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Abstract

This contribution deals with spatially adaptive schemdaite element computations in structural dynamics based
on a semi-discrete approach. Both discretization stepsspatial finite element discretization and the temporal
discretization by use of a suitable time stepping schemrednte different errors into the numerical solution,
which can be controlled by adaptive approaches. Here weatsstirselves focussing on the spatial discretization
error resulting from the finite element discretization of gpatial domain. The spatial discretization is carried
out by use of low order 'Solid-Shell’-elements. Since lovder element suffer from locking an assumed strain
interpolation is used which has to be taken into accounteretinor estimation procedure.

For the estimation of the spatial discretization error inagbitrary quantity of interest an appropriate adjoint or
dual problem has to be introduced. As the dual problem is kviaa problem in time with initial conditions at the
current time and characterizes the spatial and temporapat of the spatial discretization error, the numerical
evaluation of this dual problem for the error estimationutessin a large numerical effort which might exceed
the effort for the computation of the problem on a finer spatiacretization. Thus a particular focus of our
contribution is on the reduction of the numerical effort foe goal-oriented error estimation. For this purpose
we discuss which parts of the total error can be neglecteukiretror representation, proposing an error indicator
which then serves as the basis for an adaptive mesh refinsctesme. A numerical example shows the efficiency
of the proposed error estimator and the mesh adaptatiomsche

1 INTRODUCTION

The standard semi-discrete approach in finite element ctatipas in structural dynamics con-
sists of the spatial discretization with finite elements #raltime integration of the resulting
system of ordinary differential equations. Both discratiian steps contribute to the total dis-
cretization error of the numerical solution. Thus, the ltdiacretization error can be split into
the spatial discretization erret(x, t) and the time integration erret,(x, t):

e(x,t) = u(xz,t)—upi(x,t)
= (u(w,1) —vuh(w, t) + (up(,t) —upp(z,t) 1)
= es(x,t) + e (x,t)

Hereinu(x,t) denotes the exact solution of the continuous equation ofomots, (x,t) is
the exact solution of the spatially discretized problem and(x,¢) the numerical solution
obtained by the applied time integration scheme. As the tintegration error is in most cases
far smaller than the error due to the spatial discretizationcontribution is restricted to the
error estimation of the spatial discretization error. Hegesfocus on the estimation of the spatial
discretization error in a particular quantity of interestor this so-called goal-oriented error
estimation an adjoint or dual problem is introduced. The guablem is a backward problem
in time and describes the spatial and temporal transpotefetror. For the mathematical
foundation of goal-oriented error estimation we refer telBs and Rannacher [2], Bangerth
and Rannacher [1] and Oden and Prudhomme [7].



The spatial discretization is performed by use of 'SoligBtElements with bilinear ansatz-
functions, see e.g. [6]. Since low order shell elementss@ifbm transversal shear locking the
well-known assumed strain approach (ANS) [4] is used. Th&ANethod is a mesh dependent
reduction of the compatible strain field:

NS _ Re(w))  with e(u) = %(Gmdu + Grad'w) 2)

For a proper incorporation of this modificaton into the emstimation procedure we refer to
[3,8].

The paper is organized as follows. First suitable erroraggntation formulas which are the
basis of the error estimation are derived. Then the staraggbach of goal-oriented error esti-
mation using the full dual backward problem is describedtasted with a numerical example.
Then a simplified error estimator is derived which is takehasbasis for a mesh adaptation
scheme. The simplified error estimator and the mesh adaptate also tested with the same
numerical example as the standard error estimator.

2 ERROR REPRESENTATION

For brevity we will restrict the following derivations toglequation of motion without damping.
Damping terms could however easily be introduced into therexquations. The variational
form of the exact problem can be stated as:

po(t,w) + a(u,w) = Fy(w) YweW (3)
with a(u,w) = g(u): C:e(w)dV,
/
(i, w) = - wdV,
/

Fulw) = /pob-de—i-/t-wdA

Bo BN

and initial conditions at timeé = 0. The semi-discrete equation applying low order element
with assumed strains reads:

po(tn, wp) +  ap(up, wy) = Fy(wy) Yw, € wh (4)
with ah(uh,wh) = /EANS(’LLh) C: €ANS(wh)dV,
Bo

i.e. for the stiffness term the mesh dependent modificatiba2to be applied. Since in the
semi-discrete solution a mesh dependent bilinear fof(n -) is used the exact solution is in
general not a solution of the discrete problem, i.e.:

polit, wy) + ap(u, wy) # Fo(wy) Yw, € W (5)

Therefore for finite elements with assumed strains the Wwadwn Galerkin-orthogonality con-
dition does not hold [3]. In order to construct suitable emepresentations the weak form of



the differential equation of the spatial discretizatioroeiis needed. There are now two ways
to construct the weak form. One is to define the weak form offifferential equation by use

of the unmodified bilinear form(-, -) the second option is to apply the mesh dependent bilin-
ear formay(+, -) for the error equation. Since both alternatives are useth®ofollowing error
estimators both strategies shall be briefly presented. &wothn representations are based on the
weak form of the residual:

Rau(w) = Folw) = polin, w) —as (wn, w) = po ik, w)+a(w, w)—po(iis, w)—an (s, w) (6)

2.1 Error representation based on the unmodified problem

In order to formulate the weak form of the error equation byangeof the unmodified bilinear
forma(-, -) equation (6) is reformulated as follows:

RU(w) = po(’l:L, w) - pO(’dhv w) + a(uv w) - a(uhv w) (7)
+ a(up, w) — ap(up, w)

R (w)
Herein the consistency terR.(w) = aj(up, w) — a(u,, w) denotes the part of the resid-

ual arising from the modification of the bilinear form in thisetete variational problem (4).
Equation (7) can now be transformed into the weak form of gaial discretization error:

po(és, w) + a(es, w) = Ry(w) + Re(w)  VweW (8)

We now introduce the exact solutienof the so-called dual or adjoint problem as test function
for the error equation (8) while the dual problem itself ingelly defined as:

po(Z2,w)+a* (z,w) =F,(w) YweW 9

The dual problem runs backward in time and the initial candg are therefore defined at
t = t,. Inour casen*(z,w) = a(z,w) holds. The partial integration of (8) over the time
domain yields the following identity:

[po(€s,z) — po(es, 2 /R )+ Re(z)dt (10)

= [po(z, €s) — po(2, es)] /]: es)d

Equation (10) is arranged such that the dual soluttoserves as weighting function of the
discretization error on the left hand side of the equatioth @ccurs as trial function with the
weighting functiones on the right hand side. Therefore the right hand side of egu#10) is
used for the appropiate definition of the dual problem whike left hand side is employed for
the error estimation.

We now choose a homogeneous dual problem ,f#gw) = F,(es) = 0 and assume homo-
geneous initial conditions for the primal problem, ieg.(x,0) = és(x,0) = 0. Equation (10)
then reduces to:

/ Ru(2) + Rel2)dt = [po(z. &5) — po(2. es)]'™ (11)



The right hand side of equation (11) is now used to define thmlironditions of the dual
problem with regard to the quantity of interest. We reswigtselves to the estimation of single
point displacements. If we want to control the error in threpthcements at poiat; in direction

j we can define the quantity of interest

Q(u) = (u(wv tn)v 5](mz)) (12)

by use of the Dirac delta functiody (x;). The error in the displacement component of interest
is then defined as:

Elu,wp) = Q(u) = Qun) = (w(, 1) —un(x,1n), 6;(x:)) = (es,9;(x:))  (13)

A
es(mvtn)

Consequently, setting(¢,,) = 0 equation (13) together with the right hand side of equatidr) (
yields the definition of the initial velocities of the dualyiem.

_pO("z(tn)vw) = (6j(miatn)vw) Vw e W (14)

With this specification of the dual problem the error repnéaon applying the left hand side
of equation (11) reads:

E(u,up) /72 )+ Re(z)dt = /f — poltn, 2) — a(up, z)dt (15)

An equivalent error representation can also be derived imgubke velocities of the dual prob-
lem (9) as testfunction. This yields different initial camoins of the dual problem which might
be easier to evaluate for a different quantity of interasthsas local stresses.

Equation (15) will serve as basis for the error estimatiogaation 3.1.

2.2 Error representation based on the modified problem

As an alternative to equation (8) the weak form of the difféigd equation of the spatial dis-
cretization error can be formulated applying the mesh dégeinmodification. This yields a
mesh dependent dual problem which also applies the assumagu modification. The cor-

responding error representation can now be derived in the dashion as in the preceding
section.

For our purpose it is more suitable to use the velocities the homogeneous dual problem as
weighting function. Then the partial integration of the rifigdl error equation yields the second
identity:

E(u,u,) = |[po(és, 2)+ an(es, z /R )+ Re(2)dt (16)

= [po(%,€s) + an(z, es)]™,

which will serve as the basis for the error estimation inisec8.2. Setting:(¢,,) = 0 the initial
displacements of the dual problemtatfor the estimation of a single point displacement read:

ap(z(ty), w) = (0;(x;), w) VweWW (17)



That means the dual problem is reduced to a static problehedinhet,,. Since for the deriva-
tion of the initial conditions of the dual problem the meslpeledent modifications (2) have to
be taken into account the present error representationssteebe suitable if the dual problem
shall be computed on the same mesh as the primal problem.

3 ERROR ESTIMATION

3.1 Error estimation with full backward integration

The usual approach in goal oriented error estimation is timarmical evaluation of an error
representation formula. Here we take equation (15). SimeegsiduaR,(z;,) = 0 Vz, € Wh
the dual problem cannot be computed on the same spatiaétiition as the primal problem.
Furthermore in order to capture the consistency part of ther @ suitable approximation of
R.(z) is needed. One option is to compute the dual problem on the sa@sh with higher
order interpolation, see e.g. [1,5]. In our case we intredaiceference mesh with mesh size
H =  and introduce the dual problem:

po(Zm, wy) + ag(zg,wy) = F.(wy) Ywg € W0 <t <t,. (18)

The error representation is then replaced by the approiomat

t

Blu, up) ~ / Fulza) — politn, za1) — az(un, zs)dt (19)
0

which can be written in the discrete formulation as the suer all time steps. Here, as a suit-
able choice the time integral is replaced by a one-point quate rule, i.e. the dual-weighted
residual has to be computed in the middle of each time Atefhe error estimator then reads:

i=1

n Nel
E(u,up) =Y At; - (Z(pHv zu)s, — (Un, 21)5, — an(un, ZH)&-) (20)
J=1 i—%

Hereinp,, denotes the interpolation of the external forces in theregfee mesh.

3.1.1 Numerical example

The error estimator (20) shall now be tested with a numeeixample, now including damping.
We consider the hemisphere with a hole depicted in figure & Rdmisphere is subjected to
two pairs of single forces, the temporal evolution of theeésr is depicted in figure 2.

Time integration is performed with the standard Newmarloatgm with a constant time step
size At = 0.005. Due to symmetry only a quarter of the hemisphere is disdtwith bilinear
Solid-Shell elements. For the error estimation two unifon@shes are considered. The first
mesh consists of,; ; = 256 elements withm,,;, = 1632 degrees of freedom, mesh 2 consist
of ng o = 1024 elements withng, ;o = 6336 degrees of freedom. The reference solution is
computed with a uniform mesh with,,; ,.; = 16348 elements and . = 99072.



radius of hemisphere:R = 10
thickness: t = 0.04

radius of the hole: r = 3
modulus of elasticity: £ = 6,8-107
Poisson ratio: v = 0,3
density: p =5
damping parameters: ¢,, = 0,0003
. = 0,0001

Fig. 1 Example: Hemisphere with hole
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Fig. 2 Hemisphere with hole: Loading function
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Fig. 3 Hemisphere with hole: vertical displacement of pdintor the different spatial dis-
cretizations

Figure 3 shows the vertical displacement of pdirfor the two meshes and the reference solu-
tion.

Figures 4 and 5 show the estimated vs. the exact error in thetigyi of interest. In both cases
the error estimation works rather well. Especially the temapevolution of the error can be
well captured. Nevertheless there is a remarkable phaftebsitiveen the estimated and the
exact error, which mainly results from the phase error ofthh@l solution due to its numerical
approximation. As a consequence the error estimation ietfdr the finer mesh 2. The
main drawback of using the error estimator (20) is the neamgurmountable numerical effort
which arises from the error estimation procedure. For eact#; for which the error shall be
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Fig. 4 Estimated vs. exact error in the displacement of pbitoarse mesm(,;; = 1632)
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Fig. 5 Estimated vs. exact error in the displacement of pbiafiner mesh#,,;» = 6336)

estimated the whole temporal coupling of the primal and tied groblem has to be carried out.
Furthermore the whole primal and dual problem has to be dgtover the whole time domain
which results in huge memory requirements even for rathatlsTamerical models.

The main issue of the following section is therefore the otidn of the numerical effort of the
error estimation procedure.

3.2 Error estimation without backward integration

In order to reduce the numerical effort of the error estioragprocedure we first perform a
modal decomposition of the spatial discretization errohe Exact solution can be stated in
modal form:

u(x,t) = ZUi(ac) - f:(0) (21)

with U;(x) being the natural modes of the exact eigenvalue problem:
dive(U) + pw*U = 0. (22)

The corresponding representation of the discrete solutiads:

Ndof

un(@, t) = > _Ui(@) - (1), (23)



The total spatial discretization error can now be split e fibllowing form:

Ndof

es(z,t) = Y (Uix) - Ul(x)) -f1t) + Ui(x) - (fi(t) — f(t)) (24)
i—1 ~ —_——
E,(z) €pi
+ ) U@)- )

which means that the total spatial discretization errorsisia of the errord; of the spatial
approximation of the natural modes, the phase ertdss e, ; due to the approximation of
the natural frequencies and the cut-off error of higher nsodthich are not included in the
numerical model. For suitably chosen meshes the cut-aif ean usually be neglected.

A closer look at equation (24) shows that the phase errorlgndepends on the time and that
the phase error might be dominant even if the natural fregcjgsrare captured sufficiently.
Therefore, controlling the phase error usually yields yvéne spatial discretizations. The
numerical example in section 3.1 also exhibits that dueémtiase error the maximum values
of the errors usually occur at points in time where the gyt interest is nearly zero. For
practical applications it might be rather interesting tdga whether the spatial discretization is
suitable to represent the extreme values of the amplituidiee @uantity of interest.

So our approach is now to simply neglect the phase error iartioe representation. That means
we assume that the spatial discretization error can beteelsis:

Ndof

es(@.t) = Y Biw) £ @5)

In other words, we assume that the exact solution can beeddxha pure spatial enhancement
of the discrete solutiom;,. Furthermore with the restriction in equation (25) we imjply
assume that the temporal evolution of the spatial disa®tia error is known.

In the error estimation procedure in section 3.1 the bacttwaegration and the numerical eval-
uation of the dual weighted residual was necessary sindethgoral distribution of the spatial
discretization error was unknown. Therefore the competalght hand side of the differential
equation of the error had to be used for the error estimafitve. boundary conditions at time
t,, have only been employed for the proper definition of the duablem. Now in our case
the temporal distribution of the spatial discretizatioroeis assumed to be known which ren-
ders the backward integration in time unnecessary. The estomation can now be performed
simply on the basis of the boundary terms at titpei.e. we now employ the right hand side
of equation (16) not only for the proper definition of the dpabblem but also for the error
estimation. The error representation now reads:

E(’LL, Uh) = [po(és, Z) + ah(es, Z)]tn (26)

Since we have to apply the same strain interpolation schem#&é dual as for the primal
problem we first compute the numerical solutieg(t,,) on the mesh of the primal problem.
Then we split the dual solution agt,,) = z,(t,) + ez(t,). The error representation for the
absolute value can then be formulated as:

tn (27)

|E(w,up)| = |po(éz,és)+an(ez, es) + po(zn, €s) + an(zn, es)



SinceR.(zy) # 0 the last two terms in equation (27) do not vanish as in the chaestandard
Galerkin-scheme. Neglecting the last two terms means kleatonsistency error will not be
captured with the error estimator. Nevertheless the agipdic of Cauchy-Schwarz inequality
to equation (27) would yield a huge overestimation of theststency parts of the error, see e.g.
Diez, Morana and Huerta [3]. Fortunately, the numericaheples in [3] show that an adaptive
scheme which is based solely on the error estimation wittieitonsistency error is suitable
to reduce the total discretization error. Therefore we @gghe consistency part of the error in
the following and obtain the simplified error indicator:

|E(w, wn)| = pol|és]l, - [€z]]L, + [lesllan - [lezllan (28)

with the L,-norm of the errors in the velocities and the mesh dependangg norms of the er-
rors in the displacements of the dual and primal problem elhaw restrict the error estimation
to displacements of single points the velocity parts vaarghonly the strain parts remain in the
error estimation procedure. The mesh dependent energysrafrthe errors are now estimated
by use of the well-known error estimator by Zienkiewicz arttu411] which is based on re-
covered stresses. For the evaluation of the Zienkiewiazetlor estimator the mesh dependent
modifications have to be considered:

1/2
lles|lan = /(a’* — U(eANS)) C7: (0" — U(eANS))dV (29)

0

Hereino* denotes a smoothed stress field which is obtained by emgldlyaso-called super-
convergent patch recovery concept. In case of wave projagaibblems the main characteris-
tics of the underlying physical problem lies in the tempawrad spatial transport of the wave. So
neglecting the temporal transport of the error in wave pgagian problems means that a main
part of important information is neglected. So the suitagplication of the error estimator is
restricted to predominantly vibration type problems.

4 MESH ADAPTATION SCHEME

The simplified error estimator (28) shall now serve as baseésmesh refinement scheme. We
use a hierarchical mesh refinement scheme, i.e. all mesteegtiout the computation contain
the first spatial mesh. To ensure compatible meshes tram&tements are introduced at the
transition from coarser to finer discretized domains. Thap#ide scheme is now as follows. At
each point in time; at which a prescribed error tolerance is exceeded a meskmefint is per-
formed. Then the current data is transfered onto the new mr@dhhe computation continues.
The transfer of the data is done by use of the scheme propgdeddovitzky and Ortiz in [9].
This procedure consists of two steps:

e geometric interpolation of the data at the beginning of theemt time step at timg_;

e computation of the state variables on the new mesh at thefethe ime step{;) by use
of the time integration scheme. This yields an admissilatesit the end of the time step.



4.1 Numerical example

The mesh adaptation scheme is now applied to the hemisph#erdnale which has already
been mentioned in section 3.1. The quantity of interest ce@ygain the vertical displacement
of the pointI, see figure 1. The tolerance in our adaptive scheme for thetitypiaf interest
is e, = 4-107%. Since the error estimator neglects parts of the error semtation we can
expect an underestimation of the true error, i.e. the trugr egsulting from the mesh adaptation
scheme might be larger thap,.

10000
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Fig. 6 Hemisphere with hole: Evolution of the number of equrag throughout the computation

Fig. 8 Hemisphere with hole: Sequence of adaptively geednateshes

Figure (6) shows the evolution of the numbers of equatiormugfhout the computation; in fig-
ure 8 the corresponding adaptive meshes are depicted. @iseealearly the strong refinement
of the mesh in the region of the quantity of interest.

We are now interested if the simplified error estimator amedaitiaptive mesh refinement scheme
are suitable to improve the solution in the quantity of iaggr Therefore the maximum values
of the displacements of poidtat the times A — F depicted in figure 7 are compared.



time uniform mesh uniform mesh adaptive meshes
Ndof = 6336 Ndof = 24960
UA ref €A ‘ % €A ‘ % €A ‘ % ‘ FHG
0,02174 | 1,31-107* [ 0,6% | 5,4-107° [ 0,24% | 4,5-107° | 0,20% | 2216
0,04209 | 4,52-107* | 1,1% | 1,75-107* | 0,4% | 2,9-107* | 0,7% | 4754
0,0601 | 9,6-107* | 1,6% | 3,5-107* | 0,6% | 5,6-107* | 0,9% | 9996
0,075 | 1,78-1073 | 2,4% | 6,7-107* | 0,9% | 9,6-10~* | 1,3% | 9996
0,086 |3,11-107%[3,6% | 1,13-1073 | 1,3% | 1,3-1073 | 1,6% | 9996
0,093 | 4,7-1073 [ 5,0% | 1,63-1073 | 1,7% | 1,7-1073 | 1,8% | 9996

T m OO W >

Tab. 1 Hemisphere with hole: Comparison of the error in th@ldaodes of the vertical dis-
placement of poinf for two uniform meshes and for the adaptive scheme

Table 1 shows the comparison of the errors for two uniformhasswith6336 and24960 de-
grees of freedom and for the adaptive scheme. The maximurbewoh degrees of freedom of
the adapted meshesd4896 and the error in the quantity of interest is comparable toetiner
for the finer uniform mesh.

time uniform mesh x4, = 24960 | adaptive mesh #4,; = 9996
UA ref €A ‘ % €A ‘ %
A |0,02174 | 5,4-107° 0,24% —6,3-107° 0,3%
B |0,04209 | 1,75-107 0, 4% —1,0-107% 0,3%
C 0,0601 | 3,5-107% 0,6% —1,2-107* 0,2%
D 0,075 | 6,7-107% 0,9% ~7,8-107° 0,1%
E 0,086 | 1,13-1073 1,3% —2,1-107° 0,02%
F 0,093 |[1,63-103 1, 7% 1,1-107* 0,1%

Tab. 2 Hemisphere with hole: Comparison of the error in th@ldaodes of the vertical dis-
placement of poinf for a uniform mesh with,,; = 24960 and for the computation of
the whole problem with the last adaptive mesh with; = 9996

If we now take the last mesh of the adaptive procedure andrtebie computation with this
mesh we obtain a solution which is rather close to the ret&eolution which has been com-
puted on a mesh witho072 degrees of freedom.

5 CONCLUSIONS

This present contribution deals with goal-oriented erstingation and mesh-adaptivity in struc-
tural dynamics. Two error estimation techniques have beesepted. Besides the standard goal
oriented error estimation a strongly simplified error estion which neglects the phase error due
to the spatial discretization has been considered. Ingtesolving the complete dual problem
in time only a static problem has to be solved which results wery efficient error estimation
procedure. This simplified error estimator was used as this bhan adaptive mesh refinement
scheme. The numerical example shows that the simplified estonator — within its limitation

to vibration type problems— seems to be a suitable tool fergneration of efficient spatial
discretizations.
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