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Abstract. Oscillation properties of delaminated structures are governed by dissipative impact-like contacts in
the debonded region. The contribution focuses on the numerical simulation of this special type of contact. A
robust and efficient contact strategy is presented mainly based on the theory of sudden impacts embedded in
Finite Element methods.

1 Introduction

Composite laminates are being increasingly used as primary structural components in various engi-
neering fields due to their inherently high specific mechanical properties. Correspondingly, a major
interest lies in non-destructive testing of the structural integrity, particularly in relation to the occur-
rence of delaminations between adjacent plies as one of the most common failure modes in composite
laminates.

The need for quantitative global damage detection methods has led to the development and conti-
nued research into vibration based methods [1]. Investigations of the nonlinear vibrational response
are promising for localization and to quantify the size of the delamination on a global basis. The
nonlinearity arises from a local contact phenomena, the clapping mechanism. The delaminated layer
and the remaining part of a sandwich structure periodically strike against one another during the os-
cillation [2]. This dynamic contact-impact problem has as the simplest approximation two pendulums
which are simultaneously excited by harmonic base excitation [2], [3]. Depending on the frequency
and amplitude of excitation, a cascade of bifurcations with intermittent windows of irregular motions
and different numbers of impacts during one excitation period can occur [2]. The essential point in
this scenario is its dependency on the amount of energy dissipation at each impact [4].

In the following, a more realistic situation will be considered. The delaminated sandwich beam consists
of two separated laminae with different cross sections. First, experiments are performed to provide a
realistic reference for the oscillation behavior dominated by the continuously evolving lateral contact.
Second, a mechanical model for this continuous system is proposed based on the discretization into
a system with multi degrees of freedom derived by Finite Element methods. Now, the fundamental
challenge consists in the reliable capturing of the periodically appearing impact-like dynamic contacts
within the stationary state of motion. It will be shown that standard procedures for contact modeling
in FE methods as given by the penalty formulation are associated with a distinct sensitivity of the
computed solution in regard to the chosen regularization parameters. In an effort to overcome these
difficulties, a promising alternative approach of remarkable robustness is addressed for description
of impact-like contacts which is mainly based on the theory of sudden impacts involving contact
dissipation.
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2 Experimental Investigations

The mechanical system under consideration is depicted in figure 1 [a]. It consists of two laminae,
whose shapes distinctly deflect from an ideal straight line in the statical stress-free state. Both laminae
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Fig. 1: Mechanical system: [a] geometry, [b] sensors.

of length 685mm are clamped at the lower ends. The upper ends are free. The maximum width of the
gap at the upper ends is 12mm at rest. Both laminae are made from aluminium. The cross-sections
are 2 x 40mm (thick lamina (1)) and 1 x 40mm (thin lamina (2)), respectively. The displacements
q1(x,t) and go(z,t) at the distance x along the vertical at time ¢ are absolute quantities. The base
excitation Asin(€2t) is harmonic with amplitude A and driving angular frequency . In the following,
the amplitude A = 2.5mm will be kept constant and only the frequency 2 = 27 f will be changed.
To characterize the properties of the oscillations several sensors are used. Two optoelectronic position
sensors give the distance of two corresponding LEDs to a vertical reference. In this way, the initial
shape ¢1,0(z) and ¢2,0(z) of both laminae and the displacements y; (t) = g1 (L, t) and y2(t) = g2(L, t)
at the top will be monitored. For some selected excitation frequencies the deflection curves ¢ (z,t)
and ga(z, t) during the oscillation are captured. Additionally, a laser vibrometer measures the velocity
¥1(t) and y2(t) at the upper end of both laminae. A position sensor at the lower end controls
the amplitude of excitation A. Two stationary time-displacement response curves with different
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Fig. 2: Time-displacement curves for different excitation frequencies and constant amplitudes (experiment).

frequencies of excitation (the used values f = {3.25Hz,3.65Hz}) are chosen from a frequency range
of 0.5Hz < f < 4.0Hz, where the lowest natural frequencies of both laminae can be found. The
selected frequencies involve a strong contact interaction of both parts, due to the coupling of both
subsystems.

The value f = 3.25Hz lies in the vicinity of the resonance of the subsystem with coordinate 1
(thick lamina). As can be seen in figure 2 [a], the thin lamina is hit by the thick one. In contrast,
an excitation frequency f = 3.65Hz lies within a window of bifurcated oscillations. Period doubling
occurs in such a way that one contact in two excitation periods can be found.
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To explore the phenomenon of a continuously evolving contact line during the oscillation in more
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Fig. 3: Operation deflection shape during one excitation period T', f = 3.25Hz (experiment).

detail, Figure 3 depicts several states of the deflection shape during one period of excitation 7. In
fact, the contact duration is not constant for specific points along the beam axis. Despite this fact,
in the following, the only considered point at the tip of the beams is supposed to be representative
for the total motion.

As can be seen (Fig. 2), the time interval of contact during one period of excitation is relatively large.
Such a phase of common motion of both laminae is only possible if the initial impact, which initiates
the contact phase, is highly dissipative. Otherwise, both laminae would separate immediately.

In Figure 4 the velocities 71 (t) and y2(t) of both laminae within two periods of excitation with
f = 3.25Hz are captured. The discontinuity (jump) in the velocities at the beginning of contact
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Fig. 4: Impact-dominated velocities of both laminae at the free ends in the delamination problem (experiment).

at the considered point is clearly visible. It is evident that this phenomenon can be described by
classical impact theory. This theory links the relative velocity Q(t97) = G, (t{9)~) — G, (t{)~) of the
impacting masses m,,, m, before contact and the relative velocity Q(t9%) = ¢, (t{9F) — ¢, ()
after contact by a coefficient of restitution e

QHIT) = —e Q). (1)

The corresponding coefficient of restitution 0 < e < 1 depends on the amount of energy dissipation
at contact time (). To find this coefficient, the velocities 7 (¢/%7), 92(t)~) before impacting at
the tip and 71 (£9F), 92(t9F) after the impact are taken from the experiment. The ratio of masses
is approximately given by the ratio of cross-sections as mj/mgs = 1/2. Within the scope of the
experimentally gained data, the well-known formulas of NEWTON's impact law reveal a range of
0 < e < 0.1 for the restitution coefficient. This result confirms the large contact damping values
found for lateral impacts on beams.
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3 Computation by Finite Element Methods

For the numerical calculation, the one-dimensional continuum problem is transformed into two
multi-DOF systems by FE methods. Both laminae are discretized by the same number of EuU-
LER-BERNOULLI beam elements. This leads to the semi-discrete equations of motion as two linear
systems with 2n DOF

M1d1(t) + Cadn(t) + Krai(t) = fa(t)
M2q2(t) + C2d2(t) + Kaqz(t) = f2(t) .

The generalized coordinates given in eq. (2) can be subdivided into translatory and rotational DOFs
leading to the displacements u and the rotations ¢

(2)

T ) .
qi = [ui,h Gidy - s Uin/2, (Pi,n/z] with i = u; /0 i=1(1)2. (3)

A prescribed displacement as a harmonic base excitation is applied to the lowest node of each
subsystem. Additionally, a clamped support is assumed at these nodes. Coupling of both subsystems,
represented by the two sets of equations (2), occurs because of several lateral contact events along
the longitudinal axis of the beams. This fact causes the strong nonlinearity of the problem. The
continuous evolution of the contact line must be separated into several node-to-node contacts of
opposite nodes. During the oscillation the succession of contact points and the corresponding time
when contacts occur are unknown a priori. These are typical features of a non-smooth dynamic
system.

Dealing with non-smooth dynamic systems within FE methods, two fundamental challenges appear,
namely to find an appropriate problem-oriented procedure of time integration and to capture the
respective contact situation within the numerical contact formulation. The first one is connected
with the accuracy of detecting the switching times (contact times) of the non-smooth system to be
integrated [5]. In general, in view of the numerical time integration with a certain discrete time step At
only a limited degree of accuracy can be achieved in regard to determine the contact times. This leads
to permanent numerical disturbances in the course of the motion. The undisturbed problem is orbitally
stable as long as these disturbances remain below a critical limit. Thus, a sufficiently small time step
At is needed for an orbital stable solution. The present contribution will not focus to the problem
of an appropriate time integration. Here, the standard NEWMARK scheme (2ay = Gy = 1/2) is
adopted as the number of DOFs is rather small though the central difference scheme may also be
appropriate. Thus, mainly the second problem of the contact formulation will be discussed in the
following.

3.1 Contact Description via Penalty Method

Standard procedures in FE methods for contact modeling are the LAGRANGE method, the
Augmented-LAGRANGE method and the penalty method. The main problem of all methods is the
inclusion of the strongly dissipative character of the dynamic contact. Applications of the first two
procedures are not known in this field. The classical penalty method, however, can be extended
by introducing penalty damping in addition to the penalty stiffness. Thus, this procedure requires
the choice of two penalty parameters, which essentially have no physically specifiable quantity [6].
Moreover, these parameters are mutually dependent on the time step of integration [3]. A parameter
estimation is only possible by comparing numerical results with an experimental reference for statio-
nary oscillations [4].

Suppose that the system contains n possible pairs of contact nodes, then the actual state of contact
is given by a set of indices M from all n¢o contact points, which are closed at present time ¢. In the
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considered case of a time-discrete system with constant time steps At, a contact event is captured
by the condition
INke = U2ke — UL ke <0, Vkc e Mc . (4)

Then the overall state of contact at the actual time ¢ reads

My = {1(1)nn} (5)
Mc(t) = {kc € Mn | gngke <0} .

After each time step At the contact condition is checked. For all contact points contained in the
index set M penalty stiffness ¢, and penalty damper ¢; must be applied. As a benchmark problem
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Fig. 5: Parametric plane for sets of penalty parameters cx, cp.

the time response of the experiment with excitation frequency f = 3.25Hz (Fig. 2) is considered.
Figure 5 contains a parametric plane that separates regions containing the correct type of solution
from regions of distorted types of motion arising from an incorrect set of parameters. For this purpose,
the numerical results computed for certain sets of parameters cx and c¢p have been categorized
in comparison to the experimental results. Figure 5 reveals a distinct parameter sensitivity of the
numerical solution in regard to the regularization parameters. All sets of parameters taken from an
upper left triangle in the parameter space (see Fig. 5) are associated with an incorrect numerical
solution - a bifurcated oscillation. In the considered parameter range a qualitatively correct result is
obtained only in a few cases (Fig. 5: white bricks). Without further information about the expected
motion, a decision is not possible, whether the chosen set of penalty parameters is correct or not.
Furthermore, treating another type of oscillation, a different calibration of the penalty parameters
¢k, ¢p is required, which have further to be adjusted to the time step of the integration. Due to
these facts, the described penalty regularization can not be considered as an appropriate contact
description for the treated type of contact.

3.2 Contact Description via an Impact Formulation

Sudden impacts accompanied by strong energy dissipation can be modeled by the classical theory
of impact in which the velocities during a contact event are controlled by a law of impact, e.g.
NEWTON's impact law. This procedure, which has been proven in the field of rigid body dynamics,
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can be adopted for description of dissipative contact within the Finite Element methods. Applying an
impact law, a sudden change of the velocities of the contact nodes within a vanishing time interval
is assumed. At each pair of contact nodes the law of impact must be applied.

In contrast to applying a law of impact with vanishing contact duration, the penalty method supposes
a phase of permanent contact with a minimal duration of one time step At for each contact event.
Thus, a partial state of permanent contact is included herein. As a main advantage for computation,
this regularization allows a description of permanent contact while the number of DOFs is kept
unaltered in comparison to the freely vibrating system.

In the following, the two methods are connected in a way that permits both a sudden impact and a
motion in permanent contact. Therefore, the law of impact is employed to capture the impact-like
contact phenomena showing a sudden change of the velocities as well as to observe energy dissipation
during contact. Contact stiffness is only detached from the penalty method. In the case of permanent
contact, this stiffness is employed. Thus, two parameters are required (coefficient of restitution e,
contact stiffness cx ), whereas the range of the main parameter e can be determined by experiments
(see fig. 4). However, since contact dissipation is solely captured by the law of impact, the two
parameters are almost independent from one another, allowing an almost independent choice for ¢ .
This is an additional advantage compared to the classical penalty method.

The system is governed by three partial states in motion, namely separated motion, sudden impact
and permanent contact. Again, the actual state of contact at present time ¢ can be observed by
several sets of indices. For this purpose, eq. 5 must be extended to capture all possible cases.

My {1(V)nn}
Mc = {kc € Mn | gnye < 0}
My = {kym € M | gNgy = YN (b & Mpo(tj—1) Vkar & Mpp(ti—1))}
Mpg {kpo € Mc | gngp, <7 N kpo & Mpp(tj—1)}
Mpp = {kpp € Mc | kpp € Mpo(tj-1) V kpp € Mpp(tj-1)}
My . possible contact points (ny elements)
M actually closed contact points (n¢ elements)
with  Mj; :  sudden impact with immediate separation (n,; elements)
Mpg :  beginning of permanent contact (npo eIements)
Mpp : persistent permanent contact (npp elements)

(6)

The condition for the occurrence of a contact event gn k., < 0 can be kept unmodified in relation to
eq. (4). Therefore, the law of impact

—1 .
u<1tj>(tj+): <1 —l—(I—I—e )M2<tj>(M1<tj>+M2<tj>) gj\tfﬂ(tj_)
. —1 )
al (t5) = 6 () — (T4 et )M1<tf>(M1<tj>+Mz<tj>) &n(t;7) 0
M. (L) — 7
with M d'ag([m kl) =1(1)2, Vk € Mc(tj) vV Mpo(t))

elli) = diag ([ex])

must be applied on all pairs of contact nodes contained in the sets of indices M ;, M pg. Herein
m; ik denotes the masses affecting the impacting nodes at time 49 which can be estimated from the
corresponding translatory DOFs in the diagonalized mass matrix. Furthermore, the diagonal matrix
elli) contains the coefficients of restitution €. In the following, the restitution coefficient is assumed
to be constant for all pairs of contact nodes. Then, only one parameter ¢ is needed, which is known
from the preceding experimental investigation.

A sudden impact marks the beginning of each contact event. In the case of a vanishing translatory,
relative velocity gy = 0, checked at each pair of contact nodes contained in M, a partial state of
permanent contact follows for these contact nodes. For all non-vanishing coefficients of restitution e,
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this switching condition can lead to a sequence of numerous impacts [7]. To avoid these phenomena,
a small threshold ~ for the relative velocity is introduced to assign the beginning of motion in
permanent contact. Therefore, the weak inequality

INkpo = U2 kpy — UL kpy <7V, Vkpo€ Mpg, v< 1 (8)

allows the decision on whether a state of permanent contact follows on impact or not. In the first
case, the penalty stiffness cx is added at the corresponding contact nodes indicated by the set of
index M pq. Contact stiffness cx for the corresponding pair of contact nodes remains in the system
as long as the separation condition (gni = ugr — u1 i > 0, k € Mpp) is not satisfied. In the
following, computations are presented for the two different types of oscillation whose corresponding
experimental results are given in Fig. 2. According to the experimental results, the coefficient of
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Fig. 6: Time-displacement diagram for the stationary motion of both lamina for the two excitation frequencies:
[a] f =3.25Hz, [b] f = 3.65Hz.

restitution as the main contact quantity is chosen as e = 0.10. Two additional numerical parameters
have to be chosen: the penalty stiffness cx and the threshold « for permanent contact. Contact
stiffness is set as cx = 100, which is reasonable in this analysis. The threshold of the relative velocity
is chosen in such a way that v = 0.0005 is close to 0.1% of the maximum relative velocity. These
values are fixed for all cases considered above.

Considering the time histories (see Fig. 6), in all cases excellent agreement of experimental and
numerical results can be noted in relation to both the amplitudes and the shape of oscillation. The
main advantages over the classical penalty method are evident from this investigation. First, the main
parameter e is experimentally determinable. The additionally required penalty stiffness cx exhibits
in this connection a very limited influence on the result. Moreover, the chosen set of parameters is
applicable without modification to describe all treated types of motion that exhibit a wide variety.
Such behavior cannot be expected from the spring-damper regularization by the pure penalty method.
Furthermore, the described contact formulation shows a remarkable robustness concerning the choice
of parameters e, cx which can be found from the parametric plane of Figure 7. However, apart from
a few exceptions, the basic type of response denoted by one contact event in one excitation period
is preserved for all cases considered. When estimating the influence of the two parameters, the
restitution coefficient mainly affects the solution in the considered range.

4 Conclusions

Forced oscillations of delaminated structures are dominated by continuously evolving impact-like con-
tacts. First, the arising contact phenomena are studied experimentally on a realistic model situation
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Fig. 7: Parametric plane for sets of parameters e, cx.

for the delamination problem. Depending on the frequency of excitation, a bifurcation scenario oc-
curs. The experiments reveal a distinct amount of energy dissipation during the contact.

Armed with this knowledge, an appropriate contact description for numerical simulation using Fi-
nite Element methods is proposed mainly based on the theory of sudden impacts involving contact
dissipation. In contrast to the classical penalty method, the main parameter, namely the coefficient
of restitution, can be determined easily by experimental means. Computational results document
the robustness of the procedure concerning the choice of parameters. In almost all cases considered
above, the type of the experimental reference solution was preserved numerically within a large range
of parameters. Furthermore, the set of parameters could be kept constant for all of the very different
types of motion previously considered.
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