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Abstract.

A covariant description for contact problems including anisotropy for both adhesion and
sliding domains is proposed. The principle of maximum dissipation is used to obtain a com-
putational model in the case of quasi-static motions. This second part is first focusing on
the linearization of the nonlinear equations necessary for the solution process. Then the finite
element implementation for various contact elements is developed. In addition, a mechanical
interpretation via a rheological model is discussed. Finally, different cases including curvilinear
anisotropy on arbitrary surfaces are considered. The numerical examples are chosen to show
the influence of the orthotropy type on the development of the sticking-sliding zone as well as
on the kinematical behavior of the contact bodies.

Keywords.
covariant description, anisotropy, contact, adhesion, Coulomb friction, linearization, FE dis-
cretization, geometrical isotropy

1 Introduction

In the first part of this contribution contact problems with surfaces possessing anisotropic
structure have been formulated via the principle of maximum dissipation in a continuous as
well as in an incremental form. The model includes both anisotropy for friction and anisotropy
for adhesion. An iterative solution, e.g. of a Newton’s type, is required for the solution of
the nonlinear contact problem. Thus, we consider in this part the derivation of the necessary
consistent tangent matrices for the return-mapping scheme.

The finite implementation of an anisotropic friction law is briefly discussed in Montmitonnet
and Hasquin [11] with an application to hot rolling processes, and presented in details in Alart
and Heege [1]. A symbolic computation software has been exploited to derive the corresponding
tangent matrices in [1]. In the current publication, particular attention is paid to the derivation
of tangent matrices in a covariant form allowing the straightforward implementation into a finite
element code even for arbitrary curved contact surfaces possessing anisotropic properties for
both friction and adhesion.

A rheological model is discussed as a simple mechanical interpretation of the continuous
constitutive model. In addition details of finite element implementations for various types of
finite element approximations are presented. The set of numerical examples is chosen to show
the influence of the orthotropy type on the development of the sticking-sliding zone as well
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as on the kinematical behavior of the contact bodies. Thus, constant orthotropy is classified
by the eigenvalue ratio of the corresponding tensor defining the adhesion region. These cases
are thoroughly investigated by the development of the sticking-sliding zone. It will be shown
that a specific combination of both, orthotropy for adhesion and orthotropy for friction, can
lead to the so-called geometrical isotropy, when the contact bodies show kinematically isotropic
behavior. Finally, it is demonstrated that various kinematical properties of arbitrarily curved
contact surfaces can be modeled by means of the adhesion tensor.

2 Consistent linearization for a Newton type solution

The full contact integral can be split into parts for the normal and the tangential directions:

δWc =

∫

s

Nδξ3ds

︸ ︷︷ ︸

δW N
c

+

∫

s

Tjδξ
jds

︸ ︷︷ ︸

δW T
c

, (1)

therefore, the linearization procedure for a Newton type solution will lead to a normal part and
to a tangential part of the tangent matrix. The algorithmic aspects of the linearization include
the following operations:

a) linearization of the convective variations, δξi, i = 1, 2, 3

b) linearization of contact traction N and tangential traction Ti taking the return-mapping
scheme properly into account.

In order to keep the information as brief as possible, we focus on the specifications for the
anisotropic part and refer to previous derivations wherever possible. For the nomenclature we
urge the reader to check the first part of the contribution [10].

2.1 Linearization of the variations δξi

Since the spatial coordinate system is chosen according to the surface geometry, the variational
expressions are linearized separately for the tangential variations δξ i, i = 1, 2 and for the normal
variation δξ3. For details we refer to the derivations already given in [8], [9].

2.1.1 Linearization of the normal variation δξ3

d

dt
δξ3 = −

(
δρ,j · aij(n ⊗ ρi)(vs − v) + (δrs − δρ) · aij(ρj ⊗ n)vi

)

−(δrs − δρ) · hij(ρi ⊗ ρj)(vs − v) . (2)

2.1.2 Linearization of the tangential variations δξi, i = 1, 2

d

dt
δξi =

−
(
(δrs − δρ) · ailajk

ρk ⊗ ρl vj + δρj · aikajl
ρk ⊗ ρl (vs − v)

)

+ (δrs − δρ) · hij
(
ρj ⊗ n + n ⊗ ρj

)
(vs − v)

+ hi
nξ̇3δξn − Γi

kj ξ̇
jδξk. (3)
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2.2 Linearization of the contact tractions

The derivative of the normal traction N is written as

Ṅ = −εN ξ̇3. (4)

For the linearization of the tangent traction of the reversible part, we recall the evolution
equations from Part 1. For the linearization the tangent traction T has to be considered in the
covariant form

dT

dt
= B(vs − v), (5)

leading to the component form in the surface metrics as

∂Ti

∂t
+ ∇jTiξ̇

j = bij ξ̇
j, j = 1, 2, (6)

where the adhesion tensor B = bijρ
i ⊗ ρ

j is defined in the surface metrics.

Remark. For a consistent linearization we adopt the assumption that all terms describing the
curvature properties of the master surface, i.e. including the second derivatives with respect to
convective coordinates, can be neglected based on the numerical investigations in [8] and [9].
This allows to reduce the size of various expressions considerably.

2.3 Linearization of the normal part δW N
c

According to Remark 2.2 we write the result given in [8] without the curvature term:

D(δW N
c ) =

∫

s

Ṅδξ3ds +

∫

s

N
d

dt
δξ3ds

= −
∫

s

εN(δrs − δρ) · (n ⊗ n)(vs − v)ds (7)

−
∫

s

εNξ3
(
δρ,j · aij(n ⊗ ρi)(vs − v) + (δrs − δρ) · aij(ρj ⊗ n)v,i

)
ds. (7 a)

Here, for the first term (the main part) the evolution equation (4) together with the represen-
tation of δξ3 by the geometry of the surface is used. For the second term (the rotational part)
the regularization for the normal traction together with the linearization of the variation δξ3

in eqn. (2) is taken into account.

2.4 Linearization of the tangential part δW T
c

The tangential part of the contact integral δW T
c is considered taking into account the anisotropic

evolution equations and the return mapping algorithm. The cases of sticking and sliding have
to be treated separately.

2.4.1 The sticking case

Sticking is identified when the trial contact tractions T tr
i computed at load step (n + 1) satisfy

the conditions imposed by Coulomb’s law :

Φ :=
√

f ijT tr
j T tr

i − N < 0. (8)
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In this case, the real tractions are identical to the trial ones Ti = T tr
i , therefore, the linearized

traction terms are obtained from the evolution equation in (6) directly. For the convective
velocities δξi, the linearized equations (3) can be used.

Dv(δW
T
c ) =

∫

s

(
dTi

dt
δξi + Ti

dδξi

dt

)

ds = (9)

in tensor form

=

∫

s

(δrs − δρ) · B(vs − v)ds− (9 a t)

−
∫

s

Ti

(
(δrs − δρ) · ailajk

ρk ⊗ ρl vj + δρ,j · aikajl
ρk ⊗ ρl (vs − v)

)
ds, (9 b t)

or component-wise

=

∫

s

(δrs − δρ) · bij
ρi ⊗ ρj(vs − v)ds− (9 a c)

−
∫

s

Ti

(
(δrs − δρ) · ailajk

ρk ⊗ ρl vj + δρ,j · aikajl
ρk ⊗ ρl (vs − v)

)
ds. (9 b c)

The matrices included in this integral obviously preserve symmetry.

2.4.2 The sliding case

The sliding case is identified if the inequality in eqn. (8) is not satisfied. Then the sliding force
Tsl is derived from the principle of the maximum dissipation (see Part 1) as

Tsl = − BFTtr

√
BFTtr · FBFTtr

|N | = −T̂|N |
Ψ

, (10)

or component-wise as

T sl
i = − bijf

jkT tr
k

bijblmf jkf ilfmnT tr
k T tr

n

(11)

In eqn. (10) an auxiliary force T̂ – allowing some reductions in the following expressions – is
introduced as

T̂ = BFTtr, (12)

or component-wise as
T̂i = bijf

jkT tr
k = bijflnajlaknT tr

k = bj
if

k
j T tr

k . (13)

and a function Ψ as

Ψ :=
√

BFTtr · FBFTtr =
√

T̂tr · FT̂tr. (14)

The derivative of the sliding force Tsl is computed according to the chain rule as:

dTsl

dt
=

d

dt

(

−T̂|N |
Ψ

)

= −
(

d|N |
dt

T̂

Ψ
+

|N |
Ψ

dT̂

dt
− |N |T̂

Ψ2

∂Ψ

∂T̂
· dT̂

dt

)

= −
(

d|N |
dt

T̂

Ψ
+

|N |
Ψ

[

dT̂

dt
− T̂

FT̂

Ψ2
· dT̂

dt

])

(15)
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The evolution equation (4) for the normal traction is used for the linearization of |N |. The
auxiliary force T̂ defined in eqn. (12) is linearized according to the chain rule

dT̂

dt
=

∂T̂

∂Ttr

dTtr

dt
= BFB(vs − v), (16)

where for the linearization of the trial traction Ttr the evolution equation (5) is used directly.
It is an interesting fact that due to the tensor representation the linearization is valid even in
the case of arbitrarily varying surface tensors B and F. Eqn. (15) is then transformed into

dTsl

dt
= εN ξ̇3 T̂

Ψ
− |N |

[

BFB

Ψ
− T̂ ⊗ (BFB)TFT̂

Ψ3

]

(vs − v). (17)

Eqn. (17) is used for the further linearization. After some transformations the following
expression in components is obtained for the tangential part of the contact integral

Dv(δW
T
c ) =

∫

s

(
dTi

dt
δξi + Ti

dδξi

dt

)

ds = (18)

in tensor form denoted by (... t)

=

∫

s

(

(δrs − δρ) · εN T̂ ⊗ n

Ψ
(vs − v)

)

ds (18 a t)

−
∫

s

(

(δrs − δρ) · |N | BFB

Ψ
(vs − v)

)

ds (18 b t)

+

∫

s

(

(δrs − δρ) · |N | T̂ ⊗ (BFB)TFT̂

Ψ3
(vs − v)

)

ds (18 c t)

−
∫

s

T sl
i

[
(δrs − δρ) · ailajk

ρk ⊗ ρl vj + δρ,j · aikajl
ρk ⊗ ρl (vs − v)

]
ds. (18 d t),

or component-wise denoted by (... c)

=

∫

s

(

(δrs − δρ) · εN T̂ia
ij

Ψ
ρj ⊗ n(vs − v)

)

ds (18 a c)

−
∫

s

(

(δrs − δρ) ·
|N | bk

i f
i
jb

jl

Ψ
ρk ⊗ ρl(vs − v)

)

ds (18 b c)

+

∫

s

(

(δrs − δρ) ·
|N | bi

jf
j
mbmlf q

i T̂qT̂nank

Ψ3
ρk ⊗ ρl(vs − v)

)

ds (18 c c)

−
∫

s

T sl
i

[
(δrs − δρ) · ailajk

ρk ⊗ ρl vj + δρ,j · aikajl
ρk ⊗ ρl (vs − v)

]
ds. (18 d c)

Here, the components of the sliding force T sl
i are computed via eqn. (11), and the components

of the auxiliary vector T̂i via eqn. (13). It becomes obvious, that anisotropy leads to the loss
of symmetry of part (18 c t) and (18 c c), by looking at the non-diagonal components of
T̂ ⊗ AT̂, where

A = (BFB)TF (19)

5



then we have

C = T̂ ⊗ AT̂ =⇒
{

c12 = T̂1A
1
2T̂1 + T̂1A

2
2T̂2

c21 = T̂2A
1
1T̂1 + T̂2A

2
1T̂2

. (20)

Symmetry in eqn. (20) is recovered only in the isotropic case, i.e. if Ai
j = δi

j. In the case of

isotropy we have f i
j =

δi
j

µ2
and bi

j = −εT δi
j leading to Ψ =

‖T‖
µ3

and T̂ = − εT

µ2
T tr.

Summarizing we obtain, that the tangent matrix in eqn. (18) consists of the standard
constitutive non-symmetric part (18 a), a constitutive symmetric part (18 b), and a constitutive
non-symmetric part (18 c), which is symmetric only in the isotropic case, and, finally, the
standard symmetric rotational part (18 d).

Remark. The component-wise formulas in eqns. (18 (a, b, c, d) c) show the possible representa-
tions of the corresponding tensor formulas in eqns. (18 (a, b, c, d) t). It obvious that variations
within the sequence of covariant and contravariant components are possible.

3 Finite element implementation.

In this section we will discuss details of the finite element implementation and necessary def-
initions for the proposed model. In particular, the anisotropic structure has to be defined on
the whole contact surface. This leads to additional difficulties concerning a unique description
for the whole surface and not only an approximation for the corresponding contact elements.
Therefore, we start with the simplest contact element defining contact with an anisotropic rigid
surface a so-called a point-to-analytical surface contact element. For this a node of a FE-mesh
as well as an integration point of an element can be taken as the contact point. In this case, the
contact point itself can be seen as containing history variables. If the anisotropic surface is de-
formable then the node-to-segment strategy has to be applied. In this case the contact segments
store the history variables of passing nodes. As a more general case, the re-parameterization
of the complete contact surface in the case of contact of two deformable bodies is discussed.

3.1 Point-to-analytical surface contact element. Linear surface ap-

proximation of a deformable body.

The contact of a body meshed with bilinear finite elements – and thus bilinear contact surface
elements – with a rigid anisotropic surface is one of the simplest cases to define a contact
element. In this case, a node of the FE meshed surface is taken as a contact point, while
all necessary anisotropic tensors are defined on the rigid surface which can geometrically be
described by analytical functions. The corresponding geometrical characteristics as normal
vector n and tangent vector ρi are then directly given by the analytical surface description.
All integrals for the tangent matrix as well as for the residuum are defined for one nodal point.
Since the anisotropic surface is rigid, all rotational parts can be set to zero. Thus, we obtain
the following matrices for the contact contributions.

3.1.1 Matrix for the normal part.

KN = −εNn ⊗ n. (21)

6



3.1.2 Matrix for the tangential part. Sticking case.

Kstick
T = bij

ρi ⊗ ρj. (22)

3.1.3 Matrix for the tangential part. Sliding case.

Kslide
T =

εN T̂ia
ij

Ψ
ρj ⊗ n −

bj
if

n
j bl

naik|N |
Ψ

ρk ⊗ ρl (23)

+
f q

i bi
jf

j
mbmlT̂qT̂nank|N |

Ψ3
ρk ⊗ ρl.

All matrices contain only constitutive parts and belong to the corresponding nodes. The
contact node then owns also the necessary history variables from the previous converged step
(n): convective coordinates ξ1

(n), ξ
2
(n) and tangential contact forces T

(n)
1 , T

(n)
2 .

3.2 Point-to-analytical surface contact element. Arbitrary surface

approximation of the deformable body.

If a body is meshed with finite elements of higher order of approximation for the surface –
leading to a contact element of the same high order – then an integration point of the FE
surface elements has to be taken as a contact point. In this case, the vector rs describes the
analytical surface and the vector ρ is computed from the finite element mesh. Algorithmic
aspects of contact problems with a surface described by analytical functions are discussed in
[4]. The algorithmic discretization of the tangent matrix, presented in Sect. 2.2, is obtained as
follows. Let ue be the nodal displacement vector taken from the finite element discretization
as

uT
e = {u(1)

1 , u
(1)
2 , u

(1)
3 , u

(2)
1 , u

(2)
2 , u

(2)
3 , ..., u

(n)
1 , u

(n)
2 , u

(n)
3 }T , (24)

where (n) is a number of nodal points of the contact surface element. Assuming that the ap-
proximation is performed with (n) shape functions, only a single position matrix A is necessary
for discretization of all contact contributions.

A =





N1 0 0 N2 0 0 ... ... ... N(n) 0 0
0 N1 0 0 N2 0 ... ... ... 0 N(n) 0
0 0 N1 0 0 N2 ... ... ... 0 0 N(n)



 . (25)

The contact matrix for the normal part in eqn. (7) is then obtained as:

KN = −
∫

s

εNATn ⊗ nAds = (26)

= −
Np∑

I,J=1

(
εNATn ⊗ nAWIWJ detJ(ξ1

I , ξ2
J)
)
,

where NP is the number of integration points and WI , I = 1, 2, ..., NP are weights of the chosen
quadrature formula. The determinant of the Jacobian detJ(ξ1

I , ξ
2
J) is computed for the surface

segment – the contact segment – of the body. For each integration point a set of history
variables from the previous converged step (n) must be stored: convective coordinates ξ1

(n), ξ
2
(n)

and tangential contact forces T
(n)
1 , T

(n)
2 . The tangent matrices for the tangential part as defined

in Sect. 2.4.1 and 2.4.2 can be derived in similar fashion.
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Remark. For this specific case all geometrical characteristics such as normal vector n, tangent
vector ρi as well as the anisotropic tensors are taken from the rigid surface which is defined by
analytical functions.

3.3 Node-to-segment approach. Deformable anisotropic contact sur-
face.

If a deformable body has a surface with anisotropic properties, then the node-to-segment ap-
proach can be applied. In this case, the corresponding contact segments covering the anisotropic
surface are taken as master segments. A nodal displacement vector contains then an additional
(n + 1) slave node besides the first (n) nodes from the master segment:

uT
e = {u(1)

1 , u
(1)
2 , u

(1)
3 , ..., u

(n)
1 , u

(n)
2 , u

(n)
3 , u

(n+1)
1 , u

(n+1)
2 , u

(n+1)
3 }T . (27)

The position matrix A is modified as

A =





N1 0 0 N2 0 0 ... N(n) 0 0 N(n+1) 0 0
0 N1 0 0 N2 0 ... 0 N(n) 0 0 N(n+1) 0
0 0 N1 0 0 N2 ... 0 0 N(n) 0 0 N(n+1)



 . (28)

The components of the tangent matrices (normal and tangent vectors etc.) are computed in
the projection point of the master segment. The structure is again algorithmic, e.g. a part for
the normal contact has the form:

KN = −
∫

s

εNATn ⊗ nAds = (29)

= −εNATn ⊗ nA.

Here, the segment contains the aforementioned history variables.

3.3.1 Mapping of anisotropic properties from the surface to a contact segment.

It is expected, that the anisotropic properties are defined for the complete surface, not only for
a segment. Thus, the main problem is, how to properly transfer the anisotropic properties from
the surface to the contact segment. In the case of a simple curvilinear rectangular patch this
can be organized as follows. Let s1, s2 are convective coordinates defining the parameterization
of the patch, see Fig. 1, with 0 ≤ s1, s2 ≤ 1. The anisotropic properties are determined then
via the tensor basis e1(s

1, s2)⊗e2(s
1, s2). The regular numbering i = 1, ..., m and j = 1, ..., n is

introduced according to the mapped mesh on the patch, see Fig. 2. Therefore, a direct mapping
of the convective coordinate on the element ξ1 can be defined as

ξ1 = −1 −→ s1 =
j − 1

n

ξ1 = 1 −→ s1 =
j

n







=⇒ s1 =
2j − 1 + ξ1

2n
. (30)

According to the introduced direct transformation, the backward transformation is defined
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Figure 1: Curvilinear rectangular patch.
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ξ

1

2

1 2

i n

Figure 2: Curvilinear rectangular patch. Mapping scheme.

according to the following algorithm:

do j = 1, n

if
j − 1

n
≤ s1 ≤ j

n
then k = j
ξ1 = 2ns1 − 2k + 1
endif

enddo

(31)

The second coordinate s2 is analogously computed.
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4 Numerical examples.

In this section we present numerical examples illustrating several types of the orthotropy. As
known, the orthotropic frictional properties of the surface leads to changing of kinematical
behavior of the contact bodies, see [2], [3], [5], [7], [14], [15], [16], [17], therefore, the set of
numerical examples is chosen to illustrate particular kinematical effects which appear due to
presence of anisotropy for adhesion and friction. In the first example we chose constant or-
thotropy on a plane represented by a tensor with spectral decomposition. This model possesses
a simple mechanical interpretation a so-called rheological model. Constant orthotropy is thor-
oughly investigated for the case with small displacements in order to show the development and
the distribution of the sticking-sliding zone for different types of orthotropy. These cases are
considered for the start of sliding as well as for large sliding deformations in order to consider
the trajectories of a block for different types of orthotropy. Then a large displacement problem
for a plane with polar orthotropy is taken as an example for curvilinear orthotropy on the plane.
In order to show the robustness of the developed approach for curvilinear surfaces, kinematical
effects of a bolt connection are modeled with spiral orthotropy defined on a cylinder.

4.1 Rheological model of the orthotropic adhesion-friction problem.

As is well known [12], the return-mapping scheme used for the model of elasto-plasticity can be
interpreted via a one-dimensional spring-sliding system. A generalization of this model into 2D
anisotropy is a point on the plane with a two spring-two slider system with different properties:
ε1, ε2 as stiffnesses of the springs and µ1, µ2 as coefficients of friction for the sliding devices,
see Fig. 3. A constant force F is applied to the point at an angle γ. It becomes obvious, that
after transformation of the coordinate system in such a way that e.g. the X-axis coincides with
the direction a force F, the problem exactly corresponds to the constant orthotropy on the
plane. The latter is given by a tensor with the spectral decomposition in the case of coinciding
orthotropy angles for adhesion α and for friction β, see Part 1. The trajectory of the point is
then a straight line inclined with an angle ϕ, the value of which depends on the ratio of the
eigenvalues defining the adhesion ellipse, see the geometrical interpretation in Part 1:

rλ =
λ1

λ2
=

ε1

µ1
· µ2

ε2
(32)

In forthcoming computations, we will show, that it is possible to represent geometrically
isotropic behavior, in such a way that the trajectory of the point is coinciding with the di-
rection of the force F, though the properties of this contact surface remain orthotropic.

4.2 Linear constant orthotropy on the plane.

In order to investigate the properties of the proposed model, a rectangular block is considered on
an orthotropic plane. The dimensions of the block are 10×10×4 with linear elastic properties:
Young’s modulus E = 2.10 · 104 and Poisson ratio ν = 0.3, assumed within a consistent
dimension system. The block (see Fig. 4) is located on the XOY plane and loaded by prescribing
displacements on the upper surface in two steps: 1) vertical loading with w = 1.0 · 10−2, 2)
incremental loading with ∆u along the X axis. Contact with regard to the constant orthotropic
model with the adhesion tensor

B = [bi
j] = −

[
ε1 cos2 α + ε2 sin2 α (ε1 − ε2) sin α cos α
(ε1 − ε2) sin α cos α ε1 sin2 α + ε2 cos2 α

]

, (33)
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Figure 3: Mechanical interpretation of orthotropic friction – orthotropic adhesion model. A
material point on a plane with two spring-slider systems driven by a tangential force.

and the friction tensor

F = [f i
k] =








1

µ2
1

cos2 β +
1

µ2
2

sin2 β (
1

µ2
1

− 1

µ2
2

) sin β cos β

(
1

µ2
1

− 1

µ2
2

) sin β cos β
1

µ2
1

sin2 β +
1

µ2
2

cos2 β








(34)

is specified between the plane and the block. To compare both approaches contact is modeled
with a point-to-analytical surface contact element as well as with a node-to-segment approach.
The rigid plane is taken as master segment within the latter approach. As an example coincident
orthotropy angles α = β are chosen. First, we will investigate the development of a sticking-
sliding zone for small displacements for various cases of the ratio rλ, see eqn. (32). Afterwards,
we will consider the large displacement problem and investigate the trajectories of the block
depending on the surface properties.

4.2.1 Small displacement problem. Development of the sticking-sliding zone.

In order to investigate the development of the sticking-sliding zone small displacement incre-
ments with ∆u = 1.0 · 10−4 along the X axis are applied. The following cases are considered:
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Figure 4: Geometry and loading of the rectangular in plane block.

1. Isotropic case; both, the friction and the adhesion tensors are isotropic with: penalty
parameter for the normal traction εN = 2.1 · 105, parameters of the adhesion tensor
ε1 = ε2 = 2.1 · 105, parameters of the friction tensor µ1 = µ2 = 0.3. Orthotropy angles:
α = β = 0o.

2. Geometrically isotropic case with: penalty parameter for the normal traction εN = 2.1 ·
105, parameters of the adhesion tensor ε1 = 3.0 · 105, ε2 = 2.0 · 105, parameters of the
friction tensor µ1 = 0.3, µ2 = 0.2. Orthotropy angles: α = β = 45o. This case leads to
the ratio of eigenvalues eqn. (32) rλ = 1 and, thus, to a circular adhesion region.

3. Orthotropic case; orthotropic adhesion, isotropic friction with: penalty parameter for
the normal traction εN = 2.1 · 105, parameters of the adhesion tensor ε1 = 2.0 · 105,
ε2 = 3.0 · 105, parameters of the friction tensor µ1 = µ2 = 0.3. Orthotropy angles:
α = β = 45o. The eigenvalue ratio is then rλ = 2/3.

4. Orthotropic case; isotropic adhesion, orthotropic friction with: penalty parameter for the
normal traction εN = 2.1 · 105, parameters of the adhesion tensor ε1 = ε2 = 2.1 · 105,
parameters of the friction tensor µ1 = 0.3, µ2 = 0.2. Orthotropy angles: α = β = 45o.
The eigenvalue ratio is then rλ = 2/3.

Isotropic case (1). The results are depicted in the diagram in Figure 6 showing the
developed sticking area (in grey color) for the applied horizontal displacements on the lower
contact surface in several states from the top view. This area is identified by sticking nodes
on the lower contact surface; these nodes are inside the adhesion ellipse. For the results of the
investigations we use the node numbering and the inclination angle ϕ for the block as given
in Fig. 5. One can observe that the edge nodes are sliding from the beginning, i.e. when only
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Figure 5: Numbering of nodes on the lower surface and direction ϕ of the development of a
sliding zone.

vertical loading is applied. This effect is due to the singularity of stresses on the edges known
from the analytical solution for a rigid punch problem, see e.g. Johnson [6]. The symmetrical
sticking region is vanishing and the block begins to slide fully, once the applied horizontal
displacements are beyond the value u = 10.0 · 10−3.

It is also interesting, especially for the forthcoming orthotropic cases, to observe the be-
ginning of full sliding. Both the initial configuration and the scaled deformed configuration
from the bottom view are depicted in Fig. 7 for loading u = 9.0 · 10−3 (the block begins to
slide partially) as well as for loading u = 20.0 · 10−3 (fully developed sliding of the block). The
deformation is symmetric as the horizontal axis and the current horizontal symmetry axis are
moving along the reference axis.

Geometrically isotropic case (2). The results are depicted in the diagrams in Figure 8
showing the development of the sticking area. It is interesting to observe that the initial
sticking area u = 0.0 in this case is symmetric along the main orthotropy axes which are turned
according to the references coordinate system by the angles α = β = 45o.

We recall the geometrical interpretation to explain this phenomena. The adhesion region
becomes a circle in this particular example, see Fig. 10. The elastic properties inside the circle
are orthotropic according to the computation of the trial force as Ttr = B∆x with the adhesion
tensor computed with α = 45o, see eqn. (33):

B = [bi
j] = −1

2

[
ε1 + ε2 ε1 − ε2

ε1 − ε2 ε1 + ε2

]

= −105

2

[
5 1
1 5

]

. (35)

Since, in the current example the stiffness in the second direction is less then in the first one
ε2 < ε1, all points Ael tend to reach the boundary of the adhesion circle in the direction of the
ξ2-axis. This can explain the asymmetric behavior of the initial sticking area in Fig. 8 (a). The
direction of the sliding force Tsl, which is starting to act from the boundary of the circle, is
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defined by the matrix BFB, see eqn. (10), which in the current example becomes:

BFB =
1

2








ε2
1

µ2
1

+
ε2
2

µ2
2

ε2
1

µ2
1

− ε2
2

µ2
2

ε2
1

µ2
1

− ε2
2

µ2
2

ε2
1

µ2
1

+
ε2
2

µ2
2








=

[
106 0
0 106

]

. (36)

This recovered isotropic behavior of the sliding force Tsl is depicted in Fig. 10. This effect
is depicted for the developed sliding in Fig. 9, where the horizontal axis of symmetry of the
deformed body is moving along the reference axis.
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(a) u = 0.0 (b) u = 1.0 (c) u = 2.0 (d) u = 3.0 (e) u = 4.0 (f) u = 5.0

(g) u = 6.0 (h) u = 7.0 (i) u = 8.0 (j) u = 9.0

Figure 6: Isotropic case (1). Development (degeneration) of sticking zone for several displace-
ment states. Horizontally applied displacement u pointing into the right direction (u
is scaled by 10−3).
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(a) (b)

Figure 7: Isotropic case (1). Deformed and initial configuration. Bottom view. Displacements
scaled by factor 150. Applied horizontal displacements on the upper surface: (a)
u = 9.0 · 10−3 (start of sliding); (b) u = 20.0 · 10−3 (fully developed sliding).
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(a) u = 0.0 (b) u = 1.0 (c) u = 2.0 (d) u = 3.0 (e) u = 4.0 (f) u = 5.0

(g) u = 6.0 (h) u = 7.0 (i) u = 8.0 (j) u = 9.0

Figure 8: Geometrically isotropic case (2). Development of the sticking zone for various dis-
placement states. Horizontally applied displacement u pointing into the right direc-
tion (u is scaled by 10−3).
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Figure 9: Geometrically isotropic case (2). Deformed and initial configuration. Bottom view.
Displacements scaled by factor 150. Applied horizontal displacements on the upper
surface: (a) u = 9.0 · 10−3 (start of sliding); (b) u = 20.0 · 10−3 (fully developed
sliding).
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Figure 10: Adhesion region and direction of an elastic trial force and a sliding force for specially
chosen parameters leading to the geometrically isotropic case (2). ε1 < ε2, α = 45o.

(a) 103 (b) 104 (c) 105 (d) 106

Figure 11: Geometrically isotropic case (2). Initial sticking zone. Variation of penalty and
adhesion tensor parameters. (a) scale factor 103, one load step. (b) scale factor 104,
one load step. (c) scale factor 105, one load step. (d) scale factor 106, 10 load steps.
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(a) 10× 10 (b) 16× 16 (c) 20 × 20 (d) 32× 32

Figure 12: Geometrically isotropic case (2). Initial sticking zone. Variation of mesh density.
(a) 10 × 10 elements in plane. (b) 16 × 16 elements in plane. (c) 20 × 20 elements
in plane. (d) 32 × 32 elements in plane.

(a) u = 0.0 (b) u = 1.0 (c) u = 2.0 (d) u = 3.0 (e) u = 4.0 (f) u = 5.0

(g) u = 6.0 (h) u = 7.0 (i) u = 8.0 (j) u = 9.0

Figure 13: Orthotropic case (3). Development (degeneration) of sticking zone for several dis-
placement states. Horizontally applied displacement u pointing into the right direc-
tion (u is scaled by 10−3).
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Figure 14: Orthotropic case (3). Deformed and undeformed configuration. Bottom view. Dis-
placements scaled by factor 150. Applied horizontal displacements on the upper
surface: (a) u = 9.0 · 10−3 (start of sliding); (b) u = 20.0 · 10−3 (fully developed
sliding).

(a) u = 0.0 (b) u = 1.0 (c) u = 2.0 (d) u = 3.0 (e) u = 4.0 (f) u = 5.0

(g) u = 6.0 (h) u = 7.0 (i) u = 8.0 (j) u = 9.0

Figure 15: Orthotropic case(4). Development (degeneration) of sticking zone for several dis-
placement states. Horizontally applied displacement u pointing into the right direc-
tion (u is scaled by 10−3).
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Figure 16: Orthotropic case (4). Deformed and undeformed configuration. Bottom view. Dis-
placements scaled by factor 150. Applied horizontal displacements on the upper
surface: (a) u = 9.0 · 10−3 (start of sliding); (b) u = 20.0 · 10−3 (fully developed
sliding).

For completeness, we would like to present the results showing the convergence of the sticking
zone with regard to: 1) adhesion parameters; 2) mesh density. Thus, Fig. 11 represents the
comparison of the initial sticking zones computed first for the set of parameters εN = 2.1 · 103,
ε1 = 3.0 · 103, ε2 = 2.0 · 103, then for the same set, but instead of 103 scaled sequentially by
the factors 104, 105 and 106. For the latter computation the vertical loading has been provided
in 10 load steps. The results serve also to show the convergence of the results with increasing
penalty parameters.

The influence of the mesh density on the sticking zone for the case of parameters εN =
2.1 · 105, ε1 = 3.0 · 105, ε2 = 2.0 · 105 is shown in Fig. 12. The uniform mesh was varied as
10 × 10 × 4, 16 × 16 × 6, 20 × 20 × 8 and 32 × 32 × 8 respectively, the third number always
representing the number of elements in thickness direction.

Orthotropic case (3). The results are depicted in the diagrams in Fig. 13 showing the
development of a closed sticking area. The orthotropy of the adhesion region results in the
sticking region being turned by the angle 45o. The development of a sliding zone starts at the
upper right corner and continues unsymmetrically leading further to a parallel shifting of the
block and a straight trajectory inclined at an angle ϕ (see definition at Fig. 5) in the case of
large displacements. This effect is depicted in Fig. 14, a bottom view.

Orthotropic case (4). The results are depicted in the diagrams in Fig. 15 showing the
development of a closed sticking area. Now, isotropy for the adhesion region together with a
small difference between the friction coefficients results in the obtained symmetric region. As
known, large differences between the coefficients lead to an unsymmetrical region, see e.g. the
results for the classical orthotropic friction model in [5]. The sticking region is diminishing
unsymmetrically resulting globally in a shifting of the block, see Fig. 16.
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4.2.2 Large displacement problem. Investigation on influence of adhesion param-
eters on the trajectory of the block.

The goal of this analysis is to show that with properly chosen parameters for the adhesion
tensor it is possible to achieve a predefined motion on the surface. Namely, if the surface is
uniformly orthotropic with a given orthotropy angle α then it is possible to prescribe a straight
trajectory of the block with an angle ϕ ≈ α, see Fig. 5, keeping the driving force at a certain
level. Moreover, it is possible to obtain even the geometrically isotropic case, when a trajectory
is a straight line coinciding with the direction of the force, though the friction tensor remains
orthotropic leading to different global forces in the different global directions.

In the numerical examples the penalty parameter for the normal traction is kept to εN =
2.1·104 for all cases; the orthotropy angles are given as α = β = 45o. The horizontal incremental
displacements are taken as ∆u = 5.0 ·10−2 in order to reach a sliding state of the block from the
beginning. The other parameters are varied to achieve different cases as presented in Table 1.

Case Adhesion tensor Friction tensor Eigenvalue ratio Resulting angle ϕ

1 ε1 = 3.0 · 103

ε2 = 0.0 µ1 = µ2 = 0.3 ∞ −44.95o

2 ε1 = 3.0 · 103

ε2 = 2.0 · 103 µ1 = µ2 = 0.3 3/2 −21.01o

3 ε1 = 3.0 · 103

ε2 = 2.0 · 103
µ1 = 0.3
µ2 = 0.2

1 0o

geom. isotropy

4 ε1 = 2.0 · 103

ε2 = 3.0 · 103 µ1 = µ2 = 0.3 2/3 21.01o

5 ε1 = 0.0
ε2 = 3.0 · 103 µ1 = µ2 = 0.3 0 44.95o

Table 1: Sliding of a block on a plane. Large displacement problem. Variation of orthotropy.
Computed inclination angle of a sliding block ϕ.

The trajectories of the block for all cases are depicted in Fig. 17. It becomes obvious that
the block tends to move into the direction of the eigenvector with smaller eigenvalue λ. E.g. if
rλ = ε1/ε2 = 0, then the trajectory is inclined at the angle of orthotropy ϕ ≈ α = 45o and vice
versa if rλ = ε1/ε2 = ∞, i.e. ε2 = 0, then the block is inclined at angle ϕ ≈ −45o. The other
parameter variations lead to different trajectories with angles −45o < ϕ < 45o. As a particular
example, the geometrically isotropic case is recovered for the ratio rλ = 1 leading to a circular
adhesion region. In this particular case the block is moving into the direction of the applied
force.

4.3 Polar orthotropy on a plane. Large displacement problem.

A more complex orthotropy is given by a polar orthotropy on a plane, see Part 1. As in the
previous example, we will show that it is possible to define the orthotropic structure of a plane
by using the adhesion tensor. An elastic block with dimensions 1× 1× 0.25 and mesh 4× 4× 1
is sitting on a rigid block, see Fig. 18. Linear elastic material is assumed within a consistent
dimension system: Young’s modulus E = 2.10 · 104; Poisson ratio ν = 0.3. The loading
is applied sequentially by prescribing displacements on the upper surface in (1 + n) steps:
1) vertical loading with w = 1.0 · 10−2, 2) n steps with horizontal displacement increments
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Figure 17: Trajectories of the block and inclination angle ϕ for various cases of orthotropy
with the eigenvalue ratios: rλ = ∞ =⇒ ϕ = −44.95o; rλ = 3/2 =⇒ ϕ = −21.01o;
rλ = 1.0 =⇒ ϕ = 0.00o; rλ = 2/3 =⇒ ϕ = 21.01o; rλ = 0.0 =⇒ ϕ = 44.95o.

∆u = 1.0 · 10−2 along the X axis. The structure of the adhesion tensor is as follows, see the
derivation in Part 1:

B = − 1

x2 + y2

[
εrx

2 + εϕy2 (εr − εϕ)xy
(εr − εϕ)xy εry

2 + εϕx2

]

. (37)

The chosen contact surface parameters are: penalty parameter for the normal traction εN =
2.1 · 105; isotropic friction tensor with µ1 = µ2 = 0.2. Adhesion tensor with cases: a) εr = 100,
εϕ = 1000, b) εr = 2000, εϕ = 5000, c) εr = 1000, εϕ = 1000, d) εr = 5000, εϕ = 2000, e)
εr = 1000, εϕ = 100, f) εr = 1000, εϕ = 0.0.

In Fig. 19 the sequence of the motions for all cases leading to different ratios rε = εϕ/εr

is depicted. It is obvious, that the desired circular motion can be achieved by prescribing the
corresponding eigenvalue to a small value, e.g. rε = 0.0 in the current example. The last result
can be derived also analytically from the analysis of global motion of a block, see proof in
Appendix.

Remark. The trajectory of the block depends on the ratio λϕ/λr. However, the numerical
computations show that it is possible to prescribe the desired trajectory by only controlling
the adhesion tensor parameters. Attempts to achieve the desired trajectory controlling the
friction tensor parameters, e.g. taking µr ≈ 0 for the case (f), lead to disconvergence. A
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Figure 18: Geometry and loading for the case of polar orthotropy.

straightforward conclusion is that the geometrical structure of the surface in the sense of the
desired trajectory can be defined via the adhesion tensor, while other mechanical characteristics
such as the measured global forces are defined via the friction tensor.

4.4 Spiral orthotropy on the cylinder.

Another rather complex kinematical behavior of a curved contact surface, e.g. a machined
surface of a bolt can be described by means of controlling the adhesion tensor parameters. The
model of spiral orthotropy on the cylinder developed in Part 1 allows to describe the kinematical
behavior of a bolt connection with a rather coarse mesh. In order to show this, we consider a
finite element model of the bolt, see Fig. 20.

The bolt is modeled with linear finite elements with elastic properties: E = 2.1·104, ν = 0.3.
Contact is modeled with the point-to-analytical surface contact element and specified on the
cylindrical surface of the bolt, i.e. each node on the bolt surface is a contact node. The
important dimensions of the example are the radius of a cylinder R = 3.0 and the distance H
between threads of a spiral line H = 3.3333. The central axis is constrained to move along
the OZ-axis and a rotation with an angle increment ∆ϕ = 1o is applied to the head of the
bolt. In order to supply contact with a rigid external cylindrical surface an initial penetration
is specified as 1.0 · 10−4 with a normal penalty parameter εN = 103. The friction tensor is
chosen to be isotropic with µ1 = µ2 = 0.01. The adhesion tensor parameters ε1, ε2 are chosen
according to the following tensor representation (see derivation in Part 1)

B = bijρ
i ⊗ ρ

j = − 1

R2 +

(
H

2π

)2








gεR
2 (ε1 − ε2)

R2H

2π

(ε1 − ε2)
R2H

2π
ε1

(
H

2π

)2

+ ε2R
2








(38)
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(a) rε = 10/1 (b) rε = 5/2 (c) rε = 1/1 (d) rε = 2/5

(e) rε = 1/10 (f) rε = 0

Figure 19: Motion of the block in the case of polar orthotropy on the plane. Varying adhesion
tensor parameters: rε = εϕ/εr = 10/1, 5/2, 1, 2/5, 1/10, 0; isotropic friction
tensor parameters: µ1 = µ2 = 0.2. Loading by prescribed vertical displacement w
and incremental y-displacement ∆u.

with gε = ε1R
2 + ε2

(
H

2π

)2

.

The adhesion tensor parameters are varying according to Table 2.

Case Adhesion tensor Ratio rε Resulting distance h

1 ε1 = 0.0
ε2 = 10.0 0.0 1.000 H

2 ε1 = 5.0
ε2 = 10.0 1/2 0.742 H

3 ε1 = 7.5
ε2 = 10.0 3/4 0.430 H

4 ε1 = 10.0
ε2 = 10.0 1.0 0.000 H

geom. isotropy

5 ε1 = 10.0
ε2 = 5.0 2/1 −0.487 H

6 ε1 = 10.0
ε2 = 7.5 4/3 −2.758 H

7 ε1 = 10.0
ε2 = 0.0 ∞ −31.98 H = Ĥ

Table 2: Rotation of a bolt. Variation of parameters of the adhesion tensor. Resulting distance
of a longitudinal motion h after rotation of a bolt by 360o.

The results of the analyses are depicted in Fig. 21 showing the computed longitudinal
motion of the bolt along the OZ-axis vs. the applied rotation angle. The resulting distance of
a longitudinal motion h after the rotation of a bolt by 360o is also presented in Table 2. Case
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Figure 20: Finite element model of a bolt connection. Outer surface is rigid and is illustrated
with one element only.

(1) with ratio rε = 0 leads to a pure forward motion according to the motion along the main
spiral line, see Part 1. The bolt moves forward at the distance H while the bolt is rotating
at the full angle 360o. The geometrically isotropic case (4) does not lead to any longitudinal
motion. For ratios rε > 1 a backward motion is obtained. Finally, the case (7) with ratio
rε = ∞ (not shown in Fig. 21) leads to a motion along the orthogonal spiral, i.e. the bolt

moves backwards at the distance Ĥ =
(2πR)2

H
, see Remark 4 Sect. 3 in Part 1.

Remark. This example is only chosen to illustrate the possibility to describe machined surface
from a kinematical point of view. The applicability of the proposed model to stress analysis of
the bolt connection requires, certainly, a more sophisticated analysis.

Remark. The presented technique has been implemented into the FEAP-MeKa code [13]. The
unsymmetric solver is based on a standard LU-decomposition combined with an iterative New-
ton scheme.
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Figure 21: a) Spiral orthotropy on a cylinder. b) Observed longitudinal motion vs. applied
rotation. Variation of ratio rε = ε1/ε2. Loading cases according to Table 2.

5 Conclusions

In the current part the numerical analysis of the model of contact interfaces including anisotropy
for adhesion and friction developed in Part 1 is presented. The linearization necessary for the
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numerical iterative solution is considered in a covariant form in the metrics of a tangent plane.
The covariant form makes the application of the derived scheme to contact problems with
arbitrary curved surfaces possible. A numerical implementation into finite element codes is also
considered leading to a family of contact elements based on a) a point-to-analytical approach
for both linear and curvilinear approximations of the contact body and b) a node-to-segment
approach. In addition, a rheological model based on a simple mechanical interpretation of the
model is discussed.

The proposed model for contact interfaces is analyzed for constant orthotropy on a plane,
for polar orthotropy on a plane and for spiral orthotropy on a cylinder. The reliability of the
numerical results is controlled by checking the convergence with increasing the adhesion param-
eters and by remeshing. A classification of orthotropy based on the ratio of eigenvalues for the
corresponding orthotropic tensor is proposed and the kinematical effects for the classified cases
are numerically investigated. In particular, as a specific case of complex anisotropy the geo-
metrically isotropic kinematic behavior of the contact bodies can be found despite the presence
of both, anisotropy for adhesion and friction. The possibility of modeling machined surfaces
with the help of the adhesion tensor is shown by numerical examples for polar orthotropy and
for the model of a bolt connection.

The presented approach shows an algorithmic inclusion in covariant form only for linear
elastic adhesion and for an associated Coloumb’s friction law. Any combination of elastic, visco-
elastic or nonlinear laws for the adhesion region together with non-associative or associative
friction laws can be derived in straightforward covariant manner based on the metrics of the
contact surfaces.
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A APPENDIX. Recovering a circular motion for polar

orthotropy.

A family of curves in the case of polar orthotropy with the parameter εϕ = 0 for the problem
considered in Sect. 4.3 is a family of circles.

In order to prove this statement we consider the equilibrium equations for the quasi-statical
sliding of a block, see Fig. 18, Sect. 4.3.

T1 = 0

T2 + F = 0. (39)

Here a force F is associated with applied displacements along OY axis and T1, T2 are compo-
nents of a sliding force Tsl defined in eqn. (10). Following the incremental displacement loading
process and the definition of the sliding force via the trial force, see also eqn. (12) we can write:

Tsl = −|N |BFB

Ψ

{
∆u
∆v

}

, (40)

where ∆u is a prescribed displacement component and ∆v is a computed component from the
equilibrium equation. Then from the first equilibrium equation (39) we obtain:

BFB11∆u + BFB12∆v = 0. (41)

The limit of the ratio of the displacement increments when ∆u goes to zero leads to the exact
definition of the derivative:

lim
∆u→0

∆v

∆u
= y ′ = −BFB11

BFB12

. (42)

Now, we specify the particular case with an isotropic friction tensor F = E/µ2 and εϕ = 0 in
the adhesion tensor B in eqn. (37) leading to

B = − εr

x2 + y2

[
x2 xy
xy y2

]

. (43)

Inserting the corresponding components from eqn. (43) into eqn. (42) we obtain an ordinary
differential equation (ODE) describing a family of curves (trajectory of the ODE):

y ′ = −x

y
. (44)

The integration of this differential equation leads to

y2 + x2 = const, (45)

which describes a family of circles.
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