
Finite Elements in Analysis and Design 42 (2006) 1097–1111
www.elsevier.com/locate/finel

Artificial kinematics and simple stabilization of solid-shell elements
occurring in highly constrained situations and applications in composite

sheet forming simulation

M. Harnau, K. Schweizerhof∗

Institute for Mechanics, University Karlsruhe, 76128 Karlsruhe, Germany

Received 27 April 2005; received in revised form 10 April 2006; accepted 18 April 2006
Available online 14 June 2006

Abstract

Well-known problems which occur for mixed or underintegrated element formulations are artificial kinematics resp. numerical instabilities.
These problems are also observed for 3D-shell elements as the so-called solid-shell elements especially when the loading leads to a homogeneous
stress state. To prevent the elements from artificial kinematical failure a simple procedure is applied which allows to identify critical states.
Then the non-necessary element modifications responsible for the numerical instabilities can be taken out.

A special application for the solid-shell elements which includes strong constraining are sheet forming problems with high stretching and
large local contact pressure especially for layered composite sheets which cannot be modeled with standard 2D-shells. In the second part some
numerical examples for the simulation of the forming process for pasted composite sheets are shown.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The so-called solid-shell formulation as described in [1] and
e.g. [2,3] is based solely on displacement degrees of freedom
belonging to the upper and lower shell surfaces and thus the use
of rotational degrees of freedom can be avoided. As no kine-
matical assumption is applied beyond standard 3D continuum
theory, general three-dimensional material laws can also be pro-
vided. In particular shell type problems with high stresses in
thickness direction and considerable thinning due to stretching
can be analyzed without further assumptions. Furthermore, to
achieve a better geometric approximation beyond solid-shell el-
ements with bilinear in-plane shape functions also biquadratic
in-plane shape functions are considered. To overcome the lock-
ing problems, which appear for both orders of interpolation,
different schemes are used and finally as proposed for example
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in [4] almost locking free element formulations can be derived.
Only a short introduction into the solid-shell concept is also
given; for further information we refer to [1,4–6] resp. [7].
A rigorous discussion and extension to multilayer problems
and dynamics and a critical view on the state of art is given in
[8,9]; a particular focus on large deformations and large strains
is presented in [10,11].

For the forming simulation of pasted composite sheets which
is discussed as a special application for the solid-shells in this
contribution large deformation contact algorithms are needed.
For the presented numerical examples the penalty and the aug-
mented Lagrangian method are used for contact formulation.
On the ‘slave’-side, the surface of the shell structure, the con-
tact condition is checked on the element level of so-called sur-
face contact segments. The description of the ‘master’-surfaces
which are the rigid forming tools in this case is done using
analytical form functions. This leads to a very efficient con-
tact formulation but is also restricted to fairly simple contact
geometries. For a detailed discussion of the used contact algo-
rithms we refer to [7,12].
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A main focus in this contribution is on numerical defects
as artificial kinematics which occur in the large deformation
regime as first found by Wriggers and Reese [13]. Such numer-
ical instabilities are due to the element modification beyond the
underlying displacement formulation. With these modifications
as underintegration or mixed formulation the stiffness of single
eigenmodes is influenced in order to avoid locking phenom-
ena. In cases where the specific locking effect does not occur
the modification may lead to artificial kinematics, in particular
under large loading, see e.g. [5]. Therefore, it should be a goal
to identify the actual loading state and switch specific element
modifications on or off. Such problems and the corresponding
control procedures are discussed in detail in the main part of
the paper. We have to note, however, that such kinematics are
very similar to spurious (hourglass) modes encountered with
reduced integration.

The final part of the paper deals with the forming simulation
of pasted composite sheets, where very often highly constrained
situations occur. The layered structure of the composite sheets
is discretized with one or more solid-shell elements for each
layer in the thickness direction. It can be shown that such spe-
cial applications with strongly varying material and geometri-
cal properties in the single layers of the composite sheets can
be treated correctly with the introduced finite element formula-
tions. This may be particularly important for the correct com-
putation of eigenfrequencies of such composite sheets which
are mainly used for acoustic purposes.

2. The solid-shell concept

In this section the basic features of the solid-shell concept are
briefly reviewed. For a detailed explanation we refer to [1] resp.
[2,3,14–17] for similar elements. A large number of so-called
EAS solid-shell elements have been developed by [18–20]. Re-
cent developments concerning a very efficient solid-shell ele-
ment are given in [21]. Two different types of solid-shells have
been developed within our projects (Fig. 1), the bilinear ele-
ment type with four nodes on the upper and lower shell surface
each and the biquadratic element type with nine in-plane nodal
points on each surface. From the discrete nodal coordinates and
displacements the geometry as well as the displacement field

Table 1
Nomenclature for solid-shell element formulations based on the introduced modifications; linear interpolation in thickness direction

Element name In-plane approximation Membrane strain modification Thickness strain modification Transverse shear strain modification

DIS3D Bilinear Lagr. – – –
DIS3DEAS Bilinear Lagr. – EAS –
ANS3DEAS Bilinear Lagr. – EAS ANS
EAS3DEAS Bilinear Lagr. EAS (4 param.) EAS ANS
eas3DEAS Bilinear Lagr. EAS (6 param.) EAS ANS
MI9K3DEAS Biquadratic Lagr. ANS EAS ANS
...-rv Selective reduced integration of volumetric terms
...-ri Reduced integration of all terms

DIS is the displacement element, ANS is assumed natural strain interpolation, EAS is enhanced strain interpolation.
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Fig. 1. Solid-shell elements with bilinear and biquadratic shapes.

are approximated using the bilinear resp. biquadratic Lagrange
shape functions for in-plane approximation and a linear inter-
polation in thickness direction. For an extensive discussion of
the solid-shell concept concerning multilayer materials we re-
fer to [8,9] and for large strains and deformations also including
dynamic loading to [10,11].

As is well known the solid-shell elements suffer from many
locking effects. To avoid locking, methods of underintegrating
the volume integrals [6] as well as mixed formulations (EAS-
method [22] and the ANS interpolation [23,24]) are applica-
ble. A complete discussion about these locking phenomena and
different developed element versions is given e.g. in [4] and
more recently in [18–20]. Finally, almost locking free 3D-shell
elements are available. The nomenclature for the element ver-
sions relevant for the investigations in the following chapters
is given in Table 1. All elements but the displacement elements
(DIS) contain an assumed transverse shear strain interpolation
[23,24]. Another modification applied to all elements is the
thickness strain enhancement as proposed by [25] denoted by
(...EAS) at the end of the chosen names. The final modification
is concerning the membrane strains, where an enhancement
by four terms (EAS...) or by six terms (eas...) is used for the
elements with bilinear interpolation in in-plane direction. For
elements with biquadratic in-plane interpolation an assumed
strain interpolation is used in in-plane direction following the
proposal of Bathe and Bucalem [24] and is thus denoted with
(MI9K...).

The use of nonlinear material laws, necessary for the treat-
ment of large deformation problems, is described in detail
e.g. in [6,26]. It should be mentioned that in contrast to the
degenerated shell concept strains and stresses in thickness
direction are included in the solid-shell concept, thus gen-
eral three-dimensional material laws can be used without
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any modification and general 3D stress and strain states can be
treated directly.

3. Artificial element kinematics for solid-shell elements
with mixed interpolation

By using methods of underintegration and mixed element
formulations the approximations within an element concern-
ing strains are modified and finally locking free element
formulations can be provided. However, the modifications
can also lead to artificial singularities in the element stiff-
ness matrix, so-called numerical instabilities. This behavior
can also be shown in analytical investigations e.g. in [5,13].
From these investigations we find that this behavior has to
be expected mainly for homogeneous stress states, for other
non-homogeneous cases we refer to [27]. For such states a
locking free result can also be achieved using the pure dis-
placement element which is also free of artificial kinematics.
Thus a possible solution to avoid numerical instabilities is to
identify homogeneous stress states and then switch off the
corresponding non-required element modifications. A simi-
lar procedure has been suggested by Wall et al. [28] where
the mixed functional is modified with some self-adjusting
factors for homogeneous stress states to avoid kinematics.
Further mixed element formulations which are free of arti-
ficial kinematics in large deformations have been developed
by Glaser and Armero [26] and Korelc and Wriggers [29]
where local instabilities are detected by eigenvalue analysis
and removed for some specific nonlinear materials and a spe-
cific example. Reese [30–32] uses a stabilized formulation,
which allows to find local element instabilities and to re-
move them within the stabilization procedure involved in the
element derivation. A further advantage is a high distortion
insensitivity of the element, as one-point integration is used.
However, also an eigenvalue analysis is necessary on element
level.

It is rather surprising that beyond [5] there is little informa-
tion on artificial kinematics for solid shell elements through-
out the literature, which may be due to the fact that so-called
constrained situations leading to such kinematics are not very
often encountered. Further we have to note at this point that
stabilization is by no means a new idea, as spurious modes
are typically encountered with reduced integration. For such
spurious modes sophisticated filtering or stabilization methods
have been proposed since long e.g. by Vu Quoc and coauthors
[33,34]. Two other stabilization schemes which are fairly sim-
ple but may not work in all cases are the so-called viscous and
stiffness hourglass controls found in most commercial explicit
FE programs.

However, the scheme proposed in the following section is not
intended to filter out modes or check for these modes directly
and stabilize them in one or the other way. We rather aim at a so-
called ‘smart’element and propose to remove the corresponding
‘responsible’ modification based on a detection scheme. The
wording ‘stabilization’ is then a slight misuse compared to the
other mentioned stabilization techniques.

3.1. Simple stabilization by switching off critical element
modifications

The pure displacement solid-shell element can perfectly rep-
resent homogeneous stress states and shows no numerical in-
stabilities for such homogeneous stress states which are criti-
cal for the modified elements. Therefore such ‘critical states’
should be identified and the non-required element modifica-
tions should be switched off, which leads to a so-called ‘smart’
element. To decide which modification is required and which
is not the internal energy of each element is determined for
the modified as well as the unmodified element, the pure dis-
placement version. For the latter element the internal energy is
computed using the strain tensor which is compatible with the
displacement approximation

Edis = E(u). (1)

For element formulations with modified strains according to
either the ANS- or to the EAS-method the strain tensor is com-
puted as

Emod = (Edis)ANS + EEAS. (2)

In both cases the internal energies are computed as

�dis =
∫

V

ET
disSdis dV, �mod =

∫
V

ET
modSmod dV . (3)

For �mod also a selective reduced integration of the volumetric
parts can be applied.

Both energy values �mod and �dis are necessary for a proper
identification of the stress state. If �mod < �dis, locking has
to be expected. Then the corresponding modification has to
be included. For a homogeneous stress state �dis = �mod is
obtained, then the pure displacement formulation is used.

The various element modifications are associated with differ-
ent locking phenomena and should be treated separately. There-
fore when computing �mod the single modifications have to be
taken into account separately

�1
mod ... Only assumed strains (ANS) for the transverse

shear strains,
�2

mod ... Only enhanced strains (EAS) for E��,

�3
mod ... Only EAS (bilinear elements) or ANS (bi-

quadratic elements) for the membrane strains,
�4

mod ... Only selective reduced integration of the vol-
umetric parts (-rv).

If the ratio (�dis −�n
mod)/�dis, n=1, . . . , 4 becomes smaller

than a certain tolerance tol for each of the n considered cases
then the according modification appears to have no influence
on the element behavior. As a consequence, the corresponding
modification can be left out and then the corresponding numer-
ical instabilities cannot be excited. Within the numerical ex-
amples tol ≈ 0.01 is chosen which seems to be working very
well. If such a stabilization is applied we denote it by adding
(..)stab to the name of the element.

Thus the stabilization is primarily based on the computa-
tion of the strain energy ratios (�dis − �n

mod)/�dis for all the
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Fig. 2. Slab loaded by line load for inhomogeneous compression test; geom-
etry, material properties and boundary conditions.

available element modifications. Then the decision follows
which of the modifications has to be left out or considered.
This can be done e.g. after every iteration or after every load
step. In general, the energy values could be determined even
with larger intervals.

The check of the strain energy ratios seems to be a very
simple and efficient way to decide if one element modification
could lead to an artificial numerical instability. Of course the
success of this algorithm depends on the choice of the toler-
ance values and it also has to be decided where and how often
the check is done. Alternatively an eigenvalue analyses of the
tangent stiffness could also be performed with the disadvantage
that if zero eigenvalues occur it cannot be easily decided which
element modification is responsible for the numerical instabil-
ity. The strain energy ratios also seem to be a good indicator
to detect numerical instabilities before they really appear. If a
critical case cannot be detected in advance, the algorithm has
to be modified in such a way that if a numerical instability is
detected the equilibrium iteration is not continued but again
started from the beginning of the actual load step with the re-
sponsible element modification taken out.

3.2. Inhomogeneous compression test

The simple stabilization proposed in the previous section is
tested numerically performing an inhomogeneous compression
test. For homogeneous compression the procedure should al-
ways lead to a proper result because then �dis is almost iden-
tical to �mod and therefore the pure displacement formulation
would be automatically used. In the inhomogeneous compres-
sion case locking as well as artificial kinematics due to parts
with almost homogeneous stress states can appear. This test has
been suggested originally in [30,35], for further analyses see
[31,32].

A rectangular slab with thickness t is partially loaded in-
plane by a line load p (see Fig. 2). The material behavior can
be described using a Neo-Hookean material model with the pa-
rameters suggested in [30,35], thus the shear modulus is com-
puted based on Young’s modulus and the given Poisson ratio.
Due to symmetry only half of the structure is discretized in
the considered FE modeling. For the FE formulation the bi-
linear EAS3DEAS and the biquadratic MI9K3DEAS element

(a) (b)

Fig. 3. FE-discretization of slab—considering symmetry—for inhomogeneous
compression test: (a) uniform coarse mesh; (b) distorted fine mesh.

(a) (b)

Fig. 4. Deformed slab (uniform coarse mesh); center compression of (a) 40%
and (b) 46%; unstabilized EAS3DEAS element.

with modifications of membrane, transverse shear and thick-
ness strains are taken. The stabilized versions are based on the
same element formulations with the option to take out each of
the above mentioned modifications separately. In addition the
selective reduced integration of the volumetric terms is consid-
ered, if indicated by the energy check. Therefore these elements
are named as (EAS3DEAS-rv)stab or (MI9K3DEAS-rv)stab.

3.2.1. Uniform coarse discretization
First the slab is discretized with a uniform mesh with 16

bilinear or four biquadratic elements thus with 5×5 nodal points
(see Fig. 3a). In addition in every load step the eigenvalues of
the stiffness matrix are analyzed to detect possible numerical
instabilities also directly.

In Fig. 4 the deformation of the slab is depicted for the bi-
linear EAS3DEAS element for a center compression of 40%
or 46%. From Table 2 we recognize that negative eigenval-
ues of the stiffness matrix are present already for a rather low
load level. For a center compression of about 46% convergence
of the equilibrium iterations within the solution of the nonlin-
ear problem is no longer achieved and the analysis has to be
stopped; the artificial kinematics in this case are clearly visible
in Fig. 4b. As we expect some volumetric locking with the spe-
cific material also the EAS3DEAS-rv element with additional
selective reduced integration of the volumetric parts is used. As
expected it behaves softer as a lower loading value is necessary
to reach the center compression value of 40%. The computa-
tion for this element version has to be stopped at a compression
of about 58% as the convergence in the equilibrium iterations
is no longer achieved.

Alternatively, the slab is discretized with four biquadratic
elements. The results of this investigation are also given in



M. Harnau, K. Schweizerhof / Finite Elements in Analysis and Design 42 (2006) 1097–1111 1101

Table 2
Uniform coarse mesh; comparison of results for various element versions;
deformation status and corresponding pressure loading for different compres-
sion values; occurrence of negative eigenvalues at pressure level

40% compr. for 65% compr. for Neg. eigv. for

p in N/mm2

Q1SP in [35,30,31] ∼ 210 ∼ 600 –

EAS3DEAS 214 No conv. 30
EAS3DEAS-rv 188 No conv. –
(EAS3DEAS-rv)stab 203 477 –

MI9K3DEAS No conv. – 48
MI9K3DEAS-rv No conv. – –
(MI9K3DEAS-rv)stab 228 540 –

(a) (b)

Fig. 5. Deformed slab (uniform coarse mesh); center compression of 65%;
(a) (EAS3DEAS-rv)stab element and (b) (MI9K3DEAS-rv)stab element.

Table 2. In the analysis with the MI9K3DEAS element also
artificial kinematics are observed which leads to divergence in
the equilibrium iterations already for a compression of about
14% and a negative eigenvalue occurs already for a rather small
load. For the MI9K3DEAS-rv element with selective reduced
integration of volumetric terms no negative eigenvalues can be
observed but the computation has to be stopped due to diver-
gence for a compression of about 38%.

To test the proposed stabilization procedure the bilinear as
well as the biquadratic element formulations with all avail-
able strain modifications and selective reduced integration of
the volumetric terms are included. The modifications which
are found to be responsible for the numerical instabilities are
then switched off denoted by (..)stab. In this example—as
expected—the modifications concerning (i) the transverse shear
strains, (ii) the enhancement of the normal strain in thickness
direction and (iii) the modifications of the membrane strains
are taken out for the complete mesh immediately after the sta-
bilization is initialized for the first time. The selective reduced
integration of volumetric parts is —not unexpectedly—retained
for the complete mesh. The deformation for 65% compres-
sion is shown in Fig. 5. Both stabilized versions—essentially
identical to selective reduced integrated elements—lead to the
expected improved results.

From the analyses we can further conclude for this plane shell
structure loaded in in-plane direction, that both basic elements
are almost equivalent; the modified bilinear element behaves
slightly softer for this fairly coarse mesh than the biquadratic
elements. Both element types show a considerable deviation to
the results obtained in [30,31,35] for 65% compression.

Table 3
Distorted fine mesh; comparison of results for various element versions; de-
formation status and corresponding pressure loading for different compression
values; occurrence of negative eigenvalues at pressure level

40% compr. for 65% compr. for Neg. eigv. for

p in N/mm2

Q1SP in [35,30,31] ∼ 210 ∼ 600 –

EAS3DEAS 213 No conv. –
EAS3DEAS-rv No conv. – –
(EAS3DEAS-rv)stab 202 505 –

MI9K3DEAS No conv. – 24
MI9K3DEAS-rv No conv. – –
(MI9K3DEAS-rv)stab 210 599 –

(a) (b)

Fig. 6. Deformed slab (distorted fine mesh); center compression of (a) 40%
and (b) 46%; unstabilized EAS3DEAS element.

(a) (b)

Fig. 7. Deformed slab (distorted fine mesh); center compression of 65%; (a)
stabilized (EAS3DEAS-rv)stab element and (b) (MI9K3DEAS-rv)stab element.

3.2.2. Distorted fine mesh
As a second test the slab is discretized with a distorted and

slightly refined mesh using 40 bilinear or 10 biquadratic ele-
ments (see Fig. 3b) based on the same 53 nodal points. For the
distorted FE mesh similar results are obtained as with the uni-
form mesh. However, contrary to the uniform mesh no negative
eigenvalue appears for the bilinear EAS element up to the con-
sidered load level (see Table 3). Nevertheless the computation
has to be stopped as convergence in the equilibrium iterations
could not be achieved for compression values beyond 46%. In
Fig. 6 the deformed slab is depicted for compression values of
40% or 46% in the center of the slab. Apparently the in-plane
modifications lead to some instabilities or artificial kinematics
visible in Fig. 6b. Using the EAS3DEAS-rv element only a
compression value of 36% is reached until the computation has
to be stopped due to convergence problems. With the stabilized
version (EAS3DEAS-rv)stab a result which is free of artificial
kinematics is achieved (see Fig. 7a). The element modifications
concerning transverse shear and normal strain in thickness di-
rection are immediately switched off. The modifications con-
cerning the membrane strains are partially switched off at the
first time the stabilization is initialized and completely switched
off at a compression value of about 60%. This element version
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also delivers the softest answer which indicates that this result
is almost locking free. Thus the modifications to remove volu-
metric locking appear to be necessary for the complete mesh.

The results for the mesh with biquadratic elements are
also given in Table 3 and Fig. 7b. For the MI9K3DEAS
element—almost identical as for the uniform coarse discreti-
zation—one negative eigenvalue is found already for a com-
pression value of about 7% with p = 24 N/mm2. Then no
convergence in the equilibrium iterations can be achieved. For
the MI9K3DEAS-rv element with selective reduced integration
of the volumetric parts the computation diverges for a com-
pression value of about 30%. An improved and stable result
is obtained with the stabilized version (MI9K3DEAS-rv)stab,
where all modifications but the volumetric reduced integra-
tion are switched off. Again the modifications concerning the
transverse shear strains and the normal thickness strains are
immediately switched off while the changes concerning the
membrane strains are partially left until a compression value
of about 60%.

Finally we can summarize that for the discretization with dis-
torted elements only for the biquadratic MI9K3DEAS element
negative eigenvalues of the stiffness matrix can be observed in
the equation solving, before also convergence is no longer ob-
tained. Looking at the loading/compression values the results
for the distorted mesh are showing a clearly stiffer behavior at
higher deformation states compared to the uniform mesh even
though a finer discretization is used for the distorted mesh ver-
sion. It is interesting that the results for the biquadratic ele-
ments are almost identical to the results found in [30,31,35]
with the trilinear specifically stabilized elements and a slightly
finer mesh. However, it remains questionable whether the ele-
ment deformations are not too large to lead to acceptable re-
sults. Nevertheless the numerical tests have shown that the pro-
posed procedure leads to a ‘robust’ analysis and correct results
for the investigated problems. However, the distortion sensitiv-
ity is larger than for the stabilized elements in [30,31,35].

3.3. Numerical instabilities of ANS-elements under shear
loading

The deformation process for pasted composite sheets mod-
eled with layers of solid-shell elements (see e.g. Fig. 10) in-
volves bending. In this case the two face sheets are also moved
in opposite direction which results in pure shear loading of the
core sheet. In general the discretization involves multiple solid-
shell elements in the thickness direction; one for each face sheet
and one or more elements for the core layer. While with one
element for the core the analysis could be performed without
problems, using a core layer discretization of more than one
ANS-elements in thickness direction leads to artificial kinemat-
ics inside the core layer. The reason for apparent success with
one element is due to the constraining of the single element by
the two outer layers.

To get a better insight into this artificial kinematics the sim-
ple problem shown in Fig. 8 is investigated, where a layered
structure discretized with three ANS3DEAS elements in thick-

t=0.04
u

l=0.2

Neo-Hookean material

E = 0.00093
N

mm2

� = 0.4999

Fig. 8. Shear test with layered structure modeled with three solid-shell el-
ements in thickness direction; geometry, material properties and boundary
conditions.

(a) (b)

Fig. 9. Layered structure under shear loading: (a) ANS3DEAS elements and
(b) (ANS3DEAS)stab elements.

ness direction is loaded in in-plane direction by an imposed
displacement u=0.02 of all nodes at the upper surface. Thus a
pure shear loading is applied. The geometry and material prop-
erties are chosen according to the parameters given in Section
4 for a standard core layer of composite sheets. As the ma-
terial remains in the elastic range for this load case, the core
layer materials in this section are chosen to be equivalent to an
elastic neo-Hookean material. The deformed structure shown
in Fig. 9 is achieved after the first solution step. In Fig. 9(a)
the artificial kinematics appearing for the discretization with
the ANS3DEAS elements are clearly visible. These kinematics
are obviously due to the transverse shear interpolation leading
to an underintegration effect. Further investigations show that
this effect is caused by the chosen material properties. For the
bending modes very high eigenvalues are found because of the
rather high degree of incompressibility on one hand and on
the other hand the very small elastic stiffness modulus together
with the small thickness value of the elements leads to eigen-
values close to zero. This results in a kinematical effect due to
a numerical problem. Using a Poisson’s ratio of e.g. � = 0.49
for the computation leads to a more stable behavior identical
as shown in Fig. 9(b).

The ANS-modification is used to avoid locking for thin el-
ements under bending thus the eigenvalues of some bending
modes are lowered. Not using the ANS-modification for the
case shown in Fig. 9, where no bending is present has some
kind of stabilizing effect and these artificial kinematics can
be avoided. As a consequence the computation is then per-
formed with the pure displacement formulation. To initiate the
stabilization also the modified strain energies have to be com-
puted in order to include the modifications as needed. In this
case none of the available modifications is turned on and the
(ANS3DEAS)stab element becomes fully equivalent to the pure
displacement formulation.

Within the further investigations also the eigenvalues of
the stiffness matrix of one ‘composite element’ are computed.
A single ’composite element’ consists of one element for each
face layer and one or three elements for the core layer as
shown in Fig. 10. The thickness for one composite element is
1.04 mm, with 0.5 mm for the face layers each and 0.04 mm
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0.5 mm
0.04 mm
0.5 mm

Fig. 10. Single composite ‘Bondal�-element’ with variations of core layer
discretization.

Table 4
Material parameters for the face sheets

� � �0 �∞ H �
(kN/cm2) (kN/cm2) (kN/cm2) (kN/cm2) (kN/cm2) (–)

17,500 8077 16.5 40 20 20

Table 5
Material parameters for core layer; Bondal�N/M

� (kN/cm2) � (kN/cm2) �0 (kN/cm2) H (kN/cm2)

100 0.00031 46 160

Table 6
Material parameters for core layer; Bondal�H

� (kN/cm2) � (kN/cm2) �0 (kN/cm2) H (kN/cm2)

1000 0.072 6.5 28

for the core layer. For discretization of each face layer one
bilinear ANS3DEAS element is used, the core layer is dis-
cretized with different variants of the solid-shell element
formulation while one or three elements are used in thickness

Table 7
Eigenvalues of the initial tangential stiffness matrix for one composite element; varying core layer discretization and material properties for core layer; 1 core
element 1 cl.el./3 core elements 3 cl.el.

Eigenvalues for Bondal�N/M

Core layer element EV < 10−7 10−7 < EV < 10−5 10−5 < EV < 10−3 10−3 < EV < 10−1

ANS3DEAS (1 cl.el.) – – 3 –
DIS3D-rv (1 cl.el.) – – 5 –
DIS3D-ri (1 cl.el.) 3 – 2 –
eas3DEAS (1 cl.el.) – – 5 –
ANS3DEAS (3 cl.el.) – 8 5 6
DIS3D (3 cl.el.) – – 6 13
DIS3DEAS (3 cl.el.) – – 11 8
DIS3D-rv (3 cl.el.) – – 13 14

Eigenvalues for Bondal�H
Core layer element EV < 10−5 10−5 < EV < 10−3 10−3 < EV < 10−1 10−1 < EV < 101

ANS3DEAS (1 cl.el.) – – 3 –
DIS3D-rv (1 cl.el.) – – 5 –
DIS3D-ri (1 cl.el.) 3 – 2 –
eas3DEAS (1 cl.el.) – – 3 2
ANS3DEAS (3 cl.el.) – 8 3 8
DIS3D (3 cl.el.) – – 5 14
DIS3DEAS (3 cl.el.) – – 5 14
DIS3D-rv (3 cl.el.) – – 8 19

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 11. Eigenmodes with corresponding eigenvalues inside the observed
range for composite element; (a)–(c) ANS3DEAS(1 cl.el.); (d)–(h) DIS3D-ri,
DIS3D-rv and eas3DEAS (1 cl.el.).

direction. The considered material properties are given in Tables
4–6 and are discussed in detail in the following sections.

The results of the eigenvalue analysis of a single ‘Bondal�’
element are given in Table 7 where only the numbers of eigen-
values with values EV < 10−1 or EV < 10 are shown. If the
core layer is discretized with only one element in thickness
direction using the ANS3DEAS element for the Bondal�N/M
as well as for the Bondal�H three rather small eigenvalues are
observed. The corresponding eigenmodes describe the shear
deformation of the core layer with two translational modes and
one rotational mode of the face layers against each other (see
Fig. 11(a)–(c)). However, they do not indicate any element
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kinematics. Using the DIS3D-rv, the DIS3D-ri or the
eas3DEAS element for core layer discretization five eigen-
values (see Fig. 11(d)–(h)) appear inside the observed range.
This number indicates a better behavior concerning incom-
pressibility locking, thus these combinations are preferable for
the numerical examples in the following section. The three
kinematic eigenvalues of the DIS3D-ri element (EV < 10−3)
do not lead to a global kinematic behavior because the core
layer is constrained between the face layers.

If the core layer is discretized with three elements in
thickness direction for the Bondal�N/M as well as for the
Bondal�H, 19 eigenvalues for the DIS3D/DIS3DEAS ele-
ments or 27 eigenvalues for the DIS3D-rv element are obtained
inside the observed range up to 10−1 and 101. For the dis-
cretization with ANS-elements eigenvalues much smaller than
the eigenvalues for the discretization with only one core layer
element are observed. The corresponding eigenmodes describe
deformations inside the core layer according to the kinematics
shown in Fig. 9. Leaving out the ANS-modification thus using
the DIS3D-elements for the core layer the very low eigen-
values indicating kinematics can be avoided and apparently
reasonable eigenvalues are obtained. The artificial kinematics
can be again identified as the result of a purely numerical
problem. The very small stiffness of the core layer combined
with the much stiffer face layer elements lead to a high differ-
ence between the smallest and the highest eigenvalue of the
stiffness matrix resulting in numerical problems when solving
the global equation system. Using a higher Young’s Modulus
for the core layer shows that the smallest eigenvalue is also
increasing while the highest eigenvalue remains unchanged
thus no kinematics are observed any more. For the following
computations the DIS3D-rv element is taken expecting an
improved behavior concerning incompressibility locking.

For the general model we can draw the following conclu-
sion: if the shear stiffness of the core layer should be roughly
captured the discretization with only one element in thickness
direction is apparently sufficient. If the deformations inside
the core layer should be captured in more detail a higher
number of elements in thickness direction must be used. Then
the transverse shear interpolation has to be taken out to pre-
vent numerical instabilities thus artificial kinematics inside
the core layer. In order to avoid incompressibility locking
appropriate elements as eas3DEAS or DIS3D-rv should be
used.

4. Numerical investigation of pasted composite sheets

The following investigations are performed on practical prob-
lems where such highly constrained situations occur. This is
primarily in metalforming, whereas in stability analysis of shell
structures we have only little constraining thus hardly any ho-
mogeneous loading state leading to the problems discussed
above. Pasted composite sheets are preferably taken for con-
structions to reduce acoustic noise emission. Applications for
composite sheets are e.g. in mechanical engineering for ma-
chine casing or fabrication of car body parts and also in civil
engineering for wall constructions. If ordinary metal sheets

0.3-1.4 mm

0.025-0.05 mm

0.3-1.4 mm

Fig. 12. Layer composition of pasted composite sheets.

without any further additions are taken, often costly damping
actions are necessary to fulfill requirements concerning spe-
cific vibration characteristics, whereas pasted composite sheets
a priori have good vibration damping properties due to the sep-
aration by a softer layer and the interaction between the lay-
ers. Further details about applications and the description of
experimental and numerical investigations can be found e.g.
in [36].

In the production process of pasted composites two metal
sheets of thickness 0.3–1.4 mm are glued together, therefore,
the composites consist of two face sheets of the same metal-
lic material and a glue core layer of thickness 0.025–0.05 mm
(Fig. 12). For discretization of all layers of the pasted com-
posite sheets the so-called solid-shell elements, introduced in
Section 2 are used. Such shell elements are preferable for the
discretization of layered structures because of their inherent 3D
character.

4.1. Material properties and discretization of the composite
sheets

The material properties for the face layers are described as-
suming elasto-plastic material behavior with a Hencky elastic
strain energy function and von-Mises plasticity with isotropic
hardening of saturation type. The material law taken is de-
scribed in detail in [37] based on derivations by Simo [38],
where for the kinematics of the deformation a multiplicative
split of the deformation gradient F=Fe ·Fp into an elastic and
a plastic part is supposed. This split involves the introduction of
the determinant J e =det Fe of the elastic deformation gradient
that measures the local elastic change of volume. In spectral
decompositions the principal elastic stretches �e

i , the isochoric

principal elastic stretches �̂
e

i = (J e)−1/3�e
i and their logarithms

	ei , 	̂ei are introduced as well. We further consider isotropic finite
elastoplasticity with an additive split of the energy function

W(	e1, 	
e
2, 	

e
3, 
) = Ŵ (	̂e1, 	̂

e
2, 	̂

e
3) + U(J e) + W p(
), (4)

which consists of three parts: an isochoric elastic part Ŵ , a
volumetric elastic part U and a plastic part W p. The plastic part
depends on the scalar internal state variable 
 (equivalent plastic
strain) and represents the isotropic plastic hardening behavior
of the material. The energy function W with

Ŵ = �[(	̂e1)2 + (	̂e2)
2 + (	̂e3)

2], U = �(ln J e)2/2,

W p = H
2/2 + (�∞ − �0)
 + �−1(�∞ − �0) exp(−�
)

with � > 0 (5)

is taken from [38]. The elastic terms Ŵ and U are as introduced
by Hencky [39]. The plastic term W p yields a saturation type
hardening law. The material parameters are given in Table 4.
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For the elastic range the bulk modulus � and the shear
modulus � are computed based on Young’s modulus E =
21 000(kN)/cm2 and Poisson’s ratio � = 0.3 normally used
to describe the elastic behavior of steel. For the plastic range
the initial yield stress �0 is given. The isotropic hardening of
saturation type is defined by the linear hardening modulus H,
the saturation yield stress �∞ and the saturation exponent �.

For the core layer an elasto-plastic material law with
neo-Hookean elasticity and von-Mises plasticity with linear
isotropic hardening is used. As two different types of compos-
ite sheets, the Bondal�N/M1 composite and the Bondal�H
composite are investigated, two sets of material parameters for
the core sheet are given in Tables 5 and 6. The computation of
the material properties is described in [7] in a more detailed
fashion, based on experimental results published in [36]. For
further analysis and the discussion of the results we have to
note, that Bondal�N/M is less stiff than Bondal�H by a factor
larger than 10, but both, the yield stress and the hardening
modules, are much larger for the first one.

In the numerical investigation the forming process has to
be simulated followed by an eigenvalue analysis in order to
investigate the vibration characteristics of the structure. Thus
extensive parameter studies can be performed to optimize the
components concerning the vibration characteristics.

The finite element discretization of the composite sheets in
thickness direction is done using the introduced solid-shell el-
ements with one element for the face layers each and one or
more elements for the core layer. Four different element com-
binations

• ANS3DEAS/DIS3D-ri,
• ANS3DEAS/eas3DEAS,
• MI9K3DEAS/MI9K3DEAS-rv,
• ANS3DEAS/DIS3D-rv (three core layer elements)

three with bilinear elements and one with biquadratic elements,
are chosen for the following examples. For the bilinear ele-
ment model the face sheets are modeled with ANS3DEAS el-
ements, as predominantly bending is expected for these rather
stiff parts. For the core layer with nearly incompressible but
soft material behavior which is primarily shear loaded first
the reduced integrated displacement DIS3D-ri is tested. This
element version should be free of any locking. A kinematic
behavior of this element is prevented by the supporting face
layer elements. Alternatively the six-parameter EAS-element
version eas3DEAS, which should not show any kinematics and
no volumetric locking is taken. For the biquadratic model the
MI9K3DEAS element is used for the face layers in combina-
tion with the MI9K3DEAS-rv, selective reduced integration of
the volumetric parts for the core layer. Finally, a core layer
discretization with three elements in thickness direction is also
tested. Here, as discussed in the previous section, kinematics
inside the core layer may appear with the ANS-elements. Thus,
by using the procedure as proposed above all critical element
modifications are switched off but the selective reduced integra-

1 Bondal� is a protected label of the ThyssenKrupp Stahl AG.

x

RS=1cm

RG=1cm

u

t=0.1cm

40cm

wG=4cm

Fig. 13. Geometry properties for free bending investigation.

tion of the volumetric parts to avoid incompressibility locking
which leads finally to the DIS3D-rv element.

4.2. Free bending of a composite sheet

In this section the free bending process for a sheet with a
length of 40 cm is simulated. This example is taken from the
numerical and experimental investigations described in [36];
we have to note, however, that only some experimental results
are depicted in [36]. The total thickness of the composite sheet
is assumed as t=1 mm with a thickness of 0.04 mm for the core
layer with the material properties given in Section 4. In the FE
model only a strip is discretized with the nodes in the out-of-
plane direction all fixed; thus a plane strain state is modeled.
The dead load of the structure is also taken into account.

Within the free bending process the workpiece originally
resting on the die is undergoing bending by pressing the sheet
with a punch against the edges of the die. The geometry data
for the die and the punch are given in Fig. 13, with the width
of the die as wd = 40 mm and the radii for the punch and the
edges of the die as Rp = Rd = 10 mm.

For discretization in longitudinal x-direction 38 bilinear or
19 biquadratic elements with the same number of nodes are
used and symmetry at x = 0 is taken into account. The sheet is
discretized with a very fine mesh in the area where the punch
is pressing against the sheet because a strong curvature of the
deformed sheet has to be expected there. To describe the contact
between the sheet and the rigid tools a pure penalty approach
with a penalty parameter of εp = 8.0 is used. The penetration
values occurring in this analysis are very small with the chosen
penalty parameter, thus an additional augmentation procedure
for the contact forces as described in [12] for the so-called
augmented Lagrangian approach is not necessary.

The deformed meshes for Bondal�N/M and Bondal�H are
shown in Figs. 14 and 15 for the maximum displacement of the
punch of u=1.8 cm as well as after unloading the structure. The
difference between the two types of composite sheets becomes
clearly visible looking at the zoomed area. In the Bondal�N/M
case a shearing motion of the face sheets against each other
can be observed and the sheet stays straight outside the direct
die region. For the Bondal�H case almost no shearing of the
face sheets against each other is visible but the sheet becomes
definitely more curved over a wide area besides the die location.

Load–deflection curves for the different element versions are
given in Figs. 16 and 17. For Bondal�N/M material almost no
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(a)

(b)

Fig. 14. Composite sheet for free bending experiment (Bondal�N/M); de-
formed mesh: (a) for u = 1.8 cm and (b) after unloading.

(a)

(b)

Fig. 15. Composite sheet for free bending experiment (Bondal�H); deformed
mesh: (a) at u = 1.8 cm and (b) after unloading.
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Fig. 16. Load–deflection curves for free bending investigation; Bondal�N/M;
comparison of different element combinations (face layer/core layer dis-
cretization).

differences are visible between the curves using the bilinear
ANS element for the face sheet in combination with the reduced
integrated trilinear displacement element for the core sheet
(ANS3DEAS/DIS3D-ri), the combination with the EAS ele-
ment (ANS3DEAS/eas3DEAS), the biquadratic MI9K3DEAS

0
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0.02

0.03

0.04

0.05

0.06

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

ANS3DEAS/DIS3D-ri
ANS3DEAS/eas3DEAS

MI9K3DEAS/MI9K3DEAS-rv
ANS3DEAS/DIS3D (3 cs.el.)

Fig. 17. Load–deflection curves for free bending investigation; Bondal�H;
comparison of different element combinations (face layer/core layer dis-
cretization).
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Fig. 18. Relative tangential face sheet displacements for u = 1.8 cm along
sheet.

element with the selective reduced integrated MI9K3DEAS-rv
for the core layer and the combination ANS3DEAS/DIS3D-rv
with three elements in thickness direction for the core layer.
Comparable results are obtained for Bondal�H. As no exper-
imental results are available for these quantities we can only
conclude that the quadratic element appears to lead to the best
solutions (Figs. 16 and 17).

In Fig. 18 the relative tangential or shearing displacements
of the face sheets for Bondal�N/M as well as for Bondal�H
are depicted over the coordinate x for a punch displacement of
u = 1.8 cm. In the numerical model the relative displacements
are fairly large for Bondal�N/M and are barely decreasing out-
side the die. The experiments show the same maximum dis-
placement, however, the decrease is considerably larger than in
the analysis. This difference can be explained with deficits in
the knowledge about the material parameters for the core layer.
For Bondal�H the relative displacement is much smaller inside
the edges of the die and decreases completely outside the die.
This result is qualitatively rather close to the experimentally
determined results [36].

After finishing the forming process an eigenfrequency anal-
ysis is performed for the deformed structure to investigate
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1.EM 2.EM

3.EM 4.EM

5.EM 6.EM

Fig. 19. Free bending experiment; Bondal�N/M; deformed geometry and
eigenmodes (EM) 1.0–6.0, taking residual stresses into account.

the forming effects on the eigenfrequencies thus the acoustic
properties. Within the simulation the work piece is unloaded
by reducing the contact forces iteratively down to zero. For
the unloaded deformed structure the eigenmodes and eigenfre-
quencies are computed. These results are compared with the
eigenfrequencies of a geometrically identical workpiece which
is free of any residual stresses. The eigenmodes for the formed
pieces including residual stresses are shown in Figs. 19 and 20
for the first six eigenfrequencies. The associated eigenfrequen-
cies are given in Table 8. Comparing the eigenfrequencies for
the formed structure with residual stresses and for the structure
without residual stresses in the Bondal�N/M case only for the
first rather low frequency a clear difference is found in con-
trast to the Bondal�H case where clear differences between all
frequencies are visible. The reason for this clearly different be-
havior of the two types of composite sheets is definitely due
to the different material properties of the core layers and the
shear stresses inside the core layer.

Comparing the material properties of Bondal�N/M with
Bondal�H it is obvious that the stiffness of the Bondal�N/M
is smaller but the yield stress is much higher than for the

1.EM 2.EM

3.EM 4.EM

5.EM 6.EM

Fig. 20. Free bending experiment; Bondal�H; deformed geometry and eigen-
modes (EM) 1.0–6.0, taking residual stresses into account.

Bondal�H. After unloading the formed structure transverse
shear stresses remain inside the core layer. For Bondal�N/M
these stresses are smaller in the core layer, though the relative
displacements are considerably large and the stiffness of the
core layer has little influence on the global stiffness. Thus there
is almost no difference to the stiffness of the unloaded struc-
ture. As a consequence no influence on the vibration properties
can be expected. For Bondal�H the residual shear stresses are
larger and some plastic deformation of the core layer material
has taken place. In addition the strains are in the plastic range.
Therefore, smaller eigenfrequencies for the blank, where the
loading history has been taken into account, have to be ex-
pected. Thus, obviously the influence of the loading history
of the forming process has to be taken into account, if the
vibration properties have to be investigated.

4.3. Deep drawing of composite sheet with analysis of
eigenfrequencies

In this section the deep drawing process for a pasted com-
posite sheet with the geometric properties are given in Fig. 21 is
investigated. The total thickness of the sheet is t =1 mm with a
core layer thickness of 0.04 mm representing the glue and two
metal face sheets of 0.48 mm thickness each. The rigid forming
tools are a cylindrical punch with radius Rp =2 cm, plane blank
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Table 8
Eigenfrequencies for eigenmodes (EM) 1.0–6.0 for composite sheet; free bending experiment; comparing influence of residual stresses for both core layer
materials

Bondal�N/M Bondal�H

After unloading with Directly generated without After unloading with Directly generated without
residual stresses residual stresses residual stresses residual stresses

1.EM 4.04 × 10−2 4.62 × 10−2 1.26 × 10−1 1.63 × 10−1

2.EM 1.65 × 100 1.70 × 100 3.30 × 100 3.78 × 100

3.EM 1.31 × 101 1.33 × 101 1.89 × 101 2.17 × 101

4.EM 5.10 × 101 5.15 × 101 5.92 × 101 6.89 × 101

5.EM 1.42 × 102 1.42 × 102 1.46 × 102 1.72 × 102

6.EM 3.21 × 102 3.22 × 102 2.94 × 102 3.68 × 102

4.4cm

8cm

x

FE-Modell

u

Rd=0.4cm

Rp=2cm

t=0.1cm

4cm

Fig. 21. Geometry properties for deep drawing process of composite sheet.

holders with a die radius Rd = 0.4 cm at the edges. A uniform
discretization of the sheet with 100 bilinear and 50 biquadratic
solid-shell elements in longitudinal direction is chosen. Due to
symmetry only half of the model is considered. The satisfac-
tion of the contact condition is checked directly at the contact
integration points, the so-called local approach of contact in-
tegration, with two Gauss points for the bilinear and three for
the biquadratic contact surfaces, see e.g. [12].

As such composite sheets are primarily used to influence
acoustic emissions in dynamically loaded structures, a further
focus is on the effect of forming on the eigenfrequencies. This
may be important for a proper analysis of the correct eigenfre-
quencies.

In Fig. 22 the load–deflection curves for the Bondal�N/M
composite sheet are shown with the punch force vs. the dis-
placement u at the center of the die. For the three model ver-
sions using bilinear elements for core and face layer discretiza-
tion the curves are almost identical. Only the combination
MI9K3DEAS/MI9K3DEAS-rv is slightly softer for u > 1.5 cm.

For Bondal�H (see Fig. 23) the combination MI9K3DEAS/
MI9K3DEAS-rv is again slightly softer compared to the combi-
nation ANS3DEAS/DIS3D-ri for u > 1.5 cm. Remarkably the
combination ANS3DEAS/eas3DEAS shows an artificial oscil-
lation behavior for u > 1.8 cm. Additional tests with the element
stabilization discussed in Section 3.1 by switching off critical
element modifications reveal that this behavior is caused by the
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ANS3DEAS/DIS3D-ri
ANS3DEAS/eas3DEAS

MI9K3DEAS/MI9K3DEAS-rv
ANS3DEAS/DIS3D-rv (3 cl.el.)

Fig. 22. Load–deflection curves for deep drawing process of composite sheet;
Bondal�N/M; comparison of different element combinations (face layer/core
layer discretization).
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ANS3DEAS/DIS3D-rv (3 cl.el.)

Fig. 23. Load–deflection curves for deep drawing process of composite sheet;
Bondal�H; comparison of different element combinations (face layer/core
layer discretization).

ANS modification which obviously leads in combination with
the six parameter enhancement of the membrane strains to arti-
ficial kinematics. Stabilizing the core layer elements by switch-
ing off the ANS modification (ANS3DEAS/(eas3DEAS)stab)
leads to a curve identical to the ANS3DEAS/DIS3D-ri combi-
nation.
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In Figs. 24 and 25 the deformed meshes for Bondal�N/M
and Bondal�H are shown for the maximum displacement u =
2.3 cm of the die and after unloading. The unloading is done
by setting the contact forces stepwise to zero and iteratively
solving the nonlinear equations. In both cases the work pieces
change their shape during the unloading process (springback)
especially for Bondal�H, as it is well known for high strength
steels. Therefore, it is definitely necessary to take the unloading
process into account and the residual stresses in the numerical
forming simulation to get the final correct geometry of the
workpiece.

(a)

(b)

Fig. 24. Deep drawing of composite sheet Bondal�N/M; deformed mesh:
(a) at u = 2.3 cm and (b) after unloading.

(a)

(b)

Fig. 25. Deep drawing of composite sheet Bondal�H; deformed mesh: (a) at
u = 2.3 cm and (b) after unloading.

Table 9
Eigenfrequencies (EV) for eigenmodes 1.0–6.0 for deep drawn composite sheet; comparing influence of residual stresses for both core layer materials

Bondal�N/M Bondal�H

After unloading with Directly generated without After unloading with Directly generated without
residual stresses residual stresses residual stresses residual stresses

1.EV 4.65 × 101 4.61 × 101 4.89 × 101 7.96 × 101

2.EV 1.83 × 103 1.82 × 103 9.67 × 102 2.09 × 103

3.EV 9.44 × 103 9.42 × 103 4.80 × 103 9.86 × 103

4.EV 3.07 × 104 3.06 × 104 1.38 × 104 3.16 × 104

5.EV 9.11 × 104 9.10 × 104 3.29 × 104 9.27 × 104

6.EV 2.06 × 105 2.06 × 105 7.74 × 104 2.08 × 105

After unloading the eigenmodes and eigenfrequencies of the
deformed composite sheet are computed. To compare the results
also a model with the identical geometry but without residual
stresses and strains is investigated. This is done with respect to
a proper investigation of the acoustic properties of structures
made of composite sheets. The eigenfrequencies are given in
Table 9, the eigenmodes are depicted in Figs. 26 and 27. Again
only for the Bondal�H major differences are visible between

1.EM 2.EM

3.EM 4.EM

5.EM 6.EM

Fig. 26. Deep drawing of composite sheet; Bondal�N/M; Eigenmodes (EM)
1.0–6.0 and deformed geometry.
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1.EM 2.EM

3.EM 4.EM

5.EM 6.EM

Fig. 27. Deep drawing of composite sheet; Bondal�H; Eigenmodes (EM)
1.0–6.0 and deformed geometry.

the eigenfrequencies of the structure taking into account the
deformation process and the residual stresses and those of the
model without residual stresses.

As before this behavior is due to the different material prop-
erties of the core layer. After unloading the formed blank for
the Bondal�N/M shear strains remain in the core layer inside
the elastic range of the material whereas for Bondal�H the
shear strains are dominantly inside the plastic range of the core
layer material. The latter effect results then in a softening ef-
fect for the core layer of the Bondal�H case and in smaller
eigenfrequencies for the formed blank.

5. Comments on structural and material stability problems

The solid-shell elements introduced in [1,4–6] have been
used in many shell stability investigations and nonlinear anal-
yses by the authors, where no hourglass instabilities were en-
countered. This is due to the fact that hardly highly constrained
situations are encountered in shell stability problems. Such sit-
uations, however, were expected in sheet metalforming, where
some instabilities were found as discussed above.

Within the proposed control scheme the enhanced strain el-
ements are taken as a basis which are well known to allow the
detection of material instability effects and in general show su-
perior behavior for such problems. However, the investigations
were not including any material instability problems.

6. Conclusions

In the first part of this contribution a short introduction into
the solid-shell concept was given. This special kind of shell

elements is preferable for some applications as for example
in sheet metal forming using layered composite sheets. The
necessary modifications to remove locking effects such as ap-
proaches of reduced integration and mixed element formula-
tion, are briefly described for the elements used.

For special situations like homogeneous stress states it was
observed that the modified elements show artificial kinemat-
ics which are due to modifications which are not necessary in
this specific case. Therefore, a simple stabilization procedure
has been suggested which is based on a check of the loading
state and to decide then which modifications are necessary to
avoid expected locking effects and which modifications should
be better taken out to avoid numerical instabilities. Then the
internal energies of the modified and the unmodified element
formulations are compared which finally indicates whether a
modification leads to a softening effect and therefore prevents
some locking effects or not. In the latter case this element mod-
ification should not be used. In some small numerical examples
it was shown that such a simple procedure for automatically
choosing the appropriate element modification is working very
well.

In a final section of the paper a special application for solid-
shell elements, the numerical treatment of pasted composite
sheets, is investigated. First the discretization of the composite
sheets—three or more elements are used for discretization in
thickness direction—including the problems resulting from this
very special discretization using solid-shells even for descrip-
tion for the very thin core layer with material properties much
different from those of the metal face sheets are discussed. Fi-
nally some numerical examples are presented, describing typi-
cal forming processes for the composite sheets. After finishing
the numerical simulation of the forming process including the
unloading of the structure simulating the so-called springback
effect, eigenfrequency analyses have been performed to inves-
tigate the influence of residual stresses and plastic straining in-
troduced by the forming process to the dynamic behavior of the
structure. The numerical examples show—even for the rather
simple geometry—that it is important for certain material com-
binations to take the deformation process fully into account.
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