicht zulässig
Sprödbruchsicherheit: keine Anforderungen		keine Anforderungen	

Bild 2-2: Schwedische und US-amerikanische Bemessungsregeln für teilweise durchgeschweißte Nähte bei vorwiegend ruhender Beanspruchung

Gemäß DIN EN 1993-1-8 sind für teilweise durchgeschweißte Nähte zur Verbindung von Baustähle mit Streckgrenzen bis 460N/mm² die Nachweise (2-1a) und (2-1b) zu führen. Der rechnerische Nahtquerschnitt ist als Höhe a_{EC} des größten der Naht einschreibbaren Dreiecks definiert. Die Spannungskomponenten in diesem Querschnitt sind in Bild 2-3 definiert.

$$\sigma_{v, EC} = \sqrt{\sigma_{\perp}^{2} + 3(\tau_{\perp}^{2} + \tau_{II}^{2})} \leq \frac{f_{u}}{\beta_{w} \cdot \gamma_{M2}}$$
(2-1a)

$$\sigma_{\perp} \leq \frac{0.9 \cdot f_{u}}{\gamma_{M2}}$$
 (2-1b)

Mit (2-1a) wird der Vergleichswert der Spannung $\sigma_{v,EC}$ im rechnerischen Nahquerschnitt mit einem von der charakteristischen Zugbeanspruchbarkeit des Grundwerkstoffs f_u und dem Korrelationsbeiwert β_w abhängigen Bemessungswert verglichen. Um ein Reißen von überwiegend durch die Spannungskomponente σ_{\perp} beanspruchten Nähten zu verhindern, wird mit (2-1b) nachgewiesen, dass σ_{\perp} im Nahtquerschnitt nicht größer als die mit einem Beiwert von 0,9 abgeminderte charakteristische Zugbeanspruchbarkeit f_u des Grundwerkstoffs ist. Alternativ zu (2-1a) und (2-1b) kann der Nachweis (2-2) geführt werden, der in gleichen Beanspruchbarkeiten unabhängig von der Größe der Spannungskomponenten σ_{\perp} , τ_{\perp} und τ_{II} resultiert. Weil sowohl mit (2-1a) und (2-1b) als auch mit (2-2) Nachweise gegen Nahtversagen geführt werden, wird mit dem Teilsicherheitsbeiwert γ_{M2} von 1,25 abgesichert.

$$\sqrt{\sigma_{\perp}^{2} + \tau_{\perp}^{2} + \tau_{\parallel}^{2}} = \frac{f_{u}}{\sqrt{3} \cdot \beta_{w} \cdot \gamma_{M2}}$$
(2-2)

Bild 2-3: Spannungskomponenten im rechnerischen Nahtquerschnitt

Für Streckgrenzen bis einschließlich 355N/mm² berücksichtigen Korrelationsfaktoren β_w kleiner als 1 die Überfestigkeit im Schweißgut gegenüber dem Grundwerkstoff. Die Abminderung von f_u mit dem Beiwert 0,9 in (2-1b) resultiert für Stähle mit Verhältnissen f_u / f_y größer als 1,26 (bis S355) in einer Nahtbeanspruchbarkeit, die größer als die rechnerische Beanspruchbarkeit des Grundwerkstoffs ist. Deshalb kann für Stähle bis S355 auch eine nur teilweise durchgeschweißte Naht die volle Bemessungslast aus dem angeschlossenen Bauteilquerschnitt übertragen.

Bei HV-Nähten sind innere Exzentrizitäten in der Naht rechnerisch zu berücksichtigen, wenn durch das Moment um die Nahtlängsachse zusätzliche Zugspannungen in der Nahtwurzel erzeugt werden. Nähte im Bereich von Fließgelenken sind immer so auszulegen, dass sie mindestens die rechnerische Tragfähigkeit des schwächsten angeschlossenen Querschnitts aufweisen. In Bereichen, in denen das plastische Verformungsvermögen der Naht für ein plastisches Rotationsvermögen des gesamten Anschlusses erforderlich ist, sind die Nähte so auszulegen, dass der angrenzende Querschnitt vollständig plastizieren kann. prEN 1993-1-12 regelt die Bemessung von Stählen mit Mindeststreckgrenzen bis 700N/mm². Die Verwendung von gegenüber dem Grundwerkstoff minderfesten Schweißzusatzwerkstoffen wird zugelassen, wenn bei der Bemessung in diesem Fall f_u durch die spezifizierte Mindestzugfestigkeit f_{SZW} des Schweißzusatzwerkstoffs ersetzt wird.

Die erforderliche Zähigkeit im Grundwerkstoff von geschweißten Bauteilen kann mit DIN EN 1993-1-10 im wesentlichen abhängig von der Bauteildicke, der Einsatztemperatur, der Stahlsorte sowie dem Spannungsniveau bestimmt werden.

Die Ausführung von Schweißarbeiten ist in prEN1090-2 geregelt. Diese Norm wird aktuell bearbeitet. Die in Bild 2-4 gezeigten Regelungen geben den Bearbeitungsstand vom 04.12.2007 wieder. Die übrigen europäischen und die USamerikanischen Ausführungsregeln werden im folgenden erklärt.

	1 1090-2		Schadensfolgeklasse CC2, Produktkategorie PS2, EXC 2	Schadensfolgeklasse CC3, Produktkategorie PS2, EXC 3	
uropa		Tolerierte Ungänzen:	C ¹⁾	B ²⁾	
Ū	prEl		vollständige visuelle Prüfung		
		Prüfumfang:	teilweise zfP (5% bis 10% der Nahtlänge)	teilweise zfP (10% bis 20% der Nahtlänge)	
hland	800-7	Tolerierte Ungänzen: C ^{1),} aber eine ungenügende Durchschweißung ist immer unzu		hweißung ist immer unzulässig	
Deutsc	DIN 18	Prüfumfang:	vollständige visuelle Prüfung; keine zfP		
n					
en	6		Sicherheit 2, Ausführung GB, Nahtqualität WB/WC entspricht etwa EXC 2	Sicherheit 3, Ausführung GA, Nahtqualität WB entspricht etwa EXC 3	
hweden	3SK99	Tolerierte Ungänzen:	Sicherheit 2, Ausführung GB, Nahtqualität WB/WC entspricht etwa EXC 2 C ¹⁾	Sicherheit 3, Ausführung GA, Nahtqualität WB entspricht etwa EXC 3 B ²⁾	
Schweden	BSK99	Tolerierte Ungänzen:	Sicherheit 2, Ausführung GB, Nahtqualität WB/WC entspricht etwa EXC 2 C ¹⁾ vollständige visue	Sicherheit 3, Ausführung GA, Nahtqualität WB entspricht etwa EXC 3 B ²⁾ elle Prüfung	
Schweden	66XSB	Tolerierte Ungänzen: Prüfumfang:	Sicherheit 2, Ausführung GB, Nahtqualität WB/WC entspricht etwa EXC 2 C ¹⁾ vollständige visue zfP ³⁾ ; 10% der Nahtlänge	Sicherheit 3, Ausführung GA, Nahtqualität WB entspricht etwa EXC 3 B ²⁾ elle Prüfung zfP ³⁾ ; 25% der Nahtlänge	
Schweden	SD1.1 BSK99	Tolerierte Ungänzen: Prüfumfang: Tolerierte Ungänzen:	Sicherheit 2, Ausführung GB, Nahtqualität WB/WC entspricht etwa EXC 2 C ¹⁾ vollständige visue zfP ³⁾ ; 10% der Nahtlänge Anforderungen in AWS D.1.	Sicherheit 3, Ausführung GA, Nahtqualität WB entspricht etwa EXC 3 B ²⁾ elle Prüfung zfP ³⁾ ; 25% der Nahtlänge	
USA Schweden	D+AWSD1.1 BSK99	Tolerierte Ungänzen: Prüfumfang: Tolerierte Ungänzen: Prüfumfang:	Sicherheit 2, Ausführung GB, Nahtqualität WB/WC entspricht etwa EXC 2 C ¹⁾ vollständige visue zfP ³⁾ ; 10% der Nahtlänge Anforderungen in AWS D.1. ⁴ vollständige visue zfP nur wenn vom Auft	Sicherheit 3, Ausführung GA, Nahtqualität WB entspricht etwa EXC 3 B ²⁾ elle Prüfung zfP ³⁾ ; 25% der Nahtlänge I ensprechen etwa C ¹⁾ elle Prüfung; raggeber gefordert	

 In der Bewertungsgruppe C gemäß DIN EN ISO 5817 ist eine kurze ungenügende Durchschweißung bis zu einer Größe von 1,5mm oder 0,10 a_{EC} zulässig

2) In der Bewertungsgruppe B gemäß DIN EN ISO 5817 ist eine ungenügende Durchschweißung immer unzulässig.

3) nur für eine Auslastung U größer als 0,7; U ist das Verhältnis der Bemessungswerte der Beanspruchung zur Beanspruchbarkeit

Bild 2-4: Ausführungsregeln für teilweise durchgeschweißte Nähte bei vorwiegend ruhender Beanspruchung Für vorwiegend ruhende Beanspruchung sind für übliche Stahlbauten mit Ausführungsklasse EXC 2 (Stähle bis S460, Schadensfolgeklasse CC 2) Nahtunregelmäßigkeiten gemäß der Bewertungsgruppe C in DIN EN ISO 5817 zulässig. Dies schließt Bindefehler aus. Für teilweise durchgeschweißte Nähte wird eine kurze ungenügende Durchschweißung bis zu einer Größe von maximal 1,5mm oder 10% des Wurzelmaßes a_{EC} toleriert. Für vorwiegend ruhend beanspruchte außergewöhnliche Bauwerke (Schadensfolgeklasse CC 3) wird in der Ausführungsklasse EXC 3 die Bewertungsgruppe B gefordert, die eine ungenügende Durchschweißung immer ausschließt.

In den Ausführungsklassen EXC 2 und EXC 3 fordert prEN 1090-2 auch für teilweise durchgeschweißte Nähte neben einer visuellen Prüfung zerstörungsfreie Prüfungen (zfP) zur Feststellung innerer Ungänzen.

DIN 18800-1 definiert das rechnerische Wurzelmaß a_{DIN} von Kehlnähten abweichend von DIN EN 1993-1-8 als Höhe des größten der Naht einschreibbaren, gleichschenkligen Dreiecks. Bei teilweise durchgeschweißten Nähten ist a_{DIN} der Abstand vom theoretischen Wurzelpunkt zur Nahtoberfläche und entspricht somit a_{EC} . Mit (2-3) wird der Vergleichswert der Spannung $\sigma_{v,DIN}$ berechnet.

$$\sigma_{v, DIN} = \sqrt{\sigma_{\perp}^{2} + \tau_{\perp}^{2} + \tau_{\parallel}^{2}} \le \alpha_{w} \cdot \frac{f_{y}}{\gamma_{M}}$$
(2-3)

Die Nahtbeanspruchbarkeit wird abweichend von DIN EN 1993-1-8 mit dem charakteristischen Wert der Streckgrenze f_y des Grundwerkstoffs berechnet. Demzufolge wird der Teilsicherheitsbeiwert γ_M von 1,1 verwendet. Der Faktor α_w zur Berechnung der Nahtbeanspruchbarkeit beträgt für voll durchgeschweißte Nähte ohne einen Nachweis der Nahtgüte durch zfP von 10% der Nahtlänge und für teilweise durchgeschweißte Nähte maximal 0,95. Größere Faktoren α_w aufgrund eines Nachweises der Nahtgüte sind für teilweise durchgeschweißte Nähte nicht vorgesehen.

Die Bemessung mit (2-3) resultiert wie das vereinfachte Verfahren (2-2) in DIN EN 1993-1-8 in Beanspruchbarkeiten, die unabhängig von den Spannungskomponenten σ_{\perp} , τ_{\perp} und τ_{II} sind. Für S235 mit einem Faktor α_w von 0,95 resultiert dies in einer Beanspruchbarkeit im Nahtquerschnitt, die etwa 65% größer als die Scherbeanspruchbarkeit f_y/ $\sqrt{3}$ im unmittelbar angrenzenden Querschnitt des Grundwerkstoffs.

Weil α_w für teilweise durchgeschweißte Nähte maximal 0,95 beträgt, können nur voll durchgeschweißte Nähte mit nachgewiesener Nahtgüte -abgesehen von dem zuvor erwähnten Fall der reinen Schubbeanspruchung- die volle Bemessungslast des angrenzenden Grundwerkstoffs übertragen.

Bei teilweise durchgeschweißten Nähten mit Nahtöffnungswinkeln kleiner als 45° wird eine mögliche ungenügende Durchschweißung im Falle von Schweißungen in Zwangspositionen pauschal durch eine Reduzierung von a_{DIN} um 2mm berücksichtigt.

Prinzipiell darf bei allen Nahtarten die plastische Querschnittsreserve der Naht genutzt werden. Für einseitige, durch σ_{\perp} oder τ_{\perp} beanspruchte Nähte sind die Nachweisverfahren elastisch-plastisch mit Umlagerung von Momenten und plastisch-plastisch nicht zulässig. Dies gilt auch für planmäßig durchgeschweißte HV-Nähte, wenn diese nicht prüfbar sind und mögliche Defizite an der Nahtwurzel nicht durch eine Nahtüberhöhung ausgeglichen werden. Beim Nachweis von einseitigen, teilweise durchgeschweißten Nähten ist die Exzentrizität zu berücksichtigen, wenn die angeschlossenen Teile ungestützt sind.

Nachweise für Schweißverbindungen von Flacherzeugnissen mit Mindeststreckgrenzen von 690N/mm² mit dem Bemessungskonzept (2-3) sind in der allgemeinen bauaufsichtlichen Zulassung Z-30.1-1 geregelt

Für vorwiegend ruhende Beanspruchung sind nach DIN 18800-7 Nahtunregelmäßigkeiten bis zu den Toleranzgrenzen der Bewertungsgruppe C in DIN EN ISO 5817 zulässig. Abweichend von prEN 1090-2 ist eine ungenügende Durchschweißung immer unzulässig.

In der schwedischen Stahlbaunorm BSK99 wird die spezifizierte Mindestzugfestigkeit des Schweißzusatzwerkstoffs f_{SZW} in der Nahtbemessung berücksichtigt. Weist der Schweißzusatzwerkstoff gegenüber dem Grundwerkstoff eine Überfestigkeit auf, wird die Beanspruchbarkeit der Naht mit f_{SZW} und f_u ermittelt (2-4). Wird ein gegenüber dem Grundwerkstoff minderfester Schweißzusatzwerkstoff verwendet, bestimmt nur f_{SZW} die Beanspruchbarkeit der Naht. Die Beanspruchbarkeit von teilweise durchgeschweißten Nähten wird mit einem Abminderungsfaktor φ_{BSK} pauschal um 10 % abgemindert, um eine mögliche Reduzierung des Nahtquerschnitts durch Ungänzen zu berücksichtigen. Bei voll durchgeschweißten Stumpfnähten ist die Abminderung von der Ausführungsklasse und demzufolge den Anforderungen an die Ausführungsqualität abhängig. Mit dem Beiwert γ_N wird die Sicherheitsklasse berücksichtigt. Die Sicherheitsklassen I, II, und III sind durch ein geringes, mittleres und großes Gefährdungspotential des Bauwerks für das Leben und die Gesundheit von Menschen gekennzeichnet. Die Teilsicherheit gegen Nahtversagen ist das Produkt von γ_N und dem Faktor 1,2.

$$f_{w,d} = \begin{cases} \frac{\phi_{BSK} \cdot \sqrt{f_u \cdot f_{SZW}}}{1,2 \cdot \gamma_N} & \text{für } f_u < f_{SZW} \\ \frac{\phi_{BSK} \cdot f_{SZW}}{1,2 \cdot \gamma_N} & \text{für } f_u \ge f_{SZW} \end{cases}$$
(2-4)

mit $\phi_{BSK} = 0,90$ für teilweise durchgeschweißte Nähte $\gamma_N = 1,0, 1,1$ und 1,2 in den Sicherheitsklassen I, II und III Die Beanspruchbarkeit von durch τ_{II} beanspruchten Nähten wird in BSK99 mit (2-5a) berechnet. Die Beanspruchbarkeit einer durch σ_{\perp} und/oder τ_{\perp} beanspruchten Naht wird abhängig vom Winkel ω zwischen der Wurzelfläche und der Kraftresultierenden mit (2-5b) berechnet (Bild 2-5). Bei einer kombinierten Beanspruchung durch τ_{II} und σ_{\perp} und/oder τ_{\perp} ist (2-6) anzuwenden.

$$\tau_{w,II,d} = 0.60 \cdot f_{w,d}$$
 (2-5a)

$$\sigma_{w,\omega,d} = \frac{f_{w,d}}{\sqrt{2 + \cos(2 \cdot \omega)}}$$
(2-5b)

Bild 2-5: Definition der Winkel ω und ψ

Die erforderliche Zähigkeit des Grundwerkstoffs und des Schweißzusatzwerkstoffs wird mit BSK99 bestimmt. Im Ergebnis entspricht BSK99 etwa DIN EN 1993-1-10. Die Herstellung von Stahlbauten wird in BSK99 ähnlich wie in prEN 1090-2 geregelt. Abweichend von prEN 1090-2 fordert BSK99 unabhängig von der Durchschweißung erst für Auslastungen U>0,7 zerstörungsfreie Prüfungen. Deren Umfang beträgt für übliche Stahlbauten 10% der Nahtlänge (Sicherheitsklasse II, Ausführung GB, Nahtqualität WB/WC).

Die Beanspruchbarkeit von Kehlnahtverbindungen wird gemäß LRFD des AISC (American Institute of Steel Construction) mit (2-7) in Abhängigkeit vom Winkel ψ zwischen der Nahtlängsachse und der Kraftresultierenden (Bild 2-5) und der nominellen Zugfestigkeit des Schweißzusatzwerkstoffs f_{SZW} berechnet.

$$\sqrt{\sigma_{\perp}^{2} + \tau_{\perp}^{2} + \tau_{\parallel}^{2}} \le \phi \cdot 0,60 \cdot \text{fszw} \cdot (1 + 0,5 \cdot \sin^{1,5}(\psi)) \qquad \text{mit} \quad \phi = 0,75 \quad (2-7)$$

Das Wurzelmaß a_{EC} ist analog zu DIN EN 1993-1-8 definiert. Der Bemessungswert der Beanspruchbarkeit wird durch Multiplikation der charakteristischen Beanspruchbarkeit mit einem Faktor ϕ von 0,75 berechnet ("resistance

factor"). Auf den Nachweis der Scherfestigkeit im Grundwerkstoffquerschnitt unmittelbar angrenzend an die Kehlnaht darf verzichtet werden.

Die Beanspruchbarkeit im Nahtquerschnitt von teilweise durchgeschweißten Nähten wird abhängig von f_{SZW} mit (2-8a) und (2-8b) nachgewiesen. Zusätzlich wird die Zug- (2-9a) und Scherbeanspruchbarkeit (2-9b) im Grundwerkstoff unmittelbar neben der teilweise durchgeschweißten Naht nachgewiesen.

$$\sigma \perp \leq \phi \cdot 0,60 \cdot f_{SZW} \qquad \text{mit} \quad \phi = 0,80 \tag{2-8a}$$

$$\tau_{II} \le \varphi \cdot 0,60 \cdot f_{SZW} \qquad \text{mit} \quad \varphi = 0,75 \tag{2-8b}$$

$$\sigma_{\perp} \leq \phi \cdot f_{y}$$
 mit $\phi = 0.90$ (2-9a)

$$\tau_{\rm H} \le \phi \cdot 0,60 \cdot f_{\rm u} \qquad \text{mit} \quad \phi = 0,75 \tag{2-9b}$$

Mit dem Schweißprozess MAG hergestellte Nähte dürfen nur mit Nahtöffnungswinkeln größer als 60° ausgeführt werden. Für das Fülldrahtschweißen muss der Nahtöffnungswinkel mindestens 45° betragen. Eine mögliche ungenügende Durchschweißung von teilweise durchgeschweißten Nähten wird pauschal durch eine Reduzierung des rechnerischen Wurzelmaßes um 3mm berücksichtigt.

Die US-amerikanischen Bemessungsregeln unterscheiden sich von den betrachteten europäischen Regeln dadurch, dass nur für voll durchgeschweißte Nähte Mindestanforderungen an die Zähigkeit des Grundwerkstoffs (27J bei 20°C) und des Schweißzusatzwerkstoffs (27J bei 4°C) gestellt werden.

In LRFD wird die Anwendung der schweißtechnischen Norm AWS D1.1 gefordert, die detaillierte vorqualifizierte Schweißanweisungen auch für teilweise durchgeschweißte Nähte vorgibt. In AWS D.1.1 wird nur eine visuelle Kontrolle der Nähte gefordert. Die Forderung zusätzlicher zfP steht dem Bauherrn frei. Die Annahmekriterien für visuelle und zerstörungsfreie Prüfungen entsprechen für vorwiegend ruhende Beanspruchung etwa der Bewertungsgruppe C in DIN EN ISO 5817.

Zum Vergleich der Ergebnisse der erläuterten Bemessungsregeln werden die Bemessungswerte der Beanspruchbarkeiten im rechnerischen Nahtquerschnitt für die in der ersten Spalte der Tabelle 2-1 aufgeführten Grundwerkstoffe S235 bis S690 und hinsichtlich der Mindeststreckgrenze etwa entsprechende USamerikanische Stähle berechnet. In der zweiten Spalte von Tabelle 2-1 wird der für den Grundwerkstoff zugelassene Schweißzusatzwerkstoff angegeben, der gemäß der Produktkataloge [47] bis [50] die niedrigste nominelle Festigkeit aufweist. In der dritten Spalte von Tabelle 2-1 wird die größere Festigkeit von üblichen Drahtelektroden angegeben. Für die Bemessung mit LRFD wird von den in AWS D1.1 vorqualifizierten Schweißanweisungen mit der niedrigsten und der höchsten nominellen Festigkeit des Schweißzusatzwerkstoffs ausgegangen. Mit diesen Angaben sind die Werkstoffe für die vergleichenden Berechnungen beschrieben.

Grundwerkstoff, t= 40mm	Schweißzusatzwerkstoff		
Planmäßige Steghöhe: h=5mm	Festigkeitsklasse		
	Niedrige Festigkeit	Hohe Festigkeit	
S235J2, DIN EN 10025-2	35 (f _{eu} = 440N/mm²)	42 (f _{eu} = 500N/mm²)	
ASTM A106Gr. B (R _{eH} = 240N/mm²)	6 (f _{eu} = 414N/mm²)	7 (f _{eu} = 483N/mm²)	
S275J2, DIN EN 10025-2	35 (f _{eu} = 440N/mm²)	42 (f _{eu} = 500N/mm²)	
ASTM A500Gr. C (R _{eH} = 317N/mm²)	6 (f _{eu} = 414N/mm²)	7 (f _{eu} = 483N/mm²)	
S355J2, DIN EN 10025-2	38 (f _{eu} = 470N/mm²)	42 (f _{eu} = 500N/mm²)	
ASTM A572Gr. 50 (R _{eH} = 345N/mm²)	7 (f _{eu} = 483N/mm²)		
S420M, DIN EN 10025-4	42 (f _{eu} =500N/mm²)	50 (f _{eu} = 560N/mm²)	
ASTM A595Gr. B (R _{eH} = 415N/mm²)	7 (f _{eu} = 48	83N/mm²)	
S460M, DIN EN 10025-4	46 (f _{eu} = 530N/mm²)	50 (f _{eu} = 560N/mm²)	
ASTM A913 Gr. 65 (R _{eH} = 450N/mm²)	8(f _{eu} = 552N/mm²)		
S690QL1, DIN EN 10025-6	69 (f _{eu} = 770N/mm²)		
ASTM A709 HPS70W (R _{eH} = 485N/mm ²)	9 (f _{eu} = 62	21N/mm²)	
Nahtöffnungswinkel: α _{Naht} = 45° Schweißverfahren: Fülldrahtschweißen (Prozess 136 gemäß DIN EN ISO 4063) Sicherheitsniveau: Klasse II für die Bemessung mit BSK99, EXC, 2 in prEN1090-2			

Tabelle 2-1: Übersicht der Vergleichsnähte

Bild 2-6 und Bild 2-7 zeigen die Bemessungswerte der Beanspruchbarkeiten in Stirnkehlnähten und DHY-Nähten. Bei den Berechnungen werden die in den Regelwerken aufgeführten charakteristischen Beanspruchbarkeiten im Grundwerkstoff zugrunde gelegt. Für die Bemessung mit BSK99 und LRFD sind die Bemessungswerte der Beanspruchbarkeiten für die niedrigste und höchste Festigkeit im Schweißzusatzwerkstoff angegeben.

Bei der Bemessung von teilweise durchgeschweißten Nähten mit LRFD wird mit den vorliegenden Randbedingungen der Nachweis des unmittelbar an die Naht angrenzenden Grundwerkstoffs maßgebend, wenn ein Schweißzusatzwerkstoff mit hoher Festigkeit verwendet wird. Bei der Bemessung mit DIN EN 1993-1-8 wird für die vorliegenden Randbedingungen immer der Nachweis (2-1b) der Spannungskomponente σ_{\perp} maßgebend.

Bild 2-6 zeigt, dass die Bemessungswerte der Beanspruchbarkeiten in Stirn-

kehlnähten in DIN EN 1993-1-8 und insbesondere in LRFD bis zu 60% größer als in DIN 18800-1 und BSK99 sind.

Auch bei DHY-Nähten (Bild 2-7) sind die Unterschiede erheblich. Hier sind die Bemessungswerte der Beanspruchbarkeiten in BSK99 und DIN EN 1993-1-8 bis zu 60% größer als in DIN 18800-1 und LFRD.

Bild 2-6: Vergleich der Beanspruchbarkeiten auf Bemessungsniveau von Stirnkehlnähten

Bild 2-7: Vergleich der Beanspruchbarkeiten auf Bemessungsniveau von DHY-Nähten

2.2 Stand der Forschung / Historischer Überblick

Schon mit dem ersten Einsatz von Lichtbogenschweißverfahren für kraftübertragende Verbindungen in den 1920er Jahren wurde das Tragverhalten von Kehlnahtverbindungen untersucht. Dies galt in erster Linie dem den Kraftfluss störenden Einfluss der Nahtgeometrie auf die Spannungsverteilung. So wird in [3] die über die Nahtlänge ungleiche Spannungsverteilung von Flankenkehlnahtverbindungen erkannt und unter Annahme gleicher elastischer Steifigkeiten wie für Nietverbindungen für verschiedene Nahtlängen berechnet. In [4] wird ein mechanisches Modell für das Tragverhalten von Stirnkehlnahtverbindungen angegeben. Die in Dauerschwingversuchen beobachtete unterschiedliche Dauerfestigkeit von Stirnkehlnahtverbindungen mit überlappenden Blechen und solchen ohne Blechüberlappung wird mit der Reibung zwischen den verbundenen Blechen erklärt. Bei Kehlnahtverbindungen mit einem vollständig geschlossenen Spalt zwischen den überlappenden Blechen beträgt der durch Reibung übertragene Anteil 40% der gesamten übertragenen Kraft [4].

Mit dem zunehmenden Einsatz von geschweißten Stahlkonstruktionen anstelle von Nietkonstruktionen und der Verfügbarkeit von gut schweißgeeigneten, weniger sprödbruchempfindlichen, durch Zulegieren von Aluminium beruhigten Stählen wurde in den 1950er und 1960er Jahren international mit großen Programmen das Tragverhalten von Kehlnahtverbindungen untersucht. In [5] wird festgestellt, dass die Tragfähigkeit von Flankenkehlnähten im Gegensatz zu Stirnkehlnähten mit zunehmendem Wurzelmaß deutlich abnimmt. In [6] werden Flankenkehlnähte mit kleinen Wurzelmaßen und großen Nahtlängen untersucht. Wenn das Verhältnis der Nahtlänge zum Wurzelmaß etwa 140 übersteigt, wird eine Abnahme der auf den Nahtquerschnitt bezogenen Bruchlast festgestellt. Die auf den Nahtquerschnitt bezogene Bruchlast wird im folgenden Bruchspannung genannt.

In [7] und [8] wird der Einfluss der Spannungskomponenten σ_{\perp} , τ_{\perp} und τ_{II} untersucht. Die Auswertung dieser Ergebnisse in [9] resultiert in einem Bemessungsformat mit einem Vergleichswert der Spannungen $\sigma_{v,ISO}$ im Wurzelquerschnitt. Mit dem Korrelationsbeiwert β_{ISO} wird (2-10) an die in Versuchen gemessenen Bruchspannungen angepasst.

$$\sigma_{v,ISO} = \beta_{ISO} \cdot \sqrt{\sigma_{\perp}^{2} + \lambda(\tau_{\perp}^{2} + \tau_{II}^{2})}$$
(2-10)

In [10] wird festgestellt, dass der Vergleichswert mit einem einheitlichen λ -Beiwert für die Komponenten τ_{\perp} und τ_{II} die unter anderem in [5] und [6] festgestellten unterschiedlich großen Bruchspannungen von Stirn- und Flankenkehlnähten nicht richtig abbildet. Demzufolge werden unterschiedliche λ -Beiwerte für die einzelnen Spannungskomponenten vorgeschlagen. Diese Bemessungskonzept setzt sich eher aus formalen Gründen [11] nicht durch. In [12] wird der Einfluss der Wurzelmaßes auf die Bruchspannungen von Stirnund Flankenkehlnähten untersucht. Um den Einfluss verschieden großer Überfestigkeiten im Schweißgut auszuschließen, werden die in [5], [6] und [8] dokumentierten Bruchspannungen bezogen auf die Zugfestigkeit im Schweißgut ausgewertet. Diese Auswertung zeigt bei Flankenkehlnähten mit zunehmendem Wurzelmaß abnehmende Bruchspannungen. Dies wird mit dem linear angenommenen Anstieg der Dehnungen von der Nahtoberfläche hin zur Nahtwurzel begründet. Bei großen Wurzelmaßen ist deshalb an der Nahtwurzel das Plastizierungsvermögen schon bei kleineren Spannungen erreicht als bei Nähten mit kleineren Wurzelmaßen. Bei Verbindungen von überlappenden Blechen mit Stirnkehlnähten stellt sich dagegen eine weitgehend gleichmäßige Spannungsverteilung im Nahtquerschnitt ein, wenn sich die Bleche gegeneinander abstützen [12]. Die hierbei auftretende Reibung zwischen den Blechen erklärt zudem die im Vergleich zu Flankenkehlnähten um den Faktor 1,20 bis 1,40 größeren Bruchspannungen.

In [13] wird versucht, auf Grundlage der bisher durchgeführten Versuche ([5] bis [8]) ein Konzept zur Berechnung der Tragfähigkeit von Kehlnahtverbindungen herzuleiten. Hierbei wird festgestellt, dass "die Aussagekraft einer Vielzahl von Versuchsreihen an Kehlnähten begrenzt ist, weil versäumt wurde, wichtige Parameter wie Größe und Lage der Bruchflächen, die Festigkeit im Schweißgut und die Schweißparameter festzuhalten". Deshalb werden in erster Linie auf Grundlage eigener Versuche idealisierte Spannungs-Gleitungs-Beziehungen für Stirn- und Flankenkehlnähte von S355 angegeben. Diese sind durch die elastische Steigung, die Gleitung und Spannung bei messbarem Fließbeginn und die unmittelbar vor dem Versagen gemessene Gleitung (im folgenden Bruchgleitung) festgelegt. Die Naht versagt, wenn die Bruchgleitung und somit das plastische Verformungsvermögen erreicht wird. Mit dieser Überlegung werden die Tragfähigkeiten von langen Flankenkehlnahtverbindungen sowie kombinierten Stirn- und Flankenkehlnähten abgeschätzt. Dieses Vorgehen wird mit Versuchen mit langen Flankenkehlnähten in [14] weiterverfolgt. Auf Grundlage dieser Versuche werden in [15] die Auswirkungen des Steifigkeitsunterschieds der verbundenen Bauteile, der Nahtlänge, des Wurzelmaßes und der Streckgrenze des Grundwerkstoffs bis zu Streckgrenzen von 355N/mm² untersucht.

Mit dem zunehmenden Aufkommen von höherfesten, gut schweißgeeigneten Baustählen mit Streckgrenzen bis 690N/mm² (DASt-Richtlinie 011) sowie dem zunehmenden Einsatz von hoch- und höchstfesten Stählen im Kranbau und Offshore-Bauwerken ab den 1980er Jahren rückten Schweißverbindungen solcher Stähle zunehmend in das Interesse der Forschung. Abweichend von Stählen mit Streckgrenzen bis 355N/mm² kommt es hier vor, dass das Schweißgut niedrigere Festigkeiten aufweist als der Grundwerkstoff. In [16] werden deshalb auch Kehlnähte von Stählen S460 untersucht, die mit einem Schweißzusatzwerkstoff mit einer kleineren Streckgrenzen als der Grundwerkstoff geschweißt wurden. Es zeigt sich, dass solche Schweißzusatzwerkstoffe für tragende Kehlnahtverbindungen nicht geeignet sind, weil die Reserve gegen Versagen bei Bemessung mit den Festigkeitswerten des Grundwerkstoffs nicht den Sicherheitsanforderungen genügt [17]. Die erwartete Verbesserung des Verformungsvermögens im Bereich der Schweißnaht bleibt aus, weil sich offensichtlich die Dehnungen stärker in der Kehlnaht konzentrieren und der angrenzende Grundwerkstoff nicht mehr zur Gesamtverformung beiträgt. In [18] beschriebene Versuche an Kehlnahtverbindungen von Stählen S460M/ML mit Wurzelmaßen a_{EC} bis 12mm und Nahtlängen bis 150 a_{EC} konzentrieren sich deshalb auf Schweißzusatzwerkstoffe, die nominell gleichfest zum Grundwerkstoff sind.

Bei Stählen mit Mindestdehngrenzen Rp0.2 größer als 460N/mm² kann es, um die Gefahr von wasserstoffinduzierten Rissen im Schweißgut zu reduzieren, geboten sein, zum Grundwerkstoff niederfeste Schweißzusatzwerkstoffe mit besserem Verformungsvermögen zu verwenden. In [19] werden aus diesem Grund Stirn- und Flankenkehlnahtverbindungen von S690 untersucht, die zum einen mit einer zum Grundwerkstoff nominell gleichfesten und zum anderen mit einer nominell deutlich minderfesten Elektrode geschweißt sind. Im Fall der zum Grundwerkstoff gleichfesten Elektrode sind die Bruchspannungen der Flankenkehlnähte etwa 12% und im Fall der zum Grundwerkstoff minderfesten Elektrode etwa 50% größer als die nominelle Scherfestigkeit des Schweißzusatzwerkstoffs. Eine Erklärung für diese signifikanten Unterschiede wird nicht gegeben. Die Verbindungen von überlappenden Blechen mit Stirnkehlnähten erreichen in [19] etwa 50% größere Bruchspannungen als die Flankenkehlnähte. Auf Grundlage dieser Versuche wird in [20] vorgeschlagen, bei der Berechnung der Bemessungsspannung anstelle der Zugfestigkeit des Grundwerkstoffs den Mittelwert der Festigkeit des Grundwerkstoffs und des Schweißzusatzwerkstoffs zu verwenden und die größeren Bruchspannungen der Stirnkehlnahtverbindungen durch eine Bemessungsformel mit verschieden großen λ -Beiwerten für die Komponenten τ_{\perp} und τ_{\parallel} zu berücksichtigen.

In [21] wird über Bauteilversuche mit Flankenkehlnahtverbindungen und an T-Stumpfnahtverbindungen von Stählen mit Dehngrenzen $R_{p0,2}$ von 690N/mm² und 1100N/mm² berichtet. Für den Stahl mit einer Dehngrenze $R_{p0,2}$ von 1100N/mm² wird untersucht, inwieweit die Unterfestigkeit des Schweißzusatzwerkstoffs durch eine Vergrößerung der Naht ausgeglichen werden kann.

Bei Verwendung von Schweißzusatzwerkstoffen mit niedrigen Kerbschlagarbeitswerten wird allgemein befürchtet, dass das zur Nutzung des Tragvermögens erforderliche Plastizierungsvermögen abnimmt. In [22] bis [24] wird deshalb über Versuche an Kehlnahtverbindungen von Blechen aus Stahl ASTM 572 grade 50 berichtet, die zu großen Teilen mit in den USA häufig verwendeten Schweißzusatzwerkstoffen mit geringen Kerbschlagarbeitswerten (<30J bei 20°C) hergestellt wurden. Die Versuche wurden bei 20°C und bei -50°C durchgeführt. Eine Abnahme der Bruchspannungen mit abnehmender Temperatur wurde nicht festgestellt.

Mit zunehmender Werkstofffestigkeit wird verstärkt untersucht, ob das zur Nutzung des Tragvermögens von teilweise durchgeschweißten und/oder fehlerbehafteten Nähten erforderliche Plastizierungsvermögen abnimmt. In [25] werden Versuche an Stumpf- und T-Stößen von Feinkornstählen mit Streckgrenzen von etwa 500N/mm² beschrieben. Einige Verbindungen sind mit teilweise durchgeschweißte Nähten ausgeführt und/oder mit zum Grundwerkstoff minderfesten Schweißzusatzwerkstoffen geschweißt. Das Verhältnis der mit dem Nahtquerschnitt A_w und der Zugfestigkeit R_{m,SG} im Schweißgut berechneten Nahttragfähigkeit zur Tragfähigkeit des ungeschwächten Grundwerkstoffs wird mit dem Faktor f beschrieben (2-11). Bei Verhältnissen f bis maximal 0,85 wurde Nahtversagen ohne vorheriges Fließen im Grundwerkstoff gemessen.

$$f = \frac{A_{w} \cdot R_{m,SG}}{A_{GW} \cdot R_{m,GW}}$$
(2-11)

In [26] wird der Einfluss von Restspalten auf das Tragverhalten unter dem Aspekt der Sprödbruchsicherheit untersucht. Unter Restspalt wird die Größe von Nahtungänzen und Anrissen verstanden. Für DHY- und HY-Nähte werden abhängig vom Spannungsniveau im ungeschwächten Querschnitt des Grundwerkstoffs maximale Restspaltgrößen angegeben. Hierbei wird das Vorliegen der tiefsten Einsatztemperatur und der rissartig unterstellten Ungänzen als außergewöhnliche Bemessungssituation aufgefasst.

Die Übersicht des angesprochenen Schrifttums zeigt in Tabelle 2-2, dass eine ungleich größere Anzahl an Untersuchungen zum Tragverhalten von Kehlnahtverbindungen als von teilweise durchgeschweißten Nähten dokumentiert sind. Ein Grund hierfür ist, dass die verarbeiteten Blechdicken in den letzten Jahrzehnten beträchtlich zugenommen haben. Bei großen Blechdicken werden vermehrt teilweise durchgeschweißte (D)HY-Nähte eingesetzt, weil das Nahtvolumen von (D)HY-Nähten schon durch eine geringe Nichtdurchschweißung im Vergleich zu voll durchgeschweißten Nähten erheblich reduziert wird. Dies spart bei großen Blechdicken Schweißzeit.

Stahl- festigkeit	Kehlnahtverbindungen	Teilweise durchgeschweißte (D)HY-Nähte	
bis S355	[5] bis [15], [22] bis [24]	[26]	
bis S460	[16], [17], [18]	[25]	
bis S700	[19], [20]	[21]	

Tabelle 2-2: Zusammenstellung des Schrifttums

3 Versagenskriterien für metallische Werkstoffe

3.1 Kontinuumsmechanische Versagenskriterien

Mit kontinuumsmechanischen Versagenskriterien wird der Werkstoffzustand bei Versagen durch Spannungen und Dehnungen beschrieben, ohne den Schädigungsmechanismus selbst zu beschreiben. Für metallische Werkstoffe wurden unzählige Bruchkriterien vorgeschlagen. So geht die Normalspannungshypothese bei spröden Werkstoffen von einem Versagen bei Erreichen eines kritischen Werts der ersten Hauptspannung aus. Für ein duktiles Scherversagen wird zum Beispiel die Schubspannungshypothese zur Versagensvorhersage angewendet. Abweichend von diesen Spannungskriterien wird in [27] und [28] ein kritischer Vergleichswert der plastischen Dehnung $\varepsilon_{v,pl,crit}$ als Kriterium für das duktile Versagen metallischer Werkstoffe eingeführt (3-1). Der Einfluss des Beanspruchungszustands auf die werkstoffabhängige Größe der kritischen Dehnung wird durch die Mehrachsigkeit M des Spannungszustands (3-2a) beschrieben. Der Einfluss des Werkstoffs wird mit der Kenngröße α berücksichtigt. Versagen tritt ein, wenn der Vergleichswert der Dehnung $\varepsilon_{v,pl}$ (3-3) größer als $\varepsilon_{v,pl,crit}$ wird und somit die Materialschädigung D (3-4) positiv wird.

$$\varepsilon_{v,pl,crit} = \alpha \cdot \mathbf{e}^{(-3/2 \cdot M)} \tag{3-1}$$

$$M = \frac{\sigma_m}{\sigma_v}$$
(3-2a)

$$\sigma_{\rm m} = 1/3 \cdot (\sigma_1 + \sigma_2 + \sigma_3) \tag{3-2b}$$

$$\sigma_{v} = \sqrt{1/2 \cdot [(\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{3} - \sigma_{1})^{2}]}$$
(3-2c)

$$\varepsilon_{v,pl} = \sqrt{2/9 \cdot \left[(\varepsilon_1 - \varepsilon_2)^2 + (\varepsilon_2 - \varepsilon_3)^2 + (\varepsilon_3 - \varepsilon_1)^2 \right]}$$
(3-3)

$$D = \varepsilon_{v,pl} - \varepsilon_{v,pl,crit}$$
(3-4)

Dieses Versagenskriterium basiert auf dem in [29] eingeführten Modell eines kritischen Porenwachstums, wonach ein Stahl durch Zusammenwachsen von Poren oder durch Mikrorisse zwischen Hohlräumen duktil versagt, wenn eine kritische Rate des nur vom hydrostatischen Spannungsanteil bestimmten Porenwachstums erreicht wird. Damit sich ein solcher Versagensmechanismus physikalisch einstellen kann, muss die Schädigung D in einem Werkstoffbereich

positiv sein, dessen Größe vom Werkstoffgefüge abhängt. In [28] wird für den untersuchten Feinkornstahl Q1 als Abschätzung dieser Größe ein Radius von 0,20mm um eine Kerbstelle angegeben. Bild 3-1 zeigt den Verlauf von $\varepsilon_{v,pl,crit}$ für eine Kenngröße α von 1,20.

In [30] wird ausschließlich basierend auf kontinuumsmechanischen Betrachtungen der kritische Vergleichswert der Dehnung $\varepsilon_{v,pl,crit,L}$ hergeleitet, dessen Größe durch die einachsige wahre Bruchdehnung $\varepsilon_{w,f}$ des Werkstoffs und die vorliegende Mehrachsigkeit M bestimmt ist (3-5). Bild 3-1 zeigt den Verlauf von $\varepsilon_{v,pl,crit,L}$ für eine Dehnung $\varepsilon_{w,f}$ von 60%.

$$\varepsilon_{v,pl,crit,L} = \frac{\varepsilon_{w,f}}{2/3(1+v) + 3(1-2v) \cdot M^2}$$
(3-5)

mit v: Querkontraktionszahl

Bild 3-1: Kontinuumsmechanische Versagenskriterien

Bild 3-1 zeigt, dass die durch (3-1) und eine Kenngröße α von 1,20 bestimmte Kennlinie für $\varepsilon_{v,pl,crit}$ bei Mehrachsigkeiten M kleiner als 0,5 deutlich größere kritische Dehnungen prognostiziert als (3-5) mit einer Dehnung $\varepsilon_{w,f}$ von 60%. Für Mehrachsigkeiten M größer als etwa 1,5 sind die mit (3-1) prognostizierten kritischen Dehnungen kleiner als mit (3-5).

Voraussetzung für die Anwendung kontinuumsmechanischer Versagenskriterien ist, dass entweder analytische Lösungen für Spannungen und Dehnungen im Kerbbereich vorliegen oder diese mit einem hinsichtlich der Kerbdehnung konvergierten Finiten Element Modell berechnet werden können. So wird in [31] das duktile Versagen von mäßig gekerbten Bauteilen mit Kerbformzahlen von maximal 2,2 mit einem Kriterium (3-1) in guter Übereinstimmung mit Versuchergebnissen vorhergesagt. Auch am äußeren Nahtübergang können große Kerbradien vorliegen, die je nach Schweißverfahren bis zu 3mm betragen [2]. Hier ist eine hinsichtlich der Kerbdehnung konvergierte Lösung mit der Finite Element Methode möglich. In [32] wird demzufolge ein Kriterium in der Form (3-5) mit Dehnungen $\varepsilon_{w,f}$ zwischen 40% und 100% angewendet, um das Versagen von durchgeschweißten T-Stumpfstößen ausgehend vom äußeren Nahtübergang vorherzusagen. Eine Bewertung, welches der Versagenskriterien (3-1) und (3-5) zutrifft, ist mit den Untersuchungsergebnissen [31] und [32] nicht möglich, weil sich die mit diesen Kriterien vorhergesagten plastischen Vergleichsdehnungen bei Versagen bei den in den untersuchten Bauteilen vorliegenden Mehrachsigkeiten von etwa 1 praktisch nicht unterscheiden.

Im Bereich der Nahtwurzel weisen die Kerbradien gemäß [2] ein großes Streuband auf und können sehr kleine Werte bis zu 0,01mm einnehmen. Hier ist eine hinsichtlich der Kerbdehnung konvergierte Lösung mit der Finiten Element Methode nur mit extrem großem Rechenaufwand zu realisieren. Zudem sind die berechneten Kerbdehnungen vom mit großen Streuungen behafteten Kerbradius abhängig.

3.2 Bruchmechanische Versagenskriterien

3.2.1 Linear-elastischer Spannungsintensitätsfaktor

Die linear elastische Bruchmechanik ermöglicht auch dann die Berechnung des Versagens von Bauteilen, wenn Risse oder sehr kleine Kerbradien vorliegen. Hierzu wird das singuläre Spannungsfeld um eine Rissspitze unter der Voraussetzung linear elastischen Werkstoffverhaltens mit dem Spannungsintensitätsfaktor und der dimensionslosen Formfunktion f_{ij} beschrieben (3-6).

$$\sigma_{ij} = \frac{K_{I}}{\sqrt{2\pi r_{c}}} f_{ij}(\Theta)$$
(3-6)

Üblicherweise werden für die in Bild 3-2 gezeigten Beanspruchungsmodi I bis III Spannungsintensitätsfaktoren K_I, K_{II} und K_{III} und Formfunktionen angegeben. Für reine Modus I Beanspruchung liegen für viele Geometrien Lösungen für den Spannungsintensitätsfaktor K_I vor. Das Rissspitzenkoordinatensystems r_c und Θ sowie die Rissfortschrittsrichtung x sind in Bild 3-3 skizziert.

Die linear elastische Bruchmechanik kann auf Kleinbereichsfließen erweitert werden, um auch ein makroskopisch sprödes Verhalten mit lokalen plastischen Zonen vor der Rissspitze zu erfassen. In [45] wird als obere Grenze der Erweiterung auf Kleinbereichsfließen ein Verhältnis des auf die Risslänge bezogenen Durchmessers der kreisförmig idealisierten plastischen Zone von 0,40 angegeben. Bei duktilem Werkstoffversagen außerhalb dieser Grenzen verliert der Spannungsintensitätsfaktor seine Bedeutung als Kenngröße für die Rissspitzenbeanspruchung.

3.2.2 Fließbruchmechanisches J-Integral Konzept

Mit der Fließbruchmechanik kann das Versagen rissbehafteter oder scharf gekerbter Bauteile auch beim Vorliegen ausgedehnter plastischer Bereiche quantitativ bestimmt werden. Das J-Integral [33] beschreibt das singuläre Spannungs- und Dehnungsfeld um eine Rissspitze.

Die von J, vom Verfestigungsverhalten des Werkstoffs und von einer Formfunktion g_{ij} abhängige Formulierung des Spannungsfelds für reine Modus I Beanspruchung ist in (3-7) angegeben.

$$\frac{\sigma_{ij}}{R_{p0,2}} = \left(\frac{J}{k \cdot \varepsilon_{y} \cdot R_{p0,2} \cdot I_{n} \cdot r_{c}}\right)^{1/(n+1)} \cdot g_{ij}(\Theta)$$
(3-7)

mit

Verfestigungsgesetz in der Form:

$$\sigma(\varepsilon_w) = \mathsf{E} \cdot \varepsilon_v + \mathsf{k} \cdot \varepsilon_w^n$$

In: Werkstoffparameter

- rc: Entfernung von der Rissspitze
- ε_y: elastische Grenzdehnung
- ϵ_w : wahre Dehnung
- n: Verfestigungsexponent
- k: Konstante

Die Größe J kann durch Linienintegration entlang eines Pfades Γ um die Rissspitze berechnet werden. Im ebenen Fall liegt ein zweidimensionaler Vektor vor. Die erste Komponente dieses Vektors (3-8) wird allgemein J-Integral genannt und im folgenden mit J bezeichnet (J-Integral = J).

$$\begin{pmatrix} J \\ J_2 \end{pmatrix} = \begin{bmatrix} \oint (W \, dy - T_i \frac{\delta u_i}{\delta x} ds) \\ \oint (W \, dx - T_i \frac{\delta u_i}{\delta y} ds) \end{bmatrix}$$
(3-8)

mit:

$$W = \int_{0}^{\varepsilon} \sigma_{ij} d\varepsilon_{ij}$$

T_i: Traktionsvektor

nj: Normalenvektor auf Integrationspfad

 σ_{ij} : Spannungsmatrix

ui: Verschiebungsvektor

ds: Wegelement

Bild 3-3: Integrationspfad Γ zur Berechnung von J

Im Sonderfall von linear-elastischem Materialverhalten besteht für den ebenen Dehnungszustand der in (3-9) angegebene Zusammenhang zwischen J, der Energiefreisetzung G für einen Rissfortschritt in Richtung x und den Spannungsintensitätsfaktoren K_I und K_{II}.

$$J = G = \left(K_{1}^{2} + K_{11}^{2}\right) \cdot \frac{1 - v^{2}}{E}$$
(3-9)

Liegt der Riss rechtwinklig zur größten Hauptzugspannung, entfällt die Größe K_{II} . Nur in diesem Fall liegt eine reine Modus I Beanspruchung vor (3-10).

$$J_{I} = G_{I} = K_{I}^{2} \cdot \frac{1 - v^{2}}{E}$$
(3-10)

Die (fließ)bruchmechanische Beanspruchbarkeit eines Werkstoffs wird in standardisierten Versuchen bestimmt, in denen eine reine Modus I Beanspruchung vorliegt. Dies können Biegeversuche oder Zugversuche mit rissbehafteten Proben sein. In 3-Punkt Biegeversuchen gemäß ISO 12135 wird die Größe J_I bei einer Verschiebung q des Lasteinleitungspunkts in Kraftrichtung mit (3-11) berechnet.

$$J_{I} = G_{I} = \left[\frac{F \cdot S}{B_{B} \cdot W_{B}^{1,5}} \cdot g_{1}\left(\frac{a_{0}}{W_{B}}\right)\right]^{2} \left[\frac{(1-\nu^{2})}{E}\right] + \frac{2 \cdot U_{p}}{B_{B} \cdot (W_{B} - a_{0})}$$
(3-11)

mit $g_1(a_0/W_B)$: Geometriekorrektur gemäß ISO 12135

- v: Querdehnzahl
- E: E-Modul [N/mm²]
- U_p: plastische Formänderungsenergie [Nmm]

Bild 3-4: Biegeversuch zur Bestimmung von J₁ gemäß ISO 12135

Enthält die so bestimmte Größe J_I nur geringe Anteile aus einem stabilen Risswachstum vor dem Versagen, wird die berechnete Kenngröße mit J_{IC} bezeichnet. Wird vor dem Versagen oder vor dem Lastabfall ein signifikanter stabiler Rissfortschritt festgestellt, wird die bei Erreichen der Maximalkraft berechnete Kenngröße mit J_{Iu} bezeichnet. ISO 12135 gibt als Abgrenzungskriterium zwischen den Kenngrößen J_{IC} und J_{IU} die Länge des Rissfortschritts Δa an (3-12). Im Falle eines stabilen Rissfortschritts wird oft auch das technische J-Integral J_{I,0,2} bei einem Rissfortschritt von 0,2mm oder das J-Integral bei Rissinitiierung J_{I,i} ermittelt.

Für eine Bestimmung der Beanspruchbarkeit unter reiner Modus II oder einer Mischmodusbeanspruchung liegen für metallische Werkstoffe keine Prüfnormen vor.

$$\Delta a = 0.2 \,\mathrm{mm} \cdot \frac{\mathrm{J}_{\mathrm{I}}}{3.75 \cdot \mathrm{R}_{\mathrm{m}}} \tag{3-12}$$

mit R_m= Zugfestigkeit

3.2.3 Anwendung des J-Integrals als Versagenskriterium

Die Übertragung der Ergebnisse der experimentellen (Fließ)bruchmechanik auf reale Bauteile erfolgt konventionell derart, dass Versagen durch Rissinitiierung oder instabile Rissausbreitung angenommen wird, wenn die Beanspruchung im Bereich einer scharfen Kerbe oder eines Risses die werkstoffabhängige kritische Größe J_{IC} erreicht. Dieses Kriterium trifft als Versagenskriterium zu, wenn

- 1) an der Kerbstelle im realen Bauteil wie im standardisierten Versuch nach ISO 12135 eine Modus I Beanspruchung vorliegt und
- an der Kerbstelle im realen Bauteil ein Beanspruchungszustand vorliegt, der dem im Versuch zur Bestimmung von J_{IC} gleicht.

Im weiteren werden Vorgehensweisen erläutert, mit denen J_{IC} auch bei Verletzung der Bedingungen 1) und 2) als realitätsnahes Versagenskriterium angewendet werden kann.

 J_{I} ist als Energiefreisetzungsrate aufgrund eines Rissfortschritts rechtwinklig zur größten Hauptspannung (Zug) definiert. Eine Mischmodusbeanspruchung liegt dann vor, wenn aufgrund der Belastung und der Bauteilgeometrie oder durch einen inhomogenen Werkstoffzustand im Bereich der Rissspitze die Rissebene nicht rechtwinklig zur größten Hauptspannung ist. In diesem Fall enthält J Anteile aus einer Modus I (J_I) und Modus II (J_{II}) Beanspruchung [35].

J ist im Falle einer Mischmodusbeanspruchung als Bruchparameter zunächst nicht brauchbar. Die Anwendung des J-Integral Konzepts für eine solche Beanspruchung ist zum gegenwärtigen Zeitpunkt noch kein durchgängig gelöstes Problem. In [36] werden jedoch Kriterien für eine Abgrenzung zwischen einer Modus I Beanspruchung und einer Mischmodusbeanspruchung angegeben. Hiernach kann eine Mischmodusbetrachtung entfallen, wenn

- die Ebene rechtwinklig zur größten Hauptzugspannung und die Rissebene einen Winkel von weniger als 20° aufspannen und
- der Spannungsintensitätsfaktore K_I größer als K_{II} ist und
- die Hauptspannungen im Bereich der Kerbe nicht Zug- und Druckspannungen etwa gleichen Betrags sind.

Sind diese Kriterien erfüllt, kann das J-Integral mit (3-8) mit genügender Genauigkeit berechnet werden. Bauteilversagen wird angenommen, wenn das J-Integral die für den Werkstoff kritische Größe J_{IC} erreicht.

Durch den Versuchsaufbau und die Prüfkörpergeometrie in ISO 12135 wird erreicht, dass die Ausdehnung der plastischen Zone in Rissfortschrittsrichtung (Ligament) auch bei ausgeprägt plastischem Werkstoffverhalten klein ist. Hierdurch liegt vor der Rissspitze eine denkbar große Mehrachsigkeit des Beanspruchungszustands (3-2a) vor. Die Mehrachsigkeit kann im realen Bauteil erheblich kleiner sein als im Versuch gemäß ISO 12135, weil zum Beispiel im Falle von zugbeanspruchten Bauteilen ein viel größerer Bereich des Ligaments plastiziert.

In [37] wird berichtet, dass das Versagen von Schweißverbindungen in Druckbehältern unter Innendruck nur dann realitätsnah berechnet werden konnte, wenn die Mehrachsigkeit M im realen Bauteil berücksichtigt wird. Dort erwiesen sich die mit Flachzugproben mit Außenrissen und Mehrachsigkeiten M von etwa 1,80 vor dem Riss gemessenen Größen J_{IC} als zutreffendes Versagenskriterium für das Bersten der untersuchten Behälter. Die Beanspruchung J_I beim Bersten war etwa doppelt so groß wie die in Biegeversuchen gemäß ISO 12135 gemessenen Größen J_{IC} .

In [38] wird der rissauslösende CTOD-Wert abhängig vom Beanspruchungszustand mit Korrekturtermen β_{Mina} berechnet. Der in einer realen Bauteilgeometrie rissauslösende CTOD-Wert $\delta_{I,BT}$ und die rissauslösende Größe des J-Integrals J_{I,BT} kann mit diesen Korrekturtermen abhängig von den in Versuchen gemäß ISO 12135 gemessenen CTOD-Werten δ_{IC} und dem J-Integral J_{IC} bestimmt werden (3-13).

$$\beta_{\text{Mina}} = \frac{\delta_{\text{IC}}}{\delta_{\text{I,BT}}} = \frac{J_{\text{IC}}}{J_{\text{I,BT}}}$$
(3-13)

Liegt die Rissspitze im Bereich eines im Vergleich zur Umgebung niederfesten Werkstoffs, konzentrieren sich die Dehnungen an der Rissspitze, an der wegen der höheren Fließgrenze des umgebenden Werkstoffs zudem eine große Mehrachsigkeit des Spannungszustands vorliegt. Dies ist zum Beispiel der Fall, wenn die Rissspitze in einer gegenüber dem Grundwerkstoff weichen Wärmeeinflusszone liegt. Liegt die Rissspitze im höherfesten Werkstoffbereich wie zum Beispiel im Schweißgut einer mit einem überfesten Schweißzusatzwerkstoff geschweißten Naht, kann dies den Riss entlasten.

In [36] wird eine Berücksichtigung der Werkstoffinhomogenität empfohlen, wenn das Verhältnis M_{SG} der Dehngrenze $R_{p0,2,SG}$ im Schweißgut zur Dehngrenze $R_{p0,2,GW}$ im Grundwerkstoff kleiner als 0,9 oder größer als 1,1 ist. Dies trifft bei Schweißverbindungen praktisch immer zu. Die wesentlichen Eingangsgrößen der in [36] angegebenen Prozedur zur Berücksichtigung der Inhomogenität bei einer Fehlerbewertung sind das Verhältnis M_{SG} und die unter Berücksichtigung der tatsächlichen Spannungs-Dehnungs-Beziehungen im Schweißgut und im Grundwerkstoff berechnete Fließlast F_{YM} der Schweißverbindung. In [36] sind für einige stark idealisierte Schweißverbindungen Fließlasten F_{YM} aufgeführt. Für die in der vorliegenden Arbeit untersuchten teilweise durchgeschweißten Nähte sind keine Fließlastlösungen angegeben.

Bild 3-5 zeigt für eine Schweißverbindung mit einem Innenriss im überfesten Schweißgut (M_{SG} =1,5) ein FAD-Diagramm mit und ohne Berücksichtigung der Überfestigkeit M_{SG} (FAD für "Failure Assessment Diagram").

Bild 3-5: FAD-Diagramm mit und ohne Berücksichtigung der Überfestigkeit im Schweißgut In FAD-Diagrammen ist der Beanspruchungszustand in einem rissbehafteten Bauteil auf der Abszisse durch das Verhältnis L_r der Kraft F zur Fließlast F_{YM} beschrieben (Plastifizierungsgrad). Auf der Ordinate ist der Beanspruchungszustand durch das Verhältnis K_r der linear-elastischen bruchmechanischen Beanspruchung zur bruchmechanischen Beanspruchbarkeit beschrieben. Mit zu-

nehmender Plastizierung L_r wird der Geltungsbereichs der linear-elastischen Bruchmechanik verlassen. Die tatsächliche (fließbruchmechanische) Beanspruchung wird zunehmend größer als dies durch den linear-elastischen Spannungsintensitätsfaktor angezeigt wird. Dies wird mit der geometrieabhängigen Plastifizierungskorrekturfunktion $f(L_r)$ berücksichtigt. Sichere Bauteilzustände liegen im durch $f(L_r)$, die Abszisse und die Ordinate umschlossenen Raum. Neben der Begrenzung der bruchmechanischen Beanspruchung durch $f(L_r)$ wird üblicherweise der Plastifizierungsgrad L_r begrenzt, um einen sogenannten plastischen Kollaps zu vermeiden. Eine solche Begrenzung ist in Bild 3-5 nicht angegeben.

Durch die Berücksichtigung der höheren Festigkeit im Schweißgut nimmt die Plastifizierungskorrekturfunktion $f(L_r)$ für die in Bild 3-5 dargestellte Nahtgeometrie ab Verhältnissen L_r von etwa 0,6 größere Werte als für den homogenen Werkstoff an.

3.2.4 Korrelation zwischen bruchmechanischen Kennwerten und der Kerbschlagarbeit

Lieferbedingungen für metallische Werkstoffe im Bauwesen wie DIN EN 10025 stellen keine Anforderungen an bruchmechanische Werkstoffkennwerte. Deshalb werden für viele praktische Anwendungen bruchmechanische Kenngrößen aus verfügbaren Werkstoffkenngrößen wie der Kerbschlagarbeit abgeleitet.

In [39] wird eine Beziehung angegeben, mit der die Bruchzähigkeit im Übergangsbereich zwischen spröden Versagen in der Tieflage und zähem Versagen in der Hochlage berechnet werden kann. Die wesentlichen Eingangsgrößen sind die Einsatztemperatur T und die Übergangstemperatur T_{27J}, bei der die Kerbschlagarbeit 27J beträgt. Diese Beziehung ist in (3-14) angegeben, wobei die Bruchzähigkeit K_{IC} mit (3-10) in ein J-Integral J_{IC} umgerechnet wurde.

$$J_{IC} = \left\{ 20 + \left[11 + 77 \cdot e^{0,019 \cdot (T - T_{27J} + 18K)} \right] \cdot \left(\frac{25}{B} \right)^{0,25} \cdot \left[In \left(\frac{1}{1 - P_f} \right) \right]^{0,25} \right\}^2 \cdot \frac{1 - \nu^2}{E}$$
(3-14)

mit T: Einsatztemperatur [°C]

T_{27J}: Übergangstemperatur, bei der die Kerbschlagarbeit

27J beträgt [°C]

- B: effektive Rissfrontlänge [mm], Bild 3-6
- Pf: Versagenswahrscheinlichkeit
- E: E-Modul [N/mm²]
- v: Querkontraktionszahl

In [39] werden die (3-14) zugrunde liegende Zusammenhänge 1) bis 3) erklärt. 1) Zwischen der Übergangstemperatur T_{100} , bei der die Bruchzähigkeit K_{IC} einer Probe mit einer Breite B von 25mm genau 100N/mm² \sqrt{m} beträgt, und der Übergangstemperatur T_{27J} besteht der Zusammenhang (3-15a). Die Standardabweichung der Abschätzung der Übergangstemperatur T₁₀₀ mit T_{27J} beträgt 15K.

$$T_{100} = T_{27J} - 18K$$
 (3-15a)

mit T₁₀₀: Übergangstemperatur, bei der die mit einer 25mm breiten Probe gemessene Bruchzähigkeit 100N/mm²√m beträgt [°C]

2) Der Verlauf der Bruchzähigkeitsübergangskurve entspricht dem als Master Kurve bezeichneten und nur durch die Übergangstemperatur T_{100} beschriebenen Verlauf (3-15b).

$$K_{\rm IC} = 20 + 11 + 77 \cdot e^{0.019 \cdot (T - T_{100})}$$
(3-15b)

3) Die Bruchzähigkeit K_{IC} nimmt mit einer zunehmenden effektiven Rissfrontlänge B gemäß (3-15c) ab.

$$K_{IC} = 20 + \left[(K_{IC,25mm} - 20) / \left(\frac{25}{B} \right)^{0.25} \right]$$
 (3-15c)

mit $K_{IC,25mm}$: mit einer Probe einer Breite B_B von 25mm bestimmte Bruchzähigkeit [N/mm² \sqrt{m}] Die Abhängigkeit der Bruchzähigkeit von der Rissfrontlänge wird damit erklärt, dass ein spröder Bruch dann eintritt, wenn die maximale Hauptzugspannung in einem kleinen Werkstoffbereich vor der Rissfront die für diesen Werkstoffbereich kritische Größe erreicht ("weakest link model"). Wegen der Verteilung der kritischen Größen der Hauptzugspannungen in polykristallinen Stählen nimmt deshalb die Versagenswahrscheinlichkeit und somit der Erwartungswert der Bruchzähigkeit mit zunehmender Rissfrontlänge und somit einem größeren potentiell versagensauslösenden Werkstoffbereich ab. Gemäß [40] kann die effektive Rissfrontlänge auf das zweifache der Bauteildicke t begrenzt werden (Bild 3-6).

Bild 3-6: Definition der effektiven Rissfrontlänge B

In [41] wird die durch etwa 1000 Versuche mit Prüfkörpern aus ferritischen Stählen abgesicherte Korrelation zwischen der Kerbschlagarbeit in der Hochlage AV_{HL} und dem J-Integral in der zähen Hochlage angegeben. In (3-16) ist diese Korrelation für das technische J-Integral J_{1,0,2} bei einem Rissfortschritt von 0,2mm angegeben.

$$J_{I,0,2} = C_{w} \cdot AV_{HL}^{1,28} \cdot 0,2^{m}$$
(3-16)

mit
$$m = 0,133 \cdot AV_{HL}^{0,256} - \frac{R_{p0,2}}{4664} + 0,03$$

AV_{HL}: Kerbschlagarbeit in der Hochlage [J]

 $R_{p0,2}$: Dehngrenze des Werkstoffs [N/mm²] c_w = 0,76 (Erwartungswert), $c_{w,5\%}$ = 0,53 (5%-Fraktilwert)
4 Experimentell untersuchte Nähte

4.1 Nahtungänzen

In der Stahlbaupraxis ist zumindest bei manuellen Schweißprozessen anzunehmen, dass Schweißnähte (bereichsweise) unzulässige Nahtungänzen aufweisen, wenn nicht oder nur in geringem Umfang zerstörungsfrei geprüft wird. Die Auftretenswahrscheinlichkeit und Größe solcher Ungänzen wird zum Beispiel

- von der Qualifizierung des Schweißpersonals und
- vom Umfang der Qualitätssicherungsmaßnahmen und
- vom Schweißprozess und
- von den Schweißparametern und
- von den Fertigungsbedingungen und
- vom Umfang zerstörungsfreier Prüfungen (zfP)

bestimmt. Angaben zur Häufigkeit und Größe von Ungänzen in mit manuellen Prozessen geschweißten Nähten gibt es im Schrifttum nicht. Deswegen wurde im Rahmen von Prüfungen zur Verlängerung von Schweißerprüfbescheinigungen gemäß DIN EN 287-1 eine Feldstudie mit dem in Bild 4-1 angegebenen Umfang durchgeführt. Insgesamt wurden 117 mit Prozess 135 geschweißte Prüfstücke aus Baustählen mit Dicken zwischen 8mm und 35mm untersucht. Die mittlere Nahtdicke der mehrlagig geschweißten Nähte betrug 14mm. Die in der Stahlbaufertigung tätigen Schweißer mit noch gültigen Prüfbescheinigungen gemäß DIN EN 287-1 wurden nicht speziell für das Schweißen der Prüfstücke geschult. Wiederholungsprüfungen wurden in der Auswertung nicht berücksichtigt. Die Qualität der geschweißten Nähte sollte somit etwa der Qualität solcher Nähte in der Stahlbaufertigung entsprechen.

In den aufgebrochenen Prüfstücken wurde die maximale Höhe etwaiger Ungänzen in Nahtdickenrichtung und deren Ausdehnung in Nahtlängsrichtung unabhängig davon, ob die Ungänzen gemäß DIN EN 287-1 für ein Bestehen der Prüfung zulässig sind, gemessen. Hierbei wurde zwischen wurzelnahen Ungänzen mit einem maximalen Abstand von $a_s/3$ von der Nahtwurzel (Bild 4-1) sowie Ungänzen h_D im übrigen Nahtquerschnitt unterschieden. Im Falle der wurzelnahen Ungänzen wird zudem zwischen kurzen Ungänzen h_{Wk} mit einer maximalen Ausdehnung in Nahtlängsrichtung von 30mm und systematischen, längeren Ungänzen über größere Bereiche der Naht h_W unterschieden. Die Gesamtheit der Prüfungen wurde getrennt nach den Ungänzen h_W , h_{Wk} und h_D ausgewertet. Außerdem wurde die gesamte Schwächung A_{Fehler} des Nahtquerschnitts durch Ungänzen ausgewertet.

Von den 117 Prüfstücken wiesen 67% Ungänzen auf, die den Nahtquerschnitt schwächen. 30% der Prüfstücke wiesen Ungänzen h_W , 37% Ungänzen h_{Wk} und 21% Ungänzen h_D auf. Insgesamt 37% der Prüfstücke wiesen Ungänzen auf, die für ein Bestehen der Schweißerprüfung gemäß DIN EN 287-1 unzulässig waren. Bild 4-1 zeigt die Summenhäufigkeiten der Verhältnisse

- von A_{Fehler} zur Querschnittsfläche A_{EC} der Naht und
- von h_W zur Nahtdicke a_{EC} und
- von h_D zur Nahtdicke a_{EC} und
- von h_{Wk} zur Nahtdicke a_{EC}.

Gemäß Bild 4-1 wiesen 5% aller Nähte Ungänzen auf, deren Gesamtfläche mindestens 16,5% der Querschnittsfläche A_{EC} der Naht betrug. Diese Querschnittsschwächung von 16,5% entspricht etwa dem 5%-Fraktilwert der Höhe von langen wurzelnahen Ungänzen h_W/a_{EC} . Dies zeigt, dass die Querschnittsschwächung der Nähte praktisch nur durch systematische wurzelnahe Ungänzen bedingt ist. Die 5%-Fraktilwerte der Höhen der kurzen wurzelnahen Ungänzen h_{WK}/a_{EC} und der Ungänzen im übrigen Nahtquerschnitt h_D/a_{EC} betragen 14,0% und 8,0%.

Bild 4-1: Feldstudie an der VA-Karlsruhe zur Größenbestimmung von Nahtungänzen

Bild 4-1 zeigt, dass bei manuellen Schweißprozessen mit Nahtungänzen gerechnet werden muss. Hierbei sind wurzelnahe Ungänzen wegen der schlechten Zugänglichkeit der Nahtwurzel häufiger als Ungänzen im übrigen Nahtquerschnitt. Wurzelnahe Ungänzen können nur mit zerstörungsfreien Prüfungen (zfP) wie Durchstrahlungsprüfungen oder Ultraschallprüfungen entdeckt werden. Deshalb muss bei Nähten, die nicht oder nur in geringem Umfang auf innere Ungänzen geprüft werden, vom Vorliegen von wurzelnahen Ungänzen ausgegangen werden.

Zur Untersuchung des Tragverhaltens solcher Nähte wurden Prüfkörper aus 40mm und 80mm dicken Blechen aus S355J2G3 hergestellt, bei deren Fertigung gezielt Ungänzen eingebracht wurden.

Die geplante Größe der Ungänzen beträgt zwischen 10% und 20% des Nahtquerschnitts. Diese Spanne entspricht etwa der Spanne der in Bild 4-1 angegebenen 5%-Fraktilwerte von kurzen wurzelnahen Ungänzen h_{wk}/a_{EC} und von systematischen wurzelnahen Ungänzen h_w/a_{EC} .

Bild 4-2 zeigt exemplarisch die im folgenden näher beschriebenen Ungänzen.

a_{Def}≈10mm bis 15mm

Bild 4-2: Ungänzen der untersuchten Nähte

Die angestrebte Größe der ungenügenden Durchschweißung Σ Wbf beträgt 1,5mm je Nahtwurzel.

Die Bindefehler wurden in wurzelnahen Lagen im Abstand a_{Def} von der Nahtwurzel eingebracht. Der Abstand a_{Def} beträgt bei den MAG-geschweißten DHY-Nähten etwa 8mm und bei den HY-Nähten zwischen 10mm und 15mm.

Bei den Nähten von 80mm dicken Blechen wurden die Bindefehler in den ersten, aus mehreren Schweißraupen bestehenden Fülllage eingebracht. Hier treten in der Praxis häufig Bindefehler auf, weil die Naht in diesem Bereich wegen der geringen Nahtöffnung schlecht zugänglich ist und vor dem Schweißen der Fülllagen im Gegensatz zu den Wurzellagen die vorher geschweißte Lage häufig nicht beschliffen wird.

Bei den Nähten von 40mm dicken Blechen grenzen die Bindefehler teilweise unmittelbar an die Nahtwurzel und werden deshalb als ungenügende Durchschweißung Σ Wbf aufgefasst.

Bei den E-Hand geschweißten Nähten wurden im Abstand a_{Def} von etwa 11mm von der Nahtwurzel beim Schweißen Kupferspäne überschweißt, um Risse (Lötbrüchigkeit) im Schweißgut zu erzeugen.

Diese Risse r bei den HY-Nähten (vergleiche Bild 4-3) wurden erreicht, indem der Winkelverzug beim Schweißen der ersten Füllagen nicht behindert wurde. Durch das exzentrische Schrumpfen riss die Wurzellage ausgehend von der Nahtwurzel ein.

4.2 Übersicht der untersuchten Nähte

Tabelle 4-1 gibt eine Übersicht aller untersuchten Nähte. Die in Tabelle 4-1 verwendeten Bezeichnungen werden im folgenden erläutert.

Jede Naht erhält zur eindeutigen Identifizierung einen Bezeichnungsschlüssel (zum Beispiel 5-40-0,20-135), der folgende Angaben enthält:

- 5: Nahtvariante 1 bis 7
- 40: Blechdicke t in mm
- 0,20: Steghöhe h bezogen auf die Blechdicke t
- 135: Schweißrozessnummer gemäß DIN EN ISO 4063 (E-Hand: 111, MAG: 135, MAG-Fülldraht: 136)

Geometrie					Ungär	nzen			Werkstoffe Schweißparameter				r		
Variante	Nahtart		Blechdicke t	Steghöhe h / t	Wurzelmaß a _A	Ungenügende Durchschweißung(en) ∑Wbf	Wurzelnahe Ungänze(n) ⊻Def	Großprüfkörper (G) Standardprüfkörper (S	GW I bis III aus S355	MZS	Schweißprozess Zwischen- lagen- temperatur in °C		Strecken- energie in kJ/mm		
		-	mm	-	mm	mm	mm	-	-	-	-	$WL^{2)}$	DL ²⁾	$WL^{2)}$	$DL^{2)}$
		\square	80					S	I			20	85	1,0	1,4
1	H		40	0,00	3	0	0	S	III		135	21	115	1,9	1,4
			40					G				20	102	1,1	1,5
	۲		80	0,10				S	Ι		135	33	110	1,1	1,6
2	Н		40	0.20	3	0	0	G				55	163	1 1	15
			40	0,20				0				55	100	1,1	1,5
3	DHY+a _A		80	0,50	15	0	0	S	Ι	EN440 G423MG4Si1	135	21	93	1,2	1,2
4	рнγ		80	0,50	3	0	0	S	I		135	21	80	1,7	1,4
			40	0,15			8	S			135	50	102	0,9	1,5
			40	0,20			8	G				51	162	1,5	2,0
	Def		80	0,15			8	S	1			75	106	0,9	1,5
_	¤+2			0,28	•		16	S				77	114	0,9	1,4
5	Н		40	0,20	3	3	4 ¹⁾	G	III	EN738 T424BCM3 EN499 E382B32H10	136	50	129	1,7	2,4
				0,20			4	G	Ш		111	55	152	1,4	2,7
			80	0,28			16	S	II	EN499 E424B42H5		50	110	2,4	1,3
	Def		40	0,20				G	III			35	129	0,5	1,4
6	۲ ۲		80	0,10	3	1,5	4	S	Ш		135	10	4003)	a a 3)	a a 3)
	¥.			0,20				S	Ш	EN440		40	120 /	1,1 ′	1,1 ′
7	-∑Def tiss		80	0,10	2	1 5	4	S	II	G463MG4Si1	105	40	120 ³⁾	1 1 ³⁾	1 1 ³⁾
Ĺ	+ ≻H ⊁+			00	0,20	5	1,5	т	S	II		100	40	120	1,1

Das Einbringen von Bindefehlern war nicht erfolgreich.
 WL= erste Wurzellage, DL=Decklage
 Die Zwischenlagentemperatur und die Schweißparameter wurden nur in einer Fülllage gemessen.

Tabelle 4-1:	Übersicht de	er untersuchten	Nähte

4.3 Nahtgeometrie

Bild 4-3 zeigt zur Definition der Geometriekenngrößen eine HY-Naht mit einem planmäßigen Steg h, einer ungenügenden Durchschweißung Σ Wbf und weiteren Ungänzen Σ Def.

Bild 4-3: Nahtgeometrie

Bei DHY-Nähten umfassen Σ Wbf und Σ Def die Ungänzen auf beiden Nahtseiten. Grenzen die Ungänzen unmittelbar an die Nahtwurzel, werden diese unabhängig von ihrer Art als ungenügende Durchschweißung Σ Wbf aufgefasst. Σ Wbf umfasst somit auch etwaige Anrisse r an der Nahtwurzel.

Die gesamte Nichtdurchschweißung s umfasst die planmäßige Steghöhe h und die Größe der ungenügenden Durchschweißung Σ Wbf.

Der Abstand zwischen der Nichtdurchschweißung s und weiteren Ungänzen Σ Def wird mit a_{Def} bezeichnet. Ungänzen mit einem Abstand von der Nichtdurchschweißung von maximal einem Drittel des rechnerischen Wurzelmaßes a_s der jeweiligen Nahtseite werden als wurzelnah bezeichnet. Bei HY-Nähten entspricht a_s dem rechnerischen Wurzelmaß a_{EC}.

Das Wurzelmaß a_A ist die Höhe des größten gleichschenkligen, der äußeren Nahtausrundung einschreibbaren Dreiecks.

Der Nahtöffnungswinkel α_{Naht} beträgt bei den von beiden Seiten geschweißten Nähten 45° und bei den von einer Seite geschweißten HY-Nähten etwa 35°.

Außer Nähten mit den zuvor beschriebenen Ungänzen wurden zum Vergleich auch voll durchgeschweißte und teilweise durchgeschweißte Nähte ohne Ungänzen hergestellt. Die Nahtvarianten 1 bis 7 werden im folgenden beschrieben:

Nahtvariante 1

Voll durchgeschweißte DHV-Naht; Die äußeren Nahtübergänge wurden ausgerundet, wobei Mindestwurzelmaße a_A von 3mm vorgegeben wurden.

Nahtvarianten 2, 4 und 5

Teilweise durchgeschweißte DHY-Nähte mit auf die Blechdicke t bezogenen Steghöhen h zwischen 0,10 und 0,50; Die äußeren Nahtübergänge wurden wie bei Nahtvariante 1 ausgerundet.

Nahtvariante 3

Teilweise durchgeschweißte DHY-Naht mit einer auf die Blechdicke t bezogenen Steghöhe h von 0,50; Die äußeren Nahtübergänge wurden ausgerundet, wobei Mindestwurzelmaße a_A von 15mm vorgegeben wurden.

Nahtvarianten 6 und 7

Teilweise durchgeschweißte HY-Nähte mit Steghöhen h zwischen 0,10t und 0,20t; Der äußere Nahtübergang wurde ausgerundet, wobei ein Mindestwurzelmaß a_A von 3mm vorgegeben wurden.

Die Nahtgeometrie samt der Lage und Größe von Ungänzen wurde mit Makroschliffen in einem Querschnitt je Naht gemessen. Die Schliffbilder sind in Anhang A angegeben.

4.4 Prüfkörpergeometrie

Die Nahtvarianten 1 bis 7 sollen in Bauteilversuchen und mit begleitenden mechanisch-technologischen Untersuchungen untersucht werden. Hierzu wurden Standardprüfkörper S bestehend aus 1000mm breiten, 40mm und 80mm dicken Grobblechen gefertigt. Aus diesen Prüfkörpern werden zum einen Proben für die in Abschnitt 5 beschriebenen Kreuzzugversuche und Biegeversuche, die in Abschnitt 8.3 beschriebenen Dauerschwingversuche und zum andern Probenabschnitte für die im folgenden beschriebenen mechanischtechnologische Untersuchungen entnommen.

Bild 4-4 zeigt einen Standardprüfkörper mit den Entnahmestellen der Proben.

Außerdem wurden Großprüfkörper G für Kreuzzugversuche mit bauteilähnlichen Dimensionen bestehend aus im Nahtbereich 280mm breiten und 40mm dicken Grobblechen gefertigt (Bild 4-5).

Eine Seite der Großprüfkörper und der Standardprüfkörper weist die zuvor beschriebene Nahtgeometrie auf. Auf der zweiten Seite wurden die Nähte ge-

genüber der Seite für Untersuchungen verstärkt, um das Versagen auf der Untersuchungsseite zu erzwingen.

Bild 4-4: Standardprüfkörper mit Entnahmestellen von Proben

Bild 4-5: Großprüfkörper

4.5 Werkstoffe

Für die Prüfkörperfertigung wurden normalisierend gewalzte 40mm und 80mm dicke Grobbleche aus S355J2G3 (DIN EN 10025:1990) aus drei Walzchargen verwendet. Tabelle 4-2 fasst die mechanischen und technologischen Kennwerte der Grobbleche GWI bis GWIII zusammen. Die Grobbleche aus S355J2G3 erfüllen auch die Anforderungen in DIN EN 10025-3 an die Kerbschlagarbeit und die Reinheit (Schwefel-Gehalt) für einen Stahl S355NL.

Die Nähte wurden mit gemäß BN TL 918 490 für den Werkstoff S355J2G3 zugelassenen Schweißzusatzwerkstoffen der Festigkeitsklassen 42 und 46 hergestellt. Die Schweißzusatzwerkstoffe weisen somit größere spezifizierte Dehngrenzen als der Grundwerkstoff auf. Beim Prüfkörper 5-40-0,20-111-G wurde abweichend ein Schweißzusatzwerkstoff der Festigkeitsklasse 38 verwendet. In Tabelle 4-2 sind die Mindestanforderungen in DIN EN 440, DIN EN 499 und DIN EN 758 an die Schweißzusatzwerkstoffe angegeben. Zudem sind die nach Herstellerangaben für diese Schweißzusatzwerkstoffe typischen Ergebnisse von Abnahmeprüfungen am reinen Schweißgut angegeben.

			Р	Б	•	A _v			S ⁴⁾ -	
GW			I M	1 1 p0,2	A	-20°C	CEV ²⁾	CET ³⁾	Gehalt	
			N/mm ²	N/mm ²	%	J	%	%	%	
GW I, t = 80			546	361	30,0	79	0,46	0,33	0,002	
GW II, t = 80 S355J2G3		1)	534	353	27,1	169	0,42	0,35	0,001	
GW III, t = 40			558	356	30,0	139	0,43	0,31	0,005	
t = 40/80 S355J2		DIN EN 10025-2	470	345/325	22/20	27	0,47	-	0,025	
t = 40/80 S355NL		DIN EN 10025-3	470	345/325	22/21	47	0,45	-	0,020	
SZW	I					A _v				
		5)	616	521	24,0	65J bei -40°C				
G42 3MG	54Si1	DIN EN 440	500	420	20,0	47J bei -30°C				
		5)	624	546	28,8	86J bei -30°C				
G46 3MG	64Si1	DIN EN 440	530	460	20,0	47J bei -30°C				
E 40 4 B 4		5)	575	495	31,0	235J bei -46°C				
E42 4B4	I2H5	DIN EN 499	500	420	20,0	47J bei -40°C	7J bei -40°C			
		5)	522	480	27,3	93J bei -20°C				
E38 2B3	2H10	DIN EN 499	DIN EN 499 470 380 20,0 47J bei -20°C							
T (0, (D)		5)	524	444	32,0	≥47 bei -40°C				
142 4B0	JNI3	DIN EN 758	500	420	20,0	47J bei -40°C				

1) Ergebnisse von Prüfungen gemäß DIN EN 10002-1 (proportionale Rundzugprobe, d=10mm) und DIN EN 10045-1, Probennahme gemäß DIN EN 10025-2

2) CEV=[%]C+[%]Mn/6+([%]Cr+[%]Mo+[%]V)/5+([%]Ni+[%]Cu)/15

3) CET=[%]C+([%]Mn+[%]Mo)/10+([%]Cr+[%]Cu)/20+[%]Ni/40

4) Schwefelgehalt

5) Typisches Ergebnis einer Abnahmeprüfung für den vorliegenden SZW

Tabelle 4-2: Werkstoffe für die Prüfkörperfertigung

4.6 Schweißparameter

Die Nähte der Variante 5 mit Ungänzen wurden mit den manuellen Schweißprozessen 111, 135 und 136 hergestellt. Die übrigen Varianten wurden nur mit dem im Bauwesen häufig eingesetzten Prozess 135 geschweißt.

Alle Nähte wurden mit niedrigen Vorwärmtemperaturen von maximal 80°C geschweißt. Die Stromstärke I, die Spannung U und die Schweißgeschwindigkeit v wurden während des Schweißens gemessen. In Tabelle 4-1 sind die Zwischenlagentemperaturen und die mit den gemessenen Parametern und (4-1) berechneten Streckenenergien SE in der Wurzellage (WL) und der zuletzt geschweißten Decklage (DL) angegeben. Bei den mit Prozess 135 geschweißten Nähten ist die Streckenergie mit 0,5kJ/mm bis 2,0kJ/mm verfahrensbedingt kleiner als bei Prozess 111 (1,3kJ/mm bis 2,7kJ/mm) und Prozess 136 (1,7kJ/mm bis 2,4kJ/mm).

$$SE = \frac{U \cdot I}{v}$$
(4-1)

mit U: Spannung [V]

I: Stromstärke [A]

v: Schweißgeschwindigkeit [mm/s]

4.7 Mechanische und technologische Eigenschaften im Nahtbereich

4.7.1 Probennahme und Prüfung

Im folgenden wird die Messung von mechanischen und technologischen Eigenschaften im Nahtbereich beschrieben. Die Ergebnisse dieser Messungen sollen einen Vergleich der in den experimentell untersuchten Nähten vorliegenden Eigenschaften mit Anforderungen an diese Eigenschaften in Ausführungsnormen ermöglichen und die für eine spätere Modellierung der Nähte mit der Finiten Element Methode erforderlichen mechanischen Kennwerte bereitstellen.

Die Probennahmen erfolgten derart, dass

- die mechanischen Kennwerte im Schweißgut der mit Prozess 111 und 135 geschweißten Nähte und
- die mechanischen Kennwerte in der Wärmeeinflusszone der 80mm dicken Grobbleche GWI und GWII und
- die Übergangstemperatur T_{27J} der Kerbschlagarbeit im Schweißgut der mit Prozess 111 und 135 geschweißten Nähte und
- die Übergangstemperatur T_{27J} der Kerbschlagarbeit im wurzelnahen und äußeren Nahtübergang der 80mm dicken Grobbleche GWI und GWII

gemessen werden können. Bild 4-6 zeigt die Entnahmestellen und die Bezeichnungen von Zug- und Kerbschlagbiegeproben.

Bild 4-6: Entnahmestellen von Zug- und Kerbschlagbiegeproben

Die Kerbschlagbiegproben aus dem Querblech mit Kerb im Nahtübergang an der Nahtwurzel (SW) und mit Kerb im äußeren Nahtübergang (SÜ) wurden in Anlehnung an die DVS-Richtlinie 1702 entnommen. Der Proben SÜ und SW wurden 1mm bis 2mm entfernt von der Schmelzlinie in Dickenrichtung des Querblechs gekerbt.

Die Flachzugproben aus der Wärmeeinflusszone wurden in Nahtlängsrichtung entnommen, wobei die Proben an den Stirnseiten geschliffen und geätzt wurden, um die Schmelzlinie sichtbar zu machen. Im Messbereich wurden die Proben dann so auf Maß poliert, dass eine Probenoberfläche an die Schmelzlinie angrenzt. Die in der Messlänge 1mm und 2mm dicken Proben umfassen somit zwischen 40% und 80% der gesamten, etwa 2,5mm breiten, während des Schweißvorgangs über die Austenitisierungstemperatur erwärmten Wärmeeinflusszone.

In Anhang A wird die Durchführung der mechanischen und technologischen Untersuchungen beschrieben. Die Ergebnisse der Zugversuche und der Kerbschlagbiegeversuche werden angegeben. Zudem werden die Ergebnisse von hier nicht beschriebenen Härtmessungen in den Deck- und Wurzellagen in einem Makroschliff je Naht angegeben.

4.7.2 Mechanische Eigenschaften

Bild 4-7 zeigt die Dehngrenzen $R_{p0,2}$ (schwarze Symbole) und die Zugfestigkeiten R_m (graue Symbole), die in der Wärmeeinflusszone der Grobbleche GWI und GWII und im Schweißgut im geschweißten Zustand (AW) gemessen wurden. Zudem sind die Kennwerte $R_{p0,2}$ und R_m im wärmeunbeeinflussten Grundwerkstoff und im reinen Schweißgut (rSG) angegeben.

Die Dehngrenzen $R_{p0,2}$ sind im reinen Schweißgut zwischen 14% (Prozess 111, E42) und 24% (Prozess 135, G46) größer als die spezifizierten Mindestwerte von 420N/mm² und 460N/mm².

Die Dehngrenzen $R_{p,0,2,SG}$ betragen im Schweißgut der untersuchten Nähte (AW) zwischen 545N/mm² und 647N/mm² und sind zwischen 20% und 55% größer als die im reinen Schweißgut spezifizierten Mindestwerte von 420N/mm² und 460N/mm². Die Verhältnisse M_{SG} (4-2) der Dehngrenzen $R_{p0,2,SG}$ im Schweißgut zu den Dehngrenzen $R_{p0,2,GW}$ im wärmeunbeeinflussten Grundwerkstoff betragen zwischen 1,51 und 1,81. Die Zugfestigkeiten $R_{m,SG}$ im Schweißgut betragen zwischen 639N/mm² und 705N/mm². Eine Abhängigkeit der mechanischen Kennwerte vom Schweißprozess und vom Schweißzusatzwerkstoff wurde nicht festgestellt.

$$M_{SG} = \frac{R_{p0.2,SG}}{R_{p0.2,GW}}$$
(4-2)

Die Dehngrenzen $R_{p0,2,WEZ}$ in der Wärmeeinflusszone des 80mm dicken Grobblechs GWI mit einem Kohlenstoffäquivalent CEV von 0,464 betragen zwischen 600N/mm² und 707N/mm². Die Verhältnisse M_{WEZ} (4-3) dieser Dehngrenzen zu den Dehngrenzen $R_{p0,2,GW}$ betragen zwischen 1,67 und 1,96.

In der Wärmeeinflusszone des 80mm dicken Grobblechs GWII (CEV=0,424) wurden etwas kleinere Dehngrenzen $R_{p0,2,WEZ}$ zwischen 535N/mm² und 671N/mm² gemessen. Die Verhältniswerte M_{WEZ} betragen dort zwischen 1,49 und 1,86.

Die Zugfestigkeiten $R_{m,WEZ}$ in der Wärmeeinflusszone betragen zwischen 656N/mm² und 822N/mm².

Eine Abhängigkeit der mechanischen Kennwerte in der Wärmeeinflusszone vom Schweißprozess wurde nicht festgestellt.

$$M_{WEZ} = \frac{R_{p0,2, WEZ}}{R_{p0,2, GW}}$$
(4-3)

Bild 4-7: Mechanische Eigenschaften im Nahtbereich

R

4.7.3 Kerbschlagzähigkeit im Nahtbereich

Die Übergangstemperatur T_{27J}, bei der die Kerbschlagarbeit 27J beträgt, ermöglicht einen übersichtlichen Vergleich von Zähigkeiten. Deshalb werden aus den bei Prüftemperaturen T_{AV} zwischen –70°C und 20°C gemessenen Kerbschlagarbeitswerten im Nahtbereich und den Prüftemperaturen mit (4-4) Übergangstemperaturen T_{27J} abgeschätzt, sofern die Differenz T_{AV} - T_{27J} innerhalb der in BS 5950-1 angegebenen Anwendungsgrenzen für (4-4) liegt. Die im folgenden verwendeten besten Schätzungen der Übergangstemperaturen T_{27J} werden mit den Kerbschlagarbeitswerten und den Prüftemperaturen T_{4V} berechnet, für die der Betrag IT_{AV} - T_{27J}I minimal ist.

Die Standardabweichung der mit den übrigen Messergebnissen T_{AV} und A_v abgeschätzten Übergangstemperaturen von der besten Schätzung von T_{27J} beträgt 10°C.

$$T_{27J} - T_{AV} = 41,33 - 8,16\sqrt{A_v - 1,373}$$
für -30°C $\leq T_{AV} - T_{27J} \leq 40$ °C (4-4)

Bild 4-8 zeigt die Übergangstemperaturen T_{27J} im Schweißgut, den wärmeunbeeinflussten Grundwerkstoffen GWI bis GWIII und im äußeren (SÜ) und wurzelseitigen (SW) Nahtübergang der Querbleche.

Bild 4-8: Übergangstemperaturen T_{27J} im Nahtbereich

Die Übergangstemperaturen T_{27J} im Schweißgut der mit Prozess 135 geschweißten Nähte betragen zwischen -43°C und -70°C.

Die Übergangstemperatur T_{27J} im Schweißgut der mit Prozess 111 geschweißten Naht beträgt -66°C.

Die Übergangstemperaturen T_{27J} im äußeren Nahtübergang SÜ der mit Prozess 135 geschweißten Nähte betragen zwischen -39°C und -20°C. Diese Temperaturen sind signifikant höher als im wärmeunbeeinflussten Grundwerkstoff (-84°C $\leq T_{27J} \leq -51$ °C). Die Übergangstemperaturen T_{27J} im durch Überschweißen vergüteten wurzelseitigen Nahtübergang SW sind niedriger als im äußeren Nahtübergang und betragen zwischen -51°C und Die Öbergangstemperaturen T_{27J} betragen bei den mit Prozess 111 geschweißten Nähten sowohl im äußeren Nahtübergang SÜ als auch im wurzelseitigen Nahtübergang SW etwa -45°C.

4.7.4 Vergleich der Eigenschaften im Nahtbereich mit Anforderungen

In Bemessungs- und Ausführungsnormen werden entweder direkt (DIN EN 1993-1-8) oder durch Bezug auf Produktnormen und schweißtechnische Normen Anforderungen an die mechanischen und technologischen Eigenschaften von Schweißzusatzwerkstoffen und die technologischen Eigenschaften von Schweißverbindungen gestellt.

In Deutschland sind für Schweißverbindungen im Bauwesen zertifizierte Schweißzusatzwerkstoffe zu verwenden. Bisher erfolgte die Zertifizierung nach dem in der Bauregelliste [43] vorgegebenen Verfahren ÜZ. Die Zertifizierungsstelle der Deutschen Bahn führt ein Verzeichnis mit Kennblättern zertifizierter Schweißzusatzwerkstoffe, aus denen die Grenzen der Zertifizierung und somit der Anwendungsbereich hervorgeht. Die Anwendungsgrenzen wurden bisher nach den Vorgaben in BN TL 918 490 festgelegt. Schweißzusatzwerkstoffe, die durch Kennblätter nach BN TL 918 490 für das Schweißen von Stählen in der Festigkeit S355 zugelassen sind, gehören in der Regel zur Festigkeitsklasse 42 oder 46 und weisen somit eine Überfestigkeit M_{SG} auf.

Mit der Einführung der europäisch harmonisierten allgemeinen Produktnorm DIN EN 13479 für Schweißzusatzwerkstoffe erfolgt die Zertifizierung und die CE-Kennzeichnung gemäß den Vorgaben in DIN EN 13479. Demnach muss in einer Grundeignungsprüfung mit dem in DIN EN 14532-1 angegebenen Umfang nachgewiesen werden, dass die maßgebenden Eigenschaften ($R_{p0,2}$, R_m , A, A_v) des Schweißzusatzwerkstoffs mit den Anforderungen der spezifischen Produktnorm wie zum Beispiel DIN EN 440 übereinstimmen. DIN EN 13479 enthält keine Regelungen zur Festlegung des Anwendungsbereichs. Hinweise hierzu sind zum Beispiel in DIN EN 14532-1 angegeben.

DIN 18800-7 fordert für Schweißverbindungen von Blechen in Dicken ab 40mm und für Dehngrenzen $R_{p0,2,GW}$ größer als 355N/mm² eine Qualifizierung von

manuellen Schweißverfahren gemäß den in DIN EN ISO 15613 und DIN EN ISO 15614-1 geregelten Verfahren. Demnach sind technologische Prüfungen im Nahtbereich erforderlich. Der Umfang dieser Prüfungen und die Annahmekriterien sind in DIN EN ISO 15614-1 festgelegt. Für Kehlnahtverbindungen sind in Deutschland zusätzlich die Regelungen in der DVS-Richtlinie 1702 zu beachten.

Die europäischen Bemessungsregeln in DIN EN 1993-1-8 gelten nur für Schweißverbindungen, die gemäß prEN 1090-2 ausgeführt werden und für die Schweißzusatzwerkstoffe nach DIN EN 13479 verwendet werden. In DIN EN 1993-1-8 wird explizit gefordert, dass die Schweißzusatzwerkstoffe wenigstens die Streckgrenze, Zugfestigkeit Bruchdehnung und Kerbschlagarbeitswerte des Grundwerkstoffs aufweisen müssen. Hinsichtlich der Qualifizierung von Schweißverfahren entspricht prEN 1090-2 für Nähte zur Verbindung von Bauteilen in Dicken ab 40mm den deutschen Regelungen, außer dass für Kehlnahtverbindungen die zusätzlichen Anforderungen in der DVS-Richtlinie 1702 entfallen.

Tabelle 4-3 zeigt die Anforderungen an die technologischen Eigenschaften in Schweißverbindung in DIN EN 15614-1 und in der DVS-Richtlinie 1702.

		SG						WEZ						te	
		A _V DL			A _V WL			A _V WL			A _v DL			max. Härto	Gesam Naht
			Ν	NL	J2	Ν	NL	J2	Ν	NL	J2	Ν	NL	Tiaite	•
			J bei °C			J bei °C			J bei °C			bei °	С	HV/10	_
		-20	-30	-50	-20	-30	-50	-20	-30	-50	-20	-30	-50	11010	
4-1	Stumpfnaht	27			27 ¹⁾			27 ¹⁾		27		380	ja ^{2,3)}		
SO 1561	Durchge- schweißter T-Stoß ⁶⁾	27			27 ¹⁾			27 ¹⁾			27			380	ja ^{2,3)}
IN EN I	Kehlnaht	-			-		-		27 ⁷⁾			380	ja ^{4,5)}		
			Teilw	eise (durch	gesc	hweil	3te N	ähte	sind ı	nicht	gereç	gelt.		

¹⁾ Diese Anforderung gilt nur für Blechdicken größer als 50mm.

²⁾ Erreichen der Anforderung in Querzug- und Querbiegeversuchen

³⁾ Freiheit von unzulässigen Ungänzen; Nachweis mit zfP auf innere und äußere Ungänzen

⁷⁾ Kerbschlagarbeitswert im decklagenseitigen Nahtübergang SÜ (Forderung nur in der DVS-Richtlinie 1702)

Tabelle 4-3: Anforderungen an die technologischen Eigenschaften im Nahtbereich

⁴⁾ Freiheit von unzulässigen Ungänzen; Nachweis mit zfP auf äußere Ungänzen und mit Makroschliffen (innere Ungänzen).

⁵⁾ Erreichen der Anforderung in Kreuzzugversuchen (Forderung nur in der DVS-Richtlinie 1702)

⁶⁾ Diese Anforderungen gelten nur, wenn die Eigenschaften für die Anwendung relevant sind (tragende Verbindung). Die Qualifizierung muss etwa wie für eine Stumpfnaht erfolgen. Die Lage von Kerbschlagbiegeproben in der WEZ ist nicht festgelegt.

DIN EN ISO 15614-1 stellt nur für voll durchgeschweißte tragende Schweißnähte Anforderungen an die Kerbschlagzähigkeit im Nahtbereich sowie die Nahttragfähigkeit im Querzugversuch. Teilweise durchgeschweißte Nähte sind nicht geregelt. Auch für Kehlnahtverbindungen werden in DIN EN ISO 15614-1 abweichend von der DVS-Richtlinie 1702 keine Anforderungen an die Kerbschlagzähigkeit sowie an die Nahttragfähigkeit im Kreuzzugversuch gestellt.

Tabelle 4-4 fasst die zuvor gemessenen mechanischen und technologischen Eigenschaften zusammen.

	Naht	wurzel	Fülll	agen	max.			
Schweiß- prozess	SG	WEZ (SW)	SG	WEZ (SÜ)	EZ (SÜ) Aufhärtung M _{SG}		M _{WEZ}	
P	Üb	pergangstemp	eratur T _{27J} in	HV10				
135	-53 bis -48	-51 bis -46	-70 bis -43	-39 bis -20	300 bis 446	1,53 bis 1,81	1,49 bis 1,96	
111	-	-46	-66	-45	382	382 1,52 bis 1,80		

 Tabelle 4-4: Zusammenfassung der mechanischen und technologischen Eigenschaften im

 Nahtbereich

Der Vergleich der Messergebnisse mit den Anforderungen in Tabelle 4-3 zeigt folgendes:

Die Übergangstemperaturen T_{27J} im Schweißgut betragen unabhängig vom Schweißprozess maximal –43°C und entsprechen somit etwa der Mindestanforderung an Stumpfnähte von Stählen der Güte NL.

Die Übergangstemperaturen T_{27J} im wurzelseitigen Nahtübergang (SW) betragen maximal -46°C betragen und entsprechen somit etwa der Mindestanforderung an die Übergangstemperatur in der wurzelnahen Wärmeeinflusszone von Stumpfnähten von Stählen der Güte NL.

Die Übergangstemperaturen im äußeren Nahtübergang (SÜ) der mit Prozess 135 geschweißten Nähte betragen zwischen -20°C und -39°C und entsprechen somit nur der Mindestanforderung an Kehlnahtverbindungen von Stählen der Güte J2.

5 Durchführung von Bauteilversuchen

5.1 Kreuzzugversuche mit Standardproben

Bild 4-4 zeigt die Entnahme von Standardproben S_1 bis S_4 aus den Standardprüfkörpern. Bild 5-1 zeigt den Messaufbau der Kreuzzugversuche mit diesen im Bereich der Naht maximal 30mm breiten Proben.

Bild 5-1: Messaufbau in den Kreuzzugversuchen mit Standardproben

Die Proben wurden etwa 270mm entfernt vom mittigen Querblech mit Spannbacken in der Prüfmaschine Typ Losenhausen UHS100 eingespannt. Während der Versuche wurden folgende Messgrößen bis zum Bruch Versagen aufgezeichnet:

- Prüfmaschinenkraft F
- Verschiebung △L des Pr
 üfmaschinenquerhaupts; Die freie L
 änge L zwischen den Spannbacken betr
 ägt zwischen 580mm (Proben mit 40mm dicken Blechen) und 620mm (Proben mit 80mm dicken Blechen).
- Verschiebungen verschiedener Messpunkte im Nahtbereich an einem seitlichen Rand der Probe; Die Verschiebungen wurden mit einem optischen Messgerät (Messtech Videoextensiometer CCD 1300B) gemessen.
- Verschiebung Δur zwischen den Messpunkten M_{1opt} und M_{2opt} an einem seitlichen Rand der Probe; Bei den DHY-Nähten ist der Messpunkt M_{1opt} in

Blechdickenmitte des in Walzrichtung beanspruchten Längsblechs angeordnet. Der Messpunkt M_{2opt} ist auf dem in Dickenrichtung beanspruchten Querblech angrenzend an die Naht angeordnet. Bei der Nahtvariante 4 liegt der Messpunkt M_{2opt} abweichend hiervon in der Blechdickenmitte des in Dickenrichtung beanspruchten Querblechs. Die Messlänge ur ist bei Variante 4 deshalb mit 100mm größer als in den übrigen Versuchen (11mm bis 70mm). Bei den von einer Seite geschweißten HY-Nähten sind die Messpunkte M_{1opt} und $M_{2,opt}$ angrenzend an den unverschweißten Spalt angeordnet.

Je Naht wurden mindestens 3 Kreuzzugversuche mit Standardproben durchgeführt. Im ersten Versuch S1 wurde die Probe ohne eine zusätzliche Schwächung der Naht geprüft. Versagte in diesem Versuch die Naht, wurden auch die weiteren Versuche ohne ein zusätzliche Nahtschwächung durchgeführt. Versagte in diesem Versuch der wärmeunbeeinflusste Grundwerkstoff, wurde bei den weiteren Versuchen die Schweißnaht durch zusätzliche Kerben unterschiedlicher Kerbschärfe geschwächt. Bild 5-2 zeigt die Arten der Nahtschwächung 1) bis 3):

- 1) Schwächung des Nahtquerschnitts durch seitliche Sägeschnitte; Die Breite der Probe wird von I₀ auf I reduziert.
- Im Falle von großen Kehlnähten am äußeren Nahtübergang wurde der Nahtquerschnitt am äußeren Nahtübergang durch Bohrungen in Nahtlängsrichtung geschwächt.
- 3) Schwächung des Nahtquerschnitts durch mechanische Bearbeitung an den seitlichen Rändern; Die ursprünglichen Breite I_0 wird auf I reduziert.

Bild 5-2: Schwächungen des Nahtquerschnitts

Die Kreuzzugversuche wurden bei Raumtemperatur (15°C bis 25°C) mit einer Prüfgeschwindigkeit von 2mm/min im elastischen Bereich durchgeführt. Nachdem ausgeprägte plastische Verformungen gemessen wurden, wurde die Prüfgeschwindigkeit auf 5mm/min erhöht.

5.2 Kreuzzugversuche mit Großprüfkörpern

Bild 5-3 zeigt den Messaufbau in den Kreuzzugversuchen mit im Nahtbereich 280mm breiten Großprüfkörpern.

Bild 5-3: Messaufbau in den Kreuzzugversuchen mit Großprüfkörpern

Während der Versuche wurden die folgenden Größen bis zum Versagen gemessen und mit einer Messanlage HBM MGC Plus aufgezeichnet:

- Prüfmaschinenkraft F der Prüfmaschine Typ Schenk 6,3MN
- Verschiebung des Maschinenquerhaupts ∆L der Prüfmaschine; Der Achsabstand L zwischen den Lasteinleitungsbolzen beträgt 2000mm.
- Verschiebung ΔWA_{oben} und ΔWA_{unten} in den 300mm langen Messbereichen angrenzend an das in Dickenrichtung beanspruchte Querblech; Diese Messlängen umfassen den gesamten taillierten Bereich der in Walzrichtung beanspruchten Längsbleche. Die Verschiebungen wurden mit mechanischen Wegaufnehmer W50 gemessen. Die magnetischen Taster waren möglichst nahe der Schweißnaht (<20mm) angeordnet.
- Verschiebung ∆u zwischen den Messpunkten M_{3opt} und M_{4opt} in der Mitte der Nahtbreite; Der Messpunkt M_{3opt} ist auf der Blechoberfläche des in Walzrichtung beanspruchten Blechs direkt neben der Schweißnaht angeordnet. Der

Messpunkt M_{4opt} ist auf der Schweißnaht direkt angrenzend an das in Dickenrichtung beanspruchte Grobblech angeordnet. Die Messlänge u beträgt je nach Naht zwischen 14mm und 35mm. Die Verschiebung wird mit einem optischen Messgerät (Messtech Videoextensiometer CCD 1300B) gemessen.

Verschiebung ∆ur zwischen den optischen Messpunkten M_{1opt} und M_{1opt} am seitlichen Rand der Nahtbreite; Die Messpunkte sind analog zu den Messpunkten M_{3opt} und M_{4opt} angeordnet. Ist die Naht am seitlichen Rand nicht geschwächt, sind die Messpunkte M_{1opt} und M_{2opt} etwa 12mm vom seitlichen Rand entfernt. Wurde die Naht am seitlichen Rand durch Sägeschnitte geschwächt, sind die Messpunkte M_{1opt} und M_{2opt} etwa 50mm vom seitlichen Rand entfernt. Bei den von beiden Seiten geschweißten DHY-Nähten sind die Messpunkte für die optische Messung auf der zuerst geschweißten Seite der Naht angeordnet. Bei dem Großprüfkörper 6-40-0,20-135-G mit einer HY-Naht erfolgte die optische Messung auf der mit einer Kehlnaht gegengeschweißten Seite der Naht. Die Messlängen u und ur betragen bei diesem Prüfkörper 10mm.

Die Kreuzzugversuche mit den Großprüfkörpern wurden bei Raumtemperatur (15°C bis 25°C) mit einer Verfahrgeschwindigkeit des Prüfmaschinenquerhaupts von 2mm/min bis zum Versagen der Schweißverbindung durchgeführt. Nachdem in den Messlängen WA_{oben} und WA_{unten} große plastische Verformungen gemessen wurden, wurde die Querhauptverschiebung ΔL zunächst weiter erhöht. Bei Erreichen einer Kraft, die einer Spannung von 90% der Zugfestigkeit R_{m,GW} des Grundwerkstoffs im Querschnitt direkt neben der Schweißnaht entspricht, wurde der Prüfkörper entlastet. Die Naht wurde visuell auf Anrisse kontrolliert und durch seitliches Einsägen im Nahtbereich geschwächt (Bild 5-2). Der Prüfkörper wurde dann erneut mit einer Geschwindigkeit von 2mm/min bis zum Versagen belastet. In den Versuchen mit einer Nahtschwächung durch seitliche Sägeschnitte wird die Belastung der ungeschwächten Naht durch den Index 1a und die Belastung der geschwächten Naht durch den Index 1b angezeigt.

5.3 Biegeversuche

Bei der Nahtvariante 6 wurden Biegeversuche mit Biegeproben B aus den Standardprüfkörpern (Bild 4-4) durchgeführt. Bild 5-4 zeigt den Versuchsaufbau und die Messanordnung.

Bild 5-4: Messaufbau in den Biegeversuchen

Während der Versuche wurden die folgenden Messgrößen bis zum Versagen gemessen:

- Prüfmaschinenkraft F der Prüfmaschine Typ Losenhausen UHS100
- Verschiebung des Querhaupts der Prüfmaschine
- Verschiebung ∆ur zwischen den Messpunkten M_{1opt} und M_{2opt} an einem seitlichen Rand der Biegeprobe; Die Verschiebung wird mit einem optischen Messgerät (Messtech Videoextensiometer CCD 1300B) gemessen.

Die Biegeversuche wurden bei Raumtemperatur (15°C bis 25°C) mit einer Geschwindigkeit des Prüfmaschinenquerhaupts von 5mm/min bis zum Versagen durchgeführt.

6 Nachrechnung der Versuche mit der Finiten Element Methode

6.1 Abbildung der Nähte

Die zuvor beschriebenen Bauteilversuche werden mit der Finiten Element Methode nachgerechnet, um die im Modell angesetzte Geometrie, die Werkstoffkenngrößen, die Wahl der Elementtypen und die Vernetzung zu überprüfen. Anhand der im Nahtbereich gemessenen Verschiebungen sollen die Modelle validiert werden.

Die Nahtgeometrie wird im Finiten Element Modell gemäß Bild 6-1 idealisiert abgebildet.

Bild 6-1: Idealisierte Nahtgeometrie der DHY-Naht

Die Geometrie wird durch die folgenden variablen Abmessungen beschrieben:

- Blechdicke t
- Planmäßige Steghöhe h
- Größe der ungenügenden Durchschweißung oder der Anrisse an der Nahtwurzel (Wbf)
- Lage (a_{Def1}, a_{Def2}) und Größe (Def₁, Def₂) von Ungänzen; Im Falle von zur Blechdickenmitte etwa symmetrischen Ungänzen und bei den HY-Nähten entfallen die Größen a_{Def2} und Def₂.
- Höhe des unverschweißten Spalts h_s angrenzend an die Nahtwurzel
- Geometrie der äußeren Nahtausrundung (L_{\perp} , $L_{\perp 2}$, L_{II} , L_{II2} , b)
- Breite b_{WEZ} der Wärmeeinflusszone

Diese geometrischen Kenngrößen sind in Anhang B angegeben.

Im wärmeunbeeinflussten Grundwerkstoff, im Schweißgut und in der Wärmeeinflusszone der untersuchten Nähte wurden unterschiedliche mechanische Eigenschaften gemessen (Bild 4-7). Dies wird im Finiten Element Modell berücksichtigt, indem den Finiten Elementen in diesen Werkstoffbereichen unterschiedliche Spannungs-Dehnungs-Beziehungen zugewiesen werden. Bild 6-2 zeigt die Verhältnisse der Kennwerte R_m, R_{p0,2} und A, die nahe der Nahtwurzel (WL) und nahe dem äußeren Nahtübergang (DL) gemessen wurden.

Bild 6-2: Verhältnisse der mechanischen Kennwerte in den Wurzel (WL)- und Decklagen (DL)

Die Verhältniswerte in Bild 6-2 betragen zwischen 0,72 und 1,30, wobei keine signifikanten Unterschiede zwischen den Wurzellagen und den Decklagen zu erkennen sind. Deshalb werden im Finiten Element Modell im Schweißgut und in der Wärmeeinflusszone unabhängig vom Abstand von der Nahtwurzel konstante mechanische Kennwerte angesetzt.

Für die Eingabe in die Finiten Element Modelle werden die im Schweißgut der mit verschiedenen Prozessen und Zusätzen geschweißten Nähte und in der Wärmeeinflusszone der Grobbleche GWI bis GWIII gemessenen Kennwerte gemittelt. Im Grundwerkstoff werden die in Abnahmeprüfungen gemessenen mechanischen Kennwerte angesetzt.

Mit diesen Kennwerten werden wahre Spannungs-Dehnungs-Beziehungen für die Eingabe in das Finite Element Modell berechnet.

Bis zur Gleichmaßdehnung A_{gt} werden die wahren Dehnungen ϵ_w mit (6-1a) und den technischen Dehnungen ϵ_t berechnet.

$$\varepsilon_{w} = \ln (1 + \varepsilon_{t})$$
 (6-1a)

Die einachsigen wahren Spannungen σ_w werden mit (6-1b) und den technischen Spannungen σ_t berechnet.

$$\sigma_{w} = \sigma_{t} \cdot (1 + \varepsilon_{t}) \tag{6-1b}$$

Sind die Dehnungen größer als die Gleichmaßdehnung A_{gt} , kann die wahre Spannungs-Dehnungs-Beziehung nur abgeschätzt werden, weil die Querschnittsfläche der Zugproben im Einschnürbereich in den Zugversuchen nicht kontinuierlich gemessen wurde. Zwischen der Gleichmaßdehnung A_{gt} und der mit (6-2a) und der Brucheinschnürung Z berechneten wahren Bruchdehnung $\varepsilon_{w,f}$ wird ein linearer Anstieg der wahren Spannung mit zunehmender Dehnung angenommen.

$$\varepsilon_{\rm w,f} = \ln \left(\frac{1}{1-Z}\right) \tag{6-2a}$$

Die wahre Spannung im eingeschnürten Versagensquerschnitt $\sigma_{w,f}$ wird mit (6-2b) und der auf den Ausgangsquerschnitt bezogenen Spannung $\sigma_{t,f}$ unmittelbar vor dem Versagen berechnet. Der Einfluss der Mehrachsigkeit des Beanspruchungszustands im eingeschnürten Probenbereich wird mit einem Korrekturfaktor k_M berücksichtigt.

$$\sigma_{w,f} = \mathbf{k}_{M} \cdot \sigma_{t,f} \cdot \frac{1}{1 - Z}$$
(6-2b)

Für Rundzugproben wird in [44] der Korrekturfaktor $k_{Bridgman}$ gemäß (6-3) angegeben, der unter Annahme einer über den Einschnürquerschnitt konstanten plastischen Dehnung hergeleitet wurde. Die Größe $k_{Bridgman}$ ist vom Probendurchmesser d und einem dem Einschnürbereich angeschmiegten Krümmungsradius δ abhängig. In [44] werden für einen Stahl St52 übliche Verhältnisse d/ δ von 1,5 angegeben. Mit diesem Verhältnis ergibt sich ein Faktor k_{Bridgman} von 0,85, der für die Berechnung der wahren Bruchspannungen im Schweißgut und im Grundwerkstoff verwendet wird.

$$k_{\text{Bridgman}} = \frac{1}{\left(1 + \frac{4\delta}{d}\right) \cdot \ln\left(1 + \frac{d}{4\delta}\right)}$$
(6-3)

An den der Wärmeeinflusszone entnommenen Flachzugproben konnte die Brucheinschnürung Z wegen der kleinen Probendicke nur mit großen Messunsicherheiten (±7,5%) gemessen werden. Zudem ist Annahme einer gleichmäßigen Dehnungsverteilung im Einschnürquerschnitt bei Flachzugproben nicht zutreffend, weil sich die Einschnürzone lokal ausbildet.

Die wahre Spannung und Dehnung unmittelbar vor dem Versagen kann aus diesen Gründen in der Wärmeeinflusszone nur abgeschätzt werden. Hierbei werden die Annahmen 1) und 2) getroffen.

1) Die Brucheinschnürung Z in der Wärmeeinflusszone beträgt 48%. Diese Größe Z wurde im Mittel aus den im Einschnürbereich gemessenen minimalen Dicken t_{min} der Flachzugproben berechnet (6-4)

$$Z = \frac{t_0 - t_{\min}}{t_0} \cdot 100\%$$
(6-4)

2) Der Einfluss der Mehrachsigkeit des Beanspruchungszustands im eingeschnürten Probenbereich kann mit einem Korrekturfaktor k_M von 0,85 analog zu den Rundzugproben zutreffend berücksichtigt werden. Bild 6-3 zeigt die durch insgesamt 7 Wertepaare bestimmten multilinearen wahren Spannungs-Dehnungs-Beziehungen beispielhaft für die Naht 4-80-0,50-135. Der Elastizitätsmodul beträgt unabhängig vom Nahtbereich 210000N/mm². Es wird ein isotrop verfestigendes Werkstoffverhalten angesetzt.

In Anhang B sind alle Kenngrößen zur Beschreibung der wahren Spannungs-Dehnungs-Beziehungen angegeben.

Bild 6-3: Wahre Spannungs-Dehnungs-Beziehungen im Nahtbereich (4-80-0,50-135)

6.2 Kreuzzugversuche mit Standardproben

Die Kreuzzugversuche, in denen die ungeschwächten Standardproben ausgehend von der Nahtwurzel rissen, werden mit der Finiten Element Methode berechnet. Im einzelnen waren dies Versuche mit Proben aus den Nähten

- 3-80-0,50-135,
- 4-80-0,50-135,
- 5-80-0,28-135,
- 5-80-0,28-111,
- 6-80-0,10/0,20-135 und
- 7-80-0,10/0,20-135.

Bild 6-4 zeigt das Finite Element Modell einer 20mm breiten Standardprobe der Naht 4-80 0,50-135 in einem Schnitt rechtwinklig zur Nahtlängsrichtung. Wegen der Symmetrie der Probe zu drei Ebenen wurde nur ein Achtel der Probe abgebildet.

Bild 6-4: Grob vernetztes Finiten Element Modell der Standardprobe

Das Modell wurde zunächst grob mit Volumenelementen mit 8 Knoten und einer linearen Ansatzfunktion vernetzt. Im Bereich der Nahtwurzel sind die Elemente kubisch und haben eine Kantenlänge von genau 1mm. Das Längsblech wird 270mm entfernt vom in Dickenrichtung beanspruchten Querblechs durch eine vertikale Verschiebung ΔL belastet. Die Berechnung erfolgt geometrisch nichtlinear.

Bild 6-5 zeigt die zwischen den Messpunkten $M_{1,opt}$ und $M_{2,opt}$ am seitlichen Rand der Probe gemessene Verschiebung Δur und die zugehörige Kraft. Außerdem sind die am seitlichen Rand und die in der Mitte der Probenbreite berechneten Verschiebungen Δu und Δur angegeben. Die ebenfalls angegebenen Ergebnisse von Finiten Element Berechnungen mit ebenen Modellen (Δu ESZ, Δu EDZ) werden später erläutert.

Die am seitlichen Rand und in der Mitte der Probe berechneten Verschiebungen Δur und Δu sind gleich groß und stimmen bis zu einer Verschiebung von etwa 2,5mm mit den gemessenen Verschiebungen überein. Das räumliche Modell bildet somit die Kraft und die Verschiebungen im Nahtbereich trotz der groben Vernetzung in Übereinstimmung mit den Versuchen ab.

In einer Konvergenzanalyse wurde der Einfluss der Vernetzung im Bereich der Nahtwurzel auf das Kraft-Verformungs-Verhalten und den Beanspruchungszustand im Ligament vor der Nahtwurzel untersucht. Ausgehend von der oben beschriebenen groben Vernetzung wird zunehmend feiner vernetzt. Die feinste Vernetzung erfolgt mit Elementen mit einer Kantenlänge von 1/8mm. Bild 6-6 zeigt, dass die Netzfeinheit in den untersuchten Grenzen keinen Einfluss (<2%) auf die Kraft und die Verschiebung Δu hat. Die Größe der maximalen Mehrachsigkeit M_{max} des Spannungszustands im Ligament vor der Nahtwurzel ist jedoch netzabhängig. Eine Verfeinerung der Vernetzung durch eine Vernetzung mit 8 anstatt 4 Elementen je 1mm Kantenlänge resultiert jedoch nur noch in einer Zunahme der maximalen Mehrachsigkeit um etwa 3%. Deshalb wird der Bereich um die Nahtwurzel mit Elementen mit einer Elementkantenlänge von 1/4mm vernetzt. Um die so vernetzten Modelle mit vernünftigem Rechenzeitaufwand zu berechnen, wird eine zwei-dimensionale Vereinfachung geprüft.

Bild 6-6: Konvergenzanalyse zur Netzfeinheit

Bild 6-7 zeigt den mit dem grob vernetzten Modell berechneten Verlauf der Spannung in Nahtlängsrichtung zwischen den Punkten P1 und P2 im Ligament 1mm vor der Nahtwurzel bei einer Verschiebung ∆u von 2mm.

In Nahtlängsrichtung liegt eine Zugspannung vor, deren Größe zur Mitte der Probenbreite hin zunimmt und dort 410N/mm² beträgt.

Um zu prüfen, ob der Beanspruchungszustand in der Mitte der Probenbreite mit einem ebenen Modell zutreffend abgebildet werden kann, wird der Kreuzzugversuch mit zwei-dimensionalen Modellen mit ebenem Dehnungszustand (EDZ) und ebenem Spannungszustand (ESZ) berechnet

Die Mehrachsigkeit M (3-2a) im Ligament 1mm vor der Nahtwurzel beträgt in der Mitte der Probenbreite bei einer Verschiebung ∆u von 2,0mm im räumlichen Modell 0,96. Im ebenen Modell mit EDZ ist M mit 0,99 nur geringfügig größer. Im ebenen Modell mit ESZ ist M mit 0,70 dagegen deutlich kleiner. Das ebene Modell mit EDZ bildet somit den Beanspruchungszustand im Bereich der Nahtwurzel in der Mitte der Probenbreite in guter Übereinstimmung mit dem räumlichen Modell ab.

Bild 6-7: Spannungen in Nahtlängsrichtung

Bild 6-5 zeigt jedoch, dass die mit dem ebenen Modell (EDZ) berechnete Kraft bei einer Verschiebung Δu wie zu erwarten größer als im räumlichen Modell und im Bauteilversuch ist. Das Verhältnis der bei einer plastischen Verschiebung Δu von 0,5mm mit dem räumlichen Modell berechneten Kraft F_{VOL} zu der mit dem ebenen Modell (EDZ) berechneten Kraft F_{EDZ} beträgt 0,89.

Für die versuchsbegleitenden Berechnungen der Kreuzzugversuche mit Standardproben folgt aus den obigen Betrachtungen:

- Zur Validierung der Finiten Element Modelle werden die Verschiebungen und Kräfte mit grob vernetzten räumlichen Modellen berechnet.
- Der Spannungs- und Dehnungszustand im Bereich der Nahtwurzel in der Mitte der Probenbreite wird mit einem feiner vernetzten ebenen Modell (EDZ) berechnet.

6.3 Kreuzzugversuche mit Großprüfkörpern

Im folgenden werden alle die Kreuzzugversuche mit Großprüfkörpern mit der Finiten Element Methode berechnet, in denen die Nähte versagten oder anrissen. Dies waren die Versuche 2-40-0,20-135-G, 5-40-0,20-135-G, 5-40-0,20-111-G und 6-40-0,20-135-G.

Bild 6-8 zeigt beispielhaft den Großprüfkörper 5-40-0,20-111-G und den im Finiten Element Modell abgebildeten rot markierten Prüfkörperausschnitt angrenzend an die DHY-Naht. Im abgebildeten Ausschnitt hat der Prüfkörper eine konstante Breite von 280mm.

Bild 6-8: Grob vernetztes Modell des Großprüfkörpers 5-40-0,20-111-G

Zunächst wird das Modell mit 8-knotigen Volumenelementen mit linearer Ansatzfunktion vernetzt. Im Bereich der Nahtwurzel sind diese Elemente in Schnitten quer zur Nahtlängsrichtung quadratisch und haben eine Kantenlänge von genau 1mm. In Nahtlängsrichtung sind die Elemente 3,5mm breit. Die Belastung wird am oberen Rand des Modells im Abstand von 85mm vom Querblech in Form einer Verschiebung aufgebracht. Die Berechnung erfolgt geometrisch nichtlinear.

In einer ersten Berechnung (Modell 1) wird die Nahtgeometrie vereinfacht, indem eine über die Prüfkörperbreite konstante Größe der ungenügenden Durchschweißung und folglich der Nichtdurchschweißung s angenommen wird (Bild 6-9).

In einer zweiten Berechnung (Modell 2) wird der gemessene Verlauf der Nichtdurchschweißung s durch eine über die Nahtlänge variable Größe Wbf der ungenügenden Durchschweißung abgebildet. Aufgrund der Vernetzung mit Elementen mit Kantenlängen von 1mm wird der gemessene Verlauf der Nichtdurchschweißung s treppenförmig mit Stufen von 1mm approximiert. Die ungenügende Durchschweißung wird vereinfachend symmetrisch zur Nahtmitte angesetzt.

Ungenügende Durchschweißung (halbe Bruchfläche)

Bild 6-9: Abbildung der Wurzelbindefehler

Bild 6-10 zeigt die mit den Modellen 1 und 2 berechneten Verschiebungen Δu in der Mitte der Prüfkörperbreite und Δur am seitlichen Rand.

Bild 6-10: Mess- und Berechnungsergebnisse des Kreuzzugversuchs 5-80-0,20-111-G

Wird die am seitlichen Rand größere ungenügende Durchschweißung nicht berücksichtigt (Modell 1), ist die Verschiebung ∆ur am seitlichen Rand bei ausgeprägten plastischen Verschiebungen bei gleicher Kraft etwa 20% kleiner als im Modell 2 und im Versuch.

Wenn die über die Nahtlänge veränderliche ungenügende Durchschweißung berücksichtigt wird (Modell 2), stimmt die berechnete Verschiebung Δ ur am Prüfkörperrand bis zu einer Verschiebung Δ ur von 1,1mm mit der gemessenen Verschiebung Δ ur überein.

Bild 6-11 zeigt die mit den Modellen 1 und 2 berechneten Verläufe der Spannung in Nahtlängsrichtung im Ligament vor der Nahtwurzel zwischen dem freien seitlichen Rand und der Mitte der Prüfkörperbreite. Zudem sind die mit Modell 2 berechneten plastischen Hauptdehnungen ε_1 bei einer Verschiebung Δur von 1,1mm in einem Schnitt in der Mitte der Prüfkörperbreite und am seitlichen Rand abgebildet.

Bemerkung: Die Spannungen und Dehnungen wurden bei einer Dehnung ∆ur am seitlichen Rand von 1,1mm berechnet. Wegen der groben Vernetzung und der Mittelung der Spannungen in den Elementen hat die Spannung in Nahtlängsrichtung am freien Rand einen positiven Betrag.

Bild 6-11: Spannungen und Dehnungen im Großprüfkörper 5-80-0, 20-111-G

Im Modell 1 wird die Spannung im Ligament 1mm vor der Nahtwurzel berechnet. Im Modell 2 wird die Spannung entlang eines Pfades berechnet, der am seitlichen Rand einen Abstand von 1mm und in der Mitte der Prüfkörperbreite wegen der dort kleineren ungenügenden Durchschweißung einen größeren Abstand von 4mm von der Nahtwurzel hat.

Am seitlichen Rand sind die Spannungsgradienten in beiden Modellen groß. Die maximale Zugspannung in Nahtlängsrichtung wird etwa 7mm entfernt vom seitlichen Rand erreicht. Am seitlichen Rand ist der gesamte Nahtbereich plastisch verformt.

In der Mitte der Prüfkörperbreite liegen 1mm vor der Nahtwurzel nur geringe Zugspannungen vor. Der Nahtbereich ist noch weitgehend elastisch, wogegen der Grundwerkstoff über die gesamte Prüfkörperbreite plastisch verformt ist.

Eine zweidimensionale Vereinfachung des räumlichen Finiten Element Modells ist nicht zutreffend, weil ein ebenes Modell die Gradienten der Spannungen und Dehnungen in Nahtlängsrichtung nicht abbilden kann. Um dennoch eine feinere Vernetzung für die Berechnung von Spannungen und Dehnungen zu realisieren, wird der Randbereich des Prüfkörpers in einem Submodell feiner vernetzt. Die Elemente sind im Bereich der Nahtwurzel 1mm breit und haben im Schnitt rechtwinklig zur Nahtlängsrichtung Kantenlängen von 0,25mm. Die Grenzfläche des Submodells hat einen Abstand von etwa 40mm vom seitlichen Rand und liegt außerhalb des Bereichs mit sehr großen Gradienten der Spannung in Nahtlängsrichtung. Auf der Grenzfläche werden dem Submodell die auf die Knotenkoordinaten extrapolierten, mit dem Gesamtmodell berechneten Knotenverschiebungen als Randbedingungen aufgegeben. Das Submodell wird mit dieser Belastung erneut berechnet.

Für die Berechnung der Kreuzzugversuche mit Großprüfkörpern folgt aus den obigen Betrachtungen:

- Zur Validierung der Finiten Element Modelle werden die Kräfte und die Verschiebungen
 <u>A</u>u und
 <u>A</u>ur mit einem grob vernetzten r
 <u>ä</u>umlichen Modell berechnet und mit den Messergebnissen am seitlichen Rand und in der Mitte der Probenbreite verglichen. Die
 <u>ü</u>ber die Pr
 <u>ü</u>fk
 <u>ö</u>rperbreite ver
 <u>ä</u>umlerliche Gr
 <u>ö</u>se der ungen
 <u>ü</u>genden Durchschwei
 <u>ß</u>ung wird abgebildet.
- Der Spannungs- und Dehnungszustand im Bereich der Nahtwurzel am seitlichen Rand der Prüfkörper wird mit einem feiner vernetzten räumlichen Submodell berechnet.

6.4 Biegeversuche

Die Biegeversuche 6-80-0,10-135-B und 6-80-0,20-135-B, in denen die Prüfkörper ausgehend von der Nahtwurzel versagten, werden mit der Finiten Element Methode berechnet. Bild 6-12 zeigt die im Nahtbereich 58mm breite Biegeprobe 6-80-0,20-135-B in einer Seitenansicht und dazu eine Detailansicht.

Bild 6-12: Grob vernetztes Modell der Biegeprobe 6-80-0,20-135-B

Die Probe wurde zunächst mit 8-knotigen Volumenelementen mit linearer Ansatzfunktion vernetzt. Im Bereich der Nahtwurzel sind die Finiten Elemente in Schnitten quer zur Nahtlängsrichtung quadratisch und haben eine Kantenlänge von genau 1mm. In Nahtlängsrichtung sind die Elemente 2mm breit.

Zur Validierung der Finiten Element Berechnung werden die im Bereich der Schweißnaht gemessenen und berechneten Verschiebungen Δ ur zwischen den Messpunkten M_{1,opt} und M_{2,opt} verglichen. Diese Verschiebung wird nicht von Verformungen im Bereich der Auflager und der Lasteinleitung beeinflusst. Deshalb wird darauf verzichtet, den Auflager- und Lasteinleitungsbereich unter Berücksichtigung der Hertzschen Pressung zwischen den Auflager- und Lasteinleitungsrollen und der Probe detailliert abzubilden. Die Lasteinleitung erfolgt vereinfacht in Form einer vertikalen Knotenverschiebung, die in der Mitte der Biegelänge in allen Knoten in einen 40mm breiten Streifen aufgebracht wird. Die Auflagerung erfolgt vereinfacht durch eine Festhaltung der vertikalen Knotenverschiebungen in allen Knoten oberhalb der Auflagerpunkte.

Bild 6-13 zeigt die so berechneten Verschiebungen Δu und Δur und die am seitlichen Rand gemessene Verschiebung Δur . Die ebenfalls aufgeführten Ergebnisse der Berechnungen mit ebenen Modellen (Δu EDZ, Δu ESZ) werden später erläutert. Die am seitlichen Rand und in der Mitte der Probe berechneten Verschiebungen Δur und Δu sind gleich groß und stimmen bis zu zum Versagen
mit der im Versuch am seitlichen Rand gemessenen Verschiebung ∆ur überein. Um eine für die Berechnung von Spannungen und Dehnungen im Wurzelbereich ausreichend feine Vernetzung mit vernünftigem Rechenzeitaufwand zu realisieren, wird analog zu den Kreuzzugversuchen mit Standardproben eine zweidimensionale Modellvereinfachung geprüft.

Bild 6-13: Mess- und Berechnungsergebnisse des Biegeversuchs 6-80-0,20-135-B

Der Mehrachsigkeit M im Ligament 1mm vor der Nahtwurzel beträgt in der Mitte der Probenbreite bei einer Verschiebung Δu von 1,6mm im räumlichen Modell 1,19. Im ebenen Modell mit EDZ ist M mit 1,23 geringfügig größer. Im ebenen Modell mit ESZ ist M mit 0,85 dagegen 30% kleiner. Das ebene Modell mit EDZ bildet somit den Beanspruchungszustand im Bereich der Nahtwurzel in der Mitte der Probenbreite in guter Übereinstimmung mit dem räumlichen Modell ab.

Bild 6-13 zeigt, dass die mit dem ebenen Modell (EDZ) berechnete Kraft größer als im räumlichen Modell ist. Das Verhältnis der bei plastischen Verschiebung Δu von 0,50mm mit dem räumlichen Modell und dem ebenen Modell (EDZ) berechneten Auflagerkräfte beträgt 0,91.

Für die Berechnung der Biegeversuche folgt aus den obigen Betrachtungen:

- Zur Validierung der Finiten Element Modelle werden die Spalttaufweitungen und Kräfte mit grob vernetzten räumlichen Modellen berechnet und mit den Messergebnissen verglichen.
- Der Spannungs- und Dehnungszustand im Bereich der Nahtwurzel in der Mitte der Probenbreite wird mit einem fein vernetzten ebenen Modell (EDZ) berechnet.

7 Berechnung des J-Integrals und des Beanspruchungszustands

7.1 Verifizierung der Berechnung des J-Integrals

Ziel der folgenden Betrachtungen ist es, die Berechnung des J-Integrals mit dem in Anhang C als Programmcode aufgeführten Algorithmus zu ANSYS zu verifizieren. Die Nahtwurzel von teilweise durchgeschweißten Nähten wird bei der Berechnung des J-Integrals als Rissspitze aufgefasst. Diese Annahme liegt hinsichtlich der Kerbschärfe der Nahtwurzel auf der sicheren Seite. Messungen der Kerbradien in [2] zeigen, dass die Annahme einer rissartigen Kerbe trotzdem realitätsnah ist, weil im Bereich der Nahtwurzel von teilweise durchgeschweißten Nähten sehr kleiner Kerbradien von bis zu 0,01mm vorliegen können

Weil im Bereich der Nahtwurzel von teilweise durchgeschweißten Nähten ein inhomogener Werkstoffzustand vorliegt, wird der Einfluss der Werkstoffinhomogenität auf die berechneten Integrale geprüft.

Das J-Integral J kann durch Integration mit (3-8) entlang eines Pfades Г um eine Rissspitze berechnet werden. Schneiden die Pfade plastische Bereiche, so können die Integrale pfadabhängig werden. In [34] wird gezeigt, dass in diesem Fall die Integration auf vielen Pfaden mit zunehmendem Abstand von der Rissspitze durchzuführen ist, bis die Lösungen konvergieren.

Die so berechneten konvergierten Integrale werden zur Verifizierung zum einen mit J-Integralen verglichen, die mit (3-11) gemäß ISO 12135 aus der Kraft F und dem Weg q im Biegeversuch berechnet wurden. Zum anderen werden die Integrale im Gültigkeitsbereich der linear-elastischen Bruchmechanik mit Lösungen für die Spannungsintensitätsfaktoren in zugbeanspruchten rissbehafteten Proben verglichen.

Zunächst wird der in Bild 7-1 skizzierte 3-Punkt Biegeversuch mit einer in ISO 12135 standardisierten Probe aus einem 80mm dicken Grobblech mit der Finiten Element Methode berechnet. Die Tiefe der mechanischen angearbeiteten Kerbe und des Risses beträgt 42,5mm (a_0/W_B =42,5/80). Der Abstand S der Auflagerrollen beträgt das 4-fache der Blechdicke W_B. Die wahre Spannungs-Dehnungs-Beziehung des Werkstoffs entspricht der in Bild 6-3 gezeigten Beziehung für den Werkstoff S355J2G3.

Die Probe wird mit einem ebenen Modell mit ebenem Dehnungszustand (EDZ) abgebildet. Es wird darauf verzichtet, die Lasteinleitung und die Auflagerung durch Biegerollen unter Berücksichtigung der Hertzschen Pressung genau abzubilden. Wegen der Symmetrie des Systems zur Rissebene wird nur eine

Probenhälfte abgebildet. Die Auflagerung erfolgt vereinfacht durch Festhaltung der vertikalen Knotenverschiebungen über dem Auflager. Die Lasteinleitung erfolgt durch vertikale Knotenverschiebungen in einem insgesamt 6mm breiten Bereich in der Mitte des Auflagerrollenabstands. Im ungerissenen Ligament vor der Rissspitze werden die horizontalen Verschiebungen festgehalten. Im mechanisch gekerbten und gerissenen Bereich sind die Knoten in horizontaler Richtung frei verschieblich.

Die Geometrie wird mit 8-knotigen Scheibenelementen mit einer quadratischen Ansatzfunktion vernetzt. Im Bereich der Rissspitze haben die Finiten Elemente eine Kantenlänge von 0,25mm. Die Berechnung erfolgt geometrisch nichtlinear.

Bild 7-1 zeigt die berechnete Kraft F mit zunehmendem Weg q. Hieraus wird die plastische Formänderungsenergie U_p und mit der in Bild 7-1 nochmals angegebenen Beziehung (3-11) das J-Integral J₁ berechnet.

Bild 7-1: Kraft F und Weg q im Biegeversuch gemäß ISO 12135

Zudem werden mit dem Algorithmus in Anhang C Integrale (3-8) entlang von Pfaden Γ_i um die Rissspitze berechnet. Bild 7-2 zeigt J_I und die Integrale J_i mit zunehmender Belastung. Die Indizierung der Integrale gibt den Abstand des Integrationspfads von der Rissspitze in Richtung des Risses in mm an.

Bild 7-2: Durch Linienintegration und gemäß ISO 12135 berechnete J-Integrale

Die Integrale J_i konvergieren bereits in einem Abstand des Integrationspfads von der Rissspitze von 2mm. Deshalb sind nur die entlang der Pfade Γ_1 und Γ_2 berechneten Integrale J₁ und J₂ angegeben. Das Integral J₂ stimmt auch bei ausgeprägten plastischen Verschiebewegen q mit einer Abweichung kleiner als 2% mit dem gemäß ISO 12135 berechneten J-Integral J₁ überein.

Der Algorithmus in Anhang C ist somit brauchbar, um J-Integrale im standardisierten Biegeversuch zu berechnen, auch wenn große plastische Verschiebewege q vorliegen und die Integrationspfade den plastizierten Bereich an der Rissspitze schneiden. Im folgenden wird geprüft, ob mit dem Algorithmus in Anhang C auch bei Zugbeanspruchung zutreffende J-Integrale berechnet werden können. Hierzu werden Zugversuche mit Proben mit Innenriss CCT ("Center Cracked Tensile specimen") und Außenrissen ECT ("Edge Cracked Tensile specimen") mit der Finiten Element Methode berechnet. Die Probengeometrie wird analog zu den in [38] berechneten Proben gewählt. Bild 7-3 zeigt die Probengeometrie. Die Vernetzung im Bereich der Rissspitze erfolgt wie bei den Biegeproben.

Bild 7-3: Zugproben mit Innenriss (CCT) und Außenrissen (ECT)

Für die vorliegenden Bauteile sind zum Beispiel in [42] Lösungen für die linearelastischen Spannungsintensitätsfaktoren angegeben. Bild 7-4 und Bild 7-5 zeigen diese mit (3-10) in J-Integrale J₁ umgerechneten Spannungsintensitätsfaktoren mit zunehmender Spannung σ_{∞} . Zum Vergleich werden die durch Linienintegration berechneten Integrale J₁ bis J₃ angegeben.

Die Integrale J_i konvergieren in einem Abstand des Integrationspfads von der Rissspitze von 3mm. Das Integral J₃ stimmt bis zu Spannungen σ_{∞} von etwa 100N/mm² mit den in Bild 7-4 und Bild 7-5 gezeigten Lösungen überein. Ab Spannungen σ_{∞} von 100N/mm² nehmen die J-Integrale J₃ wegen der Plastizierungen an der Rissspitze zunehmend größere Werte als die aus den linearelastischen Spannungsintensitätsfaktoren berechneten J-Integrale an.

Bild 7-4: J-Integrale im Zugversuch mit der CCT-Probe

Bild 7-5: J-Integrale im Zugversuch mit der ECT-Probe

Im Bereich der Nahtwurzel von teilweise durchgeschweißten Nähten in Stahl grenzen Werkstoffzonen aneinander, in denen unterschiedliche Werkstoffeigenschaften vorliegen (GW, WEZ, SG). Schneidet der Integrationspfad Γ in der Nähe der Nahtwurzel Grenzen zwischen diesen Werkstoffzonen (Phasengrenzen), enthält das berechnete Integral Anteile aus der sprunghaften Änderung der Spannungen an der Phasengrenzen. Die Integrale werden pfadabhängig. Der Einfluss von Phasengrenzen muss gegebenenfalls durch zusätzliche Integrationsterme berücksichtigt werden [34].

Zunächst werden Biegeversuche

- a) mit einer rissparallelen Phasengrenze im Abstand von 2mm vom Riss und
- b) mit einer Phasengrenze rechtwinklig zum Riss in einem Abstand von 2mm von der Rissspitze

berechnet. Die Biegeproben sind in Bild 7-6 skizziert.

Bild 7-6: Inhomogene Biegeproben

In den Werkstoffbereichen I und II werden die in Bild 6-3 angegebenen wahren Spannungs-Dehnungs-Beziehungen des Stahls S355J2G3 (I) und der Wärmeeinflusszone dieses Stahls (II) angesetzt. Das Verhältnis der Dehngrenze in der Wärmeeinflusszone zur Dehngrenze im Grundwerkstoff beträgt 1,75. Die Rissspitzen liegen im Werkstoff II mit der größeren Dehngrenze.

Bild 7-7 und Bild 7-8 zeigen die gemäß ISO 12135 berechneten J-Integrale J_1 und die entlang der Pfade Γ_i berechneten Integrale in diesen Biegeversuchen mit zunehmendem Verschiebeweg q.

Bild 7-7: J-Integrale im Biegeversuch a mit rissparallelen Phasengrenzen

Bild 7-8: J-Integrale im Biegeversuch b mit einer Phasengrenze vor dem Anriss

Im Biegeversuch a konvergieren die Integrale J_i in einem Abstand des Pfads Γ von der Rissspitze von 9mm. Das Integral J_9 ist etwa 4% kleiner als das gemäß ISO 12135 berechnete J-Integral J_1 . Der Grund für diese geringe Abweichung von 4% ist, dass die Auswertung in ISO 12135 für homogene Proben ausgelegt ist. In [36] wird deshalb bei Dehngrenzenverhältnissen größer als 1,25 und kleiner als 0,75 die Berechnung der J-Integrale mit angepassten, nicht standardisierten Auswerteprozeduren empfohlen.

Im Biegeversuch b nehmen die Integrale J_i mit zunehmendem Abstand von der Rissspitze ab und konvergieren in einem Abstand des Pfads Γ von der Rissspitze von 9mm. Die konvergierten Integrale stimmen mit dem gemäß ISO 12135 berechneten J-Integral J_I überein.

Auch im Fall von Phasengrenzen nahe der Rissspitze können mit der Linienintegrationsmethode konvergierte Integrale berechnet werden. Im Falle von Phasengrenzen rechtwinklig zum Riss stimmen diese Integrale mit gemäß ISO 12135 ohne Berücksichtigung der Phasengrenzen ermittelten J-Integralen überein. Im Falle von rissparallelen Phasengrenzen unterscheiden sich die Integrale bei einem Dehngrenzenverhältnis von 1,75 maximal 4% von den gemäß ISO 12135 berechneten J-Integralen. Offensichtlich haben die Phasengrenzen im Bereich der Rissspitze beim vorliegenden Dehngrenzenverhältnis von 1,75 nur einen geringen Einfluss auf die Größe der J-Integrals.

7.2 Berechnung der Mischmodusbeanspruchung an der Nahtwurzel

Ziel der folgenden Betrachtungen ist es zu zeigen, wie der Grad der Mischmodusbeanspruchung im Falle von großen plastischen Verformungen und von Phasengrenzen nahe der Nahtwurzel berechnet werden kann. Damit soll bewertet werden, ob eine Mischmodusbetrachtung geboten ist.

Beispielhaft wird ein Kreuzzugversuch mit einer Standardprobe der Naht 3-80-0,50-135 berechnet. Diese Naht weist eine auf die Blechdicke t bezogene Steghöhe h von 0,5 und große Kehlnähte am äußeren Nahtübergang auf ($a_A = 15$ mm).

Zunächst wird die bruchmechanische Beanspruchung der Nahtwurzel mit einem ebenen Modell (EDZ) unter Annahme von linear-elastischem Werkstoffverhalten berechnet (E = 210000N/mm²). Dieses Modell bildet den Einfluss der Geometrie, nicht aber den Einfluss der Werkstoffinhomogenität im Nahtbereich auf den bruchmechanischen Beanspruchungszustand ab.

Der Bereich der Nahtwurzel wird mit speziellen Rissspitzenelementen vernetzt (Bild 7-9). Bei diesen Elementen mit quadratischer Ansatzfunktion liegen die Zwischenknoten M und O im Viertelpunkt zwischen dem Rissspitzenknoten I und den Knoten J und K. Solche Elemente sind in der Lage, den singulären Spannungsanstieg hin zur Rissspitze für eine Berechnung linear-elastsicher Spannungsintensitätsfaktoren ausreichend genau abzubilden. Die linear-elastischen Spannungsintensitätsfaktoren K_I und K_{II} werden mit dem im verwendeten Programmpaket ANSYS 11.0 implementierten Berechnungsmakro KCALC berechnet.

Das Verhältnis K_I/K_{II} der Spannungsintensitätsfaktoren beträgt 21,7. Die Geometrie und die Zugbeanspruchung resultieren somit praktisch in einer reinen Modus I Beanspruchung.

Bild 7-9: Rissspitzenelemente für die Berechnung von Spannungsintensitätsfaktoren

Zur Berücksichtigung der Werkstoffinhomogenität wird der Kreuzzugversuch mit dem in Abschnitt 6 validierten ebenen Finiten Element Modell berechnet, wobei im Nahtbereich und im Grundwerkstoff die wahren Spannungs-Dehnungs-Beziehungen in Bild 6-3 angesetzt werden.

Zur Berechnung der Grads der Mischmodusbeanspruchung im Falle von plastischen Verformungen wird das Verhältnis M_{Misch} der Spaltaufweitung CTOD in Richtung der Zugkraft zur spaltparallelen Gleitung CTSD im Abstand von 0,5mm von der Nahtwurzel berechnet. Bild 7-10 definiert M_{Misch} und zeigt den Verlauf von M_{Misch} mit zunehmender Beanspruchung J.

Zu Beginn der Zugbelastung beträgt M_{Misch} etwa 25 und entspricht ungefähr dem Verhältnis K_I/K_{II}, das unter Annahme von linear-elastischem Werkstoffverhalten berechnet wurde. Mit Beginn der Plastizierung fällt M_{Misch} zunächst bis auf einen Wert von etwa 4,3 bei einer Beanspruchung J von 100N/mm ab. Eine weitere Zugbelastung hat dann kaum noch Einfluss auf M_{Misch}.

Bild 7-10: Mischmodus Beanspruchung der Naht 3-80-0,50-135

Die drei Hauptspannungen im Ligament vor der Nahtwurzel sind während der gesamten Belastung positiv (Zug).

In [36] wird eine Mischmodusbetrachtung dann empfohlen, wenn die Spannungsintensitätsfaktoren K_I und K_{II} etwa gleiche Beträge aufweisen oder die Hauptspannungen im Bereich der Kerbe Zug- und Druckspannungen etwa gleichen Betrags sind. Diese Kriterien sind bei der vorliegenden Naht nicht erfüllt.

Bei der Nachrechnung der Bauteilversuche wird wie beispielhaft für die Naht 3-80-0,50-135 beschrieben überprüft, ob eine Mischmodusbetrachtung gemäß den Kriterien in [36] geboten ist. Außerdem wird geprüft, ob der Grad M_{Misch} der Mischmodusbeanspruchung bis zum Bruch wenigstens 2 beträgt und somit die Spaltaufweitung CTOD überwiegt.

7.3 Berechnung der Beanspruchungszustands

Im folgenden wird die Mehrachsigkeit M (3-2a) des Spannungszustands für verschiedene Geometrien und für Biege- und Zugbeanspruchung berechnet. Dies soll später einen Vergleich mit der Mehrachsigkeit in teilweise durchgeschweißten Nähten ermöglichen.

Die Mehrachsigkeit M wird in allen Elementen im Ligament berechnet. Der maximale Wert dieser Mehrachsigkeiten wird mit M_{max} bezeichnet.

Bild 7-11 zeigt auf der Ordinate die maximalen Mehrachsigkeiten M_{max} in Biegeversuchen mit einer homogenen Biegeprobe, den inhomogenen Biegeproben a und b mit einem Riss im Werkstoff II mit einer gegenüber Werkstoff I größeren Dehngrenze und den Biegeproben c und d mit einem Riss im Werkstoff I. Auf der Abszisse sind die durch Linienintegration berechneten J-Integrale angegeben.

Bild 7-11: Mehrachsigkeit M vor der Rissspitze unter Biegebelastung

 M_{max} beträgt in allen Versuchen zu Beginn der Belastung etwa 2,1. In der homogenen Probe steigt M_{max} bis zu einer Beanspruchung J von 120N/mm bis auf 3,5 an. Mit Beginn ausgeprägter plastischer Verformungen fällt die Mehrachsigkeit dann auf einen Wert von etwa 2,7 ab. Liegt die Rissspitze im Werkstoff II (a, b), steigt M_{max} zu Beginn der Belastung in deutlich geringerem Umfang als bei der homogenen Probe an. Bei einer Beanspruchung J von 120N/mm ist M_{max} mit 2,1 (a) und 2,3 (b) signifikant kleiner als in der homogenen Probe.

Liegt der Riss dagegen im Werkstoff I (c, d), können größere maximale Mehrachsigkeiten als in der homogenen Probe auftreten.

Zum Vergleich zu diesen Beanspruchungszuständen wurden die maximalen Mehrachsigkeiten M_{max} in Zugversuchen mit

- homogenen Proben mit Innenriss und Außenrissen und den in Bild 7-3 gezeigten Geometrie und
- inhomogenen Proben mit Innenriss und Außenrissen im Werkstoff II mit der größeren Dehngrenze und den in Bild 7-3 gezeigten Geometrie

berechnet.

Bild 7-12 zeigt die maximalen Mehrachsigkeiten M_{max} in diesen Versuchen.

Bild 7-12: Mehrachsigkeit M vor der Rissspitze in Zugproben

Die Mehrachsigkeiten M_{max} betragen zu Beginn der Belastung zwischen 1,68 (CCT) und 1,89 (ECT). In den homogenen Proben steigt die Mehrachsigkeit zunächst auf Größen von 1,82 (CCT) und 2,12 (ECT) an. Mit Beginn ausgeprägter plastischer Verformungen bei einer Beanspruchung J von etwa 20N/mm fällt die Mehrachsigkeit dann bis auf Werte von 1,05 (CCT) und 1,20 (ECT) ab.

In den inhomogenen Proben fällt die Mehrachsigkeit praktisch mit Beginn der Belastung ab. Die minimalen Mehrachsigkeiten sind mit 0,85 und 1,10 kleiner als in den homogenen Proben.

7.4 Schlussfolgerung

Mit dem in Anhang C angegebenen Algorithmus können zutreffende J-Integrale berechnet werden. Der Einfluss von Phasengrenzen im Bereich der Nahtwurzel auf diese J-Integrale ist sehr gering (<4%), wenn die Verhältnisse der Dehngrenzen zueinander wie in den untersuchten Nähten etwa 1,75 betragen.

Der Grad der Mischmodusbeanspruchung M_{Misch} (Bild 7-10) wird in allen Bauteilversuchen berechnet. Auf eine Mischmodusbetrachtung wird verzichtet, wenn die Kriterien in [36] hierfür erfüllt sind und M_{Misch} bis zum Bruch wenigstens 2 beträgt.

Die maximale Mehrachsigkeit M_{max} wird im Ligament vor der Nahtwurzel bis zum Bruch berechnet. Dies ermöglicht zum einen, den Beanspruchungszustand und die fließbruchmechanische Beanspruchung der Nahtwurzel durch J mit den Verhältnissen in Biegeversuchen zur Ermittlung von J_{IC} zu vergleichen. Zum anderen ist anhand der Mehrachsigkeit M_{max} ein Vergleich mit zum Beispiel in [38] vorgeschlagenen Widerstände J_{I,BT} für von ISO 12135 abweichende Bauteilgeometrien möglich.

8 Tragfähigkeit und Versagen in den Bauteilversuchen

8.1 Tragverhalten in den Bauteilversuchen

8.1.1 Kreuzzugversuche mit HY-Nähten

In Anhang D sind die Ergebnisse aller Bauteilversuche zusammengefasst. Zudem werden für alle Versuche mit Bruch im ungeschwächten Nahtquerschnitt die gemessenen und die mit der Finiten Element Methode berechneten Kräfte und Verschiebungen im Nahtbereich (Δu , Δur) graphisch dargestellt.

Bild 8-1 zeigt beispielhaft die Ergebnisse eines Kreuzzugversuchs mit einer Standardprobe aus der HY-Naht 6-80-0,20-135. Neben der im Nahtbereich gemessenen Verschiebung Δ ur und der Verschiebung Δ L des gesamten, 620mm langen Prüfkörpers ist die mit der Finiten Element Methode berechnete Verschiebung Δ ur angegeben.

Bild 8-1: Kreuzzugversuch 6-80-0,20-135-S4

Die Probe wurde während des Versuchs zweimal entlastet, um den Nahtbereich visuell zu kontrollieren. Bei der ersten Entlastung bei einer Verschiebung ∆ur von etwa 2,5mm wurden Anrisse im Bereich der Nahtwurzel festgestellt.

Bis zu dieser Verschiebung stimmen die ohne Berücksichtigung eines Reißens und eines Rissfortschritts berechneten Kräfte mit den gemessenen Kräften überein. Danach nimmt die gemessene Kraft F gegenüber der berechneten Kraft wegen der zunehmenden Querschnittsschwächung infolge des Risses ab.

Die Verschiebung Δur_{RI} , bei der die Risse an der Nahtwurzel eine signifikante Änderung des Kraftanstiegs bewirken, wird in allen Versuchen gemäß den in Bild 8–2 gezeigten und im folgenden erläuterten Schritten 1) bis 4) bestimmt.

- Der mit der Finiten Element Methode berechnete Kraftanstieg T₁ des ungerissenen Bauteils wird ungefähr bei der Verschiebung bestimmt, bei der im Bauteilversuch visuell Anrisse festgestellt wurden.
- 2) Die Steigung T₂ der Größe $0,80^{\circ}T_1$ wird berechnet.
- 3) Der Bereich T, in dem T₂ den gemessenen Kraft- Verschiebungs-Verlauf tangiert, wird graphisch ermittelt.
- 4) Die Verschiebung Δur_{RI} wird in der Mitte des Bereichs T abgelesen.

 Δur_{RI} ist somit die Verschiebung, bei der Risse an der Nahtwurzel eine 20prozentige Reduktion des Kraftanstiegs gegenüber dem ungerissenen Bauteil verursachen.

Bild 8-2: Bestimmung von ⊿ur_{RI} im Kreuzzugversuch 6-80-0,20-135-S4

Die Verschiebungen Δur_{RI} betragen in den Kreuzzugversuchen mit HY-Nähten zwischen 1,6mm und 2,4mm. Die Kräfte F_{RI} bei diesen Verschiebungen Δur_{RI} sind zwischen 10% und 15% kleiner als die maximalen Kräfte F_{max} . Die Kräfte F_{max} werden im folgenden Bruchlasten genannt.

Der Grundwerkstoff neben der Naht kann sich vor Erreichen von Δur_{RI} und vor dem Bruch in allen Versuchen plastisch verformen. Die plastischen Verschie-

bungen ΔL_{pl} der Proben betragen bei Bruch der Naht zwischen 4,2% und 12,6% und bei Versagen im Grundwerkstoff 14,4% (6-80-0,10-135-S1). Die Verhältnisse der Bruchlasten F_{max} zu den mit (8-1), den Streckgrenzen R_{eH} und den ungeschwächten Querschnitten A_{GW} der Grundwerkstoffe berechneten Fließlasten F_{GW} betragen zwischen 1,21 und 1,46.

$$F_{GW} = A_{GW} \cdot R_{eH}$$
(8-1)

Grundsätzlich wurden die folgenden Versagensarten beobachtet:

- i Der Grundwerkstoff versagt, nachdem an der Nahtwurzel Anrisse festgestellt wurden.
- ii Die Naht versagt im durch Bindefehler geschwächten Querschnitt (7-80-0,10-135-S3/4, Bild 8-3).
- iii Das in Dickenrichtung beanspruchte Querblech reißt ausgehend von der Nahtwurzel (Bild 8-3).

F _{max} F _{GW}	∆ur _{RI}	∆ur bei F _{max}	ΔL _{pl} 620mm	J _{RI}	M _{max}	СТОД	CTOD CTSD	ε _{v,pl}	
-	mm	mm	%	N/mm	-	mm	-	%	
1,21	1,6	3,9	4,2	688	1,18	0,85	2,3	23	Min.
1,41	2,4	10,0	14,4	894	1,79	1,04	5,6	44	Max.
	Bruchfläche								
			,		Anriss	Rissfo	ortschritt	spröde Bruchflä Bindefe	ii iche hler

Bild 8-3: Versagen der HY-Nähte in den Kreuzzugversuchen

Die Bruchflächen zeigen, dass alle Proben ausgehend von der Mitte der Probenbreite versagten. Dort wurden bei Δur_{RI} mit der Finiten Element Methode die folgenden Kenngrößen berechnet:

- J-Integrale J_{RI} zwischen 688N/mm und 894N/mm
- Maximale Mehrachsigkeiten M_{max} im Ligament vor der Nahtwurzel zwischen 1,18 und 1,79
- Verhältnisse M_{Misch} der Spaltaufweitung CTOD (Modus I) zur Spaltgleitung CTSD (Modus II) zwischen 2,3 und 5,6

Im Bereich der Nahtwurzel liegt somit eine Mischmodusbeanspruchung vor. Eine Mischmodusbetrachtung wird jedoch nicht durchgeführt, weil das Verhältnis M_{Misch} mindestens 2,3 beträgt.

Reichen die Risse r an der Nahtwurzel bis nahe an die Bindefehler (7-80-0,10-135-S3/4), so reißen die Nähte im geschwächten Nahtquerschnitt rechtwinklig zur Zugkraft. Die Bruchfläche zeigt Merkmale eines Sprödbruchs. In den übrigen Versuchen reißt das in Dickenrichtung beanspruchte Querblech ausgehend von der Nahtwurzel.

Die hinsichtlich der plastischen Dehnung und der Mehrachsigkeit M gemäß dem kontinuumsmechanischen Kriterium (3-4) höchst beanspruchten Finiten Elemente im Bereich der Nahtwurzel liegen in der Wärmeeinflusszone der in Dickenrichtung beanspruchten Querbleche. In diesen Elementen betragen die plastischen Vergleichsdehnungen $\varepsilon_{v,pl}$ bei Δur_{Rl} zwischen 23% und 44%.

8.1.2 Kreuzzugversuche mit DHY-Nähten

Bild 8-4 zeigt beispielhaft das Ergebnis eines Kreuzzugversuchs mit einer Standardprobe aus der DHY-Naht 4-80-0,50-135.

Bild 8-4: Kreuzzugversuch 4-80-0,50-135-S2

Der Vergleich der berechneten Kraft und Verschiebung mit den Messergebnissen zeigt, dass ab einer Verschiebung von etwa 2mm die gemessene Kraft weniger stark als die berechnete Kraft anzusteigen beginnt. Die Verschiebungen Δur_{RI} wurde wie für die HY-Nähte bestimmt und beträgt im vorliegenden Versuch 2,3mm.

In den übrigen Kreuzzugversuchen mit DHY-Nähten betragen diese Verschiebungen zwischen 1,2mm und 2,4mm. Die Verschiebung bei Erreichen der Bruchlast F_{max} betragen zwischen 1,9mm und 3,3mm. Die Kräfte F_{RI} bei Δur_{RI} entsprechen abweichend von den HY-Nähten praktisch den Bruchlasten F_{max} .

Auch im Falle von großen Nichtdurchschweißungen von etwa 50% der Blechdicke erreicht der Grundwerkstoff neben der Schweißnaht vor Erreichen von Δur_{RI} und dem Nahtversagen die Fließgrenze. Die plastischen Dehnungen ΔL_{pI} der Messlängen L_{pI} betragen bei Nahtversagen zwischen 1,7% und 3,4% und bei Versagen im Grundwerkstoff bis zu 10,2%.

Die Verhältnisse der Bruchlast F_{max} zur Fließlast F_{GW} (8-1) betragen bei Nahtversagen zwischen 1,09 und 1,47.

Die folgenden Versagensarten wurden beobachtet:

- i Der Grundwerkstoff versagt, nachdem an der Nahtwurzel Anrisse festgestellt wurden.
- ii Die Naht versagt ausgehend von der Nahtwurzel durch einen Scherbruch im in Walzrichtung beanspruchten Blech (3-80-0,50-135, 4-80-0,50-135, Bild 8-5).
- iii Die Naht versagt im durch Ungänzen geschwächten Nahtquerschnitt (5-80-0,28-135, 5-80-0,28-111-S3, Bild 8-5).

$\frac{F_{max}^{1)}}{F_{GW}}$	∆ur _{Ri}	∆ur bei F _{max}	∆L _{pl} 620mm	J _{RI}	M _{max}	СТОД	CTOD CTSD	ε _{v,pl}		
-	mm	mm	%	N/mm	-	mm	-	%		
1,09	1,2	1,9	1,7	435	1,02	0,52	5,4	10	Min.	
1,47	2,4	3,3	10,2	1010	1,61	0,93	6,6	51	Max.	
	Ve	rsagen		Bruchfläche						
	ŧ II			Restb	ii oruch		Restbru			
						Rissfortsc	hritt	a _{Def}	Def	
			• iii	Sp	palt	Aufweitur Nahtwurze	ig el			

Bild 8-5: Versagen der DHY-Nähte in den Kreuzzugversuchen

Die Aufweitungszone ist im Bereich der Nahtwurzel in der Mitte der Probenbreite größer als an den seitlichen Probenrändern (Bild 8-5). Dies zeigt, dass die Nähte ausgehend von der Probenmitte versagten. Dort wurden bei Δur_{RI} die folgenden Kenngrößen berechnet:

- J-Integrale J_{RI} zwischen 435N/mm und 1010N/mm
- Maximale Mehrachsigkeit M_{max} zwischen 1,02 und 1,61
- Verhältnisse M_{Misch} zwischen 5,4 und 7,3

Die J-Integrale sind bei der Naht 5-80-0,28-135 mit 435N/mm bis 472N/mm signifikant kleiner als bei den übrigen DHY-Nähten (\geq 694N/mm). Bei der Naht

5-80-0,28-135 haben die Bindefehler nur kleine Abstände a_{Def} von der Nahtwurzel (Bruchfläche III in Bild 8-5). Der Abstand a_{Def} entspricht etwa der Größe der Bindefehler Def von 9mm. Die Mehrachsigkeiten im Ligament zwischen der Nahtwurzel und den Bindefehlern sind bei dieser Naht mit 1,61 größer als bei den übrigen Nähten (1,02 bis 1,44).

Die in den gemäß (3-4) maximal geschädigten Finiten Elementen im Bereich der Nahtwurzel berechneten plastischen Vergleichsdehnungen $\varepsilon_{v,pl}$ betragen bei der Naht 5-80-0,28-135 bei Δur_{Rl} etwa 10%. Bei den übrigen Nähten betragen diese Dehnungen zwischen 23% und 51%.

8.1.3 Kreuzzugversuche mit Großprüfkörpern

Bei den Kreuzzugversuchen mit Großprüfkörpern wird zwischen Versuchen unterschieden,

i) in denen die Nähte ohne zusätzliche Schwächung durch Sägeschnitte versagten (5-40-0,20-111-G, 5-40-0,20-135-G)

ii) in denen die Nähte nur im Falle einer Schwächung durch Sägeschnitte an den seitlichen Probenrändern versagten.

i) Die Großprüfkörper 5-40-0,20-111/135 erreichen vor dem Bruch der Naht im Querschnitt der Längsbleche die Fließgrenze (Bild 8-6).

Bild 8-6: Kreuzzugversuch 5-40-0,20-111-G

Die plastischen Verschiebungen ΔL_{pl} der Prüfkörper bei Erreichen der Bruchlast F_{max} betragen 15,5mm und 18,5mm. Werden diese Verschiebungen auf den 210mm langen Messbereich L_g mit einer konstanten Prüfkörperbreite von 280mm bezogen, betragen die Dehnungen ΔL_g dieses Messbereichs 7,4% und

8,8%. Die Verhältnisse der Bruchlasten F_{max} zu den Fließlasten F_{GW} (8-1) in der Messlänge L_g betragen 1,23 und 1,29.

Die in Bild 8-3 in grauer Farbe dargestellten Verschiebungen Δur am seitlichen Prüfkörperrand sind etwa 2,5 mal größer als die Verschiebungen Δu in der Mitte der Prüfkörperbreite. Die Verschiebungen Δur_{RI} betragen zwischen 0,7mm und 1,1mm.

Die Prüfkörper versagten ausgehend von Bindefehlern am seitlichen Prüfkörperrand (Bruchfläche i in Bild 8-7).

$\frac{F_{\max}^{1)}}{F_{\mathrm{GW}}}$	∆ur _{RI} 1)	$\frac{\Delta L_{pl}^{1)}}{210mm}$	J _{RI} 1)	M _{max} ¹⁾	CTOD ¹⁾	CTOD ¹⁾ CTSD	1) E _{v,pl}	
-	mm	%	N/mm	-	mm	-	%	
1,23	0,7	7,4	640	1,23	0,81	30	34	Min.
1,29	1,1	8,8	730	1,33	0,92	45	37	Max.
Vers Bindefe	agen ausg hlern am se Anrisse ar eitlichen R	ehend von eitlichen Ran	nd .	Schervers der Na	iia iia sagen aht	Sao Ver de	sagen in er WEZ	iib hInaht

1) Nur die Prüfkörper i, bei denen bei Δu_{RI} eine Auswirkung der Risse auf den Kraftanstieg gemessen wurde.

Bild 8-7: Versagen in den Kreuzzugversuchen mit Großprüfkörpern

Sowohl die bruchmechanische Beanspruchung J als auch die plastischen Verschiebungen sind am seitlichen Rand um ein Vielfaches größer als in der Mitte der Prüfkörperbreite.

Die 7mm entfernt vom seitlichen Prüfkörperrand bei Δu_{RI} berechneten Kenngrößen betragen:

- J-Integrale J_{RI} von 640N/mm und 730N/mm
- Maximale Mehrachsigkeiten M_{max} im Ligament von 1,23 und 1,33
- Verhältnisse M_{Misch} von etwa 40

Die nach (3-4) höchst beanspruchten Finiten Elemente liegen in der Wärmeeinflusszone der in Dickenrichtung beanspruchten Querbleche. Die dort bei Δur_{RI} berechneten plastischen Vergleichsdehnungen $\varepsilon_{v,pI}$ betragen etwa 33%. ii) In den Versuchen mit den Prüfkörpern 2-40-0,20-135-G, 5-40-0,20-136 und 6-40-0,20-135-G versagten die Nähte nur bei Schwächung durch Sägeschnitte an den seitlichen Rändern. Die ungeschwächten Nähte erreichten ohne zu versagen eine Kraft, die etwa 90% der Tragfähigkeit des an die Naht angrenzenden Grundwerkstoffs entspricht. Die plastischen Dehnungen ΔL_g der Messlängen betragen bei dieser Kraft zwischen 9,8% und 11,9%. Die Verhältnisse F_{max}/F_{GW} betragen zwischen 1,31 und 1,35.

Nach dem Entlasten wurden am seitlichen Rand der Prüfkörper Anrisse festgestellt (Ansicht ii Bild 8-7). Die maximalen Verschiebungen ∆ur, die zuvor am seitlichen Rand gemessen wurden, betragen zwischen 0,7mm und 1,3mm. Bei diesen Verschiebungen wurde keine Auswirkung der Risse auf den Kraftanstieg festgestellt. Bei Erreichen der maximalen Kraft vor der Entlastung wurden folgende Kenngrößen berechnet:

- J-Integrale zwischen 380N/mm und 540N/mm
- Maximale Mehrachsigkeiten im Ligament zwischen 1,04 und 1,31
- Verhältnisse CTOD/CTSD zwischen 2,5 (6-40-0,20-135-G) und 86 (2-40-0,20-135-G)

Die nach (3-4) höchst beanspruchten Finiten Elemente im Bereich der Nahtwurzel liegen in der Wärmeeinflusszone der in Dickenrichtung beanspruchten Querbleche etwa 7mm entfernt vom seitlichen Prüfkörperrand. Die plastischen Vergleichsdehnungen $\varepsilon_{v,pl}$ betragen in diesen Elementen unmittelbar vor der Entlastung zwischen 22% und 37%.

Der Nahtbereich der Prüfkörper wurde nach dem Entlasten durch Sägeschnitte an beiden seitlichen Rändern geschwächt. Danach wurden die Prüfkörper erneut belastet. Die Verhältnisse F_{max}/F_{GW} der geschwächten Proben betragen bei Nahtversagen zwischen 1,48 und 1,59. Die Nähte versagen entweder durch ein Scherversagen (Bruchfläche iia in Bild 8-7) oder durch einen Bruch in der Wärmeeinflusszone des in Dickenrichtung beanspruchten Querblechs (Bruchfläche iib). In beiden Fällen geht der Bruch vom eingesägten seitlichen Rand aus.

8.1.4 Biegeversuche mit HY-Nähten

In den Biegeversuchen versagten die HY-Nähte in der Wärmeeinflusszone der in Dickenrichtung beanspruchten Querbleche, ohne dass zuvor ein stabiler Rissfortschritt festgestellt wurde. Vor dem Bruch wurden plastische Verschiebewege q gemessen (Bild 8-8).

Bild 8-8: Biegeversuch 6-80-0,20-135-B

Die Verhältnisse der plastischen Verschiebewege q_{pl} zu den Biegerollenabständen betragen zwischen 0,022 (6-80-0,20-135-B) und 0,050 (6-80-0,10-135-B).

Die Verhältnisse der mit den Bruchräften F_{max} berechneten Biegemomente M_{Fmax} im Nahtquerschnitt zu den mit der Streckgrenze des Grundwerkstoffs berechneten vollplastischen Widerstandsmomenten $M_{pl,GW}$ der ungeschwächten Querschnitte des Grundwerkstoffs betragen zwischen 1,78 und 1,90.

Die Bruchflächen zeigen (Bild 8-9), dass die Proben ausgehend von der Nahtwurzel in der Mitte der Probenbreite versagten. Die Bruchflächen zeigen Merkmale eines Sprödbruchs und keine Hinweise auf einen stabilen Rissfortschritt vor dem Bruch. Unmittelbar vor den Versagen wurden folgende Größen berechnet:

- J-Integrale J_{RI} zwischen 622N/mm und 659N/mm
- Maximale Mehrachsigkeiten M_{max} im Ligament zwischen 1,89 und 1,96
- Verhältnisse M_{Misch} von wenigstens 16

Die nach (3-4) höchstbeanspruchten Finiten Elemente liegen in der Wärmeeinflusszone der in Dickenrichtung beanspruchten Querbleche. Die plastischen Vergleichsdehnungen $\varepsilon_{v,pl}$ betragen in diesen Elementen unmittelbar vor dem Versagen zwischen 17% und 24%.

M _{Fmax} M _{pl,GW}	∆ur _{RI} ¹⁾	q _{pl} 600mm	J _{RI}	M _{max}	СТОД	CTOD CTSD	ε _{v,pl}	
-	mm	mm - I		-	mm	-	%	
1,78	1,5	0,022	622	1,89	0,79	16	17	Min.
1,90	1,9	0,050	659	1,96	0,85	170	24	Max.
	Versagen	Bruchfläche						
				spröd Bruchfla	de äche			Nariwurzer

1) Δur_{RI} ist die Dehnung unmittelbar vor dem Versagen.

Bild 8-9: Versagen der HY-Nähte in den Biegeversuchen

8.2 Einfluss der Nahtquerschnitts und von Ungänzen auf die Tragfähigkeit

Im folgenden wird der Einfluss des Nahtquerschnitts und von Ungänzen auf die Tragfähigkeit von teilweise durchgeschweißten Nähten anhand der Versuchsergebnisse ermittelt. Der Querschnitt der untersuchten Nähte wird gegenüber dem Querschnitt des angeschweißten Grundwerkstoffs durch einen planmäßigen Steg h der (D)HY-Nähte und durch verschiedene Ungänzen wie Bindefehler und Risse geschwächt. Ein möglicher Einfluss der Art der Nahtquerschnittsschwächung wird geprüft.

Zunächst wurde der vorliegende Nahtquerschnitt wie im folgenden begründet mit Messergebnissen berechnet. Weil das in DIN EN 1993-1-8 definierte rechnerische Wurzelmaß a_{EC} bei teilweise durchgeschweißten Nähten maßgeblich von der Geometrie der äußeren Nahtausrundung bestimmt wird und nicht mit üblichen Schweißnahtlehren gemessen werden kann, wurde a_{EC} in einem Makroschliff je Naht gemessen. Um die bei manuellen Schweißprozessen zwangsläufige Änderung der Nahtgeometrie in Schweißrichtung zu erfassen, wurde das Wurzelmaß a_A der äußeren Nahtausrundung an äquidistant über die Probenbreite verteilten Punkten mit einer Schweißnahtlehre gemessen. Außerdem wurde nach den Bauteilversuchen die Nichtdurchschweißung s in der Bruchfläche gemessen.

Mit diesen Größen a_A und s wurde für die Versuchsauswertung ein Ersatzwurzelmaß a_{EC}^* als Summe des Wurzelmaßes a_0 der (D)HY-Naht ohne jegliche Nahtausrundung und dem Wurzelmaß der äußeren Nahtausrundung a_A berechnet (Bild 8-10).

Bild 8-10: Berechnung des Ersatzwurzelmaßes a_{EC}^*

Das Wurzelmaß a_A wird bei der Berechnung von a_{EC}^* gewichtet, um die nach DIN EN 1993-1-8 kleinere Beanspruchbarkeit F_a der durch σ_{\perp} und τ_{\perp} beanspruchten Kehlnaht a_A gegenüber der Beanspruchbarkeit F_{\perp}^* einer nur durch σ_{\perp} beanspruchten Naht mit dem Wurzelmaß a_0 zu berücksichtigen.

Damit die Versuchsauswertung auf der sicheren Seite liegt, dürfen die auf den Ersatzquerschnitt a_{EC}^* I bezogenen Bruchspannungen nicht größer als die auf den rechnerischen Nahtquerschnitt a_{EC} I bezogenen Bruchspannungen sein. Das Ersatzwurzelmaß a_{EC}^* muss mindestens so groß wie das rechnerische Wurzelmaß a_{EC} sein.

Bild 8-11 zeigt, dass die Verhältnisse der Ersatzwurzelmaße a_{EC}^* zu den in einem Makroschliff je Naht gemessenen rechnerischen Wurzelmaßen a_{EC} bei allen Nähten wenigstens 0,97 betragen. Die auf a_{EC}^* I bezogenen Bruchspannungen unterschätzen die Spannung im rechnerischen Querschnitt a_{EC} im Mittel um 6% und überschätzen diese maximal um 3%.

Bild 8-11: Verhältnisse a_{EC}* / a_{EC} der untersuchten Nähte

Der Ersatzquerschnitt a_{EC}^*I berücksichtigt die Änderung der Nahtgeometrie in Schweißrichtung und kann zuverlässig gemessen werden. Außerdem sind die eingebrachten Ungänzen wie Bindefehler parallel zur Blechoberfläche des in Dickenrichtung beanspruchten Blechs und reduzieren deshalb das Wurzelmaß a_0 und demzufolge das Ersatzwurzelmaß a_{EC}^* genau entsprechend ihrer Größe. Dies ermöglicht eine sehr einfache Berücksichtigung der Ungänzen auf den Ersatzquerschnitt.

Die auf den Ersatzquerschnitt bezogenen Bruchspannungen können für die untersuchten Nahtgeometrien auf der sicheren Seite liegend auf den rechnerischen Nahtquerschnitt gemäß DIN EN 1993-1-8 übertragen werden, weil a_{EC}^* im Mittel um 6% größer als das rechnerische Wurzelmaß a_{EC} ist und das Ersatzwurzelmaß a_{EC}^* im ungünstigsten Fall bei der Nahtvariante 3 geringfügig (3%) kleiner als das rechnerische Wurzelmaß a_{EC} ist.

Für die weitere Auswertung wird mit (8-2) das Verhältnis des um Ungänzen reduzierten Ersatzwurzelmaßes zum ungeschwächten Blechquerschnitt t berechnet. Dieses Verhältnis f_{DS}^{*} wird Ersatzdurchschweißung genannt.

$$f_{DS}^{*} = \frac{a_{EC}^{*} - \sum Def}{t}$$
(8-2)

Die bis zum Bruch gemessene maximale Kraft F_{max} wird auf die Fließlast F_{GW} (8-1) des Grundwerkstoffs bezogen. Das Verhältnis wird $f_{Trag,exp}$ (8-3) genannt.

$$f_{\text{Trag, exp}} = \frac{F_{\text{max}}}{F_{\text{GW}}}$$
(8-3)

Weil bei den HY-Nähten deutlich vor F_{max} Risse an der Nahtwurzel festgestellt wurden, werden für die HY-Nähte auch die Verhältnisse $f_{RI,exp}$ (8-4) der bei Δu_{RI} gemessenen Kräfte F_{RI} zu F_{GW} berechnet.

$$f_{RI, exp} = \frac{F_{RI}}{F_{GW}}$$
(8-4)

Bild 8-12 zeigt auf der Abszisse die Ersatzdurchschweißungen f_{DS}^{*} und auf der Ordinate die in den Versuchen gemessenen Verhältnisse $f_{Trag,exp}$. Die Ergebnisse der folgenden Versuche werden unterschieden:

- Kreuzzugversuche mit Standardproben und Versagen der DHY-Nähte (offene schwarze Symbole)
- Kreuzzugversuche mit Großprüfkörpern und Versagen der DHY-Nähte (ausgefüllte schwarze Symbole)
- Alle Kreuzzugversuche mit Versagen im Grundwerkstoffquerschnitt (graue Symbole)
- Kreuzzugversuche mit Standardproben und Versagen der HY-Nähte (offene rote Symbole)
- Kreuzzugversuch mit Gro
 ßpr
 üfk
 örper 6-40-0,20-135-G (ausgef
 ülltes rotes Symbol)

Die Verhältnisse $f_{RI,exp}$ in den Kreuzzugversuchen mit den HY-Nähten sind als blaue Symbole angegeben.

Bild 8-12: Verhältnisse f_{Trag,exp} und f_{Rl,exp} in den Bauteilversuchen

Bild 8-12 zeigt für die DHY-Nähte:

- Die DHY-Nähte können ab Ersatzdurchschweißungen f_{DS}^{*} von etwa 0,53 bis zur Fließlast F_{GW} (8-1) des Grundwerkstoffs belastet werden, ohne zu versagen. f_{Trag,exp} ist in allen Versuchen größer als 1.
- Die Verhältnisse f_{Trag,exp} scheinen proportional zur Ersatzdurchschweißung f_{DS}^{*} zu sein.
- Die Art der Nahtschwächung (planmäßiger Steg h, ungenügende Durchschweißung der Nahtwurzel ΣWbf, wurzelnahe Bindefehler ΣDef) scheint keinen Einfluss auf f_{Trag,exp} zu haben.
- Die Verhältnisse f_{Trag,exp} in den Kreuzzugversuchen mit Großprüfkörpern sind etwas kleiner als die Verhältnisse f_{Trag,exp} in den übrigen Versuchen.

Bild 8-12 zeigt für die HY-Nähte:

- Die Verhältnisse $f_{Trag,exp}$ der HY-Nähte sind kleiner als bei den DHY-Nähten mit gleich großen Ersatzdurchschweißungen f_{DS}^* .
- Die Verhältnisse $f_{RI,exp}$ bei der Verschiebung Δur_{RI} sind kleiner als $f_{Trag,exp}$.
- Die HY-Nähte können ab Ersatzdurchschweißungen f_{DS}^{*} von etwa 0,75 bis zur Fließlast F_{GW} des Grundwerkstoffs belastet werden, bevor Risse festgestellt werden können (Δu_{RI}).

 Die Art der Nahtschwächung (planmäßiger Steg, wurzelnahe Bindefehler ΣDef, Risse r) scheint keinen Einfluss auf f_{Trag,exp} und f_{RI,exp} zu haben.

Um diese qualitativen Feststellungen zu prüfen, werden die Verhältniswerte $f_{Trag,exp}$ unterschieden nach den folgenden Gruppen ausgewertet:

- A Alle Versuche mit DHY-Nähten und Nahtversagen
- B Alle Versuche aus A mit Großprüfkörpern
- C Alle Versuche aus A, in denen die Nähte ohne zusätzliche Querschnittsschwächung versagten
- D Alle Versuche aus A mit einer ungenügenden Durchschweißung der Nahtwurzel ΣWbf und/oder wurzelnahen Bindefehlern ΣDef im Nahtquerschnitt
- HY-A Alle Versuche mit HY-Nähten und Nahtversagen
- HY-B Versuch 6-40-0,20-135-G
- HY-C Alle Versuche aus HY-A mit Rissen r an der Nahtwurzel

Zudem werden die Verhältniswerte f_{RI,exp} aller Versuche mit HY-Nähten (HY-RI) ausgewertet.

In der Auswertung wird geprüft, ob die Verhältniswerte $f_{Trag,exp}$ und $f_{RI,exp}$ proportional zur Ersatzdurchschweißung f_{DS}^* sind. Hierzu werden die Proportionalitätsfaktoren c_{exp} und c_{RI} in (8-5a) und (8-5b) mit der Methode des Minimums der Fehlerquadrate berechnet und die Variationskoeffizienten V_{δ} der Abweichungen der mit (8-5a) und (8-5b) berechneten theoretischen Verhältniswerte $f_{Trag,exp,t}$ und $f_{RI,exp,t}$ von den Versuchsergebnissen angegeben. Tabelle 8-1 fasst diese Auswertung zusammen.

$$f_{\text{Trag, exp, t}} = c_{\text{exp}} \cdot f_{\text{DS}} *$$
(8-5a)

$$\mathbf{f}_{\mathsf{RI},\mathsf{exp},\mathsf{t}} = \mathbf{c}_{\mathsf{RI}} \cdot \mathbf{f}_{\mathsf{DS}} * \tag{8-5b}$$

	DHY-Naht (Versagen in der Naht)				HY-Naht				HY-Naht	
					(Versagen in der Naht)				(∆u _{RI})	
Gruppe	Α	В	С	D	HY-A	HY-B	HY-C	HY-RI		
Anzahl	39	4	9	22	8	1	5	9		
C _{exp}	1,930	1,803	1,855	1,959	1,528	1,604	1,517	c _{RI} 1,329		
$V_{\delta}^{1)}$ in %:	8,0	-	-	-	3,0	-	-	3,3		

1) V_{δ} = Variationskoeffizient = Standardabweichung / Mittelwert, Berechnung gemäß Anhang D in DIN EN 1990

Tabelle 8-1: Versuchsauswertung

Tabelle 8-1 zeigt:

- Der Proportionalitätsfaktor c_{exp} für die Gesamtheit A der Versuche mit DHY-Nähten beträgt 1,930. Die Bruchlasten F_{max} der DHY-Nähte sind demzufolge 93% größer als die Fließlasten F_{GW} (8-1) des Grundwerkstoffs. Dieses Verhältnis entspricht etwa den Verhältnissen der im Schweißgut gemessenen Zugfestigkeiten R_{m,SG} zu den Streckgrenzen im Grundwerkstoff R_{p0,2,GW} von 1,83 bis 2,04 (Bild 4-7). Der Variationskoeffizient V_δ der Abweichung von f_{Trag,exp,t} von den Messergebnissen f_{Trag,exp} beträgt 8,0%.
- Der Faktor c_{exp} ist für die Großversuche mit DHY-Nähten B mit 1,803 etwa 6,6% kleiner als für die Gesamtheit A aller DHY-Nähte.
- Der Faktor c_{exp} beträgt für die DHY-Nähte C 1,855 und ist 4,0% kleiner als für die Gesamtheit A. Die Kerben, mit denen ein Bruch der Nähte C erzwungen wurde, haben somit nur einen geringen Einfluss auf f_{Trag,exp}.
- Der Faktor c_{exp} beträgt für die DHY-Nähte D 1,959 und ist 1,5% größer als für die Gesamtheit A. Die Nähte D mit einer ungenügenden Durchschweißung der Nahtwurzel ΣWbf und/oder wurzelnahen Bindefehlern ΣDef weisen somit die gleiche Nahttragfähigkeit wie Nähte gleichen Querschnitts und ohne Ungänzen beträgt. Die Art der Nahtschwächung hat somit keinen Einfluss auf f_{Trag,exp}.
- Der Faktor c_{exp} für die Gesamtheit HY-A der HY-Nähte beträgt 1,528 und ist 21% kleiner als für die DHY-Nähte. Der Variationskoeffizienten V_{δ} beträgt 3,0%.
- Die rissbehafteten Nähte HY-C und der Großversuch HY-B unterscheiden sich nicht von der Gesamtheit der Prüfkörper HY-A.
- Das Faktor c_{RI} beträgt für die HY-Nähte 1,329 und ist etwa 13% kleiner als c_{exp} für diese Nähte. Der Variationskoeffizienten V_{δ} beträgt 3,3%.

In den Kreuzzugversuchen mit Großprüfkörpern und DHY-Nähten wurden 6,6% kleinere Bruchlasten gemessen als in den übrigen Versuchen. Diese kleineren Bruchlasten sind in den Versuchen 2-40-0,20-135-G und 5-40-0,20-136-G damit zu erklären, dass die DHY-Nähte durch seitliche Sägeschnitte geschwächt wurden, um ein Nahtversagen zu erzwingen. Der Bruch ging von den seitlichen Sägeschnitten aus und verlief weitgehend im Grundwerkstoff. Die Standardproben mit etwa gleich großen Ersatzdurchschweißungen f_{DS}^{*} wie diese Großprüfkörper wurden dagegen durch mechanische Bearbeitung an den Seiten so geschwächt, dass die Proben im Nahtquerschnitt versagten. Die Verhältnisse $f_{Trag,exp}$ in den Versuchen mit Standardproben sind deshalb wegen der Überfestigkeit im Schweißgut größer.

In den Versuchen 5-40-0,20-111/135-G mit Ersatzdurchschweißungen f_{DS}^{*} von etwa 0,75 versagten die Nähte auch ohne eine zusätzliche Schwächung. Die im Vergleich zu den Kreuzzugversuchen mit Standardproben mit gleich großen Ersatzdurchschweißungen f_{DS}^{*} kleineren Verhältnisse $f_{Trag,exp}$ können damit erklärt werden, dass in den Großprüfkörpern zum seitlichen Rand hin größere Nichtdurchschweißungen vorlagen. In der in Bild 6-9 gezeigten Bruchfläche der Naht 5-40-0,20-111-G lag am seitlichen Rand eine Nichtdurchschweißung vor, die etwa 40% größer als die über die Nahtlänge gemittelte Nichtdurchschweißung vor, die gleicher Kraft etwa 20% größer als bei einer über die Nahtlänge konstant großen Nichtdurchschweißung (Bild 6-10). Dies resultiert in einem vorzeitigen Reißen am seitlichen Rand bei Kräften, die etwa 4% kleiner als im Falle einer gleichmäßig verteilten Nichtdurchschweißung sind. Dies kann die kleineren Bruchlasten F_{max} in den Kreuzzugversuchen 5-40-0,20-111/135-G erklären.

Somit bestätigen die Bauteilversuche mit Großprüfkörpern die Ergebnisse mit Standardproben.

8.3 Absicherung mit Dauerschwingversuchen

Ziel der im folgenden beschriebenen Dauerschwingversuche ist es, eine maximale Größe der Nichtdurchschweißung und Ungänzen anzugeben, bis zu der eine Abgrenzung zwischen einer vorwiegend ruhenden Beanspruchung und einer nicht vorwiegend ruhenden Beanspruchung wie für voll durchgeschweißte Nähte erfolgen kann.

Hierzu wird mit Dauerschwingversuchen geprüft, bis zu welcher Größe der Nichtdurchschweißung

- die Dauerschwingfestigkeit von teilweise durchgeschweißten Nähten mit Ungänzen der Dauerschwingfestigkeit von voll durchgeschweißten Nähten entspricht.
- das in DIN 18800-1 angegebene Abgrenzungskriterium (8-6) zwischen einer vorwiegend ruhenden Beanspruchung und einer Erm
 üdungsbeanspruchung sicher angewendet werden kann.

$$n = 5 \cdot 10^{6} \cdot \left(\frac{26}{\Delta\sigma}\right)^{3}$$
(8-6)

mit $\Delta\sigma$: Schwingbreite der veränderlichen Einwirkungen auf Bemessungsniveau

Aus den verschiedenen, teilweise mit Ungänzen behafteten Nähten wurden 20mm breite Dauerschwingproben D1 bis D6 entnommen (Bild 4-4). Diese Proben wurden in einem mechanischen Resonanzpulsator, Typ Schenk PU600kN mit verschieden großen Spannungsschwingbreiten im Zugschwellbereich geprüft. Die Unterlast F_u betrug in allen Versuchen 10% der Oberlast F_o . Die Versuche wurden bei einer durch Anrisse verursachten Resonanzänderung des Prüfkörpers abgebrochen. Je Naht wurde ein Versuch mit einer so großen Schwingbreite durchgeführt, dass in diesem Versuch die Lastwechselzahl N bis zum Versuchsabbruch nur etwa 50.000 betrug. Versuche mit größeren Schwingbreiten, die zu Anrissen bei weniger als 10.000 Lastwechseln führen ("Low cycle fatigue"), wurden nicht durchgeführt. Die Ergebnisse sind in Anhang E tabellarisch angegeben.

Bild 8-15 zeigt die Rissausgangsstellen in den Dauerschwingversuchen mit den verschiedenen Nähten.

Bild 8-16 zeigt auf der Ordinate die Spannungsschwingbreiten $\Delta \sigma_{GW}$ bezogen auf den Grundwerkstoffquerschnitt und auf der Abszisse die bis zum Versuchsabbruch gemessenen Lastwechselzahlen N. Außerdem sind die Wöhlerlinien für die Kerbfallklassen 36, 50 und 71 angegeben. Nach DIN EN 1993-1-9 sind für voll durchgeschweißte T-Stöße mit den vorliegenden Nahtgeometrien die Kerbfallklassen 50 (t = 80mm) und 71 (t = 40mm) anzuwenden.

Bild 8-17 zeigt auf der Ordinate die Spannungsschwingbreiten $\Delta \sigma_{Naht}$ bezogen auf den planmäßigen Nahtquerschnitt und auf der Abszisse die Lastwechselzahlen N. Die Spannungsschwingbreite werden auf den planmäßigen Nahtquerschnitt bezogen. Dieser Querschnitt wird unter Berücksichtigung der planmäßigen Steghöhe h und der äußeren Nahtausrundung a_A berechnet. Eine ungenügende Durchschweißung der Nahtwurzel Σ Wbf und weitere Ungänzen Σ Def werden bei der Berechnung nicht berücksichtigt. Bei den HY-Nähten wird die Ausmitte der Zugkraft bezogen auf den Nahtquerschnitt (halbe Steghöhe h/2) bei der Berechnung der Spannungsschwingbreiten mit der elastischen Spannungstheorie berücksichtigt. Im Vergleich zu den Messergebnissen sind die Wöhlerlinien für die Kerbfallklassen 36 und 50 angegeben. Nach DIN EN 1993-1-9 sind die Schwingbreiten des Vergleichswerts der Spannung σ_{wf} (8-7) im Nahtquerschnitt von teilweise durchgeschweißten Nähte mit der Wöhlerlinie für die Kerbfallklassen 36 nachzuweisen, um Wurzelrisse zu vermeiden. Bei den geprüften (D)HY-Nähte ist der rechnerische Nahtquerschnitt praktisch rechtwinklig zur Zugkraft. Deshalb entfällt in (8-7) die Spannungskomponente $\tau_{\perp f}$.

 $\sigma_{wf} = \sqrt{\sigma + f^2 + \tau + f^2}$

Bild 8-16: Ergebnisse von Dauerschwingversuchen (Schwingbreiten $\Delta \sigma_{GW}$)

(8-7)

Bild 8-17: Ergebnisse von Dauerschwingversuchen (Schwingbreiten $\Delta\sigma_{Naht}$)

Bild 8-16 zeigt, dass sich die Lastwechselzahlen N der DHY-Nähte der Varianten 2 und 5 mit Ersatzdurchschweißungen f_{DS}^{*} von 1,02 und 0,86 (offene grüne Symbole) nicht von den bei gleicher Spannungsschwingbreite $\Delta \sigma_{GW}$ erreichten Lastwechselzahlen N der voll durchgeschweißten T-Stöße 1-40/80-0,00-135 unterscheiden (ausgefüllte grüne Symbole). Die Risse gingen bei diesen Nähten immer vom äußeren Nahtübergang aus. Die Lastwechselzahlen N sind immer größer als die Lastwechselzahlen der Wöhlerlinie für die Kerbfallklasse 71. Somit sind die untersuchten T-Stöße mit DHY-Nähten mit Nichtdurchschweißungen den voll durchgeschweißten T-Stößen hinsichtlich der Dauerschwingfestigkeit gleichwertig, wenn die Ersatzdurchschweißung f_{DS}^{*} wenigstens 0,86 beträgt.

Bei den DHY-Nähten mit kleineren Ersatzdurchschweißungen f_{DS}^{*} von minimal 0,60 (schwarze Symbole) gingen die Risse von der Nahtwurzel oder den wurzelnahen Ungänzen aus. Demzufolge erreichten diese Nähte kleinere Lastwechselzahlen N als die Nähte mit größeren Ersatzdurchschweißungen f_{DS}^{*} . Die für die Wöhlerlinie der Kerbfallklasse 36 angegebenen Lastwechselzahlen werden erreicht.

Bild 8-17 zeigt, dass sich die Lastwechselzahlen N der untersuchten DHV- und DHY-Nähte bei Schwingbreiten $\Delta\sigma_{Naht}$ nicht signifikant voneinander unterscheiden. Die Lastwechselzahlen N sind deutlich größer als die für die Wöhlerlinie der Kerbfallklasse 36 angegebenen Lastwechselzahlen N. Diese ist nach DIN EN 1993-1-9 für den Nachweis im Nahtquerschnitt anzuwenden. Die Art der Querschnittsschwächung (Steg h, Σ Wbf, Σ Def) hat keinen Einfluss.

Für DHY-Nähte folgt:

- Eine Nichtdurchschweißung s der Nahtwurzel hat bei den untersuchten Nähten in Doppel-T-Stößen keine Auswirkung auf die Dauerschwingfestigkeit, solange f_{DS}^* wenigstens 0,86 beträgt, weil die Kerben am äußeren Nahtübergang maßgebend sind. Bei planmäßig voll durchgeschweißten DHV-Nähten in Doppel-T-Stößen mit einer ungenügenden Durchschweißung ist somit ein Anreißen an der Nahtwurzel und eine Nahtquerschnittschwächung infolge eines Rissfortschritts unabhängig von der Schwingbreite $\Delta \sigma_{GW}$ und der Lastwechselzahl N nicht zu erwarten, solange f_{DS}^* wenigstens 0,86 beträgt.
- Das in DIN 18800-1 angegebene Abgrenzungskriterium (8-6) liegt auch dann weit auf der sicheren Seite, wenn die untersuchten N\u00e4hte in Doppel-T-St\u00f6\u00e56n wurzelnahe Nichtdurchschwei\u00dfungen s bis zu 40\u00f6 des Nahtquerschnitts aufweisen.

Bild 8-16 zeigt, dass die HY-Nähte Lastwechselzahlen N erreichen (blaue Symbole), die nur etwas größer als die für die Wöhlerlinie der Kerbfallklasse 36 angegebenen Lastwechselzahlen sind. Nach DIN EN 1993-1-9 ist jedoch die Wöhlerlinie für die Kerbfallklasse 50 anzuwenden. Zusätzlich zu diesem Nachweis der Schwingbreiten $\Delta\sigma_{GW}$ sind die Schwingbreiten im Nahtquerschnitt $\Delta\sigma_{Naht}$ mit der Wöhlerlinie der Kerbfallklasse 36 nachzuweisen. Dieser Nachweis wird bei teilweise durchgeschweißten HY-Nähten wegen der ungünstigeren Kerbfallklasse 36 und der höheren Schwingbreite $\Delta\sigma_{Naht}$ wegen des Moments aufgrund der Ausmitte h/2 immer maßgebend. Bild 8-17 zeigt, dass die Lastwechselzahlen N der HY-Naht 6-80-0,20-135 (h/t=0,20) etwa auf dem Niveau der DHY-Nähte liegen. Die Naht 6-80-0,10-135 mit einer kleineren Ausmitte (h/t=0,10) erreicht kleinere Lastwechselzahlen N, die etwa denen der Wöhler-linie für die Kerbfallklasse 50 entsprechen.

Für die HY-Nähte folgt:

- Bei planmäßig nichtdurchgeschweißten HY-Nähten wird immer der Nachweis der Schwingbreite $\Delta \sigma_{\text{Naht}}$ im Nahtquerschnitt maßgebend.
- Auch eine nur geringe Nichtdurchschweißung reduziert die Dauerschwingfestigkeit von voll durchgeschweißten HV-Nähten in Doppel-T-Stößen erheblich. Bei planmäßig voll durchgeschweißten HV-Nähten mit einer ungenügenden Durchschweißung kann die Nahtwurzel somit anreißen und der Nahtquerschnitt infolge eines Rissfortschritts geschwächt werden. Deswegen scheint es bei HV-Nähten geboten, einen Nachweis der Schwingbreite Δσ_{Naht} unter Annahme einer Nichtdurchschweißung zu führen, wenn Ungänzen nicht ausgeschlossen werden können.
- Das in DIN 18800-1 angegebene Abgrenzungskriterium (8-6) liegt f
 ür HVund HY-N
 ähte noch auf der sicheren Seite, wenn die untersuchten N
 ähte in Doppel-T-St
 ößen eine Ersatzdurchschwei
 ßung f
 _{DS}* von wenigstens 0,86 aufweisen.

8.4 Herleitung eines Versagenskriteriums

Auf Grundlage der bei der Verschiebung Δu_{RI} berechneten J-Integrale und der maximalen Mehrachsigkeiten M_{max} soll ein fließbruchmechanisches Kriterium für das Reißen der teilweise durchgeschweißten Nähte hergeleitet werden. Dieses soll im weiteren zur Berechnung der Bruchlasten von nicht experimentell untersuchten Nähten verwendet werden.

Zur Unterscheidung von bruchmechanischen Beanspruchungen und bruchmechanischen Widerständen werden die folgenden Bezeichnungen verwendet:

Beanspruchungen:

Jappi: Kombination aus Modus I und Modus II Beanspruchung

J_{I,appl}: Modus I Beanspruchung

J_{II,appl}: Modus II Beanspruchung

 J_{RI} : Kombination aus Modus I und Modus II Beanspruchung bei Δu_{RI}

Widerstände:

 J_{IC} : im 3-Punkt Biegeversuch gemäß ISO 12135 gemessener Widerstand bei vernachlässigbarem Rissfortschritt Δa vor dem Versagen [Abgrenzung für Δa in (3-12)]

 $J_{1,0,2:}$ im 3-Punkt Biegeversuch gemäß ISO 12135 gemessener Widerstand bei einem Rissfortschritt von 0,2mm

J_{I,BT}: mit (3-13) berechneter Widerstand

 J_{IM} : Widerstand bei der im Bauteil vorliegenden Mehrachsigkeit M_{max} im Ligament vor der Rissspitze

In den in Abschnitt 8.1 beschriebenen Bauteilversuchen betrugen die Verhältnisse M_{Misch} der Spaltaufweitung CTOD zur spaltparallelen Gleitung CTSD bis zur Rissfeststellung 2,3. Die Hauptspannungen im Ligament vor der Nahtwurzel sind Zug- und Druckspannungen etwa gleichen Betrags. Offenbar dominiert die Modus I Beanspruchung auch bei ausprägten plastischen Verformungen im Bereich der Nahtwurzel und den vorliegenden Werkstoffinhomogenitäten. Gemäß [36] wird aus diesen Gründen auf eine Mischmodusbetrachtung verzichtet. Die Beanspruchung J_{RI} der Nahtwurzel wird als Modus I Beanspruchung J_{I,appl} aufgefasst.
Gemäß [36], [37] und [38] ist ein Einfluss des Beanspruchungszustands im Ligament vor der Rissspitze auf die Größe der bis zum Bruch ertragenen bruchmechanischen Beanspruchungen zu erwarten. Zur Angabe dieses Einflusses für die untersuchten Nähte werden neben den bis zur Rissfeststellung (Δur_{RI}) ermittelten Beanspruchungen J_{RI} auch die maximalen Mehrachsigkeiten M_{max} im Ligament vor der Nahtwurzel betrachtet.

Bild 8-18 zeigt diese Kenngrößen in den Biege- und Zugversuchen mit HY-Nähten 6-80-0,10/0,20-135. In diesen Versuchen versagten die Nähte rechtwinklig zur größten Hauptspannung (Zug).

Außerdem sind die mit (3-16) berechneten Widerstände $J_{1,0,2}$ angegeben. Diese wurden mit wurzelnahen Nahtübergang (SW) der der im Naht 6-80-0,10/0,20-135 gemessenen Kerbschlagarbeit AV_{HL} in der Hochlage (169J) und der Dehngrenze R_{p0.2,WEZ} in der wurzelnahen Wärmeeinflusszone berechnet. Der Erwartungswert von J_{1,0,2} beträgt 290N/mm. Die maximale Mehrachsigkeit M_{max} in einem Biegeversuch gemäß ISO 12135 wurde unter Berücksichtigung der Werkstoffeigenschaften im Grundwerkstoff und der Wärmeeinflusszone mit der Finiten Element Methode berechnet. M_{max} beträgt bei einer Beanspruchung J_{I,appl} von 290N/mm etwa 2,40, wenn die Rissspitze in der Wärmeeinflusszone liegt, in der eine größere Dehngrenze als im angrenzenden Grundwerkstoff vorliegt (Bild 7-11).

Bild 8-18: J_{RI} und Widerstand J_{1,0,2} bei Versagen rechtwinklig zur größten Hauptspannung

In den Biege- und Zugversuchen mit HY-Nähten betragen die J-Integrale J_{RI} bei der Verschiebungen Δur_{RI} zwischen 622N/mm und 878N/mm. Diese J-Integrale sind zwischen 114% und 200% größer als der für die im Bereich der Nahtwurzel gemessene Kerbschlagarbeit AV_{HL} zu erwartende Widerstand J_{I,0,2}.

Die Mehrachsigkeit M_{max} des Spannungszustands beträgt im Ligament vor der Nahtwurzel bei der Verschiebung Δur_{RI} zwischen 1,55 und 1,96 und ist kleiner als diese Mehrachsigkeit im Biegeversuch gemäß ISO 12135. Bild 8-18 zeigt, dass die Größen der J-Integrale mit zunehmender Mehrachsigkeit etwa linear abnehmen.

In [38] sind für verschiedene, durch Zugkräfte beanspruchte rissbehaftete Proben Korrekturterme β_{MINA} zur Berücksichtigung des Beanspruchungszustands auf den im Bauteil zu erwartenden bruchmechanischen Widerstand J_{I,BT} angegeben. J_{I,BT} kann gemäß [38] berechnet werden, indem der Widerstand J_{IC} durch β_{MINA} dividiert wird (3-13).

Die Größen der Korrekturterme β_{MINA} sind von der Geometrie, dem Verhältnis YR der Dehngrenze zur Zugfestigkeit im Werkstoff und von einer Werkstoffkenngröße m abhängig. Die Kenngröße m ist ein Maß für die Mikroporosität des Stahls. Für Baustähle beträgt m gemäß [38] im ungünstigsten Fall 10. Der Korrekturterm β_{MINA} beträgt für diese Größe von m für die Zugprobe mit einem Innenriss mit einer Länge 2a von 50mm (Bild 7-3) und das vorliegende Verhältnis YR von 0,82 maximal 0,33. J_{I,BT} beträgt somit das dreifache des gemäß ISO 12135 bestimmten Werkstoffkennwerts J_{IC}. Die Mehrachsigkeit im Ligament der Zugprobe mit Innenriss wurde mit der Finiten Element Methode berechnet und beträgt zu Beginn der Belastung etwa 1,68 (Bild 7-12).

Die HY-Nähte wiesen in den Bauteilversuchen bei Mehrachsigkeiten M_{max} von etwa 1,77 zu Beginn der Belastung und von etwa 1,55 bei Rissfeststellung Widerstände J_{RI} auf, die etwa das dreifache von $J_{I,0,2}$ betrugen. Diese Messergebnisse stimmen in etwa mit den Prognosen in [38] für die Zugprobe mit Innenriss und einer etwa gleich großen Mehrachsigkeit M_{max} überein.

Für eine Zugprobe mit Außenrissen der Länge a von 15mm (Bild 7-3) wird in [38] ein maximaler Korrekturterm von 0,54 angegeben. Die Mehrachsigkeit M_{max} beträgt gemäß Bild 7-12 zu Beginn der Belastung etwa 1,89. Der gemäß [38] zu erwartende Widerstand $J_{I,BT}$ ist etwa 85% größer als J_{IC} .

Die HY-Nähte wiesen in den Biegeversuchen bei Mehrachsigkeiten M_{max} 1,80 bis 1,94 zu Beginn der Belastung und von 1,89 bis 1,96 bei Rissfeststellung Widerstände J_{RI} auf, die 114% bis 133% größer als $J_{I,0,2}$ waren. Diese Messergebnisse stimmen in etwa mit den Prognosen in [38] für die Zugproben mit Außenrissen und etwa gleich großen Mehrachsigkeiten überein.

Die überwiegende Anzahl der untersuchten Nähte versagte jedoch trotz der dominierenden Modus I Beanspruchung nicht rechtwinklig zur größten Hauptspannung sondern durch Scherbrüche ausgehend von der Nahtwurzel. Diese Versuche werden wie folgt unterschieden:

1b) Kreuzzugversuche mit Standardproben mit (D)HY-Nähten ohne Ungänzen (3-80-0,50-135, 4-80-0,50-135) oder mit Ungänzen in einem großen Abstand a_{Def} von etwa 15mm von der Nahtwurzel (Varianten 6 und 7); Das Verhältnis von a_{Def} zur Größe der Ungänzen Def beträgt mindestens 2,0.

1c) Kreuzzugversuche mit Standardproben mit DHY-Nähten mit wurzelnahen Ungänzen; Die etwa 10mm breiten Ungänzen haben einen Abstand a_{Def} von maximal 11mm von der Nahtwurzel (5-80-0,28-111/135). Das Verhältnis von a_{Def} zur Größe der Ungänzen Def beträgt etwa 1,0.

1d) Kreuzzugversuche mit Großprüfkörpern 5-40-0,20-111/135-G und mit Nahtversagen

1e) Kreuzzugversuche mit Großprüfkörpern 2/6-40-0,20-135-G mit Anrissen am seitlichen Rand

Bild 8-19 zeigt die J-Integrale J_{RI} und die Mehrachsigkeiten M_{max} bei Rissfeststellung in diesen Versuchen und die bereits in Bild 8-18 angegebenen Ergebnisse.

Bild 8-19: J_{RI} und M_{max} in allen Bauteilversuchen mit teilweise durchgeschweißten Nähten

In den Versuchen 1b und 1d betragen die J-Integrale J_{RI} zwischen 641N/mm und 1010N/mm und die maximalen Mehrachsigkeiten zwischen 1,17 und 1,79. Bei diesen Versuchen mit Scherversagen beeinflusst die Mehrachsigkeit M_{max} die Größe J_{RI} nicht signifikant. Die in den Großversuchen 1d etwa 7mm entfernt vom seitlichen Prüfkörperrand berechneten J-Integrale J_{RI} liegen im unteren Bereich des Streubands.

In den Großversuchen 1e sind die Beanspruchungen J_{RI} bei visueller Rissentdeckung am seitlichen Prüfkörperrand mit 380N/mm bis 544N/mm bis zu 40% kleiner als in den Großversuchen 1d. Bei Abbruch der Versuche 1e wurden am seitlichen Rand Risse festgestellt. Eine Auswirkung dieser Risse auf den Kraftanstieg wurde abweichend von allen anderen Versuchen jedoch noch nicht festgestellt. Die Ergebnisse der Versuche 1e werden deshalb bei Auswertung zur Bestimmung eines Kriteriums für das Erreichen der Verschiebung Δur_{RI} , ab der die Risse eine feststellbare Auswirkung auf den Kraftanstieg haben, nicht berücksichtigt.

In den Versuchen 1c liegen Ungänzen mit kleinen Abständen zur Nahtwurzel vor ($a_{Def}/Def \approx 1$). Die J-Integrale J_{RI} im Bereich der Nahtwurzel betragen zwischen 435N/mm und 727N/mm. Bei der Naht 5-80-0,28-135 mit den kleinsten Abständen a_{Def} von etwa 8mm sind diese J-Integrale J_{RI} mit 435N/mm bis 472N/mm signifikant kleiner als in den übrigen Versuchen. Bei solch kleinen Abständen a_{Def} beeinflussen die Ungänzen das Spannungs- und Dehnungsfeld im Bereich der Nahtwurzel, so dass die in diesem Bereich berechneten Integrale ihre Bedeutung als Beanspruchungsparameter der Nahtwurzel verlieren. Bei der Auswertung der Versuchsergebnisse zur Bestimmung eines Versagenskriteriums werden diese Versuche deshalb nicht berücksichtigt.

In den folgenden rechnerischen Untersuchungen wird Nahtversagen angenommen, wenn die fließbruchmechanische Beanspruchung der Nahtwurzel J_{appl} einen von der Mehrachsigkeit abhängigen Widerstand J_{IM} erreicht. Bei den HY-Nähten wird der in den Versuchen gemessene Kraftanstieg nach der Rissfeststellung und einem Rissfortschritt nicht berücksichtigt.

Für Mehrachsigkeiten bis 1,55 wird die Beanspruchung J_{appl} der Nahtwurzel mit (8-8a) auf die Größe J_s begrenzt. J_s ist der Mittelwert der in den Bauteilversuchen 1b und 1d mit Scherversagen berechneten Beanspruchungen J_{RI} bei Rissfeststellung (Δu_{RI}). J_s beträgt 800N/mm. Das 5%-Fraktil von J_s beträgt 600N/mm.

$$\begin{split} J_{appl} &\leq J_{IM} = J_s \eqno(8-8a) \\ f \ddot{u} r : & M_{max} \leq 1,55 \\ mit \; J_s : & Widerstand \; bei \; einer \; Mehrachsigkeit \; M_{max} \; bis \; 1,55; \\ & J_s = 800 N/mm \; (P_f = 50\%); \; J_{s,5\%} = 600 N/mm \; (P_f = 5\%) \end{split}$$

Zur Vermeidung von Brüchen bei größeren Mehrachsigkeiten M_{max} wird die Beanspruchung J_{appl} mit (8-8b) linear abhängig von der im Bauteil vorliegenden Mehrachsigkeit M_{max} begrenzt. Der Widerstand J_{IM} bei einer Mehrachsigkeit von 1,55 beträgt das dreifache des Widerstands J_{IC} im Biegeversuch gemäß ISO 12135 bei einer größeren Mehrachsigkeit M_{ISO} von 2,40. Als Abschätzung für den Widerstand J_{IC} wird das technische J-Integral $J_{I,0,2}$ verwendet.

$$J_{appl} \le J_{IM} = J_{IC} + \frac{J_s - J_{IC}}{M_{ISO} - 1,55} \cdot \left(M_{ISO} - M_{max}\right)$$
(8-8b)

für: $1,55 < M_{max} \le 2,40$

mit:

- M_{ISO} : Mehrachsigkeit im Biegeversuch gemäß ISO 12135 M_{ISO} = 2,40 (Riss in der aufgehärteten WEZ)
- M_{max}: Mehrachsigkeit im Bauteil

Die Kriterien (8-8a) und (8-8b) wurden auf Grundlage von Bauteilversuchen mit den in Tabelle 8-2 angegebenen Grenzen hergeleitet.

	Grobbleche aus \$355.12G3
GW	mit Dicken zwischen 40mm und 80mm
GVV	Kerbschlagarbeit 79.1 $< A_V < 169.1$ bei -20°C
	Festigkeitsklassen 42 und 46
SZW	$A_V > 47.1$ bei -30° C
Schweißprozess	überwiegend Prozess 135, auch Prozess 111 und 136
<u> </u>	
Uberfestigkeit M _{SG} (4-2)	$1,51 \le M_{SG} \le 1,84$ (Abschnitt 4.7.2)
Zähigkeit im Bereich	$T_{a-1} \sim -45^{\circ}$ C und AV = 1601 bis 1701 bei 20°C
der Nahtwurzel	im wurzelseitigen Nahtübergang SW (Abschnitt 4.7.3)
Mehrachsigkeit M _{max} (3-2a)	$1,17 \leq M_{max} \leq 1,96$
Prüftemperatur	Raumtemperatur (15°C bis 25°C)
antomporatai	

Tabelle 8-2: Spektrum der (8-8a/b) zugrunde liegenden Bauteilversuche

9 Rechnerische Untersuchungen

9.1 Übersicht der rechnerischen Untersuchungen

Mit rechnerischen Untersuchungen wird im folgenden das in Tabelle 8-2 angegebene Spektrum der experimentellen Untersuchungen erweitert. Ziel ist es, die Tragfähigkeit von Nähten

- von Baustählen mit Festigkeiten zwischen S235 und S460 und
- mit Überfestigkeiten M_{SG} im Schweißgut in einer für Baustähle möglichen Bandbreite und
- mit Zähigkeiten in einer für Schweißverbindungen von Baustählen möglichen Bandbreite und
- mit verschieden großen Steghöhen und Ungänzen

zu ermitteln.

In Abschnitt 9.2 wird erklärt, wie der Einfluss des Spannungszustands im Bereich der Nahtwurzel auf den Widerstand (8-8a/b) in den FE-Berechnungen auf der Seite der Beanspruchungen berücksichtigt wird. In Abschnitt 9.3 werden auf Grundlage bruchmechanischer Betrachtungen Widerstände im Bereich der Nahtwurzel für niedrigere Temperaturen und geringere Zähigkeiten als in den Bauteilversuchen hergeleitet. In Abschnitt 9.4 und 9.5 wird die Modellierung der Nähte und die Berechnung der Nahttragfähigkeit mit der Finiten Element Methode erläutert.

In Abschnitt 9.6 bis 9.8 werden dann die grundsätzlichen Einflüsse der Nahtgeometrie, der Überfestigkeit M_{SG} und der Temperatur und der Zähigkeit auf die Nahttragfähigkeit auf Grundlage von FE-Berechnungen gezeigt. In Abschnitt 9.9 werden in einer insgesamt etwa 1400 Parameterkombinationen umfassenden Studie die Einflussgrößen Nahtgeometrie, Überfestigkeit M_{SG}, Temperatur und Zähigkeit in einem im Bauwesen möglichen Spektrum rechnerisch variiert. Auf Grundlage dieser Berechnungsergebnisse wird in Abschnitt 9.10 eine Beziehung für die Nahttragfähigkeit hergeleitet. In Abschnitt 9.11 werden die Vorhersagen dieser Beziehung für niedrige Temperaturen und Zähigkeiten mit eigenen und im Schrifttum dokumentierten [26] Bauteilversuchen bei tiefen Temperaturen überprüft.

9.2 Äquivalente Beanspruchung J_{eqv,appl} der Nahtwurzel

Die bruchmechanische Beanspruchung der Nahtwurzel wird durch das J-Integral J_{appl} ausgedrückt. Dieses wird mit zunehmender Belastung wie in Abschnitt 7 beschrieben berechnet. In Abschnitt 8 wurde gezeigt, dass verschie-

107

dene Nahtgeometrien und Arten der Belastung in Spannungszuständen mit unterschiedlicher Mehrachsigkeit M_{max} im Ligament resultieren (Bild 8-18 und Bild 8-19). Gemäß dem Versagenskriterium (8-8a/b) hat eine zunehmende Mehrachsigkeit M_{max} des Spannungszustands eine abnehmende Beanspruchbarkeit J_{IM} zur Folge.

Im weiteren wird der Einfluss der Mehrachsigkeit M_{max} auf der Seite der bruchmechanischen Beanspruchung berücksichtigt, indem die an der Nahtwurzel vorliegende Beanspruchung J_{appl} mit (9-1) in eine gemäß dem Versagenskriterium (8-8a/b) äquivalente Beanspruchung $J_{eqv,appl}$ bei der im Biegeversuch gemäß ISO 12135 vorliegenden Mehrachsigkeit transformiert wird. Dies hat den Vorteil, dass die äquivalente Beanspruchung $J_{eqv,appl}$ direkt mit dem Widerstand J_{IC} verglichen werden kann, der in einem standardisierten Versuch gemäß ISO 12135 oder mit der Korrelation (3-14) ermittelt wird. Bild 9-1 veranschaulicht die Transformation des Beanspruchungszustands (J_{appl} , M_{max}) in den äquivalenten Zustand ($J_{eqv,appl}$, M_{ISO}) mit (9-1).

$$J_{eqv, appl} = J_{appl} \cdot \begin{cases} \frac{J_{IC}}{J_{S}} = 0,36 & M_{max} \le 1,55 \\ \left(1 + \frac{J_{S} - J_{IC}}{J_{IC}} \cdot \frac{M_{ISO} - M_{max}}{M_{ISO} - 1,55}\right)^{-1} & 1,55 < M_{max} < 2,40 \\ 1 & M_{max} = 2,40 \end{cases}$$
(9-1)

Bild 9-1: Transformation von J_{appl} in J_{eqv,appl} mit (9-1)

9.3 Widerstände J_{IC} bei verschiedenen Temperaturen und Zähigkeiten

Mit den Finiten Element Berechnungen sollen auch Nahttragfähigkeiten bei tieferen Temperaturen als den Prüftemperaturen und bei von den experimentell untersuchten Nähten abweichenden Zähigkeiten im Nahtbereich berechnet werden. Sowohl eine Änderung der Einsatztemperatur T als auch der Zähigkeit wird im weiteren durch eine Änderung des Widerstands J_{IC} berücksichtigt. Nahtversagen wird angenommen, wenn die Beanspruchung $J_{eqv,appl}$ größer als der Widerstand J_{IC} wird.

Im Übergangsbereich zwischen duktilem Werkstoffverhalten in der Hochlage und sprödem Werkstoffverhalten in der Tieflage wird J_{IC} mit der in Bild 9-2 angegebenen Beziehung (3-14) abhängig von der Übergangstemperatur T_{27J} der Kerbschlagarbeit sowie der Einsatztemperatur T abgeschätzt. Analog zu [46] wird eine Versagenswahrscheinlichkeit P_f von 50% angesetzt. Die so abgeschätzten Widerstände J_{IC} sind demzufolge Erwartungswerte. Gemäß (3-14) nimmt die Bruchzähigkeit mit einer zunehmenden effektiven Rissfrontlänge B ab. Auf der sicheren Seite liegend wird angenommen, dass die Nichtdurchschweißung die Kerbschärfe eines Risses aufweist und über die gesamte Bauteilbreite vorliegt. Die maximale effektive Rissfrontlänge B beträgt dann gemäß Bild 3-6 das zweifache der Blechdicke t.

Bild 9-2: Widerstand J_{IC} (T)

Bild 9-2 zeigt den so abgeschätzten Verlauf des Widerstands $J_{IC}(T)$ beispielhaft für eine Übergangstemperatur T_{27J} von -50°C und für eine effektive Rissfrontlänge B von 160mm. Die Begrenzung des Widerstands in der Hochlage mit (3-16) wird im weiteren erläutert.

In Tabelle 9-1 sind Widerstände J_{IC} für Temperaturen T zwischen -30°C und 20°C, Übergangstemperaturen T_{27J} zwischen 20°C und –60°C und Rissfrontlängen B zwischen 25mm und 160mm angegeben.

	T in °C	Effe	ktive Rissfrontlän	ge B	T _{ert} in °C			
		25mm	80mm	160mm	1 27J III O			
	20	72	45	34				
	0	41	26	21	20			
드	-10	32	21	16	20			
,	-30	20	14	11				
Ż	20	132	80	60				
Ë	0	72	45	34	0			
ēic	-10	54	34	26	0			
s) er	-30	32	21	16				
, E Jsb	20	253	149	110				
27J	0	132	80	60	20			
, T rga	-10	97	59	45	-20			
) Del	-30	54	34	26				
€	20	354	207	152				
J _{IC}	0	182	109	80	20			
öd	-10	132	80	60	-30			
, Dr	-30	72	45	34				
s-L	20	707	409	296				
zäl	0	354	207	152	50			
E	-10	253	149	110	-50			
.=	-30	132	80	60				
	20	1008	579	418				
	0	499	290	211	60			
	-10	354	207	152	-00			
	-30	182	109	80				
-	۵)		unabhängig von E	3	AV_{HL} in J			
er lage m]		R _{p0,2} = 350N/mm²	R _{p0,2} = 500N/mm²	R _{p0,2} = 650N/mm ²				
1,0,1 C	l, ch v	148	156	164	100			
∽≒ęZ		230	243	255	150			
		314	331	348	200			
1) Abschätz	$^{)}$ Abschätzung mit (3-14), P _f = 0,50							
2) Abschätz	ung mit (3-16)						

Tabelle 9-1: Widerstände J_{IC} im zäh-spröden Übergangsbereich und $J_{I,0,2}$ in der Hochlage

Befindet sich der Stahl in der zähen Hochlage der Bruchzähigkeit, sind die mit (3-14) abgeschätzten Widerstände ohne Aussagekraft, weil die Beanspruchbarkeit durch den Widerstand in der zähen Hochlage begrenzt wird. Als Widerstand in der zähen Hochlage wird das mit (3-16) abhängig von der Kerbschlagarbeit AV_{HL} in der Hochlage berechnete technische J-Integral J_{I,0,2} verwendet. Dieser Hochlagenwiderstand ist wegen des in der Hochlage duktilen Werkstoffverhaltens unabhängig von der effektiven Rissfrontlänge B. Bild 9-2 zeigt den so abgeschätzten Erwartungswert für eine Kerbschlagarbeit in der Hochlage AV_{HL} von 150J und für eine Dehngrenze von 500N/mm².

In Tabelle 9-1 sind die mit (3-16) abgeschätzten Widerstände auch für eine kleinere Dehngrenze von 350N/mm² und eine größere Dehngrenze von 650N/mm² angegeben. Diese Spanne der Dehngrenzen ist in der Wärmeein-flusszone von Stählen der Festigkeitsklassen S235 bis S460 zu erwarten. Der Einfluss der Dehngrenze auf die mit (3-16) abgeschätzten Widerstände ist so gering, dass dieser vernachlässigt wird. Im folgenden wird immer von einer mittleren Dehngrenze in der Wärmeeinflusszone von 500N/mm² ausgegangen.

Tabelle 9-1 zeigt, dass im Falle von Übergangstemperaturen T_{27J} kleiner als -20°C der mit (3-14) abgeschätzte Widerstand J_{IC} insbesondere bei kleinen Blechdicken t und demzufolge kleinen effektiven Rissfrontlängen B größere Werte als der Hochlagenwiderstand aufweisen kann, wenn von einer für solche Stähle realistischen Kerbschlagarbeit AV_{HL} in der Hochlage von 150J ausgegangen wird. In diesen Fällen wird der Widerstand durch den mit der Kerbschlagarbeit in der Hochlage AV_{HL} von 150J berechneten Hochlagenwiderstand begrenzt.

Für Stahlbauten werden in DIN EN 1993-1-10 zur Sprödbruchvermeidung für die in DIN EN 1993-1-9 geregelten Kerbdetails Anforderungen an die Stahlsorte hinsichtlich der Kerbschlagarbeit und somit gemäß (3-14) an J_{IC} gestellt. DIN EN 1993-1-10 fordert eine Güte des Grundwerkstoffs, die abhängig von der Erzeugnisdicke, der Stahlfestigkeit, der tiefsten Einsatztemperatur und von der zusammen mit der tiefsten Einsatztemperatur wirkenden Bemessungsspannung σ_{Ed} im Grundwerkstoffquerschnitt an der Stelle der erwarteten Rissentstehung ist. Bei der Herleitung der Anforderungen an die Stahlgüte [46] wird das Vorliegen

- von weit fortgeschrittenen semielliptischen Außenrissen mit einer blechdickenabhängigen Risstiefe a_d und einer Rissfrontlänge B von 5a_d (Bild 9-3) und
- des jeweils spezifizierten Mindestwerts der Kerbschlagarbeit und
- der tiefsten Einsatztemperatur

als außergewöhnliche Bemessungssituation aufgefasst. Demzufolge wird die Spannung σ_{Ed} mit der Einwirkungskombination für die außergewöhnliche Bemessungssituation in DIN EN 1990 berechnet.

Bei der Ermittlung der blechdickenabhängigen bruchmechanischen Beanspruchung K_{appl} der Rissspitze werden den Lastspannungen σ_{Ed} globale Zugeigenspannungen mit einer pauschalen Größe von 100N/mm² überlagert. Zur Verhinderung eines spröden Versagens muss der Widerstand K_{IC} bei der tiefsten Einsatztemperatur mindestens die Größe der Beanspruchung K_{appl} aufweisen. Diese Anforderungen an K_{IC} werden im Rahmen dieser Arbeit mit (3-14) in Anforderungen an den Widerstand J_{IC} umgerechnet.

Die für eine Spannung σ_{Ed} in Höhe von 75% der Streckgrenze $f_y(t)$ geforderten Widerstände J_{IC} dienen im weiteren als Bezugsgröße des bruchmechanischen Widerstands und werden mit J_{EC} bezeichnet. Tabelle 9-2 zeigt diese Größen J_{EC} für Baustähle S235 bis S460 und für Blechdicken zwischen 20mm und 200mm.

Ein Widerstand J_{IC} in Höhe von J_{EC} stellt gemäß [46] für die in Bild 9-3 gezeigte Geometrie mit einem halbelliptischen Außenanriss sicher, dass bis zu einer Lastspannung σ_{Ed} in Höhe von 0,75 f_y(t) kein Versagen auftritt.

		σ_{Ed} / f_{y} (t)	t in mm							
			20	40	60	80	100	150	200	
<u> </u>	S235	0,75	13	21	29	37	49	81 ²⁾	141 ²⁾	
	S275		16	23	33	51	60	98	170	
/ m	S355		25	34	50	66	85	159	277 ²⁾	
ΓŽ	S420		25	39	58	80	100	204 2)	342 ²⁾	
	S460		32	45	67	94	123	222	372 ²⁾	

¹⁾ Mit (3-14) für $P_f = 0,50$, B = 2t

²⁾ Außerhalb der Regelungen in DIN EN 1993-1-10; Abschätzung durch lineare Extrapolation

 $a_d = 2 \cdot 10^{-6} \cdot t^3 + 0,0006 \cdot t^2 + 0,1341 \cdot t + 0,6349$

9.4 Berechnung der Nahttragfähigkeit F_{Naht}

Sowohl das auf Grundlage der Bauteilversuche hergeleitete Versagenskriterium (8-8a/b) als auch kontinuumsmechanische Versagenskriterien wie (3-1) sagen mit zunehmender Mehrachsigkeit des Spannungszustands abnehmendes Verformungsvermögen vorher. Deshalb wird bei der FE-Berechnung im Bereich der Nahtwurzel auf der sicheren Seite liegend von einer denkbar großen Mehrachsigkeit ausgegangen. Die Mehrachsigkeit M_{max} und die bruchmechanische Beanspruchung J_{eqv,appl} werden mit einem zweidimensionalen Modell mit ebenem Dehnungszustand (EDZ) berechnet. Wegen der Dehnungsbehinderung treten im Ligament vor der Nahtwurzel große Zugspannungen in Nahtlängsrichtung auf. Die unter Annahme des ebenen Dehnungszustands berechneten Mehrachsigkeiten M_{max} sind eine obere Schranke der Mehrachsigkeiten für eine beliebige Bauteilbreite.

Die Finiten Element Berechnungen der Bauteilversuche mit räumlichen Modellen und ebenen Modellen haben jedoch gezeigt, dass die mit ebenen Modellen mit EDZ berechneten Kräfte bei einer globalen Verschiebung ΔL_g größer als im realen Bauteil sind. So zeigt Bild 9-4, dass die im Versuch gemessenen Kräfte bei einer globalen Dehnung ΔL_g sowohl in den Kreuzzugversuchen mit Standardproben mit Verhältnissen I / t der Probenbreite zur Blechdicke von 0,25 als auch in den Kreuzzugversuchen mit Großprüfkörpern (I / t = 7) etwa 10% kleiner als die unter Annahme des EDZ berechneten Kräfte sind. Die mit einem ebenen Modell mit ESZ berechneten Kräfte stellen dagegen eine untere Schranke dar, welche die tatsächliche Kraft um maximal 5% unterschätzt.

In den Finiten Element Berechnungen wird deshalb die globale Verschiebung ΔL_g berechnet, bei der die äquivalente Beanspruchung $J_{eqv,appl}$ unter Annahme des EDZ größer als der Widerstand J_{IC} wird. Die von der Naht ertragene Kraft wird bei dieser globalen Verschiebung ΔL_g auf der sicheren Seite liegend mit einem ebenen Modell mit ESZ berechnet. Die so berechnete Kraft wird im folgenden Nahttragfähigkeit F_{Naht} genannt.

Bild 9-4: Kräfte und globale Verschiebungen in Kreuzzugversuchen mit Standardproben und Großprüfkörpern

9.5 Nahtgeometrie / Modellierung

Bild 9-5 zeigt zum einen Referenznähte von 80mm dicken Blechen mit einer Steghöhe h, die bei der HY-Naht 12mm und bei der DHY-Naht 20mm beträgt. Der äußere Nahtübergang ist nicht ausgerundet. Die Steghöhen sind so gewählt, dass Nahtversagen maßgebend wird. Zum anderen zeigt Bild 9-5 (D)HY-Nähte mit variabler Geometrie und mit Ungänzen h_{Def} an der Nahtwurzel. Die Ungänzen grenzen bei der DHY-Naht an eine Nahtwurzel, weil Voruntersuchungen gezeigt haben, dass diese Lage die Nahttragfähigkeit am stärksten reduziert. Die Nahtwurzel und die Ungänzen werden nicht ausgerundet und weisen somit die Kerbschärfe eines Risses auf. Die Ungänzen werden im Modell abgebildet, indem die Knotenverschiebungen an der Grenzfläche zwischen der Wärmeeinflusszone des in Dickenrichtung beanspruchten Blechs und dem Schweißgut nicht gekoppelt werden.

Die Nahtgeometrie wird analog zu den in Abschnitt 6 beschriebenen fein vernetzten ebenen Modellen der Standardproben diskretisiert. Die Kantenlängen der Finiten Elemente betragen im Bereich der Nahtwurzel 0,25mm.

Bild 9-5: Geometrie der rechnerisch untersuchten Nähte

9.6 Einfluss der Durchschweißung bei DHY-Nähten und HY-Nähten

Zur Veranschaulichung des Einflusses der Durchschweißung werden DHY- und HY-Nähte von 80mm dicken Blechen berechnet, die unterschiedlich große Steghöhen h aufweisen. Zusätzlich zu den in Bild 9-5 gezeigten Nähten ohne Ausrundung am äußeren Nahtübergang werden auch Nähte mit Verstärkungskehlnähten am äußeren Nahtübergang berechnet: Folgende Nähte wurden untersucht:

- DHY-Nähte ohne Verstärkungskehlnähte am äußeren Nahtübergang mit Steghöhen h zwischen 10% und 50% der Blechdicke
- DHY-Nähte mit gleichschenkligen Verstärkungskehlnähten am äußeren Nahtübergang ($a_A = 8mm$) mit Steghöhen h zwischen 10% und 50% der Blechdicke
- HY-Nähte ohne Verstärkungskehlnähte am äußeren Nahtübergang mit Steghöhen h zwischen 2% und 30% der Blechdicke
- HY-Nähte mit gleichschenkligen Verstärkungskehlnähten am äußeren Nahtübergang ($a_A = 8mm$) mit Steghöhen zwischen 2% und 30% der Blechdicke

Die Spannungs-Dehnungs-Beziehung und die Zähigkeit im Nahtbereich und im Grundwerkstoff entsprechen den experimentell geprüften Nähten. Die Überfestigkeit M_{SG} (4-2) beträgt 1,69. Der Widerstand J_{IC} entspricht dem Widerstand $J_{I,0,2}$, der mit (3-16) und der im Bereich der Nahtwurzel der Prüfkörper in der zähen Hochlage gemessenen Kerbschlagarbeit von 169J abgeschätzt wurde.

Das Verhältnis f_{DS} (9-2) des um eine ungenügende Durchschweißung der Nahtwurzel Σ Wbf und weitere wurzelnahe Ungänzen Σ Def reduzierten rechnerischen Wurzelmaßes a_{EC} zur Blechdicke t wird im folgenden Durchschweißung genannt. Weil die hier untersuchten Nähte keine wurzelnahen Ungänzen aufweisen (Σ Wbf = 0, Σ Def = 0), entspricht f_{DS} der rechnerischen Durchschweißung a_{EC}/t . Im weiteren wird das Verhältnis f_{Trag} (9-3) betrachtet. f_{Trag} ist analog zum Verhältnis $f_{Trag,exp}$ (8-3) in den Bauteilversuchen definiert, wobei f_{Trag} anstatt mit der in den Bauteilversuchen gemessenen maximalen Kraft F_{max} mit der gemäß Abschnitt 9.4 berechneten Nahttragfähigkeit F_{Naht} berechnet wird.

Bild 9-6 zeigt auf der Abszisse die Durchschweißung f_{DS} der (D)HY-Nähte und auf der Ordinate die Verhältnisse f_{Trag} .

$$f_{DS} = \frac{a_{EC} - \sum Wbf - \sum Def}{t}$$
(9-2)

$$f_{\text{Trag}} = \frac{F_{\text{Naht}}}{F_{\text{GW}}}$$
(9-3)

Bild 9-6: Einfluss der Durchschweißung f_{DS} auf die Nahttragfähigkeit

Bei den DHY-Nähten ist f_{Trag} etwa proportional zur Durchschweißung f_{DS} . Ab einer Durchschweißung f_{DS} von etwa 0,82 wird im ungeschwächten Grundwerkstoffquerschnitt die Zugfestigkeit $R_{m,GW}$ erreicht, ohne dass die Naht versagt. Die Verstärkungskehlnähte (offene Symbole) vergrößern die Nahtragfähigkeit in etwas geringerem Umfang als die Durchschweißung f_{DS} . Der Einfluss der Durchschweißung f_{DS} auf die Nahtragfähigkeit kann durch die in Bild 9-6 skizzierte lineare Funktion $f_{Geo,DHY}$ abgebildet werden. Für das vorliegende Festigkeitsverhältnis M_{SG} und den vorliegenden Widerstand J_{IC} beträgt der Proportionalitätsfaktor c in $f_{Geo,DHY}$ 1,80.

Die Tragfähigkeit der HY-Nähte nimmt im Falle von Durchschweißungen f_{DS} größer als etwa 0,90 mit abnehmender Durchschweißung überproportional ab. Erst ab Durchschweißungen f_{DS} von etwa 0,98 wird die Zugfestigkeit $R_{m,GW}$ im ungeschwächten Grundwerkstoffquerschnitt erreicht, ohne dass die HY-Naht versagt. Der Einfluss der Durchschweißung f_{DS} auf die Tragfähigkeit der HY-Nähte kann durch die in Bild 9-6 skizzierte Funktion $f_{Geo,HY}$ abgebildet werden. Für das vorliegende Festigkeitsverhältnis M_{SG} und den vorliegenden Widerstand J_{IC} betragen c und c₁ in $f_{Geo,HY}$ 1,80 und 0,50.

Bild 9-7 zeigt auf der Ordinate die gemäß Abschnitt 9.2 berechneten bruchmechanischen Beanspruchungen der Nahtwurzel $J_{eqv,appl}$ der (D)HY-Nähte ohne Nahtausrundung für unterschiedliche Durchschweißungen f_{DS} bei einer auf den <u>Naht</u>querschnitt bezogenen Spannung σ_{Naht} in Höhe der Dehngrenze $R_{p0,2,GW}$ des Grundwerkstoffs. Bild 9-7 zeigt, dass der Grund für die überproportionale Abnahme der Nahttragfähigkeit bei den HY-Nähten die mit abnehmender Durchschweißung f_{DS} überproportional ansteigende bruchmechanische Beanspruchung J_{eqv,appl} der Nahtwurzel ist.

Bild 9-7: Beanspruchung J_{eqv,appl} der Nahtwurzel von DHY- und HY-Nähten

9.7 Einfluss der Überfestigkeit im Schweißgut

Im folgenden werden Referenznähte mit der in Bild 9-5 gezeigten Geometrie berechnet, die im Schweißgut Dehngrenzen und Zugfestigkeiten haben, die den Bereich der spezifizierten Mindestwerte der Schweißzusatzwerkstoffe in den Festigkeitsklassen 35 bis 46 bis zu den Dehngrenzen und Zugfestigkeiten der experimentell untersuchten Nähte aufweisen. Die übrigen die Spannungs-Dehnungs-Beziehung bestimmenden Kenngrößen werden gegenüber den experimentell untersuchten Nähten nicht verändert.

Im Grundwerkstoff wird zum einen die Spannungs-Dehnungs-Beziehung der 80mm dicken Grobbleche aus S355J2G3 für die experimentell untersuchten Nähte angesetzt. Zum anderen wird eine Spannungs-Dehnungs-Beziehung angesetzt, die durch die in DIN EN 10025-2 spezifizierten Mindestwerte der Dehngrenze und der Zugfestigkeit eines Stahls der Festigkeit S235 bestimmt wird. Die übrigen die Spannungs-Dehnungs-Beziehung bestimmenden Kenngrößen werden gegenüber dem Stahl S355J2G3 nicht verändert. Zur Vereinfachung werden Stähle im folgenden nur noch durch Angabe der Festigkeitsklasse (zum Beispiel S355) bezeichnet, wenn die Stahlgüte für die vorliegende Betrachtung unerheblich ist.

Die Dehngrenzen $R_{p0,2,SG}$ im Schweißgut und $R_{p0,2,GW}$ im Grundwerkstoff resultieren in Überfestigkeiten M_{SG} (4-2) von 1,0 bis 2,8. Kleinere Überfestigkeiten M_{SG} als 1,0 werden nicht untersucht, weil die Bemessungsregeln für Schweißverbindungen in DIN EN 1993-1-8 nur dann gelten, wenn die spezifizierte minimale Dehngrenze des Schweißzusatzwerkstoffs mindestens der des Stahls entspricht.

Der bruchmechanische Widerstand J_{IC} im Bereich der Nahtwurzel beträgt für die Nähte von S355 wie in den experimentell untersuchten Nähten 290N/mm. Im Bereich der Nahtwurzel der Nähte von S235 wird der in Tabelle 9-1 für eine Kerbschlagarbeit in der Hochlage AV_{HL} von 100J angegebene Widerstand J_{IC} von 156N/mm angesetzt. Diese Größe AV_{HL} ist für Stähle in den Güten JR und J0 realistisch.

Bild 9-8 zeigt auf der Abszisse die Überfestigkeit M_{SG} und auf der Ordinate das Verhältnis f_{Trag} .

Bild 9-8: Einfluss der Überfestigkeit M_{SG}

Bei den HY-Nähten (graue Symbole) hat die Überfestigkeit M_{SG} bei der vorliegende Geometrie der Referenznähte praktisch keinen Einfluss auf f_{Trag} .

Bei den DHY-Nähten (schwarze Symbole) nimmt f_{Trag} mit zunehmender Überfestigkeit M_{SG} bis zu Überfestigkeiten von etwa 2,0 zu. f_{Trag} ist bei einer Überfestigkeit M_{SG} von 2,0 etwa 30% größer als bei einer Überfestigkeit M_{SG} von 1,0. Bei den Nähten von S235 mit Überfestigkeiten M_{SG} von etwa 2,8 ist f_{Trag} nicht größer als bei den Nähten mit einer Überfestigkeit M_{SG} von etwa 2,0.

9.8 Einfluss der Temperatur und der Zähigkeit

Im folgenden werden Nahttragfähigkeiten von Referenznähten ohne Ungänzen und von Nähten mit Ungänzen an der Nahtwurzel (h_{Def} = 8mm) berechnet, um den grundsätzlichen Einfluss der Temperatur und der Zähigkeit auf die Nahttragfähigkeit zu zeigen. Bild 9-5 zeigt die Nahtgeometrien.

Die Spannungs-Dehnungs-Beziehungen im Nahtbereich und im Grundwerkstoff entsprechen denen der experimentell untersuchten Nähte. Die Überfestigkeit M_{SG} (4-2) beträgt 1,69.

Sowohl eine Änderung der Einsatztemperatur T als auch der Kerbschlagzähigkeit (Übergangstemperatur T_{27J}) resultiert wie in Abschnitt 9.3 gezeigt in einer Änderung des Widerstands J_{IC}. Deshalb werden im folgenden die Einflüsse der Temperatur und der Zähigkeit nicht getrennt voneinander untersucht, sondern es wird nur der Einfluss des Widerstands J_{IC} auf die Nahttragfähigkeit betrachtet.

In Bild 9-9 sind die Berechnungsergebnisse für DHY-Nähte und HY-Nähte sowohl mit als auch ohne Ungänzen angegeben. Auf der Abszisse ist der Widerstand J_{IC} bezogen auf J_{EC} angegeben (J_{EC} = 66N/mm für S355 und t = 80mm gemäß Tabelle 9-2). Auf der Ordinate ist das Verhältnis f_{Trag} angegeben.

Bild 9-9: Einfluss von JIC / JEC auf die Nahttragfähigkeit

Für Vergleiche zwischen den Nähten wird der Schnittpunkt zwischen dem elastischen Tangentenmodul und dem plastischen Tangentenmodul gebildet. Das diesem Schnittpunkt zugeordnete Verhältnis f_{Trag} wird im weiteren als Grenze zwischen nicht ausgeprägt plastischem und ausgeprägt plastischem Tragverhalten aufgefasst. Das Verhältnis J_{IC}/J_{EC} , das zum Erreichen dieser Grenze erforderlich ist, wird Grenzwiderstand genannt.

Bei der DHY-Naht ohne Ungänzen beträgt der Grenzwiderstand etwa 0,3. Hat der Widerstand den Wert J_{EC} , ist f_{Trag} mit 1,08 um 12% größer als für den Grenzwiderstand von 0,3.

Bei der HY-Naht ohne Ungänzen beträgt der Grenzwiderstand etwa 0,4. Hat der Widerstand den Wert J_{EC} , ist f_{Trag} mit 0,92 um 5% größer als für den Grenzwiderstand von 0,6.

Der plastische Tangentenmodul weist bei der HY-Naht eine geringere Steigung als bei der DHY-Naht auf. Demzufolge beeinflusst das Verhältnis J_{IC} / J_{EC} die Tragfähigkeit der HY-Nähte in geringerem Maße als die Tragfähigkeit der DHY-Nähte, wenn wenigstens die Grenzwiderstände vorliegen.

Liegen Ungänzen (h_{Def} = 8mm) an der Nahtwurzel vor, beträgt der Grenzwiderstand bei der DHY-Naht etwa 0,45. Demzufolge ist bei dieser DHY-Naht ein Widerstand J_{IC} von 45% des in DIN EN 1993-1-10 für eine Spannung σ_{Ed} von 0,75 f_y(t) geforderten Widerstands J_{EC} erforderlich, um ein ausgeprägt plastisches Tragverhalten zu ermöglichen.

Bei der HY-Naht mit Ungänzen beträgt der Grenzwiderstand etwa 0,60. Somit sind bei der HY-Naht mit einem Steg (h = 12mm) und einem Bindefehler (h_{Def} = 8mm) ab einem Widerstand J_{IC} von 60% des in DIN EN 1993-1-10 für eine Spannung σ_{Ed} von 0,75 f_y(t) geforderten Widerstands J_{EC} ausgeprägte plastische Verformungen möglich. Hat der Widerstand den Wert J_{EC}, kann der Grundwerkstoff bis zu einer Kraft in Höhe von 85% der Fließlast F_{GW} belastet werden, bevor die Naht versagt. Das Spannungsniveau im angeschweißten Grundwerkstoffquerschnitt beträgt dann 0,85 f_y(t). Dieses Spannungsniveau ist etwa 13% größer als das Spannungsniveau von 0,75 f_y(t), zu dessen sicherem Erreichen der Widerstand J_{EC} in DIN EN 1993-1-10 gefordert wird. Die Anforderung J_{EC} ist also für die vorliegende HY-Naht vorsichtig.

Bild 9-3 zeigt die im Sicherheitskonzept von DIN EN 1993-1-10 unterstellte Rissgeometrie und gibt die Risstiefe a_d an. Gemäß Bild 9-3 wird von einem Anriss am äußeren Nahtübergang mit einer Risstiefe a_d ausgegangen, die für die vorliegende Blechdicke t von 80mm etwa 16mm beträgt. Diese Risstiefe ist etwa so groß wie die gesamte Nichtdurchschweißung von 20mm der hier untersuchten HY-Naht. Die für die HY-Naht vorsichtige Anforderung J_{EC} ist damit begründet, dass der Einfluss des Spannungszustands auf den bruchmechanischen Widerstand in DIN EN 1993-1-10 nicht berücksichtigt wird. In DIN EN 1993-1-10 wird Versagen angenommen, wenn das J-Integral J_{appl} an der Rissspitze die Größe des gemäß ISO 12135 ermittelten Widerstands J_{IC} erreicht. Bild 8-19 zeigt jedoch, dass im Bereich der Nahtwurzel einer HY-Naht ein günstigerer Spannungszustand vorliegt als vor der Rissspitze in einer in ISO 12135 geregelten Biegeprobe zur Bestimmung von bruchmechanischen Kenngrößen. Für HY-Nähte ist die bruchmechanische Beanspruchbarkeit J_{IM} bei der im Bereich der Nahtwurzel vorliegenden Mehrachsigkeit M_{max} des Spannungszustands gemäß Bild 8-19 etwa zweimal größer als der Widerstand J_{IC} .

Das den Einfluss des Spannungszustands berücksichtigende Versagenskriterium (8-8a/b) erklärt die im Vergleich zu DIN EN 1993-1-0 niedrigeren Grenzwiderstände von 0,60 J_{EC} bei der HY-Naht und 0,45 J_{EC} bei der DHY-Naht.

In DIN EN 1993-1-10 wurden im Gegensatz zu den Untersuchungen dieser Arbeit Schweißeigenspannungen mit einer pauschalen Größe von 100N/mm² angesetzt. Dieser Ansatz von Schweißeigenspannungen ist nicht der Grund für die für (D)HY-Nähte vorsichtigen Güteanforderungen J_{EC} in DIN EN 1993-1-10, weil der Grundwerkstoffquerschnitt bei Erreichen der hier diskutierten Grenzwiderstände bereits sehr hoch ausgenutzt ist. Deshalb liegen an der Kerbstelle (Riss oder Bindefehler) ausgeprägte plastische Verformungen vor. Ein Einfluss von Eigenspannungen auf die Bruchlast ist unwahrscheinlich, wenn bis zum Bruch ausgeprägte plastische Verformungen möglich sind.

9.9 Parameterstudie

Im weiteren werden die Parameter, deren grundsätzlicher Einfluss zuvor gezeigt wurde, in einem für das Bauwesen möglichen und zulässigen Spektrum variiert. Die im folgenden erklärte Tabelle 9-3 gibt eine Übersicht über die untersuchten Nähte.

Festig-	Un-		2	0	4	0	8	0	20	00	t in mm
keit	gänzen		DHY	ΗY	DHY	HY	DHY	ΗY	DHY	ΗY	Nahtart
	URI		0,1-0,5	0,0-0,3	0,1-0,5	0,0-0,3	0,1-0,5	0,0-0,3	0,1-0,7	0,0-0,3	
	URII	35	0,0-0,5	0,0-0,2			0,0-0,5	0,0-0,2			
WK II	URI	S2	0,1-0,5	0,0-0,3	0,1-0,5	0,0-0,3	0,1-0,5	0,0-0,3	0,1-0,7	0,0-0,3	
VVIX II	URII		0,0-0,5	0,0-0,2			0,0-0,5	0,0-0,2			ц.
	URI		0,1-0,5	0,0-0,3	0,1-0,5	0,0-0,3	0,1-0,7	0,0-0,3	0,1-0,7	0,0-0,3	h/
	URII	55	0,0-0,5	0,0-0,2			0,0-0,5	0,0-0,2			e
WK II	URI	S3	0,1-0,5	0,0-0,3	0,1-0,5	0,0-0,3	0,1-0,7	0,0-0,3	0,1-0,7	0,0-0,3	lödl
VVIX II	URII		0,0-0,5	0,0-0,2			0,0-0,5	0,0-0,2			iteç
	URI		0,1-0,5	0,0-0,3	0,1-0,5	0,0-0,3	0,1-0,5	0,0-0,3	0,1-0,7	0,0-0,3	ഗ
WKI	URII	60	0,0-0,5	0,0-0,2			0,0-0,5	0,0-0,2			
WK II	URI	S4	0,1-0,5	0,0-0,3	0,1-0,5	0,0-0,3	0,1-0,5	0,0-0,3	0,1-0,7	0,0-0,3	
	URII		0,0-0,5	0,0-0,2			0,0-0,5	0,0-0,2			

Tabelle 9-3: Übersicht der untersuchten Nähte

Das untersuchte Spektrum umfasst:

- (D)HY-Nähte mit verschieden großen Überfestigkeiten M_{SG} im Schweißgut (Festigkeitsklassen WK I und WK II)
- (D)HY-Nähte mit verschieden großen wurzelnahen Ungänzen (Unregelmäßigkeitsklassen UR I und UR II)
- (D)HY-Nähte zur Verbindung von Blechen mit Dicken zwischen 20mm und 200mm
- (D)HY-Nähte zur Verbindung von Stählen S235 bis S460
- DHY-Nähte mit Steghöhen h zwischen 0% und 70% der Blechdicke t
- HY-Nähte mit Steghöhen h zwischen 0% und 30% der Blechdicke t

Die Nahttragfähigkeiten wurden für bruchmechanische Widerstände J_{IC} im Bereich der Nahtwurzel zwischen dem 0,1- und dem maximal 5-fachen von J_{EC} berechnet. Dies ist in Tabelle 9-3 nicht angegeben.

In der Festigkeitsklasse WK I hat das Schweißgut die Mindestdehngrenze und die Mindestzugfestigkeit eines für den vorliegenden Grundwerkstoff zugelassenen Schweißzusatzwerkstoffs. Beim Schweißen mit den Prozessen 111, 135 und 136 werden für Stähle S235 und S275 in der Regel die gleichen Schweißzusatzwerkstoffe wie für S355 eingesetzt, weil nur zugelassene Schweißzusatzwerkstoffe auf dem Markt erhältlich sind ([47] bis [50]), die eine nominelle Dehngrenze von mindestens 420N/mm² aufweisen (380N/mm² für Prozess 111). Im Schweißgut der Nähte WK I werden deshalb für Stähle bis S355 unabhängig vom Grundwerkstoff die Mindestdehngrenze und die Mindestzugfestigkeit eines Schweißzusatzwerkstoffs der Festigkeitsklasse 42 gemäß DIN EN 440 angesetzt. Für S460 werden die Mindestdehngrenze und die Mindestzugfestigkeit eines Schweißzusatzwerkstoffs der Festigkeitsklasse 46 angesetzt. Die übrigen die wahre Spannungs-Dehnungs-Beziehung beschreibenden Kenngrößen werden gegenüber den experimentell untersuchten Nähten nicht geändert.

Die Stähle weisen die in DIN EN 10025-2 (S235 und S355) und DIN EN 10025-3 (S460) spezifizierten blechdickenabhängigen Mindestdehngrenzen und Mindestzugfestigkeiten auf. Bei den Stählen S235 bis S355 liegt eine ausgeprägte Streckgrenze vor. Für S460 wird hiervon abweichend angenommen, dass keine ausgeprägte Streckgrenze vorliegt.

Bild 9-10 zeigt die in der Berechnungen angesetzten wahren Spannungs-Dehnungs-Beziehungen beispielhaft für 80mm dicke Bauteile aus S235 bis S460. In der Wärmeeinflusszone werden die gleichen Werkstoffeigenschaften wie im Grundwerkstoff angesetzt. Die Überfestigkeit M_{SG} beträgt für die Nähte WK I blechdicken- und werkstoffabhängig zwischen 1,05 und 2,27.

Bild 9-10: Wahre Spannungs-Dehnungs-Beziehungen für S235 bis S460 (t = 80mm)

In der <u>Festigkeitsklasse WK II</u> wird eine größere Dehngrenze und Zugfestigkeit im Schweißgut angesetzt. Die Dehngrenze $R_{p0,2,SG}$ (596N/mm²) und die Zugfestigkeit $R_{m,SG}$ (679N/mm²) entsprechen unabhängig von der Stahlsorte den im Schweißgut der experimentell geprüften Nähte im Mittel gemessenen Kennwerten. In der Wärmeeinflusszone wird eine Aufhärtung angenommen. Für S355 werden die in der Wärmeeinflusszone der experimentell geprüften Nähte gemessenen mechanischen Eigenschaften angesetzt. Für S235 und S460 werden in der Wärmeeinflusszone 30% größere Dehngrenzen und Zugfestigkeiten als im Grundwerkstoff angenommen.

Im Grundwerkstoff werden die gleichen Spannungs-Dehnungs-Beziehungen wie in der Festigkeitsklasse WKI angesetzt. Die Überfestigkeit M_{SG} beträgt zwischen 1,35 und 3,22.

In der <u>Unregelmäßigkeitsklasse UR I</u> werden im Nahtbereich die nach prEN 1090-2 für vorwiegend ruhende Beanspruchung maximal zulässigen wurzelnahen Ungänzen angesetzt (Bewertungsgruppe C in DIN EN ISO 5817). Für teilweise durchgeschweißte Nähte ist eine kurze ungenügende Durchschweißung zulässig, solange deren Höhe h_{Def} kleiner als 1,5mm und 10% des Wurzelmaßes a_{EC} ist. Die ungenügende Durchschweißung dieser Größe wird wie in Bild 9-5 gezeigt über die gesamte Nahtlänge angrenzend an eine Nahtwurzel angesetzt.

In der <u>Unregelmäßigkeitsklasse UR II</u> werden im Nahtbereich größere wurzelnahe Ungänzen angesetzt, die außerhalb der Toleranzgrenzen auch der Bewertungsgruppe D in DIN EN ISO 5817 liegen. Die Größe dieser Ungänzen h_{Def} beträgt 17% der Nahtdicke a_{EC}. Diese Größe entspricht etwa dem in Bild 4-1 angegebenen 5%-Fraktil A_{Fehler}/A_{EC} der Größe der Querschnittsschwächung durch wurzelnahe Ungänzen. Die Ungänzen werden durch wurzelnahe Ungänzen. Die Ungänzen werden wie in Bild 9-5 gezeigt angrenzend an eine Nahtwurzel angesetzt. Ungänzen an den äußeren Nahtübergängen werden nicht untersucht.

Die Berechnungsergebnisse sind in Anhang F angegeben. Die untersuchten Nähte werden durch Angabe der Nahtart, des Grundwerkstoffs, der Unregelmäßigkeitsklasse, der Festigkeitsklasse, der Steghöhe h und der Blechdicke t beschrieben. Zur besseren Übersicht werden zudem die Werkstoffkennwerte im Nahtbereich und im Grundwerkstoff angegeben.

Die Verhältniswerte f_{Trag} wurden für jede Parameterkombination für bis zu 9 unterschiedliche Verhältnisse J_{IC}/J_{EC} des Widerstands J_{IC} im Bereich der Nahtwurzel zu J_{EC} berechnet. Die Berechnungen mit der Finiten Element Methode erfolgten verschiebungsgesteuert.

Dabei wurden die Einstellungen der Verschiebungsgrößen je Lastschritt so gewählt, dass immer Tragfähigkeiten von Nähten mit Widerstandsverhältnissen J_{IC} / J_{EC} in den folgenden 9 Intervallen berechnet wurden:

- $0.15 \le J_{IC} / J_{EC} \le 0.25$
- 0,25 < $J_{IC} / J_{EC} \le 0,50$
- 0,50 < $J_{IC}\,/\,J_{EC}\,{\leq}\,0,75$
- <u>0,75 < J_{IC} / J_{EC} ≤ 1,00</u>
- 1,00 < J_{IC} / $J_{EC} \le$ 1,50
- 1,50 < J_{IC} / $J_{EC} \le 2,00$
- $2,00 < J_{IC} / J_{EC} \le 3,00$
- 3,00 < J_{IC} / $J_{EC} \le 4,00$
- 4,00 < J_{IC} / $J_{EC} \le 5,00$

In Anhang F werden die genauen Verhältniswerte J_{IC} / J_{EC} und die für diese Verhältnisse berechneten f_{Trag} in den durch Unterstreichung gekennzeichneten Intervallen angegeben. Werden in einem Intervall von J_{IC} / J_{EC} keine Ergebnisgrößen angegeben, hat dies folgende Gründe:

1) Bei dem vorliegenden Verhältnis J_{IC} / J_{EC} versagt bereits der Grundwerkstoff, weshalb keine Nahttragfähigkeit F_{Naht} und kein Verhältnis f_{Trag} berechnet werden konnte. Dies ist im wesentlichen bei Nähten mit einer geringen Nichtdurchschweißung der Fall.

2) Ein Verhältnis J_{IC} / J_{EC} in der vorliegenden Größe ist unrealistisch, weil hierfür Kerbschlagzähigkeiten in der Hochlage erforderlich wären, die größer als 150J sind. Dies ist dann der Fall, wenn die Bezugsgröße J_{EC} wegen einer großen Blechdicke t und/oder einer hohen Streckgrenze des Grundwerkstoffs sehr große Werte aufweist. Bild 9-11 zeigt beispielhaft für DHY-Nähte von 80mm dicken Blechen die Verhältnisse f_{Trag} aus Anhang F für unterschiedliche Durchschweißungen f_{DS} . Die Verhältnisse f_{Trag} unterscheiden sich bei gleicher Durchschweißung f_{DS} wegen der unterschiedlichen Überfestigkeiten in den Festigkeitsklassen WK I/II und der unterschiedlichen Verhältnisse J_{IC} / J_{EC} erheblich. So ist die Tragfähigkeit der zu 80% durchgeschweißten DHY-Naht der Festigkeitsklasse WK II bei einem Verhältnis J_{IC} / J_{EC} von etwa 3 etwa 50% größer als die Tragfähigkeit der ebenfalls 80% durchgeschweißten Naht der Festigkeitsklasse WK I bei einem Verhältnis J_{IC} / J_{EC} von etwa 0,25.

Im folgenden Abschnitt wird eine Beziehung hergeleitet, die den Einfluss der Überfestigkeit M_{SG} und des Verhältnisses J_{IC} / J_{EC} auf die Nahttragfähigkeit berücksichtigt. Am Ende des nächsten Abschnitts werden mit dieser Beziehung die Nahttragfähigkeiten der in Bild 9-11 angegebenen Nähte berechnet und mit den Verhältnissen f_{Trag} verglichen.

Bild 9-11: f_{Trag} von DHY-Nähten von 80mm dicken Grobblechen aus S355

9.10 Herleitung einer Beziehung für die Nahttragfähigkeit

Die in Abschnitt 9.9 beschriebenen rechnerischen Untersuchungen beschränkten sich

1) auf Baustähle mit Streckgrenzen von maximal 460N/mm² und Verhältnisse $R_{p0,2,GW}$ / $R_{m,GW}$ von maximal etwa 0,90 und

2) auf Nähte, die mit gemäß DIN EN 13479 zertifizierten Schweißzusatzwerkstoffen geschweißt wurden und deshalb mindestens eine Überfestigkeit M_{SG} von 1,0 aufweisen.

Die im folgenden hergeleitete Beziehung für die Nahttragfähigkeit ist deshalb nur in den Grenzen 1) und 2) anwendbar.

Der Bezugswert J_{EC} für den bruchmechanischen Widerstand an der Nahtwurzel ist der in DIN EN 1993-1-10 für die jeweilige Erzeugnisdicke t und Streckgrenze R_{eH} des Grundwerkstoffs geforderte bruchmechanische Widerstand für die Bemessungsspannung σ_{Ed} von 0,75 f_y(t). Die Bezugswerte J_{EC} sind in Tabelle 9-2 angegeben.

Auf Grundlage der rechnerischen Parameterstudie wird eine Beziehung für die Nahttragfähigkeit in der Form (9-4a) hergeleitet. Die Beziehung (9-4a) soll

- über die Durchschweißung f_{DS} (9-2) den rechnerischen Nahtquerschnitt (Wurzelmaß a_{EC}), die Größe einer ungenügenden Durchschweißung der Nahtwurzel ΣWbf und die Größe wurzelnaher Ungänzen ΣDef,
- über den Term f_{kor} (9-4b) die Überfestigkeit M_{SG} im Schweißgut,
- über N_{Jt} (9-4c) das Verhältnis des bruchmechanischen Widerstands J_{IC} im Bereich der Nahtwurzel zu J_{EC} und
- über f_{Geo} (9-4e) die Nahtart

berücksichtigen.

Die Einflussgrößen f_{DS} und f_{kor} in (9-4a) beschreiben den Nahtquerschnitt und die Zugfestigkeit im Nahtquerschnitt. Die Einflussgrößen N_{Jt} und f_{Geo} beschreiben den Einfluss des bezogenen bruchmechanischen Widerstands J_{IC} / J_{EC} an der Nahtwurzel und der Nahtart auf die Nahttragfähigkeit.

$$f_{\text{Trag, calc}} = \frac{F_{\text{Naht, calc}}}{F_{\text{GW}}} = f_{\text{DS}} \cdot f_{\text{kor}} \cdot N_{\text{Jt}} \cdot f_{\text{Geo}}$$
(9-4a)

Der Term f_{kor} (9-4b) berücksichtigt den Einfluss der Überfestigkeit M_{SG} im Schweißgut durch eine Tangens-Hyperbolicus Funktion. Diese Funktion kann den mit zunehmender Überfestigkeit abklingenden Einfluss von M_{SG} abbilden (Bild 9-8). Die Beiwerte c und c_{MSG} sind einheitenfrei und werden wie im folgenden beschrieben zur Anpassung von (9-4a) an die mit der Finiten Element Methode berechneten Verhältniswerte f_{Trag} benutzt.

$$f_{kor} = \mathbf{c} \cdot \tanh\left(\mathsf{M}_{SG} \cdot \mathbf{c}_{MSG}\right) \tag{9-4b}$$

Der Einfluss des Widerstands J_{IC} im Bereich der Nahtwurzel wird durch die Potenzfunktion N_{Jt} (9-4c) berücksichtigt, wobei J_{IC} auf die Bezugsgröße J_{EC} für die jeweils vorliegende Stahlsorte und Blechdicke t bezogen wird. Durch den Bezug auf J_{EC} wird berücksichtigt, dass zum Erreichen einer Spannung σ_{ED} von 0,75 f_y(t) ein bruchmechanischer Widerstand erforderlich ist, dessen Größe von der Blechdicke t und der Streckgrenze f_y(t) des Grundwerkstoffs abhängt. Durch den Bezug des Widerstands J_{IC} auf J_{EC} wird erreicht, dass im Querschnitt bei einem konstanten Verhältnis J_{IC} / J_{EC} unabhängig von der Blechdicke und von der Streckgrenze die gleiche über den Querschnitt gemittelte Spannung erreicht werden kann. Ein Einfluss der Blechdicke und der Streckgrenze auf die Nahttragfähigkeit wird so eliminiert. Verhältnisse J_{IC} / J_{EC} größer als 1 zeigen an, dass an der Nahtwurzel ein bruchmechanischer Widerstand vorliegt, der größer als der nach DIN EN 1993-1-10 zum Erreichen der Spannung σ_{ED} von 0,75 f_y(t) bei der tiefsten Einsatztemperatur erforderliche Widerstand ist.

Der Exponent c_{Jt} wird zur Anpassung von (9-4a) an die mit der Finiten Element Methode berechneten Verhältniswerte f_{Trag} benutzt.

$$N_{Jt} = \left(\frac{J_{IC}}{J_{EC}} \cdot k_{a}\right)^{C_{Jt}}$$
(9-4c)

mit J_{IC}: Widerstand im Bereich der Nahtwurzel, Tabelle 9-1

Bei teilweise durchgeschweißten Nähten wird das Verhältnis J_{IC} / J_{EC} , das zum Erreichen einer mittleren Spannung im Nahtquerschnitt durch plastische Spannungsumlagerungen erforderlich ist, nicht von der Blechdicke t des angeschweißten Bauteils sondern von der Nahtdicke a_s bestimmt. Dies wird durch eine Korrektur von J_{IC} / J_{EC} im Verhältnis der Dicke t zur Nahtdicke a_s mit k_a (9-4d) berücksichtigt. Die Nahtdicke a_s ist bei einer von beiden Seiten geschweißten DHY-Naht das größere der Wurzelmaße auf beiden Nahtseiten. Bei einer von einen Seite geschweißten HY-Naht entspricht a_s dem Wurzelmaß a_{EC} (Bild 4-3).

$$k_a = \frac{t}{a_s}$$
(9-4d)

mit a_s: Wurzelmaß einer Nahtseite (Bild 4-3)

Der Einfluss der Nahtart auf die mittlere Spannung im Nahtquerschnitt bei Versagen (Bild 9-6) wird mit Geometriefunktionen f_{Geo} (9-4e) berücksichtigt. Bei der DHY-Naht wird eine lineare Abhängigkeit der Nahttragfähigkeit von der Durchschweißung f_{DS} angenommen. Bei den HY-Nähten wird der Einfluss der Durchschweißung f_{DS} mit einer Potenzfunktion berücksichtigt.

$$f_{Geo} = \begin{cases} 1 & \text{für DHY} - \text{N\"ahte} \\ \frac{1}{f_{DS}} \cdot \left[1 - (1 - f_{DS})^{C1} \right] \text{ für HY} - \text{N\"ahte} \end{cases}$$
(9-4e)

Die Beiwerte c, c_{MSG} , c_{Jt} und c_1 in (9-4b) bis (9-4e) werden getrennt für DHY-Nähte und HY-Nähte berechnet. Diese Beiwerte werden so gewählt, dass die Summe der Fehlerquadrate zwischen den mit (9-4a) berechneten Verhältnissen $f_{Trag,calc}$ und den mit der Finiten Element Methode berechneten Verhältnisse f_{Trag} minimal wird. Hierbei werden zunächst nur Nähte mit bezogenen bruchmechanischen Widerständen J_{IC} / J_{EC} von wenigstens 1 berücksichtigt.

Tabelle 9-4 zeigt die so berechneten Beiwerte c, c_{MSG} , c_{Jt} und c_1 . Außerdem werden die Mittelwerte der Verhältnisse $f_{Trag,calc} / f_{Trag}$ und die Variationskoeffizienten V_{δ} der Abweichung von $f_{Trag,calc}$ von f_{Trag} für die Gesamtheit G aller Nähte mit Verhältnissen J_{IC} / J_{EC} von wenigstens 1 und für verschiedene Untergruppen dieser Gesamtheit G angegeben. Zur Beurteilung der Zuverlässigkeit der Vorhersage mit (9-4a) wird das Verhältnis ($f_{Trag,calc} / f_{Trag}$)_{5%} angegeben, das unter Annahme einer Normalverteilung mit einer Aussagenwahrscheinlichkeit von 75% in 5% aller Fälle überschritten wird.

Die Verhältniswerte $f_{Trag,calc} / f_{Trag}$, die Variationskoeffizienten V_{δ} und die Verhältniswerte ($f_{Trag,calc} / f_{Trag}$)_{5%} werden auch für die nicht in der Gesamtheit G enthaltenen (D)HY-Nähte mit bezogenen bruchmechanischen Widerständen J_{IC} / J_{EC} kleiner als 1 angegeben. Hiermit wird im weiteren beurteilt, ab welchem Verhältnis J_{IC} / J_{EC} die Nahttragfähigkeit zutreffend und zuverlässig mit (9-4a) berechnet werden kann.

Tabelle 9-4 zeigt für die DHY-Nähte:

- Die mit (9-4a) berechneten Größen $f_{Trag,calc}$ stimmen in der Gesamtheit G mit einem Variationskoeffizienten V_{δ} von 0,063 mit f_{Trag} überein.
- Die Verhältniswerte f_{Trag,calc} / f_{Trag} liegen für Nähte von S235 bis S460 und für die mit Ungänzen behafteten Nähte (UR II) in einem nur 2,8% breiten Streuband (0,987 bis 1,015). Die mit (9-4a) vorhergesagten Verhältnisse f_{Trag,calc} stimmen somit unabhängig von der Stahlsorte und von der Größe der Ungänzen mit f_{Trag} überein.
- Die mit (9-4a) berechneten Verhältniswerte f_{Trag,calc} stimmen für Verhältnisse J_{IC} / J_{EC} größer als 0,25 mit f_{Trag} überein. Die Verhältniswerte (f_{Trag,calc} / f_{Trag})_{5%} betragen maximal 1,13. Für kleinere J_{IC} / J_{EC} ist f_{Trag,calc} etwa 3,5% größer als f_{Trag}. Der Verhältniswert (f_{Trag,calc} / f_{Trag})_{5%} ist mit 1,18 signifikant größer als für größere Verhältnisse J_{IC} / J_{EC}. Somit reichen Verhältnisse J_{IC} / J_{EC} kleiner als 0,25 nicht dafür aus, dass der Querschnitt der DHY-Nähte unabhängig von der Größe der Durchschweißung, der Größe der Ungänzen und der Festigkeit im Nahtbereich plastizieren kann und die Nahttragfähigkeit zuverlässig mit (9-4a) berechnet werden kann.

		Anzahl n	с	C _{MSG}	C _{Jt}	С ₁	Mittelwert f _{Trag,calc} / f _{Trag}	V_{δ}	(f _{Trag,calc} / f _{Trag}) _{5%}
	Gesamt- heit G	408	408 1,543 0,824 0,128		-	0,995	0,063	1,10	
	Untergruppen	105		S235 (UR I)			0,987	0,058	1,08
	von G	111		S355	(UR I)		0,994	0,067	1,10
	$\log \left(1 - s > 1 \right)$	90		S460	(UR I)		1,015	0,066	1,12
≿	$J_{IC} / J_{EC} \ge 1$	102	S	235 bis S	6460 (UR	ll)	0,988	0,059	1,08
Ъ		94	S2	S235 bis S460 (UR I/II), 0,50 < J _{IC} /J _{EC} ≤ 0,75			1,001	0,078	1,13
	J _{IC} / J _{EC} < 1	101	S2 (S235 bis S460 (UR I/II), 0,25 < $J_{\rm IC}/J_{\rm EC} \le 0,50$			0,993	0,085	1,13
		102	S235 bis S460 (UR I/II), 0,15 $\leq J_{IC}/J_{EC} \leq$ 0,25			1,035	0,090	1,18	
	Gesamt- heit G	466	1,240	1,352	0,103	0,794	0,997	0,053	1,08
	Untorgruppop	127		S235	S235 (UR I)		0,986	0,072	1,10
	von G	117	S355 (UR I)		S355 (UR I)		0,992	0,052	1,08
		95		S460 (UR I)			0,997	0,037	1,06
≻	$J_{IC} / J_{EC} \ge 1$	³ EC ≥ 1 127 S235 bis S460 (UR II)		II)	1,013	0,042	1,08		
Н		92	S2	S235 bis S460 (ÚR I/II), 0,50 < J _{IC} /J _{EC} ≤ 0,75			0,996	0,063	1,10
	J _{IC} / J _{EC} < 1	95	S2	35 bis S4),25 < J _{IC}	460 (UR I ,∕J _{EC} ≤ 0,5	/II), 50	1,027	0,074	1,15
		104	S2 ($\frac{0,25 < J_{IC}/J_{EC} \ge 0,30}{\text{S235 bis S460 (UR I/II),}}$ $0,15 \le J_{IC}/J_{EC} \le 0,25$			1,064	0,148	1,31

Tabelle 9-4: Vergleich der mit (9-4a) berechneten Verhältnisse $f_{Trag,calc}$ mit f_{Trag} Tabelle 9-4 zeigt für die HY-Nähte:

- Die mit (9-4a) berechneten Größen $f_{Trag,calc}$ stimmen in der Gesamtheit G mit einem Variationskoeffizienten V_{δ} von 0,053 mit f_{Trag} überein.
- Die Verhältniswerte f_{Trag,calc} / f_{Trag} liegen für Nähte von S235 bis S460 und für die mit Ungänzen behafteten Nähte (UR II) in einem nur 2,7% breiten Streuband (0,986 bis 1,013).
- Die Überfestigkeit M_{SG} hat bei den HY-Nähten einen deutlich geringeren Einfluss als bei den DHY-Nähten. Deshalb ist der Faktor c_{MSG} mit 1,352 größer als bei den DHY-Nähten mit 0,824. Dies resultiert in einem flachen Verlauf der Tangens-Hyperbolicus Funktion (9-4b).
- Die mit (9-4a) berechneten Verhältniswerte f_{Trag,calc} stimmen für Verhältnisse J_{IC} / J_{EC} größer als 0,50 mit f_{Trag} überein und die Verhältniswerte (f_{Trag,calc} / f_{Trag})_{5%} betragen hierfür maximal 1,10. Für kleinere J_{IC} / J_{EC} ist f_{Trag} kleiner als f_{Trag,calc} und die Verhältniswerte (f_{Trag,calc} / f_{Trag})_{5%} sind mit 1,15 und 1,31 signifikant größer als für größere Verhältnisse J_{IC} / J_{EC}. Somit reichen Verhältnisse J_{IC} / J_{EC} kleiner als 0,50 nicht dafür aus, dass der Querschnitt der HY-Nähte unabhängig von der Größe der Durchschweißung, der Größe der Ungänzen und der Festigkeit im Nahtbereich plastizieren kann und die Nahttragfähigkeit zuverlässig mit (9-4a) berechnet werden kann.

Bild 9-12 und Bild 9-13 zeigen die durch (9-4b) und (9-4c) beschriebenen Einflüsse der Überfestigkeit M_{SG} und des Verhältnisses J_{IC} / J_{EC} auf die Nahttragfähigkeit von DHY- und HY-Nähten in den Anwendungsgrenzen von (9-4a).

Bild 9-12: Einflüsse auf die Tragfähigkeit von DHY-Nähten

Bild 9-13: Einflüsse auf die Tragfähigkeit von HY-Nähten

Bild 9-14 zeigt nochmals die bereits in Bild 9-11 angegebenen, mit der Finiten Element Methode berechneten Verhältnisse f_{Trag} von DHY-Nähten. Aufgrund unterschiedlicher Überfestigkeiten und Verhältnisse J_{IC} / J_{EC} unterscheiden sich die Verhältnisse f_{Trag} bei gleicher Durchschweißung um bis zu 50%. Bild 9-14 zeigt zusätzlich die mit (9-4a) und den in Tabelle 9-4 angegebenen Beiwerten c, c_{MSG} , c_{Jt} und c_1 berechneten Verhältnisse $f_{Trag,calc}$ als strichlierte Linien. Diese Darstellung veranschaulicht, dass der Einfluss der Überfestigkeit und von J_{IC} / J_{EC} auf die Nahttragfähigkeit mit der Beziehung (9-4a) in guter Näherung (V $_{\delta}$ = 0,063) mit den Verhältnisse f_{Trag} berechnet werden kann.

Bild 9-14: f_{Trag} und f_{Trag,calc} von DHY-Nähten von 80mm dicken Grobblechen aus S355

9.11 Überprüfung der rechnerischen Ergebnisse mit Bauteilversuchen bei tiefen Temperaturen

Die auf Grundlage der rechnerischen Untersuchungen angegebenen Verhältnisse J_{IC} / J_{EC} , die ein mit (9-4a) vorhersagbares plastisches Nahttragverhalten ermöglichen, werden im folgenden anhand von Bauteilversuchen bei tiefen Temperaturen und demzufolge kleinen Verhältnissen J_{IC} / J_{EC} überprüft.

In [26] sind Ergebnisse von 8 Kreuzzugversuchen bei Prüftemperaturen von etwa –130°C dokumentiert. Die Prüfkörper bestehen aus 180mm bis 200mm breiten und 40mm dicken Blechen aus S355J2G3. Die Bleche wurden durch mit Prozess 135 geschweißte (D)HY-Nähte verbunden.

Vor den statischen Kreuzzugversuchen wurden durch zyklische Belastungen Ermüdungsanrisse ausgehend von der Nahtwurzel erzeugt. Die Summe der planmäßigen Steghöhe h und der Ermüdungsrisse beträgt über die Nahtbreite gemittelt zwischen 9mm und 30mm. Die Durchschweißungen f_{DS} betragen zwischen 0,57 und 1,03. Die großen Durchschweißungen lagen bei zwei Kreuzprüfkörpern mit DHY-Nähten vor, bei denen die Proben nur in einem kleinen Bereich am seitlichen Probenrand angerissen waren. Bild 9-15 zeigt die Nahtgeometrie der in [26] untersuchten (D)HY-Nähte. Die ebenfalls in Bild 9-15 gezeigten DHV-Nähte (BW) zwischen einem 55mm dicken Grobblech aus S275J2 und einem im Bereich der Schweißnaht 80mm dicken Bauteil aus S355J2 wurden mit Prozess 135 geschweißt. Diese Nähte weisen wegen des geringen Öffnungswinkels einer Nahtseite von nur 30° Bindefehler an der Steilfanke der Naht sowie Heißrisse auf. Die über die Probenbreite gemittelten Durchschweißungen f_{DS} betragen zwischen 0,79 und 0,99.

Bild 9-15: Nahtgeometrien der in Tieftemperaturversuchen geprüften Nähte

Gemäß [26] versagten zwei Prüfkörper mit DHY-Nähten (B, D) und alle Prüfkörper mit HY-Nähten, ohne dass vor dem Versagen plastische Verschiebungen gemessen wurden. Die zwei anderen Prüfkörper mit DHY-Nähten (A, C) versagten, nachdem die Streckgrenze im Grundwerkstoff erreicht wurde. Die Bruchflächen durch den geschwächten Nahtquerschnitt wiesen in allen Versuchen spröde Anteile auf.

Die auf den Grundwerkstoffquerschnitt bezogenen Bruchspannungen σ_{GW} betragen bei den DHY-Nähten abhängig von der Durchschweißung zwischen 240N/mm² und 469N/mm². Bei den HY-Nähten mit etwa konstanten Durchschweißungen betragen die Bruchspannungen zwischen 123N/mm² und 178N/mm².

Tabelle 9-5 fasst die Angaben aus [26] sowie die zu den Zugversuchen mit Stumpfnähten BW zusammen.

		GW	Ungänzen	Prüf- temperatur	Bruch- spannung σ_{GW}	$f_{DS}^{(1)}$
				°C	N/mm²	-
	А			-130	419 ⁵⁾	1,03 ²⁾
עעח	В	$P = 368 N/mm^2$	Ermüdungs- risse ausgehend von der Nahtwurzel	-130	240 ⁶⁾	0,57
Uni	С	S355J2G3		-130	469 ⁵⁾	0,76
	D	t = 40mm		-129	302 ⁶⁾	1,03 ²⁾
	1	$T_{27J,GW} = -80^{\circ}C$		-128	127 ⁶⁾	0,70
цν	2	$T_{27J,WEZ}$: n.d.		-133	123 ⁶⁾	0,68
пт	8	N _{eH} = 374N/IIII		-130	173 ⁶⁾	0,61
	9			-123	178 ⁶⁾	0,72
	1	S275J2 (55mm), S355J2 (80mm) $R_{eH,S275} = 268N/mm^{2 3)}$ $T_{27J,S275} = -49^{\circ}C$ $T_{27J,S355} = -24^{\circ}C$ $T_{27J,WEZ}^{4)} = -36^{\circ}C$		-44	432 ⁵⁾	0,97
BW	2		wurzelnahe	-50	348 ⁵⁾	0,79
	3		Heißrisse	-47	428 ⁵⁾	0,99
	4			-55	370 ⁵⁾	0,92

n.d.: nicht dokumentiert

1) f_{DS} ist das Verhältnis des Querschnitts der Bruchfläche abzüglich aller Ungänzen

zur Querschnittsfläche des angeschweißten Grobblechs.

2) Diese Proben waren nur am seitlichen Probenrand angerissen.

3) Mittelwert der Ergebnisse von 2 Zugversuchen mit Rundzugproben (R_{eH} = 255N/mm², 280N/mm²).

4) Mit Kerbschlagbiegeproben VHT 0 gemäß DIN EN 875 in der WEZ des 80mm dicken Bauteils gemessen

5) Trennbruch in der Naht, nachdem der GW die Fließgrenze erreicht hat

6) Trennbruch in der Naht, ohne dass der GW die Fließgrenze erreicht

Tabelle 9-5: Ergebnisse von Bauteilversuchen bei tiefen Temperaturen

Die etwa 35mm breiten Proben aus den Stumpfnähten BW wurden in Zugversuchen bei Temperaturen von etwa –50°C geprüft. Die Ergebnisse hierzu sind in Anhang G dokumentiert. Die Nähte versagten auch im Falle von Durchschweißungen größer als 0,90 durch Trennbrüche im Nahtquerschnitt, nachdem im 55mm dicken Grobblech aus S275J2 die Streckgrenze erreicht wurde. Die auf den Querschnitt des 55mm dicken Grobblechs bezogenen Bruchspannungen σ_{GW} betragen zwischen 348N/mm² und 432N/mm² (Tabelle 9-5). Die Verhältniswerte $f_{Trag,calc}$ werden für die in [26] dokumentierten Randbedingungen mit (9-4a) berechnet. Die in [26] nicht dokumentierte Überfestigkeit M_{SG} wird genau wie in den mit Prozess 135 geschweißten, in dieser Arbeit untersuchten DHY-Nähten von S355J2G3 angesetzt und beträgt 1,69.

Die Verhältnisse J_{IC}/J_{EC} im Bereich der Rissspitze können nur abgeschätzt werden, weil in [26] keine Ergebnisse von Kerbschlagbiegeversuchen mit Kerb im Bereich der Nahtwurzel dokumentiert sind. Es wird von Übergangstemperaturen T_{27J} zwischen –20°C (Spezifikation für den Stahl S355J2G3) und –80°C (T_{27J} des verwendeten Stahls) ausgegangen. Diese Spanne dürfte das in der Praxis auftretende Spektrum von Übergangstemperaturen T_{27J} in der Wärmeeinflusszone des verwendeten Stahls S355J2G3 abdecken. Die untere Schranke des Erwartungswerts J_{IC} wurde mit der Übergangstemperatur T_{27J} von – 20°C, der tiefsten Prüftemperatur von –133°C und für eine effektive Rissfrontlänge von 80mm (zweifache Bauteildicke t) mit (3-14) berechnet und beträgt 5,7N/mm. Mit der Übergangstemperatur T_{27J} von –80°C und der höchsten Prüftemperatur von –120°C beträgt die oberer Schranke von J_{IC} 16,7N/mm. Der Bezugswert J_{EC} beträgt für die 40mm dicken Grobbleche aus S355J2G3 34N/mm (Tabelle 9-2). Die Spanne J_{IC}/J_{EC} beträgt somit zwischen 0,17 und 0,49.

Die Verhältniswerte f_{Trag} in den Bauteilversuchen wurden als Verhältnisse der Bruchspannungen σ_{GW} zu den Streckgrenzen R_{eH} der 40mm dicken Grobbleche berechnet. In Tabelle 9-5 sind die Bruchspannungen σ_{GW} und die Streckgrenzen R_{eH} angegeben.

Die Verhältniswerte $f_{Trag,calc}$ der Stumpfnähte BW werden mit der Übergangstemperatur in der Wärmeeinflusszone von –36°C und einer Überfestigkeit M_{SG} von 1,67 berechnet. Der Widerstand J_{IC} wird für die unterschiedlichen Prüftemperaturen mit (3-14) und mit der effektiven Rissfrontbreite B von etwa 70mm (zweifache Probenbreite) berechnet. Der Bezugswiderstand J_{EC} wird Tabelle 9-2 für den Stahl S275 und für die angeschweißte Blechdicke von 55mm entnommen (J_{EC} = 30,5N/mm). M_{SG} wurde als Verhältniswert der Härte im Schweißgut zur Härte im Grundwerkstoff abgeschätzt. Die Verhältniswerte f_{Trag} in den Bauteilversuchen wurden als Verhältnisse der Bruchspannungen σ_{GW} zur Streckgrenze des 55mm dicken Grobblechs aus S275J2 berechnet (Tabelle 9-5).

Tabelle 9-6 fasst die Widerstände J_{IC} , die Verhältnisse J_{IC} / J_{EC} und die Verhältnisse $f_{Trag,calc}$ / f_{Trag} in allen Tieftemperaturversuchen zusammen.

Die mit (9-4a) berechneten Verhältnisse $f_{Trag,calc}$ der Stumpfnähte BW mit Widerständen J_{IC} / J_{EC} von 0,94 bis 1,25 stimmen im Rahmen der Vorhersagegenauigkeit von (9-4a) mit den gemessenen Verhältnissen f_{Trag} überein ($f_{Trag,calc} / f_{Trag} = 0,93$ bis 1,00). Offenbar reicht ein Widerstand J_{IC} von 0,94 J_{EC} im Nahtbereich aus, damit Spannungsumlagerungen von der Nahtwurzel in den Nahtquerschnitt möglich sind und die mit (9-4a) vorhergesagte Nahttragfähigkeit erreicht wird.

Die mit (9-4a) berechneten Verhältnisse $f_{Trag,calc}$ der DHY-Nähte mit Widerständen J_{IC} von 0,17 J_{EC} bis 0,49 J_{EC} stimmen bei 3 Versuchen (A, B, C) in der Größenordnung mit den gemessenen Verhältnissen f_{Trag} überein. Im Versuch D ist $f_{Trag,calc}$ signifikant größer als gemessen ($f_{Trag,calc} / f_{Trag} = 1,48$ bis 1,69). Offenbar ist bei DHY-Nähten im Falle von Widerstände J_{IC} zwischen 0,17 J_{EC} und 0,49 J_{EC} damit zu rechnen, dass keine Spannungsumlagerungen von der Nahtwurzel in den Nahtquerschnitt mehr möglich sind und deshalb die Nahttragfähigkeit nicht mehr zuverlässig mit (9-4a) vorhergesagt werden kann. In den Finiten Element Berechnungen wurde dies für Widerstände J_{IC} kleiner als 0,25 J_{EC} festgestellt.

Bei den HY-Nähten mit Widerständen J_{IC} zwischen 0,17 J_{EC} und 0,49 J_{EC} sind die mit (9-4a) berechneten Verhältniswerte $f_{Trag,calc}$ in allen Versuchen signifikant größer als die Messergebnisse f_{Trag} . Offenbar reichen bei HY-Nähten Widerstände J_{IC} zwischen 0,17 J_{EC} und 0,49 J_{EC} nicht für Spannungsumlagerungen von der Nahtwurzel in den Nahtquerschnitt aus. In den Finiten Element Berechnungen wurde eine signifikante Abnahme von f_{Trag} im Vergleich zu $f_{Trag,calc}$ für Widerstände J_{IC} / J_{EC} kleiner als 0,50 festgestellt.

	J _{IC} ¹⁾		J _{IC} / 、	J _{EC} ²⁾	f _{Trag,calc} / f _{Trag} für		
		N/mm	N/mm von bis		J _{IC} = 5,7N/mm	J _{IC} = 16,7N/mm	
	Α				1,07	1,22	
עוח	В	5,7 bis 16,7	0,17		1,02	1,17	
DHT	С	(file T = 20°C ³)			0,71	0,81	
	D	$(TUF _{27J} = -20^{\circ}C^{\circ})$		0.40	1,48	1,69	
	1	bis		0,49	1,89	2,11	
цν	2	$T_{27,1}^{(4)} = -80^{\circ}C$			1,91	2,12	
	3	und T = -120°C)			1,20	1,34	
	4				1,40	1,57	
	1		1,25		0,93		
BW	2	28,8 bis 38,0 (für T = -55°C	1,11		0,95		
	3	und T = -44° C)	1,1	19	0,95		
	4		0,9	94	1,0	00	

1) J_{IC} wird mit (3-14), T_{27J} und T für die vorliegende effektive Rissfrontbreite berechnet.

2) J_{EC} wird Tabelle 9-2 für den vorliegenden Stahl (S275 für BW) und die verschweißte Dicke entnommen.

3) Maximalwert für qualifiziertes Schweißverfahren für S355J2

4) Annahme, dass in der WEZ die Kerbschlagzähigkeit des Grundwerkstoffs erreicht wird.

Tabelle 9-6: f_{Trag,calc} / f_{Trag} in den Bauteilversuchen bei tiefen Temperaturen

10 Ausblick

10.1 Erforderliche Durchschweißung

Zur Sicherstellung der Zuverlässigkeit von Schweißnähten werden im europäischen Stahlbau zwei Nachweise geführt:

- 1) Tragfähigkeitsnachweis
- 2) Sprödbruchsicherheitsnachweis

Der Nachweis der Nahttragfähigkeit wird mit DIN EN 1993-1-8 mit den zum besseren Verständnis nochmals aufgeführten Beziehungen (2-1a) und (2-1b) geführt. Im Falle von durch die Spannungskomponente σ_{\perp} im Nahtquerschnitt beanspruchten Stumpfnähten und (D)HY-Nähten wird wegen $\beta_w \leq 1$ immer (2-1b) maßgebend.

Der Bemessungswert der einwirkenden Spannung σ_{\perp} im Nahtquerschnitt wird mit der Grundkombination (10-1) der ständigen und veränderlichen Einwirkungen gemäß DIN EN 1990 berechnet.

$$\sigma_{v, EC} = \sqrt{\sigma_{\perp}^{2} + 3(\tau_{\perp}^{2} + \tau_{II}^{2})} \leq \frac{f_{u}}{\beta_{w} \cdot \gamma_{M2}}$$
(2-1a)

$$\sigma_{\perp} \leq \frac{0,9 \cdot f_{u}}{\gamma_{M2}}$$
(2-1b)

$$E_{d} = \sum \gamma_{G, j} \cdot G_{k, j} + \gamma_{Q, 1} \cdot Q_{k, 1} + \sum \gamma_{Q, i} \cdot \Psi_{0, i} \cdot Q_{k, i}$$
(10-1)

Die Sprödbruchsicherheit geschweißter Bauteile aus Stahl wird für die in DIN EN 1993-1-9 geregelten Kerbdetails mit DIN EN 1993-1-10 nachgewiesen. Das Vorliegen

- a) von weit fortgeschrittenen Ermüdungsrissen (siehe Bild 9-3) und
- b) des jeweils spezifizierten Mindestwerts der Kerbschlagarbeit und
- c) der tiefsten Einsatztemperatur

wird als außergewöhnliche Bemessungssituation aufgefasst. Demzufolge werden die Bemessungswerte der Lasteinwirkungen mit der außergewöhnlichen Einwirkungskombination (10-2) berechnet, wobei die Kombinationsbeiwerte ψ_1 und $\psi_{2,i}$ maximal 0,90 betragen.

$$E_{d} = \Sigma G_{k, j} + \Psi_{1} \cdot Q_{k, 1} + \Sigma \Psi_{2, i} \cdot Q_{k, i}$$
(10-2)

Die erforderliche Stahlgüte wird im wesentlichen abhängig von der Blechdicke t, der spezifizierten Mindeststreckgrenze $f_v(t)$ des Stahls und der Spannung σ_{Ed} im
ungeschwächten Grundwerkstoffquerschnitt an der Stelle der erwarteten Rissentstehung bestimmt. Bild 10-1 zeigt den Bezugsquerschnitt für σ_{Ed} .

Index Ed: Bemessungswert in der außergewöhnlichen Kombination (10-2)

Bild 10-1: Spannungen σ im Grundwerkstoffquerschnitt und $\sigma_{\!\scriptscriptstyle \perp}$ im Nahtquerschnitt

Im folgenden werden die Vorhersagen der Beziehung (9-4a) und die Ergebnisse aus [26] im Kontext der eben beschriebenen Bemessungsregeln diskutiert. Hierzu werden die nach (9-4a) und nach [26] erforderlichen Größen der Durchschweißung f_{DS} berechnet.

In Abschnitt 9.10 wurde die Beziehung (9-4a) für das Verhältnis der Nahttragfähigkeit F_{Naht} zur Fließlast des angeschweißten Grundwerkstoffs F_{GW} hergeleitet. Zur Anpassung von (9-4a) an die Berechnungsergebnisse wurden Beiwerte c, c_{MSG}, c_{Jt} und c₁ und Geometriefunktionen f_{Geo} (9-4e) zur Berücksichtigung der Nahtart angegeben. In (10-3) und (10-4) ist die Beziehung (9-4a) für die Nahtragfähigkeit F_{DHY} und F_{HY} der DHY-Nähte und der HY-Nähte angegeben.

$$F_{DHY} = f_{DS} \cdot 1,54 \cdot \tanh\left(0,82 \cdot M_{SG}\right) \cdot \left(\frac{J_{IC}}{J_{EC}} \cdot \frac{t}{as}\right)^{0,128} \cdot 1 \cdot F_{GW}$$
(10-3)

$$F_{HY} = f_{DS} \cdot 1,24 \cdot tanh\left(1,35 \cdot M_{SG}\right) \cdot \left(\frac{J_{IC}}{J_{EC}} \cdot \frac{t}{as}\right)^{0,103} \cdot \frac{1}{f_{DS}} \cdot \left[1 - \left(1 - f_{DS}\right)^{0,794}\right] \cdot F_{GW}$$
(10-4)

Zur Berechnung einer erforderlichen Durchschweißung wird mit (10-5) folgender Grenzfall betrachtet:

Die Durchschweißung der Naht ist gerade so groß, dass die Nahttragfähigkeit F_{Naht} mit der bei Nahtversagen erforderlichen Reserve γ_{M2} von 1,25 so groß wie die in der Grundkombination (10-1) einwirkende Bemessungslast F_d im angeschweißten Grundwerkstoff ist.

$$F_{\text{Naht, d}} = \frac{F_{\text{Naht}}}{\gamma_{M2}} = F_{d}$$
(10-5)

Für diesen Grenzfall (10-5) werden die Beziehungen (10-3) und (10-4) nach der erforderlichen Durchschweißung $f_{DS,min}$ von (D)HY-Nähten aufgelöst. Es folgen die Beziehungen (10-6) und (10-7).

Hierbei wird die Fließlast F_{GW} des angeschweißten Grundwerkstoffquerschnitts mit (8-1) als Produkt der charakteristischen Streckgrenze $f_y(t)$ und des Querschnitts A_{GW} dargestellt. Die Bemessungslast F_d wird als Produkt der Bemessungsspannung σ_d und des Querschnitts A_{GW} dargestellt. Das Verhältnis $\sigma_d / f_y(t)$ der einwirkenden Bemessungsspannung σ_d zu $f_y(t)$ wird im weiteren als Ausnutzung bezeichnet.

$$f_{DS, \min} = \gamma_{M2} \cdot \frac{\sigma_d}{f_y(t)} / \left[1,54 \cdot \tanh\left(0,82 \cdot M_{SG}\right) \cdot \left(\frac{J_{IC}}{J_{EC}} \cdot \frac{t}{a_s}\right)^{0,128} \right]$$
(10-6)

$$f_{\text{DS, min}} = \gamma_{\text{M2}} \cdot \frac{\sigma_{\text{d}}}{f_{\text{y}}(t)} / \left\{ 1,24 \cdot \tanh\left(1,35 \cdot M_{\text{SG}}\right) \cdot \left(\frac{J_{\text{IC}}}{J_{\text{EC}}} \cdot \frac{t}{a_{\text{s}}}\right)^{0,103} \cdot \frac{1 - \left(1 - f_{\text{DS, min}}\right)^{0,794}}{f_{\text{DS, min}}} \right\}$$
(10-7)

Mit (10-6) und (10-7) werden die erforderlichen Durchschweißungen $f_{DS,min}$ für verschiedene Randbedingungen berechnet. Die Auswertung muss iterativ erfolgen, weil die Durchschweißung $f_{DS,min}$ auch in dem Verhältnis t/a_S der Blechdicke zum Wurzelmaß a_s und bei der HY-Naht in der Geometriefunktion enthalten ist.

In Tabelle 10-1 und 10-2 werden die erforderlichen Durchschweißungen $f_{DS,min}$ für (D)HY-Nähte von 40mm dicken Grobblechen aus S355J2

- für Überfestigkeiten M_{SG} von 1,1 und 1,5 und
- für Temperaturen T von –30°C, 0°C und 20°C und
- für Ausnutzungen σ_d / $f_y(t)$ zwischen 0,25 und 1,00

ausgewertet. Wenn der angeschweißte Grundwerkstoffquerschnitt auf Zug voll ausgenutzt ist, entspricht die einwirkende Bemessungsspannung σ_d genau der durch Division mit einem Teilsicherheitsbeiwert γ_M von 1,1 berechneten Streckgrenze $f_{y,d}(t)$ auf Bemessungsniveau. Die Ausnutzung σ_d / $f_y(t)$ beträgt 0,91.

Bei den Auswertungen von (10-6) und (10-7) in Tabelle 10-1 und 10-2 wird angenommen, dass an der Nahtwurzel gerade die für die Güte J2 spezifizierte Übergangstemperatur T_{27J} von -20° C vorliegt. Hierfür werden aus Tabelle 9-1 für die Einsatztemperaturen T von -30° C, 0°C und 20°C und für eine effektive Länge der Rissfront von 80mm (2't) Widerstände J_{IC} zwischen 34N/mm (T = -30°C) und 149N/mm (T = 20°C) entnommen. Aus Tabelle 9-2 wird für die Blechdicke t von 40mm und für den Stahl S355 der Bezugswert J_{EC} von 34N/mm entnommen. Die Nahtdicke a_s einer Nahtseite wird mit (10-8) abhängig von der Durchschweißung f_{DS} und der Blechdicke t dargestellt, wobei von einer symmetrischen DHY-Naht mit gleich großen Nahtdicken a_s auf beiden Seiten ausgegangen wird.

$$a_{s} = \begin{cases} \frac{1}{2} \cdot f_{DS} \cdot t & symmetrische DHY - Naht \\ f_{DS} \cdot t & HY - Naht \end{cases}$$
(10-8)

Die in den in den Tabellen 10-1 und 10-2 angegebenen Ausnutzung σ_{Ed} / $f_y(t)$, die in [26] angegebenen Mindestdurchschweißungen und die in DIN EN 1993-1-8 geforderten Durchschweißungen werden im folgenden erklärt.

		0,25	0,42 (entspr. ²⁾ σ_{Ed} / f _y (t) = 0,25)	0,83 (entspr. ²⁾ σ _{Ed} / f _y (t) = 0,50)	0,91	1,00 (entspr. ³⁾ etwa σ _{Ed} / f _y (t) = 0,75)	Rand- bedingungen
		0,18	0,32	0,70	0,77	0,86	T = -30°C M _{SG} = 1,5
		0,21	0,38	0,84	0,93	voll ⁹⁾	$(J_{IC} / J_{EC} = 34/34)$ M _{SG} = 1,1
9		0,16	0,28	0,61	0,68	0,76	T = 0°C M _{SG} = 1,5
(10	f _{DS,min}	0,19	0,34	0,74	0,83	0,91	$(J_{IC} / J_{EC} = 80/34)$ M _{SG} = 1,1
		0,14	0,26	0,56	0,62	0,70	T = 20°C M _{SG} = 1,5
		0,17	0,31	0,67	0,75	0,84	$(J_{IC} / J_{EC} = 149/34) M_{SG} = 1,1$
3] ⁸⁾		k.A.	0,20	0,43	k.A.	0,60	T = -30°C
[26		k.A.	k.A.	0,23	k.A.	k.A.	T = 0°C
3-1-8	$a_{EC,min}$ / t $^{4)}$	0,25	0,43	0,85	0,93	1,02	Ausführung gemäß prEN 1090-2
199		0,25	0,41	0,78	0,86	0,94	100% zfP ⁵⁾
EN	f _{DS,min}	0,22	0,37	0,73	0,80	0,88	10% zfP ⁶⁾
DIN		0,20	0,34	0,68	0,74	0,82	0% zfP ⁷⁾

1) σ_{d} = Bemessungswert (10-1) der einwirkenden Zugspannung im GW-Querschnitt,

 $f_y(t)$ = charakteristische Streckgrenze im GW-Querschnitt = 345N/mm²

2) vereinfachende Annahme nur einer veränderlichen Lasteinwirkung: σ_{Ed} = $\sigma_d \cdot \psi_1 / \gamma_{Q,1}$

3) vereinfachende Annahme nur von Eigengewichtseinwirkungen: σ_{Ed} = σ_{d} / γ_{G}

4) für $\sigma_{\perp,d}$ = σ_d $^{\cdot}$ t / a_{EC} = f_u^{\cdot} 0,9 / γ_{M2} , mit f_u = 470N/mm²

5) In der Bewertungsgruppe C in ISO 5817 ist ein ungenügender Wurzeleinbrand unzulässig.

6) Es werden wurzelnahe Ungänzen mit einer Höhe 0,14 a_{EC} angesetzt.

7) Es werden wurzelnahe Ungänzen mit einer Höhe 0,20 a_{EC} angesetzt.

8) aus Abbildung 6-15/6-16 in [26] für $\,$ B = 200mm, S355J2, t = 40mm

9) volle Durchschweißung erforderlich k.A.: keine Angabe in [26]

Tabelle 10-1: Erforderliche Durchschweißungen $f_{DS,min}$ einer symmetrischen DHY-Naht von S355J2, t = 40mm

			Ausi				
		0,25	0,42 (entspr. ²⁾ σ_{Ed} / f _y (t) = 0,25)	$\begin{array}{c} 0,83 \\ (\text{entspr.}^{2)} \\ \sigma_{\text{Ed}} \ / \ f_{y} \ (t) = 0,50) \end{array}$	0,91	$\begin{array}{c} \textbf{1,00} \\ (\text{entspr.}^{3)} \text{etwa} \\ \sigma_{\text{Ed}} / f_{y} (t) = 0,75) \end{array}$	Rand- bedingungen
		0,28	0,48	0,91	0,98	voll ⁹⁾	$T = -30^{\circ}C$ $M_{SG} = 1,5$
		0,30	0,52	0,96	voll ⁹⁾	voll ⁹⁾	$(J_{IC} / J_{EC} = 34/34)$ M _{SG} = 1,1
<u>-</u>		0,25	0,44	0,85	0,92	0,98	$T = 0^{\circ}C$ $M_{SG} = 1,5$
(10	f _{DS,min}	0,27	0,47	0,90	0,96	voll ⁹⁾	$(J_{IC} / J_{EC} = 80/34)$ $M_{SG} = 1,1$
		0,24	0,41	0,81	0,87	0,94	T = 20°C M _{SG} = 1,5
		0,25	0,44	0,85	0,92	0,98	$(J_{IC} / J_{EC} = 149/34)$ M _{SG} = 1,1
6] ⁸⁾		k.A.	0,70	0,83	k.A.	0,91	T = -30°C
[26		k.A.	k.A.	0,70	k.A.	k.A.	T = 0°C
3-1-8	a_{EC} / t $^{4)}$	0,66	0,78	0,96	0,98	voll ⁹⁾	Ausführung gemäß prEN 1090-2
199		0,66	0,78	0,96	0,98	voll ⁹⁾	100% zfP ⁵⁾
EN	f _{DS,min}	0,63	0,74	0,89	0,91	0,93	10% zfP ⁶⁾
DIN		0,61	0,72	0,85	0,87	0,89	0% zfP ⁷⁾

1) σ_{d} = Bemessungswert (10-1) der einwirkenden Zugspannung im GW-Querschnitt,

 $f_y(t)$ = charakteristische Streckgrenze im GW-Querschnitt = 345N/mm²

2) vereinfachende Annahme nur einer veränderlichen Lasteinwirkung: σ_{Ed} = $\sigma_d^+\psi_1$ / $\gamma_{Q,1}$

3) vereinfachende Annahme nur von Eigengewichtseinwirkungen: σ_{Ed} = σ_{d} / γ_{G}

4) für $\sigma_{\perp,d}$ = $\sigma_d \cdot t / a_{EC}$ + 3 σ_d (1- a_{EC}/t) / (a_{EC}/t)² = $f_u \cdot 0.9 / \gamma_{M2}$ (elastische Querschnittsbemessung) , mit f_u = 470N/mm²

5) In der Bewertungsgruppe C in ISO 5817 ist ein ungenügender Wurzeleinbrand unzulässig.

6) Es werden wurzelnahe Ungänzen mit einer Höhe 0,14 a_{EC} angesetzt.

7) Es werden wurzelnahe Ungänzen mit einer Höhe $0,20a_{EC}$ angesetzt. 8) aus Abbildung 6-9/6-10 in [26] für B = 200mm, S355J2, t = 40mm

9) volle Durchschweißung erforderlich

k.A.: keine Angabe in [26]

Tabelle 10-2: Erforderliche Durchschweißungen $f_{DS,min}$ einer HY-Naht von S355J2, t = 40mm

In [26] werden basierend auf dem Nachweiskonzept in DIN EN 1993-1-10 zulässige Größen zul 2a von Restspalten in Schweißnähten bei vorwiegend ruhender und nicht vorwiegend ruhender Beanspruchung hergeleitet. Unter Restspalt werden unplanmäßige, etwa durch zerstörungsfreie Prüfungen entdeckte Nahtungänzen verstanden, die außerhalb der Toleranzgrenzen der Ausführungsnorm prEN 1090-2 liegen. Bei vorwiegend ruhender Beanspruchung sind dies Ungänzen, die größer als die Grenzen der Bewertungsgruppe C in DIN EN ISO 5817 sind. Dies kann etwa die in Bild 10-1 skizzierte ungenügende Durchschweißung der Nahtwurzel infolge eines Bindefehlers sein.

Für vorwiegend ruhend beanspruchte Bauteile wird in [26] das Vorliegen

- a) des rissartig angenommenen Restspalts und
- b) nur des jeweils spezifizierten Mindestwerts der Kerbschlagarbeit im Nahtbereich und
- c) der tiefsten Einsatztemperatur

als außergewöhnlicher Lastfall aufgefasst. Die Auftretenswahrscheinlichkeit dieser Bemessungssituation ist größer als die Auftretenswahrscheinlichkeit der außergewöhnlichen Bemessungssituation in DIN EN 1993-1-10, weil die Nahtungänzen mit der festgestellten Größe dauerhaft in der Naht vorliegt. Die in DIN EN 1993-1-10 unterstellten Risse stellen dagegen eine vorsichtige Annah-

me dar. Außerdem zeigen Messungen im Bereich der Nahtwurzel von nichtdurchgeschweißten Nähten [2], dass an der Nahtwurzel sehr kleine Kerbradien vorliegen können, die hinsichtlich der Kerbschärfe einem Riss nahezu gleichen. Gleiches gilt auch für häufige Nahtungänzen wie Bindefehler und vielmehr noch für rissartige Ungänzen wie Heißrisse. Nahtungänzen sind deshalb hinsichtlich der Kerbschärfe nicht wesentlich weniger kritisch als ein Riss.

[26] zufolge genügt deshalb alleine das Vorliegen der tiefsten Einsatztemperatur dafür, dass eine außergewöhnliche Bemessungssituation vorliegt.

Mit dieser Definition der außergewöhnlichen Bemessungssituation und mit bruchmechanischen Untersuchungen werden in [26] zulässige Größen zul 2a für Restspalte für

- Bemessungsspannungen σ_{Ed} von 0,25 f_y(t) bis 0,75 f_y(t),
- verschiedene Stahlsorten,
- verschiedene Ausdehnungen B der Restspalte in Nahtlängsrichtung und
- verschiedene tiefste Einsatztemperaturen T

berechnet. Diese Größen zul 2a werden mit (10-9) zur besseren Vergleichbarkeit in erforderliche Durchschweißungen $f_{DS,min}$ umgerechnet.

$$f_{DS, \min} = 1 - \frac{zul2a}{t}$$
(10-9)

Die Tabellen 10-1 und 10-2 geben die so berechneten erforderlichen Durchschweißungen $f_{DS,min}$ für vorwiegend ruhend beanspruchte (D)HY-Nähte von 40mm dicken Blechen aus S355J2 bei tiefsten Einsatztemperaturen T von -30°C und 0°C an.

Für einen Vergleich der gemäß [26] erforderlichen Durchschweißungen mit den gemäß (10-6) und (10-7) berechneten Durchschweißungen wird ein Bezug zwischen der Ausnutzung $\sigma_{Ed} / f_y(t)$ in der außergewöhnlichen Einwirkungskombination (10-2) und der Ausnutzung $\sigma_d / f_y(t)$ in der Grundkombination (10-1) hergestellt. Hierzu wird vereinfachend davon ausgegangen, dass nur eine veränderliche Last $Q_{k,1}$ wirkt. Die Bemessungsspannung σ_d kann dann mit (10-10), dem gemäß DIN EN 1990 maximalen Kombinationsbeiwert ψ_1 von 0,9 und dem Teilsicherheitsbeiwert $\gamma_{Q,1}$ von 1,5 in eine Bemessungsspannung σ_{Ed} umgerechnet werden.

$$\sigma_{\text{Ed}} = \sigma_{\text{d}} \cdot \psi_1 / \gamma_{Q,1} \tag{10-10}$$

Die Ausnutzung σ_{Ed} / $f_y(t)$ von 0,25 entspricht so einer Ausnutzung σ_d / $f_y(t)$ von 0,42. Die Ausnutzung σ_{Ed} / $f_y(t)$ von 0,50 entspricht einer Ausnutzung σ_d / $f_y(t)$ von 0,83.

Die Ausnutzung $\sigma_{Ed}/f_y(t)$ von 0,75 wird unter der Annahme nur von Eigengewichtseinwirkungen in etwa der Ausnutzung $\sigma_d/f_y(t)$ von 1,00 zugeordnet. Eine Zuordnung mit (10-10) würde zu einer Ausnutzung $\sigma_d/f_y(t)$ von 1,25 führen.

Zum Vergleich mit den mit (10-6) und (10-7) berechneten und den in [26] angegebenen erforderlichen Durchschweißungen wird ein Nahttragfähigkeitsnachweis mit DIN EN 1993-1-8 geführt. Die Tragfähigkeit der HY-Naht wird mit einer elastischen Querschnittsbemessung nachgewiesen. Die Nahtragfähigkeitsnachweise resultieren in Verhältnissen $a_{EC,min}$ / t der erforderlichen Wurzelmaße zur Blechdicke t.

Diese Verhältnisse können nicht direkt mit den erforderlichen Durchschweißungen $f_{DS,min}$ verglichen werden, weil die Durchschweißung einer nach DIN EN 1993-1-8 bemessenen Naht aufgrund von Ungänzen kleiner sein kann als $a_{EC,min}$ / t. Für einen Vergleich wird angenommen, dass die in Abschnitt 4.1 gemessenen Ungänzen an der Nahtwurzel vorliegen:

- Ohne zfP wird angenommen, dass systematische Ungänzen an der Nahtwurzel vorliegen. Bild 4-1 zeigt, dass 5% aller Nähte systematische wurzelnahe Ungänzen aufweisen, deren Höhe h_w größer als 0,20 a_{EC} ist. Diese Höhe h_w wird über die gesamte Nahtlänge angesetzt.
- Im Falle einer teilweisen Prüfung (10% zfP) wird angenommen, dass systematische Ungänzen entdeckt werden und nur kurze wurzelnahe Ungänzen vorliegen. Bild 4-1 zeigt, dass 5% aller Nähte kurze Ungänzen aufweisen, deren Höhe h_{wk} größer als 0,14 a_{EC} ist. Diese Höhe h_{wk} wird vereinfachend über die gesamte Nahtlänge angesetzt.
- Im Falle einer vollständigen Prüfung (100% zfP) wird für DHY-Nähte der in der Bewertungsgruppe C gemäß DIN EN ISO 5817 zulässige ungenügende Wurzeleinbrand angesetzt. Dieser wird vereinfachend über die gesamte Nahtlänge angesetzt. Bei HY-Nähten werden keine Ungänzen angesetzt, weil auch ein kurzer ungenügender Wurzeleinbrand in der Bewertungsgruppe C in DIN EN ISO 5817 unzulässig ist.

In Tabelle 10-1 und 10-2 sind die mit diesen Ungänzen und den nach DIN EN 1993-1-8 erforderlichen Verhältnissen $a_{EC,min}$ / t berechneten Durchschweißungen angegeben.

Die Bemessung mit DIN EN 1993-1-8 gilt nur dann, wenn die Ausführung gemäß prEN 1090-2 erfolgt. In prEN 1090-2 wird gefordert, dass je nach Ausführungsklasse und Nahtart zwischen 5% und 20% der Nahtlänge von teilweise durchgeschweißten Nähten mittels zfP auf innere Ungänzen geprüft wird. Deshalb wird für gemäß prEN 1090-2 hergestellte Nähte angenommen, dass keine systematischen Ungänzen vorliegen. Es werden nur kurze wurzelnahe Ungänzen mit einer Höhe von 0,14 a_{EC} angesetzt. Für eine Ausnutzung $\sigma_d / f_y(t)$ von 0,83 ($\sigma_{Ed} / f_y(t) = 0,50$) beträgt die so berechnete erforderliche Durchschweißung für die DHY-Naht 0,73 (Tabelle 10-1) und für die HY-Naht 0,89 (Tabelle 10-2).

In prEN 1090-2 wird der Einsatz von CE-zertifizierten Schweißzusatzwerkstoffen gefordert, die beim Stahl S355 wenigstens eine Überfestigkeit von 1,1 aufweisen. Für diese Mindestanforderung an die Überfestigkeit betragen die mit (10-6) und (10-7) für eine Ausnutzung $\sigma_d / f_y(t)$ von 0,83 berechneten erforderlichen Durchschweißungen 0,84 (DHY-Naht) und 0,96 (HY-Naht). Hat die Überfestigkeit den für den MAG Prozess üblichen Wert von 1,5, betragen die mit (10-6) und (10-7) für die Ausnutzung $\sigma_d / f_y(t)$ von 0,83 berechneten Durchschweißungen 0,70 (DHY-Naht) und 0,91 (HY-Naht).

Gemäß [26] sind kleinere Durchschweißung von 0,43 (DHY-Naht) und 0,83 (HY-Naht) erforderlich.

Liegt eine für den MAG Prozess übliche Überfestigkeit vor und beträgt das Verhältnis J_{IC} / J_{EC} wenigstens 1, entsprechen die mit (10-6) und (10-7) berechneten erforderlichen Durchschweißungen in etwa den Durchschweißungen, die mit den nach DIN EN 1993-1-8 erforderlichen Verhältnissen $a_{EC,min} / t$ und den für teilweise Prüfung angenommenen Ungänzen berechnet wurden.

Liegt eine kleinere Überfestigkeit M_{SG} von 1,1, vor, sind die mit (10-6) und (10-7) berechneten erforderlichen Durchschweißungen auch bei dem hier betrachteten Verhältnis J_{IC}/J_{EC} von wenigstens 1 größer als nach DIN EN 1993-1-8.

Die in [26] vorgeschlagenen erforderlichen Durchschweißungen sind viel kleiner als gemäß (10-6) und (10-7) und als in DIN EN 1993-1-8. Der Grund ist, dass in [26] zur Herleitung der erforderlichen Durchschweißungen eine außergewöhnliche Bemessungssituation unterstellt wird. In (10-6) und (10-7) und in DIN EN 1993-1-8 wird die Tragfähigkeit dagegen in der Grundkombination (10-1) der Einwirkungen nachgewiesen.

10.2 Sprödbruchsicherheit von teilweise durchgeschweißten Nähten

In DIN EN 1993-1-10 wird die Kerbschlagzähigkeit des Grundwerkstoffs abhängig von der Spannung σ_{Ed} im Grundwerkstoffquerschnitt bestimmt (Bild 10-1). Die im Nahtquerschnitt von teilweise durchgeschweißten Nähten anliegende Spannung σ_{\perp} wird nicht berücksichtigt. Die Kerbschlagzähigkeit im Nahtquerschnitt wird zum Beispiel durch eine Qualifizierung des Schweißverfahrens gemäß DIN EN ISO 15614-1 sichergestellt, wobei im Nahtquerschnitt nachgewiesen wird, dass die für den Grundwerkstoff spezifizierte Kerbschlagzähigkeit erreicht wird.

Bei einer geringen Ausnutzung des Grundwerkstoffquerschnitts (niedriges σ_{Ed}) wird in der Stahlbaupraxis aus wirtschaftlichen Erwägungen nur soweit durchgeschweißt, wie dies gemäß (2-1b) erforderlich ist. Der Nahtquerschnitt ist dann wegen der nur teilweisen Durchschweißung voll ausgenutzt. Die Zähigkeitsanforderung an den Grundwerkstoff und demzufolge an die Naht wird jedoch mit der niedrigen Spannung σ_{Ed} bestimmt, so dass im Bereich der Nahtwurzel trotz einer vollen Ausnutzung der Naht nur ein kleines Verhältnis J_{IC} / J_{EC} vorliegt.

Die aktuelle Bemessungspraxis zur Vermeidung von Sprödbrüchen stellt also die in Abschnitt 9.11 hergeleiteten, für plastische Spannungsumlagerungen von der Nahtwurzel in den Nahtquerschnitt erforderlichen Mindestverhältnisse J_{IC} / J_{EC} bei teilweise durchgeschweißten Nähten nicht unbedingt sicher.

Zur Beseitigung dieser Diskrepanz und zur Sicherstellung der erforderlichen Verhältnisse J_{IC} / J_{EC} müsste die Anforderung an die Kerbschlagzähigkeit im Nahtbereich mit DIN EN 1993-1-10 und mit der Spannung $\sigma_{\perp,Ed}$ im Nahtquerschnitt anstatt der Spannung σ_{Ed} im Grundwerkstoffquerschnitt bestimmt werden.

11 Zusammenfassung

In dieser Arbeit wurde die Tragfähigkeit von teilweise durchgeschweißten Nähten in Stahl untersucht. Ziel war es, den Einfluss der Nichtdurchschweißung und von Ungänzen im Nahtbereich für verschiedene Nahtausführungen aufzuzeigen.

In Abschnitt 2 wurde gezeigt, dass Nähte mit häufigen Ungänzen wie Bindefehlern in aktuellen Bemessungsregeln nicht geregelt sind. Ein wesentlicher Grund hierfür ist, dass bisher keine Untersuchungen zur Tragfähigkeit von mit Ungänzen behafteten Nähten durchgeführt wurden. Weil die Tragfähigkeit solcher Nähte, wenn sie durch Zugspannungen beansprucht werden, durch ein Reißen ausgehend von der Nahtwurzel begrenzt werden kann, wurden in Abschnitt 3 bruchmechanische Konzepte zur Berechnung der Bruchlasten von Bauteilen mit rissartigen Ungänzen angegeben. Die Anwendbarkeit dieser Konzepte auf die in dieser Arbeit untersuchten Nähte wurde geprüft.

In Abschnitt 4 wurde die Lage und Größe von Nahtungänzen in einer Feldstudie für stahlbauübliche Nähte bestimmt. Es wurde festgestellt, dass die untersuchten Nähte häufig wurzelnahe Ungänzen aufweisen. In 5% aller Nähte schwächten diese Ungänzen den Nahtquerschnitt um mehr als 16,5%. Zur Untersuchung der Tragfähigkeit von Nähten mit den in der Feldstudie gemessenen Ungänzen wurden Prüfkörper aus bis zu 80mm dicken Blechen aus S355J2G3 mit solchen Ungänzen hergestellt. Die mechanischen und technologischen Eigenschaften im Schweißgut und in der Wärmeeinflusszone sowie die Nahtgeometrie wurden in Abschnitt 4 dokumentiert.

In Abschnitt 5 wurde die Durchführung von Bauteilversuchen mit diesen Nähten und in Abschnitt 6 die versuchsbegleitenden numerischen Berechnungen beschrieben. Zur Angabe eines Versagenskriteriums für teilweise durchgeschweißte Nähte wurden fließbruchmechanische Kenngrößen im Bereich der Nahtwurzel sowie den Beanspruchungszustand beschreibende Kenngrößen bei Rissfeststellung an der Nahtwurzel berechnet. Diese Berechnungen wurden in Abschnitt 7 beschrieben und verifiziert.

Auf Grundlage der Bauteilversuche wurde in Abschnitt 8 zunächst der Einfluss der Nahtungänzen auf die Tragfähigkeit bestimmt. Es wurde festgestellt, dass die Art der Nahtschwächung unter den Prüfbedingungen keinen Einfluss auf die Tragfähigkeit hat. Die Tragfähigkeit der von zwei Seiten geschweißten DHY-Nähte ist das Produkt des durch jedwede Art von Ungänzen geschwächten Nahtquerschnitts mit der Zugfestigkeit im Schweißgut. Die Tragfähigkeit der von einer Seite geschweißten HY-Nähte ist demgegenüber etwa 20% kleiner. Bei den HY-Nähten wurden zudem signifikant vor dem Bruch Anrisse an der Nahtwurzel und ein Rissfortschritt festgestellt. Die Dauerschwingversuche in Abschnitt 8.3 zeigten, dass eine Nichtdurchschweißung der Nahtwurzel bei DHY-Nähten in Doppel-T-Stößen keine Auswirkung auf die Schwingfestigkeit hat, solange die Nichtdurchschweißung kleiner als etwa 14% des Nahtquerschnitts ist. Eine Schwächung des Nahtquerschnitts infolge von Anrissen und eines Rissfortschritts ist deshalb für diese Nähte unabhängig von der Schwingbreite $\Delta \sigma_{GW}$ und der Lastwechselzahl N nicht zu erwarten. Bei größeren Nichtdurchschweißungen bis zu 40% des Nahtquerschnitts kann eine Abgrenzung zwischen einer vorwiegend ruhenden Beanspruchung und einer nicht vorwiegend ruhenden Beanspruchung mit DIN 18800-1 wie für voll durchgeschweißte Nähte erfolgen. Bei von einer Seite geschweißten HV-Nähten und HY-Nähten reduziert dagegen auch eine kleine Nichtdurchschweißung die Dauerschwingfestigkeit.

Anhand der bei Rissfeststellung in den Bauteilversuchen berechneten fließbruchmechanischen und den Beanspruchungszustand beschreibenden Kenngrößen wurde in Abschnitt 8.4 ein fließbruchmechanisches Versagenskriterium (8-8a/b) basierend auf dem J-Integral Konzept hergeleitet. Der Einfluss des Beanspruchungszustands im Bereich der Nahtwurzel wird über die Mehrachsigkeit M_{max} des Spannungszustands berücksichtigt.

Mit diesem Versagenskriterium und den anhand der Bauteilversuche validierten Finiten Element Modellen wurde das experimentell untersuchte Spektrum in Abschnitt 9 rechnerisch erweitert. Das Versagenskriterium wurde hierzu mit den in Abschnitt 3 angegebenen fließbruchmechanischen Beziehungen auf tiefere Temperaturen und geringere Kerbschlagzähigkeiten als in den Versuchen übertragen.

In einer insgesamt etwa 1400 Parameterkombinationen umfassenden Studie wurden die Einflussgrößen Nahtgeometrie, Überfestigkeit M_{SG}, Temperatur und Kerbschlagzähigkeit in einem für Schweißnähte von Baustählen mit Streck-grenzen bis 460N/mm² möglichen Spektrum rechnerisch variiert. Auf Grundlage dieser Berechnungen wurde eine Beziehung (9-4a) für die Nahttragfähigkeit hergeleitet, die den Einfluss der Überfestigkeit im Nahtbereich, des bruchmechanischen Widerstands an der Nahtwurzel, der Nahtgeometrie und der Größe von Ungänzen berücksichtigt. Es wurde festgestellt, dass die Anwendung von (9-4a) ein Mindestverhältnis J_{IC} / J_{EC} des bruchmechanischen Widerstands J_{IC} an der Nahtwurzel zur Bezugsgröße J_{EC} voraussetzt. Die Größe dieses Verhältnisses wurde in Abschnitt 9.10 auf Grundlage der Berechnungen hergeleitet und in Abschnitt 9.11 mit Bauteilversuchen bei tiefen Temperaturen in etwa bestätigt.

In einem Ausblick in Abschnitt 10 wurden die Ergebnisse dieser Arbeit im Kontext aktuell anzuwendender Bemessungsregeln und im Schrifttum dokumentierter Untersuchungen zur Bewertung zulässiger Restspaltgrößen diskutiert.

12 Schrifttum

- [1] Schmeink, H., Fischer, K-H.: Neue Prüftechniken anstelle schweißtechnischer Reparaturen, Stahlbau 75 (2006), H. 10, S. 847–850.
- [2] Radaj, D.: Untersuchungen zur geometrischen Form von Stumpf- und Kehlnähten, Schweißen und Schneiden 22 (1970), H. 5, S. 206-209.
- [3] Petermann, H.: Spannungsverteilung in einer Flankenschweißnaht, Der Stahlbau 5 (1932), H. 12, S. 92-94.
- [4] Bierett, G., Grüning, G.: Spannungszustand und Festigkeit von Stirnkehlnahtverbindungen, Der Stahlbau 6 (1933), H. 2, S. 169-173.
- [5] Bornscheuer, F.W., Feder, D.: Traglastversuche an Laschenverbindungen aus St37 mit Flanken- und Stirnkehlnähten, Schweißen und Schneiden 18 (1966), H. 7, S. 305-308.
- [6] Klöppel, K., Petri, R.: Versuche zur Ermittlung der Tragfähigkeit von Kehlnähten, Stahlbau 35 (1966), H. 1, S. 9-25.
- [7] Van der Ebb, Vreedenburgh: Experiments on fillet welds, T.N.O. report, 1959.
- [8] Ligtenberg, F.K.: The relation between stress and strain in fillet welds with static loading, IIW Doc. XV-170-64.
- [9] National council for industrial Research T.N.O.: Report 6-65-1-L-10, Provisional results of the research into the factor of the ISO-formula to be altered as follows: $\sigma_c = (\sigma_{\perp}^2 + 3(\tau_{\perp}^2 + \tau_{\parallel}^2))^{1/2}$, IIW Doc. XV-198-65.
- [10] Bornscheuer, F.W.: Die Vergleichsspannung bei der Bemessung statisch beanspruchter Kehlnähte, Schweißen und Schneiden 18 (1966), H. 8, S. 352-356.
- [11] Gresnigt, A.M.: Calculation of fillet welds in Eurocode No. 3, Rivista Italiana della saldatura Anno XLII (1990), H. 6, S. 591-598.
- [12] Feder, D.: Einfluss der Nahtdicke auf die statische Festigkeit von Flankenkehlnähten, Schweißen und Schneiden 19 (1967), H. 7, S. 299-305.
- [13] Feder, D., Werner, G.: Ansätze zur Traglastberechnung von Schweißverbindungen des Stahlbaus, Schweißen und Schneiden 29 (1977), H. 4, S. 125-132.
- [14] Fischer, M., Wenk, P.: Traglastversuche an statisch belasteten langen Längskehlnähten, Stahlbau 55 (1986), H. 7, S. 193-199.
- [15] Fischer, M., Wenk, P.: Traglastuntersuchungen an vorwiegend ruhend beanspruchten langen Flankenkehlnähten, Stahlbau 59 (1990), H. 3, S. 79-87.
- [16] Background Documentation D.03: Evaluation of test results on welded connections made from FeE 460 in order to obtain strength functions and suitable model factors, Eurocode No 3 Editorial Group, 1990.
- [17] Gresnigt, A.M.: Strength and deformation capacity of fillet weld in FeE460, IIW Doc. XV-762-91.
- [18] Hölbling, W., Saal, H.: Statische Festigkeit von Kehlnahtverbindungen von Feinkornbaustahl S460M/ML, Forschungsbericht 15. DASt-Forschungs-kolloquium Stahlbau, Stahlbau Verlags- und Service GmbH, Düsseldorf, 2004.
- [19] Johansson, B., Lagerquist, O.: Resistance of fillet welds with under- or overmatching electrodes - A proposal for design method, Proceeding of the confer-

ence "Steel Structures 2004", S. 151-162, Lulea University of Technology, Lulea, 2004.

- [20] Johansson, B.: Design of fillet welds with under- or overmatching electrodes, CEN/TC259/SC3/WG S690.
- [21] Kolstein, M.H., Bijlaard, F.S.K, Dijkstra, O.D.: Integrity of welded joints made of steel grades S690 and S1100, Proceeding of the conference "Steel - a new and traditional material for building", S. 183-191, Taylor Francis Group, London, 2006.
- [22] Grondin, G.Y., Driver, R.G., Kennedy, D.J.L.: Strength of transverse fillet welds made with filler metal without specified toughness, Final Report, Department of Civil & Environmental Engineering, University of Alberta, 2002.
- [23] Deng, K., Grondin, G.Y., Driver, R.G.: Effect of loading angle on the behaviour of fillet welds, Structural Engineering Report 251, Department of Civil & Environmental Engineering, University of Alberta, 2003.
- [24] Callele, L. J., Grondin, G.Y., Driver, R.G.: Strength and behaviour of multiorientation fillet weld connections, Structural Engineering Report 255, Department of Civil & Environmental Engineering, University of Alberta, 2005.
- [25] Lotsberg, I.: Capacity of welded connections made of high strength steel, Proceedings from the international symposium "Safety in application of high strength steel", S.1-9, Trondheim, 1997.
- [26] Feldmann, M. Höhler, S., Eichler, B., Schmeink, H.: Abschlussbereicht zum AIF Forschungsvorhaben 14174 N/1, Feststellung und Bewertung zulässiger Restspalte beim Schweißen, Aachen, 2007.
- [27] Hancock, J.W., Mackenzie, A.C.: On the mechanisms of ductile failure in highstrength steels subjected to multi-axial stress states, Journal of mechanics and physics of solids (1976), Vol. 24, S. 147-169.
- [28] Hancock, J.W., Brown, D.K.: On the role of strain and stress state in ductile failure, Journal of mechanics and physics of solids (1981), Vol. 29, S. 1-24.
- [29] Rice, J. R.: On the ductile enlargement of voids in triaxial stress fields, Journal of the mechanics and physics of solids (1969), Vol. 17, S. 201-217.
- [30] Lemaitre, J.: A continuous damage mechanics model for ductile fracture, Journal of engineering and technology (1985), Vol. 107, S. 83-89.
- [31] Kanvinde, A., Deierlein, G.: Prediction of ductile fracture in steel moment connections during earthquakes using micromechanical fracture models, Proceeding of the 13th world conference on earthquake engineering, Paper No. 297, Vancouver, 2004.
- [32] Dijkstra, O.D., Kolstein, M.H.: Numerical Modelling of under matched welded high strength steel connections, Proceeding of the conference "Steel - a new and traditional material for building", S. 119-125, Taylor Francis Group, London, 2006.
- [33] Rice, J. R.: A path independent integral and the approximate analysis of strain concentrations by notches and cracks, Journal of applied mechanics (1968), Vol. 35, S. 379-386.
- [34] Brocks, W., Scheider, I.: Numerical aspects of the path dependence of the J-Integral in incremental plasticity, Technical note GKSS/WMS/01/08, Institut für Werkstoffforschung GKSS Forschungszentrum, Geesthacht, 2001.

- [35] Kordisch, H.: Untersuchungen zum Verhalten von Rissen unter überlagerter Normal- und Scherbeanspruchung, Bericht W6/82, Fraunhofer-Institut für Werkstofftechnik, Freiburg, 1982.
- [36] Deutscher Verband für Schweißen und Verwandte Verfahren: Merkblatt 2401, Bruchmechanische Bewertung von Fehlern in Schweißverbindungen, Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, Düsseldorf, 2004.
- [37] Windisch, M., Hartmon, R., Hodulak, V., Denner, V., Riedel, H., Sun, D.: Die Schadenstoleranzauslegung der Schweißverbindungen am Ariane 5 Booster, VDI-Berichte Nr.1689, S. 229-249, VDI Verlag GmbH, Düsseldorf, 2002.
- [38] Minami, F. et al: Method of constraint loss correction of CTOD fracture toughness for fracture assessment of steel components, Engineering Fracture Mechanics 73 (2006), S. 1996-2020.
- [39] British Steel: SINTAP/BS17, Structural integrity assessment procedures for European industry, Determination of fracture toughness from Charpy impact energy, Procedure and validation, Swinden, 1998.
- [40] Pisarski, H. G., Wallin, K.: The Sintap fracture toughness estimation procedure, Engineering Fracture Mechanics 67 (2000), S. 613-624, 2001.
- [41] Wallin, K.: Low-cost J-R curve estimation based on CVN upper shelf energy, Fatigue & Fracture of Engineering Materials and Structures 24 (2001), S. 537-549.
- [42] Forschungskuratorium Maschinenbau: Bruchmechanische Festigkeitsnachweise, VDMA-Verlag GmbH, Frankfurt, 2001.
- [43] Deutsches Institut für Bautechnik: DIBt Mitteilungen Sonderheft Nr. 33 vom 4. Oktober 2006, Bauregelliste A, Bauregelliste B und Liste C - Ausgabe 2006/1, Verlag Ernst & Sohn, Berlin 2006.
- [44] Dahl, W. Rees, H.: Die Spannungs-Dehnungs-Kurve von Stahl, Verlag Stahleisen m.b.H., Düsseldorf, 1976.
- [45] Blumenauer, H.: Technische Bruchmechanik, VEB Verlag, Leipzig, 1989.
- [46] Sedlacek, G. et al.: Background document 2 to the ECCS-Starter draft for prEN 1993-1-10, Choice of fracture toughness to avoid brittle fracture, Aachen 2001.
- [47] Produktkatalog Lincoln Smitweld GmbH 2003.
- [48] Produktkatalog Thyssen Schweißzusätze 2002.
- [49] Produktkatalog OK Schweißzusätze, ESAB GmbH 2001.
- [50] Produktkatalog FILARC Schweißzusätze 2003.

13 Verzeichnis technischer Regeln

AWS D1.1/D1.1M: 2004: Structural Welding Code-Steel, 19th Edition, October 15, 2003.

BN TL 918 490:2001: Schweißzusätze und Schweißhilfsstoffe für Verbindungs- und Auftragsschweißen an Stählen, Gusseisen und NE- Metallen, Die-Bahn Systemtechnik, 2001.

BS 5950- 1:1990: Structural use of steelwork in buildings, code of practice for design in simple and continuous construction, British Standards Institution, 1990.

BSK99: Swedish regulations for steel structures, März 2003.

DASt-Richtlinie 009: Stahlsortenauswahl für geschweißte Stahlbauten, Stahlbau-Verlags und Service GmbH, ISBN-Nr.: 3-923726-01-05, Januar 2005.

DASt-Richtlinie 011: Hochfeste schweißgeeignete Feinkornbaustähle StE460 und StE690, Anwendung für Stahlbauten, Stahlbau-Verlags GmbH, ISBN-Nr.: 3-923726-01-05, Februar 1979.

DIN 18800-1:1990: Stahlbauten, Bemessung und Konstruktion, November 1990.

DIN 18800-7:2002: Stahlbauten, Ausführung und Herstellerqualifikation, September 2002.

DIN EN 287-1:2004: Prüfung von Schweißern - Schmelzschweißen - Teil 1: Stähle, Deutsche Fassung EN 287-1:2004.

DIN EN 440:1994: Schweißzusätze – Drahtelektroden und Schweißgut zum Metall-Schutzgasschweißen von unlegierten Stählen und Feinkornstählen – Einteilung, Deutsche Fassung EN 440:1994.

DIN EN 499:1995: Schweißzusätze – Umhüllte Stabelektroden zum Lichtbogenschweißen mit und ohne Schutzgas von unlegierten und Feinkornstählen – Einteilung, Deutsche Fassung EN 499:1997.

DIN EN 758:1997: Schweißzusätze – Fülldrahtelektroden zum Metall-Lichtbogenhandschweißen von unlegierten und Feinkornstählen – Einteilung, Deutsche Fassung EN 758:1997.

DIN EN 875:1995: Kerbschlagbiegeversuch, Probenlage, Kerbrichtung und Beurteilung, Deutsche Fassung EN 875:1995.

DIN EN 1043-1:1996: Härteprüfung, Teil 1, Härteprüfung für Lichtbogenschweißverbindungen, Deutsche Fassung EN 1043:1995.

DIN EN 1321:1996: Makroskopische und mikroskopische Untersuchungen von Schweißnähten, Deutsche Fassung EN 1321:1996.

DIN EN 1990:2002: Eurocode, Grundlagen der Tragwerksplanung, Deutsche Fassung EN 1990:2002.

DIN EN 1993-1-8:2005: Eurocode 3: Bemessung und Konstruktion von Stahlbauten, Teil 1-8, Bemessung von Anschlüssen, Deutsche Fassung EN 1993-1-8:2005.

DIN EN 1993-1-9:2005: Eurocode 3: Bemessung und Konstruktion von Stahlbauten, Teil 1-9, Ermüdung, Deutsche Fassung EN 1993-1-9:2005.

DIN EN 1993-1-10:2005: Eurocode 3: Bemessung und Konstruktion von Stahlbauten, Teil 1-10, Auswahl der Stahlsorten im Hinblick auf Bruchzähigkeit und Eigenschaften in Dickenrichtung, Deutsche Fassung EN 1993-1-10:2005.

DIN EN 10002-1:2001: Metallische Werkstoffe, Zugversuch, Teil 1, Prüfverfahren bei Raumtemperatur, Deutsche Fassung EN 10002-1:2001.

DIN EN 10025:1990+A1:1993: Warmgewalzte Erzeugnisse aus unlegierten Baustählen, Deutsche Fassung EN 10025:1990.

DIN EN 10025:2005 Teile 1 bis 6: Warmgewalzte Erzeugnisse aus Baustählen, Deutsche Fassung EN 10025:2004.

DIN EN 10045-1:1990: Kerbschlagbiegeversuche nach Charpy, Teil 1, Prüfverfahren, Deutsche Fassung EN 10045-1:1990.

DIN EN 13479: 2005: Schweißzusätze, Allgemeine Produktnorm für Zusätze und Pulver zum Schmelzschweißen von metallischen Werkstoffen, Deutsche Fassung EN 13479:2004.

DIN EN 14532-1: Schweißzusätze, Prüfverfahren und Qualitätsanforderungen, Teil 1: Grundprüfungen und Konformitätsbewertung von Schweißzusätzen für Stahl, Nickel und Nickellegierungen, Deutsche Fassung EN 14532-1:2004.

DIN EN ISO 4063:2000: Schweißen und verwandte Verfahren, Liste der Prozesse und Ordnungsnummern, Deutsche Fassung ISO 4063:1998.

DIN EN ISO 5817:2003 + Berichtigung 1:2007: Schmelzschweißverbindungen an Stahl, Nickel, Titan und deren Legierungen (ohne Strahlschweißen), Bewertungsgruppen von Unregelmäßigkeiten, Deutsche Fassung EN ISO 5817:2003 +AC2006.

DIN EN ISO 15613: 2004: Anforderung und Qualifizierung von Schweißverfahren für metallische Werkstoffe, Qualifizierung aufgrund einer vorgezogenen Arbeitsprüfung, Deutsche Fassung EN ISO 15613:2004.

DIN EN ISO 15614-1:2004: Anforderung und Qualifizierung von Schweißverfahren für metallische Werkstoffe, Schweißverfahrensprüfungen, Teil 1: Lichtbogen- und Gasschweißen von Stählen und Lichtbogenschweißen von Nickel und Nickellegierungen, Deutsche Fassung EN ISO 15614-1:2004.

DVS 1702, Deutscher Verband für Schweißtechnik e.V.: Richtlinie 1702, Verfahrensprüfungen im konstruktiven Ingenieurbau, Verlag für Schweißen und angewandte Verfahren DVS-Verlag GmbH, Mai 2003.

ISO 12135:2002: Metallic materials, Unified method of test for the determination of quasi-static fracture toughness, 2002.

LRFD: Load and resistance factor design specification for structural steel buildings, December 27, 1999.

prEN 1090-2:2008: Execution of steel structures and aluminium structures, part 2, Technical requirements for steel structures, 2008.

prEN 1993-1-12:2004: Eurocode 3: Bemessung und Konstruktion von Stahlbauten, Teil 1-12, Zusätzliche Regeln zur Erweiterung von EN 1993 auf Stahlgüten bis S700, 2004.

Z-30.1-1: Allgemeine bauaufsichtliche Zulassung Z-30.1-1, Flacherzeugnisse aus hochfestem schweißgeeigneten Feinkornbaustahl S690QL1, DIBt, Berlin, Januar 2005.

Metallographische und mechanisch-technologische Untersuchungen im Nahtbereich

Tabellen- und Bildverzeichnis:

Tabelle A - 1: Durchführung der Untersuchungen	154
Tabelle A - 2: Ergebnisse der Zugversuche gemäß DIN EN 10002-1	155
Tabelle A - 3: Ergebnisse der Kerbschlagbiegeversuche gemäß DIN EN 10045-1	156
Bild A - 1: 1-40-0,00-135- Makroschliff mit Härtereihen	158
Bild A - 2: 1-80-0,00-135- Makroschliff mit Härtereihen	158
Bild A - 3: 2-80-0,10-135- Makroschliff mit Härtereihen	159
Bild A - 4: 3-80-0,50-135- Makroschliff mit Härtereihen	160
Bild A - 5: 4-80-0,50-135- Makroschliff mit Härtereihen	161
Bild A - 6: 5-40-0,15-135- Makroschliff mit Härtereihen	162
Bild A - 7: 5-80-0,15-135- Makroschliff mit Härtereihen	163
Bild A - 8: 5-80-0,28-135- Makroschliff mit Härtereihen	164
Bild A - 9: 5-80-0,28-111- Makroschliff mit Härtereihen	165
Bild A - 10: 7-80-0,10-135- Makroschliff mit Härtereihen	166
Bild A - 11: 7-80-0,20-135- Makroschliff mit Härtereihen	167
Bild A - 12: 5-40-0,20-135-G- Makroschliff mit Härtereihen	168
Bild A - 13: 5-40-0,20-136-G- Makroschliff mit Härtereihen	169
Bild A - 14: 5-40-0,20-111-G- Makroschliff mit Härtereihen	170
Bild A - 15: 6-40-0,20-135-G- Makroschliff mit Härtereihen	171
Bild A - 16: 5-40-0,20-135-G- Bruchfläche	172
Bild A - 17: 5-40-0,20-136-G- Bruchfläche	172
Bild A - 18: 5-40-0,20-111-G- Bruchfläche	173
Bild A - 19: 6-40-0,20-135-G- Bruchfläche	173

Versuch	Nahtvariante -Probe	Probenlage	Prüfmittel	Prüfnorm	Probenform
	1 -80-0,00-135 -DL	SG nahe der Nahtoberfläche; Probenlängsachse in Nahtlängsrichtung			proportionale Rundzugprobe
	1 -80-0,00-135 -WL	SG nahe der Nahtwurzel; Probenlängsachse in Nahtlängsrichtung			d=8
	1 -80-0,00-135 -WEZWL	WEZ des in Dickenrichtung beanspruchten Blechs	300	2-1	proportionale Flachzugprobe, 12,5 x 2
gversuch	5-80-0,15-135 -WEZWL	Nahtlängsrichtung	Eurotest (N 10002	proportionale Flachzugprobe, 10 x 1
SnZ	1 -80-0,00-135 -WEZDL	WEZ des in Dickenrichtung beanspruchten Blechs	UTSE	DINE	proportionale Flachzugprobe, 12,5 x 2
	5-80-0,15-135 -WEZDL	Probenlängsachse in Nahtlängsrichtung			proportionale Flachzugprobe, 10 x 1
lg- Jch	2 -80-0,10-135 -SÜ/SW	Kerb im äußeren Nahtübergang gemäß DVS Rili 1702 Kerb im wurzelseitigen Nahtübergang	hlagwerk, <i>1</i> 75	45-1	
(erbschla	1 -80-0,00-135 -SG	VHW0/10 gemäß DIN EN 875	^{>} endelsc stron PW	4 EN 100	Charpy -V-Probe
Υ. <u>Θ</u>	1 -80-0,00-135 -SGWL	VHW0/30 gemäß DIN EN 875	600 J - F In	DIN	
hliff	1 -80-0,00-135 -Makroschliff	Querschnitt durch Naht des Standardprüfkörpers		1321	
Makrosc	5 -40-0,20-135-G - Makroschliff	Querschnitt in der Mitte der Probenbreite des Großprüfkörpers; Entnahme nach dem Versagen im Kreuzzugversuch	n.a.	DIN EN 1	n.a
ärte- 1V10	1 -80-0,00-135 -Härteverlauf	Härtereihe in den Decklagen des Standarprüfkörpers; bei einigen Varianten werden zusätzlich Härtereihen im wurzelnahen Bereich und im SG erstellt	ŭfmaschine 3.2A	043-1	
Vickersh: prüfung F	5 -40-0,20-135-G -Härteverlauf	Härtereihe in den Deck- und Wurzellagen	98,1 N - Härtepri Zwick Z 3	DIN EN 10	n.a.

n.a. nicht anwendbar

Tabelle A - 1: Durchführung der Untersuchungen

Mit Zugversuchen mit proportionalen Proben gemäß DIN EN 10002-1 wurde außer der Zugfestigkeit R_m und der Dehngrenze $R_{p0,2}$ die proportionale Bruchdehnung A, die Gleichmaßdehnung A_{gt} und bei den Versuchen mit Rundzugproben die Brucheinschnürung Z gemessen. Bei Vorliegen einer ausgeprägten Streckgrenze bezeichnet $R_{p0,2}$ die im Versuch gemessene obere Streckgrenze R_{eH} . Die Brucheinschnürung Z wurde mit dem nach dem Versagen gemessenen Durchmesser des eingeschnürten Probenbereichs D_f und dem Ausgangsdurchmesser D₀ berechnet (A-1).

$$Z = (1 - \frac{D_{\rm f}^2}{D_0{}^2}) \cdot 100\%$$

(A-1)

Probe	Ab-	R	R	Α.,	Δ	7	
	messung	10	p0,2	- yı	~		
	mm	N/mm ²	N/mm ²	%	%	%	
1-40-0,00-135-DL		705	627	8,9	21,5	59	
1-40-0,00-135-WL		678	568	10,5	22,1	62	
1-80-0,00-135-DL		705	647	7,4	17,0	30	
1-80-0,00-135-WL		640	545	10,5	22,7	57	
2-80-0,10-135-DL		705	615	9,7	17,2	60	
2-80-0,10-135-WL		715	629	8,6	19,2	59	
3-80-0,50-135-DL	ę	676	583	9,3	20,3	59	
3-80-0,50-135-WL	φ	698	611	9,4	21,6	65	
6-80-0,10-135-DL		646	554	10,9	22,7	73	
6-80-0,10-135-WL		671	594	9,5	21,2	68	
6-80-0,20-135-DL		639	548	11,7	24,8	69	
6-80-0,20-135-WL		688	618	9,3	21,6	67	
5-80-0,28-111-DL		642	550	11,0	23,5	66	
5-80-0,28-111-WL		702	650	9,2	21,6	68	
1-80-0,00-135-WEZWL	d: 5 x 2	710	615	10,5	22,0		
1-80-0,00-135-WEZDL	b) 12,5	656	600	10,0	20,2		
2-80-0,10-135-WEZWL	dt: x 1	763	650	7,5	13,4		
2-80-0,10-135-WEZDL	b) 10	822	707	-	-		
5-80-0,15-135-WEZWL	t: x 2	689	605	10,0	19,5		
5-80-0,15-135-WEZDL	bx 12,5	733	640	9,0	15,0		
5-80-0,28-111-WEZWL		702	596	7,3	17,9		
5-80-0,28-111-WEZDL	5	716	635	3,8	8,8		
6-80-0,10-135-WEZWL	ô	757	671	7,4	16,6		
6-80-0,10-135-WEZDL	- -	667	589	9,8	18,6		
6-80-0,20-135-WEZWL	pxd	719	642	6,2	8,0		
6-80-0,20-135-WEZDL		687	535	9,1	11,2		

Tabelle A - 2: Ergebnisse der Zugversuche gemäß DIN EN 10002-1

Bezeichnung	TAv	AV 1	AV 2	AV 3	Av	T _{27J}	
	°C		KV 6	00 in J		°C	
1-40-0,00-135-SG	-20	68	88	90	82	-52	
1-40-0,00-135-SGWL	-20	70	84	68	74	-48	
1-80-0,00-135-SG	-20	92	94	108	98	-59	
1-80-0,00-135-SGWL	-20	65	60	84	70	-46	
2-80-0,10-135-SG	-20	84	64	72	73	-48	
2-80-0,10-135-SGWL	-20	84	80	92	85	-53	
3-80-0,50-135-SG	-20	96	76	76	83	-52	
3-80-0,50-135-SGWL	-20	58	66	68	64	-43	
5 00 0 15 125 SC	-20	110	106	112	109	61	
5-60-0, 15-155-5G	-50	44	38	44	42	-01	
6 90 0 10 125 50	-20	80	88	140	103	70	
0-00-0,10-135-36	-50	56	76	40	57	-70	
6 90 0 20 125 50	-20	112	104	60	92	50	
0-00-0,20-135-30	-50	38	28	52	39	-09	
5 90 0 29 111 80	-20	116	122	124	121	66	
5-00-0,20-111-5G	-50	46	48	60	51	-00	
1-40-0,00-135-SÜ	-20	44	36	22	34	-25	
1-80-0,00-135-SÜ	-20	32	28	32	31	-23	
2-80-0,10-135-SÜ	-20	40	44	54	46	-33	
3-80-0,50-135-SÜ	-20	58	48	30	45	-33	
	20	142	142	138	141		
	0	32	82	78	64	20	
5-80-0,15-135-50	-20	38	38	40	39	-29	
	-50	16	16	12	15		
	20	153	166	190	170		
	0	131	140	160	144		
5-80-0,15-135-SW	-20	64	35	47	49	-51	
	-50	18	32	34	28		
	-70	8	14	9	10		
	20	145	136	139	140		
6-80-0 10-135-SÜ	0	110	48	86	81	-20	
0-00-0,10-133-30	-20	28	26	26	27	-20	
	-50	8	8	10	9		
6-80-0 20-135-SÜ	-20	32	84	32	49	-30	
0-00-0,20-100-00	-50	26	8	12	15	-00	
	20	180	172	156	169		
6-80-0 10-135-SW	0	120	130	136	129	-46	
	-20	65	38	56	53		
	-50	18	27	22	22		
	20	186	184	176	182		
	0	171	198	170	180		
5-80-0,28-111-SÜ	-20	110	95	56	87	-45	
	-50	20	18	26	21		
	-70	10	10	8	9		
	20	157	148	182	162		
	0	177	180	174	177		
5-80-0,28-111-SW	-20	37	47	28	37	-46	
	-50	26	10	30	22		
	-70	12	18	14	15		

Die grau markierten Zellen zeigen die Ergebnisse, aus denen die Übergangstemperaturen T_{27J} berechnet wurden.

Tabelle A - 3: Ergebnisse der Kerbschlagbiegeversuche gemäß DIN EN 10045-1

Richtung des Härteverlaufs

Härtewerte in HV10:							
W	ΞZ		SG				
Mittelwert*	Maximal	Mittelwert*					
D	L	WL DL Gesamt					
299	392	252 240 247					

*Mittelwerte sind aus allen Härtewerten gemittelt

a _A	a _{EC}	Σ Def	ΣWbf	b_{WEZ}	s	Steghöhe h
mm	mm	mm	mm	mm	mm	mm
3,30	42,3	0,00	0,00	2,00	0,00	0,00

 a_{A} und b_{WEZ} sind Mittelwerte der Messergebnisse auf der linken und rechten Seite

Anmerkung: In der Auftragung der Härtemessergebnisse werden die Abstände der einzelnen Härtemesspunkte auf der Abszisse unmaßstäblich dargestellt, damit immer die Härtewerte im GW, der WEZ und im SG in einem Bereich angeordnet sind.

Härtewerte in HV10:

WE	ΞZ	SG						
Mittelwert*	Maximal	Mittelwert*						
D	L	WL	DL	Gesamt				
297	403	236	230	233				
*Mittelwerte sin	Mittelwerte sind aus allen Härtewerten gemittelt							

aA und bWEZ sind Mittelwerte der Messergebnisse auf der linken und rechten Seite

Bild A - 2: 1-80-0,00-135- Makroschliff mit Härtereihen

Richtung des Härteverlaufs

WE	Z	SG				
Mittelwert*	Maximal	Mittelwert*				
D	L	WL	DL	Gesamt		
338 409		242	242	242		
*NA*11 - 1 1 * -		at a state state of a state	- 10 - 10			

*Mittelwerte sind aus allen Härtewerten gemittelt

12 1 2 3 4 5 6 7 8 9 10 11 12 13

a _A	a _{EC}	Σ Def	ΣWbf	b_{WEZ}	S	Steghöhe h
mm	mm	mm	mm	mm	mm	mm
6,20	80,9	0,00	2,20	2,00	10,20	8,00

Bild A - 3: 2-80-0,10-135- Makroschliff mit Härtereihen

Richtung des Härteverlaufs

Härtewerte in HV10:							
WE	ΞZ		SG				
Mittelwert*	Maximal	Mittelwert*					
D	L	WL DL Gesar					
330	446	244 260 253					

*Mittelwerte sind aus allen Härtewerten gemittelt

a _A	a _{EC}	Σ Def	ΣWbf	b _{WEZ}	S	Steghöhe h
mm	mm	mm	mm	mm	mm	mm
14,00	66,3	0,00	-2,00	2,00	38,00	40,00

Bild A - 4: 3-80-0,50-135- Makroschliff mit Härtereihen

Härtewerte in HV10:

WE	ΞZ	W	EZ	SG			
Mittelwert*	Maximal	Mittelwert*	Maximal	Mittelwert*			
DL		überschwe	ißte Lagen	WL	DL	Gesamt	
334	399	280	293	-	-	248	
****			211.211				

^{*}Mittelwerte sind aus allen Härtewerten gemittelt

2,00

2,00

42,00

40,00

aA und bWEZ sind Mittelwerte der Messergebnisse auf der linken und rechten Seite

0,00

Bild A - 5: 4-80-0,50-135- Makroschliff mit Härtereihen

43,6

4,00

Richtung des Härteverlaufs

Härtewerte in HV10:

W	ΞZ	SG			
Mittelwert*	Maximal	Mittelwert*			
DL		WL	DL	Gesamt	
323 405		-	240	240	

*Mittelwerte sind aus allen Härtewerten gemittelt

a _A	a _{EC}	∑Def	a _{Def}	∑Wbf	b _{WEZ}	S	Steghöhe h
mm	mm	mm	mm	mm	mm	mm	mm
3,90	34,6	6,10	9,0	4,60	2,00	10,60	6,00

Bild A - 6: 5-40-0,15-135- Makroschliff mit Härtereihen

>	Richtung	des	Härteverla	ıu
-------------	----------	-----	------------	----

WE	ΞZ	SG				
Mittelwert*	Maximal	Mittelwert*				
DL		WL	DL	Gesamt		
289	357	-	240	240		

*Mittelwerte sind aus allen Härtewerten gemittelt

a _A	a _{EC}	ΣDef	a _{Def}	Σ Wbf	b_{WEZ}	s	Steghöhe h
mm	mm	mm	mm	mm	mm	mm	mm
5,10	69,0	9,10	8,0	5,40	2,00	17,40	12,00

Bild A - 7: 5-80-0,15-135- Makroschliff mit Härtereihen

WE	ΞZ	SG				
Mittelwert*	Maximal	Mittelwert*				
DL		WL	DL	Gesamt		
286	360	-	237	237		

*Mittelwerte sind aus allen Härtewerten gemittelt

	a _A	a _{EC}	ΣDef	a _{Def}	ΣWbf	b _{WEZ}	s	Steghöhe h
	mm	mm	mm	mm	mm	mm	mm	mm
Γ	5,85	61,0	15,30	8,0	4,60	2,20	26,60	22,00

Bild A - 8: 5-80-0,28-135- Makroschliff mit Härtereihen

WEZ WEZ		EZ	WEZ		SG		
Mittelwert*	Maximal	Mittelwert*	Maximal	Mittelwert*	Mittelwert*		
DL V		Wurz	ellage	Gesamt	WL	DL	Gesamt
280	352	258	286	270	231	223	226

*Mittelwerte sind aus allen Härtewerten gemittelt

a _A	a _{EC}	ΣDef	a _{Def}	ΣWbf	b _{WEZ}	S	Steghöhe h
mm	mm	mm	mm	mm	mm	mm	mm
12,25	70,6	22,00	11,0	2,50	2,00	24,50	22,00

Bild A - 9: 5-80-0,28-111- Makroschliff mit Härtereihen

Richtung des Härteverlaufs

WEZ		WEZ		WEZ	SG		
Mittelwert*	Maximal	Mittelwert*	Maximal	Mittelwert*	Mittelwert*		
DL		Wurzellage		Gesamt	WL	DL	Gesamt
256	304	260	290	257	260	227	234

*Mittelwerte sind aus allen Härtewerten gemittelt

a _A	a _{EC}	ΣDef	a _{Def}	ΣWbf	b _{WEZ}	S	Steghöhe h
mm	mm	mm	mm	mm	mm	mm	mm
13 00	78 7	4 00	10.0	0.00	2 40	8 00	8 00

Bild A - 10: 7-80-0, 10-135- Makroschliff mit Härtereihen

mm

9,00

Richtung des Härteverlaufs

WE	WEZ WEZ		WEZ	SG			
Mittelwert*	Maximal	Mittelwert*	Maximal	Mittelwert*	Mittelwert*		
D	L	Wurzellage		Gesamt	WL	DL	Gesamt
279	330	309	355	290	240	241	240

*Mittelwerte sind aus allen Härtewerten gemittelt

mm

5,50

mm 2,25 mm

21,50

mm

16,00

Bild A - 11: 7-80-().20-135-	Makroschliff	mit Härtereihen
---------------------	-----------	--------------	-----------------

mm

2,00

mm

14,0

mm

67,5

Hartewerte in r	HVI	0:
-----------------	-----	----

WE	ΞZ		SG					
Mittelwert*	Maximal	Mittelwert*						
D	L	WL	DL	Gesamt				
310	403	241	277	255				

*Mittelwerte sind aus allen Härtewerten gemittelt

a _A	a _{EC}	ΣDef	ΣWbf	b _{WEZ}	s	Steghöhe h
mm	mm	mm	mm	mm	mm	mm
4,80	28,6	0,00	7,50	2,20	15,50	8,00

Bild A - 12: 5-40-0,20-135-G- Makroschliff mit Härtereihen

Richtung des Harteverlaufs	3
----------------------------	---

Härtewerte in H	HV10:					
WEZ		WEZ		SG		
Mittelwert*	Maximal	Mittelwert*	Maximal	Mittelwert*		
DL Wurzellage		ellage	WL	DL	Gesamt	
280	340	309	354	-	250	250

*Mittelwerte sind aus allen Härtewerten gemittelt

.

a _A	a _{EC}	ΣDef	Σ Wbf	b _{WEZ}	s	Steghöhe h
mm	mm	mm	mm	mm	mm	mm
4,40	39,0	0,00	-0,50	2,00	7,50	8,00

Bild A - 13: 5-40-0,20-136-G- Makroschliff mit Härtereihen

Hartewerte	ın	HV	10

WEZ		WEZ		SG				
Mittelwert*	Maximal	Mittelwert*	Maximal	Mittelwert*				
DL		Wurzellage		WL	DL	Gesamt		
309	382	242	256	236	238	237		

*Mittelwerte sind aus allen Härtewerten gemittelt

a _A	a _{EC}	ΣDef	ΣWbf	b_{WEZ}	S	Steghöhe h
mm	mm	mm	mm	mm	mm	mm
6,00	29,7	0,00	3,00	2,50	11,00	8,00

Bild A - 14: 5-40-0,20-111-G- Makroschliff mit Härtereihen

WEZ		WEZ		WEZ	SG		
Mittelwert*	Maximal	Mittelwert*	Maximal	Mittelwert*	Mittelwert*		
DL		Wurzellage		Gesamt	WL	DL	Gesamt
272	293	290	339	280	-	221	221

*Mittelwerte sind aus allen Härtewerten gemittelt

a _A	a _{EC}	ΣDef	a _{Def}	ΣWbf	b _{WEZ}	s	Steghöhe h
mm	mm	mm	mm	mm	mm	mm	mm
4,50	32,6	0,50	13,0	1,20	2,75	9,20	8,00
17 14							

Bild A - 15: 6-40-0,20-135-G- Makroschliff mit Härtereihen

Bild A - 17: 5-40-0,20-136-G- Bruchfläche

Bild A - 19: 6-40-0,20-135-G- Bruchfläche
Abbildung von teilweise durchgeschweißten Nähte mit der FEM

Tabellen- und Bildverzeichnis:

Tabelle B-1: Kennwerte zu	r Beschreibung der S	Spannungs-Dehnung	s-Beziehungen im
FE-Modell	_		

Bild B- 1: Geometrie der DHY-Nähte in den FE-Modellen175Bild B- 2: Geometrie der HY-Naht in den FE-Modellen176

Nahtvariante	Bereich	R _m	R _{p0,2}	$R_{2\%}/R_m$	$R_{5\%}/R_m$	$\sigma_{t,f}/R_m$	A _{gt}	Z
		N/mm ²	N/mm ²	-	-	-	%	%
3-80-0,50-135	GW ¹⁾	546	361	0,66	0,90	0,67	17,5	55
4-80-0,50-135	WEZ ²⁾	729	636	0,92	0,95	0,88	9,4	48
5-80-0,28-135	SG ³⁾	690	604	0,91	0,95	0,68	9,3	56
6 90 125 0 10/0 20	GW ¹⁾	534	353	0,66	0,90	0,66	17,5	55
7-80-135-0,10/0,20	WEZ ²⁾	708	611	0,93	0,97	0,92	7,3	48
7-00-133-0,10/0,20	SG ³⁾	661	579	0,91	0,95	0,66	10,4	69
	GW ¹⁾	534	353	0,66	0,90	0,66	17,5	55
5-80-0,28-111	WEZ ²⁾	708	611	0,93	0,97	0,92	7,3	48
	SG ³⁾	672	599	0,95	0,97	0,63	10,1	67
2-40-0,20-135-G	GW ⁴⁾	558	356	0,64	0,91	0,68	15,0	64
5-40-0,20-135-G	WEZ ²⁾	708	611	0,93	0,97	0,92	7,3	48
6-40-0,20-135-G	SG ³⁾	690	604	0,91	0,95	0,68	9,3	56
	GW ⁴⁾	558	356	0,64	0,91	0,68	15,0	64
5-40-0,20-111-G	WEZ ²⁾	708	611	0,93	0,97	0,92	7,3	48
	SG ³⁾	672	599	0,95	0,97	0,63	10,1	67

1) Ergebnisse von Prüfungen gemäß DIN EN 10002-1 (proportionale Rundzugprobe, d=10mm),

Probennahme gemäß DIN EN 10025-2

2) Mittelwerte der Messergenisse in der WEZ des vorliegenden Grundwerkstoffs;

Z wurde aus den Abmessungen der eingeschnürten Flachzugproben ermittelt. Wegen der großen Messunsicherheiten (+-7,5%) bei der Messung der Probendicke im Einschnürbereich haben diese Werte nur abschätzenden Charakter. In der WEZ der 40mm dicken Bleche konnten keine Zugproben entnommen werden. Hier werden die Eigenschaften in der WEZ des Grundwerkstoffs GWII mit etwa gleich großem Kohlenstoffäquivalent angesetzt.

3) Mittelwert der im SG gemessenen Kennwerte der mit dem vorliegenden SZW geschweißten Nähte

4) Mittelwerte aus 3 Zugversuchen mit in Walzrichtung entnommenen proportionalen Rundzugproben (d=10mm). Diese Werte werden anstelle der im Abnahmepr
üfzeugnis ausgewiesenen Werte angesetzt, weil bei diesen Blechen die gemessene Streckgrenze etwa 4% kleiner als die im Abnahmepr
üfzeugnis ausgewiesene Streckgrenze ist.

E = 210000N/mm²

k_{Bridgman} = 0,85

Tabelle B- 1: Kennwerte zur Beschreibung der Spannungs-Dehnungs-Beziehungen im FE-Modell

Nahtvariante	Versuch	h ⁴⁾	I ¹⁾	h _s ⁶⁾	L 1 ³⁾	L 12 ³⁾	L _{II} ³⁾	L _{II2} ³⁾	b ³⁾	a _{Def1} 1)	a _{Def2} 1)	Def11)	$\text{Def}_2^{(1)}$	Wbf ¹⁾	b _{wez} ²⁾
			mm												
3-80-0,50-135	S1	40,0	0 20,1 0,00 17,7 n.a. 29,0 n.a. 0,0 n.a.									1,5	2,0		
4-80-0,50-135	S1 bis S3	40,0	20,9	0,25	5,5	2,3	8,0	22	2,0	n.a.				0,5	2,0
5-80-0,28-135	S1, S7	22,0	20,1	1,00	6,0	2,0	29,0	18	2,0	8,5	9,0	6,6	9,3	1,9	2,2
5-80-0,28-111	S3	22,0	24,1	0,75	14,8	4,8	30,0	16	3,0	11,0 sym 11,0 sym				1,0	2,0
2-40-0,20-135	G	8,0	277	0,00	3,5	1,5	12,5	6	0,5		n.a.				2,3
5-40-0,20-135	G	8,0	278	0,00	3,5	1,5	12,5	6	0,5	n.a.				7-15 ⁵⁾	2,3
5-40-0,20-111	G	8,0	276	0,00	3,5	1,5	12,5	6	0,5	5,0	sym	1,0	sym	3-9 ⁵⁾	2,5

1) Mittelwerte der an den seitlichen Rändern der Zugproben gemessenen Größen 2) Mittelwert der im Makroschliff an 3 Stellen des Querblechs gemessenen Größen

3) Mittelwert der auf beiden Nahtaußenseiten gemessenen Größen

4) h_s wird im Makroschliff angrenzend an die Nahtwurzel gemessen und aus den Messungen auf beiden Seiten gemittelt.

5) Die über die Nahtbreite veränderliche Größe der Bindefehler (Messung in Bruchfläche) werden berücksichtigt

n.a.: nicht anwendbar sym: wegen Symmetrie wie linke Seite 1

Bild B- 1: Geometrie der DHY-Nähte in den FE-Modellen

Nahtvariante	Versuch	h ⁴⁾	I ¹⁾	h _s ⁴⁾	L ⊥ ³⁾	L 12 ³⁾	L _{II} ³⁾	L ₁₁₂ ³⁾	b ³⁾	a _{Def1} 1)	Def ₁ ¹⁾	Wbf ¹⁾	b _{wez} ²⁾	Ver- zug ¹⁾
			mm											
6-80-0,10-135	S1	8,0	24,0	0,75	11,5	2,5	63	29	2,5	11,0	3,0	0,0	2,4	30
6-80-0,20-135	S3, S4	16,0	24,1	1,00	9,5	3,0	58	23	3,0	15,0	3,0	0,0	2,3	24
7-80-0,10-135	S2 bis S4	8,0	24,1	0, Riss	11,5	2,5	63	29	2,5	11,0	2,7	5,3	2,4	29
7-80-0,20-135	S1, S2	16,0	24,1	0, Riss	9,5	3,0	58	23	3,0	15,0	3,0	7,1	2,3	24
6-80-0,10-135	В	8,0	58,0	0,75	11,5	2,5	63	29	2,5	11,0	2,0	1,0	2,4	20
6-80-0,20-135	В	16,0	57,0	1,00	9,5	3,0	58	23	3,0	15,0	2,0	2,0	2,3	20
6-40-0,20-135	G	8,0	280	1,00	3,5	1,0	30	18	0,0	n.a.	n.a.	1-6 ⁵⁾	2,0	0

3) Auf der Nahtaußenseite gemessene Größen

4) h_s wird im Makroschliff angrenzend an die Nahtwurzel gemessen
5) Die über die Nahtbreite veränderliche Größe der Bindefehler (Messung in Bruchfläche) werden berücksichtigt n.a.: nicht anwendbar

Bild B- 2: Geometrie der HY-Naht in den FE-Modellen

Programmcode zur Berechnung des J-Integrals

!Erzeugung eines Makros JIN2 zur Berechung von J-Integralen *CREATE, JIN2 **!Berechnung der Dehnungsenergiedichte** SEXP,W,SENE,VOLU,1,-1 Definition eines Integrationspfads in mathematisch positiver Richtung um die Nahtwurzel durch 4 Knoten PPATH,1,ARG1 PPATH,2,ARG2 PPATH, 3, ARG3 PPATH,4,ARG4 CSYS,0 Berechnung der Dehnungsenergiedichte W entlang des Pfads PDEF,W,ETAB,W !Berechnung der Größe Ja = ∫(Wdy) PCALC, INTG, Ja, W, YG *GET, JA, PATH, LAST, Ja PDEF,CLEAR **!Definition eines Normalenvektors auf dem Integrationspfad** PVECT,NORM,NX,NY,NZ Berechnung der Spannungskomponenten entlang des Pfads PDEF, INTR, SX, SX PDEF, INTR, SY, SY PDEF, INTR, SXY, SXY Berechnung des Traktionsvektors Ti (Komponente Tx) PCALC, MULT, TX, SX, NX PCALC, MULT, C1, SXY, NY PCALC, ADD, TX, TX, C1 Berechnung des Traktionsvektors Ti (Komponente Ty) PCALC, MULT, TY, SXY, NX PCALC, MULT, C1, SY, NY PCALC, ADD, TY, TY, C1 !Definition von ds: ds = s/100 *GET,DX,PATH,,LAST,S !Berechnung von dui/dx DX=DX/100 PDEF, INTR, UX1, UX PDEF, INTR, UY1, UY PCALC, ADD, XG, XG, ..., DX PDEF, INTR, UX2, UX PDEF, INTR, UY2, UY PCALC, ADD, XG, XG, ..., -DX/2 C=(1/DX)PCALC, ADD, C1, UX2, UX1, C, -C PCALC, ADD, C2, UY2, UY1, C, -C

PCALC,MULT,C1,TX,C1 PCALC,MULT,C2,TY,C2 **!Berechnung von Ti = Tx*dux/dx + Ty*duy/dx** PCALC,ADD,C1,C1,C2 PCALC,INTG,Jb,C1,S **! Integration von Ti dui/dx ds entlang des Pfads** *GET,JB,PATH,,LAST,Jb *!Berechnung des J-Integrals mit (3-8) !(Faktor 2 wegen des symmetrischen halben Modells)*

JINT2=2*(JA-JB) PDEF,CLEAR \$ *END \$ ALLSEL

SET,LAST *GET,sbst,ACTIVE,,SET,sbst !Ermittlung von je 4 Knoten, die k Integrationspfade mit zunehmendem Abstand von der Rissspitze definieren *Do,i,1,k

NSEL,S,LOC,Y,0 \$ NSEL,R,LOC,X,%i%*0.5 \$ *GET,j1_%i%,NODE,,NUM,MAX NSEL,S,LOC,Y, %i%*0.5 \$ NSEL,R,LOC,X,%i%*0.5 \$ *GET,j2 %i%,NODE,,NUM,MAX NSEL,S,LOC,Y, %i%*0.5 \$ NSEL,R,LOC,X, -%i%*0.5 \$ *GET,j3 %i%,NODE,,NUM,MIN NSEL,S,LOC,Y ,0 \$ NSEL,R,LOC,X, -%i%*0.5 \$ *GET,j4 %i%,NODE,,NUM,MIN *ENDDO \$ ALLSEL **!Schleife über alle Lastschritte** *DO,i,1,sbst SET,1,i *DO,j,1,k Berechnung des J-Integrals entlang der k Pfade *USE,JIN2,j1_%j%,j2_%j%,j3_%j%,j4_%j% ji%j%=jint2 *ENDDO !Auslesen der J-Integrale entlang von (hier) 11 Pfaden in eine Textdatei *CFOPEN, Ergebnisse, txt,, APPEND *VWRITE, ji1, ji2, ji3, ji4, ji5, ji6, ji7, ji8, ji9, ji10, ji11 (F10.0,F10.0,F10.0,F10.0,F10.0,F10.0,F10.0,F10.0,F10.0,F10.0,F10.0)

*CFCLOSE \$ *ENDDO

Ergebnisse von Bauteilversuchen und versuchsbegleitenden FE-Berechnungen

Tabellen- und Bildverzeichnis:

Tabelle D - 1: Ergebnisse der Kreuzzugversuche (Seite 1)	180
Tabelle D - 2: Ergebnisse der Kreuzzugversuche (Seite 2)	181
Tabelle D - 3: Ergebnisse der versuchsbegleitenden FE-Berechnungen	182
Tabelle D - 4: Auswertung der Kreuzzugversuche (Seite 1)	183
Tabelle D - 5: Auswertung der Kreuzzugversuche (Seite 2)	184
Bild D - 1: Zeichnerische Definition von t, l, dem Verzug und Σa_A	184
Bild D - 2: Messergebnisse, 1-40-0,00-135-G, Versuch 1a und 1b	185
Bild D - 3: Mess- und Berechnungsergebnisse, 2-40-0,20-135-G, Versuch 1a und 1	b186
Bild D - 4: Mess- und Berechnungsergebnisse, 5-40-0,20-135-G	187
Bild D - 5: Mess- und Berechnungsergebnisse, 5-40-0,20-111-G	188
Bild D - 6: Messergebnisse 5-40-0,20-136-G, Versuch 1a und 1b	189
Bild D - 7: Mess- und Berechnungsergebnisse, 6-40-0,20-135-G, Versuch 1a und 1	b 190
Bild D - 8: Mess- und Berechnungsergebnisse, 3-80-0,50-135-S1	191
Bild D - 9: Mess- und Berechnungsergebnisse, 4-80-0,50-135-S1 bis S3	191
Bild D - 10: Mess- und Berechnungsergebnisse, 5-80-0,28-135-S1, S7 und S8	192
Bild D - 11: Mess- und Berechnungsergebnisse, 5-80-0,28-111-S1a und S3	192
Bild D - 12: Mess- und Berechnungsergebnisse, 6-80-0,10-135-S1	193
Bild D - 13: Mess- und Berechnungsergebnisse, 6-80-0,20-135-S3 und S4	193
Bild D - 14: Mess- und Berechnungsergebnisse, 7-80-0,10-135-S2 bis S4	194
Bild D - 15: Mess- und Berechnungsergebnisse, 7-80-0,20-135-S1 und S2	194
Bild D - 16: Mess- und Berechnungsergebnisse, 6-80-0,10-135-B	195
Bild D - 17: Mess- und Berechnungsergebnisse, 6-80-0,20-135-B	196

		Prüfkörpergeometrie						Me	ssergel	onisse		Bruchfläche ³⁾			
Ver- such		t ¹⁾	l ₀ ¹⁾	Σa _A 2)	Art der Kerbung	I ¹⁾	F _{max}	ur	∆ur _{pi} bei F _{max}	∆L _{pl} bei F _{max}	Ver- sagen 7)	s	ΣWbf	ΣDef	
		mm	mm	mm		mm	kN	mm	mm	mm	-	mm	mm	mm	
1 40 0 00 125 C	1a	40,0	220,0	5	n.a.	220,0	4199	35	0,4	12,0	FI	0	0,0	0,0	
1-40-0,00-135-G	1b	40,0	220,0	5	5)	160,0	4078	35	7,0	6,0	GWS	0	0,0	0,0	
	1	40,0	30,0	5	n.a.	30,0	633	n.g.	n.g.	59,0	GW	0	0,0	0,0	
1 40 0 00 135 9	2	40,0	30,0	7	$D = 4 E^{4}$	17,6	551	36	4,7	16,0	VKNFL	0	0,0	0,0	
1-40-0,00-155-5	3	40,0	30,0	7	R-45	18,1	585	n.g.	n.g.	19,0	VKNFL	0	0,0	0,0	
	4	40,0	30,0	7	$P=4^{4}$	18,6	669	38	n.g.	31,0	VKNFL	0	0,0	0,0	
	1	80,5	19,1	14	11-4	19,1	831	42	1,4	25,0	GW	0	0,0	0,0	
	2	81,0	19,2	14	R=45 ⁴⁾	14,1	840	53	3,2	4,0	VKN	0	0,0	0,0	
1-80-0,00-135-S	3	81,0	19,2	14		13,8	814	50	2,4	3,5	VKN	0	0,0	0,0	
	4a	80,5	24,0	11	R=4 ⁴⁾	15,1	1024	64	1,5	3,0	FL	0	0,0	0,0	
	4b	80,5	24,0	11		12,9	1013	69	1,5	1,0	VKN	0	0,0	0,0	
2-40-0 20-135-G	1a	40,0	277,0	6	n.a.	277,0	5505	18	0,2	21,0	FLAR	8	0,5	0,0	
2-40-0,20-100-0	1b	40,0	277,0	6	5)	210,0	5058	18	0,6	3,0	VKNFI	8	0,5	0,0	
	1	80,5	20,3	11	n.a.	20,3	855	n.g.	n.g.	34,0	GW	8	0,0	0,0	
2-80-0 10-135-5	2	81,0	20,2	11	R=45 ⁴⁾	11,6	668	42	1,5	9,0	VKNFI	8	0,0	0,0	
2-00-0,10-100-0	3	80,5	20,2	12	17 40	9,2	472	46	0,8	0,9	VKN	8	0,0	0,0	
	4	80,5	20,0	11	R=4 ⁴⁾	14,5	863	46	n.g.	39,0	VKNFI	10	2,0	0,0	
	1	80,5	20,1	31	n.a.	20,1	747	53	3,7	17,0	GWN	43	4,0	0,0	
3 80 0 50 135 9	2	80,5	20,0	29	R=45 ⁴⁾	16,0	640	51	2,5	9,0	VKNFI	40	2,0	0,0	
3-00-0,30-135-3	3	80,5	20,2	30	11-45	11,0	496	52	2,0	7,5	VKNFI	39	0,0	0,0	
	4	80,5	20,0	32	R=4 ⁴⁾	14,2	704	44	2,4	11,0	VKNFI	38	0,0	0,0	
	1	80,0	21,1	10	n.a.	21,1	676	101	2,8	11,0	GWN	41	1,0	0,0	
4-80-0,50-135-S	2	80,0	20,6	9	n.a.	20,6	658	100	2,7	10,5	GWN	40	0,0	0,0	
	3	80,0	21,0	9	n.a.	21,0	669	98	2,8	10,5	GWN	41	1,0	0,0	
5-40-0,20-135-G	1	40,0	278,0	8	n.a.	278,0	5196	18	0,2	15,5	VNFL	17	9,4	0,0	
	1	39,9	20,0	8	n.a.	20,0	422	n.a.	n.a.	46,0	GW	8	2,0	8,0	
	2	39,8	27,1	8		22,5	495	27	0,9	34,0	VKNFI	8	2,0	8,0	
E 40 0 1E 12E C	3	39,0	27,0	8	R=50 ⁴⁾	22,8	501	35	1,0	32,5	VKNFI	8	2,0	7,5	
5-40-0,15-155-5	4	39,8	27,1	8		22,3	519	33	1,5	33,5	VKNFI	8	2,0	6,0	
	5	39,8	27,1	8	R=4,5 ⁴⁾	18,0	398	45	0,7	11,0	VKNFI	7	1,0	6,5	
	6	39,0	16,0	8	R=50 ⁴⁾	11,2	251	28	0,5	16,5	VKNFI	9	3,0	6,0	
	1	80,2	20,0	12	n.a.	20,0	859	n.g.	n.g.	90,0	GW	12	0,0	10,0	
	2	80,5	27,3	11		23,0	1051	38	1,0	22,0	VKNFI	14	2,0	9,5	
5-80-0,15-135-S	3	80,2	27,4	10	R=50 ⁴⁾	20,2	977	42	1,8	26,5	VKNFI	14	2,0	8,0	
	4	79,9	27,1	12		20,0	962	44	1,6	22,5	VKNFI	12	0,0	6,0	
	5	80,3	27,2	14	R=4,5 ⁴⁾	18,1	938	51	1,4	19,0	VKNFI	14	2,0	10,5	

Fußnoten in Tabelle D-2

Tabelle D - 1: Ergebnisse der Kreuzzugversuche (Seite 1)

			Pri	ifkörp	ergeometrie			Me	ssergel	onisse		Bruchfläche ³⁾			
Ver- such		t ¹⁾	I0 ¹⁾	Σa _A 2)	Art der Kerbung	I ¹⁾	F _{max}	ur	∆ur _{pl} bei F _{max}	∆L _{pl} bei F _{max}	Ver- sagen 7)	s	ΣWbf	ΣDef	
		mm	mm	mm		mm	kN	mm	mm	mm	-	mm	mm	mm	
	1	80,1	20,1	11	n.a.	20,1	689	35	1,8	20	VNFL	25	3,0	16,5	
	2	80,1	27,1	11	R=45 ⁴⁾	22,8	807	37	1,3	11,5	VKNFI	24	2,0	18,0	
	3	80,2	27,4	11	R=50 ⁴⁾	23,1	819	43	1,5	12,5	VKNFI	24	2,0	15,8	
5-80-0 28-135-S	4	80,0	27,3	11	R=4 ⁴⁾	22,6	799	43	1,3	11,0	VKNFI	22	0,0	16,0	
0 00 0,20 100 0	5	80,1	27,1	11	11-7	18,5	689	48	0,7	0,8	VKNFI	22	0,0	18,5	
	6	80,2	16,9	11	R=50 ⁴⁾	12,4	414	39	0,6	0,8	VKNFI	26	4,0	18,0	
	7	80,1	20,1	11	n.a.	20,1	679	12	1,5	19,6	VNFL	27	5,0	15,3	
	8	80,1	18,1	9	n.a.	18,1	611	11	1,5	20,3	VNFL	26	4,0	15,8	
5-40-0,20-111-G	1	40,0	276,0	6	n.a.	276,0	5396	17	0,4	18,5	VNFL	13	4,6	2,0	
	1a	80,1	24,3	23	n.a.	24,3	989	24	2,1	63,0	FLAR	22	0,0	11,9	
5-80-0 28-111-S	1b	80,1	24,3	23	n.a.	24,3	1010	27	2,1	15	FLAR	22	0,0	11,9	
0 00 0,20 111 0	2	80,1	24,1	0	6)	24,1	706	29	0,2	6,0	VKN	24	1,5	19,0	
	3	80,1	24,1	23	n.a.	24,1	966	67	2,0	56,0	VNFL	23	0,5	18,3	
5-40-0 20-136-G	1a	40,0	280,0	8	n.a.	280,0	5711	n.g.	n.g.	24,5	FLAR	9	1,1	0,0	
0-40-0,20-100 0	1b	40,0	280,0	8	5)	228,0	5403	14	0,7	4,5	VKNFL	9	1,1	0,0	
6 40-0 20-135-G	1a	40,0	280,0	11	n.a.	280,0	5711	10	0,4	25	FIAR	10	1,8	0,5	
0-40-0,20-100-0	1b	40,0	280,0	11	5)	230,0	5159	10	0,4	31,0	VKNFI	10	1,8	0,5	
6-80-0,10-135-S	1	80,1	24,0	13	n.a. / 30	24,0	993	13	3,8	89,0	FLAR	9	1,0	3,0	
6-80-0 20-135-5	3	80,1	24,1	10	n.a. / 25	24,1	900	13	9,1	41,0	GWD	17	1,0	3,5	
0-00-0,20-100-0	4	80,1	24,1	12	n.a. / 23	24,1	895	19	9,1	37,0	GWD	18	1,5	2,5	
	2	80,1	24,2	13	Riss / 30	24,2	996	16	5,7	78,0	GWD	13	4,5	3,0	
7-80-0,10-135-S	3	80,1	24,1	13	Riss / 30	24,1	968	19	4,0	54,0	VNFL	13	4,8	3,0	
	4	80,1	24,1	13	Riss / 26	24,1	923	14	3,6	38,0	VNFL	15	6,5	2,0	
7 80 0 20 135 9	1	80,1	24,0	10	Riss / 22	24,0	826	12	8,2	27,5	GWD	23	7,0	3,0	
7-00-0,20-133-3	2	80,1	24,1	11	Riss / 24	24,1	820	16	8,8	26,0	GWD	23	7,2	3,0	

n.a. nicht anwendbar, n.g. nicht gemessen

1) Die Größen werden vor dem Versuch auf der (späteren) Versagensseite gemessen.

2) Die Wurzelmaße werden auf der Versagensseite in der Mitte der Prüfkörperbreite gemessen; Bei den DHY-Nähten

wird die Summe der auf beiden Nahtseiten gemessenen Wurzelmaße angegeben.

3) Die Fehlergrößen werden nach dem Versagen in der Bruchfläche an 5, über die Breite der Bruchfläche äquidistant verteilten Stellen gemessen und hieraus gemittelt. Versagt der Prüfkörper nicht entlang des fehlerbehafteten Nahtquerschnitts, wird der Mittelwert der vor dem Versuch auf der Versagensseite an beiden bearbeiteten Probenrändern gemessenen Größen angegeben.

Bei Nahtvariante 7 umfasst ΣWbf auch die Größe der Anrisse r.

4) Mechanische Bearbeitung

5) Seitliche Sägeschnitte

6) Bohrung in Kehlnaht, R=6mm

7) Versagensmodi

FI: kein Versagen, Fließen im GW

GWN:Scherversagen im GW des in Walzrichtung beanspruchten Blechs ausgehend von der Nahtwurzel

VKNFI: Versagen im durch zusätzliche Kerben geschwächten Nahtbereich nach Erreichen der Fließgrenze im GW GW: Versagen in wärmeeunbeeinflussten GW

GW. Versagen in wanneeunbeennussien GW

VKN:Versagen in der durch zusätzliche Kerben geschwächten Naht

FLAR: kein Versagen; Anrisse an der Nahtwurzel am seitlichen Rand

VNFI: Versagen im Nahtbereich nach Erreichen der Fließgrenze im GW

GWS: Bruch im GW ausgehend vom seitlichen Sägeschnitt

GWD: Bruch im in Dickenrichtung beanspruchten Querblech ausgehend von der Nahtwurzel

Tabelle D - 2: Ergebnisse der Kreuzzugversuche (Seite 2)

					Bru	chmec	hanische bei ∆ur	e Kenng	rößen	Kontir	nuummeo Kenngröl bei ∆ur	:hanische ßen RI
Versuch		∆ur _{RI}	F _{RI} / F _{max}	∆ur bei F _{max}	J	M _{max}	стор	CTSD	стор	Elem S im Ab von	ent mit m Schädigu stand voi der Nahi	aximaler ng D n 0,50mm twurzel
									CTSD	м	ε _{v,pl}	Bereich 2)
		mm	kN	mm	N/mm	-	mm	mm		-	%	-
3-80-0,50-135	S1	2,40	0,95	3,3	1010	1,17	0,87	0,16	5,6	0,36	51	WEZI
	S1	2,39	0,97	3,0	860	1,41	0,93	0,15	6,3	0,41	44	
4-80-0,50-135	S2	2,33	0,98	3,1	825	1,42	0,90	0,15	6,2	0,40	43	WEZI
	S3	2,18	0,99	3,1	753	1,44	0,83	0,14	6,1	0,39	41	
5-80-0 28-111	S1a	1,58	0,94	2,4	660	1,45	0,81	0,13	6,4	0,83	23	50
3-00-0,20-111	S3	1,70	0,96	2,3	727	1,43	0,88	0,14	6,5	0,78	28	30
5 90 0 29 125	S1	1,22	0,97	1,9	472	1,61	0,56	0,09	6,3	1,28	11	80
5-60-0,26-155	80-0,28-135 S7	1,15	0,97	2,1	435	1,60	0,52	0,09	6,1	1,32	10	30
6-80-0,10-135	S1	1,64	0,90	3,9	688	1,41	0,94	0,30	3,1	0,69	23	WEZI
6 90 0 20 125	S3	1,90	0,85	9,5	697	1,56	0,85	0,15	5,6	0,96	23	WEZn
0-00-0,20-135	S4	2,10	0,85	9,5	845	1,53	1,02	0,20	5,0	0,90	30	VVEZN
	S2	1,74	0,89	5,7	816	1,57	0,90	0,38	2,4	0,62	42	
7-80-0,10-135	S3	1,81	0,89	4,5	878	1,55	0,96	0,41	2,3	0,62	44	WEZn
	S4	1,64	0,90	4,0	756	1,57	0,83	0,35	2,4	0,62	40	
7 90 0 00 125	S1	2,38	0,85	10,0	894	1,77	1,04	0,26	4,0	1,09	24	
7-80-0,20-135	S2	2,30	0,85	9,0	830	1,79	0,97	0,24	4,1	1,12	20	WEZN
6-80-0,10-135	-В	1,45	1,00	1,5	659	1,89	0,79	0,05	15,2	1,08	17	SG
6-80-0,20-135	i-В	1,90	1,00	1,9	622	1,96	0,85	0,00	212,3	0,95	24	WEZn
2-40-0,20-135-	-G ¹⁾	0,70	1,00	0,7	380	1,04	0,51	0,01	36,2	0,50	22	
5-40-0,20-135	5-G	0,65	0,98	1,1	730	1,33	0,81	0,02	45,1	0,65	34	
5-40-0,20-111	-G	1,10	0,97	1,4	641	1,23	0,92	0,03	29,7	0,54	33	w⊨∠n Rand -
6-40-0,20-135-	-G ¹⁾	1,30	0,97	1,3	544	1,31	0,65	0,26	2,5	5 0,52 37 7r		7mm

1) Im Versuch wurden nach der Entlastung visuell Anrisse an der Nahtwurzel am seitlichen Probenrand festgestellt. Die mit dem FE-Modell ohne Anriss berechneten Kräfte und Spaltaufweitungen stimmen bis zur Maximallast vor der Entlastung mit dem Messergebnis überein. Die Tabellenwerte wurden bei Maximallast vor der Entlastung berechnet.

2) WEZI: WEZ des in Längsrichtung beanspruchten Blechs

WEZn: WEZ des in Dickenrichtung beanspruchten Blechs

Rand-7mm: im Abstand von 7mm vom seitlichen Probenrand des Prüfkörpers

Tabelle D - 3: Ergebnisse der versuchsbegleitenden FE-Berechnungen

		a _{EC} ¹⁾	a _{EC} */a _{EC}	f _{DS} *	f _{⊤rag,}	_{exp} = F _{max}	/ F _{GW}	f _{RI,exp} = F _{RI} / F _{GW}
Vor-							Versuchs-	
such					Naht-	Versagen	abbruch	
ouon.					versagen	im GW	ohne	
					0		Versagen	
		mm	-	-	-	-		-
	1a		-	1,11	-	-	1,34	-
1-40-0,00-135-G	1b	n.g.	-	1 11	-	1 79	-	-
	1		1.05	1.11	-	1.48	-	-
4 40 0 00 405 0	2	40.0	1,09	1,15	2,20	-	-	-
1-40-0,00-135-5	3	42,2	1,09	1,15	2,27	-	-	-
	4		1,09	1,15	2,53	-	-	-
	1		1,03	1,15	_	1,47	-	-
	2		1,04	1,15	2,00	-	-	-
1-80-0,00-135-S	3	89,6	1,04	1,15	1,98	-	-	-
	4a		1,01	1,12	-	-	2,30	-
	4b		1,01	1,12	2,66	-	-	-
	1a		-	0,91	_	-	1,40	-
2-40-0,20-135-G	1b	n.g.	-	0,91	1,69	-	_	-
	1		1,01	1,02	-	1,43	-	-
0.00.040.405.0	2		1,02	1,02	1,94	-	-	-
2-80-0,10-135-5	3	80,9	1,02	1,03	1,74	-	-	-
	4		0,99	0,99	2,01	-	-	-
	1		0,97	0,80	1,26	-	-	-
2 00 0 50 405 0	2	<u> </u>	0,99	0,82	1,35	-	-	-
3-80-0,50-135-5	3	66,3	1,02	0,84	1,53	-	-	-
	4		1,06	0,87	1,68	-	-	-
	1		1,09	0,60	1,09	-	-	-
4-80-0,50-135-S	2	43,6	1,10	0,60	1,09	-	-	-
	3		1,07	0,59	1,09	-	-	-
5-40-0,20-135-G	1	n.g.	-	0,73	1,31	-	-	-
	1		1,12	0,77	-	1,49	-	-
	2		1,12	0,77	1,55	-	-	-
E 40 0 4E 42E 0	3	24.6	1,09	0,78	1,58	-	-	-
5-40-0,15-135-5	4	34,0	1,11	0,81	1,64	-	-	-
	5		1,14	0,82	1,56	-	-	-
	6		1,06	0,78	1,61	-	-	-
	1		1,14	0,86	-	1,46	-	-
	2	1	1,10	0,83	1,55	-	-	-
5-80-0,15-135-S	3	69,0	1,09	0,83	1,64	-	-	-
	4		1,14	0,91	1,64	-	-	-
	5		1.14	0.85	1.76	-	-	-

Fußnoten in Tabelle D-5

Tabelle D - 4: Auswertung der Kreuzzugversuche (Seite 1)

		a _{EC} ¹⁾	a _{EC} */a _{EC}	f _{DS} *	f _{Trag,}	_{exp} = F _{max}	/ F _{GW)}	f _{RI,exp} = F _{RI} / F _{GW}
Ver-							Versuchs-	
such					Naht-	Versagen	abbruch	
					versagen	im GW	ohne	
					-		Versagen	
		mm	-	-	-	-		-
	1		1,06	0,60	1,17	-	-	-
	2		1,08	0,60	1,20	-	-	-
	3		1,08	0,62	1,20	-	-	-
5 80 0 28 135 S	4	61.0	1,11	0,64	1,20	-	-	-
5-00-0,20-135-5	5	01,0	1,11	0,62	1,27	-	-	-
	6		1,05	0,57	1,13	-	-	-
	7		1,03	0,59	1,15	-	-	-
	8		1,03	0,58	1,15	-	-	-
5-40-0,20-111-G	1	n.g.	-	0,77	1,37	-	-	-
	1a		1,11	0,83	-	-	1,44	-
5-80-0 28-111-5	1b	70.6	1,11	0,83	-	1,47	-	-
0 00 0,20 111 0	2	10,0		0,47	1,04	-	-	-
	3		1,09	0,74	1,42	-	-	-
5 40 0 20 126 C	1a		-	0,94	-	-	1,43	-
5-40-0,20-130-9	1b	n.g.	-	0,94	1,66	-	-	-
6 40 0 20 125 0	1a		-	0,98	-	-	1,43	1,38
0-40-0,20-135-G	1b	n.g.	-	0,98	1,58	-	-	
6-80-0,10-135-S	1	78,7	1,04	0,98	1,46	-	-	1,30
6 90 0 20 125 0	3	70.0	1,02	0,85	1,32	-	-	1,12
0-80-0,20-135-5	4	70,2	1,05	0,88	1,31	-	-	1,12
	2		1,01	0,95	1,46	-	-	1,30
7-80-0,10-135-S	3	78,3	1,00	0,94	1,42	-	-	1,26
	4	1	0,98	0,93	1,35	-	-	1,22
7 00 0 00 405 0	1	07.0	0,98	0,78	1,22	-	-	1,03
1-80-0,20-135-5	2	67,0	0,99	0,79	1,21	-	-	1,02

n.g. nicht gemessen

1) in einem Makroschliff je Naht gemessen

Bild D - 1: Zeichnerische Definition von t, I, dem Verzug und Σa_A

Bild D - 2: Messergebnisse, 1-40-0,00-135-G, Versuch 1a und 1b

Bild D - 3: Mess- und Berechnungsergebnisse, 2-40-0,20-135-G, Versuch 1a und 1b

Bild D - 4: Mess- und Berechnungsergebnisse, 5-40-0,20-135-G

Bild D - 5: Mess- und Berechnungsergebnisse, 5-40-0,20-111-G

Bild D - 6: Messergebnisse 5-40-0,20-136-G, Versuch 1a und 1b

Bild D - 7: Mess- und Berechnungsergebnisse, 6-40-0,20-135-G, Versuch 1a und 1b

Bild D - 8: Mess- und Berechnungsergebnisse, 3-80-0,50-135-S1

Bild D - 9: Mess- und Berechnungsergebnisse, 4-80-0,50-135-S1 bis S3

Bild D - 10: Mess- und Berechnungsergebnisse, 5-80-0,28-135-S1, S7 und S8

Bild D - 11: Mess- und Berechnungsergebnisse, 5-80-0,28-111-S1a und S3

Bild D - 12: Mess- und Berechnungsergebnisse, 6-80-0,10-135-S1

Bild D - 13: Mess- und Berechnungsergebnisse, 6-80-0,20-135-S3 und S4

Bild D - 14: Mess- und Berechnungsergebnisse, 7-80-0,10-135-S2 bis S4

Bild D - 15: Mess- und Berechnungsergebnisse, 7-80-0, 20-135-S1 und S2

Bild D - 16: Mess- und Berechnungsergebnisse, 6-80-0,10-135-B

Bild D - 17: Mess- und Berechnungsergebnisse, 6-80-0,20-135-B

Naht- variante	Probe	t	I	F。	Fu	$\Delta \sigma_{GW}$	$\Delta \sigma_{ m Naht}^{1}$	Ν
		mm	mm	kN	kN	N/mm ²	N/mm ²	
	D1	80,2	19,5	360	36	207	180	419322
	D2	80,1	19,4	500	50	290	252	72266
1-80-0,00-135	D3	80,4	19,5	250	25	144	125	981381
	D4	80,2	19,6	600	60	344	299	30291
	D5	80,2	19,7	210	21	120	104	1505886
	D1	39,6	17,3	110	11	145	126	469587
1_40_0 00_135	D2	39,7	19,5	240	24	279	243	42889
1-40-0,00-133	D3	39,8	19,7	180	18	206	180	173008
	D4	39,7	18,1	90	9	113	98	5000000
	D1	80,4	20,0	360	36	201	198	132038
	D2	80,2	20,1	500	50	279	274	63000
2-80-0,10-135	D3	80,2	20,0	250	25	140	138	648435
	D4	80,3	19,8	150	15	85	83	5500000
	D5	80,3	20,5	200	20	109	107	1191736
	D1	80,3	19,6	360	36	206	242	42451
	D2	80,5	19,7	500	50	284	334	7579
3-80-0,50-135	D3	80,5	19,6	260	26	148	174	118268
	D4	80,5	20,0	210	21	117	138	419669
	D5	80,4	19,5	160	16	92	108	1101581
	D1	80,0	20,0	360	36	203	241	28350
E 90 0 29 12E	D2	80,0	20,0	250	25	141	167	264290
5-60-0,26-155	D3	80,0	20,0	310	31	174	208	57190
	D4	80,0	20,0	200	20	113	134	698970
	D1	80,0	15,0	300	30	225	230	132920
E 90 0 1E 12E	D2	80,0	14,8	200	20	152	155	1381190
5-60-0,15-135	D3	80,0	14,8	350	35	266	271	44660
	D4	80,0	14,9	250	25	189	193	294600
	D1	40,0	20,0	240	24	270	265	26910
5 40 0 15 125	D2	40,0	20,0	180	18	203	199	71850
5-40-0, 15-155	D3	40,0	20,0	140	14	158	154	224660
	D4	40,0	20,0	100	10	113	110	466720
	D1	80,0	20,0	360	36	203	207	148507
	D2	80,0	20,0	250	25	141	143	616909
E 00 0 20 111	D3	80,0	20,0	310	31	174	178	256631
5-00-0,20-111	D4	80,0	20,0	200	20	113	115	1352813
	D5	80,0	20,0	400	40	225	230	118465
	D6	80,0	20,0	450	45	253	258	52615
	D1	80,0	20,0	320	32	180	231	17595
6 90 0 10 125	D2	80,0	20,0	270	27	152	195	44978
0-00-0, 10-135	D3	80,0	20,0	230	23	129	166	75010
	D4	80,0	20,0	200	20	113	144	118892
	D1	80,0	20,0	320	32	180	342	18631
6 90 0 20 425	D2	80,0	20,0	270	27	152	288	32259
0-00-0,20-135	D3	80,0	20,0	230	23	129	246	44080
	D4	80,0	20,0	200	20	113	214	68996

Ergebnisse von Dauerschwingversuchen

1 Die Spannungsschwingbreite ist auf den planmäßigen Nahtquerschnitt bezogen. Dieser Querschnitt wird unter Berücksichtigung der planmäßigen Steghöhe h und der äußeren Nahtausrundung a_A berechnet. Eine ungenügende Durchschweißung Σ Wbf und weitere Ungänzen Σ Def

werden bei der Berechnung nicht berücksichtigt. Bei den HY-Nähten wird die Ausmitte der Zugkraft bezogen auf den Nahtquerschnitt (halbe Steghöhe h/2) bei der elastischen Berechnung der Spannungsschwingbreiten berücksichtigt.

Ergebnisse rechnerischer Untersuchungen

Tabellenverzeichnis:

Tabelle F- 1: DHY-Nähte von S235, URI	199
Tabelle F- 2: DHY-Nähte von S235, URII	
Tabelle F- 3: DHY-Nähte von S355, URI	
Tabelle F- 4: DHY-Nähte von S355, URII	
Tabelle F- 5: DHY-Nähte von S460, URI	
Tabelle F- 6: DHY-Nähte von S460, URII	
Tabelle F- 7: HY-Nähte von S235, URI	
Tabelle F- 8: HY-Nähte von S235, URII	
Tabelle F- 9: HY-Nähte von S355, URI	
Tabelle F- 10: HY-Nähte von S355, URII	
Tabelle F- 11: HY-Nähte von S460, URI	
Tabelle F- 12: HY-Nähte von S460, URII	

							14/		e	1 4								
		đ					wer	kstof	feiger	scha	ten		25		o`		0	
Naht	Werkstoff Ungänzen	stigkeits-klass	t	h/t	f _{DS}	M _{sg}	G	w	s	G	v	EZ	,15 ≤ J _{IC} /J _{EC} ≤ 0,	f _{Trag}),75 ≤ J _{IC} /J _{EC} ≤ 1	f _{Trag}	2,0 ≤ J _{IC} /J _{EC} ≤ 3,	f _{Trag}
		Fe					R _{p0,2}	R _m	R _{p0,2}	R _m	R _{p0,2}	R _m	0		0			
			mm	-	-	-			N/r	nm²		•						
		Ι	80	0,10	0,86	1,95	215	360	420	500	215	360	0,21	1,03	0,89	1,21	2,85	1,47
		٨K	80	0,20	0,76	1,95	215	360	420	500	215	360	0,22	0,94	0,92	1,05	2,79	1,27
		>	80	0,50	0,46	1,95	215	360	420	500	215	360	0,22	0,60	0,77	0,73	2,30	0,83
		Π	80	0,10	0,86	2,77	215	360	596	679	402	468	0,23	1,13	0,94	1,32	2,83	1,61
		X	80	0,20	0,76	2,77	215	360	596	679	402	468	0,22	0,96	0,87	1,13	2,57	1,38
		5	80	0,50	0,46	2,77	215	360	596	679	402	468	0,16	0,64	0,86	0,80	2,47	0,91
		_	20	0,10	0,85	1,87	225	360	420	500	215	360	0,24	1,03	0,86	1,19	2,78	1,47
		Ϋ́	20	0,20	0,75	1,87	225	360	420	500	215	360	0,24	0,95	0,96	1,06	2,98	1,30
		>	20	0,50	0,48	1,87	225	360	420	500	215	360	0,24	0,54	0,93	0,73	2,71	0,85
		=	20	0,10	0,85	2,65	225	360	596	679	402	468	0,16	1,19	0,80	1,51		
aht	R	٨K	20	0,20	0,75	2,65	225	360	596	679	402	468	0,20	1,06	0,94	1,28	2,12	1,46
ž	<u></u>	>	20	0,50	0,48	2,65	225	360	596	679	402	468	0,17	0,64	0,76	0,92	2,45	1,04
≿	231	_	40	0,10	0,83	1,87	225	360	420	500	215	360	0,21	1,02	0,90	1,15	2,60	1,39
ā	ŝ	Ϋ́	40	0,20	0,73	1,87	225	360	420	500	215	360	0,16	0,84	0,99	1,05	3,00	1,25
		>	40	0,50	0,48	1,87	225	360	420	500	215	360	0,23	0,85	0,92	0,99	2,82	1,11
		=	40	0,10	0,83	2,65	225	360	596	679	402	468	0,21	1,13	0,80	1,33	2,15	1,52
		λK	40	0,20	0,73	2,65	225	360	596	679	402	468	0,23	1,05	0,88	1,21	2,50	1,36
		^	40	0,50	0,48	2,65	225	360	596	679	402	468	0,24	0,75	0,94	0,86	2,82	0,98
		_	200	0,10	0,89	2,27	185	340	420	500	185	340	0,17	1,06	0,97	1,50		
		¥	200	0,20	0,79	2,27	185	340	420	500	185	340	0,23	1,04	0,97	1,33		
		^	200	0,70	0,29	2,27	185	340	420	500	185	340	0,25	0,46	1,00	0,60		
		=	200	0,10	0,89	3,22	185	340	596	679	380	442	0,23	1,26				
		٨X	200	0,20	0,79	3,22	185	340	596	679	380	442	0,25	1,05	0,87	1,29		
		5	200	0,70	0,29	3,22	185	340	596	679	380	442	0,25	0,44	1,00	0,60		

Tabelle F- 1: DHY-Nähte von S235, URI

							Werl	kstof	feigen	schat	ften		10					
Naht	Werkstoff Ungänzen	stigkeits-klasse	t	h/t	f _{DS}	M _{sg}	G	w	s	G	w	EZ	$,15 \leq J_{\rm lc}/J_{\rm EC} \leq 0,24$	f _{Trag}),75 ≤ J _{IC} /J _{EC} ≤ 1,0	fTrag	$2,0 \leq J_{\rm lc}/J_{\rm EC} \leq 3,0$	fTrag
		F					R _{p0,2}	\mathbf{R}_{m}	R _{p0,2}	R _m	R _{p0,2}	R _m	0		0			
			mm	-	-	-			N/r	nm²					-	•		
		х Х	80	0,00	0,83	1,95	215	360	420	500	216	360	0,21	1,03	0,97	1,25	2,93	1,54
		N	80	0,50	0,42	1,95	215	360	420	500	216	360	0,16	0,52	0,92	0,71	2,67	0,79
Ħ	₹	K II	80	0,00	0,83	2,77	215	360	596	679	402	468	0,24	1,22	0,90	1,44		
Ňa	Ľ	N N	80	0,50	0,42	2,77	215	360	596	679	402	468	0,24	0,66	0,90	0,78	2,62	0,87
¥	235	۲I	40	0,00	0,83	1,87	225	360	420	500	225	360	0,19	1,01	0,90	1,22	2,98	1,49
⊡	ŝ	Ň	40	0,50	0,42	1,87	225	360	420	500	225	360	0,22	0,62	0,90	0,72	2,26	0,79
		× =	40	0,00	0,83	2,65	225	360	596	679	402	468	0,23	1,20	0,97	1,51		
		ž	40	0,50	0,42	2,65	225	360	596	679	402	468	0,18	0,77	0,80	0,84	2,76	0,92

Tabelle F- 2: DHY-Nähte von S235, URII

							Wer	kstof	feiger	schaf	ten							
		e						13101	leigei	Scha			,25		1,0		0	
Naht	Werkstoff Ungänzen	stigkeits-klass	t	h/t	f _{DS}	M _{sg}	G	w	s	G	W	EZ	.15 ≤ J _{IC} /J _{EC} ≤ 0	f_{Trag}	, 75 ≤ J_{IC}/J_{EC} ≤ 1	f _{Trag}	2,0 ≤ J _{IC} /J _{EC} ≤ 3	fTrag
		Fe					R _{p0,2}	$\mathbf{R}_{\mathbf{m}}$	R _{p0,2}	R _m	$R_{p0,2}$	R _m	ó		0		7	
			mm	-	-	-			N/r	nm²								
			80	0,05	0,91	1,29	325	470	420	500	325	470	0,16	1,03	0,97	1,23	2,80	1,40
		_	80	0,10	0,86	1,29	325	470	420	500	325	470	0,18	0,99	0,95	1,13	2,90	1,32
		¥	80	0,20	0,76	1,29	325	470	420	500	325	470	0,17	0,90	0,95	1,01	2,80	1,17
		>	80	0,50	0,46	1,29	325	470	420	500	325	470	0,18	0,58	0,99	0,70	2,74	0,78
			80	0,70	0,26	1,29	325	470	420	500	325	470	0,18	0,34	0,90	0,43	2,75	0,48
			80	0,05	0,91	1,83	325	470	596	679	623	718	0,15	1,20				
			80	0,10	0,86	1,83	325	470	596	679	623	718	0,15	1,08	0,97	1,31		
		=	80	0,15	0,81	1,83	325	470	596	679	623	718	0,16	1,00	0,96	1,19	2,88	1,37
		λK	80	0,20	0,76	1,83	325	470	596	679	623	718	0,16	0,93	0,86	1,10	2,83	1,29
		>	80	0,30	0,66	1,83	325	470	596	679	623	718	0,16	0,84	0,97	1,00	2,63	1,14
			80	0,50	0,46	1,83	325	470	596	679	623	718	0,15	0,64	0,75	0,77	2,61	0,87
			80	0,70	0,26	1,83	325	470	596	679	623	718	0,16	0,35	0,81	0,51	2,78	0,58
		_	40	0,10	0,83	1,22	345	470	420	500	345	470	0,15	0,90	0,86	1,04	2,88	1,18
aht	8	¥	40	0,20	0,73	1,22	345	470	420	500	345	470	0,15	0,80	0,87	0,95	2,42	1,03
ž		^	40	0,50	0,49	1,22	345	470	420	500	345	470	0,16	0,56	0,88	0,68	2,77	0,77
≿	355	=	40	0,10	0,83	1,73	345	470	596	679	623	718	0,16	1,05	0,91	1,24		
ā	ů,	λ	40	0,20	0,73	1,73	345	470	596	679	623	718	0,16	0,89	0,91	1,08	2,93	1,22
		>	40	0,50	0,49	1,73	345	470	596	679	623	718	0,15	0,60	0,88	0,81	2,12	0,88
		-	20	0,10	0,85	1,22	345	470	420	500	345	470	0,15	0,95	0,93	1,10	2,99	1,24
		ΥK	20	0,20	0,75	1,22	345	470	420	500	345	470	0,15	0,86	0,86	0,99	2,62	1,10
		>	20	0,50	0,45	1,22	345	470	420	500	345	470	0,15	0,55	0,85	0,71	2,82	0,79
		=	20	0,10	0,85	1,73	345	470	596	679	623	718	0,15	1,23				
		X	20	0,20	0,75	1,73	345	470	596	679	623	718	0,17	1,02	0,82	1,23	2,59	1,32
		5	20	0,50	0,48	1,73	345	470	596	679	623	718	0,17	0,73	0,85	0,94	2,95	1,02
		_	200	0,10	0,89	1,47	285	450	420	500	285	450	0,15	1,05				
		ΥK	200	0,20	0,79	1,47	285	450	420	500	285	450	0,18	0,98				
		>	200	0,70	0,29	1,47	285	450	420	500	285	450	0,18	0,40	0,85	0,54		
		=	200	0,10	0,89	2,09	285	450	596	679	623	718	0,17	1,25				
		¥	200	0,20	0,79	2,09	285	450	596	679	623	718	0,17	1,00	0,85	1,34		
		5	200	0,70	0,29	2,09	285	450	596	679	623	718	0,15	0,44	0,85	0,59		

Tabelle F- 3: DHY-INante Von \$355	5. URI
------------------------------------	--------

							Werl	stof	feigen	schat	ften		10		_			
Naht	Werkstoff Ungänzen	stigkeits-klasse	t	h/t	f _{DS}	M _{sg}	G	v	s	G	W	EZ	$,15 \leq J_{\rm lc}/J_{\rm Ec} \leq 0,20$	f _{Trag}),75 ≤ J _{IC} /J _{EC} ≤ 1,0	f _{Trag}	$2,0 \leq J_{\rm lc}/J_{\rm Ec} \leq 3,0$	f _{Trag}
		Ъ					$R_{p0,2}$	\mathbf{R}_{m}	$R_{p0,2}$	R _m	$R_{p0,2}$	R _m	0		•			
			mm	-	-	-			N/r	nm²					-			
		ž	80	0,00	0,83	1,29	325	470	420	500	325	470	0,24	0,97	0,92	1,13	2,71	1,29
		≥	80	0,50	0,42	1,29	325	470	420	500	325	470	0,23	0,51	0,97	0,64	2,66	0,72
ht	₽	СII	80	0,00	0,83	1,83	325	470	596	679	623	718	0,24	1,21				
Ňa	Ľ	Ż	80	0,50	0,42	1,83	325	470	596	679	623	718	0,24	0,64	0,80	0,74	2,48	0,83
'⊢	355	٤I	40	0,00	0,83	1,22	345	470	420	500	345	470	0,23	0,96	0,91	1,07	2,21	1,17
ō	ŝ	Ž	40	0,50	0,42	1,22	345	470	420	500	345	470	0,25	0,52	0,90	0,62	2,90	0,70
		КШ	40	0,00	0,83	1,73	345	470	596	679	623	718	0,25	1,10	0,80	1,32		
		Ž	40	0,50	0,42	1,73	345	470	596	679	623	718	0,23	0,62	0,76	0,75	2,48	0,84

Tabelle F- 4: DHY-Nähte von S355, URII

r			1															
							Wer	kstof	feigen	scha	ten		2		_			
Naht	Werkstoff Ungänzen	Festigkeits-klasse	t	h/t	f _{DS}	M _{SG}	G	W	S	G	W	EZ	$0,15 \leq J_{IC}/J_{EC} \leq 0,2$	fTrag	0,75 ≤ J _{Ic} /J _{EC} ≤ 1,0	fTrag	$2,0 \leq J_{IC}/J_{EC} \leq 3,0$	fTrag
			mm	-	-	-	• * p0,2	'`m	N/r	nm²	• °p0,2	'`m			-			
		_	80	0.10	0.86	1.12	410	550	460	530	410	550	0.25	1.01	0.96	1.11	2.01	1.20
		¥	80	0.20	0.76	1.12	410	550	460	530	410	550	0.21	0.91	0.92	1.00	2.50	1.10
		5	80	0,50	0,46	1,12	410	550	460	530	410	550	0,15	0,56	0,96	0,68	3,00	0,74
		=	80	0,10	0,86	1,45	410	550	596	679	615	715	0,25	1,05	0,97	1,17		
		ĸ	80	0,20	0,76	1,45	410	550	596	679	615	715	0,23	0,94	0,91	1,04	2,28	1,13
		\$	80	0,50	0,46	1,45	410	550	596	679	615	715	0,20	0,61	0,88	0,70	2,73	0,75
		_	20	0,10	0,85	1,05	440	550	460	530	440	550	0,16	0,87	0,95	1,03	2,98	1,13
		X	20	0,20	0,75	1,05	440	550	460	530	440	550	0,21	0,84	0,99	0,94	2,80	1,01
		>	20	0,50	0,48	1,05	440	550	460	530	440	550	0,21	0,58	0,77	0,65	2,62	0,72
		=	20	0,10	0,85	1,35	440	550	596	679	615	715	0,21	1,01	0,95	1,11	2,79	1,20
þt	R	¥	20	0,20	0,75	1,35	440	550	596	679	615	715	0,23	0,91	0,86	1,00	2,55	1,08
Ř		5	20	0,50	0,48	1,35	440	550	596	679	615	715	0,16	0,58	0,95	0,74	2,78	0,79
≿	460	_	40	0,10	0,83	1,05	440	550	460	530	440	550	0,24	0,95	0,85	1,02	2,80	1,11
ā	Ň	¥	40	0,20	0,73	1,05	440	550	460	530	440	550	0,16	0,81	0,93	0,94	2,82	1,01
		>	40	0,50	0,49	1,05	440	550	460	530	440	550	0,16	0,51	0,92	0,63	2,96	0,69
		=	40	0,10	0,83	1,35	440	550	596	679	615	715	0,23	0,99	0,88	1,07	2,86	1,16
		¥	40	0,20	0,73	1,35	440	550	596	679	615	715	0,20	0,87	0,89	0,98	2,56	1,05
		5	40	0,50	0,49	1,35	440	550	596	679	615	715	0,16	0,53	0,88	0,67	2,33	0,71
		_	200	0,10	0,89	1,24	370	530	460	530	370	530	0,25	1,11				
		¥	200	0,20	0,79	1,24	370	530	460	530	370	530	0,24	1,01				
		>	200	0,70	0,29	1,24	370	530	460	530	370	530	0,22	0,41				
		=	200	0,10	0,89	1,61	370	530	596	679	593	689	0,21	1,20				
		XX	200	0,20	0,79	1,61	370	530	596	679	593	689	0,24	1,03				
		5	200	0,70	0,29	1,61	370	530	596	679	593	689	0,23	0,45				

TADELLE F- 5. DHT-MAILLE VOIT 5400, UK	Tabelle	F- 5:	DHY	'-Nähte	von	S460.	UR
--	---------	-------	-----	---------	-----	-------	----

							Wer	kstof	feigen	schat	ften		25		0		0	
Naht	Werkstoff Ungänzen	estigkeits-klasse	t	h/t	f _{DS}	M _{sg}	G	v	s	G	w	EZ	$,15 \leq J_{\rm lc}/J_{\rm Ec} \leq 0,2$	f _{Trag}	0,75 ≤ J _{IC} /J _{EC} ≤ 1,	fTrag	2,0 ≤ J _{IC} /J _{EC} ≤ 3,0	f _{Trag}
		щ					R _{p0,2}	R _m	R _{p0,2}	R _m	R _{p0,2}	R _m	0		•			
			mm	-	-	-			N/r	nm²					-			
		Ξ	80	0,00	0,83	1,12	410	550	460	530	410	550	0,21	0,96	0,91	1,05	2,33	1,14
		≥	80	0,50	0,42	1,12	410	550	460	530	410	550	0,20	0,52	0,88	0,59	2,74	0,65
Ħ	I	K II	80	0,00	0,83	1,45	410	550	596	679	615	715	0,23	1,09				
Na	Ъ.	Ž	80	0,50	0,42	1,45	410	550	596	679	615	715	0,22	0,60	0,94	0,69	2,91	0,77
'≍	160	۲	40	0,00	0,83	1,05	440	550	460	530	410	550	0,24	0,93	0,92	1,01	2,54	1,08
⊡	Š	Ž	40	0,50	0,42	1,05	440	550	460	530	410	550	0,22	0,52	0,98	0,59		
		КШ	40	0,00	0,83	1,35	440	550	596	679	615	715	0,22	1,06	0,97	1,16		
		Ň	40	0,50	0,42	1,35	440	550	596	679	615	715	0,18	0,55	0,99	0,70	2,50	0,76

Tabelle F- 6: DHY-Nähte von S460, URII

							M/a ml		f a i a a a		1							
		~					wer	Stor	reigen	scha	ten		25		o		0	
Naht	Werkstoff Ungänzen	stigkeits-klasse	t	h/t	f _{DS}	M _{sg}	GI	w	S	G	w	ΞZ	,15 ≤ J _{IC} /J _{EC} ≤ 0,	f _{Trag}),75 ≤ J _{IC} /J _{EC} ≤ 1,	f _{Trag}	2,0 ≤ J _{IC} /J _{EC} ≤ 3,	f _{Trag}
		Fe					R _{p0,2}	\mathbf{R}_{m}	R _{p0,2}	R _m	R _{p0,2}	R _m	0		0			
			mm	-	-	-			N/n	1m²					-			
			80	0,00	0,98	1,95	215	360	420	500	215	360	0,18	1,01	0,80	1,15	2,94	1,49
			80	0,05	0,93	1,95	215	360	420	500	215	360	0,24	0,95	0,85	1,01	2,93	1,16
		ž	80	0,10	0,88	1,95	215	360	420	500	215	360	0,24	0,85	0,78	0,96	2,82	1,02
		-	80	0,30	0,68	1,95	215	360	420	500	258	360	0,16	0,43	0,82	0,75	2,80	0,82
			80	0,30	0,68	1,95	215	360	420	500	215	360	0,23	0,57	0,76	0,76	2,72	0,83
		Ξ	80	0,00	0,98	2,77	215	360	596	679	402	468	0,22	1,06	0,96	1,25	2,33	1,54
		¥	80	0,05	0,93	2,77	215	360	596	679	402	468	0,18	0,94	0,98	1,01	2,68	1,26
		-	80	0,30	0,68	2,77	215	360	596	679	402	468	0,17	0,56	0,85	0,74	3,00	0,81
			20	0,00	0,93	1,87	225	360	420	500	225	360	0,22	0,95	0,83	1,01	2,65	1,20
		U	20	0,10	0,83	1,87	225	360	420	500	225	360	0,15	0,77	0,79	0,90	2,21	0,95
		Ň	20	0,10	0,83	1,87	225	360	420	500	270	360	0,21	0,84	0,85	0,91	2,49	0,97
		-	20	0,30	0,63	1,87	225	360	420	500	225	360	0,18	0,55	0,90	0,69	2,05	0,76
þt	8	_	20	0,00	0,93	2,65	225	360	596	679	402	468	0,21	1,03	0,92	1,16	2,91	1,44
Na	<u>د</u>	К	20	0,10	0,83	2,65	225	360	596	679	402	468	0,15	0,83	0,80	0,96	2,89	1,04
≿	23	Ν	20	0,30	0,63	2,65	225	360	596	679	402	468	0,16	0,60	0,90	0,76	2,92	0,82
-	S		40	0,00	0,96	1,87	225	360	420	500	225	360	0,16	0,96	0,90	1,06	2,71	1,31
		К	40	0,10	0,86	1,87	225	360	420	500	270	360	0,15	0,80	0,89	0,92	2,57	0,97
		>	40	0,10	0,86	1,87	225	360	420	500	225	360	0,15	0,81	0,90	0,93	2,56	0,98
			40	0,30	0,66	1,87	225	360	420	500	225	360	0,22	0,53	0,92	0,73	2,75	0,79
		=	40	0,00	0,96	2,65	225	360	596	679	402	468	0,18	1,04	0,98	1,22	2,78	1,49
		۲K	40	0,10	0,86	2,65	225	360	596	679	402	468	0,22	0,90	0,80	0,95	2,73	1,03
		^	40	0,30	0,66	2,65	225	360	596	679	402	468	0,17	0,59	0,80	0,75	2,89	0,82
		-	200	0,00	0,99	2,27	185	340	420	500	185	340	0,22	1,16				
		¥	200	0,05	0,94	2,27	185	340	420	500	185	340	0,15	0,94	0,95	1,14		
		>	200	0,30	0,69	2,27	185	340	420	500	185	340	0,24	0,64	0,94	0,75		
		=	200	0,00	0,99	3,22	185	340	596	679	380	442	0,25	1,22				
		X	200	0,05	0,94	3,22	185	340	596	679	380	442	0,23	1,02	0,86	1,20		
		>	200	0,30	0,69	3,22	185	340	596	679	380	442	0,23	0,70	1,00	0,78		

Tabelle F- 7	7: HY-Nähte von	S235.	URI
--------------	-----------------	-------	-----

							Werl	stof	feigen	schat	iten		5		-			
Naht	Werkstoff Ungänzen	estigkeits-klasse	t	h/t	f _{DS}	M _{sg}	G	v	S	G	w	EZ),15 ≤ J _{IC} /J _{EC} ≤ 0,2	f _{Trag}	0,75 ≤ J _{Ic} /J _{EC} ≤ 1,0	f _{Trag}	$2,0 \leq J_{IC}/J_{EC} \leq 3,0$	f _{Trag}
		Ľ					$R_{p0,2}$	\mathbf{R}_{m}	$R_{p0,2}$	R _m	R _{p0,2}	R _m						
			mm	-	-	-			N/n	nm²					-			
		К	80	0,00	0,83	1,95	215	360	420	500	215	360	0,15	0,64	0,79	0,88	2,85	0,98
		>	80	0,20	0,66	1,95	215	360	420	500	215	360	0,15	0,41	0,97	0,69	2,81	0,76
Ħ	₽	<pre>K</pre>	80	0,00	0,83	2,77	215	360	596	679	402	468	0,21	0,83	0,88	0,93	2,97	1,04
Nah	5	Ŵ	80	0,20	0,66	2,77	215	360	596	679	402	468	0,18	0,57	0,90	0,74	2,95	0,82
÷	235	К	40	0,00	0,84	1,87	225	360	420	500	225	360	0,24	0,78	0,76	0,89	2,82	0,95
-	ŝ	×	40	0,20	0,68	1,87	225	360	420	500	225	360	0,20	0,54	0,95	0,71	2,65	0,77
		КШ	40	0,00	0,84	2,65	225	360	596	679	402	468	0,24	0,85	0,88	0,95	2,94	1,09
		Ň	40	0,20	0,68	2,65	225	360	596	679	402	468	0,24	0,66	0,76	0,76	2,23	0,83

Tabelle F- 8: HY-Nähte von S235, URII

			1				14/0	to to f	falme -		1							
		•					vver	KSTOP	reiger	ischa	ten		25		o,		0	
Naht	Werkstoff Ungänzen	stigkeits-klasse	t	h/t	f _{DS}	M _{sg}	G	w	s	G	W	EZ	$15 \leq J_{\rm lc}/J_{\rm EC} \leq 0$	f _{Trag}	$75 \leq J_{\rm lc}/J_{\rm EC} \leq 1$	f _{Trag}	2,0 ≤ J _{IC} /J _{EC} ≤ 3,	frag
		Fe					R _{p0,2}	\mathbf{R}_{m}	R _{p0,2}	R _m	R _{p0,2}	R _m	0		0			
			mm	-	-	-			N/r	nm²					-			
			80	0,00	0,98	1,29	325	470	420	500	325	470	0,22	0,99	0,96	1,10	2,64	1,31
		_	80	0,02	0,96	1,29	325	470	420	500	325	470	0,16	0,95	0,93	1,02	2,86	1,22
		¥	80	0,05	0,93	1,29	325	470	420	500	325	470	0,19	0,92	0,97	0,99	2,97	1,14
		>	80	0,10	0,88	1,29	325	470	420	500	325	470	0,22	0,85	0,82	0,93	2,89	1,02
			80	0,30	0,68	1,29	325	470	420	500	325	470	0,09	0,38	0,93	0,73	2,59	0,80
			80	0,00	0,98	1,83	325	470	596	679	623	718	0,22	1,05	0,92	1,24		
		=	80	0,02	0,96	1,83	325	470	596	679	623	718	0,18	0,97	0,99	1,11	2,80	1,31
		¥	80	0,05	0,93	1,83	325	470	596	679	623	718	0,17	0,93	0,99	1,03	2,77	1,22
		>	80	0,10	0,88	1,83	325	470	596	679	623	718	0,19	0,88	0,99	0,96	2,75	1,08
			80	0,30	0,68	1,83	325	470	596	679	623	718	0,18	0,52	0,94	0,76	2,44	0,82
		-	40	0,00	0,96	1,22	345	470	420	500	345	470	0,16	0,95	0,90	1,01	2,52	1,12
		¥	40	0,05	0,91	1,22	345	470	420	500	345	470	0,15	0,82	0,89	0,95	2,61	1,02
ht	R	>	40	0,30	0,66	1,22	345	470	420	500	345	470	0,15	0,40	0,83	0,68	2,59	0,76
Na	2	=	40	0,00	0,96	1,73	345	470	596	679	623	718	0,23	1,00	0,95	1,11	2,70	1,30
≿	35!	¥	40	0,05	0,91	1,73	345	470	596	679	623	718	0,16	0,81	0,91	1,00	2,35	1,10
т	S	>	40	0,30	0,66	1,73	345	470	596	679	623	718	0,20	0,48	0,99	0,74	2,95	0,81
			20	0,00	0,93	1,22	345	470	420	500	345	470	0,24	0,96	0,97	1,02	2,82	1,14
		¥	20	0,05	0,88	1,22	345	470	420	500	345	470	0,22	0,89	0,99	0,96	2,87	1,05
			20	0,30	0,63	1,22	345	470	420	500	345	470	0,16	0,50	0,75	0,70	2,32	0,77
		=	20	0,00	0,93	1,73	345	470	596	679	623	718	0,22	1,03	0,92	1,18	2,05	1,30
		¥	20	0,05	0,88	1,73	345	470	596	679	623	718	0,19	0,93	0,85	1,06	2,65	1,20
		>	20	0,30	0,63	1,73	345	470	596	679	623	718	0,24	0,63	0,79	0,76	2,80	0,85
		-	200	0,00	0,99	1,47	285	450	420	500	285	450	0,23	1,14				
		¥	200	0,05	0,94	1,47	285	450	420	500	285	450	0,24	0,97	0,85	1,12		
		>	200	0,30	0,69	1,47	285	450	420	500	285	450	0,25	0,69	0,85	0,77		
		=	200	0,00	0,99	2,09	285	450	596	679	623	718	0,23	1,25				
		¥	200	0,05	0,94	2,09	285	450	596	679	623	718	0,25	1,01	0,77	1,15		
		>	200	0,30	0,69	2,09	285	450	596	679	623	718	0,22	0,72	0,84	0,82		

Tabelle F- 9: HY-Nähte von S355, URI

							Werl	stof	feigen	schat	iten		25		0		•	74 0,95 93 0,79 93 0,83 10 0,02		
Naht	Werkstoff Ungänzen	Festigkeits-klasse	t	h/t	f _{DS}	M _{sg}	G	w	s	G	w	EZ	,15 ≤ J _{IC} /J _{EC} ≤ 0,2	f _{Trag}),75 ≤ J _{Ic} /J _{EC} ≤ 1,	f _{Trag}	2,0 ≤ J _{IC} /J _{EC} ≤ 3,0	f _{Trag}		
							$R_{p0,2}$	\mathbf{R}_{m}	$R_{p0,2}$	R _m	$R_{p0,2}$	R _m	0							
			mm	-	-	-			N/r	nm²					-					
		ž	80	0,00	0,83	1,29	325	470	420	500	325	470	0,23	0,72	0,93	0,88	2,74	0,95		
		≥	80	0,20	0,66	1,29	325	470	420	500	325	470	0,23	0,47	1,00	0,72	2,93	0,79		
t	₹	E.	80	0,00	0,83	1,83	325	470	596	679	623	718	0,24	0,81	0,89	0,91	2,93	0,99		
Vah	Ľ	Ž	80	0,20	0,66	1,83	325	470	596	679	623	718	0,25	0,57	0,96	0,75	2,89	0,83		
¦-,	355	Ž	40	0,00	0,84	1,22	345	470	420	500	345	470	0,18	0,68	0,80	0,87	2,18	0,92		
Н	ŝ	Ż	40	0,20	0,68	1,22	345	470	420	500	345	470	0,19	0,46	1,00	0,71	2,62	0,78		
		= ¥	40	0,00	0,84	1,73	345	470	596	679	623	718	0,24	0,79	0,76	0,91	2,74	0,99		
		Ň	40	0,20	0,68	1,73	345	470	596	679	623	718	0,18	0,47	0,80	0,73	2,92	0,82		

Tabelle F- 10: HY-Nähte von S355, URII

						Werkstoffeigenschaften							2				_	
Naht	Werkstoff Ungänzen	Festigkeits-klasse	t h/t f _{DS}		M _{SG}	G	w	S	G	w	EZ	.15 ≤ J _{IC} /J _{EC} ≤ 0,2	frag	',75 ≤ J _{IC} /J _{EC} ≤ 1,	frag	2,0 ≤ J _{IC} /J _{EC} ≤ 3,0	f Trag	
							R _{p0,2}	R _m	R _{p0,2}	R _m	R _{p0,2}	R _m	ó		0			
			mm	-	-	-		-	N/n	۱m²					-			
		_	80	0,00	0,98	1,12	410	550	460	530	410	550	0,21	0,99	0,98	1,10	2,55	1,24
		¥	80	0,05	0,93	1,12	410	550	460	530	410	550	0,22	0,92	0,93	0,99	2,54	1,11
		>	80	0,30	0,68	1,12	410	550	460	530	410	550	0,17	0,49	0,96	0,74	2,54	0,82
		VK II	80	0,00	0,98	1,45	410	550	596	679	615	715	0,22	1,03	0,88	1,16	2,40	1,27
			80	0,05	0,93	1,45	410	550	596	679	615	715	0,24	0,93	1,00	1,02	2,54	1,14
		>	80	0,30	0,68	1,45	410	550	596	679	615	715	0,20	0,49	0,86	0,71	2,54	0,82
		-	20	0,00	0,93	1,05	440	550	460	530	440	550	0,23	0,92	0,96	0,98	2,76	1,06
		WK	20	0,10	0,83	1,05	440	550	460	530	440	550	0,16	0,73	0,91	0,87	2,79	0,94
			20	0,30	0,63	1,05	440	550	460	530	440	550	0,23	0,55	0,92	0,68	2,98	0,75
		WK II	20	0,00	0,93	1,35	440	550	596	679	615	715	0,20	0,94	0,92	1,06	2,68	1,13
Ħ	R		20	0,10	0,83	1,35	440	550	596	679	615	715	0,15	0,74	0,94	0,92	2,12	0,96
Nal			20	0,30	0,63	1,35	440	550	596	679	615	715	0,24	0,58	0,78	0,70	2,80	0,78
₹	160	_	40	0,00	0,96	1,05	440	550	460	530	440	550	0,20	0,95	0,96	1,01	2,68	1,09
Т	ν δ	XX	40	0,10	0,86	1,05	440	550	460	530	440	550	0,15	0,68	0,90	0,90	2,87	0,96
		>	40	0,30	0,66	1,05	440	550	460	530	440	550	0,15	0,43	0,92	0,70	2,84	0,76
		=	40	0,00	0,96	1,35	440	550	596	679	615	715	0,24	0,99	0,81	1,06	2,93	1,17
		¥	40	0,10	0,86	1,35	440	550	596	679	615	715	0,16	0,62	0,92	0,92	2,76	0,98
		5	40	0,30	0,66	1,35	440	550	596	679	615	715	0,16	0,47	0,90	0,70	2,63	0,78
		-	200	0,00	0,99	1,24	370	530	460	530	370	530	0,24	1,14				
		¥	200	0,05	0,94	1,24	370	530	460	530	370	530	0,24	0,99				
		>	200	0,30	0,69	1,24	370	530	460	530	370	530	0,24	0,69				
		=	200	0,00	0,99	1,61	370	530	596	679	593	689	0,23	1,21				
		¥	200	0,05	0,94	1,61	370	530	596	679	593	689	0,22	1,00				
		5	200	0,30	0,69	1,61	370	530	596	679	593	689	0,21	0,63				

Tabelle F- 11: HY-Nähte von S460, URI

							Wer	kstof	feigen	schat	iten		ß		-			≤ J _{IC} /J _{EC} ≤ 3,0 f _{Trag}				
Naht	Werkstoff Ungänzen	estigkeits-klasse	t	h/t	f _{DS}	M _{sg}	GW		SG		WEZ		$,15 \leq J_{\rm lc}/J_{\rm EC} \leq 0,2$	fTrag	0,75 ≤ J _{Ic} /J _{EC} ≤ 1,(f _{Trag}	2,0 ≤ J _{Ic} /J _{Ec} ≤ 3,(f _{Trag}				
		щ					$R_{p0,2}$	\mathbf{R}_{m}	R _{p0,2}	R _m	$R_{p0,2}$	R _m	0)							
			mm	-	-	-			N/r	nm²					-							
		WK I	80	0,00	0,83	1,12	410	550	460	530	410	550	0,15	0,69	0,77	0,87	2,48	0,95				
			80	0,20	0,66	1,12	410	550	460	530	410	550	0,17	0,47	0,91	0,71	2,58	0,78				
Ŧ	I	E	80	0,00	0,83	1,45	410	550	596	679	615	715	0,23	0,80	0,77	0,90	2,55	0,98				
Vah	'n	AN I Y	80	0,20	0,66	1,45	410	550	596	679	615	715	0,22	0,57	0,79	0,73	2,52	0,82				
Σ	460		40	0,00	0,84	1,05	440	550	460	530	410	550	0,19	0,73	0,86	0,86	2,75	0,91				
т	Ň	≥	40	0,20	0,68	1,05	440	550	460	530	410	550	0,24	0,54	0,96	0,70	2,88	0,76				
		×	40	0,00	0,84	1,35	440	550	596	679	615	715	0,16	0,63	0,93	0,91	2,64	0,97				
		Š	40	0,20	0,68	1,35	440	550	596	679	615	715	0,18	0,50	0,84	0,73	2,98	0,82				

Tabelle F- 12: HY-Nähte von S460, URII

Ergebnisse von Bauteilversuchen bei tiefen Temperaturen

Tabellen- und Bildverzeichnis:

Tabelle G-1	· Ergebnisse der	Tieftemperatur	versuche	205
	. Ligouinose dei	rentemperatur	vorbuene	

Bild G-1: Kraft-Weg Verläufe in den Tieftemperaturversuchen	
Bild G-2: Bruchflächen und Schliff der Proben BW1 und BW2	
Bild G-3: Bruchflächen und Schliff der Proben BW3 und BW4	

	t	h _{Bruch} 1)	ΣWbf ¹⁾	ΣDef ¹⁾	Breite I	F _{max}	ΔL _{pl} ²⁾ bei F _{max}	T _o ³⁾	T ₁ ³⁾	f _{DS} = (h _{Bruch} -ΣWbf-ΣDef) / t
			mm			kN	mm	o	С	-
BW1		63,7	6,0	4,0	34,9	830	22	-55	-44	0,97
BW2	EE 1	64,8	14,7	6,5	31,1	596	6	-65	-50	0,79
BW3	55,1	69,7	15,0	0,0	32,2	760	17	-63	-47	0,99
BW4		62,2	7,5	4,0	33,6	685	8	-69	-55	0,92

1) Diese Größen wurden in der Bruchfläche an 3 äquidistant über die Probenbreite I verteilten Stellen gemessen.

2) Die freie Länge L des Prüfkörpers zwischen den Spannbacken betrug 250mm.

3) $\mathrm{T_{o}}$ wurde unmittelbar vor Versuchsbeginn auf der Oberfläche des 80mm dicken Bauteils

angrenzend an die Naht gemessen. T $_1$ wurde nach dem Versagen an gleicher Stelle gemessen.

Bild G-1: Kraft-Weg Verläufe in den Tieftemperaturversuchen

Bild G-2: Bruchflächen und Schliff der Proben BW1 und BW2

Bild G-3: Bruchflächen und Schliff der Proben BW3 und BW4