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Wave propagation in automotive structures

induced by impact events

Steffen Mattern Karl Schweizerhof

1 Introduction

The prediction and numerical simulation of the propagation of high frequency
vibrations caused by impact is very important for practical purposes and
proper modeling is an open issue. In present automobiles more and more
technical devices, which are getting their informations from sensors, are used
to improve the safety concerning passengers. For example the activation
of airbags and safety belts is controlled by sensors. For this reason it is
important to assure that sensors perform reliably at a specific frequency
range.

For the development of sensors, it is very important to know the kind
of signal, which has to interpreted. When an impact happens at a specific
location of the structure, a wave starts to propagate immediately. At the
time, when the oscillations reach the point where the senor is located, they
have already been influenced by many structural and material parameters,
e.g. edges, spotwelds, foam material. It is necessary to calibrate the sensor
in a way that if and only if a sufficiently hard impact has occurred, e.g. the
airbag is activated.

In order to reduce costs for complex and expensive experiments, it is use-
ful to perform numerical simulations of suitable structural parts to obtain
general informations about wave propagation mechanisms in complex struc-
tures and to find out about the proper modeling with FE-programs. In this
project, the powerful, highly parallelized commercial finite element code LS-

Dyna [7, 6] is used to simulate different models and evaluate the influence of
several modeling modifications and of other simulation parameters. In this
contribution, a partial structure is described in detail and some of the per-
formed modifications are explained. Different contact formulations are used
as well as different material models for special parts. Damping is applied in
parts of the structure and spotwelds are modelled with different methods,
which is also a very important issue of simulation in automotive industry.
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Because of the large number of numerical investigations, performed during
the project, only a few results are shown in the following sections. The re-
sults of the simulations are compared to experimental data with a special
focus on amplitudes and frequencies at the locations of the sensors.

The models contain about 25000−50000 solid and shell elements and the
simulated time of the impact event was in all cases 0.1 s, which lead to over
2 · 106 time steps per computation, using the explicit time integration avail-
able in LS-Dyna. With LS-Dyna, such kind of problems are particularly
suited for computing on a high performance parallel computer, such as the
HP-XC6000 Cluster at the University of Karlsruhe. Only with paralleliza-
tion, it is possible to perform parametrical studies, which are necessary to
obtain general knowledge about wave propagation and their proper modeling
in complex structures in an appropriate time. Within the project, also in-
vestigations on academic examples with rather few elements were processed
in order to gain information about wave propagation mechanisms as e.g.
discussed in [5, 1] and their simulation with finite elements. However, sev-
eral important effects can only be recognized at sufficiently complex models,
which motivates the costly studies, presented in the following.

The results of the experiments were made available by other sources, thus
they will not be explained further in the following. The main issue will be the
simulation of the numerical models and the influence of different parameters.

2 T-shaped, spotwelded structure impacted

by a rigid ball

2.1 Description

The structure, discussed in this contribution is a steel construction of top-
hat profiles and sheets, connected with spotwelds, which is impacted by a
metal ball at the top. This is a typical part of an automobile containing
all relevant structural issues. In the experiments, the displacements were
measured at one (S1) and the accelerations at four sensors (locations A1−A4),
as shown in Figure 1. The finite element model (Figure 2) consists of about
33500 shell elements [3, 4] and 145 spotwelds, each modeled with one 8-
node solid element. The steel plates are modeled with an elastic-plastic
material. For the spotwelds, the specific material *MAT SPOTWELD in LS-Dyna,
which consists of an isotropic hardening plasticity model coupled to four
failure models [7] is used. The metal ball, the impactor, is assumed to be a
rigid body. Contact between impactor and plate is realized by an automatic
penalty based segment-to-segment contact formulation. In order to connect
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Figure 1: Geometry of the T-shape structure, sensor location denoted by S1

and A1 − A4

two metal plates with spotwelds, the *CONTACT SPOTWELD is applied, which ties
the nodes of a solid element to the two neighboring deformable shell surfaces
with constrains [7].

The results from the simulation of this basic finite element model, de-
picted in Figure 1, compared to experimental results provided to the authors,
are shown in Figure 3. This is then taken as a basis for several parametrical
studies, computed on the HP-XC6000 Cluster.

2.2 Parametrical studies

2.2.1 Stabilization of spotwelds

As already mentioned, the spotwelds are modeled with a standard eight-node
hexahedral finite element using one-point under-integration combined with
a stabilization against unphysical hourglass modes, as shown exemplarily
in Figure 4. The chosen hourglass stabilization – Belytschko-Bindemann
assumed strain co-rotational stiffness form – is described in detail in [2, 4] and
works properly for all applications performed in the project. By default, i.e.
if no hourglass stabilization is chosen, a standard viscous hourglass control
is used [7].

In Figure 5, the results of the simulations with standard viscous and with
Belytschko-Bindemann stiffness stabilization of the spotwelds are given. As
expected the structure reacts slightly stiffer with stiffness controlled stabiliza-
tion of the spotwelds, which leads to higher frequencies in the displacements.
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Figure 2: FE-Model of the T-shaped structure
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(b) cutout – beginning of the simulation

Figure 3: Experimental and simulated displacements and accelerations at
sensor 1

Figure 4: Example for an hourglass mode
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(b) cutout – beginning of the simulation

Figure 5: Simulated displacements and accelerations with standard viscous-
and with stiffness-controlled hourglass stabilization of the spotwelds

Also a reduction of the amplitudes can be noticed. The right side of figure 5
shows also only small changes in the accelerations. The properties concern-
ing propagation of waves through the spotwelds have slightly changed as a
consequence of stiffness controlled stabilization, which shows that there is a
small influence of unphysical hourglass modes on the results of the original
simulation. For problems with larger displacements and higher amplitudes,
the effect would be more obvious, which means that for such kind of problems
(e.g. crash simulations), hourglass stabilization of under-integrated finite el-
ements is mandatory.

2.2.2 Applied damping

As can be seen in Figure 3, the displacements decay very quickly in the
experiment, but in the simulation, the amplitudes stay almost constant. This
leads to far overrated displacements at the end of the simulation. The reason
for the energy loss in the experiment is system damping, which is due to
material damping as well as due to dissipation at boundaries and joints.
Mechanically, this effect can be described with Rayleigh damping, where the
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Figure 6: Studying the influence of stiffness proportional damping

damping matrix can be defined as

C = αM + βK. (1)

Mass proportional and stiffness proportional damping is possible, which can
be defined for the whole structure, or only for specific parts. Fairly problem-
atic is the validation of the damping parameters α and β, thus parametrical
studies are necessary.

First, only stiffness proportional damping is applied, which leads to damp-
ing of high frequencies. As coefficients, values from 0.10 to 0.25 were chosen,
which roughly corresponds to 10% to 25% of damping in the high frequency
domain [7]. For better visualization, in Figure 6 only the results with max-
imum damping (25%) are plotted. It can be seen in figure 6, that damping
of high frequencies has almost no influence on the displacements, and leads
to a rather small reduction of amplitudes of the accelerations.

Then pure mass proportional damping was applied. Mass weighted damp-
ing is used to damp all motions including rigid body motions, this means
damping in the lower frequency range. It is also possible to damp only spe-
cial parts, or chose different damping coefficients for different parts. The
results in figure 7 show – as expected – strong influence of the mass weighted
damping on the amplitudes of displacements and acceleration.
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Figure 7: Studying the influence of mass proportional damping

Comparing the results of both described formulations, mass proportional
damping leads to results, which are closer to the experimental data. Obvi-
ously, the main part of energy loss happens in the lower frequency domain.
Another reason for dissipation of energy is the impact event. In the simu-
lation, the ball is modeled as a rigid body, hence here no loss of energy is
implied. To obtain results, closer to reality, also a contact damping could
be applied, which means a dissipation of energy at the impact event. Fur-
ther investigations concerning the combination of different ways of modeling
damping are necessary.

2.2.3 Influence of shell element formulation

In order to investigate the influence of the element formulation on the simu-
lation result, besides the standard shell elements with hourglass-stabilization
also fully integrated shell elements with an assumed strain formulation for
the shear terms [7] are used to model all metal sheets. Spotwelds, impactor
and contact formulation, as well as all boundary conditions are kept un-
modified, so differences in the results can be associated exclusively to the
element formulation. As expected, the fully integrated shell elements react
much stiffer, which is depicted in Figure 8. Although the displacements show
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Figure 8: Comparison of standard (type 2) shell element with viscous hour-
glass control and fully integrated (type 16) shell element

only slightly higher frequencies, the differences in the accelerations can be
clearly recognized. Frequencies as well as amplitudes are considerably higher
than in the simulations with hourglass stabilized elements, which indicates
a stiffer structure. In addition we have to note, that the choice of the ele-
ment formulation strongly affects the efficiency. The computation with fully
integrated shell elements takes about three times as long as the computation
with under-integrated elements. Concerning the use of different shell element
formulations, we have to conclude that, fully integrated elements are better
suited for predicting the higher frequency domain. However the higher stiff-
ness of this formulation leads to overrated amplitudes especially regarding
the accelerations.

2.2.4 Refinement of the mesh

As described in section 2.1, the original discretization, depicted in Figure 1
contains 33086 shell elements. The average element length in this model is
5 mm. In order to investigate the influence of mesh refinement on the results,
the element length in both directions was reduced to about 2.5 mm, which
lead to 132344 shell elements. All computations of these models were per-
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Figure 9: Two levels of discretization of the steel structure

formend on 8 processors of a so called fat-node on the HP-XC6000 Cluster.
The CPU-time per processor of this problem was about 3 · 104 s, which leads
to a simulation time of approx. 8.5 h for the complete analysis. The results
in Figure 9 show higher frequencies and amplitudes in the accelerations and
quickly decreasing amplitudes in the displacements. Compared to the exper-
imental data, given in Figure 3, frequencies and amplitudes correlate much
better for the refined mesh. However, in the first few cycles, both simulations
show very similar results, which is clearly visible for the displacements.

Obviously the lower frequency response is well captured already by the
coarse mesh. However, the capability of the finer mesh to model more high
frequency content – important in wave propagation – appears to be extremely
important. A closer view on this partial issue by a Fourier decomposition
is depicted in Figure 10. It shows that lower frequencies can be simulated
correctly even with the coarse mesh, but higher frequencies require finer
meshes, even beyond the currently used refined mesh. The experimental
results show also that there is a fairly high energy content between 500 and
1000 Hz which must be represented by the simulation model. This is a fairly
surprising result, as studies with a ball impacting a plate had shown very
reasonable correspondence with experimental observations.
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experiment

3 Conclusions

The simulation results presented in section 2 show only a part of the project
work on the HP-XC6000 Cluster. The goal of the project was to generate
knowledge about the proper FE-simulation of complex structures by mod-
ifying several relevant model parameters. In another part of the project,
numerical examples with rather small numbers of elements are computed,
to gain general information about wave propagation simulation with finite
elements. Some of the performed modifications do not advance the results at
all, compared to the experimental results, but general rules concerning the
usage of different tools and procedures of the Finite Element Method can be
obtained from these simulations. However the mesh refinement has shown
that the computation of very large models on parallel computers is abso-
lutely necessary. Though in many investigations it is not required, to aim
at an absolute realistic simulation of the experimental results, because the
numerical effort is much higher than the obtained advantage, it has proven
that a constantly refined mesh is of vital importance. As described in sec-
tion 2.2.4, it may be often possible to simulate e.g. lower frequencies with
rather coarse meshes. In order to realize the presented parametrical studies
in an appropriate time, they were all carried out first with the rather coarse
mesh. As the goal of the investigations was, to find out the general influence
of the discussed parameters, for which the used discretization was sufficient.

The project is continued and computations on other complex structures
with rather fine meshing will follow, which presumes the availability of high
performance parallel computers, such as the HP-XC6000 Cluster. In further
investigations, also the application of damping on the refined mesh from Sec-
tion 2.2.4 with the experience from Section 2.2.2 will be analyzed. Other
interesting issues are a) the influence of the boundary conditions on the ex-
perimental results and how accurate these can be captured in the simulation,
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and b) how the simulation reacts on changes in the joining achieved with a
contact formulation used for the spotwelds. It is important to investigate all
these parameters separately, which requires again many parametrical studies
with high numerical effort. The final achievement of the study will be to de-
velop modeling rules for wave propagation simulation in complex structures
such as automotives under impact as found in crashworthiness events.
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