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Abstract.

A fully covariant description, based on the consideration of contact conditions

especially for the 2D case is proposed. The description is based on a reconsider-
ation of contact kinematics and all necessary operations such as derivatives in

a specially chosen curvilinear coordinate system based on a curved geometry in
plane. In addition, details of the finite element implementation are presented
for the simple linear contact element. Special cases, requiring the update of

history variables as well as their careful transfer over the element boundaries
are illustrated by numerical examples. With these procedures artificial jumps

in the contact forces can be avoided.
Keywords. covariant description, contact problem, friction

1 INTRODUCTION

In the literature various contact descriptions for an effective finite element im-

plementation are available, which can be basically characterized by the fol-
lowing: from 2D to 3D formulations, from non-frictional to frictional contact.

Some major references are cited in the following: Wriggers et. al. [23] used
an elasto-plastic analogy and the penalty regularization for 2D frictional prob-
lems restricted to piecewise linear contact elements. Parisch [14] considered

non-frictional 3D contact and Parisch and Lübbing (1997) [15] revised the pro-
cedure for frictional contact within the penalty method for piecewise bilinear

surface elements. Peric and Owen [16] used the penalty method for 3D frictional
contact problems with small deformations. The main characteristics of the cited

investigations are that the penalty functional as well as its linearization were
considered in a global coordinate system and restricted to linear resp. bilinear

surface elements. Laursen and Simo [9], however, formulated the penalty based
contact conditions and the return mapping algorithm via convective surface
coordinates, but the following linearization performed in the global coordinate

system led to an artificial non-symmetry of the tangent matrix in the case of
sticking. Wriggers [26] could overcome this artefact using the idea of mesh tying

functionals. General overviews over contact conditions and contact algorithms
which are nowadays used in practice, are covered by the books of Wriggers [26]
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and Laursen [10], while the theoretical aspects of the regularization methods

in contact mechanics can be found in Kikuchi and Oden [5]. Beyond that the
covariant description proposed in Konyukhov and Schweizerhof [6], [7] allows

a unified description of contact problems within the penalty method indepen-
dently of the surface discretization. The method contains rather complicated

mathematical transformations in the local 3D coordinate system, however, fi-
nally leading to the consistent formulation of frictional contact. Some advan-
tages of this approach were shown, e.g. the sticking matrix preserves necessarily

its symmetry.
In the current contribution, we aim to present the development in a more

simple comparative manner for both 2D and 3D formulations. We will show
the unity of 2D and 3D formulations, where the 2D case can be derived, from

one hand, as a simplified case of the particular 3D geometry of contact surfaces
and, from the other hand, can be constructed separately based on the differential
geometry of 2D plane curves. This consideration has additional advantages, e.g.

the subdivision of the contact tangent matrices into the ”main”, the ”rotational”
part and the ”curvature”part has a pure geometrical meaning. It is also possible

to distinguish a-priori various cases, where some of the parts are necessary or
can be omitted.

The article is organized as follows. We start with 2D kinematics based on a
curved geometry in a plane. The main results concerning the 3D covariant de-

scription can then be presented without extensive involvement into mathemat-
ics. For further details of the 3D description we refer to [7]. Two-dimensional
contact will also be considered separately in 2D as well as a reduction of the

3D developments. In addition, we will compare to known formulations and
present some numerical examples. A particular focus is on problems concern-

ing contact points traversing edges of contact segments and on problems with
reversible loading.

2 Geometry and Kinematics of Contact

Considering a special contact case – contact between two cylindrical infinite

bodies with plane strain deformations, see Fig. 1, leads to a definition of a 2D
contact. In this case a generatrix GH of the first cylindrical body is a contact

line and corresponds to a contact line G’H’ which is also a generatrix but of the
second cylindrical body. Thus, 3D contact which can be seen as an interaction
between two surfaces is reduced to an interaction between two boundary curves

in the 2D case, see Fig. 2. One of boundary curves is chosen as the master curve.
A coordinate system is considered on the boundary, either for a surface in 3D or
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for a curve in 2D. Thus contact occurs or two bodies are coming into contact, if
a slave point belonging to the second body S penetrates into the master body,

where penetration is defined as the shortest distance between the surfaces of
the two bodies. For simplicity we assume now that the parameterization of the

boundaries is sufficiently smooth.

2.1 Nomenclature of the used symbols

Throughout the article a tensor notation with regard to both, surface and curve

geometry, are used, therefore, a short notation used in the contribution is pro-
vided:

ξ – arbitrary parameterization of a curve, convective coordinate.
ζ – the normal coordinate for 2D bodies, if the description is based on a

cylindrical geometry. The value ζ describes the penetration.
s – length parameterization of a curve.
rs – position vector of the master point.

ρ(ξ) – position vector of the projection point.
ρξ, ρξξ – the first resp. second derivative of the position vector in the case of

an arbitrary parameterization.
τ – tangent normal vector in the case of the length parameterization of the

curve.
ν – normal vector in the case of both, arbitrary and length parameterizations

of the curve.
aij, hij – components of the metrics resp. of the curvature tensor in the case

of an arbitrary parameterization of the curve.

For geometrical applications of the covariant derivation we refer to [1], and
for mechanical applications to [11].

2.2 Definition of penetration. Closest point procedure.

Let the boundary of the master body be a smooth curve, parameterized by the

parameter ξ: ρ = ρ(ξ). The vector rs describes the location of a slave point S,
see Fig. 2. Then the problem to find the shortest distance between the curve
ρ(ξ) and the slave point S is defined via the minimum of the function:

F := ‖rs − ρ(ξ)‖ −→ min . (1)

The necessary condition for the minimum is the requirement of the first
derivative to be zero:
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F ′ = (rs − ρ(ξ)) · dρ

dξ
= 0. (2)

Eqn. (2) is identical to the orthogonality condition between the vector rs −
ρ(ξ) and the tangent vector

dρ

dξ
≡ ρξ, and serves to define a projection point C,

see Fig. 2. The solution can be obtained e.g. by an iterative Newton scheme.
For the latter the second derivative is necessary:

F ′′ = (rs − ρ(ξ)) · d2
ρ

dξ2
− dρ

dξ
· dρ

dξ
, (3)

which is finally shown to be positive to specify the minimum distance. The

iterative scheme is then defined as:







∆ξ = −F ′/F ′′ = −
(rs − ρ) · ρξ

(rs − ρ) · ρξξ − (ρξ · ρξ)

ξ(n+1) = ξ(n) + ∆ξ

. (4)

We will show in the finite implementation section, that for a 2D contact
element with a linear approximation the general iterative scheme is reduced to

an exact definition of the projection point.

2.3 2D contact kinematics

In the 2D case contact bodies are bounded by plane curves, therefore, one can

take advantage of their geometry. The geometrical properties of the contact
quantities can be defined in a very straightforward manner, if we use the natural

parameter length, i.e. ρ = ρ(s) with s = s(ξ). On the plane we define a
curvilinear coordinate system associated with the curve by introducing two

principal vectors as a basis: the tangent vector ρξ =
∂ρ

∂ξ
and the unit normal

vector ν

rs(ξ, ζ) = ρ(ξ) + ζν(ξ). (5)

Looking at the following implementation of the algorithm in a FE program,
the introduction of a natural parameter s would lead to additional numerical

effort, because the length of a boundary is changing during deformation. Thus,
we will only show the geometrical properties using the parameter s, whereas
for a finite element implementation we then turn to the Lagrangian coordinate

ξ. As the local coordinate system is associated with the slave point S, then
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Figure 1: Two dimensional contact as a special case of three dimensional contact – contact between cylindrical
surfaces with parallel axes Z. Local surface coordinate system on smooth master contact surface.

Figure 2: Two dimensional contact. Definitions. Contact boundaries are smooth curves in 2D.

the closest point procedure eqn. (2) is already fulfilled by this definition. The
second coordinate ζ is an exact (not scaled!) value of penetration often also

known as gap and used for the formulation of the non-penetrability condition.
The normal unit vector ν in the case of arbitrary Lagrangian parameteriza-

5



tions with ξ can be defined via a cross product in a Cartesian coordinate system
as:

ρξ =
∂ρ

∂ξ
; =⇒ ν =

[k× ρξ]√
ρξ · ρξ

, (6)

where k is the third unit vector in this Cartesian coordinate system. The
definition of the normal vector in eqn. (6) comes from the standard definition

of the surface unit normal for cylindrical surfaces, see the contact between
cylinders in Fig. 1, as

ν =
[r̂1 × r̂2]

|[r̂1 × r̂2]|
, r̂1 = ρξ, r̂2 = k, (7)

where r̂2 is a unit vector of the cylinder generatrix. The definition in eqn. (6)

gives a set of covariant basis vectors ρξ, k for a cylindrical surface. The surface
metric tensor can then be defined by the following matrix aij :

[aij] =

[
(ρξ · ρξ) 0

0 1

]

(8)

This matrix allows to define a contravariant basis for the cylindrical surface
ρ

1, ρ2, where only the first vector is changing its length:
(

ρ
1

ρ
2

)

=

[
(ρξ · ρξ) 0

0 1

]−1 (
ρξ

ν

)

=⇒ ρ
1 =

ρξ

(ρξ · ρξ)
, ρ

2 = ν. (9)

We note here, that the dot product of the covariant basis with the contravari-
ant basis ρ

1, ρ2 leads to a unit matrix (a mixed metrics tensor):

[aj
i ] = [(ρi · ρj)] =

[
1 0

0 1

]

. (10)

2.3.1 Derivatives of the basis vectors

Derivatives of the covariant basis vectors ρξ and ν are necessary for the further

formulation and for the linearization. The derivative of the tangent vector ρξ

can be expressed via the covariant basis vectors

ρξξ :=
∂ρξ

∂ξ
= Γρξ + h11ν, (11)

where Γ and h11 are defined after taking a scalar product of eqn. (11) with ρξ

and ν:
Γ =

ρξξ · ρξ

ρξ · ρξ

, h11 = ρξξ · ν. (12)
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In order to compute the derivative of the unit normal ν, first, we have to
take the derivative of the following identity:

∂

∂ξ
(ν · ν = 1) =⇒ ∂ν

∂ξ
· ν = 0, (13)

which leads to the orthogonality condition of the vectors ν and
∂ν

∂ξ
. Thus, this

derivative can be expressed via the tangent vector ρξ as:

νξ = aρξ. (14)

Then the scalar a is obtained after taking the dot product of eqn. (14) and ρξ:

a = (νξ · ρξ)/(ρξ · ρξ) = −(ρξξ · ν)/(ρξ · ρξ). (15)

The last equation is obtained via the derivative of the equation ρξ · ν = 0.

Finally, we get

νξ = −
(ρξξ · ν)

(ρξ · ρξ)
ρξ = −h11

a11
ρξ. (16)

In eqns. (12) and (16) the scalar value h11 = (ρξξ·ν) is a curvature coefficient and

a11 = (ρξ ·ρξ) a metric coefficient for a cylindrical surface. Eqn. (16) represents
the Weingarten formula and eqn. (11) resp. the Gauss-Codazzi formula for a
cylindrical surface. Now, we can obtain the basis vectors for the coordinate

system in eqn. (5):

r1 =
∂r

∂ξ
= (1 − h11

a11
ζ)ρξ,

r2 = ν.
(17)

The geometrical properties in 2D contact are easily found, if they are recon-
sidered from the plane curve geometry with a natural parameterization. This
parameterization is based on a length parameter s, i.e. ρ = ρ(s). The length

s represents then the full path length passed by the projection point C on the
master curve during contact interaction, see Fig. 2. The tangent vector τ in

this case has a unit length

τ =
dρ

ds
. (18)

The relation between the parameter ξ and the length parameter s is defined as:

ds =
√

(ρξ · ρξ)dξ. (19)

For the plane curve in natural parameterization the Serret-Frenet formu-

lae are used to define derivatives of the basis vectors in analogy to eqns. (11) and (16):

dτ

ds
= κν;

dν

ds
= −κτ , (20)
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where κ is a curvature of the curve. In this case the normal unit vector ν is
defined from eqn. (20) and is pointing into the convex part of a body. Then

the curvature κ can be computed from eqn. (20) by premultiplying the first
equation with ν and taking the chain rule into account:

κ =
dτ

ds
· ν =

(ρξξ · ν)

(ρξ · ρξ)
=

h11

a11
. (21)

2.3.2 Covariant derivative of a tangent vector T.

We define a tangent vector field T – later taken as a friction force – as a covariant

vector field in the spatial coordinate system:

T(ξ) = T (ξ)r1|ζ=0 = T (ξ)ρ1 = T (ξ)
ρξ

(ρξ · ρξ)
. (22)

The definition in the form of eqn. (22) has the advantage that the weak form

– used later – becomes rather simple. The absolute value of the covariant vector
eqn. (22) is computed as:

‖T(ξ)‖ =
|T (ξ)|
‖ρξ‖

=
|T (ξ)|√

a11
. (23)

The full time derivative of this vector field is determined taking the changing

metric into account and then considering its value at ζ = 0:

dT

dt
|
ζ=0

=












(
∂T

∂t
+

∂T

∂ξ
ξ̇

)

︸ ︷︷ ︸

dT

dt

r1 + T

(

ξ̇
∂r1

∂ξ
+ ζ̇

∂r1

∂ζ
)

)












ζ=0

. (24)

The derivative is expressed then via the contravariant basis vectors as ρ
1, ρ

2

dT

dt
|
ζ=0

=
D1T

dt
ρ

1 +
D2T

dt
ρ

2.

Here a full time derivative in the covariant form is introduced. Its value on the

tangent line is computed using the scalar product with ρξ as (see Appendix):

D1T

dt
:=

(
dT

dt
· ρξ

)

ζ=0

=
dT

dt
−

ρξξ · ρξ

(ρξ · ρξ)
ξ̇ +

h11

a11
ζ̇ . (25)

The second term on the right hand side contains the Christoffel symbol and the
last term contains the curvature for a cylindrical surface.
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2.3.3 Convective velocities

An important part for the formulation as well as for the linearization of the

weak form is a time derivative of the vector of a slave point S in eqn. (5)

drs

dt
=

∂ρ

∂t
+ ξ̇ρξ + ζ

(
∂ν

∂t
+ ξ̇

∂ν

∂ξ

)

+ ζ̇ν. (26)

With vs =
drs

dt
as the absolute velocity of the slave point S resp. v =

∂ρ

∂t
as

the velocity of its projection on the master surface. The dot product with the

normal vector ν leads to the rate of the penetration

ζ̇ = (vs − v) · ν. (27)

Considering a value of the convective tangent velocity ξ̇ on the tangent line, i.e.
at ζ = 0, we need the dot product of eqn. (26) with ρξ:

ξ̇ =
(vs − v) · ρξ

(ρξ · ρξ)
. (28)

In the case of a length parameterization with s = ξ, eqn. (28) leads to the
following convective velocity ṡ:

ṡ = (vs − v) · τ . (29)

From the kinematical equation (26) we can obtain an equation for the vari-
ations by changing the time derivative operator into the variation operator δ.

This equation is also considered on the tangent line, i.e. at ζ = 0:

δrs − δρ = δξρξ + δζν. (30)

Eqn. (30) gives a variation of the displacement field for the expression of the

virtual work of contact tractions on the contact surface.

2.3.4 Evolution equations for contact tractions

The evolution equations can be regarded as rate equations for the contact trac-
tions. The contact traction vector Rs is defined for the slave point s in the local

coordinate system on the master curve in the covariant form as:

Rs = Tρ
1 + Nρ

2 = T + Nρ
2 = T

ρξ

(ρξ · ρξ)
+ Nν. (31)

For the normal traction N , the following regularized equation is applied

N = εN〈ζ〉, (32)
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where εN is a penalty parameter for the normal interaction and 〈〉 are Macauley

brackets in the form

〈ζ〉 =

{
0, if ζ > 0
ζ, if ζ ≤ 0

.

According to eqn. (27), the rate of a normal traction can be computed as

Ṅ = εN ζ̇H(−ζ) = εNH(−ζ)(vs − v) · ν, (33)

where H(−ζ) is the Heaviside function.
As a reasonable equation for the regularization of the tangent traction vector

T we choose a proportional relation between the full time derivative
dT

dt
and

the relative velocity vector expressed on the tangent line ζ = 0:

D1T

dt
ρ

1 = −εT ξ̇ρξ, (34)

in component form written as

D1T

dt
= −εT ξ̇(ρξ · ρξ), (35)

where εT is a penalty parameter for the tangential interaction. Applying the

results from eqn. (25) leads to the evolution equations in the form of covariant
derivatives:

dT

dt
= −εT (ρξ · ρξ)ξ̇ +

ρξξ · ρξ

(ρξ · ρξ)
ξ̇ − h11

a11
ζ̇ . (36)

which is used to compute a trial tangent traction.

3 Weak formulation in the spatial coordinate system.

Next we consider the contact tractions Rs and Rm on both the slave and the
master contact curves with corresponding lengths ls and lm in the current con-

figuration. Let δus resp. δum be variations of the displacement field on the
curves ls resp. lm, then the work of the contact forces is determined in the

following integral

δWc =

∫

ls

Rs · δusdls +

∫

lm

Rm · δumdlm, (37)

which must be added to the global work of the internal and external forces.
Due to equilibrium at the contact boundary Rsdls = −Rmdlm, equation (37)

can be also written as
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δWc =

∫

ls

Rs · (δus − δum)dls. (38)

The integral in (38) is considered in the local coordinate system. We redefine
now the variations δus = δrs for a slave point and δum = δρ for a projection of

the slave point onto the master curve.
Substituting the variation δus − δum = δrs − δρ from eqn. (30) and also the

full contact traction vector eqn. (31) into the integral (38) we obtain

δWc =

∫

l

(Nδζ + Tδξ)dl. (39)

A closer look reveals that the contact integral (39) contains the work of the
contact tractions T and N defined on the master contact curve and is computed

along the slave curve l ≡ ls.

4 Linearization process.

Here, we show the derivation of the normal contact matrices using the geometry
of plane curves. For all other results, we give a sketch of the linearization

procedure with a comparative discussion of results available in the literature,
in order to avoid the repetition of complicated mathematics.

4.1 Necessary operations. Linearization of convective variations.

Since in the contact integral the linearization of the contact tractions is directly

given by the evolution equations, it is only necessary to find derivatives of the
convective variations δζ and δξ to fulfill all steps in the preparation for further
forms.

4.1.1 Linearization of δζ.

The result will be obtained assuming a natural parameterization of the corre-
sponding boundary curve.

d

dt
δζ =

d

dt
[(δrs − δρ) · ν] =

=
∂(δrs − δρ)

∂s
· νṡ + (δrs − δρ) · ∂ν

∂t
+ (δrs − δρ) · ∂ν

∂s
ṡ. (40)
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The first term can be rewritten, taking into account eqn. (29) for a convective

velocity in the case of a natural parameterization, as follows:

δ
∂(rs − ρ)

∂s︸ ︷︷ ︸
−τ

·ν ṡ = −(δτ · ν) ((vs − v) · τ )
︸ ︷︷ ︸

ṡ

= −δτ · (ν ⊗ τ )(vs − v). (41)

In order to rewrite the second term, we have to take first a partial time
derivative of the orthogonality condition:

τ · ν = 0 =⇒ ∂(τ · ν)

∂t
=

∂2
ρ

∂s∂t
· ν +

∂ν

∂t
· τ = 0, (42)

leading to the expression
∂ν

∂t
· τ = −∂v

∂s
· ν. (43)

From the other side, using the unity condition of the vector ν, we can express the
time derivative in terms of the tangent vector τ by analogy to eqns. (14), (15),

as
∂ν

∂t
= aτ = (τ · ∂ν

∂t
)τ (44)

and substituting eqn. (43) we obtain

∂ν

∂t
= −

(
∂v

∂s
· ν

)

τ . (45)

Eqn. (45) allows to transform the second term in eqn. (40) as follows

(δrs − δρ) · ∂ν

∂t
= −(δrs − δρ) ·

(
∂v

∂s
· ν

)

τ = (46)

introducing a tensor product τ ⊗ ν in order to transform a dot product

= −(δrs − δρ) · (τ ⊗ ν)
∂v

∂s
= −(δrs − δρ) · (τ ⊗ ν)

∂τ

∂t
. (47)

The last term in eqn. (47) is obtained reversing the order of differentiation as

∂v

∂s
=

∂

∂s

∂ρ

∂t
=

∂

∂t

∂ρ

∂s
=

∂τ

∂t
. (48)

The third term in (40) is reorganized into a tensor form with a second Serret-

Frenet formula and with equation (29) for the convective velocity ṡ:

(δrs − δρ) · ∂ν

∂s
ṡ = −(δrs − δρ) · κτ ⊗ τ (vs − v). (49)

Therefore, combining eqn. (41), (46) and (49), we obtain a final formula for

the linearization of δζ:

d

dt
δζ = −

(

δτ · ν ⊗ τ (vs − v) + (δrs − δρ) · τ ⊗ ν
∂τ

∂t

)

−(δrs−δρ)·κτ⊗τ (vs−v).

(50)
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4.1.2 Linearization of the convective variation δξ.

The linearization of the convective variations δξ i in a 3D formulation is the

most complicated part of the process. First, see Parisch [14], Laursen and
Simo [9], Wriggers [24] the convective variations δξ i were introduced via an

iterative Newton scheme, see eqn. (4). A kinematical definition of δξ i can be
found in the books of Wriggers [26] and Laursen [10]. The full linearization

of these terms combined with the contact integral defined only on the surface
led to an artificial non-symmetry of the tangent matrix for the sticking case,
which was mentioned in Laursen and Simo [9]. Wriggers [26] could avoid this by

looking at it as a mesh tying procedure. In [7] the variations of δξ i were defined
kinematically and expressed on the tangent plane of the contact surface. In

addition, the linearization process was performed in the covariant form on the
tangent plane. For the sticking case this leads directly to a symmetric matrix

and allows to avoid the artificial non-symmetry.
Here only the main points of the linearization process are depicted, for the

full derivation we refer to [7].

1. The convective variations are defined on the tangent plane of the spatial

coordinate system via consideration of the slave point velocity as ξ̇j =
aij(vs − v) · ρi.

2. During the linearization of δξi the derivative of the metric tensor is obtained

as derivative of the spatial metric tensor considering its value on the tangent
plane.

The final result for the 3D case is then:

d

dt
(δξi) =

= −(δrs − δρ) ailajk
ρk ⊗ ρl vj − δρ,j aikajl

ρk ⊗ ρl (vs − v) (51a)

+hij(δrs − δρ) ·
(
ρj ⊗ n + n⊗ ρj

)
(vs − v)+ (51b)

+hi
nξ̇

3δξn − Γi
kj ξ̇

jδξk. (51c)

The reduction into the specific plane geometry in the current contribution
leads to:

d

dt
(δξ) =

= −
(δrs − δρ) · ρξ ⊗ ρξ vj + δρξ · ρξ ⊗ ρξ (vs − v)

(ρξ · ρξ)
2

(52a)
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+
(ρξξ · ν)

(ρξ · ρξ)
2
(δrs − δρ) ·

(
ρξ ⊗ ν + ν ⊗ ρξ

)
(vs − v)+ (52b)

+
h11

a11
ζ̇δξ −

ρξξ · ρξ

(ρξ · ρξ)
ξ̇δξ. (52c)

The non-symmetric part in eqn. (52c) is intentionally kept in untransformed
form, because it will give a zero in sum with similar terms in the evolution
equation (36) during the forthcoming linearization.

4.2 Tangent matrices

We derive the tangent matrix for the normal part in the case of a natural
parameterization. In order to avoid the complexity for the sticking – sliding

cases for the tangential part, the derivation is given as a reduction of the 3D
case.

4.2.1 Tangent matrix for the normal part

The normal part is defined by the following integral:

δWN
c =

∫

l

Nδζdl. (53)

The integral is computed over the slave surface l, while all functions are

defined on the master surface. Thus, a linearization of dl is not necessary
within the process:

D(δWN
c ) =

∫

l

(
dN

dt
δζ + N

dδζ

dt

)

dl =

then the application of eqn. (33) and eqn. (50) leads to

=

∫

l

εN(δrs − δρ) · (ν ⊗ ν)(vs − v)dl− (54a)

−
∫

l

εNζ

(

δτ · (ν ⊗ τ )(vs − v) + (δrs − δρ) · (τ ⊗ ν)
∂τ

∂t

)

dl− (54b)

−
∫

l

εNζκ(δrs − δρ) · (τ ⊗ τ )(vs − v)dl. (54c)

Remark.

The contact matrix obtained via eqn. (54) is computed only for the case ζ < 0
– this simplification allows us to exclude the usage of the Heaviside function.
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The form in natural coordinates allows a simple geometrical interpretation
of each part in eqn. (54) and even allows to determine situations where some

of them are zero. The first part eqn. (54a) is called main part and defines the
constitutive relation for normal contact conditions. The second part eqn. (54b)

is called rotational part and defines the geometrical stiffness due to the rotation
of the tangent vector of the master curve. It disappears when a master segment
is moving in parallel, because only in this case the derivative of a unit vector

τ becomes zero, see Fig. 2. The third part eqn. (54c) is called curvature part.
This part disappears when the curvature κ of a master segment is zero, i.e. in

the case of linear approximations of the master segment.

4.2.2 Tangent matrix for tangential traction

The part of the contact integral which includes the effect of the tangential
interaction is given as:

δW T
c =

∫

l

Tδξdl (55)

The linearized equation has to be subdivided into a part for sticking and another

part for sliding, which differ concerning the return-mapping scheme.

Sticking. In this case, the tangential force T has to be computed from the so-

lution of the evolution equation eqn. (36), e.g. via the backward Euler scheme.
The simplest case with linear approximations will be presented in the following

section concerning the finite element implementation.
Sticking is fulfilled according to Coulomb’s friction law, i.e. the inequality

‖T‖ ≤ µ|N | has to be valid in each load step. The linearized contact integral
has then the following form:

Dv(δW
T
c ) =

∫

l

(
dT

dt
δξ + T

dδξ

dt

)

dl =

−
∫

l

εT

(ρξ · ρξ)
(δrs − δρ) · ρξ ⊗ ρξ(vs − v)dl (56a)

−
∫

l

T

(ρξ · ρξ)
2

[
(δrs − δρ) · ρξ ⊗ ρξ vξ + δρξ · ρξ ⊗ ρξ (vs − v)

]
dl (56b)

+

∫

l

Th11

(ρξ · ρξ)
2
(δrs − δρ) ·

(
ρξ ⊗ ν + ν ⊗ ρξ

)
(vs − v)dl. (56c)

15



Sliding. If sliding is detected, i.e. if ‖T‖ > µ|N |, then the sliding force is

computed according to Coulomb’s friction law. We also keep a covariant form:

T sl = µ|N | Ttr

‖Ttr‖
= µ|N | ‖ρξ‖sgn(Ttr), (57)

with
‖ρξ‖ = (ρξ · ρξ)

1/2 =
√

a11.

The linearized contact integral gets the following form:

Dv(δW
T
c ) =

−
∫

l

εNµ sgn(Ttr)

(ρξ · ρξ)
1/2

(δrs − δρ) · (ρξ ⊗ ν)(vs − v)dl (58a)

−
∫

l

µ|N | sgn(Ttr)

(ρξ · ρξ)
3/2

(
(δrs − δρ) · ρξ ⊗ ρξ vξ + δρξ · ρξ ⊗ ρξ (vs − v)

)
dl (58b)

+

∫

l

µh11|N | sgn(Ttr)

(ρξ · ρξ)
3/2

(δrs − δρ) ·
(
2ρξ ⊗ ν + ν ⊗ ρξ

)
(vs − v)dl. (58c)

The non-symmetric part eqn. (58c) now is resulting from the last term of the
evolution equation (36).

Remark:

The derivations for the two dimensional case allow to describe all parts of the
tangent matrix and to find all cases, when some of them become zero. The

main parts, eqns. (56a) and (58a), the so-called constitutive parts, contain a
penalty parameter and describe the stiffness of the contact interaction due to

the chosen interface model. This is based on an allowable elastic deformation
due to the regularization in the case of sticking resp. due to the applied sliding
force µ|N | in the tangential direction in the case of sliding. The rotational

parts eqns. (56b) and (58b), contain a metric coefficient a11 = (ρξ · ρξ) and
a vector ρξ. A metric coefficient is a measure of the tensile deformation of

the contact master line, e.g. a component of the Cauchy-Green tensor for the
contact line can be written as ε11 = (a11 − 1)/2. The vector ρξ is a measure

of the rotation of the master segment, which becomes obvious if the length is
chosen as a coordinate s = ξ. In this case we find δρξ = δτ and vξ = ∂τ

∂t . The

vector τ is a unit vector, therefore the vectors δτ and ∂τ
∂t are describing the

rotation of the unit vector τ (see Fig. 2). It is identical to zero only in the case
of parallel motions. Thus, the rotational part is obviously negligible in the case

of small deformations and small rotations of the master line. The curvature
parts eqns. (56c) and (58c) describe the stiffness of the contact interaction due

to the curvature of the contact surface. If the surface has zero curvature or is
approximated by linear elements, then the curvature part becomes zero.
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5 Finite element implementation

The structure of all parts of the tangent matrix is algorithmic. It is sufficient

for the discretization to define only approximations of a relative displacement
vector (rs − ρ) and its derivative with respect to ξ. Following the standard

iso-parametric technique as for finite elements, we consider a contact surface
element with the same order of approximation for the geometry as for the

displacement field. The boundary curve can be given with any curve description
(spline, NURB, etc.). For simplicity, we consider only the node-to-segment

contact approach. Let a boundary curve or a master segment of it be defined
by n nodes with x(1),x(2), ...,x(n); and x(n+1) for a slave node. A standard
grouping of a displacement vector can then be written as

uT = {u(1)
1 , u

(1)
2 , u

(2)
1 , u

(2)
2 , ..., u

(n)
1 , u

(n)
2 , u

(n+1)
1 , u

(n+1)
2 }T , (59)

where the first n nodes resp. 2n displacements belong to the master surface,

while the (n+1)’th term is belonging to the ”slave”node resp. is describing the
”slave” displacements.

We introduce a matrix of shape functions A

A =

[
−N1 0 0 −N2 0 0 ... −Nn 0 1 0

0 −N1 0 0 −N2 0 ... 0 −Nn 0 1

]

, (60)

where Ni, i = 1, 2, ..., n are shape functions. The matrix of the derivatives of

the shape functions A′ is defined then as

A′ = −
[

N ′
1 0 0 N ′

2 0 0 ... N ′
n 0 0 0

0 N ′
1 0 0 N ′

2 0 ... 0 N ′
n 0 0

]

, (61)

The relative vector of variations (δrs − δρ) and the relative velocity vector
(vs − v) are then written as

δrs − δρ = Aδu , vs − v = Au̇ , (62)

where u̇ is the nodal velocity vector. With the matrix of the derivatives A′ e.g.
a derivative δρξ of a vector δρ can be defined as

δρξ = −A′δu. (63)

We note that the matrices A and A′ are sufficient to build the tangent ma-
trices as well as the residual vector for any arbitrary contact surface.

5.1 Linear contact element.

The simplest approximation is a linear contact element within the node-to-
segment approach. This linear contact element has 3 nodes: the first two nodes

17



x1,x2 are approximating a contact boundary, while the third node xS is the
slave node. The approximation on the master element is defined as

ρ(ξ) :=
1 − ξ

2
x1 +

1 + ξ

2
x2 =

1 − ξ

2

(
x1

y1

)

+
1 + ξ

2

(
x2

y2

)

. (64)

The tangent vector ρξ is then given as:

ρξ =
x2 − x1

2
=

1

2

(
x2 − x1

y2 − y1

)

. (65)

A single metric coefficient becomes:

a11 = ρξ · ρξ = 0.25 · ((x1 − x2)
2 + (y1 − y2)

2), (66)

which is the square of the length of the vector ρξ. The unit normal vector ν

to the contact segment is defined in a Cartesian coordinate system via a cross
product of the tangent vector ρξ and the third unit vector k which is normal

to the plane:

ν :=
[k × ρξ]

(ρξ · ρξ)
=

1

2a11

(
y2 − y1

x1 − x2

)

. (67)

In this definition according to eqn. (7) and to Fig. 1, we assume that the solid

body occupies the lower part relative to the contact element in Fig. 3. The
matrix of the shape functions A

A =






−1 − ξ

2
0 −1 + ξ

2
0 1 0

0 −1 − ξ

2
0 −1 + ξ

2
0 1




 , (68)

and the matrix of the derivatives A′

A′ =
1

2

[
1 0 −1 0 0 0
0 1 0 −1 0 0

]

, (69)

are used to approximate the displacement field as well as the derivatives. The
displacement vector u is defined as

uT = {u(1)
x , u(1)

y , u(2)
x , u(2)

y , u(S)
x , u(S)

y }T . (70)

5.1.1 Closest point procedure.

Consider now the increment ∆ξ in load step (m) for the closest point procedure

in eqn. (4) in order to define the internal coordinate ξC of the projection point
C. Due to the linear approximation in the contact element we get ρξξ = 0.
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Figure 3: Linear contact element. Node-to-segment approach.

∆ξ =
(rs − ρ) · ρξ

(ρξ · ρξ)
=

4

‖x2 − x1‖2

(

xS − x1 + x2

2
− x2 − x1

2
ξ(m)

)

· x
2 − x1

2
=

(71)

=
2xS · (x2 − x1)

‖x2 − x1‖2
− ‖x2‖2 − ‖x1‖2

‖x2 − x1‖2
− ξ(m).

It is obvious that the Newton update scheme ξ(m+1) = ξ(m) + ∆ξ in eqn. (4) is
independent of the initial guess ξ(m), therefore, the last expression in eqn. (71)

together with this scheme leads to the exact value for the internal coordinate
ξC :

ξC =
2xS · (x2 − x1)

‖x2 − x1‖2
− ‖x2‖2 − ‖x1‖2

‖x2 − x1‖2
. (72)

The result can be also interpreted as convergence in one iteration. Since the

geometry of this element is quite simple, the same result can be also obtained
directly via the triangle in Fig. 3.

A simple searching algorithm leads to computations of all further components

for a contact element at the projection point ξC only if the slave point S is
projected onto this element, i.e. if |ξC | ≤ 1.

5.1.2 Return-mapping scheme

In order to define the tangent traction vector T, we apply the standard return-
mapping scheme based on the elasto-plastic analogy, as is e.g. presented in
the books of Wriggers [26] and Laursen [10]. The trial tangential traction is

computed via the evolution equation (36), which in the case of a linear approx-
imation is reduced to:
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Ṫ = −εT (ρξ · ρξ)ξ̇. (73)

We consider here the simplest case for frictional problems: a quasi-statical

motion leading to the development from sticking to sliding. In addition, we
assume that during motion a slave point is not crossing an element boundary.

Thus, for our case we need only one additional variable ξ0 per contact element
in order to define the initial position of the slave point on the master segment.

The trial tangent traction is obtained via the application of the backward Euler
scheme within the evolution equation (73). Since we have a linear approxima-

tion for the geometry, we have

T (m+1) = T (m) − εTa11(ξ
(m+1) − ξ(m)) = (74)

and continuing recursively, we obtain

= T (m−1) − εTa11(ξ
(m+1) − ξ(m−1)) = ... = T (0) − εTa11(ξ

(m+1) − ξ0).

Assuming in addition, that at the initial position the tangential traction T (0)

was zero, we obtain

T
(m+1)
tr = −εTa11(ξ

(m+1) − ξ0). (75)

The last eqn. (75) serves now to compute the trial tangential reaction.
The return-mapping following the Coulomb friction condition leads then with:

N (m+1) = εNζ(m+1),

to

T (m+1) =







T
(m+1)
tr if |T (m+1)

tr | < µ|N (m+1)|√a11 (sticking)

µ|N (m+1)|√a11sgn(T
(m+1)
tr ) if |T (m+1)

tr | ≥ µ|N (m+1)|√a11 (sliding)

.

(76)

The inequality condition in eqn. (76) is obtained from the following:

‖T(m+1)
tr ‖ < µ|N | =⇒ T

(m+1)
tr√
a11

< µ|N |, (77)

where eqn. (23) for the absolute value of the covariant vector is taken into
account.

The global solution scheme for the simplest case discussed here is presented

in Table 1.
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6 Treatment of special cases

In this section, we consider, how to treat some particularities, which were men-

tioned and excluded in section 5.1.2. The first problem is arising when the
applied load is not simply modified proportionally. In this situation a trial load

can not be computed only via eqn. (75), because the attraction point ξ0 must
be updated. Thus we have to extend the algorithm as is shown in the following.

The second problem is arising when the projection point is crossing an element
boundary during the incremental loading. In this case, the computation ac-

cording to eqn. (75) will produce a jump, because the convective coordinate ξ
belongs to different elements, see Wriggers [26] and Laursen [10].

6.1 Update of the sliding displacements in the case of reversible loading

We consider a geometrical interpretation of the return-mapping scheme in eqn. (76)

together with the evolution equation (75), see Fig. 4.

|T (m)
tr | < µ|N (m)|√a11 =⇒ εT |ξ(m) − ξ0| < µ|N (m)| (78a)

|ξ(m) − ξ0| < R
(m)
ξ , R

(m)
ξ =

µ|N (m)|
εT

(78b)

Eqn. (78b) describes an allowable elastic region A(m)B(m) with a center of
attraction O(m). All points inside this domain are in ”sticking condition”. If now

a point ξ(m+1) appears to be outside of the domain at load step (m+1), then its
only admissible position is on the boundary of the domain, i.e. must coincide
with B(m+1). A sliding force is applied then at the contact point, see eqn. (76).

As long as we have a motion of the contact point only in one direction the sign
function for the sliding force sgn(T

(m+1)
tr ) = sgn(∆ξ(m+1)) does not change and

the computation will be correct. However, when a reversible load is applied
which forces the contact point to move forward or backward, the attraction

point O(m) must be updated, in order to define the sign function for the sliding
force correctly. This update can be defined geometrically from Fig. 4:

|∆ξ(m+1)| = |∆ξsl| + R
(m+1)
ξ = |∆ξ(m+1)| − µ|N (m)|

εT
. (79)

The absolute value of the sliding displacement is then computed at load step

(m + 1) as:

|∆ξsl| = |ξ(m+1) − ξ(0)| − µ|N (m+1)|
εT

, (80)

and the updated center of the elastic domain becomes:

ξ(up)
c = ξ(0) + sgn(ξ(m+1) − ξ(0))|∆ξsl|. (81)
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For the next step, the evolution equation (75) is corrected as

T (m+2) = −εTa11(ξ
(m+2) − ξup

c ). (82)

Remark.

As an alternative procedure the back-substitution of the evolution equation (75)
into eqn. (80) gives the updated scheme via the trial force:

|∆ξsl| =
1

εT

(

|T (m+1)
tr | − µ|N (m+1)|

)

, (83)

which can be found e.g. in Wriggers [26].
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Figure 4: Coulomb friction. Updating of sliding displacements in convective coordinates. Motion of friction
cone and center of attraction.

6.2 Crossing an element boundary – continuous integration scheme

Consider two adjacent elements I(m)J(m) and J(m)L(m) at load step (m), see

Fig. 5. Let the contact point S(m) be projected onto the element I(m)J(m) and
its projection is a point K(m) with the convective coordinate ξ(m). At load step

(m+1) these two elements move into the position I(m+1)J(m+1) and J(m+1)L(m+1),
but the contact point is moved into position S(m+1) and is projected now onto
element J(m+1)L(m+1). We assume that the angular deformation of these ele-

ments is small in comparison with a rigid body motion, thus the elements are
drawn as straight lines. It is obvious, that the direct computation according

to the evolution equation (75) results in a jump. Let e.g. the point K(m) have
the convective coordinate ξ(m) = 0.9 close to the right element boundary, (see

parameterization in Fig. 3), and then point K(m+1) has ξ(m+1) = −0.9 close to
the left element boundary. The distance between them is only ∆ξ = 0.2, but

the evolution equation gives:

T
(m+1)
tr = −εTa11(ξ

(m+1) − ξ(m)) = 1.8εT . (84)
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The maximum possible jump following this straightforward action is easily de-
termined from the limit values of the convective coordinates:

Tjump = −εTa11

(

lim
ξ→−1+0

(ξ)ξ∈IJ − lim
ξ→+1−0

(ξ)ξ∈JL

)

= 2εTa11. (85)

This jump appears only due to the different approximation of the adjacent
elements. In order to overcome this, we can compute the force in geometrical

form. The incremental tangential displacements ∆ρ can be expressed in the
metrics of the second element J(m+1)L(m+1) at time step (m + 1):

∆ρ = ∆ξρ
(m+1)
ξ , (86)

and alternatively, it can be geometrically defined via the incremental displace-
ment vector ∆u:

∆ρ = ρ(ξ(m+1))ξ∈JL −
(

ρ(ξ(m)) + ∆u(ξ(m))
)

ξ∈IJ
. (87)

Then ∆ξ is defined as

∆ξ =

(

ρ(ξ(m+1))ξ∈JL −
(
ρ(ξ(m)) + ∆u(ξ(m))

)

ξ∈IJ

)

· ρ(m+1)
ξ

a
(m+1)
11

(88)

and the evolution equation becomes

T
(m+1)
tr = T (m) − εTa

(m+1)
11 ∆ξ. (89)

Modifications of the global solution scheme given in Table 1 are represented
in Table 2 according to the special cases.

6.3 Remarks on additional developments

One can see, that the continuous integration scheme as presented in Section 6.2

leads to an increasing number of history variables, in fact, in addition to ξ (m)

the vector ρ(ξ(m)) must be stored. Moreover, other history variables such as

the updated sliding displacements must be transfered in a similar fashion. The
continuous integration scheme, of course, is particularly important for contact

problems with singularities, e.g. sliding of an edge along a curve as also shown
in Fig. 5. For other cases with nonsingular geometry it is more efficient to
exclude contact points, once they appear outside the master element, but then,

as a compensation, introduce additional contact points in the slave segment,
e.g. integration points, within the so-called segment-to-segment approach, for

details see Zavarise and Wriggers [27] especially for the 2D case and Harnau,
Konyukhov and Schweizerhof [2] for the 3D case. Another approach to increase
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Figure 5: Crossing an element boundary within a load increment. Typical case for the continuous integration
scheme.

the number of contact points is the mortar method, see e.g. in McDevitt and

Laursen [12] and recent developments in Puso and Laursen [18].
Another important problem arises due to the non-smoothness of contact

boundaries, if for the boundary a low order finite element mesh is used. This
leads to jumps in both the normal and the tangential characteristics when cross-
ing the element boundary see Fig. 6, because neither a normal vector n, nor

a tangent vector ρξ are defined at the edge point B. If the real boundary is
an edge then e.g. adaptive methods can improve the result for a straight ge-

ometry, see Wriggers and Scherf [25] and Wriggers [26]. If the real boundary
is smooth, then various smoothing techniques based on the approximation of

the boundary with e.g. splines can be used. There are numerous publications
on this subject, see Wriggers et. al. [22], Padmanabhan and Laursen [13] and

Stadler et.al. [19] especially for 2D problems, and then in Puso and Laursen
[17], Krstulovic-Opara et. al. [8], Stadler and Holzapfel [20] for 3D problems.
In this case, the geometrical singularity is removed, i.e. the normal n and the

tangent vector ρξ are uniquely defined at point B. However, the continuous in-
tegration scheme in eqn. (88-89) is still necessary, as the smooth patches have in

all above publications local support, i.e. their convective coordinate is defined
separately.
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Table 1: Global solution scheme for a linear contact element.

1. Initialization of the convective coordinate ξ0.
Initial condition for the evolution equation for all contact elements:

Compute projection point ξC in eqn. (72), with no external loads −→ ξ0 = ξC .

2. Loop over load increments m, m = 1, ..., mend.

3. Loop over global Newton iterations i, i = 1, ..., iend.

4. Loop over all contact elements

• compute projection points ξ
(i)
C eqn. (72). If | ξ

(i)
C | ≥ 1 then exit loop 4.

• check penetration ζ(i) = (rs − ρ) · ν. If ζ(i) > 0 then exit loop 4.

• compute contact tractions and corresponding tangent matrices at contact point ξC .

Normal traction: N (i) = εNζ(i)

Tangent matrix KN for normal traction

K
N = εN A

T (ν ⊗ ν)A +
εN ζ(i)

(ρξ · ρξ)

“

A
′T (ν ⊗ ρξ)A + A

T (ρξ ⊗ ν)A′

”

Trial tangent traction: T
(i)
tr = −εT (ρξ · ρξ)(ξ

(i)
C − ξ0)

Real tangent traction T and corresponding matrices
are defined via the return-mapping algorithm

if |T
(i)
tr | ≤ µ|N (i)|‖ρξ‖

sticking

T (i) = Ttr

Tangent matrix KT

K
T = −

εT

(ρξ · ρξ)
A

T (ρξ ⊗ ρξ)A+

+
εT

(ρξ · ρξ)
2

h

A
′T (ρξ ⊗ ρξ)A + A

T (ρξ ⊗ ρξ)A
′T

i

if |T
(i)
tr | > µ|N (i)|‖ρξ‖

sliding

T (i) = µ|N (i)|‖ρξ‖

Tangent matrix KT

K
T = −

εN µ sgn(T
(i)
tr )

(ρξ · ρξ)
1/2

A
T (ρξ ⊗ ν)A+

+
µ|N |sgn(T

(i)
tr )

(ρξ · ρξ)
3/2

h

A
′T (ρξ ⊗ ρξ)A+

+A
T (ρξ ⊗ ρξ)A

′T
i

• Compute the full contact tangent matrix K = KN + KT

• Compute residual R

RN = N
(i)

A
T
ν; RT =

T (i)

(ρξ · ρξ)
A

′T
ρξ,

R = RN + RT .

end loop over contact elements
end loop over global Newton iterations
end loop over load increments
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Table 2: Modifications of the global solution scheme according to special cases.

1. Initialization of the convective coordinate ξ0.
Initial condition for the evolution equation for all contact elements:

Compute projection point ξC in eqn. (72), with no external loads −→ ξ0 = ξC .

2. Loop over load increments m, m = 1, ..., mend.

3. Loop over global Newton iterations i, i = 1, ..., iend.

4. Loop over all contact elements

• compute projection points ξ
(i)
C eqn. (72). If | ξ

(i)
C | ≥ 1 then exit loop 4.

• check penetration ζ(i) = (rs − ρ) · ν. If ζ(i) > 0 then exit loop 4.

• compute contact tractions and corresponding tangent matrices at contact point ξC .

Compute normal traction: N (i) and corr. matrix, see Table 1

Trial tangent traction T
(i)
tr according to the specific algorithm:

a) reversible loading

T
(i) = −εT a11(ξ

(i) − ξ
up
c ).

b) continuous integration

∆ξ see eqn. (88)

T
(i)
tr = T

(m−1) − εT a
(i)
11 ∆ξ.

• Compute real tangent traction T (i) and corr. tangent matrices KT according to the
return mapping scheme, see Table 1

• Compute the full contact tangent matrix K = KN + KT, see Table 1

• Compute residual R, see Table 1

end loop over contact elements
end loop over global Newton iterations

Update and store necessary history variables

a) reversible loading

Compute and store the update center ξ
(up)
c

according to eqn. (81)

b) continuous integration

Store history variables for ∆ξ according to
eqn. (88) and T

(m)
.

end loop over load increments
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7 Numerical examples

7.1 Sliding of a block. Linear approximation of the contact surfaces. Reversible

loading process.

We consider the sliding of an elastic block similar as shown in [7], however, here
the block will be loaded with horizontally prescribed reversible displacements.

The main point is to show the update procedure for sliding displacements and
investigate the development of the sticking-sliding zone. All numerical investi-

gations are performed with FEAP-MeKa [21] including the implementation of
the presented algorithms.

As an example for the computation, we consider a rectangular block (Fig.
7) resting on a surface with the following parameters: elasticity modulus E =

2.1 · 104, Poisson ratio ν = 0.3, length a = 20, height b = 5. The dimensions
are assumed to be consistent. The block is uniformly meshed by linear finite
elements: 40 elements in horizontal direction and 10 elements in vertical di-

rection. The lower surface represents a rigid base. Coulomb friction with a
coefficient µ = 0.3 is specified between the surfaces. The contact surface of the

deformable block is assumed to be a ”master”, while the surface of the rigid base
is a ”slave”surface within the ”node-to-segment”approach. The penalty param-

eters are chosen as εN = εT = 2.1 · 106. The loading is applied as prescribed
displacements at the top side of the deformable block. This example is chosen

to show the robustness of the contact algorithm and the update scheme within
a covariant description, though the current results can be achieved certainly
with other known techniques.
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Figure 7: Plane deformation of a block. Applied displacement loading at top of the block.

The main question arising before the computation is, which size of the load
step is allowed, as it is important to capture the spreading of the sticking-sliding
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zone correctly. We use the concept of the critical displacement ucr, introduced
in [7], namely, a value of the applied displacements after which the block fully

slides. As shown for the infinite layer this value is given as

ucr =
2µh

1 − ν
. (90)

The estimation of the critical horizontal displacement in eqn. (90) gives ucr =
6.0 · 10−3, thus in order to investigate the sticking-sliding zone properly we

choose a displacement increment ∆u = 1.0·10−4. The displacements are applied
according to the loading process given in Table 3.

No. l.s. ∆u u · 10−3 ∆v · 10−3 v Loading

0 0.0 0.0 0.0 0 initialization of conv. coord.

1 0.0 0.0 7.0 · 10−3 0.0 − 7.0 vertical displ. v

2–80 10−4 0.0 − 8.0 0.0 7.0 forward horizontal displ. u1

81–84 −2.5 · 10−5 8.0 − 7.9 0.0 7.0 backward horizontal displ. u2

85–163 −1.0 · 10−4 7.9 − 0.0 0.0 7.0 backward horizontal displ. u2

164–280 −1.0 · 10−4 0.0 − (−1.17) 0.0 7.0 backward horizontal displ. u2

Table 3: Plane deformation of a block. Loading procedure with prescribed displacements on the top side of the
deformable block.

As a consequence of the reversible loading a hysteresis curve as shown in Fig. 8
is developed. The applied displacement at point C, see Fig. 7, is depicted along

the x-axis, and the computed horizontal displacement at point D is depicted
along the y-axis. We obtain a spreading of the sliding zone during the forward
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Figure 8: Plane deformation of a block. Hysteresis curve. Observed horizontal displacement at point D vs.
applied horizontal displacement at point C.

loading process (curve OF) as well as during the backward loading process
(curve FG). The horizontal displacements u along the contact line AD, see
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Fig. 7, together with the distribution of the stress ratio T/N allow us to define

the sticking-sliding zone during the loading process.

Forward loading. Path OF on the hysteresis curve. The horizontal displacement distri-

bution as well as the stress ratio T/N distribution on the contact boundary are
shown in Fig. 9 and Fig. 10 for the following loading points:

a) Load step 1, see Table 3, i.e. only vertical displacements are applied v =

0.007. This is the starting point O on the hysteresis curve Fig. 8;

b) Intermediate points with applied horizontal displacements u = 0.0040 and
u = 0.0060, resp. points O1 and O2 on the hysteresis curve Fig. 8;

c) The load step No. 80 with u = 0.0080, see Table 3, is chosen as a final

point of the forward loading, see also the point F on the hysteresis curve
Fig. 8.

The development of the sliding zone with increasing displacement loading u is

given in Fig. 9 and the development of the stress ratio T/N in Fig. 10. At the
end of the forward loading the sliding zone is increased to about 8 ≤ x ≤ 20.
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Figure 9: Plane deformation of a block. Horizontal displacement of the contact boundary. Forward loading.

Backward loading. Part FGH on the hysteresis curve. The horizontal displacement dis-
tribution and the contact stress ratio T/N distribution on the contact boundary

are shown in Fig. 11 and in Fig. 12 for the following loading points:

a) Last load step of the forward loading with u = 0.0080, resp. point F on the
hysteresis curve Fig. 8 as a starting point;
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Figure 10: Plane deformation of a block. Stress ratio T/N on the master contact surface. Forward loading.

b) Intermediate points on the unloading part FG with applied horizontal dis-

placements u = 0.0040, u = 0.000, u = −0.0040, u = −0.0060, u =
−0.0080, resp. points F2, F3, F4, F5, F6 on the hysteresis curve;

c) Selected point with u = 0.010 on the full backward sliding part GH of the

hysteresis curve.

When the load is reversed, starting from load step No. 81, see Table 3, all

points on the contact boundary are sticking. On the contact boundary we have
so-called residual horizontal displacements (in analogy to plasticity). During
the following unloading back to u = 0.000 the whole boundary is still sticking:

points F1, F2, F3. The latter we can only detect from the stress ratio diagram
in Fig. 12, where the curves vary inside the layer −0.3 ≤ T/N ≤ 0.3. The resid-

ual displacements are not changing, see diagram 11, until sliding is beginning.
Starting from the applied displacements u = −0.0040 (point F4) we can detect

the beginning of sliding at the left corner of the block, as the stress ratio curve
is approaching its limit ratio 0.3. The final part of the hysteresis diagram, from

point F4 to point G, is responsible for the development of the sliding zone in
the backward direction, which can be observed either by the development of the
horizontal displacements in the left part of the displacement diagram 11, or by

the development of the zone with a stress ratio T/N = 0.3 in diagram 12. Full
sliding of the block starts at point G with u ≈ −0.0092. Beyond that, hori-

zontal displacements on the contact are changing proportionally to the applied
displacement loading, i.e. linearly, as we see from the linear part GH in the
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hysteresis curve.
Remark.

In the presented example the displacements are small and slaves nodes never
cross the element boundaries, therefore the continuous integration scheme is

not necessary. In the next example we show a particular case with large sliding
in which the application of the continuous integration scheme is necessary.

7.2 Drawing of an elastic strip into a channel with sharp corners.

In this section, we consider a special contact case, for which the application of
the continuous integration scheme described in sect. 6.2 is absolutely necessary.

An elastic strip AD, see Fig. 13 (E = 2.1 · 104, ν = 0.3, thickness h = 0.5,
length L = 24) is positioned at the beginning of a channel with width a = 13.

The corners of the channel are rather sharp. The channel itself is modeled by
two rigid blocks B1 and B2. The strip is loaded incrementally by a prescribed
displacement v at the center until it is inserted into the channel, see Fig. 14.

The strip here is modeled with 24 linear solid-shell elements, see Hauptmann
and Schweizerhof [3] and Hauptmann et.al. [4], and due to symmetry only one

half of the system is modeled. The crucial point during the analysis is the
sliding of a sharp corner C over the element boundaries 1, 2, 3, see Fig. 14.

A load-displacement curve computed for the loading point is chosen as the
representative parameter to compare various contact approaches. The following

variations were investigated:

1. Non-frictional case with the ”node-to-surface”approach without the contin-

uous integration scheme proposed in eqn. (88) and (89).

2. Non-frictional case with the ”segment-to-segment”approach. Here the num-
ber of integration points in the contact segment is varied.

3. Frictional case with the ”node-to-surface”approach without the continuous
integration scheme.

4. Frictional case with the ”node-to-surface” approach with the continuous

integration scheme.

5. Frictional case with the ”segment-to-segment” approach. Here the number
of integration points in the contact segment are varied.

We start the investigation with the non-frictional problem (case 1, 2) apply-
ing the load increment v = 0.005 with the penalty parameter εN = 2.1·105. The

elements from the strip are chosen to be a master, while the sharp corner is a
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singular slave node. The load-displacement curve for the ”node-to-surface” ap-
proach contains a jump when the sharp corner is crossing the boundary nodes 1

resp. 2, see Fig. 14. The solution process is no longer converging after the sharp
corner is crossing the boundary node 3. As an alternative for improvements,

we chose the ”segment-to-segment”approach, described in Harnau, Konyukhov
and Schweizerhof [2]. The sharp corner C is modeled with two slave segments
which are orthogonal to each other and take contact points as the Lobatto in-

tegration points. Taking 2 integration points with 2 sub-domains, or e.g. 5
integration points allows to compute the full load-displacement curve without

the jumps obtained with NTS scheme, see Fig. 15. The smoothing effect in the
last cases happens because the contact is checked not only against the single

edge node, but also against the set of contact points which covers fairly densely
the sharp edge.

The next study is devoted to the frictional problem (case 3, 4) with the load
increment v = 0.0025, the penalty parameters εN = 2.1 ·105, εT = 2.1 ·105 and a
friction coefficient µ = 0.2. The straightforward analysis without the continuous

integration scheme (case 3) leads to a jump in the force-displacement curve when
the sharp corner is crossing the first boundary node 1. The solution is no longer

converging when the sharp corner is crossing the second boundary node 2, see
Fig. 16. The application of the continuous integration scheme, however, allows

to obtain the full force-displacement curve, even in the part when the strip is
fully inserted into the channel, see the straight part of the curves in Fig. 16. For
this case a side part of the channel is modeled as a rigid surface described by

an analytical function. For comparison, the analysis is carried out with various
friction coefficients µ = 0.1 and µ = 0.3, see Fig. 16.

It would be favorable also for the frictional case to perform the analysis
without the continuous integration scheme avoiding to store a lot of information

about slave nodes and apply the ”segment-to-segment”approach just increasing
the number of integration points (case 2). The results of such an analysis using

the same loading parameters as for the analysis in Fig. 16 are shown in Fig. 17.
5 and 10 Lobatto integration points are taken. Despite the fact that the solution
is converging, the load-displacement curve shows large oscillations in the sliding

regions after passing node 2. This result is due to the fact, that from one load
step to the other the history variables are not transported correctly. Only the

upper envelope of the oscillatory curve could be used as representation of the
correct load-displacement curve. This confirms the necessity of the continuous

integration scheme in particular for frictional contact.
Remark. We have to note that reversing the master surface, or the so-

called symmetric treatment of the contact, in the current example would also
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Figure 11: Plane deformation of a block. Backward loading. Horizontal displacement of the contact boundary.
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Figure 12: Plane deformation of a block. Backward loading. Stress ratio T/N on the master contact surface.

not resolve the problem in a sufficient manner.

8 Conclusions

In this contribution a convective description was reconsidered for the 2D quasi-
statical frictional contact problem. Special attention is paid to the derivation

of the necessary equations either as a reduction of the known 3D covariant for-
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Figure 13: Drawing of an elastic strip into a channel with sharp corners. Geometrical parameters.

Figure 14: Sequence of deformations for the elastic strip. Nodes are sliding over the sharp corner C.

mulation, or directly from the special 2D cylindrical geometry of the contact
surfaces. The algorithmic linearization in the covariant form allows to obtain

the tangent matrices before the linearization process. Thus, an implementa-
tion can be easily carried out without providing any special attention to the

approximation of the contact surfaces (e.g. finite element mesh, CAD surface
etc.). A simple linear contact element is chosen to illustrate the algorithmic

implementation into a FE code.
Different situations requiring the application of more advanced techniques,

such as an update of sliding displacements and a continuous integration scheme

for the frictional case are discussed and illustrated with numerical examples.
Thus, the update technique is absolutely necessary for the simulation of re-

versible loading processes, as the residual deformations have to be described
correctly. The continuous integration technique allows to transport all history
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variables correctly over the contact segment boundaries, however, additional

storage is required. In the particular example of a sliding edge on a surface, it
is shown that for the non-frictional contact problem the ”segment-to-segment”

approach with different integration schemes can improve the result, but for
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the frictional contact problem the continuous integration scheme is absolutely
necessary independent of the approaches NTS and STS.

9 APPENDIX. Covariant derivative of tangent vector T

The full time derivative of the tangent vector T is considered in the contravari-

ant basis r1, r2

dT

dt
=

d

dt

(
Tr1

)
=

dT

dt
r1 + T

dr1

dt
. (91)

For the computation we assume, that the component T is a scalar function of
t, ξ, i.e. T = T (t, ξ), and the basis vector r1 depends implicitly on time via the
convective coordinates ξ and ζ, see the definition in eqn. (17). Then we obtain:

dT

dt
=

(
∂T

∂t
+

∂T

∂ξ
ξ̇

)

r1 + T

(

ξ̇
∂r1

∂ξ
+ ζ̇

∂r1

∂ζ

)

. (92)

The partial derivatives of the contravariant basis vectors are expressed via the
Christoffel symbols Γk

ij, see e.g. Marsden and Hughes [11],

∂r1

∂ξ
= Γ1

11r
1 + Γ1

12r
2,

∂r1

∂ζ
= Γ1

21r
1 + Γ1

22r
2.

(93)
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Using the orthogonality of the covariant and contravariant basis vectors ri and
ri, we can write the following:

dT

dt
=

(
dT

dt
· r1

)

r1 +

(
dT

dt
· r2

)

r2. (94)

For the formulation of the evolution equations, it is necessary to obtain only a

covariant component of the full time derivative on the tangent line, therefore,
from the expansion (94) we need only the first term computed at ζ = 0. We

introduce this derivative as follows

D1T

dt
≡

(
dT

dt
· r1

)

ζ=0

=

(
dT

dt
· ρξ

)

=
∂T

∂t
+

∂T

∂ξ
ξ̇ + T (Γ1

11ξ̇ + Γ1
21ζ̇)ζ=0. (95)

One can recognize in eqn. (95) the full time derivative via the covariant deriva-
tives. We compute the value of the necessary Christoffel symbols in brackets,

according to their definition in eqn. (93) and to the definition of r1 in (17).

(Γ1
11)ζ=0 =

(
∂r1

∂ξ
· r1

)

ζ=0

,

(Γ1
21)ζ=0 =

(
∂r1

∂ζ
· r1

)

ζ=0

.

(96)

In order to avoid the derivative of the contravariant vector in (96), we take a
derivative of the following identity

r1·r1 = 1 =⇒ ∂

∂(...)
(r1·r1) = 0 =⇒ ∂r1

∂(...)
·r1+r1· ∂r1

∂(...)
= 0 =⇒ (97)

∂r1

∂(...)
· r1 = −r1 · ∂r1

∂(...)
.

Now, we can compute the Christoffel symbols directly

(Γ1
11)ζ=0 = −

(
∂r1

∂ξ
· r1

)

ζ=0

= − ∂

∂ξ

(

(1 − h11

a11
ζ)ρξ

)

ζ=0

· ρ1 = (98)

the contravariant basis vector ρ
1 is expressed via the covariant one in eqn. (9)

= −
(

∂

∂ξ
(1 − h11

a11
ζ)ρξ + (1 − h11

a11
ζ)ρξξ

)

ζ=0

·
ρξ

(ρξ · ρξ)
= −

ρξξ · ρξ

ρξ · ρξ

= −Γ.

(98.1)

From eqns. (11) and (12) the identity mit −Γ is found.
The last necessary Christoffel symbol is computed analogously

(Γ1
21)ζ=0 = −

(
∂r1

∂ζ
· r1

)

ζ=0

= − ∂

∂ζ

(

(1 − h11

a11
ζ)ρξ

)

ζ=0

· ρ1 = (99)
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=
h11

a11
ρξ ·

ρξ

(ρξ · ρξ)
=

h11

a11
. (99.1)

Finally, the tangent component of the full derivative in eqn. (95) gets the fol-
lowing form:

D1T

dt
:=

∂T

∂t
+

∂T

∂ξ
ξ̇ + T (Γ1

11ξ̇ + Γ1
21ζ̇)ζ=0 =

dT

dt
− T

(
ρξξ · ρξ

ρξ · ρξ

ξ̇ − h11

a11
ζ̇

)

. (100)
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