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Abstract.

A covariant description for contact problems including anisotropy for both adhesion and sliding
domains is proposed. The principle of maximum dissipation is used to obtain a computational
model in the case of quasi-static motion. Various cases including curvilinear anisotropy on
arbitrary surfaces illustrating the possibility to model machined surfaces are considered. The
part is served to be a necessary preparation for further finite element implementations and
numerical analysis.
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1 Introduction

The majority of contact problems is solved under the assumption of smoothness of contact
surfaces. However, some cases appear in practice when it is impossible to neglect the roughness
of the contact surfaces. Essentially two types can be distinguished: a) when a surface has
randomly distributed asperities, and b) when asperities have algorithmic structure, e.g. the
surface shows different macro properties in different directions.

Mechanical characteristics for the contact problem of the first type a) are obtained via sta-
tistically distributed asperities. Statistical analysis of a real rough surface and experimental
aspects of its measurements have been developed in series of publications: Longuet-Higgins
[20], Greenwood and Williamson [9], Whitehouse and Archard [30] and more recently White-
house and Phillips [31] and Greenwood [10]. A comparative analysis of these surface models is
presented in McCool [22].

A statistical concept for the contact in the context of finite element methods was developed
then in Zavarise et.al. [37], Wriggers and Zavarise [35], [36] for the non-frictional contact
with normally distributed asperities. Buczkowski and Kleiber [5] considered first non-frictional
contact with an isotropical statistical distribution of asperities, and then in [6] non-frictional
contact with an anisotropic statistical distribution of asperities. The modeling of a contact
surface with Bezier splines according to the statistical distribution of asperities was considered
in Bandeira, Wriggers and Pimenta [2]. Various nonlinear friction models are considered in the
monography of Wriggers [33].

A generalization of the isotropic macro characteristics is used to describe frictional contact
problems of the second type b). Michalowski and Mroz [24] considered the sliding of a rigid
block on an inclined surface and formulated various sliding rules for sliding displacements
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which depend on directions. Thus, an anisotropic friction model for sliding was introduced. In
a purely theoretical description Zmitrowicz [38] developed the structure of the friction tensor
for sliding forces based on the motion of an elementary block on an anisotropic surface and
described its properties based on symmetry groups for the tensor. Curnier [7] presented a
rate independent theory of anisotropic friction for contact interaction mentioning adhesion
as a possible elastic part without any further development. Zmitrowicz [39] developed the
structure of the sliding friction tensor according to a relative sliding velocity and introduced a
classification of anisotropic surfaces based on the number of eigenvalues of the friction tensor.
These cases were numerically illustrated for a material point on the anisotropic plane. He
and Curnier [12] used the theory of tensor function representations to obtain the structure
of the friction tensor for an arbitrary nonlinear case according to the relative sliding velocity
and derived also thermodynamical restrictions for the friction tensor components. Mroz and
Stupkiewicz [24] considered the structure of the friction tensor based on a statical model of
interaction of springs located in a plane which has periodically inclined asperities.

Despite the extensive literature on finite element solutions for contact problems, there are
only few publications on finite element models for anisotropic friction. Buczkowski and Kleiber
[4], [6] created an interface element containing the orthotropic sliding law. The return-mapping
scheme in a Cartesian coordinate system was then used to obtain the sliding displacements.
The effect of orthotropy was interpreted considering small displacements for a flat punch on an
elastic foundation. Hjiaj et. al. [13] formulated the problem via the bi-potential and applied
Lagrangian multiplier methods to solve a problem with orthotropic friction considering also
small displacements in Cartesian coordinates. Parametric quadratic programming was used in
Zhang et. al. [42] to solve the almost identical problem. Recently, Jones and Papadopoulos
[26] developed a finite element model for anisotropic friction, where the stick-slip condition is
enforced via Lagrange multipliers.

The aforementioned publications include anisotropy only for the friction model and do not

assume any anisotropy for the elastic region, the adhesion. In the current contribution
we propose a general approach for the finite element solution of quasi-statical frictional contact
problems including anisotropy for both adhesion and sliding assuming that contact surfaces in
general possess an anisotropic structure for both, elastic and friction domains. This approach
is based on the covariant description for contact problems which is applicable for an arbitrary
geometry of contact surfaces and large displacements. Within the covariant description, as
given in Konyukhov and Schweizerhof [14], [15] contact conditions are described on the tan-
gent plane of the contact surface exploiting tensor analysis. Using a penalty regularization of
Coulomb’s friction law and the return-mapping algorithm leads to the evolution equations for
contact friction. It becomes obvious, that the evolution equations are not only a regularization
technique, but act also as the constitutive relation to model friction behavior for an adhesion
domain. Keeping this idea in mind, the evolution equations are generalized for a more complex
mechanical behavior exploiting tensor algebra on the tangent plane of the contact surface. The
covariant description allows to formulate the main characteristics for surfaces with arbitrary
geometry, e.g. the yield function is formulated via the friction tensor defined in surface met-
rics. Then both, anisotropy for adhesion resp. sticking and anisotropy for sliding are treated.
Anisotropic resp. orthotropic tensors inherit their properties either from the spectral decom-
position or, in the more general case, from arbitrary curvilinear coordinate systems defined on
the surface. The last case has advantages in practical applications as e.g. for a homogenized
average model of machined surfaces. This structure of tensors automatically satisfies all nec-
essary theoretical restrictions developed earlier in [12] and [39]. Thus, a consistent model for
anisotropic surfaces can be developed.
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In order to define sliding forces as well as sliding displacements the principle of maximum
dissipation is used. All models allow representative geometrical interpretations on the tangent
plane. Via this principle, the sliding forces and sliding displacements are derived in the covariant
form. The formulation in the covariant form easily allows to derive the consistently linearized
equations, which are necessary for the iterative solution within a Newton type scheme, even for
the case with nonlinear anisotropy in the reference Cartesian coordinate system.

The article is subdivided into two parts, where the current part is organized as follows: In the
second section we recall all necessary details from the covariant description for the isotropic case.
The generalization for the adhesive part and for the sliding part for the arbitrary geometry is
developed in section 3. The orthotropic planar cases in Cartesian as well as in polar coordinates
are considered as particular structures of tensors. As a specific case with curvilinear geometry
spiral orthotropy for a cylinder is considered. The fourth section deals with the formulation of
the friction problem as maximization problem for the energy dissipation function. Here also the
geometrical interpretation of the derived model is discussed. The consistent linearization on
the tangent plane, the finite element implementation and a discussion about the robustness of
the developed approach on the basis of various numerical examples are included in the second
part.

2 Basis of the covariant description

Several computational approaches for isotropic Coulomb frictional contact in context with fi-
nite element analysis have been developed in the literature. The general models – all using the
elastoplastic analogy and the return-mapping algorithm for the penalty regularization of the
friction law – are developed in Wriggers et. al. [32], Laursen and Simo [18], Peric and Owen
[28], Parisch and Lübbing [27]. Reviews of contemporary contact models can be found in the
monographs of Wriggers [33] and Laursen [19]. The covariant description was especially devel-
oped in Konyukhov and Schweizerhof [14], [15] to take advantage of the differential properties
of contact surfaces. These derivations allow a straightforward geometrical interpretation of the
characteristics for an iterative solution, such as regularization equations and tangent matrices.
In the current section all important details of the covariant description necessary for a further
generalization into the anisotropic domain are briefly outlined.

As starting basis of the covariant description, we introduce a spatial local coordinate system
related to the master surface. This coordinate system is defined fitting the closest projection
procedure. Let S be a slave point and C its projection on the surface, see Fig. 1. At point C

we consider a coordinate system based on the following relation:

rs(ξ
1, ξ2, ξ3) = ρ(ξ1, ξ2) + nξ3. (1)

The first two convective coordinates ξ1, ξ2 define properties of the surface and, therefore, are
responsible for the tangential contact interaction. The third coordinate ξ3 is the value of the
penetration and is used to define the properties of the normal interaction. It is obtained after
the aforementioned closest point procedure as projection on the third axis n in each iteration
step:

ξ3 = (rs − ρ) · n. (2)

The basis vectors ri, i = 1, 2, 3 of the spatial coordinate system eqn. (1) are obtained via
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Figure 1: Contact between bodies. Definitions for closest point projection. Anisotropic contact
surface.

the basis surface vectors ρ1, ρ2, n as:

ri =
∂r

∂ξi
= ρi + niξ

3 = (ak
i − hk

i ξ
3)ρk, i, k = 1, 2, r3 = n, (3)

where ak
i are mixed components of the surface metric tensor and hk

i are mixed components of the
surface curvature tensor. A core of the covariant description is to consider contact dependencies
in the 3D spatial system and to express them on the tangent plane, i.e. at ξ3 = 0.

2.1 Convective velocities. Variation of relative displacements.

Projections of the full time derivative of eqn. (1) to the local basis ri considered at ξ3 = 0 result
in the convective velocities ξ̇i. The tangential components are defined as

ξ̇j = aij(vs − v) · ρi, i, j = 1, 2, (4)

where vs is the velocity of the slave point S, and v is the velocity of the projection point C.
The third component is given by the value in the normal direction

ξ̇3 = (vs − v) · n, i = 1, 2. (5)

Considering the convective velocities also the variation of the relative displacements can be
expressed in form of δξi

δrs − δρ = δξiρi + δξ3n. (6)

4



2.2 Evolution equations for contact tractions

The vector of contact tractions R is defined as a covariant vector and, therefore, is expressed
via the contravariant basis vectors ρi and n as sum of the tangential and normal components

R = T + N = Tiρ
i + Nn. (7)

As is well known, the relations between two coordinates ξ1, ξ2 and the tangential force can be
formulated in the differential form as so-called evolution equations. The penalty regularization
process for the simple Coulomb friction law within the analogy to the rigid plasticity model
leads to the following evolution equations for the trial tangential contact tractions Ti:

dTi

dt
= (−εT aij + Γk

ijTk)ξ̇
j − hk

i Tkξ̇
3, (8)

where Γk
ij are the Christoffel symbols for the contact surface. Eqn. (8) serves to compute the

trial tangent tractions. The final values are obtained via the return-mapping scheme, see [19],
[33]. Equation (8) is a covariant scalar form of the proportionality condition between the full
time derivative of the tangent traction vector T and the relative velocity vector ξ̇iρi expressed
on the tangent plane

dT

dt
= −εT ξ̇iρi, (9)

where a full time derivative dT
dt

is taken in covariant form

dT

dt
=

DTi

dt
ρi,

DTi

dt
≡ dTi

dt
− Γk

ijTkξ̇
j + hk

i Tkξ̇
3, (10)

The regularization equation for the normal traction N satisfying the non-penetrability con-
dition has the following form:

N = εNH(−ξ3)ξ3, (11)

where a Heaviside function H(−ξ3) reflects the fact that N is not equal zero and is computed
only when a penetration occurs, i.e. ξ3 < 0.

The full time derivative Ṅ is then:

Ṅ = −εNH(−ξ3)ξ̇3. (12)

2.2.1 Integration of evolution equations. Geometrical interpretation of the return-

mapping scheme.

As shown in Konyukhov and Schweizerhof [14], [15], within the contact description the curva-
ture part can be omitted in numerous cases without loss of efficiency leading to considerable
simplifications and a major gain in numerical effort. This is especially pronounced for such
contact problems, where the development of sticking-sliding zones is important. In such cases
we can e.g. simplify all equations, assuming constant metrics. The evolution equation is solved
then numerically via the implicit backward scheme with n indicating the load step arising from
a subdivision of the loads applied in sequential load steps.

T
(n+1)
i = T

(n)
i − εT aij(ξ

j

(n+1) − ξj

(n)) = (13)

continuing recursively:

= T
(n−1)
i − εT aij(ξ

j

(n) − ξj

(n−1)) − εT aij(ξ
j

(n+1) − ξj

(n))
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= T
(n−1)
i − εT aij(ξ

j

(n+1) − ξj

(n−1)) = ...

= T
(0)
i − εT aij(ξ

j

(n+1) − ξj

(0))

Assuming that the initial tangential forces are zero, T
(0)
i = 0, we get

T
(n+1)
i = −εT aij∆ξj, with ∆ξj = (ξj

(n+1) − ξj

(0)). (14)

Eqn. (14) defines trial tractions Ti at load step (n + 1) at contact points on the tangent
plane ξ1

(n+1), ξ
2
(n+1). The absolute value of the tangent traction is computed as:

‖T‖2 = T
(n+1)
i T

(n+1)
j aij = ε2

T aij(ξ
i
(n+1) − ξi

(0))(ξ
j

(n+1) − ξj

(0)). (15)

With eqn. (15) the sticking zone in combination with the Coulomb law becomes then:

‖T‖2 ≤ µ|N |2 =⇒ ε2
T aij(ξ

i
(n+1) − ξi

(0))(ξ
j

(n+1) − ξj

(0)) ≤ µ2N2. (16)

Eqn. (16) describes a circle in a Cartesian coordinate system via the convective coordinates
ξ1, ξ2. The circle is placed on the tangent plane with the center at ξ1

(0), ξ
2
(0). The inner part of

it defines the allowable elastic region for the projection of a slave point, the so-called adhesion
domain. Thus, the geometrical interpretation of the solution of the evolution equation is a
trajectory of the contact point which is allowed to be inside the circle in the case of sticking. If
eqn. (11) is taken for regularization of the normal traction N , then we obtain a cone equation
in the spatial coordinate system:

ε2
T aij(ξ

i
(n+1) − ξi

(0))(ξ
j

(n+1) − ξj

(0)) ≤ µ2ε2
N(ξ3)2. (17)

This interpretation can be found in Krstolovic-Opara and Wriggers [17], where a so-called
”frictional cone description” was proposed.

2.3 Weak form.

The work of the contact tractions R in eqn. (7) on the relative virtual displacement δrs − δρ
in eqn. (6) can be expressed on the contact surface as:

δWc =

∫

s

R · (δrs − δρ)ds =

∫

s

Nδξ3ds +

∫

s

Tjδξ
jds. (18)

The integral in eqn. (18) is computed on the slave surface ds, whereas all functions are
defined on the master surface.

3 Generalization for complex contact interface laws

The regularization for a Coulomb type frictional law leads to a subdivision of the motion
of the contact point on the master surface into reversible and irreversible parts. The first,
reversible part appears due to the regularization and usually contains a penalty parameter. It
describes the elastic tangent deformation, the so-called tangential adhesion, see Curnier [7].
The second, irreversible part is described by a flow rule due to a specific yield function. Both
parts can be generalized for anisotropic domains by taking proper tensors and equations. In
this section, we summarize all necessary equations in vector form convenient for the expansion
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into the anisotropic domain. For the representations of the anisotropic tensor we will use the
representation based on the spectral decomposition in the simple case of constant orthotropy,
and in the general case, the representation based on the tensor product of unit vectors of an
arbitrary curvilinear surface coordinate system.

3.1 Vector form of the isotropic equations

The generalization is based upon the consideration of anisotropic tensors instead of isotropic
tensors in the evolution equations. The structure of the anisotropic tensors for contact, if one or
both contact surfaces have anisotropic structure is theoretically discussed by Zmitrowicz [38],
[39] and also by He and Curnier [12]. Here we assume the described properties for tensors and
will further discuss some restrictions for both the adhesion tensor and the friction tensor. All
tensors are defined in the basis of the tangent plane of the contact master surface.

3.1.1 Elastic part of the contact deformation

To start the development, we reorganize the evolution equations (8) and (12), describing in
fact the elastic reversible part of the deformation in vector form in the local surface coordinate
system.

dR

dt
= Êvr, (19)

where R is a traction vector acting on a slave point S; vr = vs − v = ρiξ̇
i + nξ̇3 is a relative

velocity of a slave point and Ê is an isotropic tensor of penalty parameters:

Ê =





−εT 0 0
0 −εT 0
0 0 −εN



 . (20)

Eqn. (19) describes the force-displacement relationship in a rate form for the reversible elastic
part of the contact interaction. The irreversible part in the case of a simple Coulomb friction
law is correlated to the rigid plasticity model.

3.1.2 Yield function for the isotropic Coulomb friction law

Remembering, that the scalar product is computed on the surface via the metric tensor com-
ponents aij, we can define a yield function for the Coulomb friction law as

Φ :=

√
T · T
µ|N | − 1 ≡

√
TiTjaij

µ|N | − 1. (21)

The sticking and sliding zones are now defined by the rule:

Φ ≤ 0 means sticking; Φ > 0 means sliding. (22)

Irreversible parts including the sliding forces etc. can be obtained via the flow rule.
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3.2 General interface model

In order to take into account a diversity of linear mechanical models including viscoelasticity
etc., we can generalize eqn. (19) as follows:

dR

dt
+ ÂR = B̂vr + Ĉ∆ξ, (23)

where Â, B̂, Ĉ are tensors defined in the local surface coordinate system and ∆ξ is a vector of
the relative displacements

∆ξ = ∆ξiρi + ∆ξ3n, ∆ξi = ξi − ξi
(0), i = 1, 2, 3. (24)

A point with convective coordinates ξi
(0) indicates an initial position where the contact traction

vector R equals zero, i.e.
R|ξi=ξi

(0)
= 0. (25)

The equation for the elastic region in the form of eqn. (23) covers various viscoelastic
models such as Maxwell and Kelvin models in arbitrary anisotropic forms including adhesion.
A generalization of the isotropic Coulomb friction model according to Maxwell and Kelvin
viscoelastic models was considered in Araki and Hjelmstad [1]. A rate-dependent model with
orthotropic friction coefficients in Cartesian coordinate system was considered in Oancea and
Laursen [25].

Assuming the decoupling of the third normal coordinate ξ3, we can rewrite eqn. (23) for
the surface components in the form:

dT

dt
+ AT = Bvr + C∆ξ, (26)

where A, B, C are tensors defined on the tangent plane, T is a tangent force vector, vr = vs−v

is a relative tangent velocity vector expressed on the tangent plane, ∆ξ = ∆ξ iρi is a relative

tangent displacement vector and
d

dt
is a full time derivative in the covariant form on the contact

surface.
The third equation for the normal force N and for the penetration ξ3, is treated separately

Ṅ + aN = bξ̇3 + c∆ξ3. (27)

For the further development we consider only a rate independent motion, i.e. assume a
specific structure of the evolution equations (23) and (27) excluding the direct time dependency
of the contact tractions.

3.2.1 Anisotropic evolution equations. Rate-independent model.

Considering a case of rate-independent motions by taking A = 0, C = 0 in eqn. (26) and a = 0,
c = 0 in eqn. (27) we define anisotropy for an elastic part of the contact conditions. Therefore,
from eqn. (26) the following rate forms remain:

dT

dt
= B(vs − v). (28)

Expressing this in the tangent plane by coordinates, we get the following evolution equation

∂Ti

∂t
+ ∇jTiξ̇

j = bij ξ̇
j, j = 1, 2. (29)
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The evolution equations (28) resp. (29) describe the fact that the reaction tangential forces
are acting not in the opposite direction to the velocity vector, but in the direction defined by
tensor B. In other words, if a force T is acting on point C on the surface, then this point is
moved in a somewhat different direction defined by the angle β, see Fig. 2, but, in general, not
in the direction of the force.

Remark. The evolution equations (28) describe the elastic deformations of contact interaction in
the rate form. This elastic tangential deformation is known as tangential adhesion, see Curnier
[7]. Thus, we call a tensor B the elastic adhesion tensor, or simply the adhesion tensor.

Remark. The mechanical restriction for the elastic force T to act in opposite direction to
the relative velocity can be formulated in an energy sense according to the thermodynamical
restriction: the power of the elastic force T must be negative. This requires that the adhesion

tensor taken with a minus sign −B is a positively defined tensor.

Since we are working with a decoupled model regarding the normal and tangential contact
interactions, the evolution equation for the normal force N and thus the parameter b in eqn. (27)
is kept in the form given by eqn. (12).

3.3 Anisotropic yield function

Several theoretical approaches are known in literature for formulations for the yield function
and for the sliding rule. Before presenting a particular structure of the tensor we will briefly
review these approaches as well as restrictions for the tensor which are known in literature.

3.3.1 Various approaches for formulations of yield criteria and sliding rules

In a first publication, Michalowski and Mroz [23] proposed to distinguish functions for limit
criteria and for sliding, introducing the so-called associated and non-associated sliding rules.
These functions were built by analogy looking at the solution for the sliding of a rigid block on
an inclined surface.

Zmitrowicz [38] introduced the friction tensor F into the originally isotropic Coulomb criteria
(21) and described its properties based on the groups of material symmetry. The sliding forces
were formulated directly without correspondence to the yield criteria. It was also obtained
that ”There is no restrictions for the arbitrary anisotropic friction tensor except its positive
definition, but the orthotropic friction tensor is symmetric”. The superposition of two friction
tensors when two anisotropic surfaces are in contact was also discussed. In a later publication
Zmitrowicz [39] assumed that the sliding force nonlinearly depends on the relative velocity
introducing in addition a 4th-order friction tensor.

He and Curnier [12] applied the theory of tensor function representations – the fundamental
aspects of this theory see Zheng [43] – to obtain the general irreducible structure for the
nonlinear friction tensor in the case of friction between two orthotropic surfaces. The structure
at the contact point is defined by [12] as follows:

• m is a unit vector of the preferable direction for the first surface,

• k is a unit vector of the preferable direction for the second surface,

• u is a unit vector of the relative sliding velocity.
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Then the sliding force T is defined as

T = N [ α1(I1, I2)E + α2(I1, I2)(m ⊗ m) + α3(I1, I2)(k ⊗ k) ]u , (30)

where N is a normal force, E is a unit tensor, αi are scalar functions of the following invari-
ants: I1 = u · (m ⊗ m)u, I2 = u · (k ⊗ k)u. Also the symmetric properties of the friction
tensor for orthotropic surfaces were derived and it was shown, that a yield function is a direct
consequence of the rate-independence condition. Other important results were ”the thermody-
namical restrictions for the friction tensor leading to its positivity and the formulation of the
convex energy dissipation function”.

3.3.2 Coulomb type yield functions

Summarizing the results of the previous developments, we will later use a generalization of the
isotropic yield criterion in eqn. (21) by replacing the scaled metric components aij/µ2N2 with
tensor components f ij, assuming the a-priori necessary properties as discussed above. Thus,
we can obtain:

ΦN =

√

f ij
N TiTj − 1 =

√

(T · FNT) − 1. (31)

The standard assumption of proportionality of the sliding force Tsl to the normal traction N ,
the so-called Coulomb’s form, see Curnier [7], leads to

FN =
F

N2
, (32)

and the yield function can then be written as:

Φ =
√

f ijTiTj − |N | =
√

T · FT − |N |. (33)

The sliding criteria (21-22) become then

if Φ ≤ 0 then sticking, (34)

describing a contact point inside the adhesion domain,

if Φ > 0 then sliding, (35)

describing a contact point outside the adhesion domain.
The tensor F is called friction tensor and is defined by its components f ij in the surface

tensor basis as
F = f ijρi ⊗ ρj. (36)

Comparing with the isotropic function, we introduce anisotropic friction coefficients:

f ij =
aij

µ2
ij

, i, j = 1, 2, (37)

where µij are coefficients of friction.

3.4 Tensor representations for anisotropy

Here we consider particular structures for the anisotropic tensors for the evolution equa-
tions (28) as well as for the yield function (33), automatically satisfying the necessary re-
strictions mentioned in the previous sections. We start with the simplest case – a constant
orthotropy on the plane. In this case all tensors are symmetrical ones. The more general
anisotropic case can be defined then in an arbitrary coordinate system by setting different
properties along the coordinate lines.

10



3.4.1 Spectral representation of the tensor – constant orthotropy in the plane.

As mentioned above, constant orthotropy in the plane is described by constant symmetric
tensors for which a spectral representation is chosen. Any symmetric positive tensor A can be
decomposed as:

A = QΛQT , (38)

where Λ is defined in the mixed tensorial basis as a diagonal matrix of eigenvalues:

Λ =

[
λ1 0
0 λ2

]

; (39)

and Q is an orthogonal tensor. Since it describes the rotation on the tangent plane between
the main axes ei and the axes ξi, see Fig. 2, it becomes

Qα =

[
cos α − sin α
sin α cos α

]

. (40)

��

��

α

C

O

T

ε1e1

e2 ε2
ξ 2

ξ1

v

β

Figure 2: Main orthotropy axes and local surface coordinate system.

The main axes are hereby defined as orthotropy axes. Then the spectral representation of
A is obtained as

A = QαΛQT
α = [Ai

j] =

[
λ1 cos2 α + λ2 sin2 α (λ1 − λ2) sin α cos α
(λ1 − λ2) sin α cos α λ1 sin2 α + λ2 cos2 α

]

. (41)

Taking into account, that the model for constant orthotropic friction contains the tensor
in the evolution equations (28) and in the yield function (33) in mixed form which allows the
spectral decomposition given in eqn. (41), the following derivations are possible:

First we focus on the evolution equation given by eqn. (29), where the mixed components
are introduced via the spectral decomposition (41). Taking into account that the adhesion
tensor B (see Remark 3.2.1 in Sec. 3.2.1) is negative, we introduce positive values εi = −λi > 0
and an orthotropy angle α. Thus, after a transformation into a local coordinate system the
following matrix description for the tensor is obtained:

B = [bi
j] = −

[
ε1 cos2 α + ε2 sin2 α (ε1 − ε2) sin α cos α
(ε1 − ε2) sin α cos α ε1 sin2 α + ε2 cos2 α

]

. (42)
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Matrix B in eqn. (42) describes the orthotropic properties in the reversible part of the
tangential interaction, where the parameters ε1, ε2 can be seen as orthotropic moduli of the
tangential adhesion. Assuming ε1 = ε2 leads to isotropic behavior and then the isotropic
evolution equation is recovered.

Second, the yield function for the constant orthotropic friction is defined via the or-
thotropic friction tensor F which allows a spectral decomposition. After introducing the angle
β between the local coordinate axes and the orthotropy axes, and eigenvalues as λi = 1/µ2

i , the
following matrix [f i

k] is obtained:

F = [f i
k] =








1

µ2
1

cos2 β +
1

µ2
2

sin2 β (
1

µ2
1

− 1

µ2
2

) sin β cos β

(
1

µ2
1

− 1

µ2
2

) sin β cos β
1

µ2
1

sin2 β +
1

µ2
2

cos2 β








. (43)

The restriction of positivity for the friction tensor F leads to the known positive orthotropic
friction coefficients µi > 0.

3.4.2 Structure of the anisotropic tensor inherited from an arbitrary surface curvi-

linear coordinate system

We assume that on the surface defined via the Gaussian coordinates ξ1, ξ2 as

ρ = ρ(ξ1, ξ2), ρ =







x1(ξ
1, ξ2)

x2(ξ
1, ξ2)

x3(ξ
1, ξ2)






(44)

another Gaussian coordinate system is defined. Thus, the Cartesian coordinates of the same
surface xi are defined by Gaussian convective coordinates α1, α2:

xi = φi(α
1, α2), i = 1, 2, 3. (45)

One can say, that we have re-parameterization of the surface

αi = αi(ξ1, ξ2), i = 1, 2, (46)

or, in another words, eqn. (46) defines a new coordinate system on the same surface.
Arbitrary anisotropic properties of a surface can be defined as different characteristics along

these coordinate lines. The unit tangent vectors along the coordinate lines are then defined as:

ei =
ri√
gii

, i = 1, 2 no summation over i (47)

where ri =
∂r

∂αi

are the basis vectors, and gii = ri · ri are diagonal coefficients of the covariant

metrics tensor.
The tensor of anisotropy A can then be defined via the unit tensor basis as:

A := λ1e1 ⊗ e1 + λ2e2 ⊗ e2 = λ1
r1 ⊗ r1

g11

+ λ2
r2 ⊗ r2

g22

= λi

ri ⊗ ri

gii

. (48)

Remark. From now on and further in the last representation in eqn. (48) the summation con-
vention is implied also for the sum over i-index, though the index i is repeated four times.
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It is obvious, that the tensor structure prescribed above, see eqn. (30), is preserved. As
a next step a transformation into the surface basis ρi(ξ

1, ξ2) is necessary for the evolution
equation as well as for the yield equation.

Remark. The tensor in eqn. (48) is defined, in general, via the coordinates α1, α2. We introduce
a notation AC, if the tensor A is defined in the global reference Cartesian coordinates, and
will keep the notation A if the tensor is defined after the tensor transformation to the surface
coordinate system ξ1, ξ2, eqn. (44).

The evolution equation is transformed as follows. Assuming the stiffnesses along the coor-
dinate lines as λi = −εi, we obtain

BC := −
(

ε1
r1 ⊗ r1

g11
+ ε2

r2 ⊗ r2

g22

)

. (49)

The tensor BC is a Cartesian tensor. Some steps are necessary to transform it to surface
coordinates ξ1, ξ2. Substitution into the right hand side of the evolution equation (28) leads to:

BC(vs − v) := −εi

ri ⊗ ri

gii

· ρj ξ̇
j = −

εi(ri · ρj)ξ̇
j

gii

ri. (50)

The dot product of the evolution equation (28) with ρk, taking into account eqn. (50), leads to
the equation in components according to the surface metrics:

dTk

dt
= −

εi(ri · ρk)(ri · ρj)

gii

ξ̇j. (51)

For the further implementation into a finite element code, it is more appropriate to introduce
a tensor decomposition:

dTk

dt
= −εiri ⊗ ri

gii

: (ρk ⊗ ρj)ξ̇
j, (52)

where the components of the first tensor BC = −εiri ⊗ ri

gii

can be computed in a Cartesian

coordinate system separately for the surface as:

bC
ln = − εi

gii

∂φl

∂αi

∂φn

∂αi

. (53)

After this the evolution eqn. (52) is defined as:

dTk

dt
= bC

ln

∂xl

∂ξk

∂xn

∂ξj
ξ̇j. (54)

From the last equation the covariant components of the tensor B in the global surface basis
ρ1, ρ2 are obtained as tensor transformations, i.e.

bij = bC
ln

∂xl

∂ξi

∂xn

∂ξj
. (55)

Introducing the friction coefficients λi = 1/µ2
i into the yield function and then applying

analogous tensor operations as for the evolution equation lead to the following form:

Φ =

√
ri ⊗ ri

µ2
i gii

: (TkTlρk ⊗ ρl) − |N |, (56)

13



from which a similar definition of covariant components for the friction tensor are obtained:

fkl =
ri ⊗ ri

µ2
i gii

: (ρk ⊗ ρl). (57)

In the following we consider particular structures for covariant components in the Cartesian
coordinate system bC

ij in eqn. (53) as well as for bij in eqn. (55) in the local surface coordinate
system for the anisotropic plane, for polar orthotropy on a plane and for spiral orthotropy on
a cylinder.

3.4.3 Anisotropic plane. Structure of the BC and B tensors in Cartesian coordi-

nates.

On the plane x3 = 0, we consider anisotropic properties defined by two unit vectors r1 and r2:

r1 =







cos α
sin α

0






, r2 =







cos β
sin β

0






. (58)

The Cartesian components of the adhesion tensor bC
ln are obtained as:

BC = −





ε1 cos2 α + ε2 cos2 β ε1 sin α cos α + ε2 sin β cos β 0
ε1 sin α cos α + ε2 sin β cos β ε1 sin2 α + ε2 sin2 β 0

0 0 0



 . (59)

For an analysis, the approximation of the surface is necessary in order to obtain the structure
of the tensor in surface coordinates ξ1, ξ2 in eqn. (55). If the latter coincide with the global
Cartesian coordinates ξi = xi, we obtain

B = −
[

ε1 cos2 α + ε2 cos2 β ε1 sin α cos α + ε2 sin β cos β
ε1 sin α cos α + ε2 sin β cos β ε1 sin2 α + ε2 sin2 β

]

. (60)

It is obvious, that isotropy is no longer recovered simply by taking ε1 = ε2. However, if we take
the unit vectors to be orthogonal, i.e. β = π/2+α, the orthotropic matrix obtained previously
via the spectral representation in eqn. (42) is recovered.

3.4.4 Orthotropic surface in polar coordinates. Structure of the BC and B tensors

in Cartesian coordinates.

As an example with curvilinear orthotropy, a plane with orthotropic properties in polar coor-
dinates, see Fig. 3, is considered. These properties are defined by the elastic constants εr, εφ

acting along the coordinate lines. The definition in eqn. (45) is then a transformation to polar
coordinates:

x = r cos φ, y = r sin φ, z = 0. (61)

The Cartesian components of the orthotropic tensor bC
kn are then defined by the following

matrix:

BC = −





εr cos2 φ + εφ sin2 φ (εr − εφ) sin φ cos φ 0
(εr − εφ) sin φ cosφ εr sin2 φ + εφ cos2 φ 0

0 0 0



 . (62)
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Applying the inverse mapping from polar coordinates to Cartesian coordinates in eqn. (61) (see
also eqn. (55), we obtain:

B = − 1

x2 + y2

[
εrx

2 + εφy
2 (εr − εφ)xy

(εr − εφ)xy εry
2 + εφx

2

]

. (63)

The adhesion tensor for polar orthotropy in eqn. (63) contains a typical example of nonlinear
surface properties in the reference Cartesian coordinate system.

����

���
���
���
���

φ

εφ

rr

rφ,

, rε

O
Y

X

Figure 3: Polar orthotropic surface.

3.4.5 Spiral orthotropy on a cylindrical surface. Structure of the BC and B tensors

in cylindrical coordinates.

As a more complex case, we consider a circular cylinder and the surface orthotropy resulting
from spiral coordinate lines on the cylinder. This example can be practically interesting to
model e.g. screw connections. First, we define a rigid cylinder with a surface described by the
following parameterization ρ(α, z):

ρ =







R cos α
R sin α

z






. (64)

The necessary surface characteristics are the tangent vectors and the normal vector

ρ1 =







−R sin α
R cos α

0






, ρ2 =







0
0
1






, n =







cos α
sin α

0






, (65)

resulting in a covariant surface metrics tensor

[aij] =

[
(ρ1 · ρ1) (ρ1 · ρ2)
(ρ2 · ρ1) (ρ2 · ρ2)

]

=

[
R2 0
0 1

]

. (66)

15



Orthotropic properties of the surface are obtained as follows. The equation for a family of
cylindrical spiral lines on the cylinder (64) is, see also the geometry given in Fig. 4:

r =







R cos α
R sin α

H

2π
α + const







. (67)

The first tangent vector r1 along the spiral line necessary for the tensor representation (49)
becomes:

r1 =
∂r

∂α
=







−R sin α
R cos α

H

2π







. (68)

The second tangent vector r2 is defined to be orthogonal to the first vector r1 and to the normal
on the cylinder surface, see eqn. (65.3) and Fig. 4:

r2 = [n × r1] =







H

2π
sin α

−H

2π
cos α

R







. (69)

With this expression an equation for the line orthogonal to the main spiral line (67), see line
AC in Fig. 4, can be found from the condition that the integrated and scaled tangent vector
r2 must belong to the cylinder surface

A

∫

r2dα ∈ cylinder =⇒ A =
2πR

H
, (70)

which leads to the following definition of a vector r̂, orthogonal to r:

r̂ =







R cos α
R sin α

2πR2

H
α + const







. (71)

Thus, orthotropic properties are inherited from the orthogonal spiral net on the cylinder
via eqns. (67) and (71).

Remark. For further analyses, one can define from eqns. (67) and (71) the distances between

two adjacent threads as H for the main spiral and Ĥ =
(2πR)2

H
for the orthogonal spiral AC,

see Fig. 4.

The covariant components of the metric tensor gij are defined as

[gij] =







R2 +

(
H

2π

)2

0

0 R2 +

(
H

2π

)2







. (72)
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The tensor of orthotropy Bα in the Cartesian basis, see eqn. (49), becomes then:

BC = −ε1
r1 ⊗ r1

g11

− ε2
r2 ⊗ r2

g22

= (73)

= − 1

R2 +

(
H

2π

)2













gε sin2 α −gε sin α cos α −(ε1 − ε2)
RH

2π
sin α

−gε sin α cos α gε cos2 α (ε1 − ε2)
RH

2π
cos α

−(ε1 − ε2)
RH

2π
sin α (ε1 − ε2)

RH

2π
cos α ε1

(
H

2π

)2

+ ε2R
2













,

with

gε = ε1R
2 + ε2

(
H

2π

)2

. (74)

The backward tensor transformation (55) with the matrix H defined via the cylindrical coor-
dinates

H =

[
∂xi

∂ξj

]

=

[
∂ρ

∂ξ

]

=





−R sin α 0
R cos α 0

0 1



 (75)

gives us the covariant components bij of the tensor B in the contravariant surface basis ρ1, ρ2:

B = [bij] = HTBCH = − 1

R2 +

(
H

2π

)2








gεR
2 (ε1 − ε2)

R2H

2π

(ε1 − ε2)
R2H

2π
ε1

(
H

2π

)2

+ ε2R
2








. (76)

Matrix B in eqn. (76) represents the constant spiral orthotropy for the cylindrical surface and,
therefore, is a generalization of the constant plane orthotropy in eqn. (42) for the case of a
cylindrical geometry.

Remark. With the assumption of isotropy ε1 = ε2 = ε the unit matrix is recovered only in
mixed components. In covariant components we obtain

Bε1=ε2=ε = [bij]ε1=ε2=ε = −ε

[
R2 0
0 1

]

. (77)

s

4 Derivation of the frictional contact problem via the

principle of maximum dissipation.

The principle of maximum dissipation is known in plasticity for the formulation of the necessary
characteristics, such as plastic strains etc.. The application of this principle for the construction
of computational algorithms in linear and nonlinear isotropic plasticity was developed in Simo
and Hughes [29]. He and Curnier [12] formulated the dissipation function for the anisotropic
function and investigated its extremal properties applying convex analysis. The correspondence
between the dissipation function and the sliding rule was shown. Here we will also formulate the
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Figure 4: Spiral orthotropy on the cylindrical surface.

frictional problem as an extremal problem in a continuous form, and then applying the finite
difference scheme in an incremental form. Afterwards, the return-mapping algorithm is applied
to obtain all characteristics for sliding, such as a sliding force Tsl and a sliding displacement
vector ∆ξsl. These variables can be viewed as a pair of conjugate variables for the energy
dissipation function, which allows to define them separately.

4.1 Continuous formulation

According to the elastic-plastic analogy, a frictional contact problem via the energy dissipation
function can be formulated as follows:

a) The relative velocity vector of the contact point is decomposed additively into an elastic
part vel and a sliding part vsl

vr = vel + vsl. (78)

b) The elastic part vel is responsible for reversible deformations (adhesion) and satisfies the
evolution equations (28):

dT

dt
= Bvel. (79)

18



c) The tangential force T must satisfy the following inequalities defined via the yield function
eqn. (33), which in tensor form can be written as:

Φ :=
√

f ijTiTj − |N | =
√

T · FT − |N | : (80)

• if Φ < 0 then the contact point is inside the elastic domain and T = Tel is an elastic
force,

• if Φ = 0 then the contact point is sliding and T = Tsl is a sliding force.

d) The power of the sliding forces, described by the energy dissipation function D achieves
its maximum:

D := ξ̇i
slT

sl
i = vsl · Tsl, D −→ max . (81)

For the convenient application of standard methods of convex analysis [21], [3], [11] we transform
the problem (81) into a minimization problem

Dmin := −ξ̇i
slT

sl
i = −vsl · Tsl, Dmin −→ min . (82)

The principle of maximum dissipation requires that the plastic dissipation function D sub-
jected to the inequality conditions (80) achieves a maximum. A system of ordinary equa-
tions (78) - (79) is defined in convective surface coordinates ξ1, ξ2, identifying a contact point
on the surface.

4.2 Incremental formulation

The application of the backward Euler scheme to the continuous problem a)-d) described above,
namely to a system of ordinary differential equations (78)-(79) with an additional extremal
condition (82) leads to an incremental formulation. Here we investigate only quasi-static contact
problems, therefore we can take ∆t = 1. The return-mapping scheme – for plasticity see [29]
and among the first applications for contact problems see [8] – is applied to obtain the real
sliding force and sliding displacements: the trial tangential force Ttr is assumed to be elastic and
can be computed from the incremental solution. Thus, the following incremental formulation
for the trial tangential force Ttr is found:

i) The full displacement vector ∆ξ = ξ(n+1) − ξ(n) is decomposed additively into an elastic
increment ∆ξel and into a sliding increment ∆ξsl:

∆ξ = ∆ξel + ∆ξsl, (83)

where both vectors are defined in the surface metrics, namely,

∆ξ := ∆ξiρi = (ξi
(n+1) − ξi

(n))ρi. (84)

ii) The trial force Ttr
(n+1) is computed via the incremental evolution equations:

Ttr
(n+1) − T(n) = B(n+1)(ξel

(n+1) − ξel
(n)). (85)
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iii) In order to decide whether the trial force Ttr is a sliding force Tsl or a sticking force Tst

the yield condition is checked in each load step:

Φtr : =
√

Ttr
(n+1) · F(n+1)Ttr

(n+1) − |N(n+1)|

=
√

f ijT tr
i (n+1)T

tr
j (n+1) − |N(n+1)|, (86)

• If Φtr < 0 then the trial force is a real sticking force T = Ttr.

• If Φtr ≥ 0 then the sliding force must be obtained via the maximum of the energy
dissipation function given in the incremental form.

iv) The incremental analog of the continuous formulation eqn. (82) is then:

D
(n+1)
min := −∆ξsl · Tsl

(n+1) = −∆ξi
slT

sl
i (n+1), D

(n+1)
min −→ min . (87)

For large sliding problems especially with reversible loading, it is necessary to define both,
the sliding force and the sliding displacements. Taking the sliding distance ∆ξsl as an indepen-

dent variable we can determine the sliding force Tsl via the minimum of the function D
(n+1)
min in

eqn. (87). The expression for the sliding force will be used for numerical computation within
each load step during an iterative Newton solution scheme. The sliding distance, in due course,
is defined after convergence is achieved in the load step and is computed via the consistency
condition.

A Lagrange function for the constraint minimization problem is given as:

L(n+1) := −∆ξsl · Tsl
(n+1) + λ

(√

Ttr
(n+1) · F(n+1)T

tr
(n+1) − |N(n+1)|

)

,

L −→ min, (88)

where the complementary Kuhn-Tucker conditions (see [21], [3]) are given as:

Φ :=
√

Ttr
(n+1) · F(n+1)T

tr
(n+1) − |N(n+1)| ≤ 0, λ ≥ 0, λΦ(n+1) = 0. (89)

For the next transformations a gradient of the yield function is necessary:

∂Φ(n+1)

∂Ttr
(n+1)

=
F(n+1)T

tr
(n+1)

√

Ttr
(n+1) · F(n+1)T

tr
(n+1)

, (90)

as well as a derivative of the trial force at load step (n + 1), computed via the chain rule, see
eqns. (85) and (83):

∂Ttr
(n+1)

∂∆ξsl
= −B(n+1). (91)

In the following sections the subscript (n+1) will be omitted everywhere for simplicity reasons.
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4.2.1 Derivation of the sliding force Tsl.

In order to obtain the sliding force Tsl, the sliding incremental displacement ∆ξsl is taken as
an independent variable. A formal application of convex analysis, see [21], [3], to the Lagrange
function (88) gives us the necessary condition of the minimum:

∂L
∂∆ξsl

= 0, (92)

leading to the definition of the sliding force as:

Tsl = λ
∂Φ

∂∆ξsl
. (93)

Exploiting the chain rule and using eqns. (90), (91), we obtain:

Tsl = λ
∂Φ

∂Ttr

∂Ttr

∂∆ξsl
= −λB

FTtr

√
Ttr · FTtr

. (94)

For the current sliding case, i.e. when λ > 0, we have to satisfy the Kuhn-Tucker condition
Φ = 0, in order to define λ, i.e. substitute Tsl in the yield function Φ =

√
Tsl · FTsl − |N |.

This leads to the following equation for λ:

λ = |N |
√

Ttr · FTtr

BFTtr · FBFTtr
, (95)

where the positive λ is taken due to the second Kuhn-Tacker condition in eqn. (89). Thus, the
sliding force Tsl in eqn. (94) is defined as

Tsl = − BFTtr

√
BFTtr · FBFTtr

|N |. (96)

We now introduce an auxiliary vector

T̂ = BFTtr (97)

to compute the sliding force Tsl. The covariant components of the auxiliary vector are defined
via various components of the tensor B and F as:

T̂i = bijf
jkT tr

k = bijflnajlaknT tr
k = bj

if
k
j T tr

k . (98)

Then the covariant components of the sliding vector (96) can be computed as

Tsl = − T̂
√

T̂ · FT̂
=⇒ T sl

i = − T̂i
√

T̂kT̂lfkl

(99)

The isotropic case is recovered from eqn. (96) by taking B = −εT E and F = E/µ2 to

Tsl = µ|N | Ttr

√
Ttr · Ttr

. (100)
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4.3 Specification of initial conditions for the return-mapping scheme.

Initial conditions are necessary for the incremental solution of eqns.(83) and (85) formulated as
Cauchy problem for a system of ordinary differential equations. These initial conditions can be
defined assuming that the initial configuration is unstressed, thus with zero external loading:

T = 0, N = 0 =⇒ ξ = ξ(0), ξsl
(0) = 0 for ξ3 ≤ 0. (101)

The conditions are formulated for all points which are in contact at the initial configuration,
i.e. for all points satisfying ξ3 ≤ 0. The vector ξ(0) is obtained via a projection procedure, and
defines the center of the ellipse for the adhesion domain, see Fig. 5. The additional initialization
of the sliding displacement and the update procedure will be discussed after the geometrical
interpretation of the solution process.

4.4 Derivation of the sliding incremental displacement ∆ξsl and up-

date scheme for the history variables.

We consider here a ”step-by-step” scheme for the case with nonlinear tensors B and F concen-
trating on computational aspects for the numerical implementation. For the nonlinear case let
us assume that the first converged load step is elastic, i.e. Φ < 0 in eqn. (89), while for the
second load step the sliding condition is achieved, i.e. Φ = 0 and the load step was computed
with the sliding force Tsl. Let ξ(1) and ξ(2) are convective coordinates of a contact point after
the corresponding first and the second load steps. The trial force for the second load step Ttr

(2)

is then computed as in an Euler backward scheme:

Ttr
(2) = T(1) + B(2)(ξ(2) − ξ(1)), (102)

where for the first load step a force T(1) is computed taking into account the initial conditions
in eqn. (101)

T(1) = B(1)(ξ(1) − ξ(0)). (103)

The value of the sliding displacement ξsl
(2) and resp. the elastic part ξel

(2) are defined via the

strict fulfillment of the Kuhn-Tucker condition Φ(2) = 0 for the elastic part ξel
(2):

Φ(2) = Φ(2)(ξ, ξsl) =

√

(T(1) + B(2)(ξel
(2) − ξ(1))) · F(2)(T(1) + B(2)(ξel

(2) − ξ(1))) − |N |, (104)

where the full displacement vector ξ(2) after the converged second load step can be decomposed
as:

ξ(2) = ξel
(2) + ξsl

(2). (105)

The consistency condition (see [21], [3]) for the constraint function Φ(2) leads to an additional
equation allowing to determine the direction of the sliding displacement:

Φ̇ =
∂Φ

∂ξ(2)

·
dξ(2)

dt
+

∂Φ

∂ξsl
(2)

·
dξsl

(2)

dt
= 0. (106)

Continuing with the chain rule we obtain:

∂Φ

∂ξel
(2)

∂ξel
(2)

∂ξ(2)

·
dξ(2)

dt
+

∂Φ

∂ξel
(2)

∂ξel
(2)

∂ξsl
(2)

·
dξsl

(2)

dt
=

∂Φ

∂ξel
(2)

·
(

dξ(2)

dt
−

dξsl
(2)

dt

)

= 0. (107)
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From the last equation, we can obtain the following condition

dξsl
(2)

dt
=

dξ(2)

dt
. (108)

Then the sliding displacement update vector ξsl
(2) can be defined in the direction of the last

converged full displacement vector ξ(2). For the computation of the nonlinear case this direction
can be approximately taken as

e =
ξ(2) − ξ(1)

|ξ(2) − ξ(1)|
(109)

leading to the sliding displacement
ξsl

(2) = λe. (110)

Parameter λ defining the length of the vector is obtained from the Kuhn-Tucker condition for
the function Φ(2) in eqn. (104). This leads to the following algebraic equation:

λ2
(
B(2)e · F(2)B(2)e

)
− 2λ

(
B(2)e · F(2)T(2)

)
+

+T(2) · F(2)T(2) − N2 = 0, (111)

where the positive root λ > 0, minimizing globally the function in eqn. (87), should be taken.

4.5 Computational aspects for further implementation considering

nonlinear and constant tensors.

For the further implementations we consider the following cases: a) with nonlinear tensors for
large displacement problems; b) with constant tensors, i.e. the case of constant orthotropy.

4.5.1 A case with nonlinear tensors for large displacement problems

Within the adjustment of the sliding force the strict execution of the backward scheme in
eqn. (85) leads to the necessity to store as history variables in addition to ξel

(n) also updated

sliding variables ξsl
(n) at load step (n), which is computationally rather expensive. However,

the numerical experience from some cases even with non-constant B, e.g. for polar orthotropy,
shows that it may be mostly sufficient to use a simplified scheme, which is identical with the
backward scheme computed with the updated matrix B(n+1) at load step (n +1), namely, with
the following finite difference scheme:

Ttr
(n+1) = T(n) + B(n+1)(ξ(n+1) − ξ(n)), (112)

where ξ(n) is a displacement vector from the converged load step (n). For large displacement

problems the elastic part ξel can be neglected leading to the result that the update sliding vector
ξsl

(n) is equal to the displacement vector ξ(n) in the last converged load step. Computations show
that the scheme in eqn. (112) is robust and requires only T(n) and ξ(n) as history variables.

4.5.2 A case with constant orthotropy

For the case with a constant tensor B, we can proceed recursively transforming eqn. (85) similar
to the isotropic case, see eqn. (13), and obtain

Ttr
(n+1) = T(n) + B∆ξel = ... = B(∆ξ(n+1) − ∆ξsl), (113)

∆ξ(n+1) = ξ(n+1) − ξ(0),
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where ξ(0) is a center of the elliptical adhesion domain, for which a geometrical interpretation
is given later.

For the case with constant tensors the update algorithm in Sect. 4.4 leads to the exact
definition of the sliding displacement as:

∆ξsl = ξ − ξ(0) − |N | ξ − ξ(0)

√

(ξ − ξ(0)) · BFB(ξ − ξ(0)),
(114)

where ξ is the full displacement vector after the converged load step. A geometrical interpre-
tation of this scheme is discussed in the next section.

4.6 Geometrical interpretation of the solution process.

A simple geometrical interpretation for the solution can be given for a plane surface with
constant orthotropy in the case of both, elastic sticking and sliding behavior. Interpretations
can be formulated in the trial force space T tr

1 , T tr
2 and on the tangent plane ξ1, ξ2 where we

assume Cartesian metrics, i.e. aij = δij. In the trial force space the yield function in eqn. (86)
represents an ellipse due to the positivity of the friction tensor F:

Ttr · FTtr = N2. (115)

In order to obtain the interpretation on the tangent plane, the incremental evolution equa-
tion (113) is used. Then, we also obtain an ellipse on the tangent plane

B∆ξ · FB∆ξ = N2. (116)

In order to derive further characteristics, the symmetrical tensors F and B are expressed via
the spectral representation (41):

B = QαDBQT
α , F = QβDFQT

β , (117)

where Qα and Qβ are rotational matrices with corresponding angles α and β, see eqn. (40),
and DB, DF are diagonal matrices:

DB = −
[

ε1 0
0 ε2

]

, DF =






1

µ2
1

0

0
1

µ2
2




 . (118)

Spectral representations leads to the canonical form of ellipses. Thus, eqn. (115) becomes then

QT
β Ttr ·






1

µ2
1N

2
0

0
1

µ2
2N

2




QT

β Ttr = 1, (119)

describing a central ellipse inclined with angle β in the force plane T tr
1 , T tr

2 with the main axes
µiN .
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Eqn. (116) describes a domain with orthotropic elastic properties, where the contact point
S is attracted by the center (adhesion domain). Its transformation according to the represen-
tation (117) and (118) gives the following canonical equation:

(QαQαQ
T
β )T ∆ξ ·






1

(µ1N/ε1)2
0

0
1

(µ2N/ε2)2




 (QαQαQ

T
β )T ∆ξ = 1, (120)

∆ξ = ξ(n+1) − ξ(0)

describing an ellipse inclined by the matrix QαQαQ
T
β . The ellipse center is shifted by the

distance ξ(0) on the tangent plane ξ1, ξ2, see Fig. 5. The lengths of the main axes of the ellipse
are a resp. b = µiN/εi. The inclination angle becomes φ = 2α − β, which is verified from the
matrix:

QαQαQ
T
β =

[
cos(2α − β) − sin(2α − β)
sin(2α − β) cos(2α − β)

]

(121)

In the numerical examples, we will also investigate a case with nonlinear orthotropy with
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Figure 5: Allowable elastic region (adhesion domain).

ε1 = 0. In this limit case with lim a = ∞ the ellipse degenerates into an infinite strip of width

2b = 2
µ2N

ε2
, see Fig. 5. The properties inside the strip defined by eqn. (113) are elastic, but

the motion along the strip causes the corresponding elastic force to be zero Ta = 0.
Thus, a geometrical interpretation of the solution is as follows. The ellipse describes an elas-

tic domain with orthotropic properties obtained by the incremental evolution equation (113).
The sticking condition is fulfilled when a contact point S remains inside the ellipse. If a con-
tact point S appears outside of the ellipse, then this point is sliding, i.e. the acting force is
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Figure 6: Update scheme. Particular case.

computed via eqn. (99), see Fig. 5. Due to the condition Φ = 0 this point is on the boundary
of the elliptic region, which leads to a shifting of the ellipse in order to define the forces in the
next load step correctly. This shifting is originated by the sliding vector ∆ξsl which leads to
an update of the ellipse center and which is computed via the update scheme in eqn. (114).
The ellipse center is an attraction point for the domain with anisotropic elastic central forces
defined by the evolution equation (113). As long as the contact point S is inside of the adhesion
domain, the sliding displacements as well as the sliding forces have not to be computed. This
is, the so-called, ”sticking zone”. Let k be the number of the load step, when sliding is detected
the first time, i.e. the contact point has been moved outside the adhesion domain. Then, the
sliding displacement ξsl

(k) is computed via eqn. (114). Now, the trial procedure in eqn. (113)
is considered in the next load step (k + 1). Since the trial procedure is a computation in the
elastic region, the sliding displacement ξsl

(k+1) is assumed to be zero.

Ttr
(k+1) = B(∆ξ(k+1) − ∆ξsl

(k+1)) =

= B(ξ(k+1) − ξ(0) − ξsl
(k)) =

= B(ξ(k+1) − (ξ(0) + ξsl
(k))

︸ ︷︷ ︸

ξ
c

(k)

). (122)

Vector ξc
(k) defines the update scheme for the sliding displacements and allows to describe

the shift of the ellipse center. The incremental evolution equation (113) is corrected then in
accordance to this update scheme as

Ttr
(n+1) = B(∆ξ(n+1) − ξc

n),

with ξc
n = ξc

n−1 + ξsl
n = ... = ξ0 + ξc

k + ... + ξsl
n . (123)

Now a particular case is considered, when the orthotropy axes coincide with the Cartesian
coordinate axes (i.e. Qα = Qβ = E) and a contact point being at the position A during the
load step (k) moved to the position B during the load step (k + 1) along the ξ1 axis with
the distance ∆ξ, see Fig. 6. In this case, the trial force is obtained as T tr

1 = −ε1∆ξ, and the
following sliding displacement ∆ξsl in eqn. (114) becomes then

∆ξsl = ∆ξ − |N | ∆ξµ1
√

(∆ξε1)2
=

T tr
1

ε1|T tr
1 |(−|T tr

1 | + µ1|N |). (124)
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From Fig. 6 it becomes obvious that the sliding displacement ∆ξsl is updating the position
of the ellipse center O. The last result (124) can already be found for the isotropic case in
Wriggers and Krstulovic-Opara [34] and [16]. In addition, the analogy between the geometrical
interpretations of friction and plasticity with kinematical hardening, as described in Simo and
Hughes [29] becomes obvious.

5 Conclusion

In this contribution a model for anisotropic surfaces including both anisotropy for adhesion and
anisotropy for friction domains has been developed. The principle of maximum dissipation is
applied to derive all necessary parameters. The problem is formulated in a covariant form in
the surface coordinate system. Various types of anisotropy based either on the spectral decom-
position, or inherited from the arbitrary curvilinear coordinate system are considered. As an
example, the adhesion tensor and the friction tensor are derived for the polar orthotropy on a
plane and the spiral orthotropy on a cylinder. A special attention is paid to the geometrical
interpretation of the solution process. The current consideration is the necessary step for an
iterative Newton type solution within the finite element method. The subsequent lineariza-
tion procedure, details of the finite element implementation and numerical examples will be
considered in the second part.
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