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direction for Solid-Shell elements

Georgios Michaloudis and Karl Schweizer hof

Abstract

In the simulation of shell problems in which plastic stressethickness direction are developed, the necessity of
a more accurate integration through thickness using meegriation points e.g. Gauss points becomes obvious, often
increasing respectively the computational time and effArhew algorithm is proposed for the automatic adaptation of
the integration formula in thickness direction during tlenputation. Simple engineering criteria are found to detfige
time-point and the regions to increase the number of integraoints.

1 Introduction

In shell problems with high stretching and intense thiclenesluction general three- dimensional material laws abk wel
as strains and stresses in thickness direction are requingdsing the use of so-called 'Solid-Shell’ elements vahic
provide the appropriate 3D-continuum discretization, gdeand [2] . In problems such as metal forming the non-
smoothness of plastic stresses imposes the use of intagrates of higher order, while mostly only globally preber
integration rules are used. This leads, in the case of aijaitof higher order integration rules for a complete St

in an overintegration of elastic regions and therefore inagessary significant increase of the computational tinhe T
algorithm proposed in this contribution allows the apgima of higher order integration formulae in an adaptivéhfas
reducing the error. Thus, the computation starts with th&@mnim required number of integration points in thickness, e
two, and during the computation the integration points acegased only in such regions where is needed e.g. if plastic
stresses occur. The method provides an efficient comprdyeiseeen accuracy and computational effort.

2 Issuesin adaptiveintegration

Except from the ordinary Gauss integration rule a compontetjration rule based on Gauss rule has been implemented.
This formula subdivides the interval of integration witltéd coordinateg into m subdomains as shown in Fig.1a), see
[3] and [4]. The transformation of the local coordingtef each subinterval intq is defined as:
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and the integration formula over the element thicknesserctiordinaté takes the form of the sum:
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As described above, the computation starts with two integrgoints in thickness direction, assuming a linear distr
bution of the stresses through thickness. A simple indioatach determines when and in which elements an increase of
the number of the integration points through thickness ft@mto more is necessary is provided by checking the appear-
ance of plasticity within the return mapping not with thelgtieriterion at the Gauss point but with its linear projeatio
to the element’s upper or lower surface, as shown in Fig.Ab}his point it must be mentioned that for the adaptation
of the integration standard error estimation is not validehese this would require differentiability of the integdaup to
a certain order, which is not the case for the in general nificntly smooth and often discontinuous function of our
interest.

The increase of the number of Gauss points between compraihtiteps necessitates the mapping of history variables
from the old to the new Gauss points. The transfer of the statables is performed with polynomial interpolation of
Newton form.

Since a Gauss rule of order n yields exact result for a funafoorder 2n-1, the mapping fronf!® Gauss points up
to 2n new Gauss points preserves the plastic energy. Thieéguse the function of order 2n-1 which is defined at the 2n
new Gauss points can be exactly integrated also fromtHeGauss points.

The work of stresses along the element thickness, defindd@si( = W, has been chosen as a measure of con-
vergence of the applied integration rule. The rate of thekviimused as the criterion for the increase of the order of the
integration rule which is described as:
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Figure 1: a) Compound rule based on Gauss rule b) Simpleatatibased on the projection of the stress value at the
Gauss points to the element’s upper and lower surface.

whereW,, andW;,_ is the work of stresses computed with the current and theiqarsly applied integration formula,
respectively. Additional convergence study has shown ithaost practical cases computation with nine integration
points is close to the converged result, naniély, ~ Wy.

3 Numerical results

A simple beam under bending and normal force, as shown i2&)dpas been chosen to test the proposed algorithm.
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Figure 2: a) Beam under bending and normal force b) Distidbudf stresses in thickness direction for the reference
solution c) Distribution of stresses in thickness direttichen increasing adaptively the number of Gauss pointslyoca

The distribution of normal stresses shown above, Fig. 48),2Z), belongs to an element of the plastic region. The
algorithm represents accurately the stress state of theeele when compared to the reference solution.

4 Conclusions

In this contribution a method for the adaptation of interatules in thickness direction for Solid-shell elementsw
presented. The algorithm first detects efficiently the el which and the time points when an increase of the order
of integration in thickness is needed. A polynomial intégpion of Newton form maps the history variables to the new
Gauss points preserving the plastic energy, while the wbskresses along the thickness direction defines a critéoion
the adaptation and its rate is used as a measure of converdénaly, it is shown - for a simple example- that the solutio
converges to the reference solution and the algorithm esisignificantly the computational effort.
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